Блок питания как выглядит: Страница не найдена — Практическая электроника

Содержание

как подключить блок питания, схема, как выбрать

Блок питания компьютера


Правильно выбрать блок питания для компьютера – иногда может быть не так просто, как кажется. От этого выбора зависит стабильность, а также срок службы всех используемых компонентов ПК, и подходить вопросу выбора блока питания – нужно серьезно. В данном обзоре, мы попытаемся рассмотреть основные моменты, которые помогут сделать правильный выбор.

Мощность

На выходе блока питания присутствуют следующие постоянные напряжения: +5 V, +12 V (также +3.3 V), и – вспомогательные (минус 12 V и + 5 V в простое). Основной же нагрузкой сейчас «принято» загружать линию +12 V.
Выходная мощность (W – Ватт) рассчитывается по простой формуле: она равна произведению U на J, где U – напряжение (в Вольтах), J – сила тока (в Амперах). Напряжения – постоянны, поэтому, чем больше мощность, тем больше должна быть сила тока по линиям.
Но, оказывается, тут тоже не все просто. При сильной нагрузке на комбинированную линию +3.3 / +5, уменьшиться может мощность по линии +12. Пример – маркировка блока питания бюджетного бренда Cooler Master (модели  RS-500-PSAP-J3):

Максимальная суммарная мощность по линиям +3.3 и +5 равна 130W (что – указано на упаковке), ну а максимальная мощность по «наиболее важной» линии +12V – равна 360W.
Но и это – не все. Обратим внимание на надпись ниже:
+3.3V и +5V и +12V суммарная мощность не должна превышать 427.9 W. Как бы, теоретически (глядя в «таблицу»), мы «видим» 490W (360 плюс 130), а здесь – всего лишь 427.9.
Что это даст нам на практике: если нагрузка по линии +3.3V и 5V будет в сумме, скажем 60W, то отняв от приводимой производителем мощности 427.9, т.е. 427.9 – 60, получаем 367.9W. Мы получим только 360 Ватт по линии +12V. От которой идет как раз «основное потребление»: ток на процессор, видеокарту.

Автоматический расчет мощности

Для расчета мощности блоков питания, можно воспользоваться калькулятором в браузере: http://www.extreme.outervision.com/psucalculatorlite.jsp. Хотя он – на английском языке, разобраться можно. Таких сервисов, в интернете достаточно много.

В общем, здесь можно выбрать почти что все, что нужно, включая конкретный тип CPU, формат материнской платы (micro-ATX или ATX), число планок памяти, винчестеров, вентиляторов… Для расчета, надо жать на прямоугольную кнопку «Calculate». Сервис выдаcт: как рекомендуемое, так и минимально возможное значение мощности (в Ваттах) для вашей системы.
Однако, по опыту, можно считать: офисный компьютер (с двух-ядерным CPU), может довольствоваться блоком питания на 300W. Для домашнего (игрового, с дискретной видеокартой) – подходит БП 450 – 500W, ну а для мощных игровых ПК с «верхней» (топовой) картой (либо – двумя, в режиме Crossfire или SLI) – Total Power (суммарная мощность) начинается от 600 – 700W.
Центральный процессор, даже при максимально возможной нагрузке, потребляет 100 – 180W (исключение – 6-ядерные AMD), видеокарта дискретная – от 90 до 340W, сама материнская плата – 25-30W (планка памяти – 5-7W), жесткий диск 15-20W. Учитывайте при этом, что основная нагрузка (процессор и видеокарта) ложится на линию «12V». Ну и, желательно добавить запас по мощности (10-20%).

Также я добавил на свой сайт сервис по расчету мощности блока питания.

КПД – коэффициент полезного действия

Немаловажным критерием будет и КПД блока питания. Коэффициент полезного действия (КПД) – отношение полезной мощности, выдаваемой блоком питания, к потребляемой им от сети. Если схема блока питания ПКсодержала бы лишь трансформатор, его КПД был бы около 100%.
Рассмотрим пример, когда блок питания (с известным КПД – 80%) обеспечивает на выходе мощность в 400W. Если это число (400) разделить на 80% – получим 500W. А блок питания с теми же характеристиками, но с меньшим КПД (70%), будет потреблять уже 570W.
Но – не надо воспринимать эти цифры «всерьез». Блок питания большую часть времени – нагружен не полностью, например, это значение может быть 200W (потреблять от сети компьютер будет меньше).
Существует организация, в функции которой входит тест блоков питания на соответствие уровню заявленного стандарта КПД. Сертификация 80 Plus, при этом, проводится только для сетей на 115 Вольт (распространенных в США), начиная же с «класса» 80 Plus Bronze, все блоки тестируются для использования в 220В-электросети. Например, если сертификация пройдена в классе 80 Plus Bronze, КПД блока питания составляет 85% при «половинной» загрузке по мощности, и 81% – при заявленной мощности.

Наличие логотипа на блоке питания говорит, что товар соответствует уровню сертификации.
Плюсы высокого КПД: меньше энергии отводится «в виде тепла», и система охлаждения, соответственно, будет менее шумной. Во-вторых – очевидна экономия электричества (хотя и, не очень большая). Качество у «сертифицированных» БП, как правило, высокое.

Активный или пассивный PFC?

Power Factor Correction (PFC) – коррекция коэффициента мощности. Power Factor – отношение активной мощности к полной (активной плюс реактивной).

Нагрузкой же, реактивная мощность не потребляется – она на 100% отдается обратно в сеть, на следующем полупериоде. Однако, с ростом реактивной мощности, растет максимальное (за период) значение силы тока.
Слишком большая сила тока в проводах 220В – хорошо ли это? Наверное, нет. Поэтому, с реактивной мощностью по возможности борются (особенно это актуально для действительно мощных устройств, «переходящих» предел в 300-400 Ватт).
PFC – может быть пассивным или активным.

Преимущества активного метода:

Обеспечивается близкий к идеальному значению Power Factor (коэффициент мощности), вплоть до значения, близкого к 1. При PF=1, сила тока в проводе 220В не превысит значение «мощность делить на 220» (в случае меньших значений PF, сила тока – всегда несколько больше).

Недостатки активного PFC:

Повышается сложность – снижается общая надежность блока питания. Самой системе активного PFC – требуется охлаждение. Кроме того, не рекомендуют использовать системы активной коррекции с автовольтажем совместно с источниками ИБП (UPS).

Преимущества пассивной PFC:

Отсутствуют недостатки активного метода.

Недостатки:

Система – малоэффективна при больших значениях мощности.

Что именно выбрать? В любом случае, приобретая БП меньшей мощности (до 400-450W), в нем чаще всего вы обнаружите PFC пассивной системы, а более мощные блоки, от 600 W – чаще встречаются с активной коррекцией.

Охлаждение блока питания

Наличие в любом блоке питания вентилятора для охлаждения – считается нормой. Диаметр вентилятора – может быть равным 120 мм, встречается вариант на 135 мм и, наконец, 140 мм.

Системный блок предусматривает установку БП вверху корпуса – тогда, выбирайте любую модель с горизонтально расположенным вентилятором. Больше диаметр – меньше шум (c одинаковой мощностью охлаждения).
Скорость вращения должна меняться в зависимости от внутренней температуры. Когда БП не перегревается – зачем нужно крутить «вентиль» на всех оборотах, и досаждать пользователю шумом? Существуют модели БП, полностью останавливающие свой вентилятор при потребляемой мощности менее 1/3 расчетной. Что – удобно.

Главное в системе охлаждения БП – это ее тишина (или – полное отсутствие вентилятора, такое тоже встречается). С другой стороны, охлаждение нужно затем, чтобы не допустить перегрева деталей (высокая мощность, в любом случае, влечет тепловыделение). На больших мощностях, без вентилятора – не обойтись.
Примечание: на фото – результат моддинга (удаление стандартной решетки-прорези, установка вентилятора Noktua и гриля 120 мм).

Разъемы и кабели

При покупке и выборе, обращайте внимание на количество доступных разъемов и длину проводов, идущих от блока питания. В зависимости от геометрии корпуса, нужно выбирать БП с достаточным по длине жгутом кабеля. Для стандартных корпусов ATX, достаточно будет жгута 40-45 см.

Блок питания, работающий в домашнем и офисном компьютере, имеет разъемы:
 Это – 24-х контактный разъем питания материнской платы ПК. Обычно здесь – раздельно 20 и 4 контакта, но бывает – и монолитный, 24-контактный.

 
Разъем питания процессора. Обычно он 4-х контактный, и только для очень мощных процессоров используют 8 контактов. Правильно выбрать блок питания для компьютера можно, ориентируясь на соответствующий разъем самой материнской платы.
 
Разъем для питания видеокарты – выглядит аналогично, и отличается тем, что он – 6-ти либо 8-ми контактный.
Разъемы (коннекторы) для питания SATA-устройств (жестких дисков, оптических приводов),  четырех контактные Molex (для IDE), и для включения FDD (или кард-ридера) – знакомы большинству пользователей:

Примечание: количество всех дополнительных разъемов (SATA, MOLEX, FDD) должно быть достаточным для подключения устройств, размещаемых внутри системного блока.

Монтаж – демонтаж

Для демонтажа старого блока питания, отключите его провод 220 Вольт. Затем, необходимо выждать 2-3 минуты, и только затем приступать к работе. Внимание! Несоблюдение данного требования может повлечь электротравму.

Блок питания в любом ПК крепится к задней стенке на 4-х винтах (саморезах). Откручивать их можно, только отключив все внутренние разъемы и штекеры блока питания (2 разъема материнской платы, видеокарты, коннекторы дополнительных устройств).

Подключить блок питания к компьютеру можно в обратном порядке: сначала – монтируем в корпус, закрепляя винтами, затем – подключаем разъемы.
Примечание: при манипуляциях с блоком питания, кулер процессора может мешать. Если есть возможность его демонтировать – воспользуйтесь этим (поставите на место – потом, перед включением).

Включение компьютера с новым БП

Подав питание 220 Вольт на новый БП, не нужно сразу включать компьютер. Подождите секунд 10-15 сначала: вы будете слушать, не происходит ли что-либо «неординарное». Если слышим писк, звон дросселей – идем и меняем блок питания по гарантии. Если же вы слышите периодически повторяющийся «металлический» щелчок – не включайте компьютер с таким блоком питания.

Если в дежурном режиме, блок питания «щелкает» – это работает система защиты. Отключите такой блок питания, отсоедините его разъемы (коннекторы). Можно попробовать собрать то же самое еще раз – если проблема повторяется, несем блок питания в сервисный центр (возможно, неисправен сам блок).
Компьютер с исправным БП включается практически сразу же, при нажатии кнопки «Power» ATX-корпуса. Должно появиться изображение на мониторе – теперь вы можете продолжить работу, но уже – с новым блоком питания.

Модульные кабели и разъемы

Многие более мощные модели блоков питания сейчас используют так называемое «модульное» подключение. Добавление внутренних кабелей с соответствующими ответными разъемами – происходит по необходимости. Это удобно, потому, что в корпусе компьютера уже не надо держать лишние (неиспользуемые) провода, к тому же, так – меньше путаницы. А отсутствие лишних проводов, улучшает также циркуляцию горячего воздуха. В модульных блоках питания, «несъемными» делают только шнуры с разъемом для материнской платы/процессора.

Бренды и производители

Все фирмы (производители блоков питания для компьютера) – принадлежат одной из 3-х основных групп:

  1. Производят полностью свою продукцию – такие бренды, как Hipro, FSP, Enermax, Delta, также HEC, Seasonic.
  2. Производят продукцию, перекладывая часть процесса изготовления на другие компании – Corsair, Silverstone, Antec, Power&Cooling и Zalman.
  3. Перепродают готовые блоки под собственной маркой (некоторые – производят «отбор», некоторые – нет): Chiftec, Gigabyte, Cooler Master, OCZ, Thermaltake.

Каждый бренд, приведенный выше, смело можно рекомендовать. В интернете, к тому же, приводится много обзоров и тестов для «фирменных» блоков питания, по которым можно ориентироваться пользователю.
Перед покупкой БП, его стоит взвесить (достаточно и подержать в руке). Это позволит более-менее понять, что у него внутри. Конечно, способ это – неточный, однако он позволяет сразу «отмести» явно «дешевый» БП.
Масса блока питания зависит от качества стали, габаритов вентилятора, а (главное): количества дросселей и веса радиаторов внутри. Если в БП не хватает каких-то катушек индуктивности (или, допустим, конденсаторы – уменьшенной емкости), это говорит об «удешевлении» электрической схемы: БП будет весить 700-900 гр. Хороший БП (450-500W) весит обычно от 900 гр. до 1,4 кг.
Удачного выбора!

Из истории

На рынке персональных компьютеров, то есть не только IBM-совместимых, а – в более общем смысле «компьютеров», на стандартизацию компонентов (БП, материнской платы) изначально пошла компания IBM. Остальные затем стали это «копировать». Все известные форм-факторы для блоков питания IBM-совместимых ПК, основаны на какой-либо из моделей БП: PC/XT, PC/AT, и Model 30 PS/2. Все совместимые ПК, так или иначе, могли использовать один из трех оригинальных стандартов, разработанных IBM. Эти стандарты были популярны вплоть до 1996 г., и даже позднее – современный стандарт ATX восходит к физической компоновке PS/2 Model 30.
Новый форм-фактор, то есть известный нам ATX, определила в 1995 г. компания Intel (тогда – партнер IBM), представив стандарт для платы и блока питания. Новый стандарт обрел популярность с 1996 г., и производители постепенно начали отходить от устаревшего стандарта AT. ATX и некоторые «ответвления» стандарта, которые за ним последовали, используют отличные от форм-фактора AT разъемы мат. платы (не только с дополнительными напряжениями, но и сигналами, которые позволяют обеспечивать большую мощность и дополнительные возможности).
Все IBM-овские стандарты предусматривали физически один и тот же разъем, подающий питание на материнскую плату. Для включения и выключения, чтобы подать питание на компьютер, использовался тумблер (или кнопка), размыкающий провод с напряжением 220 Вольт. Что было не очень удобно (особенно при разборе/ремонте ПК). Поэтому, появился новый стандарт, «не допускающий» напряжение более 12 Вольт внутри системного блока (внутри корпуса).

Необходимо сказать, что сама схема питания (принцип ее построения), начиная от первых PC XT, значительных изменений не получила. Принцип преобразования энергии, используемый в компьютерных БП, называется «импульсным» (из переменного напряжения 220 Вольт делается «постоянное», затем, оно преобразуется, понижается до более низких значений импульсным методом). Первые блоки питания для персональных компьютеров имели мощность 60 W (XT), или, скажем, 100-120 W (AT 286). Просто, тогда компьютер предусматривал установку: 1-2 дисководов, одного винчестера (да и сам процессор – «потреблял» очень мало).

Перспективы развития

800 Ватт, 900 Ватт, 1000 Ватт… Блоком питания для ПК, отдающим в нагрузку один Киловатт энергии – никого не удивить. Конечно, цена значительно отличается (от «стандартных» коробок на 450-500 W), однако, такой блок питания обеспечивает достаточный уровень надежности (и – невысокий уровень шума) даже при полной загрузке! Ну, просто чудо.
Если же посчитать, сколько энергии такой компьютер будет потреблять от розетки – получится, что это ни что иное, как эквивалент постоянно включенного на полную мощность утюга. Хорошего такого, по мощности – выше среднего, тяжеленького…
Последнее время, с переходом на новые техпроцессы производства «главных» микросхем для компьютера (центрального процессора, модуля 3-D), движение наметилось как раз «обратное» – то есть, снижение общей мощности при сохранении того же уровня производительности. Два года назад, средний 4-ядерный «проц» потреблял не менее 90 W, сейчас – уже 65 («новый», при этом – быстрее). В любом случае (как 2 года назад, так и сейчас), выбор – за пользователем.

Как установить блок питания в компьютер

Предыдущая

Комплектующие компьютераКак рассчитать мощность блока питания

Следующая

Комплектующие компьютераКак выбрать материнскую плату

CompHome | Блок питания

Блок питания — самый важный элемент в ПК. Плохой блок питания. когда он «умрет» — он с собой в небытиё прихватит и хорошую материнскую плату и хороший процессор и хорошую видеокарту и хороший SSD (питание подается на все элементы ПК). Поэтому обязательно надо покупать высококачественный блок питания.

Хорошая статья (от 2004 г.) про разницу между блоками питания — на настоящий момент сильно ничего не изменилось.
Почитать и посмотреть.
http://www.overclockers.ru/lab/15701.shtml

Посмотреть тесты блоков питания можно ниже
http://fcenter.ru/online/hardarticles/tower/14093#57

Рейтинг производителей блоков питания (достаточно условный)

Высококачественные блоки питания: Fractal Design, FSP, OCZ, Zalman, Enermax, Hiper
Качественные блоки питания: AcBel, CoolerMaster, Thermaltake, Chieftec, Inwin (ранее был бренд PowerMan)
Блоки питания среднего качества: Defender, Microlab, 3R, Gembird
Блоки питания низкого качества: Microtech, Codegen (QORI), JNC , Colors-It, SuperPower, Winsis, Gembird

Российский бренд, производство Азия: LinkWorld, PowerMan, PowerCool, Crown
С российскими брендами лучше вообще не связываться, ибо братья-китайцы пихают в блок не то, что нужно, а что есть в наличии. В результате под одним наименованием образовываются совершенно разные блоки питания. На примере CROWN CM-PS500W существуют как минимум, три разные модификации:

Вариант 1Вариант 2Вариант 3
линия +5В32А28А15А
линия +12В20А18Адве линии по 14А

Обзор производителей 2011 года смотреть здесь.

Признаки высококачественного блока питания:

1. Наличие сетевого фильтра для предотовращения попадания импульсных помех в сеть. Если после установки такого блока питания в динамиках появляется гул — можно даже блок питания не разбирать на посмотреть, а сразу выбрасывать.
2. Вентилятор на подшипниках качения, а не на пластиковой втулке, она живет несколько лет, далее блок под замену (хитрые маркетологи называют втулку подшипником скольжения, не попадитесь на эту уловку)
3. В блоке питания один вентилятор, а не несколько (2 или 3)
4. Вентилятор закрыт решеткой типа «гриль», а не просто сделаны прорези в корпусе блока питания (решетку «гриль» просто снять и почистить вентилятор)
5. Производитель из первой линейки
6. Провода 18AVG
7. Выходные напряжения без нагрузки +5% от номинала (потом, под нагрузкой они могут уйти в -5%)
8. Наличие сертификата 80 PLUS
9. Активный PFC
10. На этикетке блока указаны все токи и все мощности для комбинированных нагрузок
11. Несколько реальных линий +12В (т.е. защита от перегрузки по каждой линии), идеально линий +12В должно быть как минимум четыре: одна на процессор, вторая на материнскую плату, третья на шлейфы HDD/SSD, четвертая на дополнительное питание видеокарты PCI-E
12. Для поддержки режима видеокарт NVIDIA SLI блок питания должен иметь параметр SLI-Ready (на практике это означает наличие разъемов на питание видеокарты ДВА и более). Список от NVIDIA (на 2012) блоков питания можно посмотреть здесь (откроется в отдельном окне)
13. Вес не менее 2 кг. Достаточно условно, но если вес блока питания в районе 900 гр — значит там как минимум нет половины деталей.
14. Должна быть стабилизация напряжений по каждому типу (а лучше по каждой линии). В дешевых блоках используется так называемая групповая стабилизация напряжений — т.е. перегрузили +5В и все остальные напряжения (+12В и +3,3В) тоже просели…

Спорный вопрос — съемные провода. Да, это модно и удобно, в корпусе ПК нет лишних проводов (они лежат в коробке). Но данное решение снижает надежность системы, т.к. гарантированный контакт внутри блока питания (пайка) заменяется на механический контакт. У надежности всегда приоритет выше удобства, так что лучше по старинке. без модной опции «съемные провода».

Проверять блок б/у надо с его вскрытия 🙂 И если там зеленые конденсаторы (типа TEAPO) или синие (типа Ltec) то дальше можно и не проверять, и БП выкидывается в мусор. А вот если там коричневые (United Chemi-Con) или черные (Panasonic/Rubycon), то вот тогда есть шанс на рабочий вариант.

Системы защиты, которые должны быть на блоке питания:

  • OCP (Over Current Protection): защита против скачков мощности;
  • OVP (Over Voltage Protection): защита против скачков напряжения;
  • OPP (Over Power Protection): защита от перегрузок, иногда называется OLP;
  • OTP (Over Temperature Protection): защита от перегрева;
  • UVP (Under Voltage Protection): защита от пониженного напряжения;
  • SCP (Short Circuit Protection): защита от короткого замыкания;
  • NLO (No Load Operation): помогает блоку питания нормально функционировать без нагрузки.

Как делаются блоки питания низкого ценового сегмента? Берется разработка именитого бренда (да, китайцы копируют у китайцев) и половина деталей выбрасывается (минус сетевой фильтр, минус PFC, минус дроссели, минус часть защит, плюс самый дешевый вентилятор). Если такой блок питания открыть — там будет очень много перемычек, где должны быть установлены детали.

Ранее, для совсем старых ПК были блоки питания AT, сейчас все блоки ATX. В чем разница? Принципиальных моментов два:
— блок AT физически включался/выключался кнопкой, блок ATX запускается управляющим чипом на материнской плате, который активируется кнопкой Power. Это дало возможность выключать ПК программно, из ОС.
— в блоке AT воздух вентилятором выдувался наружу, в блоках ATX вентилятор засасывает воздух внутрь, создавая внутри ПК избыточное давление. Соответственно только одна точка поступление воздуха внутрь, через щели в корпусе он выдувается наружу.

Вариант с созданием избыточного давления внутри корпуса хорош, но есть небольшая проблема. Воздух, который поступает внутрь, он уже теплый, т.к. прошел через блок питания. Но проблема действительно небольшая — ведь на материнских платах есть несколько коннекторов: CPU_FAN (для кулера процессора — на 3 или 4 пин) и CHA_FAN (для дополнительного вентилятора корпуса — на 3 пин). Старайтесь использовать корпус с дополнительным вентилятором.

Грубая оценка мощности блока питания:

  • обычный офисный компьютер = хватит 300-350 Вт
  • есть один мощный элемент (или процессор или видеокарта >100 Вт) = хватит 450-500 Вт
  • есть два мощных элемента (и процессор и видеокарта > 300 Вт) = надо 600-700 Вт
  • есть три мощных элемента (1 процессор и 2 видеокарты > 500 Вт) = надо 800-1000 Вт

Откуда эти оценочные цифры? При выборе блока питания нам надо ориентироваться не на общую мощность, а на потребление тока по отдельным линиям.

Вариант расчета для старой платформы на socket 478.

КомплектующиеШт.+3,3В+5В+12ВМощность,Вт
Pentium 4 Prescott 3,0 1 10А 120Вт
Видео AGP+ внешнее питание 1 3А 2A 1А 42Вт (стандарт AGP)
Внешнее питание AGP 1 7A 1A 47Вт
MotherBoard 1 3А 2А 1А 32Вт
Вентилятор платы 1 0,5А 6Вт
Кулер CPU 1 1А 12Вт
Память DDR 4 2А за 4-ре планки=10Вт
HDD 2 2А 2А за 2 HDD=34Вт
DVD 1 2А 1А 22Вт
USB 2 2А за 2 USB=10Вт
Клавиатура и мышь10,5А 3Вт
ИТОГО6 А20 А17 А ~335 Вт

Да, еще плюс 10Вт на дежурное питание (которое +5V sb).

Таблица как бы показывает, что хватит 350Вт, но смотреть надо на токи. Какой-нибудь современный БП на 1200 Вт может вполне не потянуть старый ПК образца 2005 г., будет срабатывать защита. А почему? Потому-что вся основная мощность выдается по линиям +12В, а на линию +5В отдается всего 100 Вт (20А)

Для видеокарт PCI-E с дополнительным питанием еще проще.
На видеокарте есть доп.питание 8 pin = значит в пике 150 Вт. Две видеокарты и процессор с TPD 150 Вт (какой-нибудь XEON 5482) = получаем расчет = 2 * (150) + 150 = вот уже 450 Вт только на основные компоненты.

Кроме того, не стоит забывать, что у блока питания должен быть запас по мощности где-нибудь на +30%. Т.е. рассчитали на 300Вт, покупайте на 400Вт. Расчет показывает 500Вт, покупайте 700Вт. Это связано с тем, что практически у всех блоков (включая самые лучшие) просадка основных параметров (напряжение, стабилизация) начинается при 70-80% нагрузки от максимальной.

Можно показать в условной таблице для блоков 500Вт:

ПроизводительУход стабильности напряженийСрабатывание защиты
Нижний и средний ценовой уровень — 500 Вт250 Вт (50% нагрузки)300 Вт (60% нагрузки)
Высокий ценовой уровень — 500 Вт400 Вт (порядка 75% нагрузки)550 Вт (более 100% нагрузки)

Да, в блоках питания нижнего ценового сегмента указанная мощность — эта такая легкая обманка. Если почитать подробное описание к блоку, то, например, указанная мощность в 500 Вт — это «пиковая мощность при работе не более 15 сек». А в норме блок питания выдает всего 300 Вт.

Как пример, блок питания NONAME типа на 500 Вт. На 250 Вт нагрузки «поплыли» напряжения, на 300 Вт нагрузки появился запах паленной изоляции и сработала защита. Т.е. 500 Вт он в теории может выдать (сразу после включения и на 15 сек), но постоянно он так работать не сможет.

Точнее так:
1. Фирменные блоки питания, которые гарантированно держат напряжение при максимальной нагрузке
2. Фирменные блоки питания (бюджетный вариант), которые держат напряжение до 50% нагрузки, потом 12В «превращаются в тыкву», т.е. уход на уровень 11,0-11,3 В, защита срабатывает как и положено на 95-100%
(вот тут конечно проблема, ибо часть материнских плат при напряжении ниже 11,5В нормально работать не будут)
3. Блоки питания NONAME, у которых при 50-60% нагрузки срабатывает защита

С учетом того, что у нас внешнее питание видеокарты AGP и мощный процессор, нам надо:
— по линии +5В не менее 30А (основной вклад — видеокарта AGP, ей нужно много тока с +5В)
— по линии +12В не менее 20А

Вот потребление токов по линиям +12В (0.52A) и +5В (0.72A) типичным HDD (IDE, 5400 rpm) = в среднем на уровне 9-10Вт

Надо искать блоки  питания на 600-650 Вт (еще поискать надо. т.к. обычно в современных вариантах никто не предусматривает мощного потребителя на линии +5В, стандарт ATX 2.0, см. ниже). В блоках на 350Вт условия по току будут только по одной линии выполняться.

Сейчас используются в основном блоки питания так называемого стандарта «Pentium Ready» (стандарт ATX 2.03 и выше). Т.е. во всех современных блоках питания сделан отдельный шлейф для процессора.

БП версии ATX 2.0 и выше отдают основную мощность по линии +12В, нагрузочная способность остальных линий,как правило,невелика (как и требуется для современных систем).
Суммарная мощность по линиям 3,3В & 5В в диапазоне 80Вт — 150Вт

БП версии ATX 1.3 заточены под максимальную нагрузку линий +5В,+3.3В (как и требовалось для старых материнских плат).
Суммарная мощность по линиям 3,3В & 5В в диапазоне 150Вт — 230Вт

Сейчас в основном существуют блоки питания следующих версий ATX
ATX 1.3
ATX 2.0
ATX 2.2
ATX 2.3

Более подробно можно почитать здесь.

Посмотрим на шлейфы отдельно (обычно их четыре):

Питание CPU, 12В = коннектор на 4 или на 8 пин


Передаваемый ток максимум 18А = т.е. мощность 216 Вт


те же 12В и «земля», только проводов больше = передаваемая мощность около 400 Вт

Питание материнской платы = коннектор на 20 или 24 пин (он разборный в формате 20+4). Дополнительные 4 пина — это питание разъемов PCI-E (обеспечить электричеством мощную видеокарту). Если у Вас старая плата без PCI-E, то основной разъем будет на 20 пин, оставшиеся 4 пин будут просто висеть в воздухе.

Контакт PS_ON (Power supply ON) служит для запуска ПК. БП включается при замыкании PS-ON на землю. БП вырабатывают сигнал PWR_OK — этот сигнал с уровнем 3–6 В вырабатывается через 0,1–0,5 с после включения питания и показывает, что выходные напряжения БП в норме. При отсутствии этого сигнала на МВ постоянно вырабатывается сигнал Reset, не позволяющий запуститься процессору. Появление сигнала PWR_OK заставляет МВ снять сигнал Reset с CPU.

Неиспользуемые / малоиспользуемые (старые разъемы):

Разъем N/C ранее использовался для линии питания -5В = необходим для работы интерфейса ISA
Разъем -12В = необходим работы COM-порта (при отсутствии этого напряжения не будет работать управляющая микросхема на плате)

Возникает вопрос — а можно ли сделать наоборот, включить разъем на 20 пин в плату с разъемом на 24 пин? Можно, но не нужно. Плата заведется (скорее всего), компьютер загрузится — но все разъемы PCI-E останутся без силового питания, соответственно в них ничего работать не будет.

Питание периферийных устройств = обычно два шлейфа, внутри +5В и +12В (разъемы питания HDD, FDD, оптического привода, устройств SATA)

Напряжение -5В в настоящее время не используется (ранее применялись в шине ISA и в блоках питания AT), сделано для совместимости со старым стандартом. В разъеме на материнскую плату контакт 20 не задействован (напряжение -5В ранее было на нем). Вот более подробная картинка, на каких пинах какие напряжения. Хорошо видно составной разъем 20+4 материнской платы.

Напряжение +5В SB = поступает на материнскую плату и используется для питания схемы управления БП. Схема управления осуществляет формирование сигнала «PS-ON» (нажатие кнопки включении на системном блоке) Другими словами дежурное питание нужно, для того чтоб при нажатии на кнопку на системном блоке Блок Питания включился и появились все необходимые напряжения.

Посмотрим на табличку на блоке питания

Вот указан наш стандарт = ATX ver 2.03

На линии +12В блок выдает 18А, уже хорошо. Плохо, что линия одна (12В еще идут и на материнскую плату). Вариант с несколькими линиями +12В лучше, тогда на процессор будет отдельная своя линия.

Вот такой вариант вроде лучше, 500 Вт больше 450 Вт? А нехорошо, по линии +5В всего 18А, нам не хватит, будет срабатывать защита.

Посмотрим на новый блок питания LinkWorld, ухищрения маркетологов стандартные.

32А по линии +5В = чистая неправда. Внизу точками выделено 3,3V&5V = 150W MAX. Что у нас там с законом Ома 3,3В*22А+5В*32А=должно быть 230 Вт. Разница почти в 80 Вт !

А по выдаваемым напряжениям (смотрим Everest) — вообще сказка. Особенно по линиям +5V sb и 3.3V.

Мусор, на выброс.

Корректор фактора мощности PFC.

Мы все понимаем, что указанная мощность — это та, которую блок питания выдает на компоненты компьютера. От сети он заберет на 30-40% больше (т.е. для дешевого блока питания на 350 Вт от сети будет забрано 450-500 Вт). Позвольте, а куда уйдут эти 30%? Не зря в блоках питания стоят вентиляторы охлаждения — эта часть мощности пойдет на нагрев самого блока питания. Поэтому в приличных блоках питания обязательно используется корректор фактора мощности.

PFC — переводится как «Коррекция фактора мощности» (англ. power factor correction), встречается также название «компенсация реактивной мощности».
Собственно фактором или коэффициентом мощности называется отношение активной мощности (мощности, потребляемой блоком питания безвозвратно) к полной, т.е. к векторной сумме активной и реактивной мощностей. По сути коэффициент мощности (не путать с КПД!) есть отношение полезной и полученной мощностей, и чем он ближе к единице – тем лучше.

PFC бывает двух разновидностей – пассивный и активный.
При работе импульсный блок питания без каких-либо дополнительных PFC потребляет мощность от сети питания короткими импульсами, приблизительно совпадающими с пиками синусоиды сетевого напряжения.

Наиболее простым и потому наиболее распространенным является так называемый пассивный PFC, представляющий собой обычный дроссель сравнительно большой индуктивности, включенный в сеть последовательно с блоком питания.

Пассивный PFC несколько сглаживает импульсы тока, растягивая их во времени – однако для серьезного влияния на коэффициент мощности необходим дроссель большой индуктивности, габариты которого не позволяют установить его внутри компьютерного блока питания. Типичный коэффициент мощности БП с пассивным PFC cоставляет всего лишь около 0,75 (вот 25% уходит в тепло)

Активный PFC представляет собой еще один импульсный источник питания, причем повышающий напряжение.
Как видно, форма тока, потребляемого блоком питания с активным PFC, очень мало отличается от потребления обычной резистивной нагрузки – результирующий коэффициент мощности такого блока может достигать 0,95…0,98 при работе с полной нагрузкой.

Правда, по мере снижения нагрузки коэффициент мощности уменьшается, в минимуме опускаясь примерно до 0,7…0,75 – то есть до уровня блоков с пассивным PFC. Впрочем, надо заметить, что пиковые значения тока потребления у блоков с активным PFC все равно даже на малой мощности оказываются заметно меньше, чем у всех прочих блоков.

Помимо того, что активный PFC обеспечивает близкий к идеальному коэффициент мощности, так еще, в отличие от пассивного, он улучшает работу блока питания — он дополнительно стабилизирует входное напряжение основного стабилизатора блока – блок становится заметно менее чувствительным к пониженному сетевому напряжению, также при использовании активного PFC достаточно легко разрабатываются блоки с универсальным питанием 110…230В, не требующие ручного переключения напряжения сети.

А бывают вообще блоки питания без модуля PFC? Бывают, их легко узнать по внешнему виду. у них 2-3 вентилятора вместо одного. Зачем так много? А как же, ведь в тепло улетает порядка 30-40% ‘энергии, надо же это тепло выводить наружу.

Сертификат 80 PLUS – часть принятого в 2007 году стандарта энергосбережения Energy Star 4.0, подразумевающая сертификацию компьютерных блоков питания на соответствие определённым нормативам по эффективности энергопотребления: КПД (отношение выходной мощности к потребляемой) должен быть не менее 80% при 20%, 50% и 100% нагрузке относительно номинальной мощности БП, а коэффициент мощности должен быть 0.9 (т.е. только 10% в тепло) или выше при 100% нагрузке.

В 2008 году к стандарту были добавлены уровни сертификации:

Напряжение в электросети 230 В
Процент от номинальной нагрузки20%50%100%
80 PLUS
80 PLUS Bronze81%85%81%
80 PLUS Silver85%89%85%
80 PLUS Gold88%92%88%
80 PLUS Platinum90%94%91%

Общий комментарий.

У человека с базовыми знаниями электротехники может возникнуть вопрос: «А почему все так сложно?» Берем трансформатор, мотаем обмотку на 220В, на 12В, на 5В и на 3,3В, ставим диодные мостики и стабилизирующие конденсаторы. Будет работать? Да, будет — но есть одна проблема.

Передаваемая мощность через трансформатор:
— прямо зависит от размера сердечника
— а размер сердечника обратно зависит от частоты тока (чем частота меньше, тем больше нужен размер)

Для 220В и 50Гц размер блока питания на 1000Вт будет сравним с размером корпуса ПК 🙁

Выход тут один — повышать входящую частоту. В авиации используется 400Гц, в импульсных блоках питания порядка 50кГц. Да, с помощью повышения частоты мы размер трансформатора сократили, но получили все остальные проблемы (КПД, пульсации и т.п.), которые приходится решать.

Вот собственно базовая схема импульсного блока питания.

Обратите внимание:

  • конденсаторы С1-С4 и дроссель L1 образуют сетевой фильтр, который служит для подавления синфазных и дифференциальных помех, которые возникают в результате работы самого блока питания и могут приходить из сети
  • что бы сетевой фильтр корректно работал — нужно обязательно заземление, не просто так вилка сетевого шнура сделана с тремя штырьками
  • и да, в импульсном блоке питания как правило НЕТ гальванической развязки с электрической сетью, т.е. на не заземленном корпусе ПК будет напряжение относительно «земли», например батареи

 

AGP (от англ. Accelerated Graphics Port, ускоренный графический порт) — поставим наиболее мощную видеокарту. Но сначала основы. Скорость порта 1х — передача 1 блока данных за один такт 2х — передача 2 блоков данных за один такт 4х — передача 4 блоков данных за один такт — около 1 Гб/с 8х — передача 8 блоков данных за один такт — около 2 Гб/с это пиковые теоретические значения, в реальных видеокартах разница между 8х и 4х не более 10%. На текущий момент в основном остались материнские платы с 4х/8х и 8х скоростями. Мощность видеокарты во многих случаях производители не указывают. Но можно легко оценить: — видеокарта без доп.питания

Для видеокарт в основном используется разъем PCI-E х16. Современные модели требуют ревизию 3.0 Есть еще разъем PCI-E 2.1 Что это? Физически и электрически разъем 2.1 полностью соответствует 2.0 Но добавлены программные функции из стандарта 3.0 (в отдельных случаях поднимает скорость обмена данными за счет оптимизации работы с системными ресурсами). Не забываем, что в таблице указаны максимальные теоритические скорости, т.е. не 2.0, не 2.1. не работают на максимальной скорости. Просто использование 2.1 приближает нас к пределу для стандарта 2.0 Internal Error Reporting — теперь информация о внутренних ошибках стала доступной программному коду. Atomic Operations — поддержка…

При выборе видеокарты часто возникают вопросы и споры — сколько видеопамяти должно быть на борту? Всегда ли 4 Gb видеопамяти лучше, чем 2 Gb? Как увидеть, сколько игра реально забирает видеопамяти? Обычно, все сводится к тому, что чем больше, тем лучше. Начнем с математики. Видеокарте нужно отдать информацию тупому монитору, какие пиксели в какие цвета покрасить. Да, тут в связке ПК-видеокарта-монитор, последний — самый простой прибор с точки зрения ИИ. Монитор фактически не занимается никакими расчетами, он получает информацию от видеокарты, какие пиксели каким цветом красить — и на этом все. При разрешении 1980*1024 мы получаем порядка 2 000 000 точек (pixel) на экране. С…

Термопаста используется для обеспечения качественного отбора тепла от процессора/чипа  и передаче этого тепла на радиатор. Внутри ПК в основном: — между центральным процессором (CPU) и кулером — между графическим процессором (GPU) и радиатором видеокарты — в качестве экзотики — есть еще блоки питания с тепловыми трубками и своими кулерами Теплопроводная паста — вещество с высокой теплопроводностью и пластичностью, используемое для улучшения теплового контакта между двумя соприкасающимися поверхностями. Крышка любого процессора и подошва любого радиатора имеет шероховатости. Даже если визуально поверхность выглядит хорошо отполированной и абсолютно гладкой, она всё равно…

Это зависит от Вашей сетевой карты и системы BIOS. Если удаленное управление электропитанием сетевой карты поддерживается — то можно включить компьютер удаленно. Настройки сетевой карты включаются через «Диспетчер устройств» и «Свойства». «Магический» пакет означает, что устройство будет «просыпаться» только от других реальных устройств и не будет реагировать на случайные пакеты в сети. В некоторых сетевых картах можно выбрать, от чего именно будет «просыпаться» ПК, варианты режима Wake-on-Lan (WOL). All — от любого сетевого пакета Link Change — Magic Packet — «магический»…

Компьютеру пока спать. Разберемся, что это. Маркетологи намудрили с названиями и мы сейчас имеем зоопарк. Посмотрим, что реально происходит. Что происходит Windows XP Windows Vista и старше Все данные остаются в оперативной памяти, работа CPU минимизируется Ждущий режим Сон (в настройках это будет «Спящий режим») Все данные из оперативной памяти переписываются на диск, питание с памяти снимается, питание ПК выключается, остается только дежурное питание Спящий…

Основные параметры кулеров. Вот классический вариант для горячего процессора — Zalman CNPS7700-Cu, почти 900 гр. чистой меди. Площадь пластин охлаждения 3 268 кв.см., коннектор 3 пин. Конечно, со временем медь потемнеет — но все равно красиво и эффективно. Сейчас конечно, уже не выпускается (socket только Intel: s478, s775 и AMD: s754, s939, s940), но б/у найти можно. Данный кулер Zalman 7700Cu для socket 478, при наличии вентилятора 2800 об. обеспечивал 130-150 Вт TDP, в современной версии установлен вентилятор на 2000 об. Площадь пластин 2500-3500 кв.см. Смотрим основные параметры: — самый главный — совместимость с процессором. Тут фактически два параметра — крепеж к сокету…

Будем рассматривать память стандарта DIMM, про SIMM забудем, она уже совсем старая. SIMM (англ. Single In-line Memory Module, односторонний модуль памяти) — модули памяти с однорядным расположением контактов, широко применявшиеся в компьютерных системах в 1990-е…

Что у нас на выходе видеокарты? Разъемы D-subminiature, или D-sub — семейство электрических разъёмов. Свое название получило из-за характерной формы в виде буквы «D», однозначно ориентирующее правильное положение разъёмов при подключении. Часть названия англ. subminiature — «сверхминиатюрный», было уместно тогда, когда эти разъёмы только появились. Разъем служит для подключения аналогового монитора, все его прекрасно знают. Digital Visual Interface, он же DVI (англ. цифровой видеоинтерфейс) — стандарт на интерфейс, предназначенный для передачи видеоизображения на цифровые устройства отображения. В базовом стандарте передается только видео, без звука. Сразу чудный вопрос -…

Центральный процессор — основной «думатель» в компьютере. Сокращение CPU означает central processing unit — центральное процессорное устройство. В основном речь пойдет о процессорах Inel, есть еще процессоры AMD — но это большая отдельная тема. Процессор устанавливается в сокет на материнской плате. Собственно socket на английском языке  означает «гнездо»,  китайцы дословно так и переводят — «гнездо процессора» :). Красиво сокет теперь называется LGA — (Land Grid Array) — матрица контактных площадок (т.е. контакты). Ранее сокет был PGA —  (Pin Grid Array) — корпус с матрицей выводов (штырьковые контакты для 478 процессора). Общий список socket from…

Блоки питания ATX: серия 15, 500…800 Вт

Введение


В сегодняшней статье мы представляем вам результаты тестирования пяти мощных блоков питания хорошо известных нашим читателям компаний – однако если две из них, Thermaltake и Enermax, известным именно как производители блоков питания, то оставшиеся три в таком качестве нам встречаются впервые.

Методика тестирования


Описание методики тестирования, используемого нами оборудования, а также краткое объяснение, что означают на практике те или иные паспортные или же измеряемые нами параметры блоков питания, можно найти по следующей ссылке: «Методика тестирования блоков питания». Если вы чувствуете, что недостаточно хорошо ориентируетесь в цифрах и терминах, которыми изобилует статья – пожалуйста, ознакомьтесь с соответствующими разделами указанного описания, надеемся, оно прояснит многие вопросы.

Ознакомиться с полным перечнем побывавших в нашей лаборатории моделей можно по ссылке «Каталог протестированных блоков питания».

BFG ES Series BFGR800WESPSU (800 Вт)


Компания BFG Technologies российскому покупателю известна скорее теоретически, нежели практически: она относится к числу крупных розничных брендов, уделяющих внимание в первую очередь американскому рынку. Однако в последнее время её видеокарты стали регулярно появляться и в наших магазинах, скоро же придет очередь и одноимённых блоков питания. Да-да, производители видеокарт, памяти и кулеров последнее время как сговорились – практически все они в дополнение к своим основным продуктам начали выпускать блоки питания.


У нас же сегодня есть возможность познакомиться с одним из старших блоков питания BFG – 800-ваттной моделью серии ES. Серия эта, по уверениям производителя, примечательна высокой эффективностью: в то время как у большинства блоков на маленьких нагрузках КПД быстро падает, модели серии ES даже при 10-% нагрузке обеспечивают КПД не ниже 80 %.


Экстерьер блока совершенно обычен по сегодняшним меркам: тёмный глянцевый корпус с отштампованными на боках эмблемами BFG да большой вентилятор. Обращает на себя внимание разве что маленькая вентиляционная решётка на боковой стенке – казалось бы, зачем она там, если буквально в сантиметре начинается целиком перфорированная внешняя стенка блока?


Заглянув внутрь блока, мы обнаруживаем рядом с этой решёткой плату активного PFC – на фотографии она обращена пайкой вверх. Соответственно, и дополнительная вентиляция нужна для более эффективного её охлаждения.


Немедленно выясняется и настоящий производитель блока: это компания Andyson, уже известная нашим читателям, скажем, по блокам питания Hiper. К слову, Hiper не столь давно как раз сменил поставщика – теперь блоки для него делает ChannelWell.

Блоки производства Andyson неоднократно вызывали у нас нарекания невысоким качеством пайки – но, к счастью, никаких подобных проблем тщательный осмотр ES-800 не выявил.

А вот некоторые чисто конструктивные решения, использованные инженерами Andyson, нареканий вызвали больше. На первом фото внутренностей блока видно, что в нём аж три крупных высоковольтных конденсатора, один из которых (чёрного цвета) стоит, как обычно, вертикально на основной плате, а два других (синий и коричневый) закреплены горизонтально на дополнительных платах.


Первый «горизонтальный» конденсатор припаян к маленькой платке, прикрученной к двум радиаторам. Несколько удивило то, что с основной платой его соединяет только один провод, к плюсовому контакту, минусовой же контакт через облуженную площадку и саморез контактирует с правым (по снимку) радиатором, а через него – с платой. Возможно, у инженеров Andyson были какие-то свои соображения, но на мой взгляд, использовать радиаторы в качестве проводников – не лучшая идея.


Второй «горизонтальный» конденсатор расположен на плате активного PFC – выше на снимке она развёрнута деталями вверх. Хорошо видно, что держится он только на собственных выводах и никак больше не закреплён – в то время как все сколь-нибудь массивные детали блоков питания ради большей надёжности принято закреплять как минимум хорошей порцией клея.

Надо заметить, что мы получили на тесты две разные версии ES-800 – подробнее об этом будет сказано чуть ниже – и в более новой вышеупомянутый конденсатор был всё же закреплён небольшой каплей клея между его выводами и платой. Однако на общую жёсткость конструкции это повлияло не сильно.

Впрочем, хватит о недостатках, не так уж они существенны…


Компоновка блока, помимо очень высокой плотности монтажа (и это – при использовании деталей поверхностного монтажа и дополнительных плат!), обращает на себя внимание очень компактными радиаторами, совершенно не выделяющимися в высоту на фоне остальных деталей.


Некоторые из них даже трудно заметить с первого взгляда… Впрочем, ничего необычного в этом для нас нет, блоки питания производства FSP Group, в которых производитель за счёт увеличения количества силовых элементов – транзисторов и диодов – уменьшил габариты радиаторов, мы уже встречали. Особенно занятно, что на самом высоком радиаторе в ES-800 элементы закреплены аж в два ряда.

На выходе блока используются конденсаторы United Chemi-Con серии KZE, отлично себя зарекомендовавшие и часто встречающиеся в качественных блоках питания.

На довольно крупной дополнительной плате, расположенной у боковой стенки блока, находятся схемы управления оборотами вентилятора и контроля выходных токов и напряжений.

Блок оборудован следующими шлейфами и разъёмами:

шлейф питания материнской платы с 20+4-контактным разъёмом, длиной 48 см;
шлейф питания процессора с 8- и 4-контактными разъёмами, длиной 48+15 см;
два шлейфа питания видеокарт, на каждом из которых по два разъёма, один 6-контактный и один 6+2-контактный (то есть подходящий для питания карт как с 6-, так и с 8-контакными разъёмами), длиной по 48+15 см;
два шлейфа питания SATA-винчестеров с тремя разъёмами на каждом, длиной по 48+15+15 см;
два шлейфа с тремя разъёмами питания PATA-винчестеров и одним дисковода на каждом, длиной по 48+15+15+15 см.

Придраться тут совершенно не к чему: все разъёмы присутствуют, блок можно подключить к SLI/CrossFire-системе, каждая из видеокарт которой имеет по два разъёма питания, без использования переходников.


Охлаждение BFG ES-800 обеспечивается одним 14-сантиметровым вентилятором Globe Fan RL4Z B1382012H. Никаких дополнительных целлулоидных плёнок на вентиляторе нет: проблема образования «мёртвой зоны», с которой в других блоках часто борются закрыванием части вентилятора, здесь решена за счёт ряда вентиляционных отверстий во внутренней стенке блока, через которые воздух из него выдувается обратно в компьютер. Вентилятор – двухпроводной, без возможности мониторинга оборотов.

Как гласит этикетка, практически всю доступную мощность – 780 Вт из восьмисот имеющихся – блок может отдавать по четырём линиям +12 В. Впрочем, как и в абсолютном большинстве других блоков, разделение на линии «виртуальное», внутри самого блока физически присутствует лишь одна шина +12 В с допустимым током до 65 А.

Обратите внимание, что разные линии имеют разные ограничения тока: две из них, к которым подключаются наиболее прожорливые компоненты современного компьютера – видеокарты, допускают ток до 36 А. Это позволяет на каждый шлейф питания видеокарты повесить нагрузку до 432 Вт (разумеется, на оба шлейфа одновременно можно повесить не более 780 Вт), что заведомо превышает потребности любых существующих карт, включая новое поколение чипов NVIDIA и AMD, появившееся в продаже буквально на днях.

В ходе тестов блок без проблем перенёс работу с максимально допустимой для него нагрузкой – следов перегрева замечено не было.

Первый блок, который мы получили от компании BFG на тестирование, был выпущен на 9-й неделе 2008 года (дату выпуска можно узнать из серийного номера, наклеенного на этикетку блока – это первые четыре его цифры). Как впоследствии выяснилось, это была пилотная серия, не пошедшая в продажу из-за обнаруженного недостатка – слишком большого размаха пульсаций выходных напряжений.


Блок, выпущенный на 9-й неделе
И действительно, если на шине +12 В тишь да гладь, на низковольных шинах, хотя нагрузка на них в ходе этого теста составляла всего 65 Вт (остальные семьсот с лишним приходились на +12 В), размах пульсаций чуть ли не вдвое превосходит максимально допустимые 50 мВ.

Весьма приятно, что производитель оказался осведомлён о проблеме и предложил немедленно заменить дефектный блок ещё до того, как мы сами успели пожаловаться. По утверждению BFG, в блоках, выпущенных начиная с 15-й недели 2008 года, установлены дополнительные сглаживающие конденсаторы. В розничную продажу попадёт только исправленная версия.


Блок, выпущенный на 15-й неделе
Увы, проблема оказалась исправлена лишь частично: как вы видите на осциллограмме, хотя положительный эффект очевиден (заметно сгладились резкие, узкие пики), размах пульсаций на шинах +5 В и +3,3 В по-прежнему превосходит максимально допустимый.


Что же касается стабильности выходных напряжений в зависимости от нагрузки, то здесь блок показал неплохой результат: лишь напряжение на шине +3,3 В выбилось за 3-процентное отклонение, да и то – при нагрузке на блок, близкой к максимальной, и сильном перекосе нагрузки в сторону низковольтных шин, чего в современных компьютерах попросту не бывает.


Схема регулировки оборотов вентилятора оказалась весьма интересной: с несколькими перегибами на графике. Стартовал вентилятор на скорости около 900 об./мин – при этом его можно назвать разумно тихим, хоть и не бесшумным. Далее, при нагрузке около 200 Вт, скорость начала расти и достигла 1100 об./мин – при этом вентилятор создаёт негромкий, но отчётливый шум. При мощности свыше 550 Вт скорость растёт практически скачкообразно и быстро достигает максимально возможной – немногим менее 1800 об./мин.

В результате блок BFG ES-800 можно назвать достаточно тихим, хотя и не бесшумным – при работе с малыми и средними нагрузками он удовлетворит многих пользователей, но ценители тишины скорее предпочтут другие модели.


И, наконец, эффективность – то есть, по уверениям производителя, конёк ES-серии блоков питания. Она действительно оказалась неплоха: отметка 80 % была пройдена при нагрузке около 10 % от допустимой, а в максимуме КПД достиг великолепных 88 %. При нагрузке 50 Вт – минимальной в наших тестах – эффективность падает до 75 %, что немного лучше, чем у большинства других блоков, обычно демонстрирующих результат ближе к 70 %. Впрочем, пять процентов разницы при такой нагрузке – это всего лишь два с половиной ватта экономии.

Весьма интересно ведёт себя коэффициент мощности – при малых нагрузках он падает до уровня менее 0,65, а на осциллограммах при этом видно, что блок потребляет ток лишь на каждой второй полуволне питающего напряжения. Весьма вероятно, что это является следствием адаптации корректора коэффициента мощности (PFC) под получение максимального КПД.

В целом же BFG ES-800 производит неоднозначное впечатление. Если бы не неприятность с завышенным уровнем пульсаций, так и не исправленная полностью даже в новой версии блока, его можно было бы назвать хорошей – хоть и не выдающейся – моделью большой мощности: подобающий набор разъёмов, достаточно тихая работа, хорошая стабильность напряжений… Что же касается эффективности, как наиболее рекламируемого преимущества блоков серии ES, то КПД действительно высок даже по современным меркам – но отрыв от высокоэффективных блоков других производителей, в том числе и некоторых моделей, рассмотренных в сегодняшней статье, нельзя назвать принципиальным.

Enermax MODU82+ EMD525AWT (525 Вт)


Если стремление практически каждого производителя компьютерной периферии начать выпуск блоков питания под собственной торговой маркой вызывает уже лёгкую усмешку – особенно с учётом, что настоящих-то производителей блоков не так уж много, – то компания Enermax изначально известна именно своими блоками питания. Тем более прискорбно, что мы не столь часто рассматриваем её продукцию…


Итак, восполняя этот пробел, сегодня мы изучаем 525-ваттный MODU82+, относящийся к новой линейке блоков питания Enermax. Число «82» в названии неслучайно: оно должно демонстрировать, что блок не просто соответствует стандарту «80+PLUS», обязывающему иметь КПД не менее 80 % в диапазоне мощностей нагрузки от 20 % до максимума, но и превосходит его требования. Впрочем, одной только высокой эффективностью декларируемые преимущества блока не ограничиваются – обещается также, что он будет весьма тих в работе. Ну что ж, проверим…


Блок сделан в корпусе стандартного размера – в то время как многие блоки других производителей, да и более мощные модели Enermax тоже, имеют увеличенную глубину, что может помешать их установке в не слишком просторные корпуса. Соблюдение габаритов отчасти стало возможным благодаря использованию 12-см вентилятора.

Как же, спросите вы, а обещанная тишина? Ведь все производители наперебой предлагают блоки с 14-см вентиляторами… Здесь мне остаётся лишь ещё раз повторить уже неоднократно написанное в предыдущих обзорах: размер – ничто, опыт проектировщиков – всё. Любое инженерное решение имеет свои плюсы и свои минусы, и выбор типоразмера вентилятора не является исключением – а потому конечный результат зависит не от размера самого по себе, а от того, насколько сбалансированную конструкцию создали разработчики с учётом этого размера. В качестве примера можно привести, скажем, весьма тихие Antec NeoHE, охлаждаемые одним 80-мм вентилятором, в сравнении с ревущими своими 120-мм вентиляторами FSP Epsilon.


Блок относится к модульным: все шлейфы, кроме трёх, подключаются и отключаются по мере необходимости. Для этого предусмотрены семь разъёмов: пять для шлейфов питания винчестеров и подобной периферии, два – для видеокарт. Благодаря разной форме разъёмов, перепутать их невозможно даже при подключении вслепую, на ощупь.

Кстати, помимо MODU82+, в ассортименте Enermax есть также модель PRO82+, полностью аналогичная по характеристикам, но с несъёмными шлейфами – и потому более дешёвая.


Внутреннее устройство блока на вид достаточно обычно: один силовой трансформатор, активный PFC (его дроссель расположен у левого края платы, рядом с парой крупных высоковольтных конденсаторов), независимая стабилизация напряжений. Монтаж чистый и аккуратный, никаких претензий к нему нет.


Контроллер как PFC, так и основного стабилизатора собран на микросхеме Champion CM6802BG. В высоковольтной части блока стоит пара конденсаторов ёмкостью по 180 мкФ на напряжение 400 В – это невольно вызывает в памяти образы блоков питания без активного PFC, в которых конденсаторы всегда стояли парами, но здесь мы имеем лишь чисто инженерное решение по компоновке блока: конденсаторы соединены параллельно и работают как один 360 мкФ на 400 В. На выходе блока стоят конденсаторы United Chemi-Con серии KZE.


Охлаждается блок почти стандартным вентилятором типоразмера 120x120x25 мм, в качестве производителя на этикетке указан сам Enermax – хотя на самом деле, конечно, вентиляторы производит какая-либо сторонняя компания.


Слова «почти стандартный» выше были написаны неслучайно – вентилятор отличается от большинства иных моделей как минимум двумя особенностями. Во-первых, лопасти его на концах имеют характерный «бортик»… впрочем, здесь моих познаний в аэродинамике не хватает, чтобы прокомментировать его значимость с точки зрения шума или эффективности.


Другая интереснейшая особенность вентилятора – он 4-контактный. Подобные вентиляторы в последнее время стали стандартом de facto в процессорных кулерах, но вот в блоке питания я встречаю их впервые. Первые три контакта – это питание («земля» и +12 В) и выход тахометра, позволяющий измерять скорость вращения вентилятора, но не регулировать её. В привычных 2- или 3-контактных вентиляторах скорость вращения менялась за счёт уменьшения напряжения питания, причём считается, что в общем случае без риска остановки скорость может быть уменьшена до 40-50 % от номинальной. В 4-контактном вентиляторе же дополнительный провод предназначен именно для регулировки скорости вращения – причём гарантированный диапазон этой регулировки оказывается шире, нежели чем при управлении с помощью напряжения питания.

Минус, разумеется, очевиден: если вы по тем или иным причинам захотите заменить вентилятор, найти 4-контактную модель такого же типоразмера будет непросто. Хотя в принципе 4-контактные вентиляторы, не входящие в состав процессорного кулера, уже встречаются, например, среди продукции Scythe, ассортимент, прямо скажем, не слишком богат.

Блок оборудован следующими шлейфами и разъёмами:

шлейф питания материнской платы с 20+4-контактным разъёмом, длиной 55 см;
шлейф питания процессора с 8- и 4-контактными разъёмами, длиной 50 см;
шлейф тахометра вентилятора, длиной 45 см;
пять разъёмов для шлейфов питания винчестеров и оптических приводов;
два разъёма для шлейфов питания видеокарт.

В комплекте с блоком поставляются:

шлейф питания видеокарты с двумя 6+2-контактными разъёмами, общей длиной 50 см, большая часть шлейфа убрана в общую нейлоновую обмотку, на последних 9 см он разделяется надвое;
два шлейфа питания SATA-винчестеров с тремя разъёмами на каждом, длиной по 45+9+9 см;
шлейф с тремя разъёмами питания PATA-винчестеров, длиной 45+9+9 см;
шлейф с тремя разъёмами питания PATA-винчестеров и одним дисковода, длиной 45+9+9+9 см.

Хотя набор шлейфов вполне стандартен и по сути не отличается от других блоков, рассмотренных в сегодняшней статье, мне бы хотелось всё же сделать одно замечание, касающееся типа использованных SATA-разъёмов.


Выше на фотографии показаны два возможных варианта: прямой разъём (слева) и Т-образный (справа). В современных компьютерах, где винчестеры часто развёрнуты поперёк корпуса, Т-образные разъёмы удобнее – они немного короче и не требуют с силой изгибать провода, чтобы они не упирались в боковую стенку корпуса. Увы, но в MODU82+ все SATA-разъёмы – прямые, как на снимке слева. Впрочем, с другой стороны, прямые разъёмы немного удобнее при необходимости подключить сразу несколько винчестеров в корпусе с классическим, продольным их расположением…


Из 525 Вт допустимой мощности блок может выдавать до 480 Вт (40 А) по шине +12 В, разделённой на три «виртуальные» линии по 25 А (300 Вт) каждая. Такое ограничение тока позволяет без проблем подключить на один шлейф любую современную видеокарту.

В ходе тестирования блок без проблем работал на максимальной мощности 525 Вт.


Размах высокочастотных пульсаций на всех трёх шинах при полной нагрузке на блок весьма невелик – в два и более раз меньше предельно допустимого.


Также наблюдались и небольшие низкочастотные пульсации, но даже с их учётом блок без малейших проблем вписывается в требования стандарта.


Кросс-нагрузочные характеристики великолепны: ни одно из трёх контролируемых напряжений не вышло за пределы 3-процентного допуска ни при каких комбинациях нагрузки на блок. Особенно радует, что даже при максимально допустимой нагрузке на шину +12 В напряжение на ней держится предельно близко к номиналу. Таким образом, с блоком будет без каких-либо проблем работать даже компьютер, потребляющий близкую к предельно допустимой мощность – а подобный компьютер ещё и не так-то просто собрать…


Не менее великолепно проявил себя блок и в тесте на регулировку скорости вращения вентилятора. Стартовал он менее чем на 500 об./мин – расслышать шум вентилятора при такой скорости практически невозможно, разве что если поднести ухо к нему вплотную в очень тихой комнате. С увеличением нагрузки скорость начала расти, но достигла 1000 об./мин лишь при 400 Вт. При максимальной же нагрузке вентилятор смог раскрутиться только до 1260 об./мин – даже в таком предельном случае он хоть и становится слышен, но остаётся в пределах вполне комфортного уровня шума.


Эффективность блока не менее великолепна: КПД доходит до 88 % и даже при полной нагрузке снижается лишь до 85 %. Более того – помните рассмотренный выше BFG ES-800, создатели которого обещают высокую эффективность при маленьких нагрузках? Конечно, не совсем корректно сравнивать 525-Вт и 800-Вт блоки, но всё же хочется отметить, что MODU82+ при работе на нагрузке 50 Вт продемонстрировал КПД около 80 %, в то время как ES-800 – около 76 %.

Новая серия блоков питания Enermax MODU82+ не просто удалась – она, без преувеличения, великолепна. Отличные электрические параметры, высокий КПД, отличная стабильность напряжений, наличие всех необходимых разъёмов и в дополнение ко всему тишайшая, практически бесшумная работа – такой блок будет прекрасным выбором для любого компьютера средней и даже большой мощности, от HTPC до игровых систем. Более того, по шумности работы MODU82+ может не просто встать в один ряд, а и превзойти такие признанные авторитеты, как Zalman ZM460B-APS или Seasonic S-12.

Если же цена MODU82+ кажется вам завышенной – обращаем ваше внимание, что Enermax также выпускает немного более дешёвую версию под названием PRO82+, отличающуюся несъёмными шлейфами.

SuperTalent Atomic Juice PS-700 (700 Вт)


Компания Super Talent, несомненно, известна нашим читателям, хоть и в несколько другой области – в первую очередь, как производитель неплохих USB-флэшек.


Однако сегодня Super Talent предстанет перед нами в менее характерной роли: в качестве производителя блоков питания.


В принципе, уже по внешнему виду блока можно опознать его настоящего производителя: компактный, стандартной длины корпус, характерные горизонтальные вентиляционные прорези на боковой стенке у самого дна…


Внутренний же вид окончательно снимает все вопросы: конечно, это давно и хорошо знакомый нам и нашим читателям FSP Epsilon, он же (в OEM-наименовании) FSP700-80GLN.


Блоки этой серии моментально узнаются по трём радиаторам, лишь один из которых имеет хоть какое-то оребрение – два оставшихся и вовсе гладкие. Тем не менее, с охлаждением проблем не возникает, как мы уже неоднократно удостоверялись в ходе тестов: производитель скомпенсировал небольшую площадь радиаторов использованием заведомо избыточного числа полупроводниковых компонентов – диодные сборки на выходе стоят парами, а то и вовсе четвёрками. Сделано так, в первую очередь, ради уменьшения веса блока: в Европе это снижает величину налога, которым облагается электронное оборудование.

На входе блока стоит конденсатор OST ёмкостью 470 мкФ и на напряжение 420 В, на выходе – конденсаторы CapXon и опять же OST серии RLP. Основной стабилизатор блока и активный PFC построены на микросхеме Champion CM6800G, дежурный источник +5 В – на Fairchild FSDM0265R.


В блоке установлен вентилятор Yate Loon D12BH-12 типоразмера 120x120x25 мм и с паспортной скоростью вращения 2300 об./мин.


При работе вентилятор подсвечивается четырьмя оранжевыми светодиодами, не слишком сочетающимися с синим корпусом блока, зато соответствующими раскраске его коробки.


Из общих 700 Вт блок может отдать 680 Вт по одной только шине +12 В, разделённой на четыре «виртуальные» линии.

Блок оборудован следующими шлейфами и разъёмами:

шлейф питания материнской платы с 20+4-контактным разъёмом, длиной 55 см;
шлейф питания процессора с 4+4-контактным разъёмом, длиной 55 см;
шлейф питания видеокарты с 6+2-контактным разъёмом, длиной 55 см;
шлейф питания видеокарты с 6-контактным разъёмом, длиной 55 см;
два шлейфа питания SATA-винчестеров с тремя разъёмами на каждом, длиной по 48+22+22 см;
два шлейфа с тремя разъёмами питания PATA-винчестеров и одним дисковода на каждом, длиной по 55+20+20+20 см.

Блок явно рассчитан на подключение только одной видеокарты – или двух, но имеющих по одному разъёму питания, в то время как его мощности легко хватило бы и на пару топовых видеокарт в режиме SLI или CrossFire. Но, увы, в этом случае придётся воспользоваться переходниками с разъёмов питания винчестеров.

При работе с нагрузкой 680 Вт из блока тянулся лёгкий, но неприятный запах перегретой изоляции – однако других проблем не возникло.


Размах пульсаций при полной нагрузке в целом был приемлем, но не более того: на осциллограмме видно, что на шинах +5 В и +3,3 В отдельные пики выходят за допустимые 50 мВ, так что по этому параметру блок работает фактически на пределе.


Кросс-нагрузочные характеристики не впечатляют: хотя в области, типичной для современных компьютеров (большое энергопотребление по шине +12 В и всего 50-60 Вт по шинам +5 В и +3,3 В, вместе взятым), доминирует зелёный цвет, нельзя не отметить, что формально заявленную нагрузку 155 Вт на низковольтные шины блок никак не вытягивает – напряжение +5 В просаживается ниже допустимого предела (4,75 В) значительно раньше.


Но хуже всего оказался уровень шума: вентилятор Atomic Juice громко шумит даже при минимальной нагрузке на блок, раскручиваясь до 1300 об./мин. Дальше – больше: с ростом нагрузки скорость растёт линейно, достигая 2000 об./мин и на этом останавливаясь (видимо, выдать на вентилятор большее напряжение контроллер просто уже не может). В результате PS-700 шумен настолько, что я не могу его рекомендовать даже для нетребовательных пользователей – он легко заглушит своим назойливым гудением все остальные компоненты компьютера.


Если пару лет назад новые блоки FSP выделялись хотя бы высокой эффективностью, то сейчас на фоне конкурентов они выглядят более скромно: 85 % в максимуме, 82 % на полной нагрузке. Печально, но среди пяти представленных в этой статье моделей у Atomic Juice – худший результат.

В принципе, Super Talent Atomic Juice PS-700 был бы вполне нормальным средним блоком питания, если бы не его шумность. К качеству изготовления претензий у меня не возникло, набор разъёмов вполне подходит даже для серьёзного игрового компьютера, электрические параметры не выдающиеся, хотя и приемлемые – но, увы, даже на минимальной нагрузке, практически на холостом ходу, PS-700 издаёт отчётливый, заметный шум. Настолько заметный, что я не рискну рекомендовать этот блок даже покупателям, в целым нетребовательным к уровню шума – благо что на рынке есть масса моделей, куда более комфортных в работе.

Thermaltake ToughPower QFan 650 A (W0163RU, 650 Вт)


Хотя компания Thermaltake тоже в своё время начинала с производства кулеров, блоками питания под её маркой уже никого не удивишь: Thermaltake производит их уже несколько лет, успев за это время сформировать несколько продуктовых линеек и представить публике огромное количество отдельных моделей.


Сегодняшний наш гость, упакованный в весьма немаленькую белую коробку, должен отличаться от конкурентов – по крайней мере, по уверениям производителя – необычайно тихой работой, обеспечиваемой благодаря специальному дизайну вентилятора, именуемому QFan. Надо заметить, у него сегодня есть достойный соперник в лице Enermax MODU82+…


Первая деталь технологии QFan – горизонтальные прорези по периметру блока питания напротив боковин вентилятора. В остальном блок выглядит вполне обычным, напоминающим серию PurePower RX того же производителя, разве что толстая штампованная решётка над вентилятором поменялась на тонкую проволочную.


Блок – модульный, на его задней стенке предусмотрены семь разъёмов для шлейфов питания винчестеров, видеокарт и процессора. Не снимаются только два шлейфа: для питания материнской платы и видеокарты, с 8-контактным разъёмом (в случае, если ваша видеокарта имеет только 6-контактный, предлагается воспользоваться входящим в комплект переходником).


Внутреннее же устройство блока и вовсе полностью совпадает с PurePower RX. Настоящий производитель – компания ChannelWell (CWT), обслуживающая не только Thermaltake, но и Corsair, Hiper, Gigabyte и другие известные бренды.


Блок собран на микросхеме CM6800G, объединяющей в себе контроллеры PFC и основного стабилизатора. Силовые элементы – транзисторы и диодные сборки – распределены по трём сравнительно крупным радиаторам: на первом стоят детали активного PFC, на втором – транзисторы основного ключа, на третьем – диодные сборки выходного выпрямителя.

На входе блока стоит 400-вольтовый конденсатор Hitachi ёмкостью 390 мкФ, на выходе – конденсаторы производства Samxon.


Разумеется, самая интересная для нас часть блока – это его вентилятор, Everflow R121225BL, имеющий стандартный типоразмер 120x120x25 мм и номинальную скорость 2000 об./мин.


Конструкцию вентилятора, по сути, можно назвать бескорпусной: мотор и крыльчатка крепятся к раме, не имеющей боковых сторон – лишь четыре стойки под саморезы, фиксирующие вентилятор на корпусе блока.


Как уже упоминалось выше, по периметру корпуса блока питания сделаны горизонтальные прорези, через которые видны лопасти вентилятора.


По замыслу Thermaltake – а выше приведена картинка непосредственно с сайта компании – вентилятор забирает через эти прорези воздух, тем самым увеличивая эффективность охлаждения блока.

Но… позвольте! Во-первых, при вращении вентилятора за счёт центробежной силы движение воздуха вдоль лопастей может быть направлено только наружу и никак иначе – на то эта сила и называется центробежной. По такому же принципу работают турбинки, часто применяющиеся для охлаждения видеокарт: их крыльчатка гонит воздух не вдоль оси вращения, а в сторону от неё.

Во-вторых, совершенно очевидно, что при вращении вентилятора под его лопастями образуется зона повышенного давления – и, разумеется, воздух снаружи никак не может туда затягивать. Воздух оттуда может только выдуваться наружу!

Так кто же не понимает этих достаточно базовых вещей, мы или Thermaltake? Давайте поставим эксперимент, прижав к стенке работающего ToughPower QFan узкую бумажную полоску:


Прекрасно видно, что полоска отклоняется от блока, а не прижимается к нему – а это может означать лишь одно: воздух из щелей дует наружу, а никак не внутрь. Увы, картинка на сайте Thermaltake, выражаясь мягко, вводит покупателей в заблуждение.

Вообще говоря, сначала я хотел сделать такой снимок с горящей спичкой – подобно тому, как по отклонению её пламени определяют слабые потоки воздуха. Однако поток воздуха, дующий из QFan, слабым назвать трудно – пламя со спички просто сдувало.

О шумности же QFan мы поговорим чуть ниже, а пока продолжим осмотр блока…

Блок оборудован следующими шлейфами и разъёмами:

шлейф питания материнской платы с 20+4-контактным разъёмом, длиной 48 см;
шлейф питания видеокарты с 8-контактным разъёмом, длиной 49 см;
четыре разъёма для шлейфов питания винчестеров и оптических приводов;
два разъёма для шлейфов питания видеокарт;
один разъём для шлейфа питания процессора.

В комплекте с блоком поставляются:

шлейф питания процессора с 8- и 4-контактными разъёмами, длиной 49+15 см;
два шлейфа питания видеокарт с 6-контактными разъёмами, длиной по 49 см;
два шлейфа питания SATA-винчестеров с тремя разъёмами на каждом, длиной по 49+15+15 см;
шлейф с тремя разъёмами питания PATA-винчестеров и одним дисковода, длиной 49+15+15+15 см;
шлейф с четырьмя разъёмами питания PATA-винчестеров и одним дисковода, длиной 49+15+15+15+15 см.

Что же, набор хороший, разве что для желающих собрать SLI/CrossFire-систему может не хватить четвёртого разъёма питания видеокарты – в таком случае придётся воспользоваться переходником. Кроме того, одновременное использование двух разъёмов питания процессоров встречается разве что на некоторых «серьёзных» платах для серверов и рабочих станций, в абсолютном же большинстве компьютеров лишний разъём на соответствующем шлейфе будет только мешаться – было бы куда удобнее, если бы в комплекте было два разных шлейфа, один с 8-, другой – с 4-контактным разъёмом.


Из 650 Вт общей мощности блок способен отдавать до 624 Вт по шине +12 В, разделённой на четыре виртуальные линии по 18 А (216 Вт).

В ходе тестирования никаких проблем с работой блока на полной мощности нагрузки не возникло.


Размах пульсаций выходных напряжений при полной нагрузке – в пределах нормы на всех трёх основных шинах блока.


Напряжение +12 В держится просто идеально: отклонение от номинала не превышает 1 % ни при каких нагрузках на блок, от 50 до 650 Вт. Напряжения +5 В и +3,3 В меняются чуть больше, но за пределы 3-процентного отклонения выходят лишь при предельных нагрузках – за пределы же дозволенных стандартом 5 % не выходит ни одно напряжение.


И снова мы возвращаемся к вопросу о шумности QFan. Что же, при маленькой нагрузке блок действительно тих, вентилятор вращается на скорости менее 800 об./мин. Однако после 200 Вт скорость начинает быстро расти, превышая 1000 об./мин (это значение можно условно принять за порог тихой работы) уже при нагрузке около 270 Вт. Кроме того, помимо шума потока воздуха, вентилятор издаёт хорошо заметное жужжание.

В итоге, конечно, никакого сравнения с Enermax MODU82+ этот блок не выдерживает – во всём диапазоне нагрузок Enermax оказывается тише. Более того, если при нагрузках до 250 Вт ToughPower QFan можно назвать весьма комфортным, то далее скорость вентилятора растёт так быстро, что шум работающего блока становится вполне заметен. Конечно, до подвываний вентилятора Super Talent Atomic Juice PS-700 ему далеко, однако об обещанном производителем «Extremely Quiet» не идёт и речи.

Если же сравнивать ToughPower QFan с его ближайшими родственниками в линейке блоков Thermaltake в лице PurePower RX и «обычного» ToughPower, то QFan работает тише лишь при малых нагрузках – но по мере прогрева все эти блоки оказываются близки по шумности.


И, наконец, эффективность. Рекордов QFan не поставил, однако результат показал хороший: 86 % в пике и около 84 % при максимальной нагрузке. Опять же надо заметить, что от показателей блоков PurePower RX и ToughPower эти числа не отличаются.

Подводя итог, нельзя сказать, что Thermaltake ToughPower QFan – плохой блок. Нет, он уверенно держит заявленные электрические параметры, обладает хорошим набором разъёмов и демонстрирует беспроблемную работу. Загвоздка с ним в другом: при обещанных исключительных характеристиках QFan в работе по сути не отличается от давно имеющихся в продаже и неоднократно рассматривавшихся в обзорах блоков серий PurePower RX и ToughPower. Конструкция вентилятора мало того, что вообще сомнительна с точки зрения снижения шумности (скорее, аэродинамический шум потока воздуха, протекающего через боковые щели, только ухудшит этот параметр, а утечка воздуха «в сторону» снизит реальную производительность вентилятора), так ещё и подаётся производителем с точностью буквально до наоборот – там, где согласно всем законам физики и просто здравому смыслу, воздух дует из блока, на сайте Thermaltake нарисованы стрелки, направленные внутрь. Более того, в нашем экземпляре блока вентилятор при скорости более 1000 об./мин ещё и начинал заметно жужжать – хотя, конечно, это можно списать на дефектный образец.

В результате ToughPower QFan оказался тише других моделей серий ToughPower и PurePower RX при небольших нагрузках и сравним с ними при средних и больших. Серьёзной же конкуренции действительно тихим блокам питания, включая рассмотренный выше Enermax MODU82+, ToughPower QFan составить не способен.

Xigmatek «No Rules Power» NRP-MC651 (650 Вт)


Сравнительно молодая – она основана в 2005 году – компания Xigmatek в чём-то схожа с Thermaltake, один из блоков питания которой мы только что изучили: оба производителя начинали свой бизнес с систем охлаждения.


Однако сегодня мы рассмотрим другое направление деятельности Xigmatek – блоки питания. Не скажу пока за сам блок, но упаковка у него оказалась весьма оригинальна: чёрная картонная коробка упакована в застёгивающуюся на липучку «обёртку», раскрашенную под джинсовую ткань.


А вот первого же взгляда на блок достаточно, чтобы понять – по крайней мере в этой области сходство между Thermaltake и Xigmatek отнюдь не только в типах производимых продуктов. По сути, кроме наклейки и цвета корпуса, внешне два рассматриваемых нами сегодня блока этих компаний отличаются только отсутствием на NRP-MC651 фирменных «QFan-щелей» по периметру.

Причина такого сходства очевидна: и для Thermaltake, и для Xigmatek блоки питания делает компания ChannelWell. Ничего удивительного в таком совпадении нет, в последнее время ChannelWell заметно расширила свою рыночную долю за счет поставок для известных розничных брендов, так что блоки питания производства CWT встречаются практически в каждой нашей статье.


NRP-MC651 – модульный блок, имеющий несъёмные шлейфы питания материнской платы, процессора и двух видеокарт. Для всего прочего предусмотрены семь разъёмов, отличающихся друг от друга как по форме, так и по цвету – так что перепутать шлейфы при подключении невозможно. Для большего удобства тут же наклеена схема с указанием, какие шлейфы куда следует включать.


Внутреннее устройство также от ToughPower QFan отличается слабо, разве что изменилась форма радиаторов – у Thermaltake они плоские, здесь же более сложные профилированные. Схемотехника не изменилась, блок собран на контроллере Champion CM6800G и имеет как активный PFC, так и независимую стабилизацию напряжений. На входе блока стоит конденсатор Hitachi ёмкостью 390 мкФ на напряжение 400 В, а вот на выходе вместо применённых в Thermaltake конденсаторов Samxon – изделия более известного производителя, United Chemi-Con серии KZE.

Сборка и пайка выполнены предельно аккуратно, ни малейших претензий при осмотре блока у меня не возникло.


Блок охлаждается вентилятором Yate Loon D14BM-12 типоразмера 140x140x25 мм, корпус и крыльчатка которого выполнены из прозрачного пластика и при работе подсвечиваются четырьмя светодиодами.

Блок оборудован следующими шлейфами и разъёмами:

шлейф питания материнской платы с 20+4-контактным разъёмом, длиной 50 см;
шлейф питания процессора с 4-контактным разъёмом, длиной 50 см;
два шлейфа питания видеокарт с одним 6+2-контактным разъёмом на каждом, длиной по 50 см;
четыре разъёма для шлейфов питания винчестеров и оптических приводов;
два разъёма для шлейфов питания видеокарт;
один разъём для шлейфа питания процессора.

В комплекте с блоком поставляются:

шлейф питания процессора с 8-контактным разъёмом, длиной 50 см;
два шлейфа питания видеокарт с 6-контактными разъёмами, длиной по 50 см;
два шлейфа питания SATA-винчестеров с тремя разъёмами на каждом, длиной по 50+14+14 см;
шлейф с тремя разъёмами питания PATA-винчестеров и одним дисковода, длиной 49+15+15+15 см;
шлейф с четырьмя разъёмами питания PATA-винчестеров, длиной 50+14+14+14 см;
шлейф с тремя разъёмами питания PATA-винчестеров и одним дисковода, длиной 50+14+14+14 см.

Что же, набор разъёмов более чем достаточный: к блоку без использования каких-либо переходников можно подключить сразу пару видеокарт, имеющих по два разъёма питания.


Этикетка гласит нам, что из 650 Вт общей мощности блок может отдавать до 624 Вт (52 А) по шине +12 В, разделённой на четыре «виртуальные» линии. Нагрузочная способность шин +3,3 В и +5 В также весьма велика – до 180 Вт, реально современные компьютеры потребляют не более трети этой мощности.

Работу с полной мощностью нагрузки 650 Вт блок перенёс без каких-либо проблем.


Размах пульсаций на всех трёх контролируемых нами в ходе теста выходах блока при максимальной нагрузке примерно вдвое ниже предельно допустимого. Причём обратите внимание – если на аналогичном блоке Thermaltake на осциллограмме были видны отдельные очень узкие выбросы, то здесь они практически пропали. Причиной ли тому замена конденсаторов Samxon на United Chemi-Con?..


Кросс-нагрузочные характеристики очень неплохи: напряжение +12 В держится идеально, а +5 В и +3,3 В демонстрируют более чем 3-процентное отклонение лишь при нагрузках, близких к предельным – в реальном компьютере такого распределения нагрузки просто не будет. За считающееся же критическим 5-процентное отклонение от номинала не выходит ни одно напряжение.


При нагрузке до 200 Вт скорость вентилятора держится немногим ниже 1000 об./мин, при этом блок уже нельзя назвать бесшумным, но в целом он достаточно комфортен. С увеличением нагрузки скорость вращения начинает быстро расти, достигая максимума (около 1740 об./мин) уже при 450 Вт – одновременно, разумеется, сильно растёт уровень шума. В итоге NRP-MC651 можно признать приемлемым по шумности при небольших нагрузках и относительно шумным при средних и больших – причём надо заметить, что в этом он также практически полностью совпадает с блоками питания Thermaltake и другими моделями, произведёнными CWT на той же платформе.


Не приносит никаких сюрпризов и измерение КПД с коэффициентом мощности: 71 % на минимальной мощности, до 86 % на средней и 83 % на максимальной, совершенно обычный показатель, несколько уступающий лучшим образцам блоков питания других производителей.

Итак, Xigmatek «No Rules Power» NRP-MC651 – ещё один представитель весьма популярной сейчас линейки блоков производства ChannelWell, поставляемой многим розничным брендам. По своим характеристикам он практически не отличается от таких блоков, как Thermaltake серий PurePower RX и ToughPower, Corsair CMPSU-750TX и многих других, произведённых на заводах CWT на базе этой же платформы. NRP-MC651 демонстрирует очень хорошие электрические параметры и имеет полный набор шлейфов и разъёмов, позволяющий собрать практически любую систему без использования переходников. Из минусов блока можно отметить разве что шумность работы – по данному параметру он, в зависимости от нагрузки, занимает позицию от «приемлемо» до «шумновато»..

Заключение


Пожалуй, сегодняшнее тестирование – один из редких случаев, когда можно выделить абсолютного и безоговорочного лидера. Им стал блок питания Enermax MODU82+: помимо аккуратной сборки и отличных электрических характеристик, он продемонстрировал настолько тихую работу, что при небольшой и средней нагрузке его можно назвать вообще бесшумным, и даже при максимальной уровень шума MODU82+ вполне комфортен – в системе, вообще способной нагрузить блок питания на полтысячи ватт, он будет явно не самым шумным компонентом.

Компания Thermaltake, явно претендовавшая на конкуренцию с блоком Enermax, неприятно разочаровала: представленный ей ToughPower QFan W0163RU на практике почти не отличается от более дешёвых моделей серий PurePower RX и ToughPower (без добавки «QFan»), выигрывая у них по шумности лишь при работе с маленькой нагрузкой. Сама по себе технология QFan оказалсь, скажем прямо, спорной, а в общем зачёте оснащённый ей блок на звание тихого претендовать не способен. Соответственно, если вас устроит качественный блок средней шумности, то большого смысла переплачивать за QFan нет, если же вы добиваетесь тишины – разумнее будет сразу обратить внимание на продукцию иных производителей.

Практически полностью совпал с блоком Thermaltake по электрической части Xigmatek «No Rules Power» NRP-MC651 – он также выпущен на мощностях компании ChannelWell. Отличия заключаются в основном в акустических характеристиках: NRP-MC651 даже на маленьких нагрузках относится к средним по шумности блокам, которые в принципе подходят многим пользователям, но не удовлетворят ценителей тишины.

Помимо блока Xigmatek, в сегодняшней статье были и два других дебютанта производства компаний, чьи блоки мы до сих пор не встречали: BFG ES-800 и Super Talent Atomic Juice PS-700. Первый из них немного разочаровал как выбором разработчика и изготовителя – компания Andyson ранее уже была замечена в не слишком высоком качестве сборки – так и электрическими характеристиками: размах пульсаций на выходе блока заметно превысил максимально допустимый.

Впрочем, если успех дебюта BFG можно назвать спорным, то выход на рынок блоков питания компании Super Talent попросту провалился: PS-700, изготовленный на мощностях FSP Group, оказался достаточно средним по электрическим характеристикам и одновременно настолько шумным, что я не рискну рекомендовать его даже нетребовательным пользователям.

Другие материалы по данной теме


Блоки питания Corsair
Блоки питания Antec
Тестирование блоков питания ATX: серия 14, 450…850 Вт

Обзор блока питания Super Flower Legion GX Pro 750W (SF-750P14XE)

Компания Super Flower представила новую серию источников питания Legion GX Pro, которую вошли четыре модели мощностью 550, 650, 750 и 850 Вт. Все модели данной серии характеризуются наличием сертификата 80Plus Gold и использованием исключительно японских конденсаторов с жидким электролитом на основной плате. В нашем распоряжении оказалась модель Super Flower Legion GX Pro 750W (SF-750P14XE).

Дизайн этого блока питания выглядит весьма органично. Однако применение штампованной решетки с сотовой структурой над вентилятором чревато повышенным уровнем шума при работе. Сейчас тенденция такова, что штампованные решетки применяются все чаще и чаще, так как они, видимо, проще в изготовлении, а БП с такими решетками чуть дешевле в производстве.

Упаковка представляет собой картонную коробку достаточной прочности с матовой полиграфией. В оформлении преобладают оттенки черного, серого и золотистого цветов.

Характеристики

Все необходимые параметры указаны на корпусе блока питания в полном объеме, для мощности шины +12VDC заявлено значение 744 Вт. Соотношение мощности по шине +12VDC и полной мощности составляет 0,992, что является отличным показателем.

Провода и разъемы

Наименование разъема Количество разъемов Примечания
24 pin Main Power Connector 1 разборный
4 pin 12V Power Connector  
8 pin SSI Processor Connector 2 1 разборный
6 pin PCI-E 1.0 VGA Power Connector  
8 pin PCI-E 2.0 VGA Power Connector 4 на двух шнурах
4 pin Peripheral Connector 4  
15 pin Serial ATA Connector 9 на трех шнурах
4 pin Floppy Drive Connector  
Длина проводов до разъемов питания

У данной модели часть проводов является съемной, что позволяет снять неиспользуемые шнуры, сделав внешний вид более аккуратным.

Стационарные:

  • до основного разъема АТХ — 57 см
  • до процессорного разъема 8 pin SSI — 69 см
  • до первого разъема питания видеокарты PCI-E 2.0 VGA Power Connector — 55 см, плюс еще 15 см до второго такого же разъема
  • до первого разъема SATA Power Connector — 55 см, плюс 13 см до второго и еще 13 см до третьего такого же разъема

Съемные:

  • до процессорного разъема 8 pin SSI — 71 см
  • до первого разъема питания видеокарты PCI-E 2.0 VGA Power Connector — 55 см, плюс еще 15 см до второго такого же разъема
  • до первого разъема SATA Power Connector — 55 см, плюс 13 см до второго, еще 13 см до третьего и еще 13 см до четвертого такого же разъема
  • до первого разъема SATA Power Connector — 55 см, плюс 13 см до второго такого же разъема
  • до разъема Peripheral Connector («молекс») — 55 см, плюс 15 см до второго, еще 15 см до третьего и еще 15 см до четвертого такого же разъема

Длина проводов является достаточной для комфортного использования в корпусах типоразмера full tower и более габаритных с верхним расположением блока питания. В корпусах высотой до 60 см с нижнерасположенным блоком питания длина проводов также должна быть достаточной: до разъема питания процессора около 70 см. Таким образом, с большинством современных корпусов проблем быть не должно.

Распределение разъемов SATA Power по шнурам питания довольно удачное, позволяющее полноценно обеспечить питанием комплектующие в нескольких зонах при умеренном количестве установленных устройств, хотя шнуров тут всего три, а разъемов девять. В случае типовой системы сложности маловероятны. Единственное замечание: все разъемы SATA Power угловые, а использование таких разъемов не слишком удобно в случае накопителей, размещаемых с тыльной стороны основания для системной платы.

С положительной стороны стоит отметить использование ленточных проводов до разъемов, что повышает удобство при сборке.

Схемотехника и охлаждение

Блок питания оснащен активным корректором коэффициента мощности и имеет расширенный диапазон питающих напряжений от 100 до 240 вольт. Это обеспечивает устойчивость к понижению напряжения в электросети ниже нормативных значений.

Конструкция блока питания вполне соответствует современным тенденциям: активный корректор коэффициента мощности, синхронный выпрямитель для канала +12VDC, независимые импульсные преобразователи постоянного тока для линий +3.3VDC и +5VDC.

Высоковольтные силовые элементы установлены на одном радиаторе средних размеров, транзисторы синхронного выпрямителя установлены на втором радиаторе, элементы импульсных преобразователей каналов +3.3VDC и +5VDC размещены на дочерней печатной плате, установленной вертикально и, по традиции, дополнительных теплоотводов не имеют — это вполне типично для блоков питания с активным охлаждением.

Конденсаторы в блоке питания имеют японское происхождение. В основной массе это продукция под торговой маркой Nippon Chemi-Con. Установлено и большое количество полимерных конденсаторов.

В блоке питания установлен вентилятор S1202512M типоразмера 120 мм производства Globe Fan Technology. Вентилятор, согласно данным производителя, основан на гидродинамическом подшипнике и имеет скорость вращения 2400 оборотов в минуту. Подключение двухпроводное через разъем.

Измерение электрических характеристик

Далее мы переходим к инструментальному исследованию электрических характеристик источника питания при помощи многофункционального стенда и другого оборудования.

Величина отклонения выходных напряжений от номинала кодируется цветом следующим образом:

Цвет Диапазон отклонения Качественная оценка
  более 5% неудовлетворительно
  +5% плохо
  +4% удовлетворительно
  +3% хорошо
  +2% очень хорошо
  1% и менее отлично
  −2% очень хорошо
  −3% хорошо
  −4% удовлетворительно
  −5% плохо
  более 5% неудовлетворительно
Работа на максимальной мощности

Первым этапом испытаний является эксплуатация блока питания на максимальной мощности продолжительное время. Такой тест с уверенностью позволяет удостовериться в работоспособности БП.

Кросс-нагрузочная характеристика

Следующим этапом инструментального тестирования является построение кросснагрузочной характеристики (КНХ) и представление ее на четвертьплоскости, ограниченной максимальной мощностью по шине 3,3&5 В с одной стороны (по оси ординат) и максимальной мощностью по шине 12 В с другой (по оси абсцисс). В каждой точке измеренное значение напряжения обозначается цветовым маркером в зависимости от отклонения от номинального значения.

КНХ позволяет нам определить, какой уровень нагрузки можно считать допустимым, особенно по каналу +12VDC, для тестируемого экземпляра. В данном случае отклонения действующих значений напряжения от номинала по каналу +12VDC не превышают 2% во всем диапазоне мощности, что является отличным результатом. При типичном распределении мощности по каналам отклонения от номинала не превышают 2% по каналу +3.3VDC, 3% по каналу +5VDC и 2% по каналу +12VDC.

Данная модель БП хорошо подходит для мощных современных систем из-за высокой практической нагрузочной способности канала +12VDC.

Нагрузочная способность

Следующий тест призван определить максимальную мощность, которую можно подать через соответствующие разъемы при нормированном отклонении значения напряжения в размере 3 или 5 процентов от номинала.

В случае видеокарты с единственным разъемом питания максимальная мощность по каналу +12VDC составляет не менее 150 Вт при отклонении в пределах 3%.

В случае видеокарты с двумя разъемами питания при использовании одного шнура питания максимальная мощность по каналу +12VDC составляет не менее 250 Вт при отклонении в пределах 3%.

В случае видеокарты с двумя разъемами питания при использовании двух шнуров питания максимальная мощность по каналу +12VDC составляет не менее 350 Вт при отклонении в пределах 3%, что позволяет использовать очень мощные видеокарты.

При нагрузке через четыре разъема PCI-E максимальная мощность по каналу +12VDC составляет не менее 650 Вт при отклонении в пределах 3%. Однако тут есть нюанс: для передачи мощности свыше 600 Вт нужно использовать минимум три шнура питания видеокарт, так как если использовать только два шнура (с четырьмя разъемами), то при мощности нагрузки около 600 Вт срабатывает защита, и блок питания отключается. Приведенные нами результаты замера получены при использовании четырех шнуров.

При нагрузке через разъем питания процессора максимальная мощность по каналу +12VDC составляет не менее 250 Вт при отклонении в пределах 3%. Этого вполне достаточно для типовых систем, у которых на системной плате есть только один разъем для питания процессора.

В случае системной платы максимальная мощность по каналу +12VDC составляет свыше 150 Вт при отклонении 3%. Так как сама плата потребляет по данному каналу в пределах 10 Вт, высокая мощность может потребоваться для питания карт расширения — например, для видеокарт без дополнительного разъема питания, которые обычно имеют потребление в пределах 75 Вт.

Экономичность и эффективность

При оценке эффективности компьютерного блока питания можно идти двумя путями. Первый путь заключается в оценке компьютерного блока питания как отдельного преобразователя электрической энергии с дальнейшей попыткой минимизировать сопротивление линии передачи электрической энергии от БП к нагрузке (где и измеряется ток и напряжение на выходе БП). Для этого блок питания обычно подключается всеми имеющимися разъемами, что ставит разные блоки питания в неравные условия, так как набор разъемов и количество токоведущих проводов зачастую разное даже у блоков питания одинаковой мощности. Таким образом, хотя результаты получаются корректными для каждого конкретного источника питания, в реальных условиях полученные данные малоприменимы, поскольку в реальных условиях блок питания подключается ограниченным количеством разъемов, а не всеми сразу. Поэтому логичным представляется вариант определения эффективности (экономичности) компьютерного блока питания не только на фиксированных значениях мощности, включая распределение мощности по каналам, но и с фиксированным набором разъемов для каждого значения мощности.

Представление эффективности компьютерного блока питания в виде значения КПД (коэффициента полезного действия) имеет свои традиции. Прежде всего, КПД — это коэффициент, определяемый соотношением мощностей на выходе и на входе блока питания, то есть КПД показывает эффективность преобразования электрической энергии. Обычному же пользователю данный параметр почти ничего не скажет, за исключением того, что более высокий КПД вроде как говорит о большей экономичности БП и более высоком его качестве. Зато КПД стал отличным маркетинговым якорем, особенно в комбинацией с сертификатом 80Plus. Однако с практической точки зрения КПД не оказывает заметного влияния на функционирование системного блока: он не увеличивает производительность, не снижает шум или температуру внутри системного блока. Это просто технический параметр, уровень которого в основном определяется развитием промышленности в текущий момент времени и себестоимостью продукта. Для пользователя же максимизация КПД выливается в увеличение розничной цены.

С другой стороны, иногда нужно объективно оценить экономичность компьютерного блока питания. Под экономичностью мы тут подразумеваем потерю мощности при преобразовании электроэнергии и ее передаче к конечным потребителям. И для оценки этого КПД не нужен, так как можно использовать не отношение двух величин, а абсолютные значения: рассеиваемую мощность (разницу между значениями на входе и выходе блока питания), а также потребление энергии источником питания за определенное время (день, месяц, год и т. д.) при работе с постоянной нагрузкой (мощностью). Это позволяет легко увидеть реальную разницу в потреблении электроэнергии конкретными моделями БП и при необходимости рассчитать экономическую выгоду от использования более дорогих источников питания.

Таким образом, на выходе мы получаем понятный для всех параметр — рассеиваемую мощность, которая легко преобразуется в киловатт-часы (кВт·ч), которые и регистрирует счетчик электрической энергии. Умножив полученное значение на стоимость киловатт-часа, получим стоимость электрической энергии при условии эксплуатации системного блока круглосуточно в течение года. Подобный вариант, конечно, чисто гипотетический, но он позволяет оценить разницу между стоимостью эксплуатации компьютера с различными источниками питания в течение длительного периода времени и сделать выводы об экономической целесообразности приобретения конкретной модели БП. В реальных условиях высчитанное значение может достигаться за более долгий период — например, от 3 лет и более. При необходимости каждый желающий может разделить полученное значение на нужный коэффициент в зависимости от количества часов в сутках, в течение которых системный блок эксплуатируется в указанном режиме, чтобы получить расход электроэнергии за год.

Мы решили выделить несколько типовых вариантов по мощности и соотнести их с количеством разъемов, которое соответствует данным вариантам, то есть максимально приблизить методику измерения экономичности к условиям, которые достигаются в реальном системном блоке. Вместе с тем, это позволит оценивать экономичность разных блоков питания в полностью одинаковых условиях.

Нагрузка через разъемы 12VDC, Вт 5VDC, Вт 3.3VDC, Вт Общая мощность, Вт
основной ATX, процессорный (12 В), SATA 5 5 5 15
основной ATX, процессорный (12 В), SATA 80 15 5 100
основной ATX, процессорный (12 В), SATA 180 15 5 200
основной ATX, процессорный (12 В), 6-контактный PCIe, SATA 380 15 5 400
основной ATX, процессорный (12 В), 6-контактные PCIe (1 шнур с 2 разъемами), SATA 480 15 5 500
основной ATX, процессорный (12 В), 6-контактные PCIe (2 шнура по 1 разъему), SATA 480 15 5 500
основной ATX, процессорный (12 В), 6-контактные PCIe (2 шнура по 2 разъема), SATA 730 15 5 750

Полученные результаты выглядят следующим образом:

Рассеиваемая мощность, Вт 15 Вт 100 Вт 200 Вт 400 Вт 500 Вт
(1 шнур)
500 Вт
(2 шнура)
750 Вт
Enhance ENP-1780 21,2 23,8 26,1 35,3 42,7 40,9 66,6
Super Flower Leadex II Gold 850W 12,1 14,1 19,2 34,5 45 43,7 76,7
Super Flower Leadex Silver 650W 10,9 15,1 22,8 45 62,5 59,2  
High Power Super GD 850W 11,3 13,1 19,2 32 41,6 37,3 66,7
Corsair RM650 (RPS0118) 7 12,5 17,7 34,5 44,3 42,5  
EVGA Supernova 850 G5 12,6 14 17,9 29 36,7 35 62,4
EVGA 650 N1 13,4 19 25,5 55,3 75,6    
EVGA 650 BQ 14,3 18,6 27,1 47,2 61,9 60,5  
Chieftronic PowerPlay GPU-750FC 11,7 14,6 19,9 33,1 41 39,6 67
Deepcool DQ850-M-V2L 12,5 16,8 21,6 33 40,4 38,8 71
Chieftec PPS-650FC 11 13,7 18,5 32,4 41,6 40  
Super Flower Leadex Platinum 2000W 15,8 19 21,8 29,8 34,5 34 49,8
Chieftec CTG-750C-RGB 13 17 22 42,5 56,3 55,8 110
Chieftec BBS-600S 14,1 15,7 21,7 39,7 54,3    
Cooler Master MWE Bronze 750W V2 15,9 22,7 25,9 43 58,5 56,2 102
Cougar BXM 700 12 18,2 26 42,8 57,4 57,1  
Cooler Master Elite 600 V4 11,4 17,8 30,1 65,7 93    
Cougar GEX 850 11,8 14,5 20,6 32,6 41 40,5 72,5
Cooler Master V1000 Platinum (2020) 19,8 21 25,5 38 43,5 41 55,3
Cooler Master V650 SFX 7,8 13,8 19,6 33 42,4 41,4  
Chieftec BDF-650C 13 19 27,6 35,5 69,8 67,3  
XPG Core Reactor 750 8 14,3 18,5 30,7 41,8 40,4 72,5
Deepcool DQ650-M-V2L 11 13,8 19,5 34,7 44    
Deepcool DA600-M 13,6 19,8 30 61,3 86    
Fractal Design Ion Gold 850 14,9 17,5 21,5 37,2 47,4 45,2 80,2
XPG Pylon 750 11,1 15,4 21,7 41 57 56,7 111
Thermaltake TF1 1550 13,8 15,1 17 24,2   30 42
Chieftronic PowerUp GPX-850FC 12,8 15,9 21,4 33,2 39,4 38,2 69,3
Thermaltake GF1 1000 15,2 18,1 21,5 31,5 38 37,3 65
MSI MPG A750GF 11,5 15,7 21 30,6 39,2 38 69
Chieftronic PowerPlay GPU-850FC 12 15,9 19,7 28,1 34 33,3 56
Cooler Master MWE Gold 750W V2 12,2 16 21 34,6 42 41,6 76,4
XPG Pylon 450 12,6 18,5 28,4 63      
Chieftronic PowerUp GPX-550FC 12,2 15,4 21,6 35,7   47,1  
Chieftec BBS-500S 13,3 16,3 22,2 38,6      
Cougar VTE X2 600 13,3 18,3 28 49,3 64,2    
Thermaltake GX1 500 12,8 14,1 19,5 34,8 47,6    
Thermaltake BM2 450 12,2 16,7 26,3 57,9      
Chieftec PPS-1050FC 10,8 13 17,4 29,1 35,1 34,6 58
Super Flower SF-750P14XE 14 16,5 23 35 42 44 76

В целом данная модель находится на уровне решений с аналогичным уровнем сертификата. Это действительно продукт на современной платформе с современными характеристиками.

Суммарная величина рассеиваемой мощности на средней и низкой нагрузке (до 400 Вт)
  Вт
Enhance ENP-1780 106,4
Super Flower Leadex II Gold 850W 79,9
Super Flower Leadex Silver 650W 93,8
High Power Super GD 850W 75,6
Corsair RM650 (RPS0118) 71,7
EVGA Supernova 850 G5 73,5
EVGA 650 N1 113,2
EVGA 650 BQ 107,2
Chieftronic PowerPlay GPU-750FC 79,3
Deepcool DQ850-M-V2L 83,9
Chieftec PPS-650FC 75,6
Super Flower Leadex Platinum 2000W 86,4
Chieftec CTG-750C-RGB 94,5
Chieftec BBS-600S 91,2
Cooler Master MWE Bronze 750W V2 107,5
Cougar BXM 700 99
Cooler Master Elite 600 V4 125
Cougar GEX 850 79,5
Cooler Master V1000 Platinum (2020) 104,3
Cooler Master V650 SFX 74,2
Chieftec BDF-650C 95,1
XPG Core Reactor 750 71,5
Deepcool DQ650-M-V2L 79
Deepcool DA600-M 124,7
Fractal Design Ion Gold 850 91,1
XPG Pylon 750 89,2
Thermaltake TF1 1550 70,1
Chieftronic PowerUp GPX-850FC 83,3
Thermaltake GF1 1000 86,3
MSI MPG A750GF 78,8
Chieftronic PowerPlay GPU-850FC 75,7
Cooler Master MWE Gold 750W V2 83,8
XPG Pylon 450 122,5
Chieftronic PowerUp GPX-550FC 84,9
Chieftec BBS-500S 90,4
Cougar VTE X2 600 108,9
Thermaltake GX1 500 81,2
Thermaltake BM2 450 113,1
Chieftec PPS-1050FC 70,3
Super Flower SF-750P14XE 88,5

На низкой и средней мощности экономичность средняя. В нашем списке на момент тестирования данная модель оказалась на 22-м месте из 40.

Потребление энергии компьютером за год, кВт·ч 15 Вт 100 Вт 200 Вт 400 Вт 500 Вт
(1 шнур)
500 Вт
(2 шнура)
750 Вт
Enhance ENP-1780 317 1085 1981 3813 4754 4738 7153
Super Flower Leadex II Gold 850W 237 1000 1920 3806 4774 4763 7242
Super Flower Leadex Silver 650W 227 1008 1952 3898 4928 4899  
High Power Super GD 850W 230 991 1920 3784 4744 4707 7154
Corsair RM650 (RPS0118) 193 986 1907 3806 4768 4752  
EVGA Supernova 850 G5 242 999 1909 3758 4702 4687 7117
EVGA 650 N1 249 1042 1975 3988 5042    
EVGA 650 BQ 257 1039 1989 3918 4922 4910  
Chieftronic PowerPlay GPU-750FC 234 1004 1926 3794 4739 4727 7157
Deepcool DQ850-M-V2L 241 1023 1941 3793 4734 4720 7192
Chieftec PPS-650FC 228 996 1914 3788 4744 4730  
Super Flower Leadex Platinum 2000W 270 1042 1943 3765 4682 4678 7006
Chieftec CTG-750C-RGB 245 1025 1945 3876 4873 4869 7534
Chieftec BBS-600S 255 1014 1942 3852 4856    
Cooler Master MWE Bronze 750W V2 271 1075 1979 3881 4893 4872 7464
Cougar BXM 700 237 1035 1980 3879 4883 4880  
Cooler Master Elite 600 V4 231 1032 2016 4080 5195    
Cougar GEX 850 235 1003 1933 3790 4739 4735 7205
Cooler Master V1000 Platinum (2020) 305 1060 1975 3837 4761 4739 7054
Cooler Master V650 SFX 200 997 1924 3793 4751 4743  
Chieftec BDF-650C 245 1042 1994 3815 4991 4970  
XPG Core Reactor 750 202 1001 1914 3773 4746 4734 7205
Deepcool DQ650-M-V2L 228 997 1923 3808 4765    
Deepcool DA600-M 251 1049 2015 4041 5133    
Fractal Design Ion Gold 850 262 1029 1940 3830 4795 4776 7273
XPG Pylon 750 229 1011 1942 3863 4879 4877 7542
Thermaltake TF1 1550 252 1008 1901 3716   4643 6938
Chieftronic PowerUp GPX-850FC 244 1015 1940 3795 4725 4715 7177
Thermaltake GF1 1000 265 1035 1940 3780 4713 4707 7139
MSI MPG A750GF 232 1014 1936 3772 4723 4713 7174
Chieftronic PowerPlay GPU-850FC 237 1015 1925 3750 4678 4672 7061
Cooler Master MWE Gold 750W V2 238 1016 1936 3807 4748 4744 7239
XPG Pylon 450 242 1038 2001 4056      
Chieftronic PowerUp GPX-550FC 238 1011 1941 3817   4793  
Chieftec BBS-500S 248 1019 1947 3842      
Cougar VTE X2 600 248 1036 1997 3936 4942    
Thermaltake GX1 500 244 1000 1923 3809 4797    
Thermaltake BM2 450 238 1022 1982 4011      
Chieftec PPS-1050FC 226 990 1904 3759 4688 4683 7078
Super Flower SF-750P14XE 254 1021 1954 3811 4748 4765 7236

Температурный режим

Во всем диапазоне мощности термонагруженность конденсаторов находится на невысоком уровне, что можно оценить положительно.

Акустическая эргономика

При подготовке данного материала мы использовали следующую методику измерения уровня шума блоков питания. Блок питания располагается на ровной поверхности вентилятором вверх, над ним на расстоянии 0,35 метра размещается измерительный микрофон шумомера Октава 110А-Эко, которым и производится измерение уровня шума. Нагрузка блока питания осуществляется при помощи специального стенда, имеющего бесшумный режим работы. В ходе измерения уровня шума осуществляется эксплуатация блока питания на постоянной мощности в течение 20 минут, после чего производится замер уровня шума.

Подобное расстояние до объекта измерения является наиболее приближенным для настольного размещения системного блока с установленным блоком питания. Данный метод позволяет оценить уровень шума блока питания в жестких условиях с точки зрения небольшого расстояния от источника шума до пользователя. При увеличении расстояния до источника шума и появлении дополнительных преград, имеющих хорошую звукоотражающую способность, уровень шума в контрольной точке также будет снижаться, что приведет к улучшению акустической эргономики в целом.

При работе в диапазоне мощности до 500 Вт включительно уровень шума данной модели близок к среднетипичному значению при расположении БП в ближнем поле. При более значительном удалении блока питания и размещении его под столом в корпусе с нижним расположением БП такой шум можно будет трактовать как находящийся на уровне ниже среднего. В дневное время суток в жилом помещении источник с подобным уровнем шума будет не слишком заметен, особенно с расстояния в метр и более, и тем более он будет малозаметен в офисном помещении, так как фоновый шум в офисах обычно выше, чем в жилых помещениях. В ночное время суток источник с таким уровнем шума будет хорошо заметен, спать рядом будет затруднительно. Подобный уровень шума можно считать комфортным при работе за компьютером.

При дальнейшем увеличении выходной мощности уровень шума повышается, и при нагрузке в 750 Вт его уже можно считать повышенным при условии настольного размещения, то есть при расположении блока питания в ближнем поле по отношению к пользователю.

Таким образом, с точки зрения акустической эргономики данная модель обеспечивает комфорт при выходной мощности в пределах 500 Вт. Впрочем, разница с максимальным режимом невелика.

Также мы оцениваем уровень шума электроники блока питания, поскольку в некоторых случаях она является источником нежелательных призвуков. Данный этап тестирования осуществляется путем определения разницы между уровнем шума в нашей лаборатории с включенным блоком питания и с выключенным. В случае, если полученное значение находится в пределах 5 дБА, никаких отклонений в акустических свойствах БП нет. При разнице более 10 дБА, как правило, есть определенные дефекты, которые можно услышать с расстояния около полуметра. На данном этапе измерений микрофон шумомера располагается на расстоянии около 40 мм от верхней плоскости БП, так как на бо́льших расстояниях измерение шума электроники весьма затруднительно. Измерение производится в двух режимах: дежурном режиме (STB, или Stand by) и при работающем на нагрузку БП, но с принудительно остановленным вентилятором.

В режиме ожидания шум электроники почти полностью отсутствует. В целом шум электроники можно считать относительно низким: превышение фонового шума составило не более 3 дБА.

Потребительские качества

Потребительские качества Super Flower Legion GX Pro 750W находятся на хорошем уровне. Нагрузочная способность канала +12VDC высокая, что позволяет использовать данный БП в достаточно мощных системах с одной или двумя видеокартами. Акустическая эргономика хоть и не выдающаяся, но при работе в диапазоне мощности до 500 Вт шум невысокий. Длина проводов у БП достаточная для комфортного использования в современных корпусах. Существенных недостатков наше тестирование не выявило. С положительной стороны отметим комплектацию блока питания японскими конденсаторами, ленточными проводами и вентилятором с большим сроком службы.

Итоги

Можно констатировать, что Super Flower Legion GX Pro 750W хорошо приспособлен для работы в системах различной мощности, в том числе в системах с двумя видеокартами на базе десктопных платформ. Больше всего этот БП подойдет для использования в игровых или рабочих системах, поскольку шум даже при невысоких нагрузках не бывает действительно низким. Собственно, для подобного использования данная модель и позиционируется производителем.

Технико-эксплуатационные характеристики Super Flower Legion GX Pro 750W находятся на высоком уровне, чему способствуют высокая нагрузочная способность канала +12VDC, неплохая экономичность, невысокая термонагруженность, вентилятор с высоким ресурсом работы, а также использование конденсаторов японских производителей. Можно прогнозировать достаточно долгий срок службы данной модели даже при высоких нагрузках и активной эксплуатации.

Качественные БП — основа, теория, стандарты


Введение

Правильное качественное питание настольного компьютера можно назвать одним из наиболее важных вопросов, решаемых в процессе конструирования надёжной производительной системы. Разумеется, в современном ПК предостаточно значительно более сложных компонентов, нежели блок питания, однако именно от качества работы последнего в конечном итоге зависит стабильность системы в целом. Впрочем, как и безопасность пользователя: не стоит забывать, что БП – это единственный компонент системы, работающий непосредственно с напряжением переменного тока силовой сети.

Компоненты для ПК производят сотни компаний, блоки питания выпускаются фабриками десятка-другого производителей и поступают в продажу под своей торговой маркой или с маркировкой многочисленных OEM-заказчиков. Совместимость разнообразного компьютерного железа с источниками питания определяется сводом индустриальных стандартов, жёстко регламентирующих ключевые параметры качества питания и описывающих дополнительные характеристики в рекомендательной форме.

Основная цель этой публикации – рассказать о ключевых параметрах блоков питания, объяснить разницу между обязательными и рекомендованными  характеристиками, то есть, представить всю необходимую информацию по имеющимся стандартам перед тем, как вы углубитесь в магазинные прайс-листы в поисках подходящего блока питания. Для тех, кто желает изучить требования, предъявляемые к блокам питания более глубоко и детально, в конце этой статьи приведён список ссылок на документы всех ключевых стандартов в этой области.

Стандарты блоков питания для ПК 

По общепринятому определению, компьютерный блок питания – это силовой компонент системы, обеспечивающий питанием остальные элементы ПК. С точки зрения схемотехники, БП представляет собой модуль для преобразования переменного тока силовой сети 100-127В (США, Японии и на Тайване, а также местами в Южной Америке) или 220-240В (Европа и большинство других стран мира) в постоянный ток с уровнями напряжения, приемлемыми для питания компонентов компьютера.

Блок питания – лишь один из компонентов компьютерной системы, поэтому его ключевые характеристики определяются в качестве одной из многочисленных рекомендаций к системам определённого форм-фактора, а не наоборот. Например, именно стандартный форм-фактор ATX (Advanced Technology Extended), разработанный Intel в 1995 году, определяет габариты и другие характеристики блока питания, а не БП определяет форму систем ATX.

Изначально блоки питания, рассчитанные для работы в настольных компьютерных системах, в большинстве своём рассчитывались согласно требованиям стандарта ATX12V. Так было до версии стандарта  ATX12V 2.2 (выпущена в марте 2005), после чего было принято решение объединить в едином документе требования по всем общепринятым форм-факторам настольных платформ, включая CFX12V, LFX12V, ATX12V, SFX12V и TFX12V. Со временем появился документ «Design Guide for Desktop Platform Form Factors, Revision 1.1» (март 2007), актуальный и по сей день.

Для справки: форм-факторы компьютеров определяются, главным образом, форматом системных плат, размеры некоторых из них приведены ниже в миллиметрах:

  • WTX — 356х425
  • AT – 350х305
  • Baby-AT – 330х216
  • BTX- 325х266
  • ATX- 305х244
  • LPX – 330х229
  • microBTX – 264х267
  • microATX — 244х244
  • microATX (минимум) – 171х171
  • FlexATX – 229х191
  • Mini-ITX – 170х170
  • Nano-ITX – 120х120
  • Pico-ITX – 100х72
  • PC/104 (-Plus) – 96х90
  • mobile-ITX – 60х60

Таким образом, если вы увидите в спецификациях блока питания упоминание о «соответствии стандарту ATX12V 2.3», имейте в виду, что такого документа в природе не существует. Последним, отдельно представленным документом был ATX12V 2.2, а маркировка версии «2.3» означает соответствие требованиям подпункта «ATX12V Specific Guidelines 2.3» в выше упомянутом документе руководства по дизайну настольных платформ, версии 1.1, общем для всех настольных форм-факторов.

Несмотря на то, что ATX12V является лишь подмножеством среди других форм-факторов ПК, говоря о настольных системах, мы обычно подразумеваем именно этот стандарт. Если, конечно, не идёт речь о миниатюрных «примочках к телевизору» для просмотра видео, компактных офисных машинках, серверных системах и прочих особых случаях, не вписывающихся в определение домашней или игровой настольной системы. Сегодня речь идёт именно о блоках питания ATX12V.  

Также следует отметить, что публикация новых стандартов по блокам питания не отменяет предыдущие рекомендации и требования, а, как правило, лишь ужесточает их. Поэтому, сегодня мы изучим стандарт ATX12V 2.2, и в дополнение к нему дополнения «ATX12V Specific Guidelines 2.3» из документа «Design Guide for Desktop Platform Form Factors, Revision 1.1».

Требования этих документов можно назвать достаточными для выбора модели БП, подходящей для конструирования системы в целом, однако если говорить о конструировании именно современной системы, к обязательному рассмотрению необходимо принять ещё как минимум один документ – рекомендации 80PLUS.

И вот почему.

Так или иначе, часть подводимой к ПК мощности рассеивается непосредственно самим блоком питания процессе его работы. Например, суммарное энергопотребление системы порядка 500 Вт и КПД блока питания уровня 75% на практике означают, что БП тратит на себя четверть потребляемой энергии. Около 125 Вт – а это мощность приличного паяльника, уходят у БП на «обогрев» самого себя! Если же БП обладает более высоким КПД – скажем, 87%, расходы на оплату электричества, равно как и охлаждение системы, можно значительно сократить.

Ещё один интересный пример. Допустим, вы запланировали купить блок питания «с запасом». Мало ли… Выбор пал на блок киловаттной мощности. Запас карман не тянет? Может быть, но не в случае с блоками питания. Представьте, как будет «вести» себя БП мощностью 1 кВт в системе, максимальная нагрузка которой даже на пике не превышает 500 Вт, от силы – 600 Вт. Редкая современная система – даже на 6-ядерном процессоре и паре мощнейших видеокарт, потребляет большую мощность.

Обычно блоки питания выходят на хороший показатель КПД при нагрузке от 40-50% и выше, оптимум – в районе 70-100% нагрузки. При меньшей загруженности коэффициент полезного действия обычно ниже. Посчитаем: киловаттник, да ещё и в случае, если он сертифицирован только по стандарту ATX12V, «обязан» показывать КПД при лёгкой загруженности на уровне 65-72%, то есть, нагрузив такой БП лишь 400-Вт нагрузкой, более четверти энергии будет затрачено на обогрев, а с учётом того, что большинство производительных настольных систем потребляют при нормальной нагрузке не более 250-350 Вт, потери могут достигать трети всей потребляемой энергии.

Вот почему к рекомендациям 80PLUS не стоит относиться пренебрежительно, как и в целом, к выбору блока питания не стоит подходить по остаточному принципу.

Стандарт ATX12V 2.2

Прежде всего, стандарт описывает требования ко входному напряжению силовой сети, с которым должен работать блок питания. 

 

Сеть

Минимум

Номинал

Максимум

115В

90В

115В

135В

230В AC

180В

230В

265В

Частота

47 Гц

50/60Гц

63 Гц

 

На практике практически все производители блоков питания в последние годы освоили схемотехнику с активной коррекцией коэффициента мощности (Active PF Correction), позволяющую создавать модели под переменное входное напряжение любой силовой сети мира, в диапазоне от 90В до 260 В. Обязательным требованием стандарта является наличие защиты входных цепей БП от токовой перегрузки, для чего предписывается обязательное наличие плавкого предохранителя.

Базовые спецификации стандарта ATX определяют требования как к основным напряжениям питания, +3,3В, +5В и +12В, так и к вспомогательным шинам питания, −12В и +5VSB (Standby). В первых своих редакциях стандарт ATX также описывал требования по шине -5В, поскольку это напряжение требовалось для питания шины ISA, однако после исчезновения шины ISA требования по этому напряжению были удалены из стандарта ATX.

Первоначально в списке обязательных шин и разъёмов питания стандарт ATX предписывал обязательное наличие 20-контактного разъёма для питания материнских плат, однако, со временем, по мере усложнения компонентов, требования к питанию выросли и стали более жёсткими, и стандарт ATX12V в редакциях 2.x уже предписывает наличие двух разъёмов питания материнской платы: основного 24-контактного (усовершенствованная 20-контактная версия) и дополнительного 4-контактного для питания центрального процессора.

Вот так выглядит цоколёвка современного 24-контактного разъёма питания материнской платы по стандарту ATX12V версий 2.x.  

24-контактный разъём ATX12V 2.x (к 20-контактной версии добавлены 11, 12, 23 и 24 контакты)

Цвет

Напряжение

Контакт

Контакт

Напряжение

Цвет

Оранжевый

+3,3В

1

13

+3,3В

Оранжевый

+3,3В сигн.

Коричневый

Оранжевый

+3,3В

2

14

−12В

Голубой

Чёрный

Земля

3

15

Земля

Чёрный

Красный

+5В

4

16

Power On

Зелёный

Чёрный

Земля

5

17

Земля

Чёрный

Красный

+5В

6

18

Земля

Чёрный

Чёрный

Земля

7

19

Земля

Чёрный

Серый

Power Good

8

20

Без контакта

Лиловый

+5В standby

9

21

+5В

Красный

Жёлтый

+12В

10

22

+5В

Красный

Жёлтый

+12В

11

23

+5В

Красный

Оранжевый

+3,3В

12

24

Земля

Чёрный

Контакты 8, 13 и 16 являются сигнальными, а не силовыми)

Контакт 20 может использоваться в системах ATX и ATX12V версий 1.2 и старее, для питания шины −5VDC (белый). В версии 1.2 этот контакт пропал, а с версии 1.3 он запрещён.

 

Отдельного описания заслуживают четыре контакта, на которые возложены специальные функции:

  • 8 контакт — PWR_OK, или «Power Good» – выходной сигнал блока питания, сигнализирующий финальной стабилизации выходного напряжения и готовности БП к стабильной работе. Обычно сигнал остаётся низким на протяжении 100-500 мс после «заземления» сигнала PS_ON#.
  • 16 контакт — PS_ON#, или «Power On» – сигнальный 5-вольтовый контакт. Когда контакт со стороны системной платы подключен к общему проводу («заземлён»), блок питания включается.
  • 9 контакт — +5VSB, или «+5V standby» –дежурное напряжение, остаётся даже после отключения блока питания. Необходимо для питания схем, управляющих сигналом «Power On».
  • 13 контакт – питающее напряжение +3,3В, (+3.3 V sense) – подключается к шине +3,3В материнской платы или её разъёма питания, позволяет обнаруживать падение питающего напряжения дистанционно.

Одним из наиболее важных параметров, регламентируемых стандартом, является стабильность выходного напряжения, обеспечиваемого блоком питания, а также остаточные пульсации, присутствующие в выходном постоянном напряжении. Именно от этих параметров отталкиваются производители при проектировании цепей преобразования, стабилизации и фильтрации напряжений, необходимых для питания компонентов материнских плат.

Для ключевых напряжений питания разброс питающих напряжений не должен превышать ±5% от номинала во всём диапазоне нагрузок. Для менее критичных напряжений допускается разброс порядка ±10% от номинального напряжения. В таблице ниже приведены требования по допустимому отклонению напряжений и максимальным выходным пульсациям.

Шина

Отклонение

Диапазон

Пульсации (макс. амплитуда)

+5В

±5% (±0,25В)

+4,75В — +5,25В

50 мВ

−5В

±10% (±0,50В)

-4,50В — -5,50В

50 мВ

+12В

±5% (±0,60В)

+11,40В — +12,60В

120 мВ

−12В

±10% (±1,2В)

-10,8В — -13,2В

120 мВ

+3,3В

±5% (±0,165В)

+3,135В — +3,465В

50 мВ

+5В

±5% (±0,25В)

+4,75В — +5,25В

50 мВ

 

Разумеется, чем отклонение питающих напряжений от номинала меньше, тем более стабильной работы можно ожидать от системы в целом. Некоторые производители БП даже заявляют отклонение основных напряжений не более ±3% во всём диапазоне допустимых нагрузок. Это не нормируется стандартом, но, в то же время, говорит об очень высоком качестве этого изделия.

Кроме того, стандарт также описывает кросс-нагрузочные требования шин +5В и +3,3В в зависимости от нагрузки +12В шин для нескольких типовых конфигураций – 250 Вт, 300 Вт, 350 Вт, 400 Вт и 450 Вт. Так, например, выглядит кросс-нагрузочная диаграмма для 450 Вт конфигурации:

Как уже было отмечено выше, начиная с со стандарта ATX12V версии 2.0, основной разъём питания системной платы превратился в 24-контактный, при сохранении обратной совместимости с предыдущим 20-контактным дизайном, при этом дополнительные четыре контакта обеспечивают питание +3,3В, +5В и +12В. Кроме того, в этой версии стандарта дополнительный 6-контактный разъём питания AUX, появившийся в ATX12V версий 1.x, был упразднён, поскольку дополнительные шины питания +3,3В и + 5В были интегрированы в 24-контактный разъём.

Основным напряжением питания системы с этого момента (февраль 2003) считаются шины +12В, поэтому стандарт с этого времени определяет необходимость наличия как минимум двух шин +12В (12V2 для 4-контактного разъёма питания процессора и 12V1 для всего остального), с независимой защитой от токовой перегрузки  по каждому каналу. На практике, наиболее мощные блоки питания с тех пор начали обзаводиться и большим количеством шин +12В, однако стандарт требует наличия в обязательном порядке как минимум двух таких шин.

В связи с ростом «ответственности» шин +12В, были снижены требования мощности к шинам +3,3В и +5В. Кроме того, начиная с этой версии обязательным требованием стало наличие разъёмов питания устройств Serial ATA.

В ATX12V версии 2.01 стандарт окончательно избавился от шины -5В, а следующая ревизия, ATX12V v2.1, потребовала обязательного наличия 6-контактного разъёма питания для графических карт PCIe, поскольку слот PCIe, появившийся на материнских платах, требовал питания до 75 Вт. В ATX12V версии 2.2 добавилось требование к обязательному наличию 8-контактного разъёма для питания карт PCIe, обеспечивающего нагрузку до 150 Вт.

В отношении порога срабатывания защит выходного напряжения приняты следующие требования:

Шина

Минимум

Номинал

Номинал

+12В

+13,4В

+15,0В

+15,6В

+5В

+5,74В

+6,3В

+7,0В

+3,3В

+3,76В

+4,2В

+4,3В

 

Защита от короткого замыкания предписывает обязательное срабатывание при сопротивлении цепи менее 0,1 Ом, при этом блок питания должен отключиться.

В плане шумовых характеристик стандарт предписывает ограничение акустического шума уровнем не более 40 дБ.

Дополнения стандарта ATX12V 2.3

В дополненной версии ATX12V 2.3, выполненной в виде подпункта общего руководства «Design Guide for Desktop Platform Form Factors, Revision 1.1» (март 2007), ключевых изменений было представлено немного. В частности, требования к минимальному КПД были увеличены до 80% (взамен нижнего 70% предела в предыдущих версиях). Впрочем, про КПД и требования стандартов, связанные с этим, мы поговорим подробно чуть ниже.

Другим дополнением стандарта ATX12V версии 2.3 стало появление кросс-нагрузочных требований к шинам +5В и +3,3В в зависимости от нагрузки +12В шин, для нескольких новых типовых конфигураций в диапазоне от 180 Вт до 450 Вт. В частности, требования к типовым конфигурациям 300 Вт, 350 Вт, 400 Вт и 450 Вт подверглись определённым изменениям, а взамен 250 Вт дизайна появилось сразу три новых – 180 Вт, 220 Вт и 270 Вт.

Однако, наиболее серьёзным и ключевым изменением требований, реализованном в стандарте ATX12V 2.3, можно назвать значительное изменение требований к нижнему пределу нагрузки по всем основным каналам питания.

Изменения по сравнению с версией ATX12V 2.2 произошли следующие:

  • Нижний предел токовой нагрузки по каналу +3,3В для всех конфигураций (180 – 450 Вт) снижен с 0,5А до 0,1А;
  • Нижний предел токовой нагрузки по каналу +5В для всех конфигураций (180 – 450 Вт) снижен с 0,3А до 0,2А;
  • Нижний предел токовой нагрузки по каналу +12В1 для конфигураций 180 Вт, 220 Вт и 270 Вт (там этот канал теперь единственный) снижен с 1,0А до 0,6А;
  • Нижний предел токовой нагрузки по каналу +12В1 для конфигураций 300 Вт, 350 Вт, 400 Вт и 450 Вт (шина общего питания системы) снижен с 1,0А до 0,1А;
  • Нижний предел токовой нагрузки по каналу +12В2 для конфигураций 300 Вт, 350 Вт, 400 Вт и 450 Вт (шина питания процессора) снижен с 1,0А до 0,6А.

 

Также в новой версии стандарта были сняты ограничения по максимальной токовой нагрузке по каждой шине +12В (240ВА на шину), и теперь производители могут выпускать модели БП нагрузкой более 20А по каждой шине +12В, не выходя при этом за требования стандарта.

КПД: требования ATX12V  и рекомендации 80PLUS 

Чем выше коэффициент полезного действия (КПД) устройства, тем меньше энергии он тратит на собственные нужды, и тем меньше в итоге общий расход энергии.

Стандарт ATX12V 2.2 нормировал КПД блоков питания на уровне не менее 70% при полной нагрузке (100%), не менее 72% при «типичной» нагрузке (50%), и не менее 65% при «малой» нагрузке (20%).

Индустриальная инициатива 80PLUS, впервые представленная в марте 2004 года, изначально пропагандировала идею создания и широкого распространения блоков питания с высоким КПД. Изначальная версия стандарта 80PLUS, появившаяся в том же 2004 году, определяла сертификацию блоков питания на соответствие 80PLUS  при условии КПД не менее 80% при 20%, 50% и 100% уровне нагрузки, и коэффициенте мощности не менее 0,9 или выше при 100% нагрузке.

Первый блок питания, полностью соответствующий требованиям стандарта 80PLUS, был представлен компанией Seasonic  в феврале 2005 года, а чуть позже – в июле 2007 года, рекомендации 80PLUS по 80% минимальному уровню КПД были также включены в требования нового энергосберегающего («зелёного») индустриального стандарта Energy Star 4.0.

К декабрю 2007 года на рынке уже присутствовало более 200 моделей БП с сертификацией 80PLUS, а в первом квартале 2008 года стандарт вышел на новый уровень – были добавлены более строгие сертификации уровней Bronze, Silver и Gold.

Кроме того, в настоящее время уже появились блоки питания, сертифицированные по высочайшим требованиям стандарта 80PLUS Platinum (2009 год) – правда, пока только для серверных приложений; о блоках питания для настольных систем с сертификатом 80PLUS Platinum мне пока слышать не приходилось.

Сводная таблица требований разных стандартов к эффективности питания приведена ниже. 

Стандарт

Сети переменного тока 115В

Сети переменного тока 230В

Нагрузка

20%

50%

100%

20%

50%

100%

ATX12V 2.2 мин.

65%

72%

70%

65%

72%

70%

ATX12V 2.2 реком.

75%

80%

77%

75%

80%

77%

80 PLUS

80%

80%

80%

Не определено

80 PLUS Bronze

82%

85%

82%

81%

85%

81%

80 PLUS Silver

85%

88%

85%

85%

89%

85%

80 PLUS Gold

87%

90%

87%

88%

92%

88%

80 PLUS Platinum

Не определено

90%

94%

91%

К этому также стоит добавить, что требования стандартов 80PLUS Bronze, Silver и Gold по коэффициенту мощности остались неизменными – 0,9 и более во всём диапазоне нагрузок, в то время как для стандарта 80PLUS Platinum это требование увеличено до уровня 0,95 и более.

Стандарт EPS12V

Характеристики некоторых блоков питания, особенно мощных, иногда включают в себя упоминание о соответствии требованиям стандарта EPS12V. Этот стандарт, утверждённый индустриальным форумом SSI (Server System Infrastructure Forum), имеет отношение главным образом к многопроцессорным системам на процессорах класса Core 2, Core i7, Opteron или Xeon. Требования этого стандарта определяют наличие 24-контактного разъёма (как в стандартах ATX12V v2.x) и 8-контактного дополнительного разъёма для питания системной платы (процессора/процессоров) — вместо привычного 4-контактного разъёма, который в этом стандарте представлен лишь опционально. Впрочем, для обратной совместимости со стандартом ATX12V, производители блоков питания, как правило, исполняют 8-контактный разъём в виде комбинации двух 4-контактных разъёмов.

Полезные ссылки и список литературы для дополнительного изучения:

Обсуждение данного материала происходит в специальной ветке нашего форума.




Блок питания компьютера. Как определить неисправность?

Случаи выхода из строя блоков питания в компьютере не редкость. Ниже приведены возможные причины неисправностей блоков питания компьютеров и способ проверки блока питания на работоспособность.

1. Выбросы напряжения в электросети;

2. Низкое качество изготовления, особенно касается дешевых блоков питания и системных блоков;

3. Неудачные конструктивные и схемотехнические решения;

4. Применение низкокачественных компонентов при изготовлении;

 

5. Перегрев элементов из-за неудачного расположения системного блока, загрязнения блока питания, остановки вентилятора охлаждения.

Какие «симптомы» неисправности блока питания в компьютере?

Чаще всего это полное отсутствие признаков жизни системного блока, то есть ничего не гудит, не горят светодиоды индикации, нет звуковых сигналов.

В некоторых случаях не стартует материнская плата. При этом могут крутиться вентиляторы, гореть индикация, издавать звуки приводы и жесткий диск, но на экране монитора ничего не появляется.

 

Иногда системный блок при включении начинает подавать признаки жизни на несколько секунд и тут же выключается по причине срабатывания защиты блока питания от перегрузок.

Для того чтобы окончательно убедиться в неисправности блока питания нужно открыть правую крышку системного блока, если смотреть сзади. Вытащить основной штеккер основного разъёма блока питания, который имеет 20 или 24 контакта, из гнезда материнской платы, и замкнуть контакты с зелёным (иногда серым) и ближайшим чёрным проводом. Если при этом блок питания запустится, то, скорее всего, виновата материнская плата.

Запуск блока питания можно определить по вращению вентилятора блока питания, если он исправен и щелчкам приводов, но для надёжности лучше проверить напряжения на разъёме. Между контактами с черным и красным проводами — 5в, между черным и желтым — 12в, между черным и розовым — 3,3в; между черным и фиолетовым — 5в дежурного напряжения. Минус на черном, а плюс на цветных. Для того чтобы убедиться что блок питания запущен достаточно измерить одно из напряжений, кроме «дежурных» 5в на фиолетовом проводе.

Иногда пользователи начинают искать предохранитель. Не ищите, снаружи их нет. Есть один внутри, но менять его в большинстве случев не только бесполезно, но опасно и вредно, так как это может привести к ещё большим проблемам.

Если обнаружится, что блок питания неисправен, то в большинстве случаев лучше его заменить, но можно и отремонтировать, если это экономически целесообразно.

При покупке нового блока питания нужно, прежде всего, учитывать мощность, которая не должна быть меньше прежнего. Также необходимо обратить внимание на выходные разъёмы, чтобы была возможность подключить все устройства системного блока, хотя в необходимых случаях проблемы подключения могут быть решены при помощи переходников. О том, как выбрать блок питания нужного качества можно прочитать тут.

Нужно ли ремонтировать блок питания самостоятельно? Если Вы не обладаете хотя-бы элементарными знаниями и навыками в области электроники, однозначно нет. Во-первых, Вы скорее всего не сможете это сделать, во-вторых это опасно для жизни и здоровья если не соблюдать правила безопасности.

Для тех, кто всё-таки решил заняться ремонтом блока питания, есть возможность ознакомиться с моим личным опытом и соображениями по этому поводу здесь.

Поделитесь этим постом с друзьями:

Добавь меня в друзья:

Как выбрать блок питания для компьютера


Блок питания — это компонент ПК, который переводит сетевые 220 В в нужные для различных устройств 3.3-12 В. И, увы, очень многие относятся к выбору блока питания… никак — просто берут его на сдачу от покупки других комплектующих, зачастую сразу вместе с корпусом. Однако если вы собираете что-то мощнее мультимедийного компьютера, то делать этого не стоит — плохой блок питания может легко вывести из строя дорогостоящие процессоры или видеокарты, и чтобы потом не было как в поговорке «скупой платит дважды» — лучше купить сразу хороший БП.

Теория

Для начала разберемся, какие напряжения отдает блок питания. Это линии 3.3, 5 и 12 вольт: 

  • +3.3 В — предназначена для питания выходных каскадов системной логики (и вообще питания материнской платы и ОЗУ).
  • +5 В — питает логику почти всех PCI- и IDE-девайсов (в том числе и SATA-устройств).
  • +12 В — самая загруженная линия, питает процессор и видеокарту.
В подавляющем большинстве случаев 3.3 В берутся с той же обмотки, что и 5 В, поэтому для них указывается суммарная мощность. Эти линии нагружены относительно слабо, и если у вас в компьютере не стоит 5 терабайтных жестких дисков и парочки звуковых видеокарт — не имеет особого смысла обращать на них внимания, если блок питания выдает по ним хотя бы 100 Вт — этого вполне хватит.

Но вот линия 12 В является очень загруженной — по ней питается и процессор (50-150 Вт), и видеокарта (до 300 Вт), поэтому самым важным в блоке питания является то, сколько ватт он может отдать по линии 12 В (и эта цифра к слову обычно близка в суммарной мощности блока питания).

Второе, на что нужно обратить внимание, это разъемы блока питания — чтобы не было так, что видеокарте требуется парочка 6 pin, а у блока питания только один на 8 pin. Основное питания (24 pin) есть на всех блоках питания, на это внимание можно не обращать. Дополнительное питания CPU представлено в виде 4, 8 или 2 х 8 pin — зависит от мощности процессора и материнской платы, соответственно смотрите, чтобы на блоке питания был кабель с нужным числом контактов (важно — 8 pin для видеокарты и для процессора различаются, не пытайтесь их менять местами!)

Далее — дополнительное питание видеокарты. Некоторые низкоуровневые решения (вплоть до GTX 1050 Ti или RX 460) могут довольствоваться питанием через слот PCI-E (75 Вт), и им дополнительное питания не нужно. Однако более мощные решения могут требовать от 6 pin до 2 х 8 pin — следите, чтобы у блока питания они были (у некоторых блоков питания контакты могут выглядеть как 6+2 pin — это нормально, если вам нужно 6 pin — то подсоединяете основную часть с 6 контактами, если нужно 8 — добавляете еще 2 на отдельном кабеле).

Питание периферии и накопителей происходит или через SATA-коннектор, или через Molex — там никаких разбиений на пины нет, просто смотрите, чтобы у блока питания было столько нужных коннекторов, сколько у вас периферийных устройств. В некоторых случаях, если у блока питания не хватает пинов для питания видеокарты, можно купить переходник Molex — 6 pin. Однако в современных БП такая проблема достаточно редка, да и сами Molex почти исчезли с рынка.

Форм-факторы блоков питания — подбираются или под корпус, или, наоборот, если вы выбрали хороший БП определенного форм-фактора, то уже корпус подбираете под него и материнскую плату. Самый распространенный стандарт — это ATX, который скорее всего вы и встретите. Однако есть более компактные SFX, TFX и CFX — они подходят тем, кто хочет создать очень компактную систему.

Коэффициент полезного действия БП — это отношение полезной работы к затраченной энергии. В случае с блоками питания их КПД можно узнать по сертификату 80 Plus — от Bronze до Platinum: у первого он составляет при 50% нагрузке 85%, у последнего — уже 94%. Бытует мнение, что блок питания с сертификатом 80 Plus Bronze на 500 Вт реально может отдать 500 х 0.85 = 425 Вт. Это не так — блок сможет отдать 500 Вт, просто из сети при этом он возьмет 500 х (1/0.85) = 588 Вт. То есть чем лучше сертификат — тем меньше вам придется платить за электричество и не более того, а с учетом того, что разница в цене между Bronze и Platinum может составлять и 50% — особого смысла переплачивать за последний нет, экономия на электричестве окупится ох как не скоро. С другой стороны — большая часть дорогих БП имеет сертификат как минимум Gold, то есть вас «заставят» экономить электричество.


Power Factor Correction (PFC)

Современные блоки становятся все мощнее, а провода в розетках не меняются. Это приводит к возникновению импульсных помех – блок питания тоже не лампочка и потребляет, как и процессор, энергию импульсами. Чем сильнее и неравномернее нагрузка на блок, тем больше помех он выпустит в электросеть. Для борьбы с этим явлением разработан PFC.

Это мощный дроссель, устанавливаемый после выпрямителя до фильтрующих конденсаторов. Первое, что он делает, это ограничивает ток заряда вышеупомянутых фильтров. При включении в сеть блока без PFC очень часто слышен характерный щелчок – потребляемый ток в первые миллисекунды может в несколько раз превышать паспортный и это приводит к искрению в выключателе. В процессе работы компьютера модуль PFC гасит такие же импульсы от заряда разнообразных конденсаторов внутри компьютера и раскрутки моторов винчестеров.

 Встречаются два варианта исполнения модулей – пассивный и активный. Второй отличается наличием управляющей схемы, связанной с вторичным (низковольтным) каскадом блока питания. Это позволяет быстрее реагировать на помехи и лучше их сглаживать. Так же, так как в схеме PFC достаточно много мощных конденсаторов, активный PFC может «спасти» компьютер от выключения, если на какую-то долю секунды исчезло электричество.

Расчет необходимой мощности блока питания

Теперь, когда с теорией покончено, переходим к практике. Для начала нужно подсчитать, какую мощность будут потреблять все компоненты ПК. Для этого проще всего воспользоваться специальным калькулятором — я рекомендую этот. Вбиваете в него свой процессор, видеокарту, данные по ОЗУ, дискам, количество кулеров, сколько часов в день используете ПК и т.д, и в итоге получаете вот такую диаграмму (я выбрал вариант с i7-7700K + GTX 1080 Ti):

Как видим, под нагрузкой такая система потребляет 480 Вт. По линии 3.3 и 5 В, как я и говорил, нагрузка невелика — всего 80 Вт, столько отдаст даже самый просто БП. А вот по 12 В линии нагрузка уже 400 Вт. Разумеется, не стоит брать блок питания впритык — на 500 Вт. Он, конечно, справится, но, во-первых, в будущем, если вы захотите проапгрейдить свой компьютер, то БП может стать узким местом, а во-вторых при 100% нагрузке блоки питания очень громко шумят. Так что стоит сделать запас хотя бы 100-150 Вт и брать блоки питания начиная с 650 Вт (у них обычно по 12 В линии отдача от 550 Вт).

Но тут возникает сразу несколько нюансов:

  1. Не стоит экономить и брать встроенный в корпус БП на 650 Вт: они все поголовно идут без PFC, то есть один скачок напряжения — и вы в лучшем случае идете за новым БП, а худшем — и за другими комплектующими (вплоть до процессора и видеокарты). Далее — то, что на них написано 650 Вт, далеко не значит, что они столько смогут отдать — нормальным считается напряжение, отличное от номинала не больше чем на 5% (а еще лучше — 3%), то есть если БП отдает по 12 В линии меньше 11.6 В — его брать не стоит. Увы, в noname БП, встроенных в корпус, просадки при 100% нагрузке могут быть и 10%, и что еще хуже — они могут выдавать ощутимо более высокое напряжение, что вполне может убить материнскую плату. Так что ищите БП с активным PFC и сертификатом 80 Plus Bronze или лучше — это гарантирует, что внутри стоят хорошие компоненты.
  2. На коробке с видеокартой может быть написано, что ей требуется БП на 400-600 Вт, когда она сама едва 100 потребляет, а калькулятор мне выдал вообще 200 Вт под нагрузкой — обязательно ли брать БП на 600 Вт? Нет, абсолютно нет. Компании, производящие видеокарты, сильно перестраховываются, и специально завышают требования к БП, чтобы даже люди со встроенными в корпус БП скорее всего смогли поиграть (ибо даже самый простой 600 Вт БП уж при нагрузке в 200 Вт напряжение просаживать не должен).
  3. Если вы собираете тихую сборку, то имеет смысла взять БП в полтора и даже 2 раза мощнее того, что реально потребляет ваша система — при 50% нагрузке такой БП может вообще не включить кулер для охлаждения. 
Как видите, ничего особо трудного в выборе блока питания нет, и если вы выберите его по критериям выше, то обеспечите себе комфортную работу за ПК без всяких сбоев по вине некачественного БП. 

Какой у меня блок питания? [Простой ответ]

Если вы когда-нибудь задавались вопросом, какой блок питания у вас есть, вы попали в нужное место, чтобы найти ответ.

В отличие от GPU и CPU, ваш блок питания PSU не взаимодействует с материнской платой таким образом, чтобы передавать информацию.

Это затрудняет оценку возможностей вашего источника питания с помощью программного обеспечения, но это возможно.

Связанный:Лучшие калькуляторы блока питания для ПК

Блоки питания, как правило, затмеваются более яркими компонентами, но важно понимать их.Важно знать, сколько у вас мощности, особенно если вы планируете собрать ПК .

Однако, если вы приобрели предварительно собранный ПК, ваш блок питания, скорее всего, уже будет правильно оптимизирован для сборки, и у вас не должно возникнуть слишком много проблем. Это если вы не планируете обновлять этот готовый ПК, но это совершенно другая проблема.

При этом вам нужно знать, что есть два способа выяснить, какой у вас блок питания .Какой метод вы должны использовать, будет зависеть от вашего ПК.

Проверьте упаковку/получение

Самый очевидный способ — просто заглянуть под капот и прочитать декларацию. Если вам неудобно открывать корпус вашего ПК, единственной альтернативой является проверка информации на оригинальной упаковке блока питания или чека.

Если вы приобрели готовый ПК, у вас вряд ли будет оригинальная упаковка/коробки для компонентов.У вас должен быть чек, гарантия или любое другое доказательство покупки.

В этой квитанции вы должны точно увидеть, какая марка и модель блока питания установлена ​​на вашем ПК.

Если вы покупали компоненты ПК по отдельности, попробуйте найти упаковку блока питания. На нем вы найдете правильную марку и модель.

Открытие кейса

Сожалеете ли вы сейчас о том, что выбросили упаковку блока питания? Не волнуйся; есть еще вариант открыть кейс и это именно то, что вы должны сделать.

В соответствии с требованиями UL (ранее Underwriters Laboratories) блок питания имеет маркировку с классом мощности .

После того, как вы открыли корпус, вы сможете легко найти блок питания и наклейку на нем. Однако вы, возможно, не сможете найти наклейку, поскольку иногда она находится на другой стороне блока питания .

Если это применимо, вам нужно будет открыть заднюю часть корпуса и посмотреть, видна ли наклейка. Если это не так, то он, вероятно, тоже не на вершине.

Это означает, что вы не сможете точно узнать, какой у вас блок питания, и это представляет риск. Вы не будете знать, предназначена ли ваша текущая сборка для определенного диапазона мощности вашего блока питания или ее обновление может привести к проблеме .

В этом случае мы рекомендуем приобрести новый блок питания, так как наличие этой этикетки является требованием безопасности.

Маркировка блока питания

Возможно, вы смотрите на наклейку и таблицу с кучей цифр, которые мало что для вас значат.Не волнуйтесь, вот краткое руководство о том, что все это значит.

Пример этикетки — 850X ринггитов
  • Мощность – Обычно пишется самым крупным шрифтом с некоторым отступом. Это дает вам информацию, которая вам, вероятно, понадобится больше всего.
  • Название/модель блока питания . Вероятно, это будет написано в странном производственном коде, который вы можете ввести в Google, чтобы узнать больше о модели, например о том, какие у нее разъемы.
  • Входное напряжение — Блок питания работает от переменного напряжения, и это то, что вам нужно для питания.В США, Канаде и большинстве стран Южной Америки это число будет примерно 110–127 В. Для Великобритании, Европы, Азии, Африки и Австралии и т. д. это 200–240 В. Это напрямую связано с напряжением в розетке.
  • Выход постоянного тока . С другой стороны, это мощность, которую блок питания обеспечивает вашему компьютеру. Стандартные выходные напряжения составляют +3,3 В, +5 В, +12 В и +5 В SB. Вы также можете найти -12 В, но он больше не используется. Они также известны как Rails, например, 3.3V Rail, 5V Rail и так далее.
    +5VSB всегда активен, так как он питает мышь, клавиатуру, память, LAN и память BIOS для поддержки ПК, когда он находится в режиме ожидания.
  • Макс. нагрузка или Макс. ток – Под каждой ячейкой таблицы для напряжения вы найдете метку для максимальной нагрузки по току. Эта конкретная формулировка иногда опускается, но в большинстве случаев вы найдете ее непосредственно под соответствующим напряжением. Его единицей измерения является Ампер, и если вы перегрузите его, это может привести к отключению.
  • Максимальная мощность (объединенная) — находится непосредственно под выходными ячейками и рассчитывается в ваттах.Это формула, используемая в расчетах: Мощность (Вт) = Напряжение (В) X Ток (I)
  • Полная мощность — Некоторые производители используют только общую объединенную мощность 12-вольтовой шины, так как она питает 80-90% компоненты, в то время как другие будут рассчитывать все рельсы.

Имейте в виду, что при переходе на новую модель следует обратить внимание на шину +12 В . Это то, что будут использовать CPU и GPU. Эти два компонента обладают наибольшей мощностью р.

Поиск в руководстве или в Интернете

Это самый простой и надежный способ определить, какой у вас блок питания, если у вас уже есть готовый ПК.

Нет необходимости открывать кейс и потенциально создавать проблемы, когда есть готовый текст, который поможет вам. Если у вас больше нет руководства к вашему ПК, надеюсь, вы хотя бы знаете, какая это модель.

Это позволит вам просто найти его в Интернете и найти спецификации на веб-сайте производителя.

Объяснение разъемов питания графического процессора

Как проверить блок питания на вашем ПК

  • Проверить питание ПК можно, сняв боковую панель корпуса.
  • Если вы купили готовый ПК, вы также можете проверить блок питания в руководстве по эксплуатации компьютера или обратившись к производителю.
  • Знание источника питания вашего ПК может помочь вам обновить другие компоненты компьютера, например видеокарту.
  • Посетите библиотеку технических справочников Insider, чтобы узнать больше.

Независимо от того, работаете вы или играете, каждый хочет, чтобы его ПК был оптимизирован, и блок питания вашего ПК играет ключевую роль в его работе. Если у вас недостаточно мощности для запуска всех частей вашего компьютера, вы можете столкнуться с некоторыми катастрофическими системными сбоями и сбоями.

Поэтому, если вы хотите модернизировать свой компьютер — например, установить передовую графическую карту, которая требует большей мощности, но может увеличить количество кадров в секунду, — вам нужно убедиться, что блок питания вашего компьютера соответствует поставленной задаче.

К сожалению, проверка блока питания не так проста, как другие задачи. Вы не можете проверить это с помощью приложения — вместо этого вам нужно будет открыть корпус вашего ПК и посмотреть непосредственно на блок питания.

Подсказка: Если вы купили готовый ПК, вы можете найти свой блок питания в руководстве, прилагаемом к компьютеру, или связавшись напрямую с производителем.

Если у вас есть ноутбук, просто посмотрите, какой у него аккумулятор.

Как проверить блок питания на вашем ПК

Прежде чем начать, вам понадобится крестовая отвертка.Размер среднего диапазона № 2, вероятно, сработает. Вы также должны найти плоскую, сухую, чистую от пыли поверхность для работы.

  1. Полностью выключите компьютер. Вы можете нажать «Пуск», «Питание», а затем «Выключить». Как только он выключен, отключите его.
  2. Осторожно снимите боковую панель компьютера, которая является частью корпуса. Некоторые чехлы можно отстегнуть, в то время как в других потребуется взять отвертку и выкрутить от двух до восьми винтов, в зависимости от модели и размера.

    Количество винтов, которые вам нужно выкрутить, зависит от модели и размера вашего ПК.Эмма Уитман/Инсайдер
  3. Найдите блок питания. Он будет рядом с портом для шнура питания компьютера, который вы ранее отключили.

    Порт питания ПК будет находиться рядом с блоком питания.Эмма Уитман/Инсайдер

После того, как вы нашли блок питания, вы можете осмотреть его, чтобы получить любую необходимую информацию, такую ​​как максимальная выходная мощность, измеренная в ваттах, и рейтинг эффективности.

«Золото» — это отличная оценка эффективности вашего блока питания.Эмма Уитман/Инсайдер

Если вы не можете найти точную информацию, которую хотите, по крайней мере, попробуйте найти название модели блока питания, которое затем можно найти в Google.

Как выбрать идеальный блок питания для игрового ПК

Блок питания — это бьющееся сердце вашего игрового ПК, часть, которая обеспечивает циркуляцию жизненно важной энергии вокруг вашего дорогого процессора, материнской платы и видеокарты.Блок питания может диктовать пределы ваших амбиций, когда речь идет о потенциальных обновлениях ПК, поэтому всегда стоит смотреть в будущее, когда дело доходит до выбора следующего блока питания.

Сначала вы должны определить, сколько ватт потребляет ваша система или будущая система, и, кроме того, вы должны оставить достаточный запас для будущих обновлений. Кроме того, вы должны иметь в виду, что оптимальная эффективность обычно составляет около 40-50% от максимальной номинальной мощности блока питания. Это и самый близкий данный блок питания к его максимальной выходной нагрузке, самый низкий КПД.

Итак, если вашей системе требуется 500 Вт при полной нагрузке, не стоит брать блок питания на 550 Вт, а хотя бы на 650 Вт. Тем не менее, большинство из нас не будет сильно нагружать наши системы круглосуточно, если у вас каким-то образом нет времени постоянно играть в игры. Игры могут серьезно нагрузить ваш блок питания, поскольку они, как правило, полностью загружают вашу видеокарту, которая, вероятно, является самой требовательной частью вашей установки.

Чтобы получить представление о том, как будет выглядеть ваша система или обновление вашей мечты с точки зрения энергопотребления, вы можете легко ввести все данные в удобный калькулятор блока питания.Нам нравится использовать калькулятор источника питания OuterVision, но есть и другие доступные.

Самый точный способ определить потребности вашей системы в мощности — это использовать устройство kill-a-ватт и снять некоторые показания при полной нагрузке, это полезно, если вы хотите заменить существующий блок питания. Обратите внимание, что эта процедура даст вам только ориентировочные показания, поскольку она не учитывает эффективность вашего блока питания.

Самыми энергоемкими частями современных систем являются графические процессоры, за которыми следуют процессоры.К сожалению, производители не предоставляют четкой информации о фактическом энергопотреблении графического процессора, и, что еще хуже, вы также должны учитывать возможные скачки мощности, которые могут перезагрузить систему, если блок питания недостаточно силен, чтобы справиться с ними.

Кроме того, официальные значения TDP Intel и AMD для их процессоров даже близко не соответствуют фактическим цифрам энергопотребления, поскольку они относятся к нормальным, а не форсированным тактовым частотам. При повышенных частотах процессоры потребляют гораздо больше Ватт, чем официальный TDP от блока питания, и, конечно, дела обстоят еще хуже, если вы решите разогнаться.

Даже при настройках по умолчанию некоторые высокопроизводительные ЦП могут потреблять 300 Вт и более. Да, мы смотрим на вас, мистер Core i9 11900K. Если вы объедините это с энергопотреблением высокопроизводительного графического процессора, вы быстро поймете, что вам нужен блок питания мощностью 850 Вт или даже более мощный для высокопроизводительной игровой системы.

(Изображение предоставлено Future)

Размеры блока питания играют важную роль при сборке вашей следующей системы. Например, вы не можете использовать стандартный блок питания ATX12V в корпусе mini-ITX, для которого требуется блок питания SFX.К счастью, распространенные форм-факторы настольных блоков питания ограничены следующими

  • ATX12V (PS/2) [примерные размеры: 150 мм (Ш) x 86 мм (В) x 140 мм (Г)]
  • SFX12V 80-мм вентилятор [примерные размеры: 100 мм (Ш) x 63,5 мм (В) x 125 мм (Г)]
  • SFX12V 80-мм вентилятор уменьшенной глубины [справочные размеры: 125 мм (Ш) x 63,5 мм (В) x 100 мм (Г)]
  • SFX-L [каталожный номер размеры: 125 мм (Ш) x 63,5 мм (В) x 130 мм (Г)]

SFX-L не является официальным форматом спецификации ATX, поскольку он был представлен Silverstone в 2014 году, а впоследствии его приняли несколько других брендов.Он имеет большую глубину, чем SFX, чтобы обеспечить более прочную платформу.

Вы, наверное, слышали о рейтингах титана, платины, золота и других металлов в блоках питания. Они указывают на эффективность блока питания, другими словами, сколько энергии блок питания потребляет из розетки для питания вашей системы. Чем эффективнее блок питания, тем лучше для окружающей среды, так как он сводит к минимуму углеродный след. Кроме того, вы также экономите деньги на электричестве в долгосрочной перспективе.

В настоящее время два агентства по сертификации эффективности используют почти одинаковые рейтинги, которые вы найдете ниже:

  • Diamond (Cybenetics)
  • Titanium
  • Platinum
  • Gold
  • Silver
  • Bronze
  • белый (80 плюс) (Изображение предоставлено Corsair) модульный или нет? Обычно блоки питания более высокого класса, которые стоят дороже, поставляются с полностью модульными кабелями.Обычно вы найдете только фиксированные кабели в бюджетных категориях, а где-то посередине вы обнаружите полумодульные блоки питания. Многие из них также относятся к бюджетным или средним категориям.

    Если вы можете работать с фиксированными кабелями и вам нужен блок питания для основной системы, вам не нужно платить больше за полностью модульный блок. Но если вы стремитесь использовать минимум кабелей без огромного количества проводов, проложенных вокруг вашей системы, то вам подойдет полная или полумодульная установка.

    Все больше и больше людей начинают осознавать, какое влияние оказывает блок питания на общий уровень шума системы. Как бы странно это ни звучало, ваш блок питания может играть значительную роль в шуме вашего ПК под нагрузкой.

    Чем выше КПД, тем ниже тепловая нагрузка, поэтому вентилятор блока питания не должен вращаться на высоких оборотах. Это означает, что лучший выбор для бесшумного блока питания — это купить блок питания с максимально возможным рейтингом эффективности. Тем не менее, это не означает, что вы выберете бесшумный блок питания, поэтому полезно прочитать несколько обзоров, прежде чем продолжить покупку.

    Мы указали собственные проверенные рейтинги шума в нашем лучшем руководстве по источникам питания, чтобы дать вам представление о том, как звучат лучшие блоки питания. Cybenetics предлагает сертификаты шума блока питания, поэтому, просмотрев соответствующую базу данных, вы найдете блок питания, отвечающий вашим акустическим требованиям.

    Рейтинги шума Cybenetics приведены ниже:

    • A++ (<15 дБА)
    • A+ (от 15 до 20 дБА)
    • A (от 20 до 25 дБА)
    • (от 25 до 30 дБА) 90 (от 30 до 35 дБА)
    • Стандарт + (от 35 до 40 дБА)
    • Стандарт (от 40 до 45 дБА)

    чтобы по-настоящему разобраться в том, как работает блок питания, у нас есть несколько слов для вас.Это глубокий электрический материал, но мощность, эффективность, кабели и уровень шума — это самые важные вещи, о которых следует подумать, когда вы на самом деле хотите купить себе новый блок питания.

    Два простых способа узнать, какой у вас блок питания

    Большинство пользователей ПК хотят знать свой GPU, CPU или материнскую плату. Тем не менее, многие люди также хотят знать, какой у них блок питания.

    Необходимость знать это обычно при установке новой видеокарты или обновлении системы.Поэтому пользователь должен знать способы идентификации своего блока питания.

    Ну, есть 2 возможных способа узнать. В отличие от программного обеспечения для обнаружения процессора, графического процессора или материнской платы, к сожалению, нет никакого программного обеспечения, которое вы могли бы использовать, чтобы узнать, какой у вас блок питания.

    Так откуда ты это знаешь?

    Прежде чем продолжить, возможны два сценария:

    1. У вас есть собранный компьютер, собранный путем установки компонентов разных производителей

    2.У вас есть готовый компьютер только одного производителя

    Как правило, в первом сценарии легко определить блок питания, но также не невозможно найти свою модель блока питания, если у вас есть готовый компьютер. В любом случае есть несколько способов узнать о своем блоке питания.


    Первый метод

    В обоих случаях один из способов проверки источника питания является универсальным и заключается в ручном открытии боковой панели корпуса. Легко узнать о блоке питания вашего ПК, если у вас есть собранный компьютер, но, тем не менее, есть некоторые блоки питания, в которых их мощность не указана крупным шрифтом, как мы видим на многих блоках питания премиум-качества в настоящее время, что делает труднее угадать, насколько он велик.

    Однако технические характеристики всегда будут указаны по крайней мере с одной стороны, которая может быть или не быть видна вам в зависимости от направления установки вашего блока питания. Производители блоков питания, такие как Cooler Master, Seasonic, Corsair, Thermaltake, Gigabyte, EVGA и т. д., размещают на своих блоках питания большую этикетку, на которой указаны значения напряжения, тока и мощности. Если у вас есть блок питания одного из этих производителей, то вы можете не только узнать мощность, но и, возможно, узнать, насколько надежен ваш блок питания.


    Второй метод

    Однако второй способ проще, особенно в случае компьютера, изготовленного только одним производителем. Вы можете зайти на официальный сайт этого производителя и найти модель своего ПК, откуда вы можете узнать о характеристиках вашего блока питания. Иногда вы не сможете понять это даже на веб-сайте, потому что некоторые крупные бренды, такие как Dell, используют нестандартные блоки питания, о которых они не указывают на своем веб-сайте.

    Самое важное, что нужно знать о вашем блоке питания, — это его мощность.Если вы хотите знать, можете ли вы запустить конкретную видеокарту, вам следует знать, сколько у вас есть места для возможности обновления.

    Если вы являетесь владельцем готового игрового ПК премиум-класса, то, скорее всего, вы узнаете хотя бы мощность своего блока питания на сайте производителя. Например, в этом случае в ПК HP Pavilion Gaming TG01-2005in, указанном на официальном сайте, наряду с рейтингом энергоэффективности упоминается мощность блока питания.


    Хотите знать, какое программное обеспечение следует установить на новый компьютер? Проверьте эти 15 основных программ прямо сейчас!


    Нестандартные и стандартные блоки питания

    Блоки питания

    можно разделить на две категории: Custom и Standard .Под стандартными блоками питания понимаются блоки питания, специально изготовленные производителями для использования в игровых ПК, такие как блоки питания производства Cooler Master, Corsair, EVGA, Antec и Thermaltake. Эти блоки питания тяжелые и используют качественные кабели с рукавами.

    Большинство этих блоков питания окрашены в черный цвет и имеют несколько кабелей, включая кабели PCI-E, которые используются для видеокарт. Но блоки питания Custom, с другой стороны, легче, а их корпуса, как правило, сделаны из блестящего алюминия, как в готовых ПК Dell или HP.

    В отличие от фирменных блоков питания, их вентиляторы находятся на задней стороне, а по идее должны быть сверху или снизу. Это связано с тем, что они используют более дешевые материалы и не требуют хорошего охлаждения, как фирменные блоки питания.

    Такие производители, как Zebronics и Intex, также производят блоки питания такого типа, которые стоят от 5 до 10 долларов. Эти блоки питания имеют меньше кабелей и в основном не имеют гильз. Кабели питания PCI-E видеокарты трудно найти в них.

    Итак, если вы когда-нибудь захотите узнать, можете ли вы обновить свой компьютер или нет, вы можете проверить эти вещи в своем блоке питания, который позволит вам узнать основные вещи.Как я уже говорил, к сожалению, нет другого способа узнать, какой у вас блок питания, не открывая корпус, но знание того, как они выглядят, определенно поможет вам в принятии важных решений для вашего ПК.

    Связанный: — Как узнать, какая у вас материнская плата?

    Получите наш рекомендуемый игровой блок питания

    EVGA SuperNOVA 650 G+


    Эффективность 80 Plus Gold

    Отклонение регулирования напряжения менее 1 % Очень низкий шум пульсаций (менее 30 мВ) Полностью модульная конструкция с 10-летней гарантией

     

    Другие полезные руководства:-

    1. Руководство по подключению кабелей материнской платы
    2. Как узнать какая у вас видеокарта

    6 вещей, которые нужно знать при покупке блока питания (БП)

    Блок питания (БП) может быть не таким захватывающим или гламурным, как новая графическая карта, но это не значит, что на нем можно экономить.Ваш блок питания — это бьющееся сердце компонентов вашего ПК, и если вы купите дешевый блок питания, он может вывести из строя весь ваш компьютер!

    Давайте узнаем, что вам нужно знать о блоках питания при сборке собственного ПК.

    1. Непрерывная мощность лучше, чем пиковая мощность

    Мощность — это базовое число, которое поможет вам определить, какой блок питания вам нужен и как он оценивается. Проще говоря, это общее количество ватт, которое блок питания может обеспечить различным частям вашего ПК.Вы найдете модели мощностью 300 Вт, а некоторые — вплоть до 1200 Вт.

    Изображение предоставлено: Trodler / Shutterstock.com

    Хотя модели будут с гордостью рекламировать этот номер на коробке, он может не рассказать вам всю историю. Допустим, вы видите блок питания мощностью 500 Вт. Если в нем указана непрерывная мощность, это здорово. Если это пиковая мощность, вы можете избежать этого. Обычно вы можете узнать, какая именно модель, на странице технических характеристик модели.

    Непрерывная мощность и Пиковая мощность — это оценки, основанные на тестах, проведенных производителем. Непрерывная мощность указывает на то, что он может выдавать эти 500 Вт непрерывно без колебаний. Пиковая мощность указывает, что 500 Вт — это максимальная мощность, которую он может обеспечить, но, вероятно, только в течение минуты, прежде чем упасть.

    Говоря простым языком покупателя, ищите непрерывную номинальную мощность, игнорируйте пиковые номинальные мощности и игнорируйте продукт, который не рекламирует свою непрерывную номинальную мощность.Если вы не можете сказать, какой именно, не рискуйте. Просто двигаться дальше.

    2. Сколько ватт вам нужно?

    Не все компьютеры устроены одинаково, поэтому мощность, необходимая каждому из них, разная. Высокопроизводительному игровому ПК потребуется больше ватт для работы, чем простому ПК для домашнего офиса. Это связано с тем, что мощные процессоры и графические карты требуют большей мощности для работы.

    Если вы приобретете блок питания с недостаточной мощностью, ваш компьютер будет терять питание во время интенсивных процессов.Но как рассчитать сумму, которая вам действительно нужна? К счастью, в Интернете полно ресурсов, которые вы можете использовать для расчета энергопотребления вашего компьютера.

    Попробуйте калькулятор питания Extreme от Outervision или калькулятор питания от Cooler Master. Если вы знаете, что делаете, версия Cooler Master лучше, но если вы не уверены, какие детали запрашивает калькулятор, придерживайтесь базового калькулятора Outervision.

    Оба калькулятора дадут вам представление о том, какая мощность вам нужна, и в зависимости от того, как вы ввели свою информацию, не стесняйтесь округлить ее до ближайшего блока питания.

    На самом деле, вы даже можете подняться на две ступени выше. Например, если калькулятор говорит, что вам нужно 370 Вт, то блок питания на 400 Вт должен подойти, но 500 Вт тоже не помешает. Это удваивается, если вы планируете добавить больше деталей в будущем.

    3. Экономьте энергию с помощью блоков питания True Rated

    Поскольку наше общество нуждается в постоянной энергии, покупка экологически чистой электроники помогает планете. Даже если вы не заботитесь о природе или используете поставщика 100-процентной экологически чистой энергии, блок питания с настоящим рейтингом все равно сэкономит вам большие деньги на счетах за электроэнергию.

    Итак, что такое блок питания с истинным номиналом? Когда он работает, блок питания берет мощность переменного тока из розетки и преобразует ее в мощность постоянного тока, которая затем передается на все части.

    Обычно блок питания тратит некоторое количество энергии в процессе преобразования. Таким образом, эффективность блока питания зависит от того, сколько он может преобразовать и как мало он тратит впустую.

    Таким образом, КПД 80% означает, что он может преобразовывать 80% мощности переменного тока в постоянный.Точно так же 50-процентная эффективность означает, что он преобразует 50 процентов мощности переменного тока в постоянный. Проще говоря: чем выше процент эффективности, тем лучше и потребуется меньше энергии от розетки.

    Наиболее эффективными блоками питания являются блоки питания с рейтингом 80 Plus, присвоенным независимым органом по сертификации. Даже в блоках питания 80 Plus есть разные уровни: 80 Plus, 80 Plus Bronze, 80 Plus Silver, 80 Plus Gold, 80 Plus Platinum, 80 Plus Titanium.(Они упорядочены от худшего к лучшему.)

    Дополнительным преимуществом этих эффективных блоков питания является то, что они выделяют гораздо меньше тепла, чем другие блоки питания, и обычно работают с более низким уровнем громкости. Производители будут с гордостью рекламировать блоки питания с сертификацией 80 Plus, но если у вас возникли проблемы с поиском информации, ознакомьтесь с полным списком блоков питания 80 Plus.

    4. Выяснение второстепенных деталей

    Все, что было до сих пор, касалось лишь базовых основ блоков питания.Как и в случае с любой технологией, вы можете узнать больше о том, что вы хотите или в чем нуждаетесь, но если вы новичок, вышеупомянутые три аспекта будут иметь для вас наибольшее значение при принятии решения о покупке.

    При этом есть еще несколько терминов, с которыми вы можете столкнуться при покупке блока питания. Некоторые из них не имеют большого значения для людей, плохо знакомых с PSU, а некоторые из них очень важны; как таковая, неплохо бы узнать, что игнорировать, а на что обращать внимание.

    • AT против ATX против mATX : Иногда вы увидите блоки питания, предназначенные для компьютеров «AT», «ATX» или «mATX». Эти термины используются для описания материнских плат разных размеров и конструкций и, следовательно, имеют разные требования к питанию. Дважды проверьте, какая у вас материнская плата (она должна быть указана в спецификациях в разделе «форм-фактор»), и купите соответствующий ей блок питания.
    • Rails : вы можете получить многоканальные или одноканальные блоки питания.У обоих есть свои плюсы и минусы, и вам не нужно беспокоиться о технических моментах прямо сейчас. Если вы живете в районе, где колебания или перебои в подаче электроэнергии являются нормальным явлением, вам следует рассмотреть вариант с несколькими линиями. Для любого другого сценария или если вы используете хороший источник бесперебойного питания (ИБП), приобретите блок питания с одной шиной.
    • Стабильность напряжения : Если вы отметили все вышеперечисленные поля, то стабильность напряжения не будет проблемой. Это в основном относится к способности блока питания поддерживать питание на уровне 12 В без падения.
    • Кабели или разъемы : Если вы не покупаете специализированный блок питания высокого класса, вам должно хватить кабелей, которые входят в комплект поставки. Высококачественные блоки питания предлагают нечто, называемое «модульным кабелем», которое позволяет вам устанавливать специальные кабели и штыревые разъемы для подключения к ним ваших компонентов. Не важно для обычного пользователя.
    • Ремонтные блоки и аксессуары : Вам не нужен тестер мощности или руководства по ремонту блока питания.Если вы диагностируете проблему с блоком питания, ваш единственный вариант — заменить его и надеяться, что он все еще находится на гарантии.

    5. Почему не стоит экономить

    Так почему же мы постоянно твердим о покупке качественного блока питания вместо того, чтобы просто использовать то, что идет в комплекте с корпусом вашего ПК, или модели относительно неизвестного бренда?

    Как мы уже говорили выше, ваш блок питания влияет на каждую часть вашей компьютерной системы и может привести к поджариванию цепей в случае колебания мощности.

    Но помимо этого качественные блоки питания имеют и другие преимущества, которые делают их достойными внимания. Вот некоторые из них:

    1. Долго служат . Нет, правда. Скорее всего, если вы прямо сейчас купите качественный блок питания мощностью примерно на 100–200 Вт выше той, которая вам нужна в настоящее время, вы сможете использовать его и для следующего обновления ПК. По крайней мере, он прослужит вам несколько лет.
    2. Они имеют ценность при перепродаже! Переход на новый блок питания? Вы найдете покупателей на свой старый на Craigslist и eBay.Черт возьми, вы даже можете использовать его в качестве настольного источника питания для проектов DIY.
    3. Стандартные размеры позволяют проявить творческий подход и со старыми блоками питания. Поскольку все блоки питания, как правило, имеют одинаковую форму, просто найдите простой корпус, и вы сможете сделать себе крутой и тихий медиацентр.

    6. Где найти надежные обзоры

    Производители постоянно выпускают новые модели блоков питания, и это относительно нишевая компьютерная часть для технических обозревателей.Вот несколько известных и уважаемых брендов для начала: Corsair, Cooler Master, Antec, Be Quiet, Seasonic и XFX.

    После того, как вы выполните вышеупомянутые шаги, у вас должно быть четкое представление о том, сколько ватт вам нужно, какие модели надежных брендов сертифицированы 80 Plus для этой мощности и что соответствует вашему бюджету. Теперь пришло время провести небольшое исследование.

    Форумы JonnyGuru забиты обзорами и отзывами о блоках питания, поэтому стоит поискать марку и модель вашего блока питания.Вы также можете зайти на страницу /r/buildapc на Reddit, чтобы узнать, к каким блокам питания отдают предпочтение люди, не забывая и о нашем собственном обзоре лучших блоков питания для сборщиков ПК.

    Выбор первого блока питания

    Мир блоков питания может быть очень запутанным, но вы всегда сможете выбрать лучший для своего ПК, если освоите основы. Теперь вы знаете основы и на что обращать внимание.

    После того, как вы купили свой блок питания, обязательно позаботьтесь о нем, так как это одна из частей ПК, которая имеет свойство выходить из строя.К счастью, есть способы продлить срок его службы, чтобы получить максимальную отдачу от покупки.

    Как долго служат детали и компоненты ПК? (И как продлить срок их службы)

    Читать Далее

    Об авторе

    Саймон Бэтт (опубликовано 768 статей)

    Выпускник бакалавра компьютерных наук, страстно увлеченный вопросами безопасности.Поработав в студии инди-игр, он увлекся писательством и решил использовать свои навыки, чтобы писать обо всем, что связано с технологиями.

    Более От Саймона Бэтта
    Подпишитесь на нашу рассылку

    Подпишитесь на нашу рассылку технических советов, обзоров, бесплатных электронных книг и эксклюзивных предложений!

    Нажмите здесь, чтобы подписаться

    Дорожный адаптер для Великобритании

    Дорожные адаптеры для Великобритании

    Вам нужно будет подумать, что упаковать, чтобы вы могли безопасно пользоваться своими личными электроприборами за границей.Обычно это включает в себя использование дорожного адаптера, который представляет собой устройство, которое просто позволяет вам подключать любой электрический прибор Великобритании к иностранной электрической розетке. Важно отметить, что он не преобразует напряжение или частоту.

    Для Соединенного Королевства соответствующий тип вилки — G, это вилка с тремя прямоугольными контактами, расположенными по треугольной схеме. Соединенное Королевство работает от сети с напряжением 230 В и частотой 50 Гц.

    • Тип G

    Преобразователи и трансформаторы напряжения

    Электроснабжение по всему миру может варьироваться от 100 В до 240 В.Использование электроприбора, рассчитанного на напряжение, отличное от напряжения питания, может быть чрезвычайно опасным.

    Поскольку напряжение может различаться в зависимости от страны, вам может потребоваться использовать преобразователь напряжения или трансформатор в Соединенном Королевстве. Если частота отличается, нормальная работа электроприбора также может быть нарушена. Например, часы с частотой 50 Гц могут работать быстрее при подаче электроэнергии с частотой 60 Гц. Большинство преобразователей напряжения и трансформаторов поставляются со штепсельными адаптерами, поэтому вам может не понадобиться покупать отдельный дорожный адаптер.

    Все преобразователи и трансформаторы имеют максимальную номинальную мощность (AMPS или WATTS), поэтому убедитесь, что любой прибор, который вы собираетесь использовать, не превышает этот номинал.

    Устройство с двойным номинальным напряжением

    Вы можете определить, нужно ли вам использовать преобразователь или трансформатор, взглянув на паспортную табличку прибора.

    Устройство с двойным номинальным напряжением будет отображать, например, «ВХОД: 110–240 В» на корпусе устройства или на его блоке питания. Это означает, что вам не понадобится преобразователь или трансформатор, а только адаптер для путешествий, потому что в Соединенном Королевстве используется напряжение питания 230 В, что находится в диапазоне 110–240 В, в котором работает устройство с двойным напряжением.

    Приборы с одним номинальным напряжением

    В Великобритании напряжение питания составляет 230 В. Если прибор рассчитан на одно номинальное напряжение, он должен работать при том же напряжении, что и напряжение питания в стране, то есть 230 В. Если это не так, его следует использовать вместе с трансформатором или преобразователем напряжения, чтобы обеспечить безопасную и правильную работу прибора.

    Преобразователи и трансформаторы выполняют аналогичную функцию, но их применение различается. Преобразователи обычно используются с приборами, которые работают в течение короткого времени (1-2 часа), в то время как большинство трансформаторов можно использовать вместе с приборами, которые работают непрерывно.

    Важно понимать, что некоторые дорожные адаптеры не подходят для каких-либо приборов, требующих заземления. Эти типы дорожных адаптеров следует использовать только с оборудованием с двойной изоляцией, которое будет четко обозначено символом, показанным ниже.

    Перед тем, как отправиться в путешествие, мы рекомендуем вам проверить свою бытовую технику, чтобы понять требования, действующие в Соединенном Королевстве.

    Использует ли блок питания ПК постоянную мощность?

    Блок питания является важным компонентом компьютера, но о нем редко говорят.Без него компьютер неработоспособен. Для большинства из нас, как только мы включаем компьютер, мы сразу же смотрим на производительность компьютера, не обращая внимания на скромный блок питания, который в первую очередь вдыхает жизнь в компьютер. Давайте подробно рассмотрим, что такое блок питания, его важность для компьютерной экосистемы и то, как он обеспечивает мощность компьютера.

    Что такое блок питания?

    Блок питания (PSU) — это жизненно важный компонент компьютера, который получает питание от основного источника (питание от настенной розетки) и передает это питание на материнскую плату и все ее компоненты.Вопреки распространенному мнению, блок питания не обеспечивает питание компьютера; вместо этого он преобразует мощность переменного тока (переменного тока) от источника в мощность постоянного тока (постоянного тока), которая требуется компьютеру.

    Блоки питания бывают двух типов: линейные и импульсные. Линейные блоки питания имеют встроенный трансформатор, который понижает напряжение от основного до полезного для отдельных частей компьютера. Трансформатор делает линейный блок питания громоздким, тяжелым и дорогим. Современные компьютеры перешли на импульсное питание, используя для регулирования напряжения вместо трансформатора переключатели.Они также более практичны и экономичны в использовании, потому что они меньше, легче и дешевле, чем линейные блоки питания.

    ватта в ватте?

    Единицей мощности является ватт. Обычно мы видим, сколько ватт может обеспечить блок питания, на его этикетке. Большинство ПК уже имеют встроенный блок питания, поэтому при покупке нового компьютера это не так важно. Однако, если вы обновили или добавили новые компоненты к своим компьютерам, например, новый жесткий диск или новую систему охлаждения, пришло время проверить мощность, которую может обеспечить блок питания вашего компьютера.Если общая мощность, необходимая компьютеру, больше, чем может обеспечить блок питания, он просто не будет работать. Теперь возникает вопрос: «Сколько ватт нужно моему компьютеру?» Это будет зависеть от общего количества энергии, необходимой компьютеру, в зависимости от мощности, необходимой каждому компоненту. Простые компьютеры на самом деле не требуют такой большой мощности, но сложные системы, такие как те, которые используются для игр, как правило, требуют блоков питания более высокой мощности, поскольку они имеют компоненты более высокого уровня и имеют намного больше компонентов, чем в среднем, повседневные. компьютер.

    Еще один загадочный вопрос для большинства потребителей: «Выдает ли блок питания компьютеру постоянную мощность?» Ответ однозначный: нет. Мощность, которую вы видите на корпусе блока питания или на этикетках, указывает только на максимальную мощность, которую он может обеспечить системе теоретически. Например, теоретически блок питания мощностью 500 Вт может обеспечить компьютеру максимум 500 Вт. На самом деле блок питания потребляет небольшую часть мощности для себя и распределяет мощность между каждым из компонентов ПК в соответствии с его потребностями. Количество энергии, необходимой компонентам, варьируется от 3.от 3В до 12В. Если общая мощность компонентов должна увеличиться до 250 Вт, она будет использовать только 250 Вт из 500 Вт, что даст вам накладные расходы на дополнительные компоненты или будущие обновления.

    Кроме того, количество энергии, подаваемой блоком питания, различается в периоды пиковой нагрузки и во время простоя. Когда компоненты работают на пределе своих возможностей, например, когда видеоредактор максимально использует GPU для задач с интенсивным использованием графики, потребуется больше энергии, чем когда компьютер используется для простых задач, таких как просмотр веб-страниц.Количество энергии, потребляемой блоком питания, будет зависеть от двух вещей; количество энергии, которое требуется каждому компоненту, и задачи, которые выполняет каждый компонент.

    Эффективность источника питания

    Еще одним источником путаницы в отношении блоков питания является их рейтинг эффективности. Когда блок питания преобразует мощность переменного тока в постоянный, часть мощности теряется и преобразуется в тепло. Чем больше тепла выделяет блок питания, тем менее он эффективен. Неэффективные блоки питания, скорее всего, повредят компоненты компьютера или сократят срок их службы в долгосрочной перспективе.Они также потребляют больше энергии от первичного источника, что приводит к более высоким счетам за электроэнергию для потребителей.

    Возможно, вы видели наклейки 80 PLUS на блоках питания или в других его вариантах, таких как 80 PLUS Bronze, Silver, Gold, Platinum и Titanium. 80 PLUS — рейтинг эффективности блока питания; для сертификации источник питания должен достигать КПД 80%. Это добровольный стандарт, что означает, что компаниям не нужно соблюдать стандарт, но сертификаты 80 PLUS стали популярными, поскольку более эффективное электроснабжение может уменьшить углеродный след потребителей и помочь им сэкономить несколько долларов на счетах за электроэнергию.Ниже приведен рейтинг эффективности, которого должен достичь блок питания, чтобы получить желаемый рейтинг.

    Уровни сертификации КПД при нагрузке 10 % КПД при нагрузке 20 % Эффективность при нагрузке 50 % Эффективность при 100% нагрузке
    80 ПЛЮС 80% 80% 80%
    Бронза 80 ПЛЮС 82% 85% 82%
    Серебро 80 ​​ПЛЮС 85% 88% 85%
    Золото 80 ПЛЮС 87% 90% 87%
    Платина 80 ПЛЮС 90% 92% 89%
    Титан 80 PLUS 90% 92% 94% 90%

    Важно отметить, что эффективность 80% не означает, что блок питания будет обеспечивать компьютер только 80% своей мощности.Это означает, что он будет потреблять дополнительную энергию от первичного источника, чтобы только 20% энергии терялось или выделялось в виде тепла во время преобразования. Таким образом, блок питания мощностью 500 Вт потребляет от сети 625 Вт мощности, что делает его КПД 80%.

    Сила блоков питания

    Как и в большинстве электроприборов, блоки питания играют жизненно важную роль в функционировании компьютера. При выборе блока питания необходимо учитывать две важные вещи: мощность и эффективность. Блоки питания не обеспечивают постоянное количество энергии для своих компонентов, поскольку это будет зависеть от задачи, которую выполняет каждый компонент компьютера.Всегда убедитесь, что вы выбираете блок питания с большей мощностью, чем общая мощность, необходимая вашему компьютеру, чтобы убедиться, что компоненты получают мощность, необходимую им для предотвращения неисправности. Это также обеспечит свободу действий для дополнительных компонентов и будущих обновлений. Помимо мощности, стоит также отметить рейтинг эффективности блока питания.

Добавить комментарий

Ваш адрес email не будет опубликован.