Цепь с параллельным соединением нескольких ветвей: Расчет цепей с параллельным соединением ветвей

Содержание

2.8. Цепь с параллельным соединением элементов

Проведем анализ работы электрической цепи с параллельным соединением элементов R, L, С. Рассмотрим следующую схему.

Положим, что заданы величины R1, R2, L, С, частота f и входное напряжение U. Требуется определить токи в ветвях и ток всей цепи.

В данной схеме две ветви. Согласно свойству параллельного соединения, напряжение на всех ветвях параллельной цепи одинаковое, если пренебречь сопротивлением подводящих проводов.

Задача разбивается на ряд этапов

1. Определение сопротивлений ветвей.

Реактивные сопротивления элементов L и С определяем по формулам

XL = ωL, XC = 1 / ωC, ω = 2πf.

Полное сопротивление ветвей равны

, ,

соответствующие им углы сдвига фаз

φ1 = arctg(XL / R1), φ2 = arctg(XС / R2).

2. Нахождение токов в ветвях.

Токи в ветвях находятся по закону Ома

I1 = U / Z1, ψi1 = ψu + φ1, I2 = U / Z2, ψi2 = ψu + φ2.

3. Нахождение тока всей цепи.

Ток всей цепи может быть найден несколькими методами: графическим, методом мощностей, методом проекций и методом проводимостей.

Чаще всего используют метод проекций и метод проводимостей. В методе проекций ток I1 и I2 раскладываются по две ортогональные составляющие активную и реактивную. Ось активной составляющей совпадает с вектором напряжения U. Ось реактивной составляющей перпендикулярна вектору U (рис. 2.20).

Активные составляющие токов равны

I = I1 cos φ1, I = I2 cos φ2,

(2.43)

Iа = I + I.

Реактивные составляющие токов равны

I = I1 sin φ1, I = I2 sin φ2,

(2.44)

Iр = I — I.

В последнем уравнении взят знак минус, поскольку составляющие I (индуктивная) и I (емкостная) направлены в разные стороны от оси U.

Полный ток находится из уравнений

(2.45)

,

(2.46)

φ = arctg(Iр / Iа).

В методе проводимостей также используется разложение на активные и реактивные составляющие. Используя уравнение (2.30) активные составляющие токов записываются в виде

(2.47)

,

где через g1 = R1 / Z12 обозначена величина названная активной проводимостью первой ветви. Аналогичным образом получим

, (2.48)

где g2 = R2 / Z22; а величину g = g1 + g2 называют активной проводимостью всей цепи.

Используя уравнение (2.31) запишем реактивные составляющие токов

,

,

где b1 и b2 – реактивные проводимости ветвей b1 = XL / Z12, b2 = XC / Z22. Для реактивной проводимости всей цепи имеем

(2.50)

b = b1 — b2.

В этом уравнении взят знак минус, из тех же соображений, как и в уравнении (2.44). Величина тока I и угол φ находятся из соотношений (2.45) и (2.46).

4. Анализ расчетных данных.

В зависимости от соотношения реактивных проводимостей b1 и b2 возможны три варианта: b1 > b2; b1 < b2; b1 = b2.

Для варианта b1 > b2 имеем I > I, φ > 0. Цепь имеет активно-индуктивный характер. Векторная диаграмма изображена на рис. 2.21.

При b1 < b2 токи I < I, φ < 0. Цепь имеет активно-емкостный характер. Векторная диаграмма изображена на рис. 2.22.

Если b1 = b2, то I = I, φ = 0. Цепь имеет чисто активное сопротивление. Ток потребляемый цепью от источника наименьший. Этот режим называется резонанс токов. Векторная диаграмма изображена на рис. 2.23.

Цепи Параллельные соединения — Энциклопедия по машиностроению XXL

На входе У34 применены ступенчатая регулировка тембра с помощью переключателя S5. Переключатель тембра имеет три положения левое крайнее — узкая полоса с завалом верхних 34 в три раза среднее — узкая полоса с завалом верхних 34 в два раза правое — широкая полоса. В радиоприемниках более ранних выпусков переключатель тембра имел два положения широкая и узкая полоса. Для улучшения частотных свойств в У34 применена частотно-зависимая отрицательная обратная связь, напряжение которой с выхода У34 через цепь параллельного соединения R69 и R45 и конденсатор С80 поступает на вход УЗЧ.  [c.38]
Падение напряжения при коммутации фазных токов определяется индуктивностью рассеяния трансформатора, цепей параллельно соединенных вентилей и токоподводов, входящих в цепи аз выпрямителя. Обмотки трансформаторов контактных машин выполняются дисковыми чередующимися. Благодаря этому первичные и вторичные обмотки каждой фазы хорошо связаны между собой, что обеспечивает весьма низкую индуктивность рассеяния трансформатора. Практически невозможно выполнить токоподводы и цепи вентилей фаз выпрямителя с высоким коэффициентом взаимоиндукции между фазами. Ввиду этого для снижения индуктивности цепи каждой фазы выпрямителя группа параллельно соединенных вентилей вьшолняется в виде отдельного блока специальной конструкции с прямым и обратным токоподводами, при этом нулевая точка схемы переносится на выход выпрямителя.  
[c.6]

На позиции Х2 размыкаются контакты Q2-3, Q2-4 и в цепь двигателей вводятся параллельно включенные пусковые резисторы R1-R5, R6-R] О и R11-R15. На позиции ХЗ замыкаются контакты Q2-5, Q2-6, Q2-7, Q2-8, Q2-9 и Q2-10 группового переключателя и образуются цепи параллельного соединения тяговых двигателей (рис. 209).  [c.255]

В разветвленных кинематических цепях звено входит в несколько кинематических пар и образует параллельные структурные цепи. В этих случаях перемещение входного звена, вызванное податливостью всей кинематической цепи, определяется в основном деформациями наиболее жестких соединений. Жесткость механизма при параллельном соединении упругих звеньев равна сумме жесткостей его звеньев Сз,- и кинематических пар Спс-  

[c.295]

При параллельном соединении проводников величина,обрат нал общему сопротивлению цепи, равна сумме величии, обратных сопротивлениям всех параллельно включенных проводников.  [c.149]

Параллельное соединение кинематических цепей позволяет синхронизировать работу нескольких рабочих звеньев, что имеет  [c.505]

Сравнение дуальных электрических цепей показывает, что последовательному соединению элементов цепи, построенной по первой системе электромеханических аналогий, соответствует параллельное соединение элементов цепи, построенной по второй системе электромеханических аналогий. Напряжения в первой цепи распределяются подобно токам второй, а ток первой цепи аналогичен падению напряжения между узлами второй цепи.  

[c.208]


Наконец, любое число последовательно и параллельно соединенных контактов с точки зрения состояния цепи может быть заменено одним контактом  [c.360]

Сложное соединение элементов или машин. В машинах применяют как последовательные, так и параллельные соединения элементов. КПД сложных цепей невозможно представить единой формулой, как при однородных соединениях. Для определения КПД сложных цепей необходимо выделить в них параллельные и последовательные цепи и к каждой из них применить выведенные выше формулы.  [c.98]

Признак разветвления энергетического потока, осуществляемого при параллельном соединении, более выгоден, так как потери от нагрузки элементов цепи частью энергии меньше потерь от нагрузки общим потоком энергии. Это обстоятельство сказывается на общем уменьшении потерь и энергии.  

[c.338]

С точки зрения состояния электрической цепи, любое число параллельных соединений может быть заменено одним, т. е.  [c.486]

Тогда общий к. п. д. всей цепи механизмов при параллельном соединении будет  [c.87]

Последовательному соединению упругих элементов по первой системе аналогий соответствует параллельное соединение конденсаторов, к которым приложены одинаковые напряжения, а токи и заряды складываются, по второй системе аналогий — последовательное соединение индуктивностей, при котором ток во всех элементах цепи одинаков, а напряжения и магнитные потоки складываются.  [c.437]

Метод построения и анализа структурных схем. При расчете схемной надежности данную систему представляют в виде структурной схемы, в которой элементы, отказ которых приводит к отказу всей системы, изображаются последовательно, а резервные элементы или цепи — параллельно. Следует иметь в виду, что конструктивное оформление элементов, их последовательное или параллельное соединение в конструкции еще не означает аналогичного изображения в структурной схеме.  

[c.188]

С этой точки зрения двойной слой реальной поверхности металла в электролите следует рассматривать как систему параллельно соединенных конденсаторов , каждый из которых соответствует отдельному микроучастку поверхности с определенным поверхностным зарядом. Поскольку в целом поверхность образца можно считать эквипотенциальной, различие в ее локальных зарядах связано с различием в емкости конденсаторов . Поэтому измеряемая макроскопическая дифференциальная емкость определяется как сумма параллельно соединенных локальных емкостей двойного слоя. Согласно теории электрических цепей  [c.178]

Резонанс токов имеет место в цепях с параллельным соединением индуктивности и ёмкости в случае равенства индуктивной и ёмкостной проводимостей, т. е. при  

[c.521]

Схема силовой цепи моторного вагона на два напряжения приведена на фиг. 27 и состоит из двух двухмоторных групп, которые при режиме 3300 в соединяются последовательно. а при режиме 1650 в параллельно. В обоих случаях при параллельном соединении двигателей внутри каждой группы напряжение на каждом двигателе равно 1650 в, т. е. двигатели работают при нормальном напряжении.  [c.434]

С двумя сериесными катушками в разных цепях двигателей, реле торможения РТ. При пуске используется два вращения вала РК на последовательном соединении в одном направлении — от позиции 1 до позиции 12А — и на параллельном, после перевода группового переключателя /7Я на позицию параллельного соединения, в обратном направлении — от позиции 12А до позиции 1.  [c.439]

Реле РТ служит для ограничения максимального тока генератора при параллельном соединении двух групп двигателей. Реле имеет сериесную катушку, включённую в цепь первой группы тяговых двигателей, и вибрационную катушку, включённую последовательно с подвижным контактом. При нормальных нагрузках генератора подвижной контакт под действием пружины замкнут с верхним неподвижным. При этом сопротивление С12 вклю-  [c.584]

Оказывается, далеко не для всякого соединения элементов контура существуют условия отступления от монотонности ReZ или Rey. Для ряда цепей отсутствуют условия проявления эффекта Зоммерфельда. Эти условия будут неодинаковыми для силового и кинематического возбуждения. Для последнего активное сопротивление Re У((о) растет монотонно, если цепь содержит последовательное (в электрическом аналоге) включение активного сопротивления, и, наоборот, для силового возбуждения монотонность ReF( o) сохраняется при наличии в цепи параллельного активного звена.  [c.18]


Рычажная кинематическая цепь имеет степень подвижности, равную единице. Если при этом в некоторой зубчатой кинематической цепи требуется осуществить заданный закон неравномерного движения ведомого зубчатого колеса, то в параллельном соединении таких зубчатой и рычажной кинематических цепей одно или несколько зубчатых колес должны быть жестко связаны со звеньями рычажной кинематической цепи так, чтобы в полученном зубчато-рычажном механизме степень подвижности была также равна единице. Характер закона движения определяется как типом обеих кинематических цепей, так и способом их параллельного соединения. Образовавшийся зубчато-рычажный механизм имеет только дополнительную зубчатую цепь, и отделение любого количества ведомых зубчатых колес этой цепи не 4  [c.4]

Следует также остановиться на вопросе создания схемы автоматического нагружения исследуемых гидропередач при параллельном соединении ТГ и Г2 и, следовательно, работе без потерь энергии в сопротивлении. Указанная схема возможна при применении электромашинного усилителя, автоматически регулирующего возбуждение генератора Г2 (рис. 11). Обмотка возбуждения генератора Г2 включается в цепь якоря ЭМУ, имеющего три обмотки управления. На задающую обмотку ОУ-1 подается напряжение от постороннего источника. Ток в обмотку управления ОУ-2 подается от шунта Ш, установленного в якорной цепи ТГ и Г2, причем в цепи обмотки управления устанавливается вентиль ВП и потенциометр П. Третья обмотка ОУ-3 подключена ко вторичной обмотке стабили-  [c.24]

МИ тиристорами в тиристорном блоке VS осуществляется с помощью блока фазового управления (БФУ), который, в свою очередь, связан с блоком согласования (БС). Режим работы БС зависит от значения силы сварочного тока, установленного с помощью блока задания (БЗ), и текущего значения сварочного тока, поступающего от сварочной дуги через коммутатор S и дроссели L. В случае рассогласования данных значений БС вносит коррективы в работу БФУ, стабилизируя силу тока около заданного значения. Данная схема, позволяющая использовать маломощные тиристоры в первичной цепи без их параллельного соединения, эффективна для сварки при силе тока более 1 кА.  [c.130]

На переходной позиции Х2 замыкаются контакты Q2-6, Q2-7, Q2-l, Р2-2, Q2-3, р2-8 группового переключателя Q2 и собираются цепи параллельного соединения тяговых двигателей с включенными в их обмотки резисторами К1…+К6, К7…+К12, К14… К19. Тем самым заканчивается переход с СП- на П — соединение тяговых двигателей (рис. 222). При перемещении главной рукоятки контроллера машиниста с 36-й позиции на 46-ю переключаются реостатные контакторы (см. схему секвенции, Приложение 2). На ходовой безреостатной позиции 46, как и на 20-й и 35-й, перемещением тормозной рукоятки контроллера машиниста осуществляют режим ослабления возбуждения тяговых двигателей четырьмя ступенями возбуждения.При обратном переводе главной рукоятки с 46-й на 35-ю позицию вал переключателя Q2 поворачивается с параллельного соединения двигателей на последовательно-параллельное. На переходной позиции Х2 размыкаются его контакты Q2-l, Q2-2, Q2-3, Q2-  [c.285]

При включенном элементе 41-42 и диоде VI21 цепь также соединяется с корпусом и включаются контакторы К41, К42. Включением контакторов К2, КЗ, К41, К42 подготовляется цепь параллельного соединения ветвей пусковых резисторов для перехода с С — на СП-соединение ТЭД. В цепях катушек реостатных контакторов включены разделительные диоды У158-У163, которые исключают возможность образования вредных контуров.  [c.303]

При параллельном соединении проводников 1, 2, 3 (рис. 151) их начала и концы имеют общие точки подключения к источнику тока. При этом напряжение и на всех проводниках одинаково, а сила тока I в не-разветвленной цепи равна сумме сил токов во всех параллельно включенных проводниках. Для трех параллельно включенных проводников сопротивлениями Ru Ri и Л,1 на основании закона Ома для участка цепи аапишем  [c.149]

При решении задачи используем формулы параллельного соединения напряжение на шунте и ампер- .1стре имеет одно и то же значение U, а сила тока I в неразветвленной цепи равна сумме сил токов 1 через амперметр и через шунт =  [c.207]

Такие цени были подробно разобраны Лауэ [108 , На примере цени, нзо-браженной на фиг. 9, проиллюстрируем метод анализа. Рассматриваемая цепь состоит из двух параллельно соединенных катушек с самоиндукциями  [c.620]

Пользуясь табл. 6, построение электрической модели-аналога механической системы можно осуществить без построения математической модели путем замещения всех двухполюсников механической цепи соответстующими им двухполюсниками электрической цепи по первой или второй системам электромеханических аналогий последовательным или параллельным соединениями.  [c.216]

Сварные стыковые соединения обеспечивают гораздо меньшее продольное сопротивление ходовых рельсов, чем обычно применявшиеся прежде стыки с рельсовыми накладками. При сварных стыках продольные межстыковые соединители не нужны. Однако закорачивание стрелок и крестовин обязательно во всех случаях. Кроме того, рельсы однопутной линии по крайней мере через каждые 125 м, а рельсы двухпутных и многопутных линий по крайней мере через каждые 250 м должны быть соединены между собой поперечными межрельсовымн и междупутными соединителями (перемычками). Исключение из этого правила допускается при изолированных рельсах и при использовании рельсов как элемента токовой цепи в системах сигнализации. Поперечные межрельсовые перемычки должны уменьшать неблагоприятные последствия в случае поломки рельсов. Перемычки между путями на двухпутных и многопутных линиях к тому же способствуют значительному уменьшению разности потенциалов в рельсовой сети также и при нормальной эксплуатации, поскольку обратный ток от какого-либо поезда может распределяться между несколькими параллельно соединенными рельсовыми нитками.  [c.316]


В отличие от однопоточных приводов динамика сумматорных определяется не столько внешними возмуш ениями, сколько внутренними факторами циклическими ошибками зубчатых колес, состоянием зазоров в ветвях привода, неодновременностью срабатывания тормозов, асимметрией характеристик демпферов и амортизаторов, различием в характеристиках моментов злектро-двигателей и тормозов. Суш,ественное влияние на динамику и равномерность распределения нагрузок по ветвям привода оказывает способ соединения якорных цепей двигателей. При последовательном соединении обеспечивается полное выравнивание статических нагрузок, но вместе с тем резко уменьшается демпфирующая способность двигателей, вследствие чего динамические нагрузки возрастают. При параллельном соединении демпфирующая способность привода максимальна, однако из-за асимметрии параметров электрических цепей имеет место значительная статическая неравномерность распределения нагрузок.  [c.112]

В такой схеме умножитель и параллельное соединение сопротипления R и емкости С в его анодной цепи представляют собой измеритель скорости счета, параметры которого определялись способом, совершенно аналогичным описанному выше.  [c.132]

Параллельным будем называть соединение рычажной и зубчатой кинематических цепей, в котором зубчатые колеса располагаются на осях шарниров рычажной кинематической цепи, звенья которой обеспечивают постоянное межцентровое расстояние в каждой паре зубчатых колес. Ведущим звеном в таком механизме может быть звено первой или второй кинематической цепи или звено, принадлежащее обеим цепям одновременно. Механизмы второго типа, в которых осуществлено параллельное соединение рычажной и зубчатой кинематических цепей, а также механизмы, в которых число подвижных звеньев рычажной цепи больше единицы, будем называть зубчаторычажными. При последовательном соединении отключение зубчатой цепи от рычажной не изменяет степени подвижности последи . В параллельном соединении,  [c.3]

В рычажной кинематической цепи степень подвижности выше единицы и ее звенья имеют неопределенные движения. Параллельное соединение такой цепи с зубчатой кинематической цепью в том случае, когда одно или несколько зубчатых колес связаны жестко со звеньями рычажной кинематической цепи, обеспечивает полученному зубчато-рычажному механизму = 1, а звеньям рычажной кинематической цепи — определенные заданные законы движения или определенные и разнообразные траектории движения, описываемые их точками. При этом характер закона движения, или траектории, определяется типом обеих кинематических цепей и способом их параллельного соединения. В таком зубчато-рычажном механизме всегда можно выделить из сложной зубчатой кинематической цепи ту зубчатую цепь, которая превращает рычажную цепь в механизм с одной степенью подвижности. Эту цепь и колеса, ее образующие, будем далее называть основными. Зубчатую кинематическую цепь, приводимую в движение от основной и не влияющую на степень подвижности рычажной цепи, будем называть дополнительной. Отсоединение от зубчато-рычажного механизма зубчатых колес дополнительной цепи не изменяет степени подвижности зубчато-рычажного механизма. Отсоединение от него зубчатых колес основной цепи изменяет степень подвижности рычажной цепи и зубчаторычажного механизма в целом.  [c.4]

Рассмотрим некоторые примеры применения зубчаторычажных механизмов, в которых параллельное соединение рычажной и зубчатой кинематических цепей обеспечивает степень подвижности, равную единице, в рычажной цепи, звенья которой не связаны между собой зубчатыми колесами и имеют неопределенные движения. Сюда следует отнести пятизвенники, шестизвенники и другие многозвенные замкнутые, а также незамкнутые рычажные цепи. Одни из этих зубчато-рычажных механизмов удобно использовать для воспроизведения траекторий некоторыми точками их рычажных звеньев, а другие — для обеспечения заданного закона движения.  [c.11]

В четвертую группу входят механизмы, в основе которых лежит кривошипно-ползунный механизм. Сюда относятся зубчато-рычажные кривошипно-ползунные восьми-, семи-, шести-, пяти- и четырехзвенники, например, механизмы № 31 [1771, № 32 [4, 27, 73, 127, 131 ]. В пятую группу входят зубчато-рычажные кулисные механизмы № 33 [27, 52, 68, 69], № 34 [3, 19, 691, № 35 [6, 27], в основе которых лежат кривошипно-кулисные механизмы. В шестую группу включены зубчато-рычажные червячные механизмы [3]. Зубчато-рычажные механизмы № 37, № 38, № 39 с незамкнутой рычажной кинематической цепью составляют седьмую группу. Механизмы № 40, № 41, № 42, представляющие параллельное соединение зубчато-рычажных четырех- и пятизвенников и обычных планетарных механизмов, входят в восьмую группу. В девятую группу включены механизмы, образованные последовательным и параллельным соединением планетарных и зубчато-рычажных кулисных механизмов. В десятую группу входят механизмы, представляющие последовательное соединение зубчато-рычажных и рычажных механизмов [4, 17]. В одиннадцатую группу включены комбинации зубчато-рычажных механизмов с муфтой свободного хода [22, 23, 63, 64]. Двенадцатую группу составляют комбинации зубчато-рычажного механизма с муфтой Ольдгема. Тринадцатая группа включает в себя регулируемые зубчато-рычажные механизмы. В четырнадцатую группу входят зубчато-рычажные механизмы с неполными зубчатыми колесами [66]. Пятнадцатая группа состоит из пространственных зубчато-рычажных механизмов, в основе которых лежит сферический четырех-звенник. К подгруппе а относятся зубчато-рычажные механизмы № 49, № 50, № 51 [103, 113, 114], № 52, у которых два шарнира несут конические зубчатые колеса. К подгруппе б — зубчато-рычажные механизмы, у которых три шарнира несут зубчатые колеса. К подгруппе в — зубчато-рычажные механизмы, у которых четыре шарнира несут зубчатые колеса. Эти механизмы названы соответственно двух-, трех- и четырехколесными сферическими четырехзвенниками. Пространственные зубчато-рычажные 20  [c.20]

В технике важное значение имеют токовые цепи, состоящие из последовательных и параллельных соединений тонких проводников (называемых линейными по их геом. признакам) со включёнными сосредоточенными элементами ёмкостями, сопротивлениями, транзисторами, переключателями и т. п. Иногда говорят о сильноточных и слаботочных системах в зависимости от назначения соответствующих устройств—передачи (преобразования) больп1их энергий или переработки информации. Распределение Э.т. в линейных цепях подчинены Кирхгофа правилам. При отсутствии нелинейных элементов справедливы взаимности принцип и различные его разновидности.  [c.515]

Принцип суперпозиции. Для механической цепи, состоящей из линейных двухполюсников и имеющей несколько источников сил или кинематических величин, результат воздействия всех источников может быть получен как сумма результатов воздействия каждого из источников в отдельности, при этом остальные источники должны быть заменены двухполюсниками, имеющими динамические параметры заменяемых источников. Прямые динамические параметры идеального источника силы равны нулю, а обратные — бесконечности. У идеального источника кинематической величины прямые динамические параметры равны бесконечности, а обратные — нулю. В силу конечной отдаваемой мощности реальных источников значения динамических параметров лежат между указанными предельными. Реальный источник силы при отсутстйии создаваемой им силы может оказывать сопротивление Движению, поэтому его изображают в виде параллельного соединения идеального источника силы и некоторого пассивного двухполюсника (рис. 18, а). Реальный источник кинематической величины при отсутствии создаваемого им движения может допускать относительное перемещение полюсов, поэтому его изображают в виде последовательного соединения идеального источника и некоторого пассивного двухполюсника с конечными динамическими параметрами (рис. 18, б).  [c.53]


Часто задачей анализа является определение воспринимаемых сил и кинематических величин только для нескольких элементов и узлов цепи. В этом случае сложная цепь, состоящая из большого числа пассивных двухполюсников, может быть упрощена путем замены ненужных последовательно и параллельно соединенных двухполюсников эквивалентными им в соответствии с правилами, задаваемыми уравнениями (37) — (40). Полученные после упрощения цепи называют эквивалентными. Комплексные параметры эквивалентного двухполюсника для любой частоты представляют собой комплексные числа, вещественной части которых можно сопоставить некоторый диссипативный элемент, а мнимой — упругий или инерционный, включаемые параллельно для прямых параметров и последовательно — для обратных. Когда задачей анализа цепи является определение сил и кинематических величин только для одного двухполюсника — нагрузки, сложную цепь можно привести к эквивалентным источникам с использованием теорем Тевенина и Нортона, как это показано в приведенных ниже примерах.  [c.54]

По виду соединения звеньев, кинематических цепей, расположению приводов различают последовательное соединение звеньев (незамкнутая кинематическая тхепь) с замыканием каждой пары звеньев приводным устройством, с размещением одного привода на основании или на первом от основания подвижном звене, второго на первом или втором подвижном звене, третьего на втором или третьем подвижном звене и т. д. поачедовательно-параллельное соединение звеньев с размещением приводов на основании и (или) на основании и на подвижных звеньях параллельное соединение кинематических цепей с размещением приводов на основании и (или) на основании и на подвижных звеньях.  [c.590]


Параллельная электрическая цепь

Если нам необходима работа электроприбора, нужно будет подключить его к источнику тока. Ток при этом должен проходить через прибор, и затем снова возвращаться к источнику, иными словами, цепь должна при этом быть замкнутой.

Однако подключение каждого прибора к отдельно взятому источнику может быть осуществимым только в лабораторных условиях. На практике приходится иметь дело с ограниченным числом источников и достаточно большим количеством потребителей тока.

Это объясняет создание систем соединений, позволяющих нагружать один источник большим числом потребителей. Системы при этом могут быть различной сложности и разных разветвлений, при этом в их основе будут лежать 2 типа соединения: последовательным и параллельным способом.

Способы соединения приемников электрической энергии

При условии одновременного включения нескольких приемников электроэнергии в одинаковую сеть, их можно легко рассматривать в виде элементов единой цепи с присущим каждому сопротивлением.

В определенных случаях подобный подход оказывается вполне приемлем, когда лампы накаливания, например, рассматриваются аналогично резисторам. Приборы в этом случае легко заменяются на их сопротивления и далее производится расчет требуемых параметров цепи.

Замечание 1

Способ соединения приемников электроэнергии существует в параллельном, смешанном или последовательном виде. Последовательным соединением для проводников считается включение последовательным образом в электрическую цепь нескольких приборов (то есть друг за другом).

При таком типе соединений электрическая цепь иметь разветвления не будет. Это могут быть, например, две лампы, такое же количество обмоток или электродвигателей.

Сила тока в цепи будет равной в любой точке, что обусловлено не накоплением в проводниках электрического заряда при постоянном токе и тем, что за определенно взятое время через любое поперечное сечение проводника будет проходить одинаковый заряд. Таким образом, сила тока в обоих проводниках определяется так:

Готовые работы на аналогичную тему

$I_1 = I_2 = I$

Напряжение всей цепи при условии последовательного соединения будет определяться суммой напряжений на каждом элементе, который включен в цепь:

$U = U_1 + U_2$

Применяя закон Ома в отношении всего участка в целом и для определенных участков с сопротивлениями проводников $R_1$ и $R_2$, возможно вывести следующую формулу для полного сопротивления:

$R = R_1+R_2$

Это правило применимо к любому количеству последовательно соединенных проводников. Огромным преимуществом при параллельном соединении является тот факт, что если будет выключен один из элементов, сама цепь продолжит свою работу дальше с функционированием всех остальных элементов. При этом есть и свои минусы. Так, все приборы должны рассчитываться на основании одного и того же напряжения.

Замечание 2

Именно параллельным способом устанавливаются розетки сети на 220В в жилых помещениях. Такое подключение допускает включение различных приборов в сеть совершенно независимым друг от друга образом, поэтому при выходе одного из них из строя на работу остальных это не влияет.

Смешанным считается такой вид соединения, когда в цепи есть группы параллельно и последовательно включенных сопротивлений.

Электрические цепи с параллельным соединением элементов

Параллельным считается соединение, при котором каждый включенный в цепь потребитель электрической энергии будет находиться под одним и тем же напряжением. В этом случае они присоединяются к двум узлам цепи $а$ и $b$, и на основе первого закона Кирхгофа можно записать следующую формулу, которая демонстрирует равенство общего тока $I$ всей цепи сумме токов отдельно взятых ветвей:

$I = I_1 + I_2 + I_3$

В случае параллельного включения двух сопротивлений $R_1$ и $R_2$, их заменяют одним эквивалентным сопротивлением:

$R_{экв} = \frac{R_1R_2}{R_1+R_2}$

Тогда эквивалентная проводимость цепи будет равнозначна сумме проводимостей отдельных ветвей:

$g_{экв} = g_1 + g_2 + g_3$

По мере роста количества параллельно включенных потребителей, проводимость цепи $g_{экв}$ растет также, и наоборот, общее сопротивление $R_{экв}$ уменьшается.

Напряжения в электрической цепи с параллельно соединенными сопротивлениями:

$U = IR_{экв}$

Сравнение последовательного и параллельного соединения цепи

При последовательном соединении приемников электроэнергии наблюдаются следующее:

  • при изменении сопротивления одного из приемников цепи, на остальных напряжения изменяются;
  • в случае обрыва одного из приемников, ток перестает течь во всей цепи и во всех остальных приемниках.

В силу таких особенностей последовательное соединение мы встречаем довольно редко, и оно используется исключительно при условии, что напряжение сети будет выше, чем номинальное напряжение приемников.

Замечание 3

Токи в цепи из параллельно соединенных приемников будут распределяться между ними прямо пропорциональным образом в отношении их проводимостей (обратно пропорционально их сопротивлениям). Здесь можно провести аналогию из гидравлики с потоком воды, распределяемым по трубам в соответствии с их сечениями. В таком случае большее сечение будет аналогичным меньшему сопротивлению (большей проводимости).

   На рис. 2.1 изображена электрическая цепь с последовательно соединенными сопротивлениями.


Рис. 2.1

Напряжение на зажимах источника ЭДС равно величине электродвижущей силы. Поэтому часто источник на схеме не изображают.
Падения напряжений на сопротивлениях определяются по формулам

В соответствии со вторым законом Кирхгофа, напряжение на входе электрической цепи равно сумме падений напряжений на сопротивлениях цепи.

        где   — эквивалентное сопротивление.

    Эквивалентное сопротивление электрической цепи, состоящей из n последовательно включенных элементов, равно сумме сопротивлений этих элементов.

2.2. Параллельное соединение элементов


электрических цепей

На рис. 2.2 показана электрическая цепь с параллельным соединением сопротивлений.


Рис. 2.2

Токи в параллельных ветвях определяются по формулам:

        где — проводимости 1-й, 2-й и n-й ветвей.

      В соответствии с первым законом Кирхгофа, ток в неразветвленной части схемы равен сумме токов в параллельных ветвях.

        где      Эквивалентная проводимость электрической цепи, состоящей из n параллельно включенных элементов, равна сумме проводимостей параллельно включенных элементов.
Эквивалентным сопротивлением цепи называется величина, обратная эквивалентной проводимости

  Пусть электрическая схема содержит три параллельно включенных сопротивления.
Эквивалентная проводимость

  Эквивалентное сопротивление схемы, состоящей из n одинаковых элементов, в n раз меньше сопротивлений R одного элемента

Возьмем схему, состоящую из двух параллельно включенных сопротивлений (рис. 2.3). Известны величины сопротивлений и ток в неразветвленной части схемы. Необходимо определить токи в параллельных ветвях.


Рис. 2.3 Эквивалентная проводимость схемы

,

    а эквивалентное сопротивление

      Напряжение на входе схемы

       Токи в параллельных ветвях

       Аналогично

      Ток в параллельной ветви равен току в неразветвленной части схемы, умноженному на сопротивление противолежащей, чужой параллельной ветви и деленному на сумму сопротивлений чужой и своей параллельно включенных ветвей.

2.3.Преобразование треугольника сопротивлений


в эквивалентную звезду

Встречаются схемы, в которых отсутствуют сопротивления, включенные последовательно или параллельно, например, мостовая схема, изображенная на рис. 2.4. Определить эквивалентное сопротивление этой схемы относительно ветви с источником ЭДС описанными выше методами нельзя. Если же заменить треугольник сопротивлений
R1-R2-R3, включенных между узлами 1-2-3, трехлучевой звездой сопротивлений, лучи которой расходятся из точки 0 в те же узлы 1-2-3, эквивалентное сопротивление полученной схемы легко определяется.


Рис. 2.4 Сопротивление луча эквивалентной звезды сопротивлений равно произведению сопротивлений прилегающих сторон треугольника, деленному на сумму сопротивлений всех сторон треугольника.
В соответствии с указанным правилом, сопротивления лучей звезды определяются по формулам:

    Эквивалентное соединение полученной схемы определяется по формуле

       Сопротивления R0 и R?1 включены последовательно, а ветви с сопротивлениями R?1 + R4 и R?3 + R5 соединены параллельно.

2.4.Преобразование звезды сопротивлений


в эквивалентный треугольник

Иногда для упрощения схемы полезно преобразовать звезду сопротивлений в эквивалентный треугольник.
Рассмотрим схему на рис. 2.5. Заменим звезду сопротивлений R1-R2-R3 эквивалентным треугольником сопротивлений R?1-R?2-R?3, включенных между узлами 1-2-3.


2.5. Преобразование звезды сопротивлений
в эквивалентный треугольник

Сопротивление стороны эквивалентного треугольника сопротивлений равно сумме сопротивлений двух прилегающих лучей звезды плюс произведение этих же сопротивлений, деленное на сопротивление оставшегося (противолежащего) луча. Сопротивления сторон треугольника определяются по формулам:

Электротехника часть 4. Соединение элементов цепи

Всем доброго времени суток. В прошлой статье я рассмотрел закон Ома, применительно к электрическим цепям, содержащие источники энергии. Но в основе анализа и проектирования электронных схем вместе с законом Ома лежат также законы баланса токов, называемым первым законом Кирхгофа, и баланса напряжения на участках цепи, называемым вторым законом Кирхгофа, которые рассмотрим в данной статье. Но для начала выясним, как соединяются между собой приёмники энергии и какие при этом взаимоотношения между токами, напряжениями и сопротивлениями.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Последовательное соединение приемников энергии

Приемники электрической энергии можно соединить между собой тремя различными способами: последовательно, параллельно или смешано (последовательно — параллельно). Вначале рассмотрим последовательный способ соединения, при котором конец одного приемника соединяют с началом второго приемника, а конец второго приемника – с началом третьего и так далее. На рисунке ниже показано последовательное соединение приемников энергии с их подключением к источнику энергии


Пример последовательного подключения приемников энергии.

В данном случае цепь состоит из трёх последовательных приемников энергии с сопротивлением R1, R2, R3 подсоединенных к источнику энергии с напряжением U. Через цепь протекает электрический ток силой I, то есть, напряжение на каждом сопротивлении будет равняться произведению силы тока и сопротивления

Таким образом, падение напряжения на последовательно соединённых сопротивлениях пропорциональны величинам этих сопротивлений.

Из вышесказанного вытекает правило эквивалентного последовательного сопротивления, которое гласит, что последовательно соединённые сопротивления можно представить эквивалентным последовательным сопротивлением величина, которого равна сумме последовательно соединённых сопротивлений. Это зависимость представлена следующими соотношениями

где R – эквивалентное последовательное сопротивление.

Применение последовательного соединения

Основным назначением последовательного соединения приемников энергии является обеспечение требуемого напряжения меньше, чем напряжение источника энергии. Одними из таких применений является делитель напряжения и потенциометр


Делитель напряжения (слева) и потенциометр (справа).

В качестве делителей напряжения используют последовательно соединённые резисторы, в данном случае R1 и R2, которые делят напряжение источника энергии на две части U1 и U2. Напряжения U1 и U2 можно использовать для работы разных приемников энергии.

Довольно часто используют регулируемый делитель напряжения, в качестве которого применяют переменный резистор R. Суммарное сопротивление, которого делится на две части с помощью подвижного контакта, и таким образом можно плавно изменять напряжение U2 на приемнике энергии.

Параллельное соединение приемников энергии

Ещё одним способом соединения приемников электрической энергии является параллельное соединение, которое характеризуется тем, что к одним и тем же узлам электрической цепи присоединены несколько преемников энергии. Пример такого соединения показан на рисунке ниже


Пример параллельного соединения приемников энергии.

Электрическая цепь на рисунке состоит из трёх параллельных ветвей с сопротивлениями нагрузки R1, R2 и R3. Цепь подключена к источнику энергии с напряжением U, через цепь протекает электрический ток с силой I. Таким образом, через каждую ветвь протекает ток равный отношению напряжения к сопротивлению каждой ветви

Так как все ветви цепи находятся под одним напряжением U, то токи приемников энергии обратно пропорциональны сопротивлениям этих приемников, а следовательно параллельно соединённые приемники энергии можно заметь одним приемником энергии с соответствующим эквивалентным сопротивлением, согласно следующих выражений

Таким образом, при параллельном соединении эквивалентное сопротивление всегда меньше самого малого из параллельно включенных сопротивлений.

Смешанное соединение приемников энергии

Наиболее широко распространено смешанное соединение приемников электрической энергии. Данной соединение представляет собой сочетание последовательно и параллельно соединенных элементов. Общей формулы для расчёта данного вида соединений не существует, поэтому в каждом отдельном случае необходимо выделять участки цепи, где присутствует только лишь один вид соединения приемников – последовательное или параллельное. Затем по формулам эквивалентных сопротивлений постепенно упрощать данные участи и в конечном итоге приводить их к простейшему виду с одним сопротивлением, при этом токи и напряжения вычислять по закону Ома. На рисунке ниже представлен пример смешанного соединения приемников энергии


Пример смешанного соединения приемников энергии.

В качестве примера рассчитаем токи и напряжения на всех участках цепи. Для начала определим эквивалентное сопротивление цепи. Выделим два участка с параллельным соединением приемников энергии. Это R1||R2 и R3||R4||R5. Тогда их эквивалентное сопротивление будет иметь вид

В результате получили цепь из двух последовательных приемников энергии R12R345 эквивалентное сопротивление и ток, протекающий через них, составит

Тогда падение напряжения по участкам составит

Тогда токи, протекающие через каждый приемник энергии, составят

Первый закон Кирхгофа

Как я уже упоминал, законы Кирхгофа вместе с законом Ома являются основными при анализе и расчётах электрических цепей. Закон Ома был подробно рассмотрен в двух предыдущих статьях, теперь настала очередь для законов Кирхгофа. Их всего два, первый описывает соотношения токов в электрических цепях, а второй – соотношение ЭДС и напряжениями в контуре. Начнём с первого.

Первый закон Кирхгофа гласит, что алгебраическая сумма токов в узле равна нулю. Описывается это следующим выражением

где ∑ — обозначает алгебраическую сумму.

Слово «алгебраическая» означает, что токи необходимо брать с учётом знака, то есть направления втекания. Таким образом, всем токам, которые втекают в узел, присваивается положительный знак, а которые вытекают из узла – соответственно отрицательный. Рисунок ниже иллюстрирует первый закон Кирхгофа


Изображение первого закона Кирхгофа.

На рисунке изображен узел, в который со стороны сопротивления R1 втекает ток, а со стороны сопротивлений R2, R3, R4 соответственно вытекает ток, тогда уравнение токов для данного участка цепи будет иметь вид

Первый закон Кирхгофа применяется не только к узлам, но и к любому контуру или части электрической цепи. Например, когда я говорил о параллельном соединении приемников энергии, где сумма токов через R1, R2 и R3 равна втекающему току I.

Второй закон Кирхгофа

Как говорилось выше, второй закон Кирхгофа определяет соотношение между ЭДС и напряжениями в замкнутом контуре и звучит следующим образом: алгебраическая сумма ЭДС в любом контуре цепи равна алгебраической сумме падений напряжений на элементах этого контура. Второй закон Кирхгофа определяется следующим выражением

В качестве примера рассмотрим ниже следующую схему, содержащую некоторый контур


Схема, иллюстрирующая второй закон Кирхгофа.

Для начала необходимо определится с направлением обхода контура. В принципе можно выбрать как по ходу часовой стрелки, так и против хода часовой стрелки. Я выберу первый вариант, то есть элементы будут считаться в следующем порядке E1R1R2R3E2, таким образом, уравнение по второму закону Кирхгофа будет иметь следующий вид

Второй закон Кирхгофа применяется не только к цепям постоянного тока, но и к цепям переменного тока и к нелинейным цепям.
В следующей статье я рассмотрю основные способы расчёта сложных цепей с использованием закона Ома и законов Кирхгофа.

Как отличить параллельное соединение от последовательного. Параллельное и последовательное соединение проводников

Ток в цепи протекает по проводникам к нагрузке от источника. Чаще всего в качестве таких элементов используют медь. Цепь может иметь несколько электрических приемников. Их сопротивления разнятся. В схеме электроприборов проводники могут иметь параллельное или последовательное соединение. Встречаются также смешанные его типы. Отличие каждого из них следует знать перед выбором структуры электроцепи.

Проводники и элементы цепи

Ток идет через проводники. Он следует от источника к нагрузке. При этом проводник обязан легко высвобождать электроны.

Проводник, имеющий сопротивление, называется резистором. Напряжение этого элемента — это разность потенциалов между концами резистора, которое согласовывается с направлением протекания питания.

Последовательное и параллельное соединение проводников характеризуется одним общим принципом. Ток течет в цепи от плюса (его называют источником) к минусу, где потенциал становится все меньшим, убывает. На электрических схемах сопротивление проводов считается равным нулю, так как оно пренебрежительно мало.

Поэтому, просчитывая последовательное или параллельное соединение, прибегают к идеализации. Это упрощает их изучение. В реальных цепях потенциал постепенно уменьшается при передвижении по проводу и элементам, имеющим параллельное или последовательное соединение.

Последовательное соединение проводников

При наличии последовательного сочетания проводников сопротивления включаются одно за другим. При таком положении сила тока во всех элементах цепи одинакова. Последовательно соединенные проводники создают на участке напряжение, которое равно их сумме на всех элементах.

Заряды не имеют возможности накапливаться в узлах цепи. Это бы привело к изменению напряжения электрического поля и силы тока.

При наличии постоянного напряжения ток будет зависеть от сопротивления цепи. Поэтому при последовательном соединении сопротивление будет меняться из-за перемены одной нагрузки.

Последовательное соединение проводников имеет недостаток. При поломке одного из элементов схемы будет прервана работа всех остальных ее составляющих. Например, как в гирлянде. Если в ней перегорит одна лампочка, все изделие не будет работать.

Если проводники были подсоединены в цепи последовательно, их сопротивление в каждой точке будет одинаковым. Сопротивление в сумме всех элементов схемы будет равняться сумме уменьшения напряжений на участках цепи.

Это может подтвердить опыт. Последовательное соединение сопротивлений подсчитывается при помощи приборов и математической проверки. Например, берутся три постоянных сопротивления известной величины. Их последовательно соединяют и подключают к питанию в 60 В.

После этого подсчитывают предполагаемые показатели приборов, если замкнуть цепь. По закону Ома находится ток в цепи, что позволит определить падение напряжения на всех ее участках. После этого суммируются полученные результаты и получается общая величина снижения сопротивления во внешней цепи. Последовательное соединение сопротивлений можно подтвердить примерно. Если не брать во внимание внутреннее сопротивление, создающееся источником энергии, то падение напряжения будет меньше, чем сумма сопротивлений. По приборам можно убедиться, что равенство приблизительно соблюдается.

Параллельное соединение проводников

При последовательном и параллельном соединении проводников в цепи применяют резисторы. Параллельное соединение проводников представляет собой систему, в которой одни концы всех резисторов сходятся в один общий узел, а другие — в другой узел. В этих местах схемы сходятся более двух проводников.

При таком соединении к элементам прикладывается одинаковое напряжение. Параллельные участки цепи называются ветвями. Они проходят между двумя узлами. Параллельное и последовательное соединение имеют свои свойства.

Если в электросхеме есть ветви, то напряжение на каждой из них будет одинаковым. Оно равняется напряжению на неразветвленном участке. В этом месте сила тока будет рассчитываться как сумма ее в каждой ветви.

Величина, равная сумме показателей, обратных сопротивлениям разветвлений, будет обратна и сопротивлению участка параллельного соединения.

Параллельное соединение сопротивлений

Параллельное и последовательное соединение отличаются расчетом сопротивлений ее элементов. При параллельном соединении ток разветвляется. Это увеличивает проводимость цепи (уменьшает общее сопротивление), которая будет равна сумме проводимости ветвей.

Если несколько резисторов, имеющих одинаковую величину, соединены параллельно, то суммарное сопротивление цепи будет меньше одного резистора во столько раз, сколько их включено в схему.

Последовательное и параллельное соединение проводников имеют ряд особенностей. В параллельном подключении ток обратно пропорционален сопротивлению. Токи в резисторах не зависят друг от друга. Поэтому выключение одного из них не отразится на работе остальных. Поэтому множество электроприборов имеют именно этот тип соединения элементов цепи.

Смешанное

Параллельное и последовательное соединение проводников может комбинироваться в одной и той же схеме. Например, элементы, подключенные между собой параллельно, могут быть соединены последовательно с другим резистором или их группой. Это смешанное соединение. Общее сопротивление цепей вычисляется путем отдельного суммирования значений для параллельно подключенного блока и для последовательного соединения.

Причем сначала вычисляются эквивалентные сопротивления последовательно подключенных элементов, а потом уже рассчитывается общее сопротивление параллельных участков цепи. Последовательное соединение в вычислениях является приоритетнее. Такие типы электросхем довольно часто встречаются в различных приборах и оборудовании.

Ознакомившись с видами соединения элементов цепи, можно понять принцип организации схем различных электрических приборов. Параллельное и последовательное соединение обладают рядом особенностей расчета и функционирования всей системы. Зная их, можно правильно применять каждый из представленных видов для подключения элементов электрических цепей.

На уроке рассматривается параллельное соединение проводников. Изображается схема такого соединения, показывается выражение для вычисления силы тока в такой цепи. Также вводится понятие эквивалентного сопротивления, находится его значение для случая параллельного соединения.

Соединения проводников бывают различные. Они могут быть параллельными, последовательными и смешанными. На данном уроке мы рассмотрим параллельное соединение проводников и понятие эквивалентного сопротивления.

Параллельным соединением проводников называется такое соединение, при котором начала и концы проводников соединяются вместе. На схеме такое соединение обозначается следующим образом (рис. 1):

Рис. 1. Параллельное соединение трех резисторов

На рисунке изображены три резистора (прибор, основанный на сопротивлении проводника) с сопротивлениями R1, R2, R3. Как видим, начала этих проводников соединены в точке А, концы — в точке Б, а расположены они параллельно друг другу. Также в цепи может быть большее количество параллельно соединенных проводников.

Теперь рассмотрим следующую схему (рис. 2):

Рис. 2. Схема для исследования силы тока при параллельном соединении проводников

В качестве элементов цепи мы взяли две лампы (1а, 1б). Они также имеют свое сопротивление, поэтому мы их можем рассматривать наравне с резисторами. Эти две лампы соединены параллельно, соединяются они в точках А и Б. К каждой лампе подсоединен свой амперметр: соответственно, А 1 и А 2 . Также есть амперметр А 3 , который измеряет силу тока во всей цепи. В цепь еще входит источник питания (3) и ключ (4).

Замкнув ключ, мы будем следить за показаниями амперметров. Амперметр А 1 покажет силу тока, равную I 1 , в лампе 1а, амперметр А 2 — cилу тока, равную I 2 , в лампе 1б. Что же касается амперметра А 3 , то он покажет силу тока, равную сумме токов в каждой отдельной взятой цепи, соединенных параллельно: I = I 1 + I 2 . То есть, если сложить показания амперметров А 1 и А 2 , то получим показания амперметра А 3 .

Стоит обратить внимание, что если одна из ламп перегорит, то вторая будет продолжать работать. При этом весь ток будет проходить через эту вторую лампу. Это очень удобно. Так, например, электроприборы в наших домах включаются в цепь параллельно. И если один из них выходит из строя, то остальные остаются в рабочем состоянии.

Рис. 3. Схема для нахождения эквивалентного сопротивления при параллельном соединении

На схеме рис. 3 мы оставили один амперметр (2), но добавили в электрическую цепь вольтметр (5) для измерения напряжения. Точки А и Б являются общими и для первой (1а), и для второй лампы (1б), а значит, вольтметр измеряет напряжение на каждой из этих ламп (U 1 и U 2) и во всей цепи (U). Тогда U = U 1 = U 2 .

Эквивалентным сопротивлением называется сопротивление, которое может заменить все элементы, входящие в данную цепь. Посмотрим, чему же оно будет равно при параллельном соединении. Из закона Ома можно получить, что:

В данной формуле R — эквивалентное сопротивление, R 1 и R 2 — сопротивление каждой лампочки, U = U 1 = U 2 — напряжение, которое показывает вольтметр (5). При этом мы используем то, что сумма токов в каждой отдельной цепи равна общей силе тока (I = I 1 + I 2). Отсюда можно получить формулу для эквивалентного сопротивления:

Если в цепи будет больше элементов, соединенных параллельно, то и слагаемых будет больше. Тогда придется вспомнить, как работать с простыми дробями.

Стоить отметить, что при параллельном соединении эквивалентное сопротивление будет достаточно малым. Соответственно, сила тока будет достаточно большой. Это стоит учитывать при включении в розетки большого количества электрических приборов. Ведь тогда сила тока возрастет, что может привести к перегреванию проводов и пожарам.

На следующем уроке мы рассмотрим другой тип соединения проводников — последовательное.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. Физика 8 / Под ред. Орлова В.А., Ройзена И.И. — М.: Мнемозина.
  2. Перышкин А.В. Физика 8. — М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. — М.: Просвещение.
  1. Физика ().
  2. Сверхзадача ().
  3. Интернет-портал Nado5.ru ().

Домашнее задание

  1. Стр. 114-117: вопросы № 1-6. Перышкин А.В. Физика 8. — М.: Дрофа, 2010.
  2. Могут ли быть параллельно соединены более трех проводников?
  3. Что случится, если одна из двух ламп, которые соединены параллельно, перегорит?
  4. Если к любой цепи параллельно подключить еще один проводник, всегда ли её эквивалентное сопротивление будет уменьшаться?

При решении задач принято преобразовывать схему, так, чтобы она была как можно проще. Для этого применяют эквивалентные преобразования. Эквивалентными называют такие преобразования части схемы электрической цепи, при которых токи и напряжения в не преобразованной её части остаются неизменными.

Существует четыре основных вида соединения проводников: последовательное, параллельное, смешанное и мостовое.

Последовательное соединение

Последовательное соединение – это такое соединение, при котором сила тока на всем участке цепи одинакова. Ярким примером последовательного соединения является старая елочная гирлянда. Там лампочки подключены последовательно, друг за другом. Теперь представьте, одна лампочка перегорает, цепь нарушена и остальные лампочки гаснут. Выход из строя одного элемента, ведет за собой отключение всех остальных, это является существенным недостатком последовательного соединения.

При последовательном соединении сопротивления элементов суммируются.

Параллельное соединение

Параллельное соединение – это соединение, при котором напряжение на концах участка цепи одинаково. Параллельное соединение наиболее распространено, в основном потому, что все элементы находятся под одним напряжением, сила тока распределена по-разному и при выходе одного из элементов все остальные продолжают свою работу.

При параллельном соединении эквивалентное сопротивление находится как:

В случае двух параллельно соединенных резисторов

В случае трех параллельно подключенных резисторов:

Смешанное соединение

Смешанное соединение – соединение, которое является совокупностью последовательных и параллельных соединений. Для нахождения эквивалентного сопротивления нужно, “свернуть” схему поочередным преобразованием параллельных и последовательных участков цепи.


Сначала найдем эквивалентное сопротивление для параллельного участка цепи, а затем прибавим к нему оставшееся сопротивление R 3 . Следует понимать, что после преобразования эквивалентное сопротивление R 1 R 2 и резистор R 3 , соединены последовательно.

Итак, остается самое интересное и самое сложное соединение проводников.

Мостовая схема

Мостовая схема соединения представлена на рисунке ниже.



Для того чтобы свернуть мостовую схему, один из треугольников моста, заменяют эквивалентной звездой.

И находят сопротивления R 1 , R 2 и R 3 .

В электротехнике и электронике очень широко используются резисторы. Применяются они в основном для регулирования в схемах тока и напряжения. Основные параметры: электрическое сопротивление (R) измеряется в Омах, мощность (Вт) , стабильность и точность их параметров в процессе эксплуатации. Можно вспомнить ещё множество его параметров, — ведь это обычное промышленное изделие.

Последовательное соединение

Последовательное соединение — это такое соединение, при котором каждый последующий резистор подключается к предыдущему, образуя неразрывную цепь без разветвлений. Ток I=I1=I2 в такой цепи будет одинаковым в каждой её точке. Напротив, напряжение U1, U2 в различных её точках будет разным, причём работа по переносу заряда через всю цепь, складывается из работ по переносу заряда в каждом из резисторов, U=U1+U2. Напряжение U по закону Ома равно току, умноженному на сопротивление, и предыдущее выражение можно записать так:

где R — общее сопротивление цепи. То есть по простому идет падение напряжения в точках соединения резисторов и чем больше подключенных элементов, тем больше происходит падение напряжения

Отсюда следует, что
, общее значение такого соединения определяется суммированием сопротивлений последовательно. Наши рассуждения справедливы для любого количества последовательно соединяемых участков цепи.

Параллельное соединение

Объединим начала нескольких резисторов (точка А). В другой точке (В) мы соединим все их концы. В результате получим участок цепи, который называется параллельным соединением и состоит из некоторого количества параллельных друг другу ветвей (в нашем случае – резисторов). При этом электрический ток между точками А и B распределится по каждой из этих ветвей.

Напряжения на всех резисторах будут одинаковы: U=U1=U2=U3, их концы — это точки А и В.

Заряды, прошедшие за единицу времени через каждый резистор, в сумме образуют заряд, прошедший через весь блок. Поэтому суммарный ток через изображенную на рисунке цепь I=I1+I2+I3.

Теперь, использовав закон Ома, последнее равенство преобразуется к такому виду:

U/R=U/R1+U/R2+U/R3.

Отсюда следует, что для эквивалентного сопротивления R справедливо:

1/R=1/R1+1/R2+1/R3

или после преобразования формулы мы можем получить другую запись, такого вида:
.

Чем большее количество резисторов (или других звеньев электрической цепи, обладающих некоторым сопротивлением) соединить по параллельной схеме, тем больше путей для протекания тока образуется, и тем меньше общее сопротивление цепи.

Следует отметить, что обратная сопротивлению величина называется проводимостью. Можно сказать, что при параллельном соединении участков цепи складываются проводимости этих участков, а при последовательном соединении – их сопротивления.

Примеры использования

Понятно, что при последовательном соединении, разрыв цепи в одном месте приводит к тому, что ток перестает идти по всей цепи. Например, ёлочная гирлянда перестаёт светить, если перегорит всего одна лампочка, это плохо.

Но последовательное соединение лампочек в гирлянде даёт возможность использовать большое количество маленьких лампочек, каждая из которых рассчитана на напряжение сети (220 В), делённое на количество лампочек.


Последовательное соединение резисторов на примере 3-х лампочек и ЭДС

Зато при последовательном подключении предохранительного устройства его срабатывание (разрыв плавкой вставки) позволяет обесточить всю электрическую цепь, расположенную после него и обеспечить нужный уровень безопасности, и это хорошо. Выключатель в сеть питания электроприбора включается также последовательно.

Параллельное соединение также широко используется. Например, люстра – все лампочки соединены параллельно и находятся под одним и тем же напряжением. Если одна лампа перегорит, — не страшно, остальные не погаснут, они остаются под тем же самым напряжением.


Параллельное соединение резисторов на примере 3-х лампочек и генератора

При необходимости увеличения способности схемы рассеивать тепловую мощность, выделяющуюся при протекании тока, широко используются и последовательное, и параллельное объединение резисторов. И для последовательного, и параллельного способов соединения некоторого количества резисторов одного номинала общая мощность равна произведению количества резисторов на мощность одного резистора.

Смешанное соединение резисторов

Также часто используется смешанное соединение. Если,например необходимо получить сопротивление определенного номинала, но его нет в наличии можно воспользоваться одним из выше описанных способов или воспользоваться смешанным соединением.

Отсюда, можно вывести формулу которая и даст нам необходимое значение:

Rобщ.=(R1*R2/R1+R2)+R3

В нашу эпоху развития электроники и различных технических устройств в основе всех сложностей лежать простые законы, которые поверхностно рассматриваются на данном сайте и думаю, что вам они помогут успешно применять в своей жизни. Если например взять ёлочную гирлянду, то соединения лампочек идет друг за другом, т.е. грубо говоря это отдельно-взятое сопротивление.

Не так давно гирлянды стали соединятся смешанным способом. Вообще, в совокупности все эти примеры с резисторами взяты условно, т.е. любым элементом сопротивления может быть ток проходящий через элемент с падением напряжения и выделением тепла.

Возьмем три постоянных сопротивления R1, R2 и R3 и включим их в цепь так, чтобы конец первого сопротивления R1 был соединен с началом второго сопротивления R 2, конец второго — с началом третьего R 3, а к началу первого сопротивления и к концу третьего подведем проводники от источника тока (рис. 1 ).

Такое соединение сопротивлений называется последовательным. Очевидно, что ток в такой цепи будет во всех ее точках один и тот же.

Рис 1

Как определить общее сопротивление цепи, если все включенные в нее последовательно сопротивления мы уже знаем? Используя положение, что напряжение U на зажимах источника тока равно сумме падений напряжений на участках цепи, мы можем написать:

U = U1 + U2 + U3

где

U1 = IR1 U2 = IR2 и U3 = IR3

или

IR = IR1 + IR2 + IR3

Вынеся в правой части равенства I за скобки, получим IR = I(R1 + R2 + R3) .

Поделив теперь обе части равенства на I , будем окончательно иметь R = R1 + R2 + R3

Таким образом, мы пришли к выводу, что при последовательном соединении сопротивлений общее сопротивление всей цепи равно сумме сопротивлений отдельных участков.

Проверим этот вывод на следующем примере. Возьмем три постоянных сопротивления, величины которых известны (например, R1 == 10 Ом, R 2 = 20 Ом и R 3 = 50 Ом). Соединим их последовательно (рис. 2 ) и подключим к источнику тока, ЭДС которого равна 60 В ( пренебрегаем).


Рис. 2. Пример последовательного соединения трех сопротивлений

Подсчитаем, какие показания должны дать приборы, включенные, как показано на схеме, если замкнуть цепь. Определим внешнее сопротивление цепи: R = 10 + 20 + 50 = 80 Ом.

Найдем ток в цепи : 60 / 80 = 0 ,75 А

Зная ток в цепи и сопротивления ее участков, определим падение напряжения на каждое участке цепи U 1 = 0,75х 10 = 7,5 В, U 2 = 0,75 х 20=15 В, U3 = 0,75 х 50 = 37,5 В.

Зная падение напряжений на участках, определим общее падение напряжения во внешней цепи, т. е. напряжение на зажимах источника тока U = 7,5+15 + 37,5 = 60 В.

Мы получили таким образом, что U = 60 В, т. е. несуществующее равенство ЭДС источника тока и его напряжения. Объясняется это тем, что мы пренебрегли внутренним сопротивлением источника тока.

Замкнув теперь ключ выключатель К, можно убедиться по приборам, что наши подсчеты примерно верны.

Возьмем два постоянных сопротивления R1 и R2 и соединим их так, чтобы начала этих сопротивлений были включены в одну общую точку а, а концы — в другую общую точку б. Соединив затем точки а и б с источником тока, получим замкнутую электрическую цепь. Такое соединение сопротивлений называется параллельным соединением.


Рис 3. Параллельное соединение сопротивлений

Проследим течение тока в этой цепи. От положительного полюса источника тока по соединительному проводнику ток дойдет до точки а. В точке а он разветвится, так как здесь сама цепь разветвляется на две отдельные ветви: первую ветвь с сопротивлением R1 и вторую — с сопротивлением R2. Обозначим токи в этих ветвях соответственно через I1 и I 2. Каждый из этих токов пойдет по своей ветви до точки б. В этой точке произойдет слияние токов в один общий ток, который и придет к отрицательному полюсу источника тока.

Таким образом, при параллельном соединении сопротивлений получается разветвленная цепь. Посмотрим, какое же будет соотношение между токами в составленной нами цепи.

Включим амперметр между положительным полюсом источника тока (+) и точкой а и заметим его показания. Включив затем амперметр (показанный «а рисунке пунктиром) в провод, соединяющий точку б с отрицательным полюсом источника тока (-), заметим, что прибор покажет ту же величину силы тока.

Значит, до ее разветвления (до точки а) равна силе тока после разветвления цепи (после точки б).

Будем теперь включать амперметр поочередно в каждую ветвь цепи, запоминая показания прибора. Пусть в первой ветви амперметр покажет силу тока I1 , а во второй — I 2. Сложив эти два показания амперметра, мы получим суммарный ток, по величине равный току I до разветвления (до точки а).

Следовательно, сила тока, протекающего до точки разветвления, равна сумме сил токов, утекающих от этой точки. I = I1 + I2 Выражая это формулой, получим

Это соотношение, имеющее большое практическое значение, носит название закона разветвленной цепи .

Рассмотрим теперь, каково будет соотношение между токами в ветвях.

Включим между точками а и б вольтметр и посмотрим, что он нам покажет. Во-первых, вольтметр покажет напряжение источника тока, так как он подключен, как это видно из рис. 3 , непосредственно к зажимам источника тока. Во-вторых, вольтметр покажет падения напряжений U1 и U2 на сопротивлениях R1 и R2, так как он соединен с началом и концом каждого сопротивления.

Следовательно, при параллельном соединении сопротивлений напряжение на зажимах источника тока равно падению напряжения на каждом сопротивлении.

Это дает нам право написать, что U = U1 = U2 ,

где U — напряжение на зажимах источника тока; U1 — падение напряжения на сопротивлении R1 , U2 — падение напряжения на сопротивлении R2. Вспомним, что падение напряжения на участке цепи численно равно произведению силы тока, протекающего через этот участок, на сопротивление участка U = IR .

Поэтому для каждой ветви можно написать: U1 = I1R1 и U2 = I2R2 , но так как U1 = U2, то и I1R1 = I2R2 .

Применяя к этому выражению правило пропорции, получим I1/ I2 = U2 / U1 т. е. ток в первой ветви будет во столько раз больше (или меньше) тока во второй ветви, во сколько раз сопротивление первой ветви меньше (или больше) сопротивления второй ветви.

Итак, мы пришли к важному выводу, заключающемуся в том, что при параллельном соединении сопротивлений общий ток цепи разветвляется на токи, обратно пропорциональные величинам сопротивлении параллельных ветвей. Иначе говоря, чем больше сопротивление ветви, тем меньший ток потечет через нее, и, наоборот, чем меньше сопротивление ветви, тем больший ток потечет через эту ветвь.

Убедимся в правильности этой зависимости на следующем примере. Соберем схему, состоящую из двух параллельно соединенных сопротивлений R1 и R 2, подключенных к источнику тока. Пусть R1 = 10 Ом, R2 = 20 Ом и U = 3 В.

Подсчитаем сначала, что покажет нам амперметр, включенный в каждую ветвь:

I1 = U / R1 = 3 / 10 = 0 ,3 А = 300 мА

I 2 = U / R 2 = 3 / 20 = 0,15 А = 150 мА

Общий ток в цепи I = I1 +I2 = 300 + 150 = 450 мА

Проделанный нами расчет подтверждает, что при параллельном соединении сопротивлений ток в цепи разветвляется обратно пропорционально сопротивлениям.

Действительно, R1 == 10 Ом вдвое меньше R 2 = 20 Ом, при этом I1 = 300 мА вдвое больше I2 = 150 мА. Общий ток в цепи I = 450 мА разветвился на две части так, что большая его часть (I1 = 300 мА) пошла через меньшее сопротивление (R1 = 10 Ом), а меньшая часть (R2 = 150 мА) -через большее сопротивление (R 2 = 20 Ом).

Такое разветвление тока в параллельных ветвях сходно с течением жидкости по трубам. Представьте себе трубу А, которая в каком-то месте разветвляется на две трубы Б и В различного диаметра (рис. 4). Так как диаметр трубы Б больше диаметра трубок В, то через трубу Б в одно и то же время пройдет больше воды, чем через трубу В, которая оказывает потоку воды большее сопротивление.

Рис. 4

Рассмотрим теперь, чему будет равно общее сопротивление внешней цепи, состоящей из двух параллельно соединенных сопротивлений.

Под этим общим сопротивлением внешней цепи надо понимать такое сопротивление, которым можно было бы заменить при данном напряжении цепи оба параллельно включенных сопротивления, не изменяя при этом тока до разветвления. Такое сопротивление называется эквивалентным сопротивлением.

Вернемся к цепи, показанной на рис. 3, и посмотрим, чему будет равно эквивалентное сопротивление двух параллельно соединенных сопротивлений. Применяя к этой цепи закон Ома, мы можем написать: I = U/R , где I — ток во внешней цепи (до точки разветвления), U — напряжение внешней цепи, R — сопротивление внешней цепи, т. е. эквивалентное сопротивление.

Точно так же для каждой ветви I1 = U1 / R1 , I2 = U2 / R2 , где I1 и I 2 — токи в ветвях; U1 и U2 — напряжение на ветвях; R1 и R2 — сопротивления ветвей.

По закону разветвленной цепи: I = I1 + I2

Подставляя значения токов, получим U / R = U1 / R1 + U2 / R2

Так как при параллельном соединении U = U1 = U2 , то можем написать U / R = U / R1 + U / R2

Вынеся U в правой части равенства за скобки, получим U / R = U (1 / R1 + 1 / R2 )

Разделив теперь обе части равенства на U , будем окончательно иметь 1 / R = 1 / R1 + 1 / R2

Помня, что проводимостью называется величина, обратная сопротивлению , мы можем сказать, что в полученной формуле 1 / R — проводимость внешней цепи; 1 / R1 проводимость первой ветви; 1 / R2- проводимость второй ветви.

На основании этой формулы делаем вывод: при параллельном соединении проводимость внешней цепи равна сумме проводимостей отдельных ветвей.

Следовательно, чтобы определить эквивалентное сопротивление включенных параллельно сопротивлений, надо определить проводимость цепи и взять величину, ей обратную.

Из формулы также следует, что проводимость цепи больше проводимости каждой ветви, а это значит, что эквивалентное сопротивление внешней цепи меньше наименьшего из включенных параллельно сопротивлений.

Рассматривая случай параллельного соединения сопротивлений, мы взяли наиболее простую цепь, состоящую из двух ветвей. Однако на практике могут встретиться случаи, когда цепь состоит из трех и более параллельных ветвей. Как же поступать в этих случаях?

Оказывается, все полученные нами соотношения остаются справедливыми и для цепи, состоящей из любого числа параллельно соединенных сопротивлений.

Чтобы убедиться в этом, рассмотрим следующий пример.

Возьмем три сопротивления R1 = 10 Ом, R2 = 20 Ом и R3 = 60 Ом и соединим их параллельно. Определим эквивалентное сопротивление цепи (рис. 5 ).


Рис. 5. Цепь с тремя параллельно соединенными сопротивлениями

Применяя для этой цепи формулу 1 / R = 1 / R1 + 1 / R2 , можем написать 1 / R = 1 / R1 + 1 / R2 + 1 / R3 и, подставляя известные величины, получим 1 / R = 1 / 10 + 1 / 20 + 1 / 60

Сложим эта дроби: 1/R = 10 / 60 = 1 / 6, т. е.. проводимость цепи 1 / R = 1 / 6 Следовательно, эквивалентное сопротивление R = 6 Ом.

Таким образом, эквивалентное сопротивление меньше наименьшего из включенных параллельно в цепь сопротивлений , т. е. меньше сопротивления R1.

Посмотрим теперь, действительно ли это сопротивление является эквивалентным, т. е. таким, которое могло бы заменить включенные параллельно сопротивления в 10, 20 и 60 Ом, не изменяя при этом силы тока до разветвления цепи.

Допустим, что напряжение внешней цепи, а следовательно, и напряжение на сопротивлениях R1, R2, R3 равно 12 В. Тогда сила токов в ветвях будет: I1 = U/R1 = 12 / 10 = 1 ,2 А I 2 = U/R 2 = 12 / 20 = 1 ,6 А I 3 = U/R1 = 12 / 60 = 0,2 А

Общий ток в цепи получим, пользуясь формулой I = I1 + I2 + I3 =1,2 + 0,6 + 0,2 = 2 А.

Проверим по формуле закона Ома, получится ли в цепи ток силой 2 А, если вместо трех параллельно включенных известных нам сопротивлений включено одно эквивалентное им сопротивление 6 Ом.

I = U / R = 12 / 6 = 2 А

Как видим, найденное нами сопротивление R = 6 Ом действительно является для данной цепи эквивалентным.

В этом можно убедиться и на измерительных приборах, если собрать схему с взятыми нами сопротивлениями, измерить ток во внешней цепи (до разветвления), затем заменить параллельно включенные сопротивления одним сопротивлением 6 Ом и снова измерить ток. Показания амперметра и в том и в другом случае будут примерно одинаковыми.

На практике могут встретиться также параллельные соединения, для которых рассчитать эквивалентное сопротивление можно проще, т. е. не определяя предварительно проводимостей, сразу найти сопротивление.

Например, если соединены параллельно два сопротивления R1 и R2 , то формулу 1 / R = 1 / R1 + 1 / R2 можно преобразовать так: 1/R = (R2 + R1) / R1 R2 и, решая равенство относительно R, получить R = R1 х R2 / (R1 + R2 ), т. е. при параллельном соединении двух сопротивлений эквивалентное сопротивление цепи равно произведению включенных параллельно сопротивлений, деленному на их сумму.

Электрическая цепь с параллельным соединением элементов

Параллельным называют такое соединение, при котором все включенные в цепь потребители электрической энергии, находятся под одним и тем же напряжением (рис. 1.6).

Рис. 1.6

В этом случае они присоединены к двум узлам цепи а и b, и на основании первого закона Кирхгофа (1.3) можно записать, что общий ток I всей цепи равен алгебраической сумме токов отдельных ветвей:

I=I1+I2+I3, т.е. ,

откуда следует, что

(1.6)

.

В том случае, когда параллельно включены два сопротивления R1 и R2, они заменяются одним эквивалентным сопротивлением

(1.7)

.

Из соотношения (1.6), следует, что эквивалентная проводимость цепи равна арифметической сумме проводимостей отдельных ветвей:

gэкв=g1+g2+g3.

По мере роста числа параллельно включенных потребителей проводимость цепи gэкв возрастает, и наоборот, общее сопротивление Rэкв уменьшается.

Напряжения в электрической цепи с параллельно соединенными сопротивлениями (рис. 1.6)

U=IRэкв=I1R1=I2R2=I3R3.

Отсюда следует, что

,

т.е. ток в цепи распределяется между параллельными ветвями обратно пропорционально их сопротивлениям.

По параллельно включенной схеме работают в номинальном режиме потребители любой мощности, рассчитанные на одно и то же напряжение. Причем включение или отключение одного или нескольких потребителей не отражается на работе остальных. Поэтому эта схема является основной схемой подключения потребителей к источнику электрической энергии.


Что такое параллельная цепь? Преимущества, недостатки и часто задаваемые вопросы

Что такое параллельная цепь?

Параллельная цепь имеет несколько различных путей для протекания тока. Если вы хотите пройти через каждый компонент в параллельной цепи, вам нужно пройти по каждой отдельной ветви.

Параллельная цепь

Если компонент выходит из строя или отключен, другие ветви по-прежнему подают напряжение/ток на другие компоненты и поддерживают их работу.

Мы используем параллельные цепи в наших домах/офисах для цепей освещения.Это означает, что если лампочка выходит из строя, другие лампы в цепи продолжают работать и остаются включенными, в отличие от последовательной цепи. Кроме того, если вы добавите в цепь больше источников света, остальные останутся яркими, поскольку ток распределяется.

Что происходит с током в параллельной цепи?

Ток распределяется в параллельных цепях, например, если в цепи есть 2 лампы (обе с одинаковым сопротивлением) и источник питания 10 ампер, через них будет проходить 5 ампер. Ток распределяется между каждой ветвью, а затем снова суммируется, когда он встречается перед источником питания.

Параллельное соединение с амперметром

Если бы, однако, сопротивление ламп было разным, показания тока не совпадали бы, чем выше сопротивление компонента, тем ниже ток. Ток по-прежнему делился бы между компонентами (хотя это были бы разные показания) и снова складывался бы перед ячейкой.

Каковы преимущества использования параллельной схемы?

  • Одинаковое напряжение распределяется между всеми компонентами — поскольку напряжение остается постоянным в параллельной цепи, мы знаем, что каждый компонент имеет одинаковый уровень напряжения.
  • Возможно подключение или отсоединение компонентов без воздействия на цепь – при подключении или отключении новых компонентов или приборов в параллельной цепи это не повлияет на другие компоненты или цепь.
  • В случае неисправности ток может по-прежнему проходить по разным путям – при отказе компонента или провода в параллельной цепи ток по-прежнему может течь по разным ветвям.

Каковы недостатки использования параллельной схемы?

  • Требуется много проводов – Много проводов требуется при построении параллельной цепи.
  • Напряжение не может быть увеличено или умножено – поскольку сопротивление уменьшается в параллельных цепях, это означает, что напряжение нельзя увеличить.
  • Поиск неисправностей более сложен, чем при последовательном подключении – при последовательном подключении вы можете определить место возникновения неисправности легче, чем при параллельном подключении.

Изменяется ли напряжение в параллельной цепи?

Напряжение в параллельной цепи не меняется, оно остается постоянным. Это означает, что он не меняется и одинаков для всех ветвей/контуров.

Как передается энергия в параллельной цепи?

Энергия проходит через разных получателей, а затем через второе соединение. При условии, что всегда есть источник энергии, это означает, что электричество всегда сможет достичь компонента (получателя).

Если один компонент выходит из строя, другие компоненты продолжают получать энергию и не затрагиваются.

Примеры использования параллельных цепей

  • Елочные гирлянды — елочные гирлянды теперь используют параллельные цепи.Вот почему, когда один свет выходит из строя, они все еще работают.
  • Цепи освещения – если для цепи освещения требуется более одного источника света, она подключается параллельно. Это необходимо для того, чтобы остальные лампы работали, даже если одна из них выйдет из строя.

5.3: Простые параллельные цепи — Workforce LibreTexts

Начнем с параллельной цепи, состоящей из трех резисторов и одной батареи:

Принцип параллельных цепей

Первый принцип параллельных цепей, который нужно понять, заключается в том, что напряжение одинаково для всех компонентов цепи.Это связано с тем, что в параллельной цепи есть только два набора электрически общих точек, и напряжение, измеренное между наборами общих точек, всегда должно быть одинаковым в любой момент времени. Следовательно, в приведенной выше схеме напряжение на R 1 равно напряжению на R 2 , которое равно напряжению на R 3 , которое равно напряжению на батарее. Это равенство напряжений можно представить в другой таблице для наших начальных значений:

Применение закона Ома для простых параллельных цепей

Как и в случае с последовательными цепями, применяется то же предостережение для закона Ома: значения напряжения, тока и сопротивления должны быть в одном контексте, чтобы расчеты работали правильно.Однако в приведенной выше схеме мы можем немедленно применить закон Ома к каждому резистору, чтобы найти его ток, потому что мы знаем напряжение на каждом резисторе (9 вольт) и сопротивление каждого резистора:

.

На данный момент мы все еще не знаем, каков общий ток или полное сопротивление для этой параллельной цепи, поэтому мы не можем применить закон Ома к крайнему правому столбцу («Всего»). Однако, если мы хорошенько подумаем о том, что происходит, должно стать очевидным, что общий ток должен равняться сумме токов всех отдельных резисторов («ветвей»):

Когда общий ток выходит из отрицательной (-) клеммы аккумулятора в точке 8 и проходит через цепь, часть потока разделяется в точке 7 и идет вверх через R 1 , еще часть разделяется в точке 6, чтобы идти вверх через R 2 , а остаток идет вверх через R 3 .Подобно реке, разветвляющейся на несколько более мелких ручьев, суммарный расход всех ручьев должен равняться расходу всей реки. То же самое происходит, когда токи через R 1 , R 2 и R 3 объединяются, чтобы течь обратно к положительной клемме батареи (+) к точке 1: поток электронов от точки 2 к точке 1. точка 1 должна равняться сумме токов (ветвей) через R 1 , R 2 и R 3 .

Это второй принцип параллельных цепей: общий ток цепи равен сумме токов отдельных ветвей.Используя этот принцип, мы можем заполнить место I T в нашей таблице суммой I R1 , I R2 и I R3 :

.

Наконец, применив закон Ома к крайнему правому столбцу («Всего»), мы можем вычислить общее сопротивление цепи:

Уравнение для параллельных цепей

Обратите внимание на очень важную вещь. Общее сопротивление цепи составляет всего 625 Ом: 90 139 меньше, чем 90 140, чем любой из отдельных резисторов.В последовательной цепи, где общее сопротивление было суммой отдельных сопротивлений, общее сопротивление должно было быть на 90 139 больше, чем на 90 140, чем у любого из резисторов по отдельности. Здесь, в параллельной цепи, однако, верно обратное: мы говорим, что отдельные сопротивления уменьшают , а не добавляют , чтобы получить сумму. Этот принцип завершает нашу триаду «правил» для параллельных цепей, точно так же, как было обнаружено, что для последовательных цепей действуют три правила для напряжения, тока и сопротивления.Математически соотношение между общим сопротивлением и отдельными сопротивлениями в параллельной цепи выглядит так:

Та же базовая форма уравнения работает для любого числа резисторов, соединенных вместе параллельно, просто добавьте столько членов 1/R к знаменателю дроби, сколько необходимо для размещения всех параллельных резисторов в цепи.

Как и в случае с последовательной схемой, мы можем использовать компьютерный анализ для перепроверки наших расчетов.Во-первых, конечно, мы должны описать наш пример схемы компьютеру в терминах, которые он может понять. Начну с перерисовки схемы:

Как изменить схемы нумерации параллельных цепей для SPICE

И снова мы обнаруживаем, что первоначальная схема нумерации, используемая для обозначения точек в цепи, должна быть изменена в пользу SPICE. В SPICE все электрически общие точки должны иметь одинаковые номера узлов. Вот как SPICE знает, что с чем связано и как.В простой параллельной цепи все точки электрически общие в одном из двух наборов точек. Для схемы нашего примера провод, соединяющий верхние части всех компонентов, будет иметь один номер узла, а провод, соединяющий нижние части компонентов, будет иметь другой. Оставаясь верным соглашению о включении нуля в качестве номера узла, я выбираю числа 0 и 1:

.

Пример, подобный этому, делает назначение номеров узлов в SPICE достаточно понятным для понимания. Поскольку все компоненты имеют общие наборы чисел, компьютер «знает», что все они соединены параллельно друг с другом.

Чтобы отобразить токи ветвей в SPICE, нам нужно вставить источники нулевого напряжения в линию (последовательно) с каждым резистором, а затем сопоставить наши измерения тока с этими источниками. По какой-то причине создатели программы SPICE сделали так, что ток можно было вычислить только от до источника напряжения. Это несколько раздражающее требование программы моделирования SPICE. При добавлении каждого из этих «фиктивных» источников напряжения необходимо создать несколько новых номеров узлов, чтобы соединить их с соответствующими ветвевыми резисторами:

.

Как проверить результаты компьютерного анализа

Все фиктивные источники напряжения установлены на 0 вольт, чтобы не влиять на работу схемы.Файл описания схемы, или netlist , выглядит так:

Запустив компьютерный анализ, мы получили следующие результаты (я снабдил распечатку описательными метками):

Эти значения действительно соответствуют рассчитанным ранее по закону Ома: 0,9 мА для I R1 , 4,5 мА для I R2 и 9 мА для I R3 . Разумеется, при параллельном соединении все резисторы имеют одинаковое падение напряжения (9 вольт, как и батарея).

Три правила параллельных цепей

Таким образом, параллельная цепь определяется как цепь, в которой все компоненты подключены к одному и тому же набору электрически общих точек. Другими словами, все компоненты подключены через терминалы друг друга. Из этого определения следуют три правила параллельных цепей: все компоненты имеют одинаковое напряжение; сопротивления уменьшаются, чтобы равняться меньшему общему сопротивлению; а токи ветвей складываются, чтобы равняться большему общему току.Как и в случае с последовательными цепями, все эти правила уходят корнями в определение параллельной цепи. Если вы полностью понимаете это определение, то правила — не что иное, как сноски к определению.

Обзор

  • Компоненты в параллельной цепи имеют одинаковое напряжение: E Всего = E 1 = E 2 = . . . Е Н
  • Общее сопротивление в параллельной цепи на меньше , чем любое из сопротивлений в отдельности: R Всего = 1 / (1/R 1 + 1/R 2 + .. . 1/R N )
  • Общий ток в параллельной цепи равен сумме токов отдельных ветвей: I Всего = I 1 + I 2 + . . . я n .

Разделение параллельных цепей и токов

Отдел параллельных цепей и токов
    • Два элемента параллельны, если они соединены между собой одной и той же парой нот.Если каждый элемент параллелен каждому другому элементу, такая цепь называется параллельной.

    • Эквивалентное сопротивление параллельно соединенного резистора равно

      Эквивалентная проводимость равна сумме индивидуальных проводимостей

 

  Пример 1: Найдите общее значение резистора.

Или резистор имеет проводимость G как


где

и

 

  Пример 2: Для следующей цепи найдите общее значение сопротивления

Суммарное значение резистора равно

.


  Пример 3: Для следующей цепи:

  1. Найти общее значение сопротивления R T
  2. Найти текущий i T
  3. Найти ток в каждой ветви
  4. Найти мощность, рассеиваемую каждым резистором

1.Общее значение резистора

2. Общий ток можно рассчитать как

3. Ток в каждой ветке

Убедитесь, что

4. Мощность, рассеиваемая каждым резистором

или

или

или

 

Пример 4: Найти ток I 1 , I 2 , I 3 и I 4 в следующей цепи.

Раствор

Чтобы найти значение полного сопротивления:

Обратное

Нахождение напряжения цепи

Ток каждого провода при использовании напряжения цепи

 


Текущий отдел :

Рассмотрим следующую схему.Падение напряжения v на каждом из резисторов, включенных параллельно, определяется через ток и сопротивление.


Примеры:

Пример 5: Для следующей цепи найдите ток i 2

 


Пример 6: Для следующей схемы определите от i 1 до i 3 .

 


Пример 7:  Для следующей схемы определите от i 1 до i 3 .


Напряжение можно рассчитать как

Проверить результат:


Практические задачи :

(Щелкните изображение, чтобы посмотреть решение)

Задание 1: Найдите напряжение В 1 , В 2 и ток I 1 , I 2 для следующей цепи.

Посмотреть решение

Решение:

Действующий закон Кирхгофа

Затем

Так

Напряжение узла 1 как


Практика 2: Найдите ток i 1 , i 2 и i 3 через каждый параллельный продукт.

Посмотреть решение


Практика 3: Найдите напряжения В 1 , В 2 в последовательно-параллельной цепи.

Посмотреть решение

Решение:

Текущее правило делителя на узле 2:

Напряжение на узле 2:

или

По закону напряжения Кирхгофа


Практика 4: Найдите напряжение В g и токи I 1 и I 3 для следующей цепи.

Посмотреть решение

Решение:

Применить действующий закон Кирхгофа


Практика 5: Найдите ток i 1 в следующей цепи.:

Посмотреть решение

Решение:

Все параллельно


Упражнения:

 

Иллюстрация и свойства параллельной цепи | Что такое параллельная цепь? — Видео и стенограмма урока

Рисунок 2: Электрическая цепь с тремя параллельно соединенными компонентами

Как выглядит параллельная цепь?

Как выглядит параллельная схема? Иллюстрация параллельной цепи на рисунке 3 показывает, что каждый компонент электрической цепи подключен с обоих концов компонента непосредственно к источнику электричества, создавая свою собственную петлю или ответвление.Каждое место, где петля разветвляется, называется узлом. Ток течет от источника электричества или напряжения (V), обычно это батарея, через узлы к каждому компоненту (обозначенному R для резистора на схеме), а затем обратно к источнику. Таким образом, часть тока протекает через все компоненты одновременно. Поскольку каждая ветвь независима от других, разрыв одной из ветвей не повлияет на другие компоненты цепи.

Рисунок 3: В параллельной цепи каждый компонент цепи подключен к источнику электроэнергии независимо от других компонентов.

Свойства параллельных цепей

У параллельных цепей есть три важных свойства: ток, напряжение и сопротивление.

  • В параллельной цепи напряжение на всех компонентах одинаково.
  • Однако, в отличие от напряжения, величина тока, протекающего через каждую ветвь параллельной цепи, не одинакова. Ток является мерой количества электронов, протекающих в цепи.Поскольку каждый компонент находится в своей собственной петле, когда поток электричества разветвляется в разных направлениях в узлах, количество тока делится. После прохождения через компоненты разделенные токи воссоединяются так, что общий ток равен сумме токов, протекающих по каждой ветви через каждый из компонентов в параллельной цепи.
  • Сопротивление — это свойство компонентов, препятствующих прохождению электричества. Общее сопротивление в параллельной цепи на самом деле меньше, чем сопротивление отдельных компонентов цепи.Каждый дополнительный компонент уменьшает общее сопротивление цепи. Это может показаться нелогичным, но позже в уроке это станет более ясным.

Напряжение в параллельных цепях

Напряжение является результатом разности электрической потенциальной энергии. Это обеспечивает силу, которая заставляет электричество двигаться или течь по цепи. Чем больше электронов, тем больше электрическая потенциальная энергия. В параллельной цепи каждый компонент напрямую подключен к источникам питания, поэтому напряжение на каждом компоненте совпадает с напряжением источника.

Рисунок 4: Напряжение батареи и каждого резистора составляет 8 вольт, потому что в параллельных цепях напряжение на каждом компоненте равно напряжению источника.

Закон Ома в простой параллельной цепи

Закон Ома описывает взаимосвязь между напряжением, током и сопротивлением. В нем говорится, что величина тока прямо пропорциональна величине напряжения и обратно пропорциональна сопротивлению.Другими словами, если количество напряжения увеличивается, то количество тока также увеличивается или, если количество напряжения уменьшается, количество тока также уменьшается. С другой стороны, если количество сопротивления увеличивается, количество тока уменьшается. Если количество сопротивления уменьшается, то количество тока увеличивается.

Эта взаимосвязь между током, напряжением и сопротивлением представлена ​​следующей математической моделью или формулой:

{eq}I = \frac{V}{R} {/eq}

ток.Если напряжение данной цепи равно 9 В, а общее сопротивление равно 3, то согласно закону Ома I = 9/3 или 3 ампера

Сопротивление в параллельных цепях

В параллельных цепях сопротивление уменьшается с каждым добавленным компонентом. Это результат закона Ома. Параллельное добавление компонентов увеличивает количество узлов или точек ответвления тока. Таким образом, через каждую ветвь будет протекать меньше тока. Однако общий ток представляет собой сумму тока через каждую ветвь.

{eq}I = I_1+I_2+I_3+… {/eq}

Поскольку закон Ома гласит, что I = V/R, общее сопротивление можно записать как:

{eq}V=\frac{ V}{R_1}+\frac{V}{R_2}+\frac{V}{R_3}+… {/eq}

Вынесение V из каждого члена слева дает следующее:

{ eq}I = V(\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}+…) {/eq}

Таким образом, общее сопротивление равно {eq }\frac{1}{R} = \frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}+… {/eq}

Эта информация может быть используется для определения величины полного сопротивления и тока для следующей параллельной цепи:

В этой схеме даны величина напряжения от источника и сопротивление каждого компонента.

Напряжение в этой цепи 2В. Общее сопротивление находится по приведенной выше формуле:

{eq}\frac{1}{R}=\frac{1}{150}+\frac{1}{400}=\frac{1}{0,00916666666 } {/eq}

{eq}R=109 {/eq}

Затем с помощью закона Ома найдите ток:

{eq}I = \frac{2}{109} = 0,0183A {/eq}

Резюме урока

В параллельных цепях устройства соединены параллельно по разветвленным путям, а в последовательных цепях все соединены подряд.

  • Напряжение на каждом компоненте параллельной цепи одинаково и равно напряжению на источнике.
  • Ток распределяется между ветвями параллельной цепи.
  • Если цепь замкнута, то в цепи нет разрывов.
  • Общий ток равен сумме токов в каждом контуре.
  • Сопротивление уменьшается при добавлении ответвлений цепи.

Закон Ома описывает взаимосвязь между текущим напряжением и сопротивлением.В нем указано, что ток = напряжение/сопротивление. Ток пропорционален напряжению и обратно пропорционален сопротивлению

В отличие от последовательных цепей, устройства в параллельной цепи соединяются в ответвления, независимые друг от друга. Это делает параллельные цепи более выгодными, потому что независимые ветви означают, что даже в случае обрыва в одной ветви устройства в других ветвях могут продолжать работать.

Проекты в области электроники: как создавать последовательные и параллельные схемы

Всякий раз, когда у вас есть схемы, состоящие из более чем одного электронного компонента, эти электронные компоненты должны быть связаны друг с другом.Два способа соединения компонентов в цепи — последовательное и параллельное.

В соединении серии компоненты соединяются встык, так что ток течет сначала через один, затем через другой. При последовательном соединении ток проходит через одну лампу, а затем через другую. Лампы соединены между собой встык.

Одним из недостатков последовательного соединения является то, что если один компонент выйдет из строя таким образом, что это приведет к разомкнутой цепи, вся цепь будет разорвана, и ни один из компонентов не будет работать.Таким образом, если одна из ламп в последовательной цепи перегорит, ни одна из ламп не будет работать. Это потому, что ток должен протекать через обе лампы, чтобы цепь была замкнутой.

При параллельном соединении каждая лампа имеет свое прямое подключение к аккумулятору. Такая компоновка позволяет избежать того, что при последовательном соединении выходит из строя один из них. При параллельном соединении компоненты не зависят друг от друга при их подключении к аккумулятору. Таким образом, если одна лампа перегорит, другая будет продолжать гореть.

Интересная вещь происходит с напряжением, когда компоненты соединены последовательно: напряжения, присутствующие на каждом компоненте, делятся. Например, в схеме с батареей на 3 В и двумя одинаковыми лампами, соединенными последовательно, каждая лампа увидит всего полтора вольта. Если вы соедините три одинаковые лампы последовательно, каждая лампа будет потреблять только один вольт.

Вы можете измерить напряжение любого компонента в цепи, установив мультиметр на соответствующий диапазон напряжения, а затем прикоснувшись к выводам с обеих сторон компонента.Напряжение, которое вы измеряете, называется падением напряжения компонента .

Как построить последовательную схему лампы

В проекте 1-3 вы создадите простую цепь, которая последовательно соединяет две лампы. Затем вы будете использовать мультиметр для измерения напряжения в различных точках цепи.

Как собрать параллельную схему лампы

В этом проекте вы создадите цепь, которая соединяет две лампы параллельно, и будете использовать мультиметр для измерения напряжения в различных точках цепи.

серии

и параллельные схемы | Научный проект

Лампы ярче при параллельной или последовательной цепи?

  • Аккумулятор 9 В
  • Лента
  • Алюминиевая фольга
  • Две одинаковые лампочки для фонарика
  1. Прикрепите 8-дюймовую полоску алюминиевой фольги к положительной клемме 9-вольтовой батареи. Убедитесь, что алюминиевая фольга касается металла.
  2. Приклейте еще одну 8-дюймовую полоску алюминиевой фольги к отрицательной клемме 9-вольтовой батареи.
  3. Оберните конец алюминиевой полоски, прикрепленной к положительной клемме, вокруг металлического колпачка лампочки.
  4. Возьмите 4-дюймовую полоску алюминиевой фольги и оберните один конец вокруг второй лампочки.
  5. Поместите нижнюю часть лампочки, прикрепленную к положительной клемме, на свободный конец полоски фольги другой батареи.
  6. Поместите нижнюю часть второй лампочки на полоску фольги, прикрепленную к отрицательной клемме.
  7. Вы создали последовательную цепь.Обратите внимание, как ярко светят лампочки.
  1. Теперь давайте создадим параллельную цепь. Сначала выньте лампочки из системы.
  2. Возьмите две 4-дюймовые полоски алюминиевой фольги и оберните каждый из концов полоски, отходящей от положительной клеммы аккумулятора. Это должно быть похоже на ступеньки лестницы, но соединенные только с одной стороны.
  3. Оберните свободные концы 4-дюймовых полосок вокруг металлического колпачка каждой лампочки.
  4. Поместите нижнюю часть каждой лампочки на полоску фольги, прикрепленную к отрицательной клемме.
  1. Запишите свои наблюдения, сравнив яркость двух созданных вами контуров.

Лампы в параллельной цепи будут ярче, чем лампы в последовательной цепи.

В параллельных цепях каждый независимый путь испытывает одинаковое падение напряжения . Для последовательных цепей падение напряжения распределяется между компонентами (например, осветительными приборами) в зависимости от их сопротивлений.Большие перепады напряжения вызывают больший ток, а это означает, что через лампу проходит больше электронов, что делает ее ярче.

Закон Ома — это уравнение, описывающее взаимосвязь между напряжением (электрической силой), током (потоком электронов) и сопротивлением (сопротивлением объекта проходящему электрическому току).

И = В / Р

Где В — напряжение, измеренное в вольтах (В), I — ток, измеренный в амперах (А), и R — электрическое сопротивление, измеренное в омах (Ом)

Отказ от ответственности и меры предосторожности

Обучение.com предоставляет идеи проекта научной ярмарки для информационных только цели. Education.com не дает никаких гарантий или заявлений относительно идей проекта научной ярмарки и не несет ответственности за любые убытки или ущерб, прямо или косвенно вызванные использованием вами таких Информация. Получая доступ к идеям проекта научной ярмарки, вы отказываетесь и отказаться от любых претензий к Education.com, возникающих в связи с этим. Кроме того, ваш доступ к веб-сайту Education.com и проектным идеям научной ярмарки покрывается Образование.com Политика конфиденциальности и Условия использования сайта, которые включают ограничения об ответственности Education.com.

Настоящим предупреждаем, что не все проектные идеи подходят для всех отдельных лиц или во всех обстоятельствах. Реализация любой идеи научного проекта следует проводить только в соответствующих условиях и с соответствующими родителями. или другой надзор. Чтение и соблюдение мер предосторожности всех материалы, используемые в проекте, является исключительной ответственностью каждого человека.Для дополнительную информацию см. в справочнике по научной безопасности вашего штата.

Самый быстрый словарь в мире | Vocabulary.com

  • параллельная цепь Замкнутая цепь, в которой ток разделяется на два или более пути перед рекомбинацией для замыкания цепи

  • параллельный порт интерфейс между компьютером и принтером, при котором компьютер одновременно отправляет несколько битов информации на принтер

  • мостовая схема: цепь, состоящая из двух ответвлений (4 плеча, расположенных в форме ромба), к которым подключен счетчик

  • параллельная парковка непосредственно за другим транспортным средством

  • печатная плата компьютерная схема, состоящая из электронного узла

  • сходство параллелизма в силу соответствия

  • borscht Circuit (неофициальный) курортная зона в горах Катскилл в Нью-Йорке, которую в основном посещали гости-евреи

  • borsht Circuit (неофициальный) курортная зона в горах Катскилл в Нью-Йорке, которую в основном посещали гости-евреи

  • параллелограмм четырехугольник, у которого противоположные стороны параллельны и равны

  • последовательная цепь: цепь, части которой соединены последовательно

  • параллелепипед призма, основаниями которой являются параллелограммы

  • параллелепипед призма, основания которой являются параллелограммами

  • брусья гимнастический снаряд, состоящий из двух параллельных деревянных стержней, поддерживаемых стойками

  • параллельная операция одновременное выполнение двух или более операций

  • расположить параллельно друг другу

  • параллель везде равноудалена и не пересекается

  • схема шумоподавления электрическая цепь, отключающая приемник, когда сигнал становится слабее шума

  • паргелический круг светящийся ореол, параллельный горизонту на высоте солнца; вызванные кристаллами льда в атмосфере

  • Добавить комментарий

    Ваш адрес email не будет опубликован.