Что такое конденсатор: Страница не найдена

Содержание

Что такое конденсатор и как он работает – Altium Universe

Что такое конденсатор и как он работает.

Конденсатор — это пассивный электронный компонент с постоянным или переменным значением ёмкости, служащий для накопления заряда электрического тока и передачи его другим элементам в электроцепи. В отличие от аккумулятора, который, фактически также служит для накопления и дальнейшего использования энергии, конденсатор имеет малую ёмкость, обеспечивает значительно большее количество циклов заряда и разряда без выработки своего ресурса, а также способен очень быстро отдавать накопленный заряд.

Для начала разберёмся со всеми пунктами определения. Сам термин происходит от латинского condensare — “уплотнять, сгущать, накапливать”, то есть описывает как раз процесс накопления электрического заряда. В англоязычных странах конденсатор называется capacitor, буквально “ёмкостник”, то есть акцент делается не на самом факте накопления, а на ёмкости устройства.

Чем больше ёмкость конденсатора, тем больше энергии он может накопить и затем передать в цепь. Пассивность же выражается в том, что этот компонент, в отличие, например, от транзистора, не может самостоятельно генерировать или усиливать заряд.

У постоянных конденсаторов значение ёмкости изменить нельзя, но существуют и конденсаторы с изменяемой ёмкостью: переменные и подстроечные. Переменные позволяют управлять ёмкостью в процессе функционирования устройства — либо механически (изменением положения регулировочной рукояти), либо температурой. Такие конденсаторы применяются, например, в радиоприёмниках, в антенных устройствах.

Подстроечные конденсаторы не предполагают регулярного изменения ёмкости. Как видно из названия, она меняется только при подстройке цепей или аппаратуры, разовой или периодической. Подстроечные конденсаторы устроены проще, чем переменные, и предполагают лишь незначительный диапазон поправок ёмкости.

Строение

Простейший конденсатор состоит из двух металлических пластин (так называемых обкладок), разделённых диэлектриком. В качестве такого изолятора могут использоваться различные материалы — жидкие, твёрдые, газообразные. От типа диэлектрика зависит очень многое — фактически, все основные свойства конденсатора: сопротивление изоляции (то есть прохождению тока; утечки тока ведут к постепенной саморазрядке конденсатора), стабильность ёмкости, размеры, стоимость, условия работы и т.д.

Когда устройство подключается к источнику тока, на обкладках конденсатора накапливается и сохраняется заряд разной полярности (положительный на одной обкладке, отрицательный — на другой). При последующем подключении конденсатора к контуру без источника питания (или если напряжение в источнике ниже, чем напряжение в конденсаторе) происходит частичное или полное высвобождение накопленной энергии.

Чем больше площадь пластин и чем ближе друг к другу они расположены, тем больше ёмкость конденсатора. Причём обкладки совершенно не обязательно должны быть плоскими и прямоугольными (и чаще всего такими и не бывают) — они могут быть, например, цилиндрическими или сферическими.

Так, прототип современных конденсаторов, знаменитая “лейденская банка”, как раз представлял собой банку — то есть цилиндр, обклеенный внутри и снаружи листовым оловом. В металлобумажных конденсаторах обкладки из металлической фольги прокладываются бумагой, затем плотно сворачиваются в рулон, который помещается в корпус.

Ёмкость

Но какова бы ни была геометрия, зависимость не меняется — чем больше площадь обкладок и чем тоньше диэлектрический слой, тем больше ёмкость, и наоборот. Однако даже если обкладки совсем малы, а расстояние между ними достаточно велико, определённая ёмкость сохраняется. Так, например, конденсаторы небольшой ёмкости делают прямо на печатной плате, располагая две дорожки печатного монтажа напротив друг друга.

Впрочем, ёмкость (а также её стабильность, то есть способность не разряжаться) зависит и от диэлектрика. Любой материал, даже вакуум, в той или иной степени проводит электрический ток, что приводит к постепенной утечке заряда — саморазряду. Так что приходится соблюдать баланс — между ёмкостью и саморазрядкой, а также ценой, размером и другими факторами. Поэтому и существует множество типов и видов конденсаторов — используются разные диэлектрики и разные обкладки для разных, конкретных условий работы.

А что будет, если использовать конденсатор большей или меньшей ёмкости, чем требуется в данном случае? В большинстве случаев небольшое превышение ёмкости будет только на пользу. А вот использовать меньшую ёмкость не рекомендуется (как и, впрочем, сильно её превышать) — это может ухудшить работу всего устройства, да и сами конденсаторы долго не протянут.

Уточнение редактора

Основные параметры конденсаторов

Номинальная ёмкость. Именно эта цифра, показывающая способность конденсатора накапливать заряд, чаще всего указывается на его корпусе. Единица измерения — фарад, но лишь некоторые конденсаторы (ионисторы) имеют ёмкость в целых фарадах; ёмкость обычных конденсаторов исчисляется в пико-, нано- и микрофарадах.

Реальная ёмкость. Реальная ёмкость варьирует в зависимости от многих факторов и, соответственно, может довольно значительно отличаться от номинальной. Допустимое отклонение от номинала называется допуском; в зависимости от типа и сферы применения, допуск конденсатора может составлять от менее 1% до 90% (и даже выше).

Номинальное напряжение. Эта цифра также часто указывается на корпусе и показывает значения напряжения, при котором конденсатор будет работать с сохранением своих параметров, не выходя из строя в течение своего срока службы. Эксплуатационное напряжение не должно превышать номинальное, иначе произойдёт пробой — диэлектрик потеряет свои изолирующие свойства и начнёт проводить ток, то есть конденсатор перестанет выполнять свои функции.

Полярность. Большинство конденсаторов можно подключать к схеме, не беспокоясь о полярности. Но электролитические конденсаторы функционируют только при корректной полярности напряжения — в противном случае есть риск разрушения диэлектрика и взрыва корпуса (вследствие закипания электролита).

Применение

Конденсаторы востребованы во всех областях электротехники. Они могут служить в составе фильтров, подавляющих высоко- и низкочастотные помехи. Могут использоваться в импульсных схемах, где требуется их способность относительно медленно накапливать большой электрический заряд и быстро его отдавать — например, в фотовспышках. Применяются они и для сглаживания пульсаций выпрямленного напряжения, и для хранения данных в оперативной памяти компьютера.

Капаситор это

Конденсатор — распространенное двухполюсное устройство, применяемое в различных электрических цепях. В практических условиях мы используем конденсаторы с большим числом разделенных диэлектриком пластин. Назначение конденсатора и принцип его работы — это распространенные вопросы, которыми задаются новички в электротехнике. Заряд конденсатора начинается при подключении электронного прибора к сети.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам. ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Конденсаторы в автомобиль. Зачем нужен конденсатор Обзор all-audio.pro

Электрический конденсатор


Прежде чем говорить о проверке конденсаторов, давайте коснемся теории вопроса: что это за компонент, какие бывают и для чего используются? Итак, конденсатор — это пассивный электронный компонент, работающий по принципу батарейки, которая способна очень быстро заряжаться и разряжаться, аккумулируя в себе, таким образом, некоторое количество энергии. Боле научно можно сформулировать следующим образом: конденсатор — это два проводника обкладки , разделенные изолятором, служащий для накопления заряда и энергии электрического поля.

Примечание : обкладки проводники внутри корпуса могут быть выполнены из различных материалов, иметь разную форму и толщину. То же самое касается и изолятора между ними. Сути дела это не меняет. Кратко рассмотрим принцип работы конденсатора. В обычных условиях, любые вещества в том числе и проводники электрически нейтральны.

Что это значит? А то что в их структуре примерно равное количество электронов отрицательно заряженных частиц и протонов положительно заряженных. Поскольку нас, применимо к данной теме, будут интересовать, в первую очередь, проводники, то их и рассмотрим. Итак, в проводнике имеется множество хаотично перемещающихся частиц, которые «бродят» между атомами вещества, подобно молекулам воздуха в помещении. Если окружить этот кусок вещества электрическим полем, то эти частицы отреагируют на это, оттянувшись к его полюсам.

Отрицательные электроны соберутся у одного полюса, а положительные протоны — у другого. Стоит убрать поле, и заряженные частицы снова рассеются по всему объему вещества и равномерно перемешаются. Теперь представим себе такую ситуацию: перед снятием поля мы это «вещество» разрежем разделим на две части. Что получится? В каждой из половин окажутся «заперты» частицы с разным зарядом!

В каждой из половинок один из зарядов будет доминирующим, поэтому ее потенциал станет положительным или отрицательным. А напряжением будет называться разница между потенциалами обеих половинок. Теперь самое интересное: если соединить проводником два наши изолированные половинки, имеющие напряжение между собой, то по проводнику побежит ток — заряженные частицы устремятся навстречу друг другу, чтобы равномерно перемешаться.

Вот примерно так и выглядит принцип работы конденсатора :. В зависимости от состояния электролита внутри и материала снаружи из которого они сделаны , конденсаторы могут быть сухими твердотельными , жидкостными электролитическими , оксидно-полупроводниковыми, оксидно-металлическими. В зависимости от диэлектрика изолятора : бумажными, металлобумажными, плёночными, комбинированными бумажноплёночными, тонкослойными из органических синтетических плёнок. Все это разнообразие реализации приводит к тому, что мы имеем достаточно большую разновидность типоразмеров конденсаторов и их видов.

Нас же, в первую очередь, будут интересовать электролитические конденсаторы, поскольку именно их нам, скорее всего, придется проверять с помощью мультиметра. Емкость конденсатора зависит от площади проводников и расстояния между ними. Чем они к друг другу ближе расположены, тем больше емкость. Измеряется емкость в «фарадах». Но поскольку Фарада — это очень много, то все решили измерять емкость конденсаторов в микрофарадах mF. Чтобы добиться большой емкости при относительно небольшом размере элемента , нужно хорошенько постараться!

В миниатюрный корпус нужно поместить проводники с большей общей площадью поверхности, и, для экономии места, разделить их как можно более тонким слоем изолятора. В качестве обкладок проводников используется тонкая алюминиевая фольга.

Две ленты фольги плотно складываются и сворачиваются в рулон. Поэтому они взаимодействуют не просто по всей своей площади, но еще и по обеим сторонам. Фольга покрывается с одной стороны микроскопическим слоем окисла, выступающего в роли изолятора. Между лентами фольги находится специальная очень тонкая бумага, пропитанная электропроводящей жидкостью электролитом.

Жидкость смачивает фольгу, плотно прилегая к ней, поэтому несмотря на наличие бумаги, обкладки конденсатора оказываются разделены всего лишь несколькими молекулами окисла. Вот за счет всех этих ухищрений и получается столь большая емкость у такого относительно небольшого по размерам изделия.

Примечание : общую емкость конденсаторов можно увеличить путем их параллельного включения соединения на печатной плате. Этот не хитрый ход объединяет емкости всех конденсаторов на ней расположенных. Также надо учитывать тот факт, что емкость может изменяться в зависимости от состояния диэлектрика. Например, если изолятор отсыреет, то емкость элемента уменьшится. Добавлю несколько ремарок по поводу схемы выше.

Катод — это отрицательно заряженный проводник, а анод — положительно заряженный. Помните, в начале статьи мы говорили о том, что разнонаправленные по своему заряду частицы притягиваются к разным полюсам вещества? Вот это оно и есть: катодная и анодная фольга отрицательно и положительно заряженные проводники. Также на схеме не показан резиновый уплотнитель он находится сразу за выводами конденсатора. На фото ниже — несколько разобранных емкостей, на которых он отчетливо виден.

Итак, мы поговорили о том, что такое конденсаторы, как они работают и устроены. Теперь рассмотрим, какие же функции они выполняют? Рассмотрим каждый из пунктов более подробно.

Поскольку, как мы помним, конденсатор может очень быстро накопить зарядиться и отдать заряд разрядиться , то он может, таким образом, компенсировать кратковременную потерю напряжения в близлежащем узле электрической схемы. Приведем пример: возможно Вы были свидетелем ситуации, когда в помещении с большим количеством компьютеров случался кратковременный скачок напряжения в электросети. Свет, как говорят в народе, «мигнул». После этого, как правило, почти все компьютеры перезагружаются, но некоторые работают, как ни в чем не бывало!

Это просходит, прежде всего, из-за качественных конденсаторов в их блоках питания. Конечно, при полном отсутствии тока в сети хотя бы на протяжении нескольких секунд, все компьютеры выключаться. Здесь уже никакие, даже самые замечательные, конденсаторы не помогут и нужен полноценный источник бесперебойного питания — UPS. В процессе работы в «дебрях» системного блока нашего компьютера бывают и такие ситуации: одной из комплектующих ПК при выполнении той или иной задачи кратковременно нужно больше энергии.

Забирать ее у блока питания «долго» она нужна здесь и сейчас , да и провода по которым идет ток имеют свой коэффициент сопротивления, что также не способствует моментальной доставке импульса в нужную точку.

Тут на помощь снова приходят конденсаторы, расположенные рядом. Они могут разрядиться, обеспечив необходимую мощность, и почти мгновенно снова набрать заряд.

Вторая функция: сглаживание напряжения в сети. Расшифруем это дело. К помехам часто приводит, к примеру, параллельная работа в одной электрической сети других устройств: вентилятора, кондиционера, обогревателя и т. Часто, конденсатор используют в качестве фильтра для сглаживания пульсаций напряжения. Практически всегда в качестве фильтров конденсаторы используются в блоках питания персональных компьютеров. Как мы помним, переменный ток имеет частоту в 50 Герц направление движения электронов в этом случае за 1 секунду меняется раз.

С точки зрения требования к питанию компьютера — совершенно неприемлемая ситуация! Поэтому, прежде чем приступить непосредственно к сглаживанию импульсов, напряжение нужно «выпрямить» из переменного преобразовать в постоянное. Как мы помним из предыдущих материалов, именно такое «живет» внутри нашего системного блока. Для преобразования напряжения внутри блока питания используется схема выпрямителя, состоящая из силового трансформатора, выпрямителя и фильтра на его выходе. В роли последнего и выступают конденсаторы, которые сглаживают остаточные переменные составляющие.

Теперь, наконец-то, мы вплотную подходим к основной теме нашей статьи: проверке конденсаторов с помощью мультиметра. Поверьте, там быстрее показать все это в нескольких коротких видеороликах что мы и сделаем ниже , чем писать много текста. Именно поэтому и получилось такое героическое вступление, иначе статья бы получилась маленькая-маленькая :. Все подробно рассматривать не будем, перечислим только встречающиеся наиболее часто.

Я опишу и покажу, как делаю я, возможно, кто-то проверяет конденсаторы по другому? Возьмем в руку два не рабочих элемента. Ну, как не рабочих?

Они-то, именно что работают, но весь вопрос в том КАК? На фото ниже, один из них явно не в порядке правый , а вот левый — нормальный с виду , но имеет абсолютно ту же проблему, что и его «сосед» — потерю емкости. Как следствие — конденсатор не «держит» заряд. Гарантируемый срок службы электролитического конденсатора означает, что его штатная номинальная емкость в течение указанного срока не превысит допустимого расчетного отклонения.

Как правило, такое отклонение составляет не более ти процентов.. Превышение срока службы элемента не говорит о том, что он прекратит работать в принципе. Он продолжит свою работу, но значение его емкости уже выйдет за пределы, указанные в технической документации, а это, как мы понимаем, не есть хорошо и, со временем, может привести к разным неприятным последствиям.

Обратите внимание на фото ниже. На нем показано цифровое табло моего мультиметра с помощью которого я обычно проверяю конденсаторы. Как пользоваться мультиметром мы разбирали в одной из наших предыдущих статей, поэтому не будем лишний раз повторяться. Давайте сделаем так: сначала я кратко опишу, что и как для подготовки измерений выставлять на мультиметре, а затем продублирую весь процесс в небольшом видео.

Думаю, так будет понятно и максимально наглядно? Проверку начнем с исправного элемента эталонного образца , а потом вернемся к нашим «подопытным» из фото выше. При отсутствии данного режима можно перевести прибор в состояние измерения сопротивления: его значок на фото ниже для наглядности обведен треугольником. Проводить измерения можно выставив переключатель в значение 2 Килоома ОМ или 2к.

Мультитестер к работе подготовили. Что нам нужно сделать дальше? Черный минусовый щуп прибора приложить к минусовому проводнику, а красный плюсовой к его положительно заряженному полюсу.


Конденсатор: что это такое и для чего он нужен

Вздутие конденсатора вздутие электролита, cracked capacitor -eng. Причины могут быть разнообразными, но основная — не качественный конденсатор. Нет, это не говорит о том что качественные конденсаторы не вздуваются, совсем нет, ещё как вздуваются. Но давайте разберёмся с основной причиной вздутия. Основная причина вздутия — выкипание или испарение электролита. Выкипание может происходить при высоких температурах.

Конденсатор – это устройство, способное накапливать и моментально отдавать электрический заряд. В статье подробно разберем.

Конденсатор

Для накопления электроэнергии люди сначала использовали конденсаторы. Потом, когда электротехника вышла за пределы лабораторных опытов, изобрели аккумуляторы, ставшие основным средством для запасания электрической энергии. Но в начале XXI века снова предлагается использовать конденсаторы для питания электрооборудования. Насколько это возможно и уйдут ли аккумуляторы окончательно в прошлое? Причина, по которой конденсаторы были вытеснены аккумуляторами, была связана со значительно большими значениями электроэнергии, которые они способны накапливать. Другой причиной является то, что при разряде напряжение на выходе аккумулятора меняется очень слабо, так что стабилизатор напряжения или не требуется или же может иметь очень простую конструкцию. Главное различие между конденсаторами и аккумуляторами заключается в том, что конденсаторы непосредственно хранят электрический заряд, а аккумуляторы превращают электрическую энергию в химическую, запасают ее, а потом обратно преобразуют химическую энерию в электрическую. При преобразованиях энергии часть ее теряется. Интенсивность химических реакций зависит от температуры, поэтому на морозе аккумуляторы работают заметно хуже, чем при комнатной температуре.

Конденсатор — это что за устройство? Заряд конденсатора. Советские бумажные конденсаторы

Конденсатор — это устройство, способное накапливать электрический заряд. Такую же функцию выполняет и аккумуляторная батарея, но в отличие от неё конденсатор может моментально отдать весь накопленный заряд. Эта величина измеряется в фарадах. При подсоединении цепи к источнику электрического тока через конденсатор начинает течь электрический ток.

Наряду с резисторами одними из наиболее часто используемых электронных компонентов являются конденсаторы. Итак, простейший конденсатор представляет из себя две плоские проводящие пластины, расположенные параллельно друг другу и разделенные слоем диэлектрика.

Как проверить конденсатор мультиметром

Все виды конденсаторов имеют одинаковое основное устройство, оно состоит из двух токопроводящих пластин обкладок , на которых концентрируются электрические заряды противоположных полюсов, и слоя изоляционного материала между ними. Применяемые материалы и величина обкладок с разными параметрами слоя диэлектрика влияют на свойства конденсатора. Сопротивление изоляции между пластинами зависит от параметров изоляционного материала. Также от этого зависят допустимые потери и другие параметры. Рассмотрим виды конденсаторов, которые имеют различные материалы диэлектрика. Рассмотренные выше виды конденсаторов далеко не все имеют большую популярность.

Что такое конденсатор

Начальной или минимальной ёмкостью называется та ёмкость переменного конденсатора, которую он имеет при полностью выведенных пластинах. Начальная ёмкость имеет большое значение для перекрытия диапазона: чем она меньше, тем обычно лучше конденсатор, так как с таким конденсатором в контуре получается значительно большее перекрытие. Пусть, например, имеется переменный конденсатор с конечной ёмкостью в см и с начальной ёмкостью в 20 см. В формуле Томсона , которая связывает индуктивность контура, ёмкость контура и длину волны, ёмкость находится под корнем. Поэтому при изменении ёмкости конденсатора в 25 раз длина волны изменится не в 25 раз, а в V25; т. Если начальная волна была м, конечная будет в 5 раз больше, т.

Стоит заметить, что это может быть как внешняя среда, которая подогревает конденсатор, так и внутренняя среда. Сам конденсатор.

Как проверить конденсатор?

Прежде чем говорить о проверке конденсаторов, давайте коснемся теории вопроса: что это за компонент, какие бывают и для чего используются? Итак, конденсатор — это пассивный электронный компонент, работающий по принципу батарейки, которая способна очень быстро заряжаться и разряжаться, аккумулируя в себе, таким образом, некоторое количество энергии. Боле научно можно сформулировать следующим образом: конденсатор — это два проводника обкладки , разделенные изолятором, служащий для накопления заряда и энергии электрического поля.

Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания мощности и развязывания, блокировки постоянного тока, схем синхронизации и других применений. Но конденсатор — это не просто пузырёк с двумя проводочками и парой параметров — рабочее напряжение и ёмкость.

Электроника для начинающих Электроника для начинающих.

Главная О сайте BEAM-робототехника BEAM-роботы Искусственная жизнь BEAM-философия Технологии и устройство Робототехника для начинающих Как сделать первого робота Несколько увлекательных экспериментов с первым самодельным роботом Основы Электроника для начинающих Электронные компонеты Резистор Конденсатор Диод Транзистор Светодиод Фототранзистор Основы электроники Алгебра логики Логическое сложение Логическое умножение Логическое отрицание Законы алгебры логики Логические элементы Логические микросхемы Схемы роботов Разработка схем роботов Математические методы Основы схемотехники Схема робота, ищущего свет Схема робота, избегающего препятствия Технологии Платформы Макетирование Монтаж BEAM-роботов Как сделать робота Как сделать простейшего робота в домашних условиях Как сделать простого робота на одной микросхеме Как создать робота с логической схемой Создание робота для поиска света с элементами логики Робот своими руками, избегающий препятствия Самодельный рисующий робот. Основы Конденсатор. Емкость конденсатора. Заряд конденсатора. Конденсатор — это электронное устройство, обладающее электрической емкостью, то есть способностью накапливать электрический заряд заряжаться.

Справочник количества содержания ценных металлов в конденсаторе ЭТО-1 согласно справочно технической информации и паспортов-формуляров на изделие. Указан масса драгоценных металлов в граммах Золото, серебро, платина, палладий и другие на единицу изделия. Золото: 0 грамм. Серебро: 0, грамм.


Что такое конденсатор?

 

Конденсатор – это специальная система в холодильнике, которая необходима для отвода тепла от паров фреона. В нем они охлаждаются до нужного состояния и превращаются в капельки влаги. Он представляет собой длинный изогнутый трубопровод, внутрь которого поступают пары от хладагента. Это та самая решетка, которую можно увидеть на некоторых моделях холодильников на задней стенке. Через него тепло уходит наружу, а пары охлаждаются до нужной температуры.

 

Принцип работы

 

Хладагент засасывается компрессором из испарителя. На данном этапе он находится в парообразном состоянии. Далее под сильным давлением он закачивается в конденсатор, нагреваясь в процессе. Дальше он проходит по трубам конденсатора и постепенно остывает до нужной температуры. После этого он попадает в испаритель холодным, где быстро нагревается, забирая тепло из последнего. Этот цикл повторяется постоянно, что и обеспечивает подержание необходимой температуры в холодильнике. То есть низкая температура обеспечивается не охлаждением, как принято считать, а постоянным забором тепла.

 

В зависимости от типа конструкции различают ребристотрубные и листотрубные конденсаторы. Все они работают по одному принципу, но различаются формой и материалами, из которых они изготавливаются.

 

Причины поломки конденсаторов

 

Их может быть множество. Однако самой распространенной является загрязнение. Дело в том, что для правильной и постоянной теплоотдачи конденсатор должен быть чистым на поверхности. Если на нем собирается много пыли или паутины, то его эффективность значительно снижается, а это может привести к его поломке или выходу из строя всего холодильника. В случае если это произошло, следует немедленно обратиться к специалисту.

 

Компания «Формула Холода» оказывает услуги по ремонту и замене конденсаторов в холодильниках любых марок, независимо от года выпуска. Специалисты оказывают услуги в любых районах Санкт-Петербурга и Ленинградской области.

 

Преимущества сотрудничества с компаний

 

Вся работа выполнятся качественно и максимально сжатые сроки. Ремонт происходит на территории заказчика, то есть для этого не придется никуда ехать, а весь процесс можно визуально контролировать. Цена за услуги озвучивается сразу после первичной диагностики и не меняется в процессе. После окончания работы дается гарантия до шести месяцев.

 

Высококвалифицированные специалисты имеют большой опыт в данной сфере, а также обладают необходимым оборудованием и инструментами для ремонта. При необходимости мастера предоставляют новые запчасти на холодильник, на которые также дается гарантия.
 

 

Поделись, если оказалось полезно