Движение тока в электрической цепи: Направление электрического тока в цепи и его движение

Содержание

Направление тока в проводнике, как, откуда и куда течет электрический ток в проводниках.

Электрический ток представляет собой упорядоченное движение заряженных частиц. В твердых телах это движение электронов (отрицательно заряженных частиц) в жидких и газообразных телах это движение ионов (положительно заряженных частиц). Более того ток бывает постоянным и переменным, и у них совсем разное движение электрических зарядов. Чтобы хорошо понять и усвоить тему движение тока в проводниках пожалуй сначала нужно более подробно разобраться с основами электрофизики. Именно с этого я и начну.

Итак, как вообще происходит движение электрического тока? Известно, что вещества состоят из атомов. Это элементарные частицы вещества. Строение атома напоминает нашу солнечную систему, где в центре расположено ядро атома. Оно состоит из плотно прижатых друг к другу протонов (положительных электрических частиц) и нейтронов (электрически нейтральных частиц). Вокруг этого ядра с огромной скоростью по своим орбитам вращаются электроны (более мелкие частицы, имеющие отрицательный заряд). У разных веществ количество электронов и орбит, по которым они вращаются, может быть различным. Атомы твердых веществ имеют так называемую кристаллическую решетку. Это структура вещества, по которой в определенной порядке располагаются атомы относительно друг друга.

А где же тут может возникнуть электрический ток? Оказывается, что у некоторых веществ (проводников тока) электроны, что наиболее удалены от своего ядра, могут отрываться от атома и переходить на соседний атом. Это движение электронов называется свободным. Просто электроны перемещаются внутри вещества от одного атома к другому. Но вот если к этому веществу (электрическому проводнику) подключить внешнее электромагнитное поле, тем самым создав электрическую цепь, то все свободные электроны начнут двигаться в одном направлении. Именно это и есть движение электрического тока внутри проводника.

Теперь давайте разберемся с тем, что собой представляет постоянный и переменный ток. Итак, постоянный ток всегда движется только в одном направлении. Как говорилось в самом начале — в твердых телах движутся электроны, а в жидких и газообразных движутся ионы. Электроны, это отрицательно  заряженные частицы. Следовательно, в твердых телах электрический ток течет от минуса к плюсу источника питания (перемещаются электроны по электрической цепи). В жидкостях и газах ток движется сразу в двух направлениях, а точнее, одновременно, электроны текут к плюсу, а ионы (отдельные атомы, что не связаны между собой кристаллической решеткой, они каждый сам по себе) текут к минусу источника питания.

Учеными же было принято официально считать, что движение происходит от плюса к минусу (наоборот, чем это происходит в действительности). Так что, с научной точки зрения правильно говорить, что электрический ток движется от плюса к минусу, а с  реальной точки зрения (электрофизическая природа) правильнее полагать, что ток течет от минуса к плюсу (в твердых телах). Наверное это сделано для какого-то удобства.

Теперь, что касается переменного электрического тока. Тут уже немного все сложнее. Если в случае постоянного тока движение заряженных частиц имеет только одно направление (физически электроны со знаком минус текут к плюсу), то при переменном токе направление движения периодически меняется на противоположное. Вы наверное слышали, что в обычной городской электросети переменное напряжение величиной 220 вольт и стандартной частотой 50 герц. Так вот эти 50 герц говорят о том, что электрический ток за одну секунду успевает 50 раз пройти полный цикл, имеющий синусоидальную форму. Фактически за одну секунду направление тока меняется аж 100 раз (за один цикл меняется два раза).

P.S. Направление тока в электрических схемах имеет важное значение. Во многих случаях если схема рассчитана на одно направление тока, а вы случайно его поменяете на противоположный или вместо постоянного тока подключите переменный, то скорее всего устройство просто выйдет из строя. Многие полупроводники, что работают в схемах, при обратном направлении тока могут пробиваться и сгорать. Так что при подключении электрического питания направление тока должно быть вами строго соблюдаться.

Протекание тока — Основы электроники

Электрический ток это есть медленное движение потока электронов в область положительного заряда из области отрицательного заряда. В качестве единицы измерения силы тока используют ампер (А). Названа эта единица в честь французского ученого Андре Мари Ампера. Один ампер это сила тока, возникающая в проводнике при перемещении заряда через заданную точку величиной в один кулон за одну секунду.
Следующая формула показывает соотношение между силой тока и зарядом за секунду:

I=Q/t


где I — сила тока в амперах, Q — величина электрическо¬го заряда в кулонах, t — время в секундах.


Пример. Чему будет равна сила тока в цепи, если через заданную точку в цепи прошло 12 кулон заряда за 4 секунды.
Решение.

Q=12 Кл;
T=4 с;
I=Q/t=12/4=3 (А).

Рассмотрим протекание тока по проводнику. Обычно носителями заряда в цепи являются отрицательно заряженные электроны. Тогда ток это есть поток отрицательно заряженных электронов. Так исторически сложилось, что направление протекания тока не совпадает с направлением потока электронов, то есть противоположно. Однако в свое время было открыто, что когда электроны перемещаются от одного атома к другому, то возникают положительные заряды, названные дырками. (рис 2.2).

Можно сказать, что дырка это место на оболочке, откуда ушел электрон. Дырки перемещаются в направлении противоположном потоку электронов (рис 2.3).

В том случае, если электроны берутся с одного конца проводника и добавляются на другой конец проводника, то по проводнику будет течь ток. В результате медленного движения свободных электронов по проводнику, они сталкиваются с атомами, при этом освобождая другие электроны. Эти освободившиеся электроны движутся к положительному заряженному концу проводника, так же сталкиваясь с другими атомами. Это перемещение (или его еще называют дрейф) происходит как следствие отталкивания зарядов. К тому же положительно заряженный конец проводника, где присутствует дефицит электронов, притягивает отрицательно заряженные электроны.

Так вследствие «работы» законов взаимодействия электрических зарядов происходит медленный дрейф электронов. Хотя отдельные электроны сталкиваются с атомами и освобождают другие электроны, скорость которых достигает скорости света.
Для наглядности возьмем полую трубу и заполним ее шариками (рис. 2.4.).

Если добавить шарик в один конец трубы, то из второго конца шарик выталкивается. Отдельные шары тратят для перемещения некоторое время, но частота их столкновений иногда будет достаточно высокой.

Устройство, которое забирает электроны с положительно заряженного конца проводника и отдает их в отрицательно заряженный конец проводника, называют источником напряжения. В сравнении с системой водопровода источник напряжения может рассматриваться как своего рода насос (рис. 2.5).

 

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Куда течёт ток?

Куда течёт ток?

В каком направлении течёт электрический ток в электрической цепи? Даже школьнику известно: во внешней цепи от плюса источника энергии к минусу, а внутри источника тока от минуса к плюсу.

Вспомним, однако: электрическим током в физике и электротехнике называется упорядоченное движение электрически заряженных частиц. Таковыми в металлических проводниках могут быть только отрицательно заряженные частицы — электроны, которые во внешней цепи движутся как раз наоборот: от минуса источника к плюсу. Получается, что за направление электрического тока в науке принимают направление противоположное существующему — движению электронов.

Такое парадоксальное положение электротехники как науки можно объяснить, обратившись к истории самой науки.

Среди множества концепций, которыми в старые времена пытались объяснить электрические явления, некоторые сегодня кажутся не вполне научными, но сыграли свою положительную роль.

Одну из них — унитарную теорию электричества — выдвинул американский ученый XVIII века Бенджамен Франклин. Он полагал, что электрическая материя представляет собой невесомую жидкость, которая содержится во всех телах и может вытекать из одних тел и накапливаться в других. Тела становятся наэлектризованными, и когда в них бывает её недостаток — это отрицательная электризация, а когда избыток — положительная. При соединении положительно заряженных тел с отрицательными электрическая жидкость переходит от тела с повышенным количеством жидкости к телам с пониженным количеством — как в сообщающихся сосудах.

Так Франклин ввёл понятия положительного и отрицательного зарядов и их движения, электрического тока, а англичанин Стефан Грэй обнаружил, что существуют такие вещества — металлы — которые проводят электричество от одного тела к другому.

Эти концепции предвосхитили электронную теорию проводимости.

Их современник, французский академик Шарль Франсуа Дюфе считал, что существует два вида электричества, они подчиняются каждое в отдельности теории Франклина, но при соприкосновении нейтрализуют друг друга.

Английский учёный Роберт Симмер, на основании опытов Дюфе и наблюдая за электризацией своих шелковых чулок, впервые в мире обнаружил, что заряжается не только натираемое, но и натирающее тело. То есть при трении тел друг о друга на каждом из них накапливаются заряды одного типа, причём заряды одного знака отталкиваются, а разного знака притягиваются друг к другу и компенсируются при соединении, делая тело нейтральным (незаряженным).

Дуалистическая теория стала основой для разработки ионной теории проводимости газов и растворов — после открытия явления электролиза, при котором были экспериментально установлены два противоположных направления движения зарядов — положительных — от плюса к минусу, и отрицательных — от минуса к плюсу.

В 1820 году датский учёный Ханс Христиан Эрстед открыл, что проводник с током влияет на показания магнитной стрелки, правда, сформулировал его несколько туманно: «полюс, который видит отрицательное электричество входящим над собой, отклоняется к востоку». В целях какой-то определённости в этих знаках и отклонениях член Парижской академии наук Андре-Мари Ампер предложил за основное условно принять направление одного из двух электричеств, а именно — положительное.

Почему он так решил? Возможно, потому, что упомянутый С. Грэй электропроводимость металлов уже установил, а вот обеспечивающий её отрицательно заряженный электрон английский физик Джон Джозеф Томсон открыл только в 1897 г.

Установивший существование электромагнитной индукции — наведение тока в проводнике в изменяющемся магнитном поле — Майкл Фарадей, между тем, писал: «Если я говорю, что ток идет от положительного места к отрицательному, то лишь в согласии с традиционным соглашением, заключённым между учеными — это обеспечивает постоянное ясное и определённое средство для указания направления сил этого тока».

Именно для ясного понимания и лёгкого запоминания физики электромагнитных явлений учёные — они же профессора — придумали мнемонические правила, известные нынешним школьникам и студентам как «правило левой руки» и «правило правой руки», которые, как бы для простоты, не стали отменять и после открытия реального носителя тока — электрона.

И всё бы ничего — но изобрели ещё и электронную лампу, в которой уж точно ток создаётся электронами, летящими из катода к положительно заряженному аноду. А для объяснения физических явлений в полупроводниковых приборах даже придумали виртуальный носитель положительного заряда — «дырку», то есть отсутствие электрона в молекуле, и предпочитают говорить не о направлениях тока, а о направлениях движения электронов и «дырок».

А в электротехнике всё ещё — вот уже полтораста лет — условные положительные заряды условно движутся от плюса к минусу. Можно бы, в интересах истины, поправить учебники, переписать монографии, переучить электриков. Это может вызвать путаницу и неудобства, во всяком случае, на первых порах. Но можно и не поправлять, потому что, как это обосновал американский физик и историк науки Томас Кун, всякое научное знание условно. В астрономии, например, Земля вращается вокруг солнца, а в метеорологии — Солнце вокруг земли. Физики считают законы Ньтона условными — частным случаем созданных ими двух теорий относительности — специальной и общей.

Может, и пусть остаётся как есть: от того, что мы изменим условное направление электрического тока, лампочки ярче не засветятся, мартены не погаснут, телевизоры задом-наперёд показывать не будут?

(Мы-то с вами знаем, куда течёт ток!).

Использована статья Б. Г.?Хасапова «История одного парадокса электротехники»

Проектируем электрику вместе: Направление электрического тока

Свободные электроны.. Электрический ток.. Измерение тока.. Амперметр.. Единица силы тока — Ампер.. Направление электрического тока.. Направление движения электронов..

Когда электрическое поле прикладывается к проводнику, свободные электроны (носители отрицательного заряда) начинают дрейфовать в соответствии с направлением электрического поля – возникает электрический ток.

Движение электронов означает движение отрицательных зарядов, следовательно, – электрический ток является мерой количества электрического заряда, переносимого через поперечное сечение проводника за единицу времени.

В международной системе СИ единица измерения заряда – Кулон, а единица времени – секунда. Поэтому единица силы тока – Кулон в секунду (Кл/сек).

Измерение тока

Единица силы тока Кулон в секунду в системе СИ имеет конкретное название Ампер (А) – в честь знаменитого французского ученого Андре-Мари Ампера (на фото в заголовке статьи).                                              
Как мы знаем, величина отрицательного электрического заряда электрона -1,602 • 10-19 Кулона. Поэтому один Кулон электрического заряда состоит из 1 / 1,602 • 10-19 = 6,24 • 1018 электронов.
Следовательно, если 6,24 • 1018 электронов пересекает поперечное сечение проводника за одну секунду, то величина такого тока равна одному амперу.

Для измерения силы тока существует измерительный прибор — амперметр.

                                                        Рис. 1

Амперметр включается в электрическую цепь (рис. 1) последовательно с тем элементом цепи, силу тока в котором необходимо измерить. При подключении амперметра нужно соблюдать полярность: «плюс» амперметра подключается к «плюсу» источника тока, а «минус» амперметра — к «минусу» источника тока.

Направление электрического тока

Если в электрической цепи, показанной на рис. 1 замкнуть контакты выключателя, то по этой цепи потечет электрический ток. Возникает вопрос: «А в каком направлении?»

Мы знаем, что электрическим током в металлических проводниках называется упорядоченное движение отрицательно заряженных частиц – электронов (в других средах это могут быть ионы или ионы и электроны). Отрицательно заряженные электроны во внешней цепи двигаются от минуса источника к плюсу (одноименные заряды отталкиваются, противоположные — притягиваются), что хорошо иллюстрирует рис. 2.

Рис. 2                                                  
Учебник физики за 8 класс дает нам другой ответ: «За направление электрического тока в цепи принято направление движения положительных зарядов», — то есть от плюса источника энергии к минусу источника.

Выбор направления тока, противоположного истинному, иначе как парадоксальным назвать нельзя, но объяснить причины такого несоответствия можно, если проследить историю развития электротехники.

Дело в том, что электрические заряды стали изучать задолго до того, как были открыты электроны, поэтому природа носителей заряда в металлах была еще неизвестна.
Понятие о положительном и отрицательном заряде ввёл американский ученый и политический деятель Бенджамин Франклин.
 
В своей работе «Опыты и наблюдения над электричеством» (1747 г.) Франклин  предпринял попытку теоретически объяснить электрические явления. Именно он первым высказал важнейшее предположение об атомарной, «зернистой» природе электричества: «Электрическая материя состоит из частичек, которые должны быть чрезвычайно мелкими».

Франклин полагал, что тело, которое накапливает электричество, заряжается положительно, а тело, теряющее  электричество, заряжается отрицательно. При их соединении избыточный положительный заряд  перетекает туда, где его недостает, то есть к отрицательно заряженному телу (по аналогии с сообщающими сосудами).

Эти представления о движении положительных зарядов широко распространились в научных кругах и вошли в учебники физики. Так и получилось, что действительное направление движения электронов в проводнике противоположно принятому направлению электрического тока.

После открытия электрона ученые решили оставить все как есть, поскольку пришлось бы очень многое изменять (и не только в учебниках), если указывать истинное направление тока. Также это связано и с тем, что знак заряда практически ни на что не влияет, пока все используют одно и то же соглашение.
Истинное направление движения электронов используется только, когда это необходимо, чтобы объяснить некоторые физические эффекты в полупроводниковых устройствах (диоды, транзисторы, тиристоры и  др.).

Статьи по теме: 1. Что такое электрический ток?
                            2. Взаимодействие электрических зарядов. Закон Кулона
                            3. Постоянный и переменный ток
                            4. Проводники и изоляторы. Полупроводники
                            5. О скорости распространения электрического тока
                            6. Электрический ток в жидкостях 
                            7. Проводимость в газах
                            8. Электрический ток в вакууме
                            9. О проводимости полупроводников


Внимание! Всех интересующихся практической электротехникой приглашаю на страницы своего нового сайта «Электрика для дома». Он посвящен основам электротехники и электричества с акцентом на домашние электрические установки и происходящие в них процессы.                                                                             

Электрический ток. Источники электрического тока. Электрическая цепь и ее составные части

Электрическим током называется направленное (упорядоченное) движение заряженных частиц. Поток воды по трубам, поток людей, выходящих со стадиона после матча – не будет электрическим током, потому что нет заряда. Давайте посмотрим, что собой представляет ток в различных средах. Электрический ток в металлах представляет собой направленное перемещение электронов . Электрический ток в жидкостях (растворах солей, щелочей, кислот) представляет собой  направленное перемещение положительных ионов, которые двигаются к отрицательному полюсу, и отрицательных ионов, движение которых направлено к положительному полюсу. Электрический ток в газах представляет собой направленное перемещение положительных, отрицательных ионов и электронов Более подробно о каждом токе будем говорить позже. Рассмотрим,  какие условия необходимы для существования электрического тока? Для существования тока необходимо: существование электрического поля, наличие электрических зарядов и проводники электрических зарядов. Устройства, необходимые для создания электрического поля в проводниках, называются источниками тока. Рассмотрим несколько источников тока.
Электрофорная машина. При вращении ручки оба  диска из органического стекла натираются, вращаясь в разные стороны. На кондукторах (металлических стержнях с шариками, пропущенных через изолятор внутрь стаканов, оклеенных станиолевой бумагой) накапливаются разноименные заряды. Это устройство преобразует механическую энергию в электрическую, и может называться механическим генератором.
Термогенератор – устройство, преобразующее внутреннюю (тепловую) энергию в электрическую. Оно состоит  из  двух  разнородных проводников. С одного конца оба проводника прочно соединены и можно подогревать на таблетке сухого спирта (можно спичкой), а два других конца соединены с чувствительным гальванометром. Когда начинаем нагревать, то  стрелка гальванометра отклоняется, фиксируя наличие тока в цепи.
Фотогенератор – устройство, преобразующее световую энергию  в электрическую. Оно состоит из полупроводникового элемента, к которому подключен чувствительный гальванометр. При освещении фотоэлемента внутри полупроводника увеличивается число носителей зарядов, возникает энергетический барьер: электрическое поле заставляет перемещаться заряды по цепи.
Химический генератор – устройство, преобразующее химическую энергию в электрическую. Это – или один химический гальванический элемент, или батарейка (например, от карманного фонарика: три элемента по 1.5 В=4.5 В), или аккумулятор. В этих устройствах  берутся металлы из разных мест в ряду активности, чтобы они с разной скоростью реагировали или со щелочью, или с кислотой. Опять возникает энергетический барьер: на одном электроде больше электронов, на другом – меньше. Соединенные  электроды с элементами цепи (лампочка, амперметр и выключатель) показывают наличие тока
Давайте рассмотрим, какие элементы можно соединять проводами, чтобы получилась электрическая цепь: гальванический элемент, батарея элементов, лампочка, звонок, плитка, сопротивление, выключатель (или ключ), амперметр и вольтметр.
Чертеж, на котором изображены способы соединения элементов в цепь, называют схемой. Вот так выглядит схема электрического фонарика. А вот так выглядит схема, состоящая из источника, одного звонка и двух (или более)  кнопок, по которым можно независимо  включить звонок, например, в больнице (или в самолете), когда нужно вызвать больному  медицинскую  сестру.
Таким образом, мы рассмотрели, что представляет собой электрический ток, какие имеются источники тока и как на схемах могут соединяться различные элементы электрической цепи.

Электрический ток

Что такое электрический ток

Электрический ток — направленное движение электрически заряженных частиц под воздействием электрического поля. Такими частицами могут являться: в проводниках –электроны, в электролитах – ионы (катионы и анионы), в полупроводниках – электроныи, так называемые, «дырки» («электронно-дырочная проводимость»). Также существует»ток смещения», протекание которого обусловлено процессом заряда емкости, т.е. изменением разности потенциалов между обкладками. Между обкладками никакого движения частиц не происходит, но ток через конденсатор протекает. 

В теории электрических цепей за ток принято считать направленное движение носителей заряда в проводящей среде под действием электрического поля.

Током проводимости (просто током) в теории электрических цепей называют количество электричества, протекающего за единицу времени через поперечное сечение проводника: i=q/t, где i — ток. А; q = 1,6·109 — заряд электрона, Кл; t — время, с.

Это выражение справедливо для цепей постоянного тока. Для цепей переменного тока применяют так называемое мгновенное значение тока, равное скорости изменения заряда во времени: i(t)= dq/dt.

Электрический ток возникает тогда, когда на участке электрической цепи появляется электрическое поле, или разность потенциалов между двумя точками проводника. Разность потенциалов между двумя точками электрической цепи называют напряжением или падением напряжения на этом участке цепи.

 

Вместо термина «ток» («величина тока») часто применяется термин «сила тока». Однако последний нельзя назвать удачным, так как сила тока не есть какая-либо сила в буквальном смысле этого слова, а только интенсивность движения электрических зарядов в проводнике, количество электричества, проходящего за единицу времени через площадь поперечного сечения проводника. 
Ток характеризуется силой тока, которая в системе СИ измеряется в амперах (А), и плотностью тока, которая в системе СИ измеряется в амперах на квадратный метр. 
Один ампер соответствует перемещению через поперечное сечение проводника в течение одной секунды (с) заряда электричества величиной в один кулон (Кл):

1А = 1Кл / с.

В общем случае, обозначив ток буквой i, а заряд q, получим:

i = dq / dt. 

Единица тока называется ампер (А). Ток в проводнике равен 1 А, если через поперечное сечение проводника за 1 сек проходит электрический заряд, равный 1 кулон. 

Рис. 1. Направленное движение электронов в проводнике 

Если вдоль проводника действует напряжение, то внутри проводника возникает электрическое поле. При напряженности поля Е на электроны с зарядом е действует сила f = Ее. Величины f и Е векторные. В течение времени свободного пробега электроны приобретают направленное движение наряду с хаотическим. Каждый электрон имеет отрицательный заряд и получает составляющую скорости, направленную противоположно вектору Е (рис. 1). Упорядоченное движение, характеризуемое некоторой средней скоростью электронов vcp, определяет протекание электрического тока.

Электроны могут иметь направленное движение и в разреженных газах. В электролитах и ионизированных газах протекание тока в основном обусловлено движением ионов. В соответствии с тем, что в электролитах положительно заряженные ионы движутся от положительного полюса к отрицательному, исторически направление тока было принято обратным направлению движения электронов.

За направление тока принимается направление, в котором перемещаются положительно заряженные частицы, т.е. направление, противоположное перемещению электронов. 
В теории электрических цепей за направление тока в пассивной цепи (вне источников энергии) взято направление движения положительно заряженных частиц от более высокого потенциала к более низкому. Такое направление было принято в самом начале развития электротехники и противоречит истинному направлению движения носителей заряда — электронов, движущихся в проводящих средах от минуса к плюсу.

 

Направление электрического тока в электролите и свободных электронов в проводнике

Величина, равная отношению тока к площади поперечного сечения S, называются плотностью тока (обозначается δ): δ= I / S

При этом предполагается, что ток равномерно распределен по сечению проводника. Плотность тока в проводах обычно измеряется в А/мм2.

По типу носителей электрических зарядов и среды их перемещения различают токи проводимости итоки смещения. Проводимость делят на электронную и ионную. Для установившихся режимов различают два вида токов: постоянный и переменный.

Электрическим током переноса называют явление переноса электрических зарядов заряженными частицами или телами, движущимися в свободном пространстве. Основным видом электрического тока переноса является движение в пустоте элементарных частиц, обладающих зарядом (движение свободных электронов в электронных лампах), движение свободных ионов в газоразрядных приборах.

Электрическим током смещения (током поляризации) называют упорядоченное движение связанных носителей электрических зарядов. Этот вид тока можно наблюдать в диэлектриках. 
Полный электрический ток — скалярная величина, равная сумме электрического тока проводимости, электрического тока переноса и электрического тока смещения сквозь рассматриваемую поверхность.

Постоянным называют ток, который может изменяться по величине, но не изменяет своего знака сколь угодно долгое время. Подробнее об этом читайте здесь: Постоянный ток

Переменным называют ток, который периодически изменяется как по величине, так и по знаку.Величиной, характеризующей переменный ток, является частота (в системе СИ измеряется в герцах), в том случае, когда его сила изменяется периодически. Переменный ток высокой частоты вытесняется на поверхность проводника. Токи высокой частоты применяется в машиностроении для термообработки поверхностей деталей и сварки, в металлургии для плавки металлов. Переменные токи подразделяют насинусоидальные и несинусоидальные. Синусоидальным называют ток, изменяющийся по гармоническому закону:

i = Im sin ωt,

где Im, — амплитудное (наибольшее) значение тока, А,

Скорость изменения переменного тока характеризуется его частотой, определяемой как число полных повторяющихся колебаний в единицу времени. Частота обозначается буквой f и измеряется в герцах (Гц). Так, частота тока в сети 50 Гц соответствует 50 полным колебаниям в секунду. Угловая частота ω — скорость изменения тока в радианах в секунду и связана с частотой простым соотношением:

ω = 2πf

Установившиеся (фиксированные) значения постоянного и переменного токов обозначают прописной буквой I неустановившиеся (мгновенные) значения — буквой i. Условно положительным направлением тока считают направление движения положительных зарядов.

Переменный ток — это ток, который изменяется по закону синуса с течением времени.

Под переменным током также подразумевают ток в обычных одно- и трёхфазных сетях. В этом случае параметры переменного тока изменяются по гармоническому закону.

Поскольку переменный ток изменяется во времени, простые способы решения задач, пригодные для цепей постоянного тока, здесь непосредственно неприменимы. При очень высоких частотах заряды могут совершать колебательное движение — перетекать из одних мест цепи в другие и обратно. При этом, в отличие от цепей постоянного тока, токи в последовательно соединённых проводниках могут оказаться неодинаковыми. Ёмкости, присутствующие в цепях переменного тока, усиливают этот эффект. Кроме того, при изменении тока сказываются эффекты самоиндукции, которые становятся существенными даже при низких частотах, если используются катушки с большой индуктивностью. При сравнительно низких частотах цепи переменного тока можно по-прежнему рассчитывать с помощью правил Кирхгофа, которые, однако, необходимо соответствующим образом модифицировать.

Цепь, в которую входят разные резисторы, катушки индуктивности и конденсаторы, можно рассматривать, как если бы она состояла из обобщённых резистора, конденсатора и катушки индуктивности, соединённых последовательно. 

Рассмотрим свойства такой цепи, подключённой к генератору синусоидального переменного тока. Чтобы сформулировать правила, позволяющие рассчитывать цепи переменного тока, нужно найти соотношение между падением напряжения и током для каждого из компонентов такой цепи.

Конденсатор играет совершенно разные роли в цепях переменного и постоянного токов. Если, например, к цепи подключить электрохимический элемент, то конденсатор начнёт заряжаться, пока напряжение на нём не станет равным ЭДС элемента. Затем зарядка прекратится и ток упадёт до нуля. Если же цепь подключена к генератору переменного тока, то в один полупериод электроны будут вытекать из левой обкладки конденсатора и накапливаться на правой, а в другой — наоборот. Эти перемещающиеся электроны и представляют собой переменный ток, сила которого одинакова по обе стороны конденсатора. Пока частота переменного тока не очень велика, ток через резистор и катушку индуктивности также одинаков.

В устройствах-потребителях переменного тока переменный ток часто выпрямляется выпрямителями для получения постоянного тока.

Проводники электрического тока

Материал, в котором течёт ток, называется проводником. Некоторые материалы при низких температурах переходят в состояние сверхпроводимости. В таком состоянии они не оказывают почти никакого сопротивления току, их сопротивление стремится к нулю. Во всех остальных случаях проводник оказывает сопротивление течению тока и в результате часть энергии электрических частиц превращается в тепло. Силу тока можно рассчитать по закону Ома для участка цепи и закону Ома для полной цепи.

Скорость движения частиц в проводниках зависит от материала проводника, массы и заряда частицы, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. Несмотря на это, скорость распространения собственно электрического тока равна скорости света в данной среде, то есть скорости распространения фронта электромагнитной волны.

Как ток влияет на организм человека

Ток, пропущенный через организм человека или животного, может вызвать электрические ожоги, фибрилляцию или смерть. С другой стороны, электрический ток используют в реанимации, для лечения психических заболеваний, особенно депрессии, электростимуляцию определённых областей головного мозга применяют для лечения таких заболеваний, как болезнь Паркинсона и эпилепсия, водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии. В организме человека и животных ток используется для передачи нервных импульсов.

 

По технике безопасности, минимально ощутимый человеком ток составляет 1 мА. Опасным для жизни человека ток становится начиная с силы примерно 0,01 А. Смертельным для человека ток становится начиная с силы примерно 0,1 А. Безопасным считается напряжение менее 42 В.

Как определить направление электрического тока

Всем известно, что суть электрического тока заключается в упорядоченном движении заряженных частиц в каких-либо проводниках. Чаще всего для этих целей используются различные металлы, где в качестве тока выступают отрицательно заряженные частицы – электроны. В кислотных, щелочных и солевых растворах электрический ток возникает в результате движения положительных и отрицательных ионов.

С самого начала, когда это явление было открыто, у многих ученых возникал вопрос: какие движущиеся заряженные частицы образуют направление тока? Чтобы до конца разобраться в данной проблеме, следует остановиться на источниках тока, поскольку именно они инициируют движение заряженных частиц в проводниках.

Откуда берется электрический ток

Движение заряженных частиц появляется в результате действия, производимого аккумуляторами, батареями, генераторами и другими устройствами, преобразующими различные виды энергии в электрическую. Закон сохранения энергии наглядно действует в процессе таких преобразований.

Сами частицы начинают двигаться, когда цепь становится замкнутой, а в проводнике возникает электрическое поле, оказывающее определенное воздействие на свободные электроны. В связи с этим было установлено, что все источники тока обладают установленной электродвижущей силой или ЭДС.

Электроны не появляются из источников тока, они присутствуют в самих проводниках и, являясь свободными, начинают двигаться под действием созданного поля. В качестве наиболее яркого сравнительного примера выступает насос перекачивающий жидкость в трубах, замкнутых между собой. В зависимости от диаметра труб и количества разветвлений, жидкость может двигаться по ним с большей или меньшей скоростью. Эти свойства в полной мере характеризуют течение тока, которое изменяется в соответствии с сечением проводника.

На практике это выглядит следующим образом. Провод, сечением 1,5 мм2, рассчитан на максимальную силу тока в 16 А. К нему может быть подключена нагрузка не более 3-3,5 кВт. При подключении более мощного оборудования проводник не выдержит и выйдет из строя.

Разобравшись с источниками тока, необходимо определить его направление, которое приняли ученые после проведенных исследований в этой области. Условно было принято направление движения положительных зарядов, поскольку ток от положительного полюса движется к отрицательному полюсу источника тока.

Движение частиц и направление тока

Прежде всего, следует отметить, что не все движущиеся заряженные частицы вызывают образование тока. Например, под действием тепла заряды будут двигаться, но это движение – хаотическое и ненаправленное. Если же к тепловому движению добавляется действие электрическое поле, то под его влиянием хаотические перемещения частиц примут определенную направленность.

Заряженные частицы, образующие ток, движутся в направлении, в зависимости от знака их заряда. То есть, движение положительно заряженных частиц происходит от «+» к «-», а отрицательно заряженных, наоборот, от «-» к «+». Встречное движение характерно для газовой и электролитической среды, поэтому часто возникает вопрос, каким будет настоящее направление тока?

По общему соглашению было принято решение считать направление движения частиц с положительными зарядами, за направление электрического тока. В этом случае возникает некоторое противоречие, затрагивающее металлические проводники, в которых перенос зарядов осуществляется свободными электронами. Хорошо известно, что они двигаются от минуса к плюсу. Тем не менее, приходится считать направление тока в этом случае, противоположным движению свободных электронов. Однако, несмотря на некоторые неудобства, данное правило четко определяет, в каком направлении движется электрический ток.

Всем известно, что суть электрического тока заключается в упорядоченном движении заряженных частиц в каких-либо проводниках. Чаще всего для этих целей используются различные металлы, где в качестве тока выступают отрицательно заряженные частицы – электроны. В кислотных, щелочных и солевых растворах электрический ток возникает в результате движения положительных и отрицательных ионов.

С самого начала, когда это явление было открыто, у многих ученых возникал вопрос: какие движущиеся заряженные частицы образуют направление тока? Чтобы до конца разобраться в данной проблеме, следует остановиться на источниках тока, поскольку именно они инициируют движение заряженных частиц в проводниках.

Откуда берется электрический ток

Движение заряженных частиц появляется в результате действия, производимого аккумуляторами, батареями, генераторами и другими устройствами, преобразующими различные виды энергии в электрическую. Закон сохранения энергии наглядно действует в процессе таких преобразований.

Сами частицы начинают двигаться, когда цепь становится замкнутой, а в проводнике возникает электрическое поле, оказывающее определенное воздействие на свободные электроны. В связи с этим было установлено, что все источники тока обладают установленной электродвижущей силой или ЭДС.

Электроны не появляются из источников тока, они присутствуют в самих проводниках и, являясь свободными, начинают двигаться под действием созданного поля. В качестве наиболее яркого сравнительного примера выступает насос перекачивающий жидкость в трубах, замкнутых между собой. В зависимости от диаметра труб и количества разветвлений, жидкость может двигаться по ним с большей или меньшей скоростью. Эти свойства в полной мере характеризуют течение тока, которое изменяется в соответствии с сечением проводника.

На практике это выглядит следующим образом. Провод, сечением 1,5 мм2, рассчитан на максимальную силу тока в 16 А. К нему может быть подключена нагрузка не более 3-3,5 кВт. При подключении более мощного оборудования проводник не выдержит и выйдет из строя.

Разобравшись с источниками тока, необходимо определить его направление, которое приняли ученые после проведенных исследований в этой области. Условно было принято направление движения положительных зарядов, поскольку ток от положительного полюса движется к отрицательному полюсу источника тока.

Движение частиц и направление тока

Прежде всего, следует отметить, что не все движущиеся заряженные частицы вызывают образование тока. Например, под действием тепла заряды будут двигаться, но это движение – хаотическое и ненаправленное. Если же к тепловому движению добавляется действие электрическое поле, то под его влиянием хаотические перемещения частиц примут определенную направленность.

Заряженные частицы, образующие ток, движутся в направлении, в зависимости от знака их заряда. То есть, движение положительно заряженных частиц происходит от «+» к «-», а отрицательно заряженных, наоборот, от «-» к «+». Встречное движение характерно для газовой и электролитической среды, поэтому часто возникает вопрос, каким будет настоящее направление тока?

По общему соглашению было принято решение считать направление движения частиц с положительными зарядами, за направление электрического тока. В этом случае возникает некоторое противоречие, затрагивающее металлические проводники, в которых перенос зарядов осуществляется свободными электронами. Хорошо известно, что они двигаются от минуса к плюсу. Тем не менее, приходится считать направление тока в этом случае, противоположным движению свободных электронов. Однако, несмотря на некоторые неудобства, данное правило четко определяет, в каком направлении движется электрический ток.

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: постоянный электрический ток, сила тока, напряжение.

Электрический ток обеспечивает комфортом жизнь современного человека. Технологические достижения цивилизации — энергетика, транспорт, радио, телевидение, компьютеры, мобильная связь — основаны на использовании электрического тока.

Электрический ток — это направленное движение заряженных частиц, при котором происходит перенос заряда из одних областей пространства в другие.

Электрический ток может возникать в самых различных средах: твёрдых телах, жидкостях, газах. Порой и среды никакой не нужно — ток может существовать даже в вакууме! Мы поговорим об этом в своё время, а пока приведём лишь некоторые примеры.

• Замкнём полюса батарейки металлическим проводом. Свободные электроны провода начнут направленное движение от «минуса» батарейки к «плюсу».
Это — пример тока в металлах.

• Бросим в стакан воды щепотку поваренной соли . Молекулы соли диссоциируют на ионы, так что в растворе появятся свободные заряды: положительные ионы и отрицательные ионы . Теперь засунем в воду два электрода, соединённые с полюсами батарейки. Ионы начнут направленное движение к отрицательному электроду, а ионы — к положительному.
Это — пример прохождения тока через раствор электролита.

• Грозовые тучи создают столь мощные электрические поля, что оказывается возможным пробой воздушного промежутка длиной в несколько километров. В результате сквозь воздух проходит гигантский разряд — молния.
Это — пример электрического тока в газе.

Во всех трёх рассмотренных примерах электрический ток обусловлен движением заряженных частиц внутри тела и называется током проводимости.

• Вот несколько иной пример. Будем перемещать в пространстве заряженное тело. Такая ситуация согласуется с определением тока! Направленное движение зарядов — есть, перенос заряда в пространстве — присутствует. Ток, созданный движением макроскопического заряженного тела, называется конвекционным.

Заметим, что не всякое движение заряженных частиц образует ток. Например, хаотическое тепловое движение зарядов проводника — не направленное (оно совершается в каких угодно направлениях), и потому током не является (при возникновении тока свободные заряды продолжают совершать тепловое движение! Просто в этом случае к хаотическим перемещениям заряженных частиц добавляется их упорядоченный дрейф в определённом
направлении).
Не будет током и поступательное движение электрически нейтрального тела: хотя заряженные частицы в его атомах и совершают направленное движение, не происходит переноса заряда из одних участков пространства в другие.

Направление электрического тока

Направление движения заряженных частиц, образующих ток, зависит от знака их заряда. Положительно заряженные частицы будут двигаться от «плюса» к «минусу», а отрицательно заряженные — наоборот, от «минуса» к «плюсу». В электролитах и газах, например, присутствуют как положительные, так и отрицательные свободные заряды, и ток создаётся их встречным движением в обоих направлениях. Какое же из этих направлений принять за направление электрического тока?

Направлением тока принято считать направление движения положительных зарядов.

Попросту говоря, по соглашению ток течёт от «плюса» к «минусу» (рис. 1 ; положительная клемма источника тока изображена длинной чертой, отрицательная клемма — короткой).

Рис. 1. Направление тока

Данное соглашение вступает в некоторое противоречие с наиболее распространённым случаем металлических проводников. В металле носителями заряда являются свободные электроны, и двигаются они от «минуса» к «плюсу». Но в соответствии с соглашением мы вынуждены считать, что направление тока в металлическом проводнике противоположно движению свободных электронов. Это, конечно, не очень удобно.

Тут, однако, ничего не поделаешь — придётся принять эту ситуацию как данность. Так уж исторически сложилось. Выбор направления тока был предложен Ампером (договорённость о направлении тока понадобилась Амперу для того, чтобы дать чёткое правило определения направления силы, действующей на проводник с током в магнитном поле. Сегодня эту силу мы называем силой Ампера, направление которой определяется по правилу левой руки) в первой половине XIX века, за 70 лет до открытия электрона. К этому выбору все привыкли, и когда в 1916 году выяснилось, что ток в металлах вызван движением свободных электронов, ничего менять уже не стали.

Действия электрического тока

Как мы можем определить, протекает электрический ток или нет? О возникновении электрического тока можно судить по следующим его проявлениям.

1. Тепловое действие тока. Электрический ток вызывает нагревание вещества, в котором он протекает. Именно так нагреваются спирали нагревательных приборов и ламп накаливания. Именно поэтому мы видим молнию. В основе действия тепловых амперметров лежит тепловое расширение проводника с током, приводящее к перемещению стрелки прибора.

2. Магнитное действие тока. Электрический ток создаёт магнитное поле: стрелка компаса, расположенная рядом с проводом, при включении тока поворачивается перпендикулярно проводу. Магнитное поле тока можно многократно усилить, если обмотать провод вокруг железного стержня — получится электромагнит. На этом принципе основано действие амперметров магнитоэлектрической системы: электромагнит поворачивается в поле постоянного магнита, в результате чего стрелка прибора перемещается по шкале.

3. Химическое действие тока. При прохождении тока через электролиты можно наблюдать изменение химического состава вещества. Так, в растворе положительные ионы двигаются к отрицательному электроду, и этот электрод покрывается медью.

Электрический ток называется постоянным, если за равные промежутки времени через поперечное сечение проводника проходит одинаковый заряд.

Постоянный ток наиболее прост для изучения. С него мы и начинаем.

Сила и плотность тока

Количественной характеристикой электрического тока является сила тока. В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда , прошедшего через поперечное сечение проводника за время , к этому самому времени:

Измеряется сила тока в амперах (A). При силе тока в А через поперечное сечение проводника за с проходит заряд в Кл.

Подчеркнём, что формула (1) определяет абсолютную величину, или модуль силы тока.
Сила тока может иметь ещё и знак! Этот знак не связан со знаком зарядов, образующих ток, и выбирается из иных соображений. А именно, в ряде ситуаций (например, если заранее не ясно, куда потечёт ток) удобно зафиксировать некоторое направление обхода цепи (скажем, против часовой стрелки) и считать силу тока положительной, если направление тока совпадает с направлением обхода, и отрицательной, если ток течёт против направления обхода (сравните с тригонометрическим кругом: углы считаются положительными, если отсчитываются против часовой стрелки, и отрицательными, если по часовой стрелке).

В случае постоянного тока сила тока есть величина постоянная. Она показывает, какой заряд проходит через поперечное сечение проводника за с.

Часто бывает удобно не связываться с площадью поперечного сечения и ввести величину плотности тока:

где — сила тока, — площадь поперечного сечения проводника (разумеется, это сечение перпендикулярно направлению тока). С учётом формулы (1) имеем также:

Плотность тока показывает, какой заряд проходит за единицу времени через единицу площади поперечного сечения проводника. Согласно формуле (2) , плотность тока измеряется в А/м2.

Скорость направленного движения зарядов

Когда мы включаем в комнате свет, нам кажется, что лампочка загорается мгновенно. Скорость распространения тока по проводам очень велика: она близка к км/с (скорости света в вакууме). Если бы лампочка находилась на Луне, она зажглась бы через секунду с небольшим.

Однако не следует думать, что с такой грандиозной скоростью двигаются свободные заряды, образующие ток. Оказывается, их скорость составляет всего-навсего доли миллиметра в секунду.

Почему же ток распространяется по проводам так быстро? Дело в том, что свободные заряды взаимодействуют друг с другом и, находясь под действием электрического поля источника тока, при замыкании цепи приходят в движение почти одновременно вдоль всего проводника. Скорость распространения тока есть скорость передачи электрического взаимодействия между свободными зарядами, и она близка к скорости света в вакууме. Скорость же, с которой сами заряды перемещаются внутри проводника, может быть на много порядков меньше.

Итак, подчеркнём ещё раз, что мы различаем две скорости.

1. Скорость распространения тока. Это — скорость передачи электрического сигнала по цепи. Близка к км/с.

2. Скорость направленного движения свободных зарядов. Это — средняя скорость перемещения зарядов, образующих ток. Называется ещё скоростью дрейфа.

Мы сейчас выведем формулу, выражающую силу тока через скорость направленного движения зарядов проводника.

Пусть проводник имеет площадь поперечного сечения (рис. 2). Свободные заряды проводника будем считать положительными; величину свободного заряда обозначим (в наиболее важном для практики случая металлического проводника это есть заряд электрона). Концентрация свободных зарядов (т. е. их число в единице объёма) равна .

Рис. 2. К выводу формулы

Какой заряд пройдёт через поперечное сечение нашего проводника за время ?

С одной стороны, разумеется,

С другой стороны, сечение пересекут все те свободные заряды, которые спустя время окажутся внутри цилиндра с высотой . Их число равно:

Следовательно, их общий заряд будет равен:

Приравнивая правые части формул (3) и (4) и сокращая на , получим:

Соответственно, плотность тока оказывается равна:

Давайте в качестве примера посчитаем, какова скорость движения свободных электронов в медном проводе при силе тока A.

Заряд электрона известен: Кл.

Чему равна концентрация свободных электронов? Она совпадает с концентрацией атомов меди, поскольку от каждого атома отщепляется по одному валентному электрону. Ну а концентрацию атомов мы находить умеем:

Положим мм . Из формулы (5) получим:

Это порядка одной десятой миллиметра в секунду.

Стационарное электрическое поле

Мы всё время говорим о направленном движении зарядов, но ещё не касались вопроса о том, почему свободные заряды совершают такое движение. Почему, собственно, возникает электрический ток?

Для упорядоченного перемещения зарядов внутри проводника необходима сила, действующая на заряды в определённом направлении. Откуда берётся эта сила? Со стороны электрического поля!

Чтобы в проводнике протекал постоянный ток, внутри проводника должно существовать стационарное (то есть — постоянное, не зависящее от времени) электрическое поле. Иными словами, между концами проводника нужно поддерживать постоянную разность потенциалов.

Стационарное электрическое поле должно создаваться зарядами проводников, входящих в электрическую цепь. Однако заряженные проводники сами по себе не смогут обеспечить протекание постоянного тока.

Рассмотрим, к примеру, два проводящих шара, заряженных разноимённо. Соединим их проводом. Между концами провода возникнет разность потенциалов, а внутри провода — электрическое поле. По проводу потечёт ток. Но по мере прохождения тока разность потенциалов между шарами будет уменьшаться, вслед за ней станет убывать и напряжённость поля в проводе. В конце концов потенциалы шаров станут равны друг другу, поле в проводе обратится в нуль, и ток исчезнет. Мы оказались в электростатике: шары плюс провод образуют единый проводник, в каждой точке которого потенциал принимает одно и то же значение; напряжённость
поля внутри проводника равна нулю, никакого тока нет.

То, что электростатическое поле само по себе не годится на роль стационарного поля, создающего ток, ясно и из более общих соображений. Ведь электростатическое поле потенциально, его работа при перемещении заряда по замкнутому пути равна нулю. Следовательно, оно не может вызывать циркулирование зарядов по замкнутой электрической цепи — для этого требуется совершать ненулевую работу.

Кто же будет совершать эту ненулевую работу? Кто будет поддерживать в цепи разность потенциалов и обеспечивать стационарное электрическое поле, создающее ток в проводниках?

Ответ — источник тока, важнейший элемент электрической цепи.

Чтобы в проводнике протекал постоянный ток, концы проводника должны быть присоединены к клеммам источника тока (батарейки, аккумулятора и т. д.).

Клеммы источника — это заряженные проводники. Если цепь замкнута, то заряды с клемм перемещаются по цепи — как в рассмотренном выше примере с шарами. Но теперь разность потенциалов между клеммами не уменьшается: источник тока непрерывно восполняет заряды на клеммах, поддерживая разность потенциалов между концами цепи на неизменном уровне.

В этом и состоит предназначение источника постоянного тока. Внутри него протекают процессы неэлектрического (чаще всего — химического) происхождения, которые обеспечивают непрерывное разделение зарядов. Эти заряды поставляются на клеммы источника в необходимом количестве.

Количественную характеристику неэлектрических процессов разделения зарядов внутри источника — так называемую ЭДС — мы изучим позже, в соответствующем листке.

А сейчас вернёмся к стационарному электрическому полю. Каким же образом оно возникает в проводниках цепи при наличии источника тока?

Заряженные клеммы источника создают на концах проводника электрическое поле. Свободные заряды проводника, находящиеся вблизи клемм, приходят в движение и действуют своим электрическим полем на соседние заряды. Со скоростью, близкой к скорости света, это взаимодействие передаётся вдоль всей цепи, и в цепи устанавливается постоянный электрический ток. Стабилизируется и электрическое поле, создаваемое движущимися зарядами.

Стационарное электрическое поле — это поле свободных зарядов проводника, совершающих направленное движение.

Стационарное электрическое поле не меняется со временем потому, что при постоянном токе не меняется картина распределения зарядов в проводнике: на место заряда, покинувшего данный участок проводника, в следующий момент времени поступает точно такой же заряд. По этой причине стационарное поле во многом (но не во всём) аналогично полю электростатическому.

А именно, справедливы следующие два утверждения, которые понадобятся нам в дальнейшем (их доказательство даётся в вузовском курсе физики).

1. Как и электростатическое поле, стационарное электрическое поле потенциально. Это позволяет говорить о разности потенциалов (т. е. напряжении) на любом участке цепи (именно эту разность потенциалов мы измеряем вольтметром).
Потенциальность, напомним, означает, что работа стационарного поля по перемещению заряда не зависит от формы траектории. Именно поэтому при параллельном соединении проводников напряжение на каждом из них одинаково: оно равно разности потенциалов стационарного поля между теми двумя точками, к которым подключены проводники.
2. В отличие от электростатического поля, стационарное поле движущихся зарядов проникает внутрь проводника (дело в том, что свободные заряды, участвуя в направленном движении, не успевают должным образом перестраиваться и принимать «электростатические» конфигурации).
Линии напряжённости стационарного поля внутри проводника параллельны его поверхности, как бы ни изгибался проводник. Поэтому, как и в однородном электростатическом поле, справедлива формула , где — напряжение на концах проводника, — напряжённость стационарного поля в проводнике, — длина проводника.

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)

Электрический ток: поток заряда

Электрическая цепь

Электричество и магнетизм

Электрический ток: поток заряда

Рассказ о физике для 5-11 11-14

Электрический ток представляет собой поток заряда

Когда батарея соединена с лампочкой, образуя замкнутую цепь, везде в цепи присутствует электрический ток.Что-то течет стабильно. Это заряд, и может быть много разных объектов, несущих заряд.

Ток одинаков во всех точках одиночного контура – ​​утечек нет! И никакой заряд не накапливается в разных точках.

Заряд возникает в самой цепи. Это уже есть. Вот что значит быть проводником — иметь заряженные частицы, которые могут двигаться, когда проводник включен в полную цепь.

Эти заряженные частицы могут иметь другие движения, кроме постоянного дрейфа, но мы сосредоточимся на постоянном дрейфе, поскольку это движение представляет собой электрический ток.Заряженные частицы устойчиво дрейфуют в одном направлении так же, как и любые другие движения. Другие движения были до того, как замкнутая петля была завершена, и остаются после нее. Скорость дрейфа добавляется к другим скоростям.

Теперь мы знаем, что в металлических проводах дрейфующие заряженные частицы отрицательны (но это совсем не легко показать до исследования, проведенного после 16 лет). Это то, что показано на верхней паре диаграмм здесь. Но во многих других случаях дрейфующие заряженные частицы положительны (т.грамм. проводимость в нервных клетках, электролиз). Мы думаем, что лучше быть агностиком в отношении заряженных частиц, но не в отношении тока в петле: что-то течет, и поток одинаков во всех точках петли. Но мы бы предложили представить направление обычного потока заряда, как на нижней диаграмме (где носители заряда положительные), если вы решите показать потоки заряда.

Заряженные частицы возникают в самой цепи – когда они текут, возникает ток

В металлических проводах электроны являются движущимися заряженными частицами и возникают в проводах цепи.Они просто часть атомов, из которых состоят батарея, провода и лампочка. Когда эти компоненты не соединены в цепь, вы можете представить себе море свободных электронов, жужжащих вокруг неподвижного массива положительных ионов (подобно частицам в газе).

В нервах и электролизе ток переносится не электронами. Мы будем называть электрические токи потоком заряда, так как это охватывает все случаи.

Объяснение силы тока и сопротивления в электрической цепи

Электрические устройства работают, являясь частью электрической цепи, которая представляет собой путь, по которому текут электроны.Цепи зависят от проводников: материалов, которые обеспечивают легкий и прямой поток электронов через себя.

Некоторые материалы, такие как стекло или пластик, являются плохими проводниками. На самом деле они обычно используются как изоляторы: материалы, которые сопротивляются потоку электронов через них.

Однако многие металлы являются хорошими проводниками, так как обладают меньшим сопротивлением электричеству. Медь считается отличным проводником, потому что она имеет очень малое сопротивление. Кроме того, он не ржавеет и с ним легко работать, поэтому его часто выбирают для изготовления проволоки.

Но все проводники, даже такие хорошие, как медь, обладают определенным сопротивлением. Может быть небольшое сопротивление, но оно есть всегда.

Начнем с простой схемы. Цепь идет от одной клеммы батареи к свету, а затем обратно к другой клемме батареи. Когда мы замыкаем цепь, свет загорается. Электроны текут!

Теперь давайте построим такую ​​же схему, но на этот раз с большим количеством проводов. Когда мы замкнем цепь, обратите внимание, что происходит: свет не такой яркий.Что случилось?

Мы можем измерить ток в исходной цепи. Было 2 ампера. Лампа была яркой, что свидетельствовало о большом токе — хороший поток электронов!

Когда мы добавили провод, лампочка стала не такой яркой. Это означало, что через цепь проходил меньший ток. В этом случае мы можем измерить только 1,5 ампера. Почему?

Помните, что каждый проводник имеет некоторое сопротивление электричеству. Когда мы сравниваем сопротивление цепей, мы видим, что лишний провод во второй цепи добавляет сопротивление.

Когда мы заменяем лишний провод в этой цепи на другую лампочку, мы видим похожие результаты: первая лампочка все еще тусклая, как и вторая лампочка!

Дополнительный свет заменил дополнительный провод в цепи. Каждый свет, как провод, имеет свое сопротивление. И когда вы добавляете сопротивление, будет течь меньший ток.

Обычный и электронный поток | Основные понятия электричества

«Что хорошо в стандартах, так это то, что их так много на выбор. —Эндрю С. Таненбаум, профессор информатики

Положительный и отрицательный заряд электрона

Когда Бенджамин Франклин сделал свою гипотезу относительно направления потока заряда (от гладкого воска к грубой шерсти), он создал прецедент для электрических обозначений, которые существуют и по сей день, несмотря на то, что мы знаем, что электроны являются составляющими единицами заряда. , и что они перемещаются из шерсти в воск, а не из воска в шерсть, когда эти две субстанции трутся друг о друга.Вот почему говорят, что электроны имеют отрицательных зарядов: потому что Франклин предположил, что электрический заряд движется в направлении, противоположном тому, что он на самом деле имеет, и поэтому объекты, которые он назвал «отрицательными» (представляющими недостаток заряда), на самом деле имеют избыток электронов. .

К тому времени, когда было открыто истинное направление потока электронов, номенклатура «положительного» и «отрицательного» уже настолько прочно утвердилась в научном сообществе, что не было предпринято никаких усилий для ее изменения, хотя назвать электроны «положительными» было бы затруднительно. больше смысла ссылаться на «избыточную» плату.Видите ли, термины «положительный» и «отрицательный» являются человеческими изобретениями и как таковые не имеют абсолютного значения, выходящего за рамки наших собственных языковых условностей и научных описаний. Франклин мог бы так же легко назвать избыток заряда «черным», а недостаток — «белым», и в этом случае ученые говорили бы об электронах, имеющих «белый» заряд (при условии того же неверного предположения о положении заряда между воском и шерсть).

Условное обозначение потока

Однако, поскольку мы склонны ассоциировать слово «положительный» с «избытком», а «отрицательный» с «недостатком», стандартное обозначение заряда электрона кажется устаревшим.Из-за этого многие инженеры решили сохранить старую концепцию электричества с «положительным», относящимся к избыточному заряду, и соответствующим образом обозначить поток заряда (ток). Это стало известно как условное обозначение потока :

.

Обозначение потока электронов

Другие решили обозначать поток заряда в соответствии с фактическим движением электронов в цепи. Эта форма символики стала известна как электронного потока обозначение:

В общепринятой записи потока мы показываем движение заряда в соответствии с (технически неправильными) метками + и -.Таким образом, метки имеют смысл, но направление потока заряда неверно. В обозначении потока электронов мы следуем фактическому движению электронов в цепи, но метки + и — кажутся обратными. Действительно ли имеет значение, как мы обозначаем поток заряда в цепи? Не совсем, если мы последовательны в использовании наших символов. Вы можете следовать воображаемому направлению тока (обычный поток) или реальному (поток электронов) с одинаковым успехом в том, что касается анализа цепи. Понятия напряжения, тока, сопротивления, непрерывности и даже математические методы, такие как закон Ома (глава 2) и законы Кирхгофа (глава 6), остаются в силе при любом стиле записи.

Обычная запись потока и запись электронного потока

Вы найдете обычные обозначения потоков, используемые большинством инженеров-электриков и иллюстрированные в большинстве инженерных учебников. Поток электронов чаще всего встречается во вводных учебниках (этот, однако, отдаляется от него) и в трудах профессиональных ученых, особенно физиков твердого тела, занимающихся реальным движением электронов в веществах. Эти предпочтения являются культурными в том смысле, что определенные группы людей считают выгодным представлять себе движение электрического тока определенным образом.Поскольку большинство анализов электрических цепей не зависят от технически точного описания потока заряда, выбор между обычным обозначением потока и обозначением потока электронов является произвольным. . . почти.

Поляризация и неполяризация

Многие электрические устройства выдерживают реальные токи любого направления без каких-либо различий в работе. Лампы накаливания (в которых используется тонкая металлическая нить накаливания, которая раскаляется добела при достаточном токе), например, излучают свет с одинаковой эффективностью независимо от направления тока.Они даже хорошо работают на переменном токе (AC), направление которого быстро меняется со временем. Проводники и переключатели также работают независимо от направления тока. Технический термин для этой неуместности потока заряда — неполяризация . Тогда мы могли бы сказать, что лампы накаливания, выключатели и провода состоят из неполяризованных компонентов. И наоборот, любое устройство, которое по-разному работает при токах разного направления, будет называться -поляризованным устройством .

Есть много таких поляризованных устройств, используемых в электрических цепях. Большинство из них сделаны из так называемых полупроводниковых веществ, и как таковые подробно не рассматриваются до третьего тома этой серии книг. Подобно выключателям, лампам и батареям, каждое из этих устройств представлено на принципиальной схеме уникальным символом. Как можно догадаться, символы поляризованных устройств обычно где-то содержат стрелку, обозначающую предпочтительное или исключительное направление тока.Именно здесь действительно имеют значение конкурирующие обозначения обычного потока и электронного потока. Поскольку инженеры уже давно остановились на обычном потоке в качестве стандартного обозначения своей «культуры», и поскольку инженеры — это те же люди, которые изобретают электрические устройства и символы, представляющие их, все стрелки, используемые в символах этих устройств , указывают в направлении обычный поток, а не электронный поток . Другими словами, все символы этих устройств имеют стрелки, которые указывают против фактического потока электронов через них.

Пожалуй, лучшим примером поляризованного устройства является диод . Диод — это односторонний «клапан» для электрического тока, аналог обратного клапана для тех, кто знаком с сантехническими и гидравлическими системами. В идеале диод обеспечивает беспрепятственное протекание тока в одном направлении (мало сопротивления или его отсутствие), но предотвращает протекание тока в другом направлении (бесконечное сопротивление). Его условное обозначение выглядит так:

.

Помещен в цепь батареи/лампы, работает следующим образом:

Когда диод направлен в правильном направлении, позволяющем пропускать ток, лампа светится.В противном случае диод блокирует протекание тока так же, как и разрыв в цепи, и лампа не будет светиться.

Если мы обозначим ток цепи, используя обычные обозначения потока, символ стрелки диода имеет смысл: треугольная стрелка указывает в направлении потока заряда, от положительного к отрицательному:

С другой стороны, если мы используем обозначение потока электронов, чтобы показать истинное направление движения электронов по цепи,

символы стрелки диода кажутся обратными:

Только по этой причине многие люди предпочитают использовать обычное обозначение потока при рисовании направления движения заряда в цепи.Хотя бы по какой-то другой причине, символы, связанные с полупроводниковыми компонентами, такими как диоды, имеют больше смысла. Однако другие предпочитают показывать истинное направление движения электрона, чтобы не говорить себе: «Просто помните, что электроны на самом деле движутся в другую сторону» всякий раз, когда возникает вопрос об истинном направлении движения электрона.

Следует ли использовать обычный поток тока или поток электронов?

Обе модели будут давать точные результаты при последовательном использовании, и они одинаково «правильны», поскольку являются инструментами, помогающими нам понимать и анализировать электрические цепи.Однако в контексте электротехники обычный ток используется гораздо чаще. В этом учебнике используется обычный ток, и любой, кто намеревается изучать электронику в академической или профессиональной среде, должен научиться естественно думать об электрическом токе как о чем-то, что течет от более высокого напряжения к более низкому напряжению».

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Текущий поток — MagLab

В этом учебном пособии показано, как поток воды через систему труб можно использовать для понимания протекания тока через электрическую цепь.

В этом учебном пособии показано, как поток воды через систему труб можно использовать для понимания протекания тока через электрическую цепь. Здесь синие частицы представляют собой поток воды, движущийся по цепи, как электроны, для создания электричества. Скорость потока воды, определяемая как объем жидкости, проходящей через определенную точку за фиксированный промежуток времени, сравнима со скоростью прохождения заряда через точку в цепи (электрический ток), которая измеряется в ампер ( кулонов в секунду) .

 

Отрегулируйте ползунок  Flow Rate  , чтобы увеличить или уменьшить мощность водяного насоса и скорость потока через трубы. Водяной насос эквивалентен электрической батарее или другому источнику энергии в этой аналогии, обеспечивая импульс, который проталкивает воду через систему, поскольку батарея обеспечивает разность потенциалов (напряжение) , что приводит к движению электронов по проводам (электричество). ).

Насос нагнетает воду в разные части системы труб, которые затем снова объединяются, точно так же, как параллельный контур направляет электричество по каждой параллельной ветви, которая затем также снова объединяется.Вода встречает сопротивление , точно так же, как электричество в параллельной цепи. Сопротивление потоку воды обеспечивается змеевиком из длинных тонких труб и пропеллером, который вращается в ответ на течение. Катушка из узкого провода могла служить резистором в электрической цепи. Другие распространенные резисторы, встречающиеся в электрических цепях, включают лампочки и электродвигатели. Электрическое сопротивление измеряется в Ом Ом в честь Георга Ома, физика, экспериментально установившего, что идеальных проводников не бывает.

В обучающей программе катушка оказывает гораздо большее сопротивление, чем пропеллер, поэтому больше воды пойдет по пути наименьшего сопротивления. Обратите внимание, однако, что поток в ответвлениях составляет общее количество воды, протекающей через систему. Например, когда скорость потока максимальна, первый расходомер показывает три единицы потока, в то время как поток за катушкой показывает одну единицу, а поток за пропеллером — две единицы. В электрической цепи амперметров измеряют протекание тока в ампер ; показания будут составлять общий ток, протекающий через цепь.

Обзор | Безграничная физика

Обзор электрического тока

Электрический ток — это поток электрического заряда, а сопротивление — это сопротивление этому потоку.

Цели обучения

Объясните разницу между проводником и резистором

Ключевые выводы

Ключевые моменты
  • Электрический ток — это движение электрического заряда через проводящую среду.
  • Мы также используем термин «ток» как величину для описания скорости, с которой заряд течет через среду.Единицей СИ для тока является ампер (А), который равен кулону в секунду (Кл/с).
  • Проводимость — это величина, описывающая, насколько легко заряд может проходить через материал, а сопротивление — это обратная величина, мера того, насколько сильно материал сопротивляется электрическому потоку.
  • Объект, который позволяет заряду легко течь, называется проводником, а объект, который сопротивляется потоку заряда, называется резистором.
Основные термины
  • проводящая среда : Материал, который может передавать электричество.
  • электрическое сопротивление : Противодействие электрического проводника протеканию через него тока, приводящее к преобразованию электрической энергии в тепло и излучение. Производной единицей сопротивления в системе СИ является ом. Символ: Р.
  • электрический заряд : Квантовое число, определяющее электромагнитные взаимодействия некоторых субатомных частиц; по соглашению электрон имеет электрический заряд -1, а протон +1, а кварки имеют дробный заряд.

Введение в электрический ток и сопротивление

От потолочных светильников до микросхем, от гидроусилителя руля до работы в Интернете, электричество обеспечивает основу для нашей технологии и цивилизации. Возбуждение нейронов в вашем мозгу также является примером электрического тока, то есть движения электрического заряда через проводящую среду. В электрических цепях этот заряд часто переносится движущимися электронами в проводе. Он также может переноситься ионами в электролите или как ионами, так и электронами, например, в плазме.

Электрический ток

Когда мы говорим об электрическом токе, часто мы имеем в виду конкретную величину – скорость , с которой течет заряд. Большой ток, например, используемый для запуска двигателя грузовика, перемещает большое количество заряда за короткое время, в то время как слабый ток, например, используемый для работы ручного калькулятора, перемещает небольшое количество заряда в течение короткого времени. длительный период времени. В форме уравнения электрический ток I определяется как

[латекс]\текст{I}=\frac{\Delta \text{Q}}{\Delta \text{T}}[/latex]

, где Q — количество заряда, прошедшего через данную площадь за время t.Единицей силы тока в системе СИ является ампер (А), названный в честь французского физика Андре-Мари Ампера (1775–1836). Поскольку I=ΔQ/Δt, мы видим, что ампер равен одному кулону в секунду:

[латекс]1 \ \текст{А} = 1 \\текст{С}/\текст{с}[/латекс]

Для потока электричества требуется среда, в которой может течь заряд. Мы называем объект или среду, которая позволяет заряду течь, проводником , в то время как эмпирическая мера способности материала проводить заряд называется электрической проводимостью .Единицей проводимости в системе СИ является сименс (С).

Электрический ток : Скорость потока заряда является текущей. Ампер — это поток в один кулон через площадь за одну секунду.

Сопротивление

Противоположностью проводимости является сопротивление – величина, которая описывает, насколько сильно материал сопротивляется прохождению электрического тока. Объект или среда, обладающая высоким электрическим сопротивлением, называется резистором . Мы увидим, что сопротивление объекта зависит от его формы и материала, из которого он состоит.Единицей сопротивления в СИ является Ом (символ: ).

Электрические цепи

Полезным и практичным способом узнать об электрическом токе и сопротивлении является изучение электрических цепей. На рисунке выше показана простая схема и стандартное схематическое изображение батареи, проводящего пути и нагрузки (резистора). Схемы очень полезны для визуализации основных особенностей схемы. Одна схема может отображать множество ситуаций. Схема в (b), например, может представлять что угодно: от аккумулятора грузовика, подключенного к фаре, освещающей улицу перед грузовиком, до небольшой батареи, подключенной к фонарику-ручке, освещающему замочную скважину в двери.Такие схемы полезны, потому что анализ одинаков для самых разных ситуаций. Нам нужно понять несколько схем, чтобы применить концепции и анализ ко многим другим ситуациям.

Простая электрическая цепь : (a) Простая электрическая цепь. Замкнутый путь для протекания тока обеспечивается проводящими проводами, соединяющими нагрузку с клеммами батареи. (b) На этой схеме батарея представлена ​​двумя параллельными красными линиями, проводники показаны прямыми линиями, а зигзаг представляет собой нагрузку.Схема представляет большое разнообразие подобных схем.

Обратите внимание, что направление тока на рисунке направлено от положительного к отрицательному. Направление обычного тока — это направление, в котором будет течь положительный заряд. В зависимости от ситуации могут перемещаться положительные заряды, отрицательные заряды или и то, и другое. В металлических проводах, например, ток переносится электронами, то есть движутся отрицательные заряды. В ионных растворах, таких как соленая вода, движутся как положительные, так и отрицательные заряды.

Важно понимать, что в проводниках существует электрическое поле, ответственное за производство тока. В отличие от статического электричества, где проводник, находящийся в равновесии, не может иметь в себе электрического поля, проводники, по которым течет ток, имеют электрическое поле и не находятся в статическом равновесии. Электрическое поле необходимо для подачи энергии для перемещения зарядов.

Вооружившись этими основами, мы приступим к рассмотрению более сложных деталей этой темы в следующем разделе.

Электричество и магнетизм. Электрический ток

Электричество и магнетизм. Электрический ток Электрический ток

Чтобы электрическая цепь что-то делала, должен течь ток.Мы представляем себе «электрическая жидкость», которая выходит из положительного конца батареи. Электрическая жидкость называется заряд ; что на самом деле движется являются электронами (это небольшое осложнение, которое мы будем игнорировать в дальнейшем что электроны на самом деле движутся направление, противоположное самому течению. Здесь нет эксперимент, который мы можем провести здесь, может показать, как идут дела.) Электрический ток измеряется в единице, называемой ампер .Это электрический аналог расхода жидкости — например, галлонов в минуту. Лампочка в вашем наборе, подключенный к двум батареям (как в фонарике) имеет ток 0,33 Ампера. Автомобильный аккумулятор при запуске выдает ток в несколько сотен ампер. двигатель.

Электрический ток необходим для доставки электрической энергии, но ток и энергия не то же самое. Если бы по проводам текла энергия, вы достаточно одного провода, чтобы зажечь лампочку.(Мы обсудим ток и мощность подробнее в следующем разделе).
Электрические устройства

В этом разделе мы встретили несколько электрических устройств.

Провода и переключатели Ток должен оставаться внутри проводника. Таким образом, мы можем направлять ток в нужное нам место, с помощью проводов.

Батарейка — это способ преобразования химической энергии в электрическую. Мы изучим их в следующем разделе.Их аналог в сифоне система представляла собой разницу высот между двумя уровнями воды, связаны.

Лампочка представляет собой очень тонкую проволоку из вольфрама, запаянную в атмосфера инертного газа. Когда по проводу течет ток, электрическая энергия преобразуется в тепло, что делает провод чрезвычайно горячий — почти 1000 o F! Эти горячие объекты испускают видимый свет, и есть ваша лампочка.Тонкая проволока имеет форму катушки, и символ лампочки также является изображением этого. Два конца тонкой проволоки подключены к двум электрическим контактам. на цоколе лампочки, так что мы можем заставить ток течь через Это. Лампочка превращает электрическую энергию в тепло независимо от направления тока. течет.

Двигатель позволяет нам превращать электрическую энергию в механическую энергия.Внутри двигателя вы найдете магниты и электромагниты, которые мы будем изучать позже.

Ток в цепях

Мы не можем видеть электрический ток, поэтому не совсем понятно что происходит, когда мы делаем цепь. Деятельность в этом раздел постарались сделать протекающий ток реальным.

В первом наборе действий ( электрические токи и простые цепи), мы обнаружили, что мы должен сделать круг, прежде чем что-то может случиться.Электрический ток должен оставаться в проводах и должен куда-то идти; мы можем только иметь ток через устройство, если ток может циркулировать через это и через аккумулятор (который дает энергию).

Когда закончите, установите флажок:  
Next:обсуждение электрического тока

Авторские права принадлежат Дж. П. Стрейли и С. А. Шаферу, 2002 г.

Направление электрического тока

Направление электрического тока может быть немного запутанной темой.Здесь мы рассмотрели ваш запрос. Надеюсь, что эта статья поможет вам понять направление тока.

Электрический ток

Каждая частица в природе, кроме изоляторов*, имеет в себе большое количество свободных электронов. Эти электроны беспорядочно движутся во всех направлениях внутри материала при нормальных условиях. Если к этим материалам приложить определенное напряжение, все эти электроны начнут двигаться из области более высокого потенциала в область более низкого потенциала.Это движение электронов из области более высокого потенциала в область более низкого потенциала под действием электрического поля составляет электрический ток.

*свободных электронов в изоляторе не будет, если его поддерживать при нормальной или комнатной температуре.

Определение тока

Электрический ток обычно называют потоком зарядов через проводник. Его можно определить как количество заряда , протекающего через площадь поперечного сечения проводника.Другими словами, термин «ток» можно определить как скорость протекания зарядов через проводник. Подробнее о Электрический ток

Математическое выражение электрического тока

Электрический ток измеряется количеством электронов, проходящих через определенную точку проводника или цепи в единицу времени.

I = Q / т

Где Q — заряд электронов, протекающих через проводник.t — время течения в секундах.

В каком направлении течет электрический ток?

Направление электрического тока немного трудно понять тем, кого учили, что ток течет от положительного к отрицательному. За этим явлением стоят две теории. Одна из них — теория обычного тока, а другая — теория фактического течения. Когда Бенджамин Франклин изучал заряды, строение атома и атомных частиц было неизвестно.Поэтому он принял точку накопления заряда за положительную, а точку с дефицитом зарядов за отрицательную. Поэтому говорят, что заряд течет от положительного к отрицательному. Это называется обычным током.

Но на самом деле электрический ток есть не что иное, как поток электронов. Электроны являются отрицательно заряженными частицами и притягиваются к положительному заряду. Кроме того, многие эксперименты показали, что в проводнике текут свободные электроны. Отрицательно заряженные электроны движутся от отрицательного полюса к положительному.Это направление фактического течения тока.

Направление тока при анализе цепи

При анализе цепей мы обычно рассматриваем направление электрического тока от положительного к отрицательному. Математически отрицательные заряды, текущие в одном направлении, эквивалентны положительным зарядам, текущим в противоположном направлении. Следовательно, это не имеет значения. При анализе цепи можно рассмотреть протекание тока от положительного к отрицательному или наоборот.На самом деле, положительно заряженные ионы могут притягиваться отрицательно заряженными электронами.

Единица тока

Единицей тока является ампер или А. Один ампер равен одному кулону в секунду, тогда как один кулон равен 6,25 x 10 18 электронов. Говоря, что через цепь протекает ток в один ампер, подразумевается, что 6,25 x 10 90 295 18 90 296 электронов пересекают точку цепи в секунду.

.

Добавить комментарий

Ваш адрес email не будет опубликован.