Электромагнитная волна рисунок: Распространение электромагнитных волн — урок. Физика, 9 класс.

Содержание

Распространение электромагнитных волн — урок. Физика, 9 класс.

Переменное магнитное поле и переменное электрическое поле всегда существуют одновременно.

 

Обрати внимание!

Источником электромагнитного поля являются ускоренно двигающиеся электрические заряды.

Совершающие колебательные движения электрические заряды порождают периодически меняющееся электрическое поле. Оно, в свою очередь, приводит к появлению переменного магнитного поля, которое создаёт переменное электрическое поле и так далее.

Переменное электрическое поле имеет замкнутые силовые линии, поэтому оно называется вихревым.

Максвелл теоретически обосновал положение о распространении электромагнитного поля в пространстве (в том числе в вакууме) в виде поперечных волн.

Электромагнитная волна — это система создающих друг друга переменного магнитного и переменного электрического полей, распространяющихся в пространстве.

 

Рисунок \(1\). Электромагнитная волна


Вектор магнитной индукции B→ и напряжённость электрического поля E→ являются количественными характеристиками соответственно магнитного и электрического полей. Как раз эти параметры меняются по величине и направлению в электромагнитной волне.


Рисунок \(2\). Модель электромагнитной волны

 

Перпендикулярность векторов B→, E→ и c→ (скорость распространения волны) в любой точке свидетельствует о том, что электромагнитная волна — поперечная волна.

 

Максвелл смог теоретически установить скорость таких волн — \(300000\) км/с (скорость света). Расстояние, на которое волна распространяется за период колебаний \(T\), называется длиной волны \(λ\).

 

λ=cT=cν.

Также Максвеллом было доказано, что исключительно высокочастотные колебания векторов B→ и E→ (\(100000\) Гц и больше) способны создать интенсивную электромагнитную волну.

 

Немецкий учёный Г. Герц в \(1888\) году смог получить, зафиксировать и подтвердить свойства электромагнитных волн, которые предсказал Максвелл.


Рисунок \(3\). Генрих Герц

Источники:

Рисунок 3. Генрих Герц

https://upload.wikimedia.org/wikipedia/commons/thumb/3/30/HEINRICH_HERTZ.JPG/274px-HEINRICH_HERTZ.JPG

Свойства электромагнитных волн

В предыдущем параграфе мы рассмотрели опыты с генератором электромагнитных волн высокой частоты. Он был удобен тем, что вы могли видеть как источник волн, так и приёмник – антенну из двух проволок. Для следующих опытов возьмём генератор и приёмник электромагнитных волн сверхвысокой частоты. Чем больше частота, тем короче может быть антенна. Ниже показаны передатчик и приёмник, антенны которых настолько малы, что поместились внутри рупоров, удобных для опытов.

Отражение волн. Расположим рупоры передатчика и приёмника вблизи друг друга, наклонив их вниз. Электромагнитная волна не будет попадать в приёмный рупор, поэтому стрелка вольтметра будет на нуле. Изменим условия опыта – расположим между рупорами металлическую пластину. Теперь излучённая передатчиком электромагнитная волна отразится от электропроводящей поверхности и попадёт в рупор приёмника, поэтому вольтметр покажет наличие сигнала (см. рисунок).

Преломление волн. Расположим рупоры передатчика и приёмника напротив, немного опустив передатчик. При включении генератора вольтметр отметит отсутствие сигнала. Теперь поместим между рупорами куб из пластмассы, и вольтметр отметит наличие сигнала (см. рисунок). Так может произойти только в том случае, если испущенная передатчиком электромагнитная волна преломляется внутри диэлектрика. Дифракция волн. Как мы уже отметили в § 11-г, дифракцией называется отклонение волн от прямолинейного распространения в одной и той же среде, приводящее к огибанию ими препятствий. Для наблюдения дифракции электромагнитных волн продолжим опыты с теми же приборами.Расположим рупоры напротив друг друга. При включении генератора вольтметр отметит наличие сигнала. Теперь закроем приёмный рупор электропроводящим металлическим диском. Вольтметр отметит отсутствие сигнала. Передвинем теперь диск на середину между рупорами. Вольтметр снова отметит наличие сигнала, хотя, и более слабого, чем прежде. Сделаем вывод: электромагнитная волна, частично огибая диск, попадает в рупор приёмника (см. рисунок).

Интерференция волн. Как мы уже отметили в § 11-г, интерференция – это наложение нескольких волн, при котором возникает перераспределение их энергии, приводящее к возникновению областей с чередующимися усилениями и ослаблениями колебаний (то есть областей, куда энергия, переносимая волнами, попадает в меньшей или большей степени).

Для подготовки к наблюдению интерференции направим излучающий рупор на два металлических листа, расположенные под углом, чуть меньшим 180° (см. рисунок). Будем передвигать приёмный рупор в зоне между крайними красными стрелками. Ими мы показали области, где приёмник обнаружит максимумы притока энергии волн. В промежутке между стрелками приёмник отметит минимумы поступления энергии.

Электромагнитные волны и их распространение. Электромагнитная волна

М. Фарадей ввел понятие поля:

    вокруг покоящегося заряда возникает электростатическое поле,

    вокруг движущихся зарядов (тока) возникает магнитное поле.

В 1830 г. М. Фарадей открыл явление электромагнитной индукции: при изменении магнитного поля возникает вихревое электрическое поле.

Рисунок 2.7 — Вихревое электрическое поле

где,
— вектор напряженности электрического поля,
— вектор магнитной индукции.

Переменное магнитное поле создает вихревое электрическое поле.

В 1862 г. Д.К. Максвелл выдвинул гипотезу: при изменении электрического поля возникает вихревое магнитное поле.

Возникла идея о едином электромагнитном поле.

Рисунок 2.8 — Единое электромагнитное поле.

Переменное электрическое поле создает вихревое магнитное поле.

Электромагнитное поле — это особая форма материи — совокупность электрических и магнитных полей. Переменные электрические и магнитные поля существуют одновременно и образуют единое электромагнитное поле. Оно материально:

Проявляет себя в действии как на покоящиеся, так и на движущиеся заряды;

Распространяется с большой, но конечной скоростью;

Существует независимо от нашей воли и желаний.

При скорости заряда, равной нулю, существует только электрическое поле. При постоянной скорости заряда возникает электромагнитное поле.

При ускоренном движении заряда происходит излучение электромагнитной волны, кото­рая распространяется в пространстве с конечной скоростью.

Разработка идеи электромагнитных волн принадлежит Максвеллу, но уже Фарадей догадывался об их существовании, хотя побоялся опубликовать работу (она была прочитана более чем через 100 лет после его смерти).

Главное условие возникновения электромагнитной волны — ускоренное движение электрических зарядов.

Что собой представляет электромагнитная волна, легко представить на следующем примере. Если на водную гладь бросить камушек, то на поверхности образуются расходящиеся кругами волны. Они движутся от источника их возникновения (возмущения) с определенной скоростью распространения. Для электромагнитных волн возмущениями являются передвигающиеся в пространстве электрические и магнитные поля. Меняющееся во времени электромагнитное поле обязательно вызывает появление переменного магнитного поля, и наоборот. Эти поля взаимно связаны.

Основным источником спектра электромагнитных волн является звезда Солнце. Часть спектра электромагнитных волн видит глаз человека. Этот спектр лежит в пределах 380…780 нм (рис. 2.1). В области видимого спектра глаз ощущает свет по-разному. Электромагнитные колебания с различной длиной волн вызывают ощущение света с различной окраской.

Рисунок 2.9 — Спектр электромагнитных волн

Часть спектра электромагнитных волн используется для целей радиотелевизионного вешания и связи. Источник электромагнитных волн — провод (антенна), в котором происходит колебание электрических зарядов. Процесс формирования полей, начавшийся вблизи провода, постепенно, точку за точкой, захватывает все пространство. Чем выше частота переменного тока, проходящего по проводу и порождающего электрическое или магнитное поле, тем интенсивнее создаваемые проводом радиоволны заданной длины.

Ра́дио (лат. radio — излучаю, испускаю лучи ← radius — луч) — разновидность беспроводной связи, при которой в качестве носителя сигнала используются радиоволны, свободно распространяемые в пространстве.

Радиоволны (от радио…), электромагнитные волны с длиной волны > 500 мкм (частотой

Радиоволны — это электрические и магнитные поля, меняющиеся во времени. Скорость распространения радиоволн в свободном пространстве составляет 300000 км/с. Исходя из этого, можно определить длину радиоволны (м).

λ=300/f, гдеf — частота (МГц)

Звуковые колебания воздуха, созданные во время телефонного разговора, преобразуются микрофоном в электрические колебания звуковой частоты, которые по проводам передаются к аппаратуре абонента. Там, на другом конце линии, они с помощью излучателя телефона преобразуются в колебания воздуха, воспринимаемые абонентом как звуки. В телефонии средством связи цепи являются провода, в радиовещании — радиоволны.

«Сердцем» передатчика любой радиостанции является генератор — устройство, вырабатывающее колебания высокой, но строго постоянной для данной радиостанции частоты. Эти колебания радиочастоты, усиленные до необходимой мощности, поступают в антенну и возбуждают в окружающем ее пространстве электромагнитные колебания точно такой же частоты — радиоволны. Скорость удаления радиоволн от антенны радиостанции равна скорости света: 300 000 км/с, что почти в миллион раз быстрее распространения звука в воздухе. Это значит, что если на Московской радиовещательной станции в некоторый момент времени включили передатчик, то ее радиоволны меньше чем за 1 /30 с дойдут до Владивостока, а звук за это время успеет распространиться всего, лишь на 10- 11 м.

Радиоволны распространяются не только в воздухе, но и там, где его нет, например, в космическом пространстве. Этим они отличаются от звуковых волн, для которых совершенно необходим воздух или какая-либо другая плотная среда, например вода.

Электромагнитная волна – распространяющееся в пространстве электромагнитное поле (колебания векторов
). Вблизи заряда электрическое и магнитное поля изменяются со сдвигом фаз p/2.

Рисунок 2.10 — Единое электромагнитное поле.

На большом расстоянии от заряда электрическое и магнитное поля изменяются синфазно.

Рисунок 2.11 — Синфазное изменение электрического и магнитного полей.

Электромагнитная волна поперечна . Направление скорости электромагнитной волны совпадает с направлением движения правого винта при повороте ручки буравчика вектора к вектору .

Рисунок 2.12 — Электромагнитная волна.

Причем в электромагнитной волне выполняется соотношение
, где с – скорость света в вакууме.

Максвелл теоретически рассчитал энергию и скорость электромагнитных волн.

Таким образом, энергия волны прямо пропорциональна четвертой степени частоты . Значит, чтобы легче зафиксировать волну, необходимо, чтобы она была высокой частоты.

Электромагнитные волны были открыты Г. Герцем (1887).

Закрытый колебательный контур электромагнитных волн не излучает: вся энергия электрического поля конденсатора переходит в энергию магнитного поля катушки. Частота колебаний определяется параметрами колебательного контура:
.

Рисунок 2.13 — Колебательный контур.

Для увеличения частоты необходимо уменьшить L и C, т.е. развернуть катушку до прямого провода и, т.к.
, уменьшить площадь пластин и развести их на максимальное расстояние. Отсюда видно, что мы получим, по существу, прямой проводник.

Такой прибор называется вибратором Герца. Середина разрезается и подсоединяется к высокочастотному трансформатору. Между концами проводов, на которых закрепляются маленькие шаровые кондукторы, проскакивает электрическая искра, которая и является источником электромагнитной волны. Волна распространяется так, что вектор напряженности электрического поля колеблется в плоскости, в которой расположен проводник.

Рисунок 2.14 — Вибратор Герца.

Если параллельно излучателю расположить такой же проводник (антенну), то заряды в нем придут в колебательное движение и между кондукторами проскакивают слабые искры.

Герц обнаружил электромагнитные волны на опыте и измерил их скорость, которая совпала с рассчитанной Максвеллом и равной с=3 . 10 8 м/с.

Переменное электрическое поле порождает переменное магнитное поле, которое, в свою очередь, порождает переменное электрическое поле, то есть антенна, возбудившее одно из полей, вызывает появление единого электромагнитного поля. Важнейшее свойство этого поля в том, что оно распространяется в виде электромагнитных волн.

Скорость распространения электромагнитных волн в среде без потерь зависит от относительно диэлектрической и магнитной проницаемости среды. Для воздуха магнитная проницаемость среды равняется единице, следовательно, скорость распространения электромагнитных волн в этом случае равна скорости света.

Антенной может служить вертикальный провод, питаемый от генератора высокой частоты. Генератор затрачивает энергию на ускорение движения свободных электронов в проводнике, а эта энергия преобразуется в переменное электромагнитное поле, то есть электромагнитные волны. Чем больше частота тока генератора, тем быстрее изменяется электромагнитное поле и интенсивнее излечение волн.

С проводом антенны связаны как электрическое поле, силовые линии которого начинаются на положительных и кончаются на отрицательных зарядах, так и магнитное поле, линии которого замыкаются вокруг тока провода. Чем меньше период колебаний, тем меньше времени остается для возвращения энергии связанных полей в провод (то есть, к генератору) и тем больше переходит ее в свободные поля, которые распространяются далее в виде электромагнитных волн. Эффективное излучения электромагнитных волн происходит при условии соизмеримости длины волны и длины излучающего провода.

Таким образом, можно определить, что радиоволна — это не связанное с излучателем и каналообразующими устройствами электромагнитное поле, свободно распространяющееся в пространстве в виде волны с частотой колебаний от 10 -3 до 10 12 Гц.

Колебания электронов в антенне создаются источником периодически изменяющейся ЭДС с периодом Т . Если в некоторый момент поле у антенны имело максимальное значение, то такое же значение оно будет иметь спустя время Т . За это время существовавшее в начальный момент у антенны электромагнитное поле переместится на расстояние

λ = υТ (1)

Минимальное расстояние между двумя точками пространства, поле в которых имеет одинаковое значение, называется

длиной волны. Как следует из (1), длина волны λ зависит от скорости ее распространения и периода колебаний электронов в антенне. Так как частота тока f = 1 / T , то длина волны λ = υ / f .

Радиолиния включает в себя следующие основные части:

Передатчик

Приемник

Среда, в которой распространяются радиоволны.

Передатчик и приемник являются управляемыми элементами радиолинии, так как можно увеличить мощность передатчика, подключить более эффективную антенну и увеличить чувствительность приемника. Среда является неуправляемым элементом радиолинии.

Отличие линии радиосвязи от проводных линий заключается в том, что в проводных линиях в качестве связующего звена используются провода или кабель, которые являются управляемыми элементами (можно изменить их электрические параметры).

), описывающей электромагнитное поле, теоретически показал, что электромагнитное поле в вакууме может существовать и в отсутствие источников — зарядов и токов. Поле без источников имеет вид волн, распространяющихся с конечной скоростью, которая в вакууме равна скорости света:

с = 299792458±1, 2 м/с. Совпадение скорости распространения электромагнитных волн в вакууме с измеренной ранее скоростью света позволило Максвеллу сделать вывод о том, что свет представляет собой электромагнитные волны. Подобное заключение в дальнейшем легло в основу электромагнитной теории света.

В 1888 году теория электромагнитных волн получила экспериментальное подтверждение в опытах Г. Герца . Используя источник высокого напряжения и вибраторы (см. Герца вибратор), Герцу удалось выполнить тонкие эксперименты по определению скорости распространения электромагнитной волны и ее длины. Экспериментально подтвердилось, что скорость распространения электромагнитной волны равна скорости света, что доказывало электромагнитную природу света.

это процесс распространения электромагнитного взаимодействия в пространстве.
Электромагнитные волны описываются общими для электромагнитных явлений уравнениями Максвелла. Даже в случае отсутствия в пространстве электрических зарядов и токов уравнения Максвелла имеют отличные от нуля решения. Эти решения описывают электромагнитные волны.
В случае отсутствия зарядов и токов уравнения Максвелла набирают следующего вида:

,

Применяя операцию rot к первым двум уравнений можно получить отдельные уравнения для определения напряженности электрического и магнитного полей

Эти уравнения имеют типичную форму волновых уравнений. Их развязками есть суперпозиция выражений следующего типа

Где – Определенный вектор, который называется волновым вектором, ? – число, которое называется циклической частотой, ? – фаза. Величины и есть амплитудами электрической и магнитной компоненты электромагнитной волны. Они взаимно перпендикулярны и равны по абсолютной величине. Физическая интерпретация каждой из введенных величин дается ниже.
В вакууме электромагнитная волна распространяется в скоростью, которая называется скоростью света. Скорость света является фундаментальной физической константой, которая обозначается латинской буквой c. Согласно основным постулатом теории относительности скорость света является максимально возможной скоростью передачи информации или движения тела. Эта скорость составляет 299 792 458 м / с.
Электромагнитная волна характеризуется частотой. Различают линейную частоту? и циклическую частоту? = 2??. В зависимости от частоты электромагнитные волны относятся к одному из спектральных диапазонов.
Другой характетистика электромагнитной волны волновой вектор . Волновой вектор определяет направление распространения электромагнитной волны, а также ее длину. Абсолютное значение хвильoвого вектора называют волновым числом.
Длина электромагнитной волны? = 2? / k, где k – волновое число.
Длина электромагнитной волны связана с частотой через закон дисперсии. В пустоте эта связь прост:

?? = c.

Часто данное соотношение записывают в виде

? = c k.

Электромагнитные волны с одинаковой частотой и волновым вектором могут различаться фазой.
В пустоте векторы напряженности электрического и магнитного полей Електомагнитна волны обязательно перпендикулярны направлению распространения волны. Такие волны называются поперечными волнами. Математически это описывается уравнениями и . Кроме того, напряженности елекричного и магнитного полей перпендикулярны друг к другу и всегда в любой точке пространства равные по абсолютной величине: E = H. Если выбрать систему координат таким образом, чтобы ось z совпадала с направлением распространения электромагнитной волны, существовать две различные возможности для направлений векторов напряженности электрического поля. Если эклектичное поле направлено вдоль оси x, то магнитное поле будет направлено вдоль оси y, и наоборот. Эти две разные возможности не исключают друг друга и соответствуют двум различным поляризация. Подробнее этот вопрос разбирается в статьи Поляризация волн.
Спектральные диапазоны с выделенным видимым светом В зависимости от частоты или длины волны (эти величины связаны между собой), электромагнитные волны относят к разным диапазонам. Волны в различных диапазонах различным образом взаимодействуют с физическими телами.
Электромагнитные волны с наименьшей частотой (или наибольшей длиной волны) относятся к радиодиапазона. Радиодиапазон используется для передачи сигналов на расстояние с помощью радио, телевидения, мобильных телефонов. В радиодиапазоне работает радиолокация. Радиодиапазон разделяется на метровый, дицеметровий, сантиметровый, миллиметровый, в зависимости от длины Електомагнитна волны.
Электромагнитные волны с вероятностью принадлежат к инфракрасного диапазона. В инфракрасном диапазоне лежит тепловое излучение тела. Регистрация этого випромиювання лежит в основе работы приборов ночного видения. Инфракрасные волны применяются для изучения тепловых колебаний в телах и помогают установить атомную структуру твердых тел, газов и жидкостей.
Электромагнитное излучение с длиной волны от 400 нм до 800 нм принадлежат к диапазону видимого света. В зависимости от частоты и длины волны видимый свет различается по цветам.
Волны с длиной менее 400 нм называются ультрафиолетовыми. Человеческий глаз их не различает, хотя их свойства не отличаются от свойств волн видимого диапазона. Большая частота, а, следовательно, и энергия квантов такого света приводит к более разрушительного воздействия ультрафиолетовых волн на биологические объекты. Земная поверхность защищена от вредного воздействия ультрафиолетовых волн озоновым слоем. Для дополнительной защиты природа наделила людей темной кожей. Однако ультрафиолетовые лучи нужны человеку для производства витамина D. Именно поэтому люди в северных широтах, где интенсивность ультрафиолетовых волн меньше, потеряли темную окраску кожи.
Електомагнитна волны более высокой частоты относятся к рентгеновского диапазона. Они называют так потому, что их открыл Рентген, изучая излучения, которое образуется при торможении электронов. В зарубежной литературе такие волны принято называть X-лучами, уважая желание Рентгена, чтобы лучи не называли его именем. Рентгеновские волны слабо взаимодействуют с веществом, сильнее поглощаясь там, где плотность больше. Этот факт используется в медицине для рентгеновской флюорографии. Рентгеновские волны применяются также для элементного анализа и изучения структуры кристаллических тел.
Наивысшую частоту и наименьшую длину имеют ?-лучи. Такие лучи образуются в результате ядерных реакций и реакций между элементарными частицами. ?-лучи обладают большой разрушительное воздействие на биологические объекты. Однако они используются в физике для изучения различных характеристик атомного ядра.
Энергия электромагнитной волны определяется суммой энергий электрического и магнитного поля. Плотность энергии в определенной точке пространства задается выражением:

.

Усредненная по времени плотность энергии равна.

,

Где E 0 = H 0 – амплитуда волны.
Важное значение имеет плотность потока энергии электромагнитной волны. Она в частности определяет световой поток в оптике. Плотность потока энергии электромагнитной волны задается вектором Умова-Пойнтинга.

Распространения электромагнитных волн в среде имеет ряд особенностей по сравнению с распространением в пустоте. Эти особенности связаны со свойствами среды и в целом зависят от частоты электромагнитной волны. Электрическая и магнитная составляющая волны вызывают поляризацию и намагничивания среды. Этот отклик среды неодинаковых в случае малой и большой частоты. При малой частоте электромагнитной волны, электроны и ионы вещества успевают отреагировать на изменение интенсивности электрического и магнитного полей. Отклик среды отслеживает временные колебания в волны. При большой частоте электроны и ионы вещества не успевают сместиться течение периода колебания полей волны, а потому поляризация и намагничивание среды намного меньше.
Электромагнитное поле малой частоты не проникает в металлы, где много свободных электронов, которые смещаются таким образом, полностью гасят электромагнитную волну. Электромагнитная волна начинает проникать в металл при частоте превышающей определенную частоту, которая называется плазменной частотой. При частотах меньших плазменную частоту электромагнитная волна может проникать в поверхностный слой металла. Это явление называется скин-эффектом.
В диэлектриках изменяется закон дисперсии электромагнитной волны. Если в пустоте электромагнитные волны распространяются с постоянной амплитудой, то в среде они затухают, вследствие поглощения. При этом энергия волны передается электронам или ионам среды. Всего закон дисперсии при отсутствии магнитных эффектов принимает вид

Где волновое число k – всего комплексная величина, мнимая часть которой описывает уменьшение амплитуды елетромагнитнои волны, – Зависящая от частоты комплексная диэлектрическая проницаемость среды.
В анизотропных средах направление векторов напряженности электрического и магнитного полей не обязательно перпендикулярен направлению распространения волны. Однако направление векторов электрической и магнитной индукции сохраняет это свойство.
В среде при определенных условиях может распространяться еще один тип электромагнитной волны – продольная электромагнитная волна, для которой направление вектора напряженности электрического поля совпадает с направлением распространения волны.
В начале двадцатого века для того, чтобы объяснить спектр излучения абсолютно черного тела, Макс Планк предположил, что электромагнитные волны излучаются квантами с энергией пропорциональной частоте. Через несколько лет Альберт Эйнштейн, объясняя явление фотоэффекта расширил эту идею, предположив, что электромагнитные волны поглощаются такими же квантами. Таким образом, стало ясно, что электромагнитные волны характеризуются некоторыми свойствами, которые раньше приписывались материальным частицам, корпускул.
Эта идея получила название корпускулярно-волнового дуализма.

Мало кто знает, что излучение электромагнитной природы пронизывает всю Вселенную. Электромагнитные волны возникают при его распространении в пространстве. В зависимости от частоты колебания волн происходит условное их разделение на видимый свет, радиочастотный спектр, инфракрасные диапазоны и пр. Практическое существование электромагнитных волн было доказано опытным путем в 1880 году немецким ученым Г. Герцем (кстати, единица измерения частоты названа в его честь).

Из курса физики известно, что представляет собой особый вид материи. Несмотря на то, что зрением можно увидеть лишь небольшую его часть, его влияние на материальный мир огромно. Электромагнитные волны являются последовательным распространением в пространстве взаимодействующих векторов напряженности магнитного и электрического полей. Впрочем, слово «распространение» в данном случае не совсем корректно: речь идет, скорее, о волнообразном возмущении пространства. Причиной, генерирующей электромагнитные волны, является появление в пространстве изменяющегося с течением времени электрического поля. А, как известно, существует прямая связь между электрическими и магнитными полями. Достаточно вспомнить правило, согласно которому вокруг любого проводника с током присутствует магнитное поле. Частица, на которую действуют электромагнитные волны, начинает колебаться, а раз есть движение, значит, существует излучение энергии. Электрическое поле со передается соседней частице, находящейся в покое, в результате вновь генерируется поле электрической природы. А так как поля взаимосвязаны, следом появляется магнитное. Процесс распространяется лавинообразно. При этом реального движения нет, а есть колебания частиц.

О возможности практического использования такого физики задумывались уже давно. В современном мире энергия электромагнитных волн столь широко применяется, что многие этого даже не замечают, принимая это как должное. Яркий пример — радиоволны, без которых была бы невозможна работа телевизоров и мобильных телефонов.

Процесс происходит следующим образом: на металлический проводник особой формы (антенну) постоянно передается модулированный Благодаря свойствам электрического тока вокруг проводника возникает электрическое, а следом и магнитное поле, в результате чего осуществляется излучение электромагнитных волн. Так как модулируется, они несут определенный порядок, закодированную информацию. Чтобы уловить нужные частоты, у адресата устанавливается приемная антенна специальной конструкции. Она позволяет отобрать из общего электромагнитного фона нужные частоты. Попав на металлический приемник, волны частично преобразовываются в электрический ток исходной модуляции. Далее они поступают на усиливающий блок и управляют работой устройства (передвигают диффузор динамика, поворачивают электроды в экранах телевизоров).

Ток, полученный из электромагнитных волн, можно легко увидеть. Для этого достаточно оголенной жилой кабеля, идущего от антенны к приемнику, коснуться общей массы (батареи отопления, В этот момент между массой и жилой проскакивает искра — это и есть проявление генерированного антенной тока. Его значение тем больше, чем ближе и мощнее передатчик. Также существенное влияние оказывает конфигурация антенны.

Еще одно проявление электромагнитных волн, с которым многие ежедневно сталкиваются в быту — это использование микроволновой печи. Вращающиеся линии напряженности поля пересекают предмет и передают часть своей энергии, нагревая его.

Электромагнитные волны, если верить физике, являются одними из наиболее загадочных. В них энергия фактически исчезает в никуда, появляется непонятно откуда. Больше ни одного такого подобного объекта нет во всей науке. Как же происходят все эти чудесные взаимопревращения?

Электродинамика Максвелла

А началось все с того, что ученый Максвелл в далеком 1865 году, опираясь на работы Фарадея, вывел уравнение электромагнитного поля. Сам Максвелл считал, что его уравнения описывали кручение и натяжение волн в эфире. Через двадцать три года Герц экспериментально создал такие возмущения в среде, причем удалось не только согласовать их с уравнениями электродинамики, но и получить законы, управляющие распространением этих возмущений. Возникла любопытная тенденция объявлять любые возмущения, которые имеют электромагнитный характер, волнами Герца. Однако эти излучения — не единственный способ осуществления передачи энергии.

Беспроводная связь

На сегодняшний день к возможным вариантам осуществления подобной беспроводной связи относят:

Электростатическую связь, которую также называется емкостной;

Индукционную;

Токовую;

Связь Теслы, то есть связь волн электронной плотности по проводящим поверхностям;

Широчайший спектр наиболее распространенных носителей, которые называются электромагнитные волны — от сверхнизких частот до гамма-излучения.

Стоит рассмотреть эти виды связи более подробно.

Электростатическая связь

Два диполя являются связанными электрическими силами в пространстве, что является следствием закона Кулона. От электромагнитных волн данный тип связи отличается возможностью связать диполи при расположении их на одной линии. С увеличением расстояний сила связи затухает, а также наблюдается сильное влияние различных помех.

Индукционная связь

Основана на магнитных полях рассеяния индуктивности. Наблюдается между объектами, которые имеют индуктивность. Применение ее довольно ограничено ввиду близкодействия.

Токовая связь

Благодаря токам растекания в проводящей среде может возникнуть определенное взаимодействие. Если через терминалы (пара контактов) пропустить токи, то эти самые токи можно обнаружить на значительном расстоянии от контактов. Именно это и называется эффектом растекания токов.

Связь Теслы

Знаменитый физик Никола Тесла изобрел связь с помощью волн на проводящей поверхности. Если в каком-то месте плоскости нарушить плотность носителя заряда, то эти носители начнут движение, которое будет стремится к восстановлению равновесия. Так как носители обладают инерционной природой, то восстановление носит волновой характер.

Электромагнитная связь

Излучение электромагнитных волн отличается огромным дальнодействием, так как их амплитуда обратно пропорциональна расстоянию до источника. Именно этот способ беспроводной связи получил наибольшее распространение. Но что такое электромагнитные волны? Для начала необходимо осуществить небольшой экскурс в историю их открытия.

Как «появились» электромагнитные волны?

Началось все в 1829 году, когда американский физик Генри обнаружил возмущения электрических разрядов в экспериментах с лейденскими банками. В 1832 году физиком Фарадеем было выдвинуто предположение о существовании такого процесса, как электромагнитные волны. Максвелл в 1865 году создал свои знаменитые уравнения электромагнетизма. В конце девятнадцатого века было много успешных попыток создания беспроводной связи с помощью электростатической и электромагнитной индукции. Знаменитый изобретатель Эдисон придумал систему, которая позволяла пассажирам железной дороги отправлять и получать телеграммы прямо во время движения поезда. В 1888 году Г. Герц однозначно доказал то, что электромагнитные волны появляются с помощью устройства, названного вибратором. Герц осуществил опыт по передаче электромагнитного сигнала на расстояние. В 1890 году инженер и физик Бранли из Франции изобрел устройство для регистрации электромагнитных излучений. Впоследствии этот прибор был назван «радиокондуктор» (когерер). В 1891-1893 годах Никола Тесла описал основные принципы осуществления передачи сигналов на большие расстояния и запатентовал мачтовую антенну, которая являлась источником электромагнитных волн. Дальнейшие заслуги в изучении волн и технической реализации их получения и применения принадлежат таким знаменитым физикам и изобретателям, как Попов, Маркони, де Мор, Лодж, Мирхед и многим другим.

Понятие «электромагнитная волна»

Электромагнитная волна — это явление, которое распространяется в пространстве с определенной конечной скоростью и являет собой переменное электрическое и магнитное поле. Так как магнитные и электрические поля неразрывно связанны друг с другом, то они образуют электромагнитное поле. Также можно сказать, что электромагнитная волна — это возмущение поля, причем во время своего распространения энергия, которая есть у магнитного поля, переходит в энергию поля электрического и обратно, согласно электродинамике Максвелла. Внешне это похоже на распространение любой другой волны в любой другой среде, однако есть и существенные отличия.

Отличие электромагнитных волн от других?

Энергия электромагнитных волн распространяется в довольно непонятной среде. Чтобы сравнивать эти волны и любые другие, необходимо понять, о какой среде распространения идет речь. Предполагается, что внутриатомное пространство заполняет электрический эфир — специфическая среда, которая является абсолютным диэлектриком. Все волны во время распространения проявляют переход кинетической энергии в потенциальную и обратно. При этом у этих энергий сдвинуты максимум во времени и пространстве относительно друг друга на одну четвертую полного периода волны. Средняя энергия волны при этом, являясь суммой потенциальной и кинетической энергии, является постоянной величиной. Но с электромагнитными волнами дело обстоит иначе. Энергии и магнитного и электрического поля достигают максимальных значений одновременно.

Как возникает электромагнитная волна?

Материя электромагнитной волны — это электрическое поле (эфир). Движущееся поле является структурированным и складывается из энергии его движения и электрической энергии самого поля. Поэтому потенциальная энергия волны связанна с кинетической и синфазна. Природа электромагнитной волны представляет собой периодическое электрическое поле, которое находится в состоянии поступательного движения в пространстве и движется со скоростью света.

Токи смещения

Есть и другой способ объяснить, что собой представляют электромагнитные волны. Предполагается, что в эфире возникают токи смещения при движении неоднородных электрических полей. Возникают они, естественно, только для неподвижного стороннего наблюдателя. В момент, когда такой параметр как напряженность электрического поля достигает своего максимума, ток смещения в данной точке пространства прекратится. Соответственно, при минимуме напряженности получается обратная картина. Этот подход проясняет волновую природу электромагнитного излучения, так как энергия поля электрического оказывается сдвинутой на одну четвертую периода по отношению к токам смещения. Тогда можно сказать, что электрическое возмущение, а точнее энергия возмущения, трансформируется в энергию тока смещения и обратно и распространяется волновым образом в диэлектрической среде.

Рекомендуем также

Свет и цвет: основы основ / Хабр


Мы часто говорим о таком понятии как свет, источниках освещения, цвете изображений и объектов, но не совсем хорошо себе представляем, что такое свет и что такое цвет. Пора разобраться с этими вопросами и перейти от представления к понимаю.

Мы окружены

Осознаем мы этого или нет, но мы находимся в постоянном взаимодействии с окружающим миром и принимаем на себя воздействие различных факторов этого мира. Мы видим окружающее нас пространство, постоянно слышим звуки от различных источников, ощущаем тепло и холод, не замечаем, что пребываем под воздействием естественного радиационного фона, а также постоянно находимся в зоне излучения, которое исходит от огромного количества источников сигналов телеметрии, радио и электросвязи. Почти всё вокруг нас испускает электромагнитное излучение. Электромагнитное излучение — это электромагнитные волны, созданные различными излучающими объектами – заряженными частицами, атомами, молекулами. Волны характеризуются частотой следования, длинной, интенсивностью, а также рядом других характеристик. Вот вам просто ознакомительный пример. Тепло, исходящее от горящего костра – это электромагнитная волна, а точнее инфракрасное излучение, причем очень высокой интенсивности, мы его не видим, но можем почувствовать. Врачи сделали рентгеновский снимок – облучили электромагнитными волнами, обладающими высокой проникающей способностью, но мы этих волн не ощутили и не увидели. То, что электрический ток и все приборы, которые работают под его действием, являются источниками электромагнитного излучения, вы все, конечно же, знаете. Но в этой статье я не стану рассказать вам теорию электромагнитного излучения и его физическую природу, я постараюсь более мене простым языком объяснить, что же такое видимый свет и как образуется цвет объектов, которые мы с вами видим. Я начал говорить про электромагнитные волны, чтобы сказать вам самое главное: Свет – это электромагнитная волна, которая испускается нагретым или находящимся в возбужденном состоянии веществом. В роли такого вещества может выступить солнце, лампа накаливания, светодиодный фонарик, пламя костра, различного рода химические реакции. Примеров может быть достаточно много, вы и сами можете привести их в гораздо большем количестве, чем я написал. Необходимо уточнить, что под понятием свет мы будем подразумевать видимый свет. Всё выше сказанное можно представить в виде вот такой картинки (Рисунок 1).

Рисунок 1 – Место видимого излучения среди других видов электромагнитного излучения.

На Рисунке 1 видимое излучение представлено в виде шкалы, которая состоит из «смеси» различных цветов. Как вы уже догадались – это спектр. Через весь спектр (слева направо) проходит волнообразная линия (синусоидальная кривая) – это электромагнитная волна, которая отображает сущность света как электромагнитного излучения. Грубо говоря, любое излучение – есть волна. Рентгеновское, ионизирующее, радиоизлучение (радиоприемники, телевизионная связь) – не важно, все они являются электромагнитными волнами, только каждый вид излучения имеет разную длину этих волн. Синусоидальная кривая является всего лишь графическим представлением излучаемой энергии, которая изменяется во времени. Это математическое описание излучаемой энергии. На рисунке 1 вы также можете заметить, что изображенная волна как бы немного сжата в левом углу и расширена в правом. Это говорит о том, что она имеет разную длину на различных участках. Длина волны – это расстояние между двумя её соседними вершинами. Видимое излучение (видимый свет) имеет длину волны, которая изменяется в пределах от 380 до 780nm (нанометров). Видимый свет — всего лишь звено одной очень длинной электромагнитной волны.

От света к цвету и обратно

Ещё со школы вы знаете, что если на пути луча солнечного света поставить стеклянную призму, то большая часть света пройдет через стекло, и вы сможете увидеть разноцветные полосы на другой стороне призмы. То есть изначально был солнечный свет — луч белого цвета, а после прохождения через призму разделился на 7 новых цветов. Это говорит о том, что белый свет состоит из этих семи цветов. Помните, я только что говорил, что видимый свет (видимое излучение) — это электромагнитная волна, так вот, те разноцветные полосы, которые получились после прохождения солнечного луча через призму – есть отдельные электромагнитные волны. То есть получаются 7 новых электромагнитных волн. Смотрим на рисунок 2.

Рисунок 2 – Прохождение луча солнечного света через призму.

Каждая из волн имеет свою длину. Видите, вершины соседних волн не совпадают друг с другом: потому что красный цвет (красная волна) имеет длину примерно 625-740nm, оранжевый цвет (оранжевая волна) – примерно 590-625nm, синий цвет (синяя волна) – 435-500nm., не буду приводить цифры для остальных 4-х волн, суть, я думаю, вы поняли. Каждая волна – это излучаемая световая энергия, то есть красная волна излучает красный свет, оранжевая – оранжевый, зеленая – зеленый и т.д. Когда все семь волн излучаются одновременно, мы видим спектр цветов. Если математически сложить графики этих волн вместе, то мы получим исходный график электромагнитной волны видимого света – получим белый свет. Таким образом, можно сказать, что спектр электромагнитной волны видимого света – это сумма волн различной длины, которые при наложении друг на друга дают исходную электромагнитную волну. Спектр «показывает из чего состоит волна». Ну, если совсем просто сказать, то спектр видимого света – это смесь цветов, из которых состоит белый свет (цвет). Надо сказать, что и у других видов электромагнитного излучения (ионизирующего, рентгеновского, инфракрасного, ультрафиолетового и т.д.) тоже есть свои спектры.

Любое излучение можно представить в виде спектра, правда таких цветных линий в его составе не будет, потому, как человек не способен видеть другие типы излучений. Видимое излучение – это единственный вид излучений, который человек может видеть, потому-то это излучение и назвали – видимое. Однако сама по себе энергия определенной длины волны не имеет никакого цвета. Восприятие человеком электромагнитного излучения видимого диапазона спектра происходит благодаря тому, что в сетчатке глаза человека располагаются рецепторы, способные реагировать на это излучение.

Но только ли путем сложения семи основных цветов мы можем получить белый цвет? Отнюдь. В результате научных исследований и практических экспериментов было установлено, что все цвета, которые способен воспринимать человеческий глаз, можно получить смешиванием всего лишь трех основных цветов. Три основных цвета: красный, зеленый, синий. Если с помощью смешивания этих трех цветов можно получить практически любой цвет, значит можно получить и белый цвет! Посмотрите на спектр, который был приведен на рисунке 2, на спектре четко просматриваются три цвета: красный, зеленый и синий. Именно эти цвета лежат в основе цветовой модели RGB (Red Green Blue).

Проверим как это работает на практике. Возьмем 3 источника света (прожектора) — красный, зеленый и синий. Каждый из этих прожекторов излучает только одну электромагнитную волну определенной длины. Красный – соответствует излучению электромагнитной волны длиной примерно 625-740nm (спектр луча состоит только из красного цвета), синий излучает волну длиной 435-500nm (спектр луча состоит только из синего цвета), зеленый – 500-565nm (в спектре луча только зеленый цвет). Три разных волны и больше ничего, нет никакого разноцветного спектра и дополнительных цветов. Теперь направим прожектора так, чтобы их лучи частично перекрывали друг друга, как показано на рисунке 3.

Рисунок 3 — Результат наложения красного, зеленого и синего цветов.

Посмотрите, в местах пересечения световых лучей друг с другом образовались новые световые лучи – новые цвета. Зеленый и красный образовали желтый, зеленый и синий – голубой, синий и красный — пурпурный. Таким образом, изменяя яркость световых лучей и комбинируя цвета можно получить большое многообразие цветовых тонов и оттенков цвета. Обратите внимание на центр пересечения зеленого, красного и синего цветов: в центре вы увидите белый цвет. Тот самый, о котором мы недавно говорили. Белый цвет – это сумма всех цветов. Он является «самым сильным цветом» из всех видимых нами цветов. Противоположный белому – черный цвет. Черный цвет – это полное отсутствие света вообще. То есть там, где нет света — там мрак, там всё становится черным. Пример тому — иллюстрация 4.

Рисунок 4 – Отсутствие светового излучения

Я как-то незаметно перехожу от понятия свет к понятию цвет и вам ничего не говорю. Пора внести ясность. Мы с вами выяснили, что свет – это излучение, которое испускается нагретым телом или находящимся в возбужденном состоянии веществом. Основными параметрами источника света являются длина волны и сила света. Цвет – это качественная характеристика этого излучения, которая определяется на основании возникающего зрительного ощущения. Конечно же, восприятие цвета зависит от человека, его физического и психологического состояния. Но будем считать, что вы достаточно хорошо себя чувствуете, читаете эту статью и можете отличить 7 цветов радуги друг от друга. Отмечу, что на данный момент, речь идет именно о цвете светового излучения, а не о цвете предметов. На рисунке 5 показаны зависимые друг от друга параметры цвета и света.

Рисунки 5 и 6– Зависимость параметров цвета от источника излучения

Существуют основные характеристики цвета: цветовой тон (hue), яркость (Brightness), светлость (Lightness), насыщенность (Saturation).

Цветовой тон (hue)

– Это основная характеристика цвета, которая определяет его положение в спектре. Вспомните наши 7 цветов радуги – это, иначе говоря, 7 цветовых тонов. Красный цветовой тон, оранжевый цветовой тон, зелёный цветовой тон, синий и т.д. Цветовых тонов может быть довольно много, 7 цветов радуги я привел просто в качестве примера. Следует отметить, что такие цвета как серый, белый, черный, а также оттенки этих цветов не относятся к понятию цветовой тон, так как являются результатом смешивания различных цветовых тонов.

Яркость (Brightness)

– Характеристика, которая показывает, насколько сильно излучается световая энергия того или иного цветового тона (красного, желтого, фиолетового и т.п.). А если она вообще не излучается? Если не излучается – значит, её нет, а нет энергии — нет света, а там где нет света, там черный цвет. Любой цвет при максимальном снижении яркости становится черным цветом. Например, цепочка снижения яркости красного цвета: красный — алый — бордовый — бурый — черный. Максимальное увеличение яркости, к примеру, того же красного цвета даст «максимально красный цвет».

Светлость (Lightness)

– Степень близости цвета (цветового тона) к белому. Любой цвет при максимальном увеличении светлости становится белым. Например: красный — малиновый — розовый — бледно-розовый — белый.

Насыщенность (Saturation)

– Степень близости цвета к серому цвету. Серый цвет является промежуточным цветом между белым и черным. Серый цвет образуется путем смешивания в равных количествах красного, зеленого, синего цвета с понижением яркости источников излучения на 50%. Насыщенность изменяется непропорционально, то есть понижение насыщенности до минимума не означает, что яркость источника будет снижена до 50%. Если цвет уже темнее серого, при понижении насыщенности он станет ещё более темным, а при дальнейшем понижении и вовсе станет черным цветом.

Такие характеристики цвета как цветовой тон (hue), яркость (Brightness), и насыщенность (Saturation) лежат в основе цветовой модели HSB (иначе называемая HCV).

Для того чтобы разобраться в этих характеристиках цвета, рассмотрим на рисунке 7 палитру цветов графического редактора Adobe Photoshop.

Рисунок 7 – Палитра цветов Adobe Photoshop

Если вы внимательно посмотрите на рисунок, то обнаружите маленький кружочек, который расположен в самом верхнем правом углу палитры. Этот кружочек показывает, какой цвет выбран на цветовой палитре, в нашем случае это красный. Начнем разбираться. Сначала посмотрим на числа и буквы, которые расположены в правой половине рисунка. Это параметры цветовой модели HSB. Самая верхняя буква – H (hue, цветовой тон). Он определяет положение цвета в спектре. Значение 0 градусов означает, что это самая верхняя (или нижняя) точка цветового круга – то есть это красный цвет. Круг разделен на 360 градусов, т.е. получается, в нем 360 цветовых тонов. Следующая буква – S (saturation, насыщенность). У нас указано значение 100% — это значит, что цвет будет «прижат» к правому краю цветовой палитры и имеет максимально возможную насыщенность. Затем идет буква B (brightness, яркость) – она показывает, насколько высоко расположена точка на палитре цветов и характеризует интенсивность цвета. Значение 100% говорит о том, что интенсивность цвета максимальна и точка «прижата» к верхнему краю палитры. Буквы R(red), G(green), B(blue) — это три цветовых канала (красный, зеленый, синий) модели RGB. В каждом в каждом из них указывается число, которое обозначает количество цвета в канале. Вспомните пример с прожекторами на рисунке 3, тогда мы выяснили, что любой цвет может быть получен путем смешивания трех световых лучей. Записывая числовые данные в каждый из каналов, мы однозначно определяем цвет. В нашем случае 8-битный канал и числа лежат в диапазоне от 0 до 255. Числа в каналах R, G, B показывают интенсивность света (яркость цвета). У нас в канале R указано значение 255, а это значит, что это чистый красный цвет и у него максимальная яркость. В каналах G и B стоят нули, что означает полное отсутствие зеленого и синего цветов. В самой нижней графе вы можете увидеть кодовую комбинацию #ff0000 — это код цвета. У любого цвета в палитре есть свой шестнадцатиричный код, который определяет цвет. Есть замечательная статья Теория цвета в цифрах, в которой автор рассказывает как определять цвет по шестнадцатеричному коду.
На рисунке вы также можете заметить перечеркнутые поля числовых значений с буквами «lab» и «CMYK». Это 2 цветовых пространства, по которым тоже можно характеризовать цвета, о них вообще отдельный разговор и на данном этапе незачем вникать в них пока не разберетесь с RGB.
Можете открыть цветовую палитру Adobe Photoshop и поэксперовать со значением цветов в полях RGB и HSB. Вы заметите, что изменение числовых значений в каналах R, G, и B приводит к изменению числовых значений в каналах H, S, B.

Цвет объектов

Пора поговорить о том, как так получается, что окружающие нас предметы принимают свой цвет, и почему он меняется при различном освещении этих предметов.

Объект можно увидеть, только если он отражает или пропускает свет. Если же объект почти полностью поглощает падающий свет, то объект принимает черный цвет. А когда объект отражает почти весь падающий свет, он принимает белый цвет. Таким образом, можно сразу сделать вывод о том, что цвет объекта будет определяться количеством поглощенного и отраженного света, которым этот объект освещается. Способность отражать и поглощать свет определятся молекулярной структурой вещества, иначе говоря — физическими свойствами объекта. Цвет предмета «не заложен в нем от природы»! От природы в нем заложены физические свойства: отражать и поглощать.

Цвет объекта и цвет источника излучения неразрывно связаны между собой, и эта взаимосвязь описывается тремя условиями.

Первое условие: Цвет объект может принимать только при наличии источника освещения. Если нет света, не будет и цвета! Красная краска в банке будет выглядит черной. В темной комнате мы не видим и не различаем цветов, потому что их нет. Будет черный цвет всего окружающего пространства и находящихся в нем предметов.

Второе условие: Цвет объекта зависит от цвета источника освещения. Если источник освещения красный светодиод, то все освещаемые этим светом объекты будут иметь только красные, черные и серые цвета.

И наконец, Третье условие: Цвет объекта зависит от молекулярной структуры вещества, из которого состоит объект.

Зеленая трава выглядит для нас зеленой, потому что при освещении белым светом она поглощает красную и синюю волну спектра и отражает зеленую волну (Рисунок 8).

Рисунок 8 – Отражение зеленой волны спектра

Бананы на рисунке 9 выглядят желтыми, потому что они отражают волны, лежащие в желтой области спектра (желтую волну спектра) и поглощает все остальные волны спектра.

Рисунок 9 – Отражение желтой волны спектра

Собачка, та что изображена на рисунке 10 – белая. Белый цвет – результат отражения всех волн спектра.

Рисунок 10 – Отражение всех волн спектра

Цвет предмета – это цвет отраженной волны спектра. Вот так предметы приобретают видимый нами цвет.

В следующей статье речь пойдет о новой характеристике цвета — цветовой температуре.

Глава 24. Электромагнитные колебания и волны

Электрическая цепь, состоящая из катушки индуктивности и конденсатора (см. рисунок), называется колебательным контуром. В этой цепи могут происходить своеобразные электрические колебания. Пусть, например, в начальный момент времени мы заряжаем пластины конденсатора положительным и отрицательным зарядами, а затем разрешим зарядам двигаться. Если бы катушка отсутствовала, конденсатор начал бы разряжаться, в цепи на короткое время возник электрический ток, и заряды пропали бы. Здесь же происходит следующее. Сначала благодаря самоиндукции катушка препятствует увеличению тока, а затем, когда ток начинает убывать, препятствует его уменьшению, т.е. поддерживает ток. В результате ЭДС самоиндукции заряжает конденсатор с обратной полярностью: та пластина, которая изначально была заряжена положительно, приобретает отрицательный заряд, вторая — положительный. Если при этом не происходит потерь электрической энергии (в случае малого сопротивления элементов контура), то величина этих зарядов будет такая же, как величина первоначальных зарядов пластин конденсатора. В дальнейшем движение процесс перемещения зарядов будет повторяться. Таким образом, движение зарядов в контуре представляет собой колебательный процесс.

Для решения задач ЕГЭ, посвященных электромагнитным колебаниям, нужно запомнить ряд фактов и формул, касающихся колебательного контура. Во-первых, нужно знать формулу для периода колебаний в контуре. Во-вторых, уметь применять к колебательному контуру закон сохранения энергии. И, наконец (хотя такие задачи встречаются редко), уметь использовать зависимости силы тока через катушку и напряжения на конденсаторе от времени

Период электромагнитных колебаний в колебательном контуре определяется соотношением:

(24.1)

где — емкость конденсатора, — индуктивность катушки.

При электромагнитных колебаниях энергия колебательного контура складывается из энергии конденсатора и энергии тока в катушке:

(24.2)

где и — заряд на конденсаторе и сила тока в катушке в этот момент времени, и — емкость конденсатора и индуктивность катушки. Если электрическое сопротивление элементов контура мало, то электрическая энергия контура (24.2) остается практически неизменной, несмотря на то, что заряд конденсатора и ток в катушке изменяются с течением времени. Из формулы (24.4) следует, что при электрических колебаниях в контуре происходят превращения энергии: в те моменты времени, когда ток в катушке равен нулю, вся энергия контура сводится к энергии конденсатора. В те моменты времени, когда равен нулю заряд конденсатора, энергия контура сводится к энергии магнитного поля в катушке. Очевидно, в эти моменты времени заряд конденсатора или ток в катушке достигают своих максимальных (амплитудных) значений.

При электромагнитных колебаниях в контуре заряд конденсатора изменяется с течением времени по гармоническому закону:

(24.3)

где — амплитуда колебаний заряда на конденсаторе, — циклическая (или круговая) частота колебаний, — начальная фаза. Циклическая частота колебаний связана с периодом по формуле

(24.4)

стандартной для любых гармонических колебаний. Поскольку сила тока в катушке представляет собой производную заряда конденсатора по времени, из формулы (24.4) можно найти зависимость силы тока в катушке от времени

(24.5)

В ЕГЭ по физике часто предлагаются задачи на электромагнитные волны. Необходимый для решения этих задач минимум знаний включает в себя понимание основных свойств электромагнитной волны и знание шкалы электромагнитных волн. Сформулируем кратко эти факты и принципы.

Согласно законам электромагнитного поля переменное магнитное поле порождает поле электрическое, переменное электрическое поле порождает поле магнитное. Поэтому если одно из полей (например, электрическое) начнет меняться, возникнет второе поле (магнитное), которое затем снова порождает первое (электрическое), затем снова второе (магнитное) и т.д. Процесс взаимного превращения друг в друга электрического и магнитного полей, который может распространяться в пространстве, называется электромагнитной волной. Опыт показывает, что направления, в которых колеблются векторы напряженности электрического и индукции магнитного поля в электромагнитной волне перпендикулярны направлению ее распространения. Это означает, что электромагнитные волны являются поперечными. В теории электромагнитного поля Максвелла доказывается, что электромагнитная волна создается (излучается) электрическими зарядами при их движении с ускорением. В частности, источником электромагнитной волны является колебательный контур.

Длина электромагнитной волны , ее частота (или период ) и скорость распространения связаны соотношением, которое справедливо для любой волны (см. также формулу (11.6)):

(24.6)

Электромагнитные волны в вакууме распространяются со скоростью = 3 • 108 м/с, в среде скорость электромагнитных волн меньше, чем в вакууме, причем эта скорость зависит от частоты волны. Такое явление называется дисперсией волн. Электромагнитной волне присущи все свойства волн, распространяющихся в упругих средах: интерференция, дифракция, для нее справедлив принцип Гюйгенса. Единственное, что отличает электромагнитную волну, это то, что для ее распространения не нужна среда — электромагнитная волна может распространяться и в вакууме.

В природе наблюдаются электромагнитные волны с сильно отличающимися друг от друга частотами, и обладающие благодаря этому существенно различными свойствами (несмотря на одинаковую физическую природу). Классификация свойств электромагнитных волн в зависимости от их частоты (или длины волны) называется шкалой электромагнитных волн. Дадим краткий обзор этой шкалы.

Электромагнитные волны с частотой меньшей 105 Гц (т.е. с длиной волны, большей нескольких километров) называются низкочастотными электромагнитными волнами. Излучают волны такого диапазона большинство бытовых электрических приборов.

Волны с частотой от 105 до 1012 Гц называются радиоволнами. Этим волнам отвечают длины волн в вакууме от нескольких километров до нескольких миллиметров. Эти волны применяются для радиосвязи, телевидения, радиолокации, сотовых телефонов. Источниками излучения таких волн являются заряженные частицы, движущиеся в электромагнитных полях. Радиоволны излучаются также свободными электронами металла, которые совершают колебания в колебательном контуре.

Область шкалы электромагнитных волн с частотами, лежащими в интервале 1012 — 4,3 • 1014 Гц (и длинами волн от нескольких миллиметров до 760 нм) называется инфракрасным излучением (или инфракрасными лучами). Источником такого излучения служат молекулы нагретого вещества. Человек излучает инфракрасные волны с длиной волны 5 — 10 мкм.

Электромагнитное излучение в интервале частот 4,3 • 1014 — 7,7 • 1014 Гц (или длин волн 760 — 390 нм) воспринимается человеческим глазом как свет и называется видимым светом. Волны различных частот внутри этого диапазона воспринимаются глазом, как имеющие различный цвет. Волна с самой маленькой частотой из видимого диапазона 4,3 • 1014 воспринимается как красная, с самой большой частотой внутри видимого диапазона 7,7 • 1014 Гц — как фиолетовая. Видимый свет излучается при переходе электронов в атомах, молекулами твердых тел, нагретых до 1000 °С и более.

Волны с частотой 7,7 • 1014 — 1017 Гц (длина волны от 390 до 1 нм) принято называть ультрафиолетовым излучением. Ультрафиолетовое излучение имеет выраженное биологическое действие: оно способно убивать ряд микроорганизмов, способно вызвать усиление пигментации человеческой кожи (загар), при избыточном облучении в отдельных случаях может способствовать развитию онкологических заболеваний (рак кожи). Ультрафиолетовые лучи содержатся в излучении Солнца, в лабораториях создаются специальными газоразрядными (кварцевыми) лампами.

За областью ультрафиолетового излучения лежит область рентгеновских лучей (частота 1017 — 1019 Гц, длина волны от 1 до 0,01 нм). Эти волны излучаются при торможении в веществе заряженных частиц, разогнанных напряжением 1000 В и более. Обладают способностью проходить сквозь толстые слои вещества, непрозрачного для видимого света или ультрафиолетового излучения. Благодаря этому свойству рентгеновские лучи широко используются в медицине для диагностики переломов костей и ряда заболеваний. Рентгеновские лучи оказывают губительное действие на биологические ткани. Благодаря этому свойству их можно использовать для лечения онкологических заболеваний, хотя при избыточном облучении они смертельно опасны для человека, вызывая целый ряд нарушений в организме. Из-за очень малой длины волны волновые свойства рентгеновского излучения (интерференцию и дифракцию) можно обнаружить только на структурах, сравнимых с размерами атомов.

Гамма-излучением (-излучением) называют электромагнитные волны с частотой, большей, чем 1020 Гц (или длиной волны, меньшей 0,01 нм). Возникают такие волны в ядерных процессах. Особенностью -излучения является его ярко выраженные корпускулярные свойства (т.е. это излучение ведет себя как поток частиц). Поэтому о -излучении часто говорят как о потоке -частиц.

В задаче 24.1.1 для установления соответствия между единицами измерений используем формулу (24.1), из которой следует, что период колебаний в контуре с конденсатором емкостью 1 Ф и индуктивностью 1 Гн равен секунд (ответ 1).

Из графика, данного в задаче 24.1.2, заключаем, что период электромагнитных колебаний в контуре составляет 4 мс (ответ 3).

По формуле (24.1) находим период колебаний в контуре, данном в задаче 24.1.3: (ответ 4). Отметим, что согласно шкале электромагнитных волн такой контур излучает волны длинноволнового радиодиапазона.

Периодом колебания называется время одного полного колебания. Это значит, что если в начальный момент времени конденсатор заряжен максимальным зарядом (задача 24.1.4), то через половину периода конденсатор будет также заряжен максимальным зарядом, но с обратной полярностью (та пластина, которая изначально была заряжена положительно, будет заряжена отрицательно). А максимальный в контуре ток будет достигаться между этими двумя моментами, т.е. через четверть периода (ответ 2).

Если увеличить индуктивность катушки в четыре раза (задача 24.1.5), то согласно формуле (24.1) период колебаний в контуре возрастет в два раза, а частота уменьшится в два раза (ответ 2).

Согласно формуле (24.1) при увеличении емкости конденсатора в четыре раза (задача 24.1.6) период колебаний в контуре увеличивается в два раза (ответ 1).

При замыкании ключа (задача 24.1.7) в контуре вместо одного конденсатора будут работать два таких же конденсатора, соединенных параллельно (см. рисунок). А поскольку при параллельном соединении конденсаторов их емкости складываются, то замыкание ключа приводит к двукратному увеличению емкости контура. Поэтому из формулы (24.1) заключаем, что период колебаний увеличивается в раз (ответ 3).

Пусть заряд на конденсаторе совершает колебания с циклической частотой (задача 24.1.8). Тогда согласно формулам (24.3)-(24.5) с той же частотой будет совершать колебаний ток в катушке. Это значит, что зависимость тока от времени может быть представлена в виде . Отсюда находим зависимость энергии магнитного поля катушки от времени

Из этой формулы следует, что энергия магнитного поля в катушке совершает колебания с удвоенной частотой, и, значит, с периодом, вдвое меньшим периода колебания заряда и тока (ответ 1).

В задаче 24.1.9 используем закон сохранения энергии для колебательного контура. Из формулы (24.2) следует, что для амплитудных значений напряжения на конденсаторе и тока в катушке справедливо соотношение

(здесь в отличие от (24.2) использовано другое выражение для энергии конденсатора). Или А (ответ 2).

В задаче 24.1.10 удобно использовать закон сохранения энергии в виде (24.2). Имеем

где и — амплитудные значения заряда конденсатора и тока в катушке. Из этой формулы с использованием соотношения (24.1) для периода колебаний в контуре находим амплитудное значение тока

ответ 3.

Радиоволны — электромагнитные волны с определенными частотами. Поэтому скорость их распространения в вакууме равна скорости распространения любых электромагнитных волн, и в частности, рентгеновских. Эта скорость — скорость света (задача 24.2.1 — ответ 1).

Как указывалось ранее, заряженные частицы излучают электромагнитные волны при движении с ускорением. Поэтому волна не излучается только при равномерном и прямолинейном движении (задача 24.2.2 — ответ 1).

Электромагнитная волна — это особым образом изменяющиеся в пространстве и времени и поддерживающие друг друга электрическое и магнитное поля. Поэтому правильный ответ в задаче 24.2.32.

Из данного в условии задачи 24.2.4 графика следует, что период данной волны — = 4 мкс. Поэтому из формулы (24.6) получаем м (ответ 1).

В задаче 24.2.5 по формуле (24.6) находим

(ответ 4).

С антенной приемника электромагнитных волн связан колебательный контур. Электрическое поле волны действует на свободные электроны в контуре и заставляет их совершать колебания. Если частота волны совпадает с собственной частотой электромагнитных колебаний, амплитуда колебаний в контуре возрастает (резонанс) и может быть зарегистрирована. Поэтому для приема электромагнитной волны частота собственных колебаний в контуре должна быть близка к частоте этой волны (контур должен быть настроен на частоту волны). Поэтому если контур нужно перенастроить с волны длиной 100 м на волну длиной 25 м (задача 24.2.6), собственная частота электромагнитных колебаний в контуре должна быть увеличена в 4 раза. Для этого согласно формулам (24.1), (24.4) емкость конденсатора следует уменьшить в 16 раз (ответ 4).

Согласно шкале электромагнитных волн (см. введение к настоящей главе), максимальной длиной из перечисленных в условии задачи 24.2.7 электромагнитных волн обладает излучение антенны радиопередатчика (ответ 4).

Среди перечисленных в задаче 24.2.8 электромагнитных волн максимальной частотой обладает рентгеновское излучение (ответ 2).

Электромагнитная волна является поперечной. Это значит, что векторы напряженности электрического поля и индукции магнитного поля в волне в любой момент времени направлены перпендикулярно направлению распространения волны. Поэтому при распространении волны в направлении оси (задача 24.2.9), вектор напряженности электрического поля направлен перпендикулярно этой оси. Следовательно, обязательно равна нулю его проекция на ось = 0 (ответ 3).

Скорость распространения электромагнитной волны — есть индивидуальная характеристика каждой среды. Поэтому при переходе электромагнитной волны из одной среду в другую (или из вакуума в среду) скорость электромагнитной волны изменяется. А что можно сказать о двух других параметрах волны, входящих в формулу (24.6), — длине волны и частоте . Будут ли они изменяться при переходе волны из одной среды в другую (задача 24.2.10)? Очевидно, что частота волны не изменяется при переходе из одной среды в другую. Действительно, волна это колебательный процесс, в котором переменное электромагнитное поле в одной среде создает и поддерживает поле в другой среде благодаря именно этим изменениям. Поэтому периоды этих периодических процессов (а значит и частоты) в одной и другой среде должны совпадать (ответ 3). А поскольку скорость волны в разных средах разная, то из проведенных рассуждений и формулы (24.6) следует, что длина волны при ее переходе из одной среды в другую — изменяется.

Структура электромагнитной волны. #12 | Осенило

Радио, микроволновки, телефонная связь, wi-fi, bluetooth — всё это повседневные для большинства людей явления. Но практически никто в мире не понимает, как они работают. Повсюду всякие векторы индукции, напряжённости и прочая бадяга, которая обычному человеку не говорит вообще ничего. Да даже учёным эти термины говорят только об абстрактных вещах. Я же сейчас покажу, что у всего этого есть конкретная аналогия, понятная каждому.

В прошлый раз мы рассматривали модель заряда. Оказалось, что его можно представить в виде вращающегося цилиндра, который своим вращением увлекает за собой близлежащий эфир. А когда мы обсуждали электростатику, стало понятно, что напряжённость электрического поля по модулю равна скорости потока эфира и направлена в сторону возникающей силы, действующий на заряд в таком поле. Т.е. если отбросить всё лишнее, будет верно следующее:

Поток эфира будет расходиться от заряда в радиальном направлении. При этом скорость этого потока будет перпендикулярной радиус-вектору. Всё. Электромагнитная волна — это просто поток газа вокруг заряда. Если величина заряда изменяется по синусу, то мы будем иметь следующую картину:

Рисунок 5.2.1. Структура электромагнитной волны.

Рисунок 5.2.1. Структура электромагнитной волны.

Под v мы понимаем скорость потока эфира. Под ∇✕v понимается скручивание этого потока, которое будет пропорционально вектору магнитной индукции. Вектор же напряжённости электрического поля будет по величине равен v, но направлен перпендикулярно ему. Т.е., если мы захотим обрисовать ту же электромагнитную волну через традиционные в электродинамике величины, картина у нас принципиально не изменится, но будет ничего непонятно. А здесь у нас обычные потоки газа, с которыми в ветреный день имеет дело каждый.

Какие силы, действуют на вращающиеся тела в потоке газа, мы разбирали здесь. И эти силы при пересчёте на электродинамику полностью соответствуют современным научным данным.

Так или иначе все описанные во вступлении технологии являются электромагнитными волнами и подходят под предложенное описание. Эти волны влияют на заряженные частицы внутри антенн в ваших роутерах, телефонах и прочих гаджетах по известным законам. Из представленной модели можно сделать много выводов, которые позволят уточнить или переработать уравнения Максвелла, на которые сегодня молится весь мир. Этим мы займёмся позже.

Какой волной является электромагнитная волна. Что такое электромагнитные волны

Электромагнитной волной называют возмущение электромагнитного поля, которое передается в пространстве. Ее скорость совпадает со скоростью света

2. Опишите опыт Герца по обнаружению электромагнитных волн

В опыте Герца источником электромагнитного возмущения были электромагнитные колебания, которые возникали в вибраторе (проводник с воздушным промежутком посередине). К этому промежутку подавалось высокое напряжение, оно вызывало искровой разряд. Через мгновение искровой разряд возникал в резонаторе (аналогичный вибратор). Самая интенсивная искра возникала в резонаторе, который был расположен параллельно вибратору.

3. Объясните результаты опыта Герца с помощью теории Максвелла. Почему электромагнитная волна является поперечной?

Ток через разрядный промежуток создает вокруг себя индукцию, магнитный поток возрастает, возникает индукционный ток смещения. Напряженность в точке 1 (рис. 155, б учебника) направлена против часовой стрелки в плоскости чертежа, в точке 2 ток направлен вверх и вызывает индукцию в точке 3, напряженность направлена вверх. Если величина напряженности достаточна для электрического пробоя воздуха в промежутке, то возникает искра и в резонаторе протекает ток.

Потому что направления векторов индукции магнитного поля и напряженности электрического поля перпендикулярны друг другу и направлению волны.

4. Почему излучение электромагнитных волн возникает при ускоренном движении электрических зарядов? Как напряженность электрического поля в излучаемой электромагнитной волне зависит от ускорения излучающей заряженной частицы?

Сила тока пропорциональна скорости движения заряженных частиц, поэтому электромагнитная волна возникает только если скорость движения этих частиц зависит от времени. Напряженность в излучаемой электромагнитной волне прямо пропорциональна ускорению излучающей заряженной частицы.

5. Как зависит плотность энергии электромагнитного поля от напряженности электрического поля?

Плотность энергии электромагнитного поля прямо пропорциональна квадрату напряженности электрического поля.

В 1864 году Джеймс Клерк Максвелл предсказал возможность существования в пространстве электромагнитных волн. Это утверждение он выдвинул основываясь на выводах, вытекающих из анализа всех известных к тому моменту экспериментальных данных касательно электричества и магнетизма.

Максвелл математически объединил законы электродинамики, связав электрические и магнитные явления, и таким образом пришел к выводу, что изменяющиеся с течением времени электрическое и магнитное поля порождают друг друга.


Изначально он сделал акцент на том факте, что взаимосвязь магнитных и электрических явлений не симметрична, и ввел термин «вихревое электрическое поле», предложив свое, по-настоящему новое объяснение явления электромагнитной индукции, открытого Фарадеем: «всякое изменение магнитного поля приводит к появлению в окружающем пространстве вихревого электрического поля, имеющего замкнутые силовые линии».

Справедливым, по мнению Максвелла, было и обратное утверждение, что «изменяющееся электрическое поле рождает магнитное поле в окружающем пространстве», однако это утверждение оставалось поначалу только гипотезой.


Максвелл записал систему математических уравнений, которые непротиворечиво описали законы взаимных превращений магнитного и электрического полей, эти уравнения стали впоследствии основными уравнениями электродинамики, и стали называться «уравнения Максвелла» в честь записавшего их великого ученого. Гипотеза Максвелла, с опорой на написанные уравнения, возымела несколько чрезвычайно важных для науки и техники выводов, которые приведены ниже.

Электромагнитные волны действительно существуют



В пространстве могут существовать поперечные электромагнитные волны, представляющие собой распространяющееся с течением времени . На то что волны являются поперечными, указывает тот факт, что векторы магнитной индукции В и напряженности электрического поля Е взаимно перпендикулярны и оба лежат в плоскости перпендикулярной направлению распространения электромагнитной волны.

Скорость распространения электромагнитных волн в веществе конечна, и определяется она электрическими и магнитными свойствами вещества, по которому волна распространяется. Длина синусоидальной волны λ при этом связана со скоростью υ определенным точным соотношением λ = υ / f, и зависит от частоты f колебаний поля. Скорость c электромагнитной волны в вакууме — одна из фундаментальных физических констант — скорость света в вакууме.

Поскольку Максвелл заявлял о конечности скорости распространения электромагнитной волны, то это создало противоречие между его гипотезой и принятой в те времена теорией дальнодействия, согласно которой скорость распространения волн должна была бы быть бесконечной. Теорию Максвелла назвали поэтому теорией близкодействия.

В электромагнитной волне одновременно происходит превращение электрического и магнитного полей друг в друга, следовательно объемные плотности магнитной энергии и электрической энергии равны между собой. Следовательно справедливо утверждение, что модули напряженности электрического поля и индукции магнитного поля связаны между собой в каждой точке пространства следующим соотношением:

Электромагнитная волна в процессе своего распространения создает поток электромагнитной энергии, и если рассмотреть площадку в плоскости перпендикулярной направлению распространения волны, то за малое время через нее переместится определенное количество электромагнитной энергии. Плотность потока электромагнитной энергии — это количество энергии, переносимой электромагнитной волной через поверхность единичной площади за единицу времени. Подставив значения скорости, а также магнитной и электрической энергии, можно получить выражение для плотности потока через величины Е и В.

Поскольку направление распространения энергии волны совпадает с направлением скорости распространения волны, то поток энергии, распространяющийся в электромагнитной волне можно задать при помощи вектора, направленного так же, как и скорость распространения волны. Этот вектор получил название «вектор Пойнтинга» — в честь британского физика Генри Пойнтинга, разработавшего в 1884 году теорию распространения потока энергии электромагнитного поля. Плотность потока энергии волны измеряется в Вт/кв.м.

При действии электрического поля на вещество, в нем появляются небольшие токи, представляющие собой упорядоченное движение электрически заряженных частиц. Эти токи в магнитном поле электромагнитной волны подвергаются действию силы Ампера, которая направлена вглубь вещества. Сила Ампера и порождает в итоге давление.

Это явление позже, в 1900 году, было исследовано и подтверждено опытным путем русским физиком Петром Николаевичем Лебедевым, экспериментальная работа которого явилась очень важной для подтверждения теории электромагнетизма Максвелла и ее принятия и утверждения в дальнейшем.

Тот факт, что электромагнитная волна оказывает давление, позволяет судить о наличии у электромагнитного поля механического импульса, который можно выразить для единичного объема через объемную плотность электромагнитной энергии и скорость распространения волны в вакууме:

Поскольку импульс связан с движением массы, можно ввести и такое понятие как электромагнитная масса, и тогда для единичного объема это соотношение (в соответствии с СТО) примет характер универсального закона природы, и окажется справедливым для любых материальных тел, вне зависимости от формы материи. А электромагнитное поле тогда сродни материальному телу — обладает энергией W, массой m, импульсом p и конечной скоростью распространения v. То есть электромагнитное поле — это одна из форм реально существующей в природе материи.

Впервые в 1888 году Генрих Герц подтвердил экспериментально электромагнитную теорию Максвелла. Он опытным путем доказал реальность электромагнитных волн и изучил такие их свойства как преломление и поглощение в различных средах, а также отражение волн от металлических поверхностей.

Герц измерил длину волны , и показал, что скорость распространения электромагнитной волны равна скорости света. Экспериментальная работа Герца стала последним шагом к признанию электромагнитной теории Максвелла. Семь лет спустя, в 1895 году, русский физик Александр Степанович Попов применил электромагнитные волны для создания беспроводной связи.



В цепях постоянного тока заряды движутся с постоянной скоростью, и электромагнитные волны в этом случае в пространство не излучаются. Чтобы имело место излучение, необходимо воспользоваться антенной, в которой возбуждались бы переменные токи, то есть токи, быстро изменяющие свое направление.

В простейшем виде для излучения электромагнитных волн пригоден электрический диполь небольшого размера, у которого бы быстро изменялся во времени дипольный момент. Именно такой диполь называют сегодня «диполь Герца», размер которого в несколько раз меньше длины излучаемой им волны.

При излучении диполем Герца, максимальный поток электромагнитной энергии приходится на плоскость, перпендикулярную оси диполя. Вдоль оси диполя излучения электромагнитной энергии не происходит. В важнейших экспериментах Герца были использованы элементарные диполи как для излучения, так и для приема электромагнитных волн, так и было доказано существование электромагнитных волн.

М. Фарадей ввел понятие поля:

    вокруг покоящегося заряда возникает электростатическое поле,

    вокруг движущихся зарядов (тока) возникает магнитное поле.

В 1830 г. М. Фарадей открыл явление электромагнитной индукции: при изменении магнитного поля возникает вихревое электрическое поле.

Рисунок 2.7 — Вихревое электрическое поле

где,
— вектор напряженности электрического поля,
— вектор магнитной индукции.

Переменное магнитное поле создает вихревое электрическое поле.

В 1862 г. Д.К. Максвелл выдвинул гипотезу: при изменении электрического поля возникает вихревое магнитное поле.

Возникла идея о едином электромагнитном поле.

Рисунок 2.8 — Единое электромагнитное поле.

Переменное электрическое поле создает вихревое магнитное поле.

Электромагнитное поле — это особая форма материи — совокупность электрических и магнитных полей. Переменные электрические и магнитные поля существуют одновременно и образуют единое электромагнитное поле. Оно материально:

Проявляет себя в действии как на покоящиеся, так и на движущиеся заряды;

Распространяется с большой, но конечной скоростью;

Существует независимо от нашей воли и желаний.

При скорости заряда, равной нулю, существует только электрическое поле. При постоянной скорости заряда возникает электромагнитное поле.

При ускоренном движении заряда происходит излучение электромагнитной волны, кото­рая распространяется в пространстве с конечной скоростью.

Разработка идеи электромагнитных волн принадлежит Максвеллу, но уже Фарадей догадывался об их существовании, хотя побоялся опубликовать работу (она была прочитана более чем через 100 лет после его смерти).

Главное условие возникновения электромагнитной волны — ускоренное движение электрических зарядов.

Что собой представляет электромагнитная волна, легко представить на следующем примере. Если на водную гладь бросить камушек, то на поверхности образуются расходящиеся кругами волны. Они движутся от источника их возникновения (возмущения) с определенной скоростью распространения. Для электромагнитных волн возмущениями являются передвигающиеся в пространстве электрические и магнитные поля. Меняющееся во времени электромагнитное поле обязательно вызывает появление переменного магнитного поля, и наоборот. Эти поля взаимно связаны.

Основным источником спектра электромагнитных волн является звезда Солнце. Часть спектра электромагнитных волн видит глаз человека. Этот спектр лежит в пределах 380…780 нм (рис. 2.1). В области видимого спектра глаз ощущает свет по-разному. Электромагнитные колебания с различной длиной волн вызывают ощущение света с различной окраской.

Рисунок 2.9 — Спектр электромагнитных волн

Часть спектра электромагнитных волн используется для целей радиотелевизионного вешания и связи. Источник электромагнитных волн — провод (антенна), в котором происходит колебание электрических зарядов. Процесс формирования полей, начавшийся вблизи провода, постепенно, точку за точкой, захватывает все пространство. Чем выше частота переменного тока, проходящего по проводу и порождающего электрическое или магнитное поле, тем интенсивнее создаваемые проводом радиоволны заданной длины.

Ра́дио (лат. radio — излучаю, испускаю лучи ← radius — луч) — разновидность беспроводной связи, при которой в качестве носителя сигнала используются радиоволны, свободно распространяемые в пространстве.

Радиоволны (от радио…), электромагнитные волны с длиной волны > 500 мкм (частотой

Радиоволны — это электрические и магнитные поля, меняющиеся во времени. Скорость распространения радиоволн в свободном пространстве составляет 300000 км/с. Исходя из этого, можно определить длину радиоволны (м).

λ=300/f, гдеf — частота (МГц)

Звуковые колебания воздуха, созданные во время телефонного разговора, преобразуются микрофоном в электрические колебания звуковой частоты, которые по проводам передаются к аппаратуре абонента. Там, на другом конце линии, они с помощью излучателя телефона преобразуются в колебания воздуха, воспринимаемые абонентом как звуки. В телефонии средством связи цепи являются провода, в радиовещании — радиоволны.

«Сердцем» передатчика любой радиостанции является генератор — устройство, вырабатывающее колебания высокой, но строго постоянной для данной радиостанции частоты. Эти колебания радиочастоты, усиленные до необходимой мощности, поступают в антенну и возбуждают в окружающем ее пространстве электромагнитные колебания точно такой же частоты — радиоволны. Скорость удаления радиоволн от антенны радиостанции равна скорости света: 300 000 км/с, что почти в миллион раз быстрее распространения звука в воздухе. Это значит, что если на Московской радиовещательной станции в некоторый момент времени включили передатчик, то ее радиоволны меньше чем за 1 /30 с дойдут до Владивостока, а звук за это время успеет распространиться всего, лишь на 10- 11 м.

Радиоволны распространяются не только в воздухе, но и там, где его нет, например, в космическом пространстве. Этим они отличаются от звуковых волн, для которых совершенно необходим воздух или какая-либо другая плотная среда, например вода.

Электромагнитная волна – распространяющееся в пространстве электромагнитное поле (колебания векторов
). Вблизи заряда электрическое и магнитное поля изменяются со сдвигом фаз p/2.

Рисунок 2.10 — Единое электромагнитное поле.

На большом расстоянии от заряда электрическое и магнитное поля изменяются синфазно.

Рисунок 2.11 — Синфазное изменение электрического и магнитного полей.

Электромагнитная волна поперечна . Направление скорости электромагнитной волны совпадает с направлением движения правого винта при повороте ручки буравчика вектора к вектору .

Рисунок 2.12 — Электромагнитная волна.

Причем в электромагнитной волне выполняется соотношение
, где с – скорость света в вакууме.

Максвелл теоретически рассчитал энергию и скорость электромагнитных волн.

Таким образом, энергия волны прямо пропорциональна четвертой степени частоты . Значит, чтобы легче зафиксировать волну, необходимо, чтобы она была высокой частоты.

Электромагнитные волны были открыты Г. Герцем (1887).

Закрытый колебательный контур электромагнитных волн не излучает: вся энергия электрического поля конденсатора переходит в энергию магнитного поля катушки. Частота колебаний определяется параметрами колебательного контура:
.

Рисунок 2.13 — Колебательный контур.

Для увеличения частоты необходимо уменьшить L и C, т.е. развернуть катушку до прямого провода и, т.к.
, уменьшить площадь пластин и развести их на максимальное расстояние. Отсюда видно, что мы получим, по существу, прямой проводник.

Такой прибор называется вибратором Герца. Середина разрезается и подсоединяется к высокочастотному трансформатору. Между концами проводов, на которых закрепляются маленькие шаровые кондукторы, проскакивает электрическая искра, которая и является источником электромагнитной волны. Волна распространяется так, что вектор напряженности электрического поля колеблется в плоскости, в которой расположен проводник.

Рисунок 2.14 — Вибратор Герца.

Если параллельно излучателю расположить такой же проводник (антенну), то заряды в нем придут в колебательное движение и между кондукторами проскакивают слабые искры.

Герц обнаружил электромагнитные волны на опыте и измерил их скорость, которая совпала с рассчитанной Максвеллом и равной с=3 . 10 8 м/с.

Переменное электрическое поле порождает переменное магнитное поле, которое, в свою очередь, порождает переменное электрическое поле, то есть антенна, возбудившее одно из полей, вызывает появление единого электромагнитного поля. Важнейшее свойство этого поля в том, что оно распространяется в виде электромагнитных волн.

Скорость распространения электромагнитных волн в среде без потерь зависит от относительно диэлектрической и магнитной проницаемости среды. Для воздуха магнитная проницаемость среды равняется единице, следовательно, скорость распространения электромагнитных волн в этом случае равна скорости света.

Антенной может служить вертикальный провод, питаемый от генератора высокой частоты. Генератор затрачивает энергию на ускорение движения свободных электронов в проводнике, а эта энергия преобразуется в переменное электромагнитное поле, то есть электромагнитные волны. Чем больше частота тока генератора, тем быстрее изменяется электромагнитное поле и интенсивнее излечение волн.

С проводом антенны связаны как электрическое поле, силовые линии которого начинаются на положительных и кончаются на отрицательных зарядах, так и магнитное поле, линии которого замыкаются вокруг тока провода. Чем меньше период колебаний, тем меньше времени остается для возвращения энергии связанных полей в провод (то есть, к генератору) и тем больше переходит ее в свободные поля, которые распространяются далее в виде электромагнитных волн. Эффективное излучения электромагнитных волн происходит при условии соизмеримости длины волны и длины излучающего провода.

Таким образом, можно определить, что радиоволна — это не связанное с излучателем и каналообразующими устройствами электромагнитное поле, свободно распространяющееся в пространстве в виде волны с частотой колебаний от 10 -3 до 10 12 Гц.

Колебания электронов в антенне создаются источником периодически изменяющейся ЭДС с периодом Т . Если в некоторый момент поле у антенны имело максимальное значение, то такое же значение оно будет иметь спустя время Т . За это время существовавшее в начальный момент у антенны электромагнитное поле переместится на расстояние

λ = υТ (1)

Минимальное расстояние между двумя точками пространства, поле в которых имеет одинаковое значение, называется длиной волны. Как следует из (1), длина волны λ зависит от скорости ее распространения и периода колебаний электронов в антенне. Так как частота тока f = 1 / T , то длина волны λ = υ / f .

Радиолиния включает в себя следующие основные части:

Передатчик

Приемник

Среда, в которой распространяются радиоволны.

Передатчик и приемник являются управляемыми элементами радиолинии, так как можно увеличить мощность передатчика, подключить более эффективную антенну и увеличить чувствительность приемника. Среда является неуправляемым элементом радиолинии.

Отличие линии радиосвязи от проводных линий заключается в том, что в проводных линиях в качестве связующего звена используются провода или кабель, которые являются управляемыми элементами (можно изменить их электрические параметры).

Многие закономерности волновых процессов имеют универсальный характер и в равной мере справедливы для волн различной природы: механических волн в упругой среде, волн на поверхности воды, в натянутой струне и т. д. Не являются исключением и электромагнитные волны, представляющие собой процесс распространения колебаний электромагнитного поля. Но в отличие от других видов волн, распространение которых происходит в какой-то материальной среде, электромагнитные волны могут распространяться в пустоте: никакой материальной среды для распространения электрического и магнитного полей не требуется. Однако электромагнитные волны могут существовать не только в вакууме, но и в веществе.

Предсказание электромагнитных волн. Существование электромагнитных волн было теоретически предсказано Максвеллом в результате анализа предложенной им системы уравнений, описывающих электромагнитное поле. Максвелл показал, что электромагнитное поле в вакууме может существовать и в отсутствие источников — зарядов и токов. Поле без источников имеет вид волн, распространяющихся с конечной скоростью см/с, в которых векторы электрического и магнитного полей в каждый момент времени в каждой точке пространства перпендикулярны друг другу и перпендикулярны направлению распространения волн.

Экспериментально электромагнитные волны были открыты и изучены Герцем только спустя 10 лет после смерти Максвелла.

Открытый вибратор. Чтобы понять, каким образом можно получить электромагнитные волны на опыте, рассмотрим «открытый» колебательный контур, у которого обкладки конденсатора раздвинуты (рис. 176) и поэтому электрическое поле занимает большую область пространства. При увеличении расстояния между обкладками емкость С конденсатора убывает и в соответствии с формулой Томсона возрастает частота собственных колебаний. Если еще и катушку индуктивности заменить отрезком провода, то уменьшится индуктивность а частота собственных колебаний возрастет еще больше. При этом не только электрическое, но и магнитное поле, которое раньше было заключено внутри катушки, теперь займет большую область пространства, охватывающую этот провод.

Увеличение частоты колебаний в контуре, как и увеличение его линейных размеров, приводит к тому, что период собственных

колебаний становится сравнимым со временем распространения электромагнитного поля вдоль всего контура. Это означает, что процессы собственных электромагнитных колебаний в таком открытом контуре уже нельзя считать квазистационарными.

Рис. 176. Переход от колебательного контура к открытому вибратору

Сила тока в разных его местах в один и тот же момент времени разная: на концах контура она всегда равна нулю, а в середине (там, где прежде была катушка) она осциллирует с максимальной амплитудой.

В предельном случае, когда колебательный контур превратился просто в отрезок прямого провода, распределение силы тока вдоль контура в некоторый момент времени показано на рис. 177а. В тот момент, когда сила тока в таком вибраторе максимальна, охватывающее его магнитное поле также достигает максимума, а электрическое поле вблизи вибратора отсутствует. Через четверть периода обращается в нуль сила тока, а вместе с ней и магнитное поле вблизи вибратора; электрические заряды сосредоточиваются вблизи концов вибратора, а их распределение имеет вид, показанный на рис. 1776. Электрическое поле вблизи вибратора в этот момент максимально.

Рис. 177. Распределение вдоль открытого вибратора силы тока в момент, когда она максимальна (а), и распределение зарядов спустя четверть периода (б)

Эти колебания заряда и тока, т. е. электромагнитные колебания в открытом вибраторе, вполне аналогичны механическим колебаниям, которые могут происходить в пружине осциллятора, если убрать присоединенное к ней массивное тело. В этом случае придется учитывать массу отдельных частей пружины и рассматривать ее как распределенную систему, у которой каждый элемент обладает как упругими, так и инертными свойствами. В случае открытого электромагнитного вибратора каждый его элемент также одновременно обладает и индуктивностью, и емкостью.

Электрическое и магнитное поля вибратора. Неквазистационарный характер колебаний в открытом вибраторе приводит к тому, что создаваемые отдельными его участками поля на некотором расстоянии от вибратора уже не компенсируют друг друга, как это имеет место для «закрытого» колебательного контура с сосредоточенными параметрами, где колебания квазистационарны, электрическое поле целиком сосредоточено внутри конденсатора, а магнитное — внутри катушки. Из-за такого пространственного разделения электрического и магнитного полей они непосредственно не связаны друг с другом: их взаимное превращение обусловлено только током — переносом заряда по контуру.

У открытого вибратора, где электрическое и магнитное поля перекрываются в пространстве, происходит их взаимное влияние: изменяющееся магнитное поле порождает вихревое электрическое поле, а изменяющееся электрическое поле порождает магнитное поле. В результате оказывается возможным существование таких «самоподдерживающихся» и распространяющихся в свободном пространстве полей на большом расстоянии от вибратора. Это и есть излучаемые вибратором электромагнитные волны.

Опыты Герца. Вибратор, с помощью которого Г. Герцем в 1888 г. впервые были экспериментально получены электромагнитные волны, представлял собой прямолинейный проводник с небольшим воздушным промежутком посредине (рис. 178а). Благодаря такому промежутку можно было сообщить двум половинам вибратора значительные заряды. Когда разность потенциалов достигала определенного предельного значения, в воздушном зазоре возникал пробой (проскакивала искра) и электрические заряды через ионизированный воздух могли перетекать с одной половины вибратора на другую. Б открытом контуре возникали электромагнитные колебания. Чтобы быстропеременные токи существовали только в вибраторе и не замыкались через источник питания, между вибратором и источником включались дроссели (см. рис. 178а).

Рис. 178. Вибратор Герца

Высокочастотные колебания в вибраторе существуют, пока искра замыкает промежуток между его половинами. Затухание таких колебаний в вибраторе происходит в основном не за счет джоулевых потерь на сопротивлении (как в закрытом колебательном контуре), а за счет излучения электромагнитных волн.

Для обнаружения электромагнитных волн Герц применял второй (приемный) вибратор (рис. 1786). Под действием переменного электрического поля приходящей от излучателя волны электроны в приемном вибраторе совершают вынужденные колебания, т. е. в вибраторе возбуждается быстропеременный ток. Если размеры приемного вибратора такие же, как и у излучающего, то частоты собственных электромагнитных колебаний в них совпадают и вынужденные колебания в приемном вибраторе достигают заметной величины вследствие резонанса. Эти колебания Герц обнаруживал по проскакиванию искры в микроскопическом зазоре в середине приемного вибратора или по свечению миниатюрной газоразрядной трубки Г, включенной между половинами вибратора.

Герц не только экспериментально доказал существование электромагнитных волн, но впервые начал изучать их свойства — поглощение и преломление в разных средах, отражение от металлических поверхностей и т. п. На опыте удалось также измерить скорость электромагнитных волн, которая оказалась равной скорости света.

Совпадение скорости электромагнитных волн с измеренной задолго до их открытия скоростью света послужило отправным пунктом для отождествления света с электромагнитными волнами и создания электромагнитной теории света.

Электромагнитная волна существует без источников полей в том смысле, что после ее излучения электромагнитное поле волны не связано с источником. Этим электромагнитная волна отличается от статических электрического и магнитного полей, которые не существуют в отрыве от источника.

Механизм излучения электромагнитных волн. Излучение электромагнитных волн происходит при ускоренном движении электрических зарядов. Понять, каким образом поперечное электрическое поле волны возникает из радиального кулоновского поля точечного заряда, можно с помощью следующего простого рассуждения, предложенного Дж. Томсоном.

Рис. 179. Поле неподвижного точечного заряда

Рассмотрим электрическое поле, создаваемое точечным зарядом Если заряд покоится, то его электростатическое поле изображается радиальными силовыми линиями, выходящими из заряда (рис. 179). Пусть в момент времени заряд под действием какой-то внешней силы начинает двигаться с ускорением а, а спустя некоторое время действие этой силы прекращается, так что дальше заряд движется равномерно со скоростью График скорости движения заряда показан на рис. 180.

Представим себе картину линий электрического поля, создаваемого этим зарядом, спустя большой промежуток времени Поскольку электрическое поле распространяется со скоростью света с,

то до точек, лежащих за пределами сферы радиуса изменение электрического поля, вызванное движением заряда, дойти не могло: за пределами этой сферы поле такое же, каким оно было при неподвижном заряде (рис. 181). Напряженность этого поля (в гауссовой системе единиц) равна

Все изменение электрического поля, вызванное ускоренным движением заряда в течение времени в момент времени находится внутри тонкого шарового слоя толщины наружный радиус которого равен а внутренний — Это показано на рис. 181. Внутри сферы радиуса электрическое поле — это поле равномерно движущегося заряда.

Рис. 180. График скорости заряда

Рис. 181. Линии напряженности электрического поля заряда, движущегося согласно графику на рис. 180

Рис. 182. К выводу формулы для напряженности поля излучения ускоренно движущегося заряда

Если скорость заряда много меньше скорости света с, то это поле в момент времени совпадает с полем неподвижного точечного заряда находящегося на расстоянии от начала (рис. 181): поле медленно движущегося с постоянной скоростью заряда перемещается вместе с ним, а пройденное зарядом за время расстояние, как видно из рис. 180, можно считать равным если г»т.

Картину электрического поля внутри шарового слоя легко найти, учитывая непрерывность силовых линий. Для этого нужно соединить соответствующие радиальные силовые линии (рис. 181). Вызванный ускоренным движением заряда излом силовых линий «убегает» от заряда со скоростью с. Излом на силовых линиях между

сферами это и есть интересующее нас поле излучения, распространяющееся со скоростью с.

Чтобы найти поле излучения, рассмотрим одну из линий напряженности, составляющую некоторый угол с направлением движения заряда (рис. 182). Разложим вектор напряженности электрического поля в изломе Е на две составляющие: радиальную и поперечную Радиальная составляющая — это напряженность электростатического поля, создаваемого зарядом на расстоянии от него:

Поперечная составляющая — это напряженность электрического поля в волне, излученной зарядом при ускоренном движении. Так как эта волна бежит по радиусу, то вектор перпендикулярен направлению распространения волны. Из рис. 182 видно, что

Подставляя сюда из (2), находим

Учитывая, что а отношение есть ускорение а, с которым двигался заряд в течение промежутка времени от 0 до перепишем это выражение в виде

Прежде всего обратим внимание на то, что напряженность электрического поля волны убывает обратно пропорционально расстоянию от центра, в отличие от напряженности электростатического поля которая пропорциональна Такой зависимости от расстояния и следовало ожидать, если принять во внимание закон сохранения энергии. Так как при распространении волны в пустоте поглощения энергии не происходит, то количество энергии, прошедшее через сферу любого радиуса, одинаково. Поскольку площадь поверхности сферы пропорциональна квадрату ее радиуса, то поток энергии через единицу ее поверхности должен быть обратно пропорционален квадрату радиуса. Учитывая, что плотность энергии электрического поля волны равна приходим к выводу, что

Далее отметим, что напряженность поля волны в формуле (4) в момент времени зависит от ускорения заряда а в момент времени волна, излученная в момент достигает точки, находящейся на расстоянии спустя время, равное

Излучение осциллирующего заряда. Предположим теперь, что заряд все время движется вдоль прямой с некоторым переменным ускорением вблизи начала координат, например совершает гармонические колебания. Тоща он будет излучать электромагнитные волны непрерывно. Напряженность электрического поля волны в точке, находящейся на расстоянии от начала координат, по-прежнему определяется формулой (4), причем поле в момент времени зависит от ускорения заряда а в более ранний момент

Пусть движение заряда представляет собой гармоническое колебание вблизи начала координат с некоторой амплитудой А и частотой со:

Ускорение заряда при таком движении дается выражением

Подставляя ускорение заряда в формулу (5), получаем

Изменение электрического поля в любой точке при прохождении такой волны представляет собой гармоническое колебание с частотой , т. е. осциллирующий заряд излучает монохроматическую волну. Разумеется, формула (8) справедлива на расстояниях больших по сравнению с амплитудой колебаний заряда А.

Энергия электромагнитной волны. Плотность энергии электрического поля монохроматической волны, излучаемой зарядом, можно найти с помощью формулы (8):

Плотность энергии пропорциональна квадрату амплитуды колебаний заряда и четвертой степени частоты.

Любое колебание связано с периодическими переходами энергии из одного вида в другой и обратно. Например, колебания механического осциллятора сопровождаются взаимными превращениями кинетической энергии и потенциальной энергии упругой деформации. При изучении электромагнитных колебаний в контуре мы видели, что аналогом потенциальной энергии механического осциллятора является энергия электрического поля в конденсаторе, а аналогом кинетической энергии — энергия магнитного поля катушки. Эта аналогия справедлива не только для локализованных колебаний, но и для волновых процессов.

В монохроматической волне, бегущей в упругой среде, плотности кинетической и потенциальной энергий в каждой точке совершают гармоническое колебание с удвоенной частотой, причем так, что их значения совпадают в любой момент времени. Так же и в бегущей монохроматической электромагнитной волне: плотности энергии электрического и магнитного полей, совершая гармоническое колебание с частотой равны друг другу в каждой точке в любой момент времени.

Плотность энергии магнитного поля выражается через индукцию В следующим образом:

Приравнивая плотности энергии электрического и магнитного полей в бегущей электромагнитной волне, убеждаемся, что индукция магнитного поля в такой волне зависит от координат и времени точно так же, как напряженность электрического поля. Другими словами, в бегущей волне индукция магнитного поля и напряженность электрического поля равны друг другу в любой точке в любой момент времени (в гауссовой системе единиц):

Поток энергии электромагнитной волны. Полная плотность энергии электромагнитного поля в бегущей волне вдвое больше плотности энергии электрического поля (9). Плотность потока энергии у, переносимой волной, равна произведению плотности энергии на скорость распространения волны . С помощью формулы (9) можно увидеть, что поток энергии через любую поверхность осциллирует с частотой Для нахождения среднего значения плотности потока энергии необходимо усреднить по времени выражение (9). Так как среднее значение равно 1/2, то для получаем

Рис. 183. Угловое распределение энергии» излучаемой осциллирующим зарядом

Плотность потока энергии в волне зависит от направления: в том направлении, по которому происходят колебания заряда, энергия вовсе не излучается Наибольшее количество энергии излучается в плоскости, перпендикулярной этому направлению Угловое распределение излучаемой осциллирующим зарядом энергии показано на рис. 183. Заряд совершает колебания вдоль оси Из начала координат проводятся отрезки, длина которых пропорциональна излучаемой в данном

направлении энергии, т. е. На диаграмме показана линия, соединяющая концы этих отрезков.

Распределение энергии по направлениям в пространстве характеризуется поверхностью, которая получается вращением диаграммы вокруг оси

Поляризация электромагнитных волн. Волна, порождаемая вибратором при гармонических колебаниях, называется монохроматической. Монохроматическая волна характеризуется определенной частотой со и длиной волны X. Длина волны и частота связаны через скорость распространения волны с:

Электромагнитная волна в вакууме является поперечной: вектор напряженности электромагнитного поля волны, как это видно из приведенных выше рассуждений, перпендикулярен направлению распространения волны. Проведем через точку наблюдения Р на рис. 184 сферу с центром в начале координат, около которого вдоль оси совершает колебания излучающий заряд. Проведем на ней параллели и меридианы. Тогда вектор Е поля волны будет направлен по касательной к меридиану, а вектор В перпендикулярен вектору Е и направлен по касательной к параллели.

Чтобы убедиться в этом, рассмотрим подробнее взаимосвязь электрического и магнитного полей в бегущей волне. Эти поля после излучения волны уже не связаны с источником. При изменении электрического поля волны возникает магнитное поле, силовые линии которого, как мы видели при изучении тока смещения, перпендикулярны силовым линиям электрического поля. Это переменное магнитное поле, изменяясь, в свою очередь приводит к появлению вихревого электрического поля, которое перпендикулярно породившему его магнитному полю. Таким образом, при распространении волны электрическое и магнитное поля поддерживают друг друга, оставаясь все время взаимно перпендикулярными. Так как в бегущей волне изменение электрического и магнитного полей происходит в фазе друг с другом, то мгновенный «портрет» волны (векторы Е и В в разных точках линии вдоль направления распространения) имеет вид, показанный на рис. 185. Такая волна называется линейно поляризованной. Совершающий гармоническое колебание заряд излучает по всем направлениям линейно поляризованные волны. В бегущей по любому направлению линейно поляризованной волне вектор Е все время находится в одной плоскости.

Так как в линейном электромагнитном вибраторе заряды совершают именно такое осциллирующее движение, то излучаемая вибратором электромагнитная волна поляризована линейно. В этом легко убедиться на опыте, изменяя ориентацию приемного вибратора относительно излучающего.

Рис. 185. Электрическое и магнитное поля в бегущей линейно поляризованной волне

Сигнал имеет наибольшую величину, когда приемный вибратор параллелен излучающему (см. рис. 178). Если приемный вибратор повернуть перпендикулярно излучающему, то сигнал пропадает. Электрические колебания в приемном вибраторе могут появиться только благодаря составляющей электрического поля волны, направленной вдоль вибратора. Поэтому такой опыт свидетельствует о том, что электрическое поле в волне параллельно излучающему вибратору.

Возможны и другие виды поляризации поперечных электромагнитных волн. Если, например, вектор Е в некоторой точке при прохождении волны равномерно вращается вокруг направления распространения, оставаясь неизменным по модулю, то волна называется циркулярно поляризованной или поляризованной по кругу. Мгновенный «портрет» электрического поля такой электромагнитной волны показан на рис. 186.

Рис. 186. Электрическое поле в бегущей циркулярно поляризованной волне

Волну круговой поляризации можно получить при сложении двух распространяющихся в одном направлении линейно поляризованных волн одинаковой частоты и амплитуды, векторы электрического поля в которых взаимно перпендикулярны. В каждой из волн вектор электрического поля в каждой точке совершает гармоническое колебание. Чтобы при сложении таких взаимно перпендикулярных колебаний получилось вращение результирующего вектора, необходим сдвиг фаз на Другими словами, складываемые линейно поляризованные волны должны быть сдвинуты на четверть длины волны одна относительно другой.

Импульс волны и давление света. Наряду с энергией электромагнитная волна обладает и импульсом. Если волна поглощается, то ее импульс передается тому объекту, который ее поглощает. Отсюда следует, что при поглощении электромагнитная волна оказывает давление на преграду. Объяснить происхождение давления волны и найти величину этого давления можно следующим образом.

Направлены по одной прямой. Тогда поглощаемая зарядом мощность Р равна

Будем считать, что вся энергия падающей волны поглощается преградой. Так как на единицу площади поверхности преграды в единицу времени волна приносит энергию то оказываемое волной при нормальном падении давление равно плотности энергии волны Сила давления поглощаемой электромагнитной волны сообщает преграде в единицу времени импульс, равный согласно формуле (15) поглощенной энергии, деленной на скорость света с. А это означает, что поглощенная электромагнитная волна обладала импульсом, который равен энергии, деленной на скорость света.

Впервые давление электромагнитных волн экспериментально было обнаружено П. Н. Лебедевым в 1900 г. в исключительно тонких опытах.

Чем отличаются квазистационарные электромагнитные колебания в закрытом колебательном контуре от высокочастотных колебаний в открытом вибраторе? Приведите механическую аналогию.

Поясните, почему при электромагнитных квазистационарных колебаниях в закрытом контуре не происходит излучение электромагнитных волн. Почему излучение происходит при электромагнитных колебаниях в открытом вибраторе?

Опишите и объясните опыты Герца по возбуждению и обнаружению электромагнитных волн. Какую роль играет искровой промежуток в передающем и приемном вибраторах?

Поясните, каким образом при ускоренном движении электрического заряда продольное электростатическое поле превращается в поперечное электрическое поле излучаемой им электромагнитной волны.

Исходя из энергетических соображений, покажите, что напряженность электрического поля сферической волны, излучаемой вибратором, убывает как 1 1г (в отличие от для электростатического поля).

Что такое монохроматическая электромагнитная волна? Что такое длина волны? Как она связана с частотой? В чем заключается свойство поперечности электромагнитных волн?

Что называется поляризацией электромагнитной волны? Какие виды поляризации вам известны?

Какие доводы вы можете привести для обоснования того, что электромагнитная волна обладает импульсом?

Объясните роль силы Лоренца в возникновении силы давления электромагнитной волны на преграду.

В 1860-1865 гг. один из величайших физиков XIX века Джеймс Клерк Максвелл создал теорию электромагнитного поля. Согласно Максвеллу явление электромагнитной индукции объясняется следующим образом. Если в некоторой точке пространства изменяется во времени магнитное поле, то там образуется и электрическое поле. Если же в поле находится замкнутый проводник, то электрическое поле вызывает в нем индукционный ток. Из теории Максвелла следует, что возможен и обратный процесс. Если в некоторой области пространства меняется во времени электрическое поле, то здесь же образуется и магнитное поле.

Таким образом, любое изменение со временем магнитного поля приводит к возникновению изменяющегося электрического поля, а всякое изменение со временем электрического поля порождает изменяющееся магнитное поле. Эти порождающие друг друга переменные электрические и магнитные поля образуют единое электромагнитное поле.

Свойства электромагнитных волн

Важнейшим результатом, который вытекает из сформулированной Максвеллом теории электромагнитного поля, стало предсказание возможности существования электромагнитных волн. Электромагнитная волна — распространение электромагнитных полей в пространстве и во времени.

Электромагнитные волны, в отличие от упругих (звуковых) волн , могут распространяться в вакууме или любом другом веществе.

Электромагнитные волны в вакууме распространяются со скоростью c=299 792 км/с , то есть со скоростью света.

В веществе скорость электромагнитной волны меньше, чем в вакууме. Соотношение между длиной волна , ее скоростью, периодом и частотой колебаний, полученные для механических волн выполняются и для электромагнитных волн:

Колебания вектора напряженности E и вектора магнитной индукции B происходят во взаимно перпендикулярных плоскостях и перпендикулярно направлению распространения волны (вектору скорости).

Электромагнитная волна переносит энергию.

Диапазон электромагнитных волн

Вокруг нас сложный мир электромагнитных волн различных частот: излучения мониторов компьютеров, сотовых телефонов, микроволновых печей, телевизоров и др. В настоящее время все электромагнитные волны разделены по длинам волн на шесть основных диапазонов.

Радиоволны — это электромагнитные волны (с длиной волны от 10000 м до 0,005 м), служащие для передачи сигналов (информации) на расстояние без проводов. В радиосвязи радиоволны создаются высокочастотными токами, текущими в антенне.

Электромагнитные излучения с длиной волны, от 0,005 м до 1 мкм, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением . Инфракрасное излучение испускают любые нагретые тела. Источником инфракрасного излучения служат печи, батареи, электрические лампы накаливания. С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте.

К видимому свету относят излучения с длиной волны примерно 770 нм до 380 нм, от красного до фиолетового цвета. Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения.

Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового цвета, называют ультрафиолетовым излучением. Оно способно убивать болезнетворные бактерии.

Рентгеновское излучение невидимо глазом. Оно проходит без существенного поглощения через значительные слои вещества, непрозрачного для видимого света, что используют для диагностики заболеваний внутренних органов.

Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными ядрами и возникающее при взаимодействии элементарных частиц.

Принцип радиосвязи

Колебательный контур используют как источник электромагнитных волн. Для эффективного излучения контур «открывают», т.е. создают условия для того, чтобы поле «уходило» в пространство. Это устройство называется открытым колебательным контуром — антенной .

Радиосвязью называется передача информации с помощью электромагнитных волн, частоты которых находятся в диапазоне от до Гц.

Радар (радиолокатор)

Устройство, которое передает ультракороткие волны и тут же их принимает. Излучение осуществляется короткими импульсами. Импульсы отражаются от предметов, позволяя после приема и обработки сигнала установить дальность до предмета.

Радар скорости работает по аналогичному принципу. Подумайте, как радар определяет скорость движущейся машины.

Распространение электромагнитных волн — Учебное пособие по Java

Распространение электромагнитных волн — Учебное пособие по Java

Электромагнитные волны могут генерироваться различными способами, такими как разрядная искра или колеблющийся молекулярный диполь. Видимый свет является широко изучаемой формой электромагнитного излучения и демонстрирует колеблющиеся электрические и магнитные поля, амплитуды и направления которых представлены векторами, которые колеблются по фазе в виде синусоидальных волн в двух взаимно перпендикулярных (ортогональных) плоскостях.В этом руководстве исследуется распространение виртуальной электромагнитной волны и рассматривается ориентация векторов магнитного и электрического полей.

Чтобы повернуть модель волны, щелкните и перетащите в любом месте окна.

Учебник начинается с электромагнитной волны, генерируемой разрядной искрой виртуального конденсатора. Искровой ток колеблется с частотой, характерной для цепи, и результирующее электромагнитное возмущение распространяется с векторами электрического ( E ) и магнитного ( B ) полей, колеблющихся перпендикулярно друг другу и направлению распространения ( Z ).Длина волны, излучаемая разрядом виртуального конденсатора, может быть изменена (в пределах диапазона видимого света) с помощью ползунка Длина волны .

Перед дальнейшим обсуждением явления анизотропии необходимо сделать базовый обзор нескольких принципов физической оптики, необходимых для последующих обсуждений. Как упоминалось ранее, видимый свет представляет собой форму электромагнитной волны. Если зарядить конденсатор (рис. 1) и через два электрода разрядить искру, ток, индуцированный искрой, на короткое время стекает вниз, замедляется, но из-за индуктивности цепи течет обратно вверх, перезаряжая снова конденсатор.

Распространение электромагнитной волны, генерируемой разряжающимся конденсатором или колеблющимся молекулярным диполем, показано на рисунке 1. Искровой ток колеблется с частотой ( ν ), которая является характеристикой цепи. Возникающие в результате электромагнитные помехи распространяются электронным ( E ) и магнитным ( B ) векторами, вибрирующими перпендикулярно друг другу, а также направлению распространения ( Z ).Частота ν определяется осциллятором, а длина волны определяется делением частоты колебаний на скорость волны.

Когда ток колеблется вверх и вниз в искровом промежутке с характеристической частотой цепи ( ν ), создается магнитное поле, которое колеблется в горизонтальной плоскости. Изменяющееся магнитное поле, в свою очередь, индуцирует электрическое поле, так что серия электрических и магнитных колебаний объединяется, создавая образование, которое распространяется как электромагнитная волна.

Электрическое поле в электромагнитной волне колеблется, его векторная сила то усиливается, то ослабевает, указывая то в одном, то в другом направлении, чередуясь по синусоидальному закону (рис. 1). На той же частоте магнитное поле колеблется перпендикулярно электрическому полю. Электрический и магнитный векторы, отражающие амплитуду и направления колебаний двух волн, ориентированы перпендикулярно друг другу и направлению распространения волны.

Скорость результирующей электромагнитной волны можно вывести из соотношений, определяющих взаимодействие электрического и магнитного полей. Уравнения Максвелла доказывают, что скорость равна скорости света в вакууме ( c ; равна 300 000 километров в секунду), деленной на квадратный корень из диэлектрической проницаемости ( ξ ) среды, умноженной на магнитную проницаемость ( μ ). ) среды. Таким образом,


(1)

Для большинства материалов, встречающихся в живых клетках (некоторые из которых непроводящие), магнитная проницаемость равна единице, так что :

(2)

Эмпирически известно, что скорость света обратно пропорциональна показателю преломления ( n ) материала, через который он распространяется, поэтому:

υ = c/n

(3)

Из уравнений (2) и (3) можно сделать вывод, что показатель преломления равен квадратному корню из диэлектрической проницаемости этого материала, если измерения проводятся на той же частоте Уравнение (4) показывает, что оптические измерения фактически являются измерениями электрических свойств материала.Диэлектрические свойства, в свою очередь, непосредственно отражают пространственное трехмерное расположение атомов и молекул, определяющих структуру вещества.

Вектор, описывающий взаимодействие между электромагнитным полем и веществом, лежит в том же направлении, что и электрический вектор. Это верно независимо от того, рассматриваются ли электрические или магнитные векторы, поскольку важно влияние электрических или магнитных полей на электроны в материальной среде (магнитное поле воздействует на те электроны, которые движутся в плоскости, перпендикулярной магнитному полю). ).

Соавторы

Кеннет Р. Спринг — Научный консультант, Ласби, Мэриленд, 20657.

Шинья Иноуэ — Морская биологическая лаборатория, 7 MBL Street, Woods Hole, Massachusetts, 02543.

2

B Роберт Т. Саттер и Майкл В. Дэвидсон — Национальная лаборатория сильного магнитного поля, 1800 г. Восточный Поль Дирак Доктор, Университет штата Флорида, Таллахасси, Флорида, 32310.

Нарисуйте схему электромагнитной волны 12 класса физики CBSE

Подсказка: Электромагнитные волны, также известные как электромагнитные волны, возникают, когда электрическое поле вступает в контакт с магнитным полем.Можно также сказать, что электромагнитные волны представляют собой состав осциллирующих электрических и магнитных полей. Изменяющиеся во времени магнитные поля порождают электрические поля и наоборот. Поведение электромагнитных волн, зависящих от времени, описывается набором уравнений, известных как уравнения Максвелла.

Полное пошаговое решение:
 Мы видели, что в определенных ситуациях свет $E$ может быть описан как волна. Волновое уравнение для света, распространяющегося в вакууме в направлении x, может быть записано как
\[E = {E_o}\sin \omega \left( {t — \dfrac{x}{c}} \right)\]
Где , $E$ — синусоидально изменяющееся электрическое поле в точке $x$ в момент времени $t.$
Константа $c$ — это скорость света в вакууме. Электрическое поле находится в плоскости Y-Z, перпендикулярной направлению распространения.
Существует также синусоидально изменяющееся магнитное поле, связанное с электрическим полем при распространении света. Это магнитное поле перпендикулярно направлению распространения, а также электрическому полю $E.$ и определяется как
$B = {B_o}\sin \omega \left( {t — \dfrac{x}{c}} \right)$
Такая комбинация взаимно перпендикулярных электрического и магнитного полей называется электромагнитной волной в вакууме.{ — 1}}.$

Примечание: Ниже приведены несколько применений электромагнитных волн:
1. Электромагнитные волны могут передавать энергию в вакууме или вообще без использования среды.
2. Электромагнитные волны играют важную роль в технике связи.
3. Электромагнитные волны используются в радарах.
4. Ультрафиолетовые лучи используются для обнаружения поддельных банкнот. Настоящие банкноты не флуоресцируют в ультрафиолетовом свете.
5. Инфракрасное излучение используется для ночного видения и применяется в камерах видеонаблюдения.

Электромагнитный спектр | Свет

9
10 4 м : 10 000 м или 10 км Это расстояние примерно равно длине моста Конфедерации футбольное поле
10 0 м : 1 м Это расстояние находится в том же масштабе, что и средний рост североамериканца (1,7–1,8 м)
10 -2 м : 9015 см (от латинского слова сто) Это примерно такой же размер, как горошина.
10 -3 м : 1 мм (от латинского слова тысяча) Это примерно такой же размер, как частицы пыли
10 -6 м : 1 мкм слово «маленький») или 1 тысячная миллиметра Это примерно размер бактерии
10 -9 m : 1 нм (нанометр от греческого слова карлик) или 1 миллионная часть миллиметра Это размером с типичную молекулу
10 -10 м : 1 ангстрем (от имени шведского физика) Это примерно размером с атом : 1 пикометр (от итальянского слова «маленький») Это примерно размер электрона или протона
10 -15 м : 1 фм (фемтометр, от датского слова «пятнадцать») Это размером с нуклон
10 9014 9 -18 м : 1 час (аттометр, от датского слова «восемнадцать») Это примерно размер кварка
10 -21 м : 1 зм (зептометр, термин, изобретенный для спектрометрии) Этот размер не соответствует ни одному известному объекту
10 -24 м : 1 мкм (йоктометр, придуманный термин) Этот размер не соответствует ни одному известному объекту
м : 10 000 метров или 10 километров В метрах это составляет 10 000 метров или 10 километров — диаметр небесного объекта, который 65 миллионов лет назад врезался в полуостров Юкатан, вызвав вымирание динозавров.
10 6 м : 1 000 000 м или 1 000 километров В метрах это составляет 1 000 километров — диаметр Цереры, крупнейшего астероида в поясе астероидов между Марсом и Юпитером.
10
10 8 м: 100 000 километров Измеряется в метрах, это составляет 100 000 километров — расстояние, посредством которого астероид 1994 xm пропустил землю в 1994 году.
10 10 м: 10 миллионов километров В метрах это составляет 10 миллионов километров — толщину короны Солнца.Солнечная корона — это внешний слой атмосферы Солнца. Он напоминает ореол жемчужного света и виден только во время полных солнечных затмений.
10 12 м : 1 миллиард километров В метрах это составляет 1 миллиард километров — приблизительное расстояние, пройденное Землей вокруг Солнца за один год.
10 14 м : 100 миллиардов километров В метрах это составляет 100 миллиардов километров — расстояние, отделяющее Землю от гелиопаузы, внешней границы Солнечной системы, где солнечный ветер останавливается межзвездной средой .
10 16 м : 10 000 миллиардов километров В метрах это составляет 10 000 миллиардов километров — расстояние, пройденное светом за один год, также известное как 1 световой год.
10 18 m : 100 световых лет В метрах это составляет 100 световых лет — диаметр туманности NGC 7000, также известной как «Туманность Северная Америка».
10 20 m : 10 000 световых лет В метрах это составляет 10 000 световых лет — расстояние, отделяющее нас от шарового скопления M22.
10 22 m : 1 миллион световых лет В метрах это соответствует 1 миллиону световых лет — среднему расстоянию между галактиками.
10 24 m : 100 миллионов световых лет В метрах это составляет 100 миллионов световых лет — расстояние между нами и галактикой NGC 5850 в созвездии Девы.
Гамма-лучи Наиболее энергичная форма света. Невидимый, он создается субатомными частицами или атомными ядрами.Радиоактивные химические элементы производят гамма-лучи.
Рентгеновское излучение Высокоэнергетический невидимый свет, который может проходить через многие типы материалов. Это качество позволяет использовать его (в малых дозах) для медицинской визуализации.
Ультрафиолет Энергичный невидимый свет, находящийся за пределами фиолетового цвета в электромагнитном спектре. Длительное воздействие ультрафиолетового света может вызвать проблемы со здоровьем в организме человека, особенно с глазами и кожей.К счастью для нас, большое количество ультрафиолетовых лучей, производимых Солнцем, поглощается озоном, одним из газов в нашей атмосфере.
Видимый Свет, воспринимаемый человеческим глазом. Он включает в себя все цвета радуги, от фиолетового до красного.
Инфракрасный Невидимый свет, который находится сразу за красным цветом в электромагнитном спектре. Это часто связано с теплом, потому что большинство объектов при температуре окружающей среды излучают инфракрасный свет при нагревании.
Микроволны (1 мм — 1 см) Относительно неэнергетический невидимый свет. Он используется для самых разных технологических приложений. Например, в микроволновых печах он перемешивает молекулы воды, выделяя тепло и, таким образом, нагревая пищу.
Радио (1 см +) Относительно неэнергетический невидимый свет. Радиоволны в основном используются в области связи, потому что они могут легко распространяться и не поглощаются атмосферой.
Радар (1 см — 10 см) Невидимый свет, используемый для обнаружения таких объектов, как самолеты, лодки или даже дождь.
Телевизор (10 см -1 м) Невидимый свет, передающий телевизионные сигналы.
FM (1 м — 10 м) Невидимый свет, передающий FM-радиосигналы.
Короткий (10 м — 100 м) Невидимый фонарь, передающий, помимо прочего, сигналы радиолюбителя.
AM (100 м -1 км) Невидимый свет, передающий AM-радиосигналы.
Транспорт (от 1 км) Невидимый свет, передающий, среди прочего, радиосигналы, используемые для навигации (например, авиационные и морские диапазоны).

Что такое электромагнитный спектр?

От предоставления нам возможности ходить и не натыкаться на предметы до разработки высокотехнологичного оружия направленной энергии, электромагнитный спектр жизненно важен для многих аспектов нашей современной жизни. Но жизнь, какой мы ее знаем, также была бы невозможна, если бы не существовало электромагнитного излучения, особенно видимого света.

На протяжении большей части истории человечества мы знали (но не до конца понимали) лишь очень небольшую часть спектра, а именно видимый свет и «тепло» в форме инфракрасного света.Но со времен научного просвещения наши знания о спектре и приложениях, использующих его, буквально произвели революцию в том, как мы живем и воспринимаем мир и космос вокруг нас.

Давайте посмотрим, что такое электромагнитное излучение, и совершим краткий экскурс в историю его открытия.

Что такое электромагнитный спектр?

Свет — это явление, которое позволяет нам видеть. Однако человеческий глаз не может воспринимать весь диапазон длин волн или частот, из которых состоит электромагнитное излучение (ЭМ) — все вместе называемое «электромагнитным спектром», из которого видимый свет — лишь небольшая часть.

Электромагнитное излучение — это энергия, которая перемещается и распространяется по мере продвижения. Например. видимый свет, исходящий от лампы в вашем доме, или радиоволны, исходящие от радиостанции, — это два типа электромагнитного излучения. Другие типы электромагнитного излучения, которые составляют электромагнитный спектр, включают микроволны, инфракрасный свет, ультрафиолетовый свет, рентгеновские лучи и гамма-лучи.

Источник: Ed S. Johavac/Flickr

Электромагнитные волны характеризуются на основе их соответствующей энергии (E), частоты (f) и длины волны (λ).Частота описывает, сколько волновых моделей или циклов проходит через конкретную точку в данный момент времени. Частота часто измеряется в герцах (Гц), где волна с частотой 1 Гц будет проходить со скоростью 1 цикл в секунду.

Длина волны определяется как общее расстояние между пиком одной волны и пиком следующей. Длина волны и частота обратно пропорциональны, или, другими словами, чем больше частота, тем меньше длина волны, и наоборот. Частота, длина волны и энергия определяют положение различных типов энергии в электромагнитном спектре.

Когда электромагнитная энергия распространяется в пространстве, она распространяется, образуя широкий спектр излучения, который включает в себя все различные частоты, существующие между гамма-лучами ближнего действия и радиоволнами дальнего действия. Каждая волна с другой частотой, чем другие, образует свою собственную отдельную полосу частот в спектре, и эти разные полосы вместе образуют электромагнитный спектр.

Полосы частот не только раскрывают различия между свойствами различных электромагнитных волн, но и влияют на то, как эти волны взаимодействуют с веществом.Значение частоты в электромагнитном спектре колеблется от ниже одного Гц до выше 10 90 149 19 90 150 герц, а длина волны может варьироваться от размера атомного ядра до тысяч километров.

Видимая часть электромагнитного спектра. Источник: Encyclopedia Britannica

Большинство электромагнитных волн не видны человеческому глазу, поскольку человеческий глаз может воспринимать только световые волны с длиной волны около 700 нанометров (нм), или 2,76 × 10 90 149 −5 90 150 дюймов и 380 нм (1.5 × 10 90 149 −5 90 150 дюймов). По этой причине эту часть электромагнитного спектра обычно называют спектром видимого света.

Электромагнитное излучение также можно определить как поток безмассовых пакетов энергии, называемых фотонами, движущихся волнообразно со скоростью света.

Различные типы излучения определяются количеством энергии, содержащейся в фотонах. Радиоволны имеют фотоны с низкой энергией, микроволновые фотоны имеют немного большую энергию, чем радиоволны, инфракрасные фотоны имеют еще большую, чем видимые, ультрафиолетовые, рентгеновские лучи и, самые энергичные из всех, гамма-лучи.

Энергия, длина волны и частота различных частей электромагнитного (ЭМ) спектра даны как:

Источник: Университет Рочестера

Существует обратная зависимость между частотой и длиной волны, но энергия ЭМ положительно влияет на его частоту и амплитуду. Следовательно, световые лучи с более высокой частотой и более короткими длинами волн имеют большее количество энергии. Более длинные волны и более низкая частота приводят к более низкой энергии.

ЭМ-волны с самыми высокими частотами, такие как гамма-, рентгеновские и ультрафиолетовые (УФ), имеют самые низкие длины волн, тогда как длинноволновые волны, попадающие в радио-, микроволновую и инфракрасную области спектра, имеют самые низкие длины волн. значения энергии и частоты.

Источник: Chegg Study

Среди всех форм электромагнитного излучения гамма-лучи имеют максимальную частоту и, следовательно, проникающую способность. По этой причине такие лучи используются в лучевой терапии и радиоонкологии.

Радиоволны, с другой стороны, имеют самую большую длину волны и лучше всего подходят для устройств и оборудования связи дальнего действия (таких как навигационные системы, радиовещательные установки, радио, беспроводные технологии и т. д.).

Кто открыл электромагнитный спектр?

Уильям Гершель.Источник: tonynetone/Flickr

В каком-то смысле, так сказать, мы знали о видимой и инфракрасной частях электромагнитного спектра с самых первых дней существования нашего вида. Но только в 1800-х годах мы, наконец, начали систематически пытаться изучить его в деталях.

Один из самых важных пионеров в этой области, астроном Уильям Гершель, опубликовал результаты серии экспериментов, проведенных им в 1800 году, которые привели его к определению того, что сейчас известно как инфракрасное излучение.Гершель использовал телескопы для наблюдения за Солнцем и защищал свое зрение фильтрами из темного стекла. Он заметил, что фильтры одних цветов, казалось, пропускали больше света, а другие пропускали больше излучения, которое нагревало вещи.

В результате этих наблюдений Гершель поставил эксперимент, в котором солнечный свет пропускался через щель, а затем через призму, формируя спектр на своем столе. С помощью термометров он измерил температуру в разных точках спектра.

Он обнаружил, что самая высокая температура на самом деле наблюдается в пустой области спектра за красным светом. Гершель пришел к выводу, что «тепло» и свет являются частями одного и того же спектра.

Позже немецкий химик Иоганн В. Риттер был заинтригован открытиями Гершеля. В 1801 году он заметил, что невидимый свет за пределами оптической области электромагнитного спектра затемняет хлорид серебра. Он использовал призму, чтобы разделить солнечный свет, а затем измерил относительное потемнение хлорида серебра в зависимости от длины волны.Он обнаружил, что область сразу за фиолетовым дает наибольшее затемнение, и поэтому эту область в конечном итоге окрестили «ультрафиолетовой».

Пульт от телевизора использует инфракрасные волны. Источник: Karolina Grabowska/pexels

В то же время физик Алессандро Вольта сообщил об изобретении батареи, которая позволила экспериментаторам начать работать с непрерывным постоянным током. Примерно 20 лет спустя Ганс Христиан Эрстед продемонстрировал связь между электричеством и магнетизмом, когда показал, что стрелка компаса будет двигаться, если ее приблизить к проводу с током.В начале 1830-х годов Майкл Фарадей продемонстрировал, что при протягивании магнита через проволочную петлю может генерироваться ток.

Фарадей предположил, что существует невидимое «электротоническое состояние» или поле, окружающее магнит. Он предположил, что изменения в этом электротоническом состоянии вызывают электромагнитные явления, и выдвинул гипотезу, что свет сам по себе является электромагнитной волной. Очевидно, что система работала, но она еще не была ясно понята.

В 1850-х годах Джеймс Клерк Максвелл, английский ученый, решил придать математический смысл наблюдениям Фарадея.В серии статей в течение следующего десятилетия он разработал научную теорию для объяснения электромагнитных волн. Сосредоточившись на математике, он описал, как связаны электричество и магнетизм и как они движутся вместе, создавая электромагнитную волну.

Джеймс Максвелл. Источник: ArtUK/Wikimedia Commons

Работа Максвелла была революционной и позволила объединить следующие законы:

— Закон Гаусса: Согласно закону Гаусса, чистый внешний нормальный электрический поток для любой замкнутой поверхности прямо пропорционален полное электрическое поле внутри этой замкнутой поверхности.

Закон Гаусса для магнетизма: Магнитный поток для замкнутой поверхности оказывается равным нулю, потому что значение внутреннего потока на южном полюсе равно внешнему потоку на северном полюсе.

Закон Фарадея: утверждает, что электродвижущая сила (ЭДС), вызванная изменением магнитного потока, зависит от изменения потока в момент времени (t) и от числа витков катушки.

Закон Ампера: связывает суммарное магнитное поле вдоль замкнутого контура с электрическим током, проходящим через контур.В нем говорится, что замкнутый линейный интеграл магнитного поля вокруг проводника с током равен произведению абсолютной магнитной проницаемости на общий ток через проводник.

Источник: Victoria Web

Уравнения Максвелла описывают поведение электрических и магнитных полей и их влияние на другие объекты. В своем анализе Максвелл также пришел к выводу, что электромагнитные волны должны распространяться со скоростью, которая позже оказалась скоростью света, и, наконец, что свет является электромагнитной волной.С помощью своих уравнений Максвелл также описал возможность существования множества ЭМ-волн с разными частотами и, следовательно, математически предсказал наличие электромагнитного спектра.

Однако экспериментальных подтверждений теорий Максвелла не было. После смерти Максвелла физики Джордж Фрэнсис Фицджеральд и Оливер Лодж работали над укреплением связи со светом, но именно немецкий исследователь Генрих Герц в 1888 году опубликовал работу, продемонстрировавшую первое обнаружение радиочастотных волн.

Он также подтвердил, что электромагнитные волны демонстрируют светоподобные свойства отражения, преломления, дифракции и поляризации. Герц также смог рассчитать скорость этих невидимых волн, которая была довольно близка к той, которая сейчас известна для видимого света. Его работа в конечном итоге привела к инновациям в области радио, сотовых сетей, систем управления воздушным движением и многим другим важным изобретениям.

В последующие годы Вильгельм Рентген открыл рентгеновские лучи (также называемые рентгеновскими лучами), а Пол Виллар открыл то, что позже было названо гамма-лучами.Физики Эрнест Резерфорд и Эдвард Андраде также изучали гамма-лучи и раскрыли важные подробности об их длинах волн и других свойствах. Изучая радиоактивный распад, Резерфорд отличал гамма-лучи от альфа- и бета-лучей из-за их более высокой степени проникновения через вещество.

Какие интересные факты об электромагнитном спектре вы знаете?

Источник: Gabrielle Ludlow/Flickr

1. ЭМ-излучение либо безвредно, либо очень опасно для живых существ

Люди и любое другое живое существо могут подвергаться воздействию двух основных типов электромагнитного излучения.Первый — это неионизирующее или низковолновое излучение, которое исходит от таких вещей, как мобильные телефоны, Bluetooth-гарнитуры, микроволновые печи и т. д. Другой — ионизирующее излучение, такое как ультрафиолетовые лучи солнца, гамма-лучи, рентгеновские лучи и т. д. Постоянное воздействие большое количество ионизирующего излучения может привести к раку, бессоннице, ожогам кожи, слепоте и различным другим видам неврологических или физиологических расстройств.

2. Спасибо вам, счастливые звезды, вы можете видеть только видимый свет

Если бы человеческий глаз мог воспринимать все лучи в электромагнитном спектре, то мы не смогли бы увидеть ничего, кроме подавляющего свечения.Избыток света может сделать вещи и объекты нечеткими для наших глаз, и в этом случае наш мозг не сможет понять информацию, поступающую через наши глаза.

3. Некоторые животные могут видеть другие части спектра

Существуют разные животные, которые могут видеть разные части электромагнитного спектра, например, пчелы и ежи могут видеть часть света в УФ-части спектра.

Различные насекомые и животные, такие как комары, змеи и лягушки-быки, используют участки инфракрасного спектра для выслеживания своего хозяина или добычи.Летучие мыши используют высокочастотные (> 20 кГц) ультразвуковые волны для обнаружения препятствий и добычи.

4. Кошки и собаки на самом деле не дальтоники

Раньше считалось, что кошки и собаки полностью дальтоники, но на самом деле это не так. У кошек и собак в глазах есть только синие и зеленые колбочки, то есть у них нет красных колбочек, которые есть у людей.

Это означает, что у них гораздо более приглушенное восприятие цвета, чем у людей. Поскольку кошки и собаки не чувствительны к красному свету, им трудно различать некоторые цвета.Например, вполне вероятно, что собаки могут отличить красный цвет от синего, но часто путают красный и зеленый, вероятно, рассматривая оба цвета как оттенки серого. Собаки также могут различать различные оттенки синего и зеленого, а кошачьи глаза хорошо приспособлены для того, чтобы различать оттенки синего и желтого.

5. Различные части спектра обладают интересными свойствами

Микроволны не прерываются дождем, туманом, дымом или облаками, а гамма-лучи обладают способностью проходить через все тело человека. Большой телескоп Хаббл, который используется НАСА и Европейским космическим агентством для наблюдения за далекими звездами и галактиками, работает за счет взаимодействия с УФ-лучами, а также может захватывать видимые и ближние инфракрасные волны.

6. Существует причина, по которой красный цвет выбран для знаков остановки

В электромагнитном спектре свет красного цвета имеет самую низкую частоту и самую большую длину волны видимого света. Это означает, что он может быть легко замечен человеческим глазом с большого расстояния.

Вот почему предупредительные сигналы, светофоры, светофоры и т. д. окрашены в красный цвет. Красный цвет также обычно ассоциируется с опасностью во многих культурах.

7. Вот почему небо голубое

Видимый свет, проходящий через атмосферу, состоит из всех цветов радуги.Так почему же небо голубое?

Когда световые волны входят в нашу атмосферу, волны видимого света сталкиваются с молекулами азота и кислорода в атмосфере и рассеиваются. Величина рассеяния зависит от длины волны света.

Чем меньше длина волны света, тем сильнее он рассеивается. Синий и фиолетовый свет имеют самую короткую длину волны, поэтому больше рассеиваются. Поскольку Солнце излучает более высокую концентрацию синих световых волн, а наши глаза более чувствительны к синему свету, небо кажется голубым, а не фиолетовым.

8. «Северное сияние» действительно очень особенное

В недавнем отчете предполагается, что образование полярных сияний, подобно знаменитому Северному сиянию, или северному сиянию, происходит, когда во время геомагнитной бури возникают сильные электромагнитные волны в результате явления известны как альфвеновские волны.

На этом, энтузиасты ЭМ, на сегодня ваш удел.

На протяжении большей части истории человечества, хотя мы могли «видеть» и «ощущать» некоторые формы электромагнитного излучения, мы не понимали всего спектра электромагнитного излучения.Нам потребовались тысячелетия, чтобы по-настоящему оценить это удивительное природное явление. Без нашего знания об этом сегодня наш мир буквально и фигурально выглядел бы совсем иначе.

15.2 Поведение электромагнитного излучения

Типы поведения электромагнитных волн

В вакууме все электромагнитное излучение распространяется с одной и той же невероятной скоростью 3,00 × 10 8 м/с, что равно 671 миллиону миль в час . Это одна из фундаментальных физических констант.Она называется скоростью света и обозначается символом c . Пространство между небесными телами представляет собой почти вакуум, поэтому свет, который мы видим от Солнца, звезд и других планет, распространяется здесь со скоростью света. Имейте в виду, что все электромагнитное излучение распространяется с этой скоростью. Все различные длины волн излучения, исходящие от Солнца, доходят до Земли за одно и то же время. Эта поездка занимает 8,3 минуты. Свет от ближайшей звезды, не считая Солнца, достигает Земли за 4,2 года, а свет от ближайшей галактики — карликовой галактики, вращающейся вокруг Млечного Пути, — проходит путь до Земли за 25 000 лет.Вы можете понять, почему мы называем очень большие расстояния астрономическими .

Когда свет проходит через физическую среду, его скорость всегда меньше скорости света. Например, свет распространяется в воде со скоростью, составляющей три четверти от значения 90 577 c 90 433 . В воздухе скорость света лишь немного меньше, чем в пустом пространстве: 99,97% от 90 577 c 90 433. Алмаз замедляет свет всего до 41% от c . Когда свет меняет скорость на границе между средами, он также меняет направление.Чем больше разница скоростей, тем больше изгибается путь света. В других главах мы рассмотрим это искривление, называемое преломлением , более подробно. Мы вводим здесь преломление, чтобы помочь объяснить явление, называемое тонкопленочной интерференцией.

Вы когда-нибудь задумывались о цветах радуги, которые часто можно увидеть на мыльных пузырях, масляных пятнах и компакт-дисках? Это происходит, когда свет преломляется и отражается от очень тонкой пленки. На схеме показан путь света через такую ​​тонкую пленку.Символы n 1 , n 2 и n 3 указывают на то, что свет распространяется с разной скоростью в каждом из трех материалов. Узнайте больше об этой теме в главе о дифракции и интерференции.

На рис. 15.11 показан результат интерференции тонких пленок на поверхности мыльных пузырей. Поскольку луч 2 проходит большее расстояние, два луча становятся не в фазе . То есть гребни двух возникающих волн уже не движутся вместе.Это вызывает интерференцию, которая усиливает интенсивность длин волн света, создающих цветовые полосы. Цветовые полосы разделены, потому что каждый цвет имеет свою длину волны. Кроме того, толщина пленки неоднородна, и разные толщины вызывают интерференцию цветов с разными длинами волн в разных местах. Обратите внимание, что пленка должна быть очень, очень тонкой — где-то около длин волн видимого света.

Рис. 15.11. Свет, падающий на тонкую пленку, частично отражается (луч 1) и частично преломляется на верхней поверхности.Преломленный луч частично отражается от нижней поверхности и выходит как луч 2. Эти лучи будут интерферировать так, как это зависит от толщины пленки и показателей преломления различных сред.

Предупреждение о неправильном представлении

Не путайте полярные молекулы с поляризованным светом. Если молекула полярна, это относится к разделению отрицательных и положительных электрических зарядов. Поляризованный свет — это свет, составляющая электрического поля которого колеблется в определенной плоскости.

Вы, наверное, видели, как поляризационные солнцезащитные очки уменьшают блики от поверхности воды или снега.Эффект обусловлен волновой природой света. Возвращаясь к рис. 15.3, мы видим, что электрическое поле движется только в одном направлении, перпендикулярном направлению распространения. Свет от большинства источников вибрирует во всех направлениях, перпендикулярных распространению. Свет с электрическим полем, вибрирующим только в одном направлении, называется поляризованным . Диаграмма поляризованного света будет выглядеть так, как показано на рис. 15.3.

Поляризационные очки являются примером поляризационного фильтра. Эти очки поглощают большую часть горизонтальных световых волн и пропускают вертикальные волны.Это уменьшает блики, вызванные горизонтальными волнами. На рис. 15.12 показано, как волны, бегущие по веревке, можно использовать в качестве модели работы поляризационного фильтра. Колебания в одной веревке происходят в вертикальной плоскости и называются вертикально поляризованными. Те, что в другой веревке, находятся в горизонтальной плоскости и имеют горизонтальную поляризацию. Если на первой веревке сделать вертикальную щель, волны проходят сквозь нее. Однако вертикальная щель блокирует горизонтально поляризованные волны. Для электромагнитных волн направление колебаний электрического поля аналогично возмущениям на веревках.

Рис. 15.12 Поперечные колебания в одной веревке совершаются в вертикальной плоскости, а в другой — в горизонтальной. Первый называется вертикально поляризованным, а второй — горизонтально поляризованным. Вертикальные щели пропускают волны с вертикальной поляризацией и блокируют волны с горизонтальной поляризацией.

Свет также может быть поляризован путем отражения. Большая часть света, отраженного от воды, стекла или любой поверхности с высокой отражающей способностью, поляризована горизонтально.На рис. 15.13 показано влияние поляризационной линзы на свет, отраженный от поверхности воды.

Рис. 15.13 На этих двух фотографиях реки показано действие поляризационного фильтра на уменьшение бликов света, отраженного от поверхности воды. Часть (б) этого рисунка снята с поляризационным фильтром, а часть (а) — без. В результате отражение облаков и неба, наблюдаемое в части (а), не наблюдается в части (б). Поляризационные очки особенно полезны на снегу и воде.

Смотреть физику

Поляризация света, линейная и круговая

В этом видео очень подробно объясняется поляризация света. Перед просмотром видео еще раз посмотрите на рисунок электромагнитной волны из предыдущего раздела. Попробуйте визуализировать двумерный рисунок в трех измерениях.

Проверка захвата

Как поляризованные очки уменьшают блики, отраженные от океана?

  1. Блокируют горизонтально и вертикально поляризованный свет.
  2. Они прозрачны для горизонтально поляризованного и вертикально поляризованного света.
  3. Они блокируют горизонтально поляризованные лучи и прозрачны для вертикально поляризованных лучей.
  4. Они прозрачны для горизонтально поляризованного света и блокируют вертикально поляризованный свет.

Snap Lab

Поляризованные очки

Предупреждение о безопасности

  • БЕЗОПАСНОСТЬ ДЛЯ ГЛАЗ — прямой взгляд на солнце может привести к необратимому повреждению глаз. Старайтесь не смотреть прямо на Солнце.

Материалы

  • две пары поляризованных солнцезащитных очков ИЛИ
  • две линзы от одной пары поляризованных солнцезащитных очков

Процедура

  1. Посмотрите через обе или одну из поляризационных линз и запишите свои наблюдения.
  2. Держите линзы одну перед другой. Держите одну линзу неподвижно, пока вы медленно вращаете другую линзу. Запишите свои наблюдения, включая относительные углы линз, когда вы делаете каждое наблюдение.
  3. Найдите отражающую поверхность, на которую светит Солнце. Это может быть вода, стекло, зеркало или любая другая подобная гладкая поверхность. Результаты будут более впечатляющими, если солнечный свет падает на поверхность под острым углом.
  4. Наблюдайте за поверхностью невооруженным глазом и через одну из поляризованных линз.
  5. Наблюдайте за любыми изменениями, медленно поворачивая объектив, и отмечайте углы, под которыми вы видите изменения.
.

Добавить комментарий

Ваш адрес email не будет опубликован.