Фазометр трехфазный: Фазометр трехфазный Ц302/1-ЗИП-Прибор

Содержание

Фазометр трехфазный Ц302/1-ЗИП-Прибор

Слова синонимы: Ц302, фазометр Ц302, Ц 302/1, фазометр Ц 302/1, Ц302 1, фазометр Ц302 1

Фазометр трехфазный Ц302/1 используется для измерения коэффициента мощности в диапазонах 0,5 — 1 — 0,5 и 0,9 — 1 — 0,2 в трехфазных трехпроводных сетях переменного тока частотой 50 Гц с симметрией линейных напряжений и симметричной нагрузкой фаз.

Класс точности — 2,5.

Номинальное значение частоты, Гц

Номинальное значение напряжения, В

Номинальное значение тока при подключении непосредственно через измерительный трансформатор, А

непосредственное подключение

подключение через измерительный трансформатор

50

60; 500; 1000; 2400; 2880; 4000; 8000; 10000

127; 220; 380

100

5

5

 

Габаритные размеры, мм

120х120х95

Масса, кг

0,7

Габаритные размеры, мм

96х96х95

Условия эксплуатации:

 

— температура окружающего воздуха, оС

от — 20 до + 50

— относительная влажность при температуре 30 оС, %

95

При заказе указать: напряжение, ток, способ включения, диапазон измерений.

Паспорт:

Сторона — 1

Сторона — 2

Упаковка:

низкие цены, в наличии на складе, бесплатная доставка, гарантия 1 год, сервисное обслуживание. Электроизмерительные приборы, щитовые аналоговые приборы, фазометры.

Внимание!!! Доставка ВСЕХ приборов, которые приведены на сайте, происходит по ВСЕЙ территории следующих стран: Российская Федерация, Украина, Республика Беларусь, Республика Казахстан и другие страны СНГ.

По России существует налаженная система поставки в такие города: Москва, Санкт-Петербург, Сургут, Нижневартовск, Омск, Пермь, Уфа, Норильск, Челябинск, Новокузнецк, Череповец, Альметьевск, Волгоград, Липецк Магнитогорск, Тольятти, Когалым, Кстово, Новый Уренгой, Нижнекамск, Нефтеюганск, Нижний Тагил, Ханты-Мансийск, Екатеринбург, Самара, Калининград, Надым, Ноябрьск, Выкса, Нижний Новгород, Калуга, Новосибирск, Ростов-на-Дону, Верхняя Пышма, Красноярск, Казань, Набережные Челны, Мурманск, Всеволожск, Ярославль, Кемерово, Рязань, Саратов, Тула, Усинск, Оренбург, Новотроицк, Краснодар, Ульяновск, Ижевск, Иркутск, Тюмень, Воронеж, Чебоксары, Нефтекамск, Великий Новгород, Тверь, Астрахань, Новомосковск, Томск, Прокопьевск, Пенза, Урай, Первоуральск, Белгород, Курск, Таганрог, Владимир, Нефтегорск, Киров, Брянск, Смоленск, Саранск, Улан-Удэ, Владивосток, Воркута, Подольск, Красногорск, Новоуральск, Новороссийск, Хабаровск, Железногорск, Кострома, Зеленогорск, Тамбов, Ставрополь, Светогорск, Жигулевск, Архангельск и другие города Российской Федерации.

По Украине существует налаженная система поставки в такие города: Киев, Харьков, Днепр (Днепропетровск), Одесса, Донецк, Львов, Запорожье, Николаев, Луганск, Винница, Симферополь, Херсон, Полтава, Чернигов, Черкассы, Сумы, Житомир, Кировоград, Хмельницкий, Ровно, Черновцы, Тернополь, Ивано-Франковск, Луцк, Ужгород и другие города Украины.

По Белоруссии существует налаженная система поставки в такие города: Минск, Витебск, Могилев, Гомель, Мозырь, Брест, Лида, Пинск, Орша, Полоцк, Гродно, Жодино, Молодечно и другие города Республики Беларусь.

По Казахстану существует налаженная система поставки в такие города: Астана, Алматы, Экибастуз, Павлодар, Актобе, Караганда, Уральск, Актау, Атырау, Аркалык, Балхаш, Жезказган, Кокшетау, Костанай, Тараз, Шымкент, Кызылорда, Лисаковск, Шахтинск, Петропавловск, Ридер, Рудный, Семей, Талдыкорган, Темиртау, Усть-Каменогорск и другие города Республики Казахстан.

Осуществляется поставка приборов в такие страны: Азербайджан (Баку), Армения (Ереван), Киргизстан (Бишкек), Молдавия (Кишинёв), Таджикистан (Душанбе), Туркменистан (Ашхабад), Узбекистан (Ташкент), Литва (Вильнюс), Латвия (Рига), Эстония (Таллин), Грузия (Тбилиси).

Вся текстовая и графическая информация на сайте несет информативный характер. Цвет, оттенок, материал, геометрические размеры, вес, содержание, комплект поставки и другие параметры товара представленого на сайте могут изменяться в зависимости от партии производства и года изготовления. Более подробную информацию уточняйте в отделе продаж.

Предприятие принимаем активное участие в таких процедурах как электронные торги, тендер, аукцион.

При отсутствии на сайте в техническом описании необходимой Вам информации о приборе Вы всегда можете обратиться к нам за помощью. Наши квалифицированные менеджеры уточнят для Вас технические характеристики на прибор из его технической документации: инструкция по эксплуатации, паспорт, формуляр, руководство по эксплуатации, схемы. При необходимости мы сделаем фотографии интересующего вас прибора, стенда или устройства.

Описание на приборы взято с технической документации или с технической литературы. Большинство фото изделий сделаны непосредственно нашими специалистами перед отгрузкой товара. В описании устройства предоставлены основные технические характеристики приборов: номинал, диапазон измерения, класс точности, шкала, напряжение питания, габариты (размер), вес. Если на сайте Вы увидели несоответствие названия прибора (модель) техническим характеристикам, фото или прикрепленным документам — сообщите об этом нам — Вы получите полезный подарок вместе с покупаемым прибором.

При необходимости, уточнить общий вес и габариты или размер отдельной части измерителя Вы можете в нашем сервисном центре. Наши инженеры помогут подобрать полный аналог или наиболее подходящую замену на интересующий вас прибор. Все аналоги и замена будут протестированы в одной с наших лабораторий на полное соответствие Вашим требованиям.

В технической документации на каждый прибор или изделие указывается информация по перечню и количеству содержания драгметаллов. В документации приводится точная масса в граммах содержания драгоценных металлов: золото Au, палладий Pd, платина Pt, серебро Ag, тантал Ta и другие металлы платиновой группы (МПГ) на единицу изделия. Данные драгметаллы находятся в природе в очень ограниченном количестве и поэтому имеют столь высокую цену. У нас на сайте Вы можете ознакомиться с техническими характеристиками приборов и получить сведения о содержании драгметаллов в приборах и радиодеталях производства СССР. Обращаем ваше внимание, что часто реальное содержание драгметаллов на 10-25% отличается от справочного в меньшую сторону! Цена драгметаллов будет зависить от их ценности и массы в граммах.

Основная особенность нашей фирмы — проведение объективных консультаций при выборе необходимого оборудования. В компании работает около 20 высококвалифицированных специалистов, которые готовы ответить на все ваши вопросы.

Иногда клиенты могут вводить название нашей компании неправильно — например, западпрыбор, западпрылад, западпрібор, западприлад, західприбор, західпрібор, захидприбор, захидприлад, захидпрібор, захидпрыбор, захидпрылад. Правильно — западприбор.

 

ООО «Западприбор» — это огромный выбор измерительного оборудования по лучшему соотношению цена и качество. Чтобы Вы могли купить приборы недорого, мы проводим мониторинг цен конкурентов и всегда готовы предложить более низкую цену. Мы продаем только качественные товары по самым лучшим ценам. На нашем сайте Вы можете дешево купить как последние новинки, так и проверенные временем приборы от лучших производителей.

На сайте постоянно действует акция «Куплю по лучшей цене» — если на другом интернет-ресурсе (доска объявлений, форум, или объявление другого онлайн-сервиса) у товара, представленного на нашем сайте, меньшая цена, то мы продадим Вам его еще дешевле! Покупателям также предоставляется дополнительная скидка за оставленный отзыв или фотографии применения наших товаров.

В прайс-листе указана не вся номенклатура предлагаемой продукции. Цены на товары, не вошедшие в прайс-лист можете узнать, связавшись с менеджерами. Также у наших менеджеров Вы можете получить подробную информацию о том, как дешево и выгодно купить измерительные приборы оптом и в розницу. Телефон и электронная почта для консультаций по вопросам приобретения, доставки или получения скидки приведены возле описания товара. У нас самые квалифицированные сотрудники, качественное оборудование и выгодная цена.

ООО «Западприбор» — официальный дилер заводов изготовителей измерительного оборудования. Наша цель — продажа товаров высокого качества с лучшими ценовыми предложениями и сервисом для наших клиентов. Наша компания может не только продать необходимый Вам прибор, но и предложить дополнительные услуги по его поверке, ремонту и монтажу. Чтобы у Вас остались приятные впечатления после покупки на нашем сайте, мы предусмотрели специальные гарантированные подарки к самым популярным товарам.

Завод «МЕТА» — это производитель наиболее надежных приборов для проведения техосмотра. Тормозной стенд СТМ производится именно на этом заводе.

Производитель ТМ «Инфракар» — это изготовитель многофункциональных приборов таких, как газоанализатор и дымомер.

Вы можете оставить отзывы на приобретенный у нас прибор, измеритель, устройство, индикатор или изделие. Ваш отзыв при Вашем согласии будет опубликован на сайте без указания контактной информации.

 

Наше предприятие осуществляет ремонт и сервисное обслуживание измерительной техники более чем 75 разных заводов производителей бывшего СССР и СНГ. Также мы осуществляем такие метрологические процедуры: калибровка, тарирование, градуирование, испытание средств измерительной техники.

Если Вы можете сделать ремонт устройства самостоятельно, то наши инженеры могут предоставить Вам полный комплект необходимой технической документации: электрическая схема, ТО, РЭ, ФО, ПС. Также мы располагаем обширной базой технических и метрологических документов: технические условия (ТУ), техническое задание (ТЗ), ГОСТ, отраслевой стандарт (ОСТ), методика поверки, методика аттестации, поверочная схема для более чем 3500 типов измерительной техники от производителя данного оборудования. Из сайта Вы можете скачать весь необходимый софт (программа, драйвер) необходимый для работы приобретенного устройства.

Также у нас есть библиотека нормативно-правовых документов, которые связаны с нашей сферой деятельности: закон, кодекс, постановление, указ, временное положение.

По требованию заказчика на каждый измерительный прибор предоставляется поверка или метрологическая аттестация. Наши сотрудники могут представлять Ваши интересы в таких метрологических организациях как Ростест (Росстандарт), Госстандарт, Госпотребстандарт, ЦЛИТ, ОГМетр.

ООО «Западприбор» является поставщиком амперметров, вольтметров, ваттметров, частотомеров, фазометров, шунтов и прочих приборов таких заводов-изготовителей измерительного оборудования, как: ПО «Электроточприбор» (М2044, М2051), г. Омск; ОАО «Приборостроительный завод «Вибратор» (М1611, Ц1611), г. Санкт-Петербург; ОАО «Краснодарский ЗИП» (Э365, Э377, Э378), ООО «ЗИП-Партнер» (Ц301, Ц302, Ц300) и ООО «ЗИП «Юримов» (М381, Ц33), г. Краснодар; ОАО«ВЗЭП» («Витебский завод электроизмерительных приборов») (Э8030, Э8021), г. Витебск; ОАО «Электроприбор» (М42300, М42301, М42303, М42304, М42305, М42306), г. Чебоксары; ОАО «Электроизмеритель» (Ц4342, Ц4352, Ц4353) г. Житомир; ПАО «Уманский завод «Мегомметр» (Ф4102, Ф4103, Ф4104, М4100), г. Умань.

Фазометры назначение, устройство и область применения, обзор моделей

Фазометр — прибор, применяемый для получения точной информации о величине фазового сдвига между двумя меняющимися время от времени электрическими колебаниями. Устройство, как правило, используется для измерений в 3-фазной сети.

Фазометры часто используются в электрических установках для вычисления коэффициента реактивной мощности (косинуса «фи»). Прибор активно применяется при эксплуатации электрических подстанций и сетей, при разработке электронных и электротехнических изделий.

Коротко о фазометре

Для проведения измерений фазометр подключается к цепям напряжения, которые выступают опорной точкой, и токовой цепи, которая показывает положение измеряемого вектора. При работе в 3-х фазной сети может потребоваться подключение ко всем фазам.

Особенность современных приборов заключается в упрощенном принципе применения, поэтому разобраться с особенностями и тонкостями использования фазометра не составит труда даже малоопытному специалисту.

Измерение производится для двух фаз, после чего последняя фаза вычисляется на базе сложения векторов. Кроме того, фазометр часто применяется для измерения косинуса «фи», о чем упоминалось в начале статьи.

Виды

Все фазометры по принципу работы делятся на три вида:

  • Электродинамические;
  • Цифровые;
  • Электромеханические.

Наибольшим спросом пользуются первые два типа, но рекомендуется применять цифровые приборы. Они отличаются большей точностью и низким уровнем помех.

По числу фаз фазометры бывают:

  • Однофазные — для проведения измерений в 1-фазной цепи.
  • Трехфазные — для 3-фазных цепей.

Электродинамический

Еще недавно наибольшим спросом пользовались электродинамические (электромагнитные) фазометры. Конструктивно этот прибор состоит из простого логометрического механизма, позволяющего с точностью измерять смещение фаз.

В устройстве предусмотрено две рамки, которые жестко объединены между собой. Угол между упомянутыми элементами составляет 60 градусов. Рамки крепятся на осях, зафиксированных на опорных узлах. Благодаря этой особенности, в устройстве отсутствует механическое противодействие.

В приборе предусмотрен специальный элемент, который поворачивается на угол, характеризующий величину текущего сдвига фаз. С помощью линейной шкалы специалист может зафиксировать измерение и определить текущий параметр смещения.

В основе электродинамического фазометра лежит неподвижная токовая катушка, а также еще два аналогичных, но подвижных элемента. В смещающихся катушках текут свои токи, что способствует появлению магнитного потока во всех катушках — подвижных и неподвижных.

При взаимодействии потоков катушек появляется пара вращающихся моментов, величина которых зависит от расстояния между перемещающимися элементами устройства. Упомянутые моменты имеют различное направление, которое противоположно по величине.

Показатели моментов зависят от токов, протекающих в катушках подвижного типа, а также от уровня тока в фиксированной катушке. Кроме того, упомянутые показатели зависят от конструктивных особенностей катушки и углового фазного сдвига.

Как результат, перемещающийся элемент фазометра прокручивается под влиянием упомянутых моментов до ситуации, когда не возникнет равновесие, то есть моменты становятся равны.

У самого фазометра часто предусмотрена градация, позволяющая точно измерить коэффициент мощности.

Преимущества прибора — надежность, высокая точность показаний, доступная цена.

Недостаток — зависимость измеряемых параметров от показателя частоты. Еще один минус — повышенная потребляемая мощность с изучаемого источника.

Читайте также:

Цифровой

Как отмечалось, это более предпочтительный тип прибора из-за более удобного применения и высокой точности. Такие устройства изготавливаются по различным технологиям.

К примеру, компенсационный фазометр делает максимально точные измерения, несмотря на необходимость ручного применения. Прибор работает на ином принципе. В процессе измерений появляется пара U, имеющих синусоидальный тип, а главное назначение прибора заключается именно в вычислении сдвига между фазами.

Сначала U подается на фазовращатель, управление которым производится со специального прибора. Процесс измерения происходит плавно до момента, пока в не произойдет совпадение фаз. В процессе настройки величина смещения фаз вычисляется с помощью устройства фазочувствительного вида.

Сигнал на выходе передается с детектора на управляющий прибор. Заданный алгоритм реализуется посредством кодировки импульсов. Как только происходит уравновешивание, код фазовращателя отражает интересующие сведения.

На современном этапе цифровые фазометры применяют методику, которая базируется на дискретном счете. Суть способа заключается в прохождении двух этапов.

Сначала выполнятся процесс по преобразованию смещения фаз в параметр сигнала с определенной продолжительностью. Далее меняется длина этого импульса с помощью дискретного счета.

В состав прибора входит:

  • Преобразователь, обеспечивающий преобразование смещения фаз в импульс;
  • Временной селектор;
  • Элемент, который формирует дискретные импульсы;
  • Управляющее устройство и счетчик.

Плюсы фазометров цифрового типа — меньшая погрешность, благодаря выполнению вычислений за несколько периодов, большая точность и удобство применения. Недостатки — более высокая цена.

Читайте также:

Инструкция по эксплуатации

Чтобы разобраться с применением фазометра, главное внимание уделяется инструкции по эксплуатации (входит в комплект с устройством). Перед началом работы требуется сделать несколько шагов.

Для начала стоит убедиться, что условия работы соответствуют тем, что рекомендует производитель, а частотный диапазон находится в соответствии с метрологическими характеристиками. После этого собирается сама схема.

Эксплуатация фазометра выполняется по такому алгоритму:

  • Сначала требуется прочесть инструкцию, которая идет вместе с изделием. В документе раскрываются нюансы и правила применения прибора.
  • С помощью корректора выставляется стрелка на 0-ой отметке.
  • Убедитесь, что кнопки не сработаны.
  • Подключите пробники на входе к требуемым разъемам.
  • Нажмите клавишу, которая подает питание на устройство. Обратите внимание на загорание специального индикатора.
  • Выждите некоторое время, чтобы прибор хорошо прогрелся. Это необходимо, чтобы добиться максимальной точности измерений. В среднем выдержка по времени должна составлять около 10-15 минут.
  • Найдите напряжение на входе.
  • Жмите на клавишу в зависимости от выбора внешнего напряжения и установите требуемый частотный диапазон.
  • Жмите «>0<» пары каналов и «+».
  • Подключите пробники для каналов в 4-х полюсный вход.
  • Переключатель границ установите в позицию «20».
  • После стрелку измерителя поставьте с использованием регулятора в «нулевую» позицию.

Популярные модели на рынке

Рассмотрим несколько моделей фазометров, которые пользуются наибольшим спросом сегодня.

Фазометры Д5721 и Д5782

Применяются для работы в 1-фазных цепях переменного тока с частотой 50 (60) Герц и позволяют измерить смещение фаз между гармоническими составляющими тока и напряжения.

Прибор имеет высокий класс точности (0,5), позволяет измерять углы в диапазоне от 0 до 360 градусов. Вес прибора не больше 6,5 кг, а размеры — 23*28*14 см.

Мегеон 40850

Эта модель фазоуказателя относится к категории портативных (компактных) приборов, позволяющих с высокой скоростью и точностью выполнять измерения.

Для диагностики правильности чередования фаз или наличия ошибок применяются светодиоды, установленные на передней панели. Также имеется встроенный зуммер.

Плюсы Мегеона 490850 заключается в готовности к работе и соответствии 2-му классу безопасности. В процессе измерения применяются «крокодилы» (идут в комплекте), что упрощает процесс пользования прибором.

В комплектацию входит сам прибор, зажимы «крокодил» (3 ед.), запястный ремешок (3 ед.), инструкция по эксплуатации, а также чехол для хранения и перевозки прибора.

Масса брутто изделия всего 810 грамм, а размеры коробки — 15*10*15 см. Прибор производит измерения при напряжении от 200 до 400 В. Уровень защиты IP65. Оптимальная рабочая температура от -10 до +40 градусов Цельсия.

Ц302 — трехфазный фазометр

Главное назначение фазометра Ц302 в том, что с его помощью можно быстро и точно измерить коэффициент «фи» в переменной сети. Частота тока может быть различной — от 50 до 10 тысяч Гц.  Размеры прибора 12*12*9,5 см, класс точности — 2,5.

Рассматриваемая модель отличается повышенной стойкостью к ударам и вибрациям. Принцип действия измерителя построен на преобразовании входного синусоидального сигнала в прямоугольные импульсы с последующим преобразованием в постоянный ток.

Параметр I зависит от угла фазного сдвига. В состав Ц302 входит электрический измеритель и индикатор магнитоэлектрической системы.

Читайте также:

Фазометр Э35000

Задача этого оборудования заключается в том, чтобы убедиться в корректности работы фазометров Д578 и Д5782.

Кроме того, изделие применяется для проведения измерений в различных цепях с высоким классом точности, составляющим 0,2 (в случае применения без трансформатора).

Работа изделия базируется на основе сравнения полученного угла разности между первоначальными параметрами фаз искажения напряжения и тока с заданным показателем. Погрешность модели составляет до 0,1%. Габариты — 23*28*14 см. Вес 7 кг.

Фазометр Д5000

Модель Д5000 применяется для определения точности однофазных фазометров, работающих на частоте, равной 50 Гц. Этот тип измерительного устройства часто монтируется в схемы с разделенными токовыми и напряженческими цепями.

Номинальный ток и напряжение прибора — 5 и 10 А, а также 100, 127 и 220 В соответственно. Мощность потребления при последовательном/параллельном подсоединении 5 и 8 Ампер соответственно. Внешне похож на предыдущий прибор.

Однофазный фазометр С302-М1

Модель С302-М1 примеряется для измерения коэффициента мощности в 3-фазной сети переменного тока, имеющего частоту 50 Гц. Главным условием считается симметрия линейных напряжений, а также симметрия нагрузки фаз.

Конструктивно прибор состоит из преобразователя электронного типа, а также индикатора магнитоэлектрической системы (оба элемента находятся в одном корпусе).

Фазометр Ц42305

Модель фазоизмерительного устройства Ц42305 используется для измерения коэффициента мощности в 3-х фазных сетях с номинальной частотой в 50 Гц при условии симметричной нагрузки и наличии симметрии линейных U.

В основе устройства входит электронное устройство, которое преобразовывает входной сигнал, а также магнитоэлектрический элемент.

Класс точности модели составляет 2,5. Номинальное напряжение (220, 100, 380 или 127 В). Подключение осуществляется непосредственно через ТТ или ТН.

Фазометр Ц42309

Измеритель Ц42309 применяется для вычисления точного коэффициента мощности в 3-фазных сетях переменного тока. Принцип действия построен на работе преобразователя электронного типа, который принимает входные сигналы и преобразовывает их постоянный ток.

Класс точности прибора составляет 2,5. Номинальные напряжения — 220, 100, 380 или 127 В.

Прочие модели

Кроме рассмотренных выше фазометров, стоит выделить еще ряд моделей — фазометры PIC144A, FTZ144 500V, FEMC144 110V, FEMC96 100/v3, FEMC96 100V FTZ96 230V, FEMC96 100V и другие.

Важность фазометров сложно переоценить. С помощью этого прибора удается точно измерить коэффициент «фи». Этот параметр показывает наличие реактивной составляющей в сети.

По результатам измерения специалистами принимают решение о необходимости коррекции коэффициента мощности и общем характере нагрузки.

Фазометры. Виды и работа. Устройство и применение. Особенности

Фазометры – это электрические приборы, которыми измеряют сдвиг фаз двух колебаний постоянной частоты, например, в сети 3-фазного напряжения. Чаще всего их используются для вычисления коэффициента мощности электроустановки.

Фазометры

Фазометры стали популярными при проектировании, наладке различных электрических устройств. Они применяются в оборудовании, где электрическая сеть работает в изменяемом режиме, при этом она влияет на коэффициент мощности. Такими устройствами можно назвать синхронные двигатели, генераторы на электростанциях.

Электрический двигатель синхронного типа имеет коэффициент мощности, зависящий от тока возбуждения. При некотором режиме работы синхронный двигатель способен отдать в сеть питания реактивную энергию. При этом он играет роль компенсатора реактивной мощности. Чтобы оценить режим функционирования электродвигателя, на его щите управления подключают фазометр.

Синхронный генератор при работе имеет коэффициент мощности, зависящий от вида нагрузки и тока возбуждения. В процессе функционирования автоматическая система следит за cos φ, который характеризует коэффициент мощности, и поддерживает его в определенных пределах путем регулировки тока ротора.

Во время запуска генератора и при возникающих неисправностях регулировку переключают с автоматического режима на ручной. Управление берет на себя оператор. Для ручной регулировки коэффициента мощности на пульте управления подключен фазометр.

При отклонении стрелки прибора вправо и уменьшении cos φ (при индуктивной нагрузке) обмотка статора может перегреться. При емкостной нагрузке независимо от ее значения, генератор расходует ток из сети. Это является аварийным режимом эксплуатации генератора.

Регулировка коэффициента мощности

Большая часть нагрузок потребителей будет тратиться на полезную работу при приближении cos φ к единице. При его уменьшении снижается мощность, которая расходуется на ненужное нагревание электрооборудования: линий кабелей, электромоторов, обмоток трансформаторов и т.д. Напряжение в питающей сети уменьшается, а для выполнения такой же работы устройствам необходима значительная мощность.

Наиболее оптимальной величиной коэффициента мощности является 0,95 в индуктивном виде. Как действовать, когда в сети питания имеется много индуктивных потребителей? В таком случае трансформаторных подстанциях монтируют конденсаторы, которые называются реактивными компенсаторами. По названию можно понять их назначение. Они выравнивают индуктивную составляющую сопротивления. При этом они приближают угол сдвига к нулю, а коэффициент мощности к 1.

При монтаже емкостей с постоянным номиналом появляется другой недостаток: при изменении числа потребителей с индуктивным сопротивлением cos φ изменяется. Такая компенсация не является эффективной, и даже вредна. Для устранения этой причины, такие устройства делают автоматическими. Автоматика подключает или выключает емкости от сети в зависимости от угла между напряжением и током. При этом изменяется емкость батареи.

Принцип действия

Фазометры, работают по следующему принципу. В приборе контролируемый сдвиг фаз преобразуется в промежуток времени (рисунки «а» и «б»). Благодаря устройствам формирования ФУ из напряжений u1 и u2 образуются импульсы во время перехода напряжений через ноль в сторону повышения. Эти импульсы приходят на входы триггера Т, на выходе триггера образуются прямоугольные импульсы.

Их длительность t напрямую зависит от фазового сдвига: t = φ*Т / 360. Средняя величина выходного напряжения триггера, зависящего от фазового сдвига равна:

Это напряжение измеряется встроенным вольтметром. Амплитуда импульсов Um подбирается так, чтобы результат на вольтметре совпадал со сдвигом фаз φ, который выражается в градусах.

Такой способ измерения сдвига фаз имеет систематическую погрешность вследствие несимметричного ограничения контролируемых напряжений в формирующем устройстве. В таком случае выходное напряжение ограничителя в ФУ1 станет иметь постоянную составляющую (рисунок «в»).

Дифференциальная цепь, которая входит в устройство формирования, не пропускает постоянную составляющую, поэтому моменты прохождения напряжения через ноль смещаются. На рисунке это изображено стрелками. Изменение диапазона t создает погрешность измерения сдвига фаз.

Виды и особенности

Фазометры являются электроизмерительными устройствами, которые классифицируются по различным признакам. Подробнее рассмотрим наиболее часто применяемые приборы.

Электродинамические фазометры

Такие приборы также называют электромагнитными. Они основаны на простой цепи с логометрическим приспособлением для замера сдвига фаз. Две рамки жестко соединены друг с другом. Между ними угол 60 градусов. Рамки зафиксированы на осях.

При работе в цепи в момент возникновения фазного сдвига, двигающаяся часть фазометра поворачивается на угол, соответствующий фазному сдвигу. На шкале фиксируется результат.

Принцип действия

В приборе установлены 2 подвижные катушки и 1 неподвижная. По подвижным частям проходят токи I1 и I2, которые образуют магнитные потоки, образующие два момента вращения М1 и М2.

Их значения зависят от угла поворота подвижного элемента, от расположения 2-х катушек. Моменты имеют противоположные направления. Средние моменты зависят от токов (I1 и I2), проходящих по подвижным катушкам, и тока (I), проходящего по неподвижной катушке, а также от конструкции катушек и углов сдвига фаз (ψ1 и ψ2) подвижных катушек.

В результате подвижный элемент поворачивается до наступления равновесия. Шкала прибора имеет градуировку по величине коэффициента мощности.

Отрицательным фактором такого типа приборов можно отметить зависимость результатов от мощности контролируемого источника.

Цифровые

Такие приборы выполняются по различным принципам. Компенсационный фазометр имеет повышенную степень точности, хотя выполнен для ручного управления.

Принцип действия

Необходимо определить сдвиг фаз между напряжениями синусоидальной формы U1 и  U2. Напряжение U1 поступает на фазовозвращатель ФВ, на который воздействует код с управляющего устройства УУ. Сдвиг медленно изменяется пока U1 и  U3 не будут синфазными.

Сигнал на выходе детектора поступает на управляющее устройство УУ. С помощью кодоимпульсного метода выполняется алгоритм выравнивания. По окончании процесса выравнивания, код на входе фазовозвращателя ФВ будет определять сдвиг фаз напряжений U1 и U2.

Чаще всего новые модели фазометров функционируют на дискретном счете. Этот способ действует в 2 этапа:
  1. Преобразование фазного сдвига в электрический сигнал.
  2. Определение времени дискретным подсчетом.

Прибор состоит из селектора ВС, преобразователя фазного сдвига, образователя импульсов (f/fn), счетчика (СЧ), цифрового усилителя ЦОУ.

Импульсный преобразователь фазного сдвига из U1 и U2 с фазным сдвигом Δφ создает прямоугольный вид импульсов U3 в форме последовательности. Такие импульсы U3 обладают скважностью и частотой повторений, которые соответствуют частоте и сдвигу сигналов входа по времени U1 и U2. Импульсы напряжений U4 и U3 образуют счетные дискретные импульсы с периодом Т0, подающиеся на селектор времени. В итоге на выходе селектора образуются импульсы U5, которые имеют период следования Т.

Счетчик определяет число импульсов в группе U5. В результате число пришедших импульсов зависит от сдвига фаз между U1 и U2. Показания фазометра видны в градусах. Степень дискретности прибора позволяет достичь точности показаний до десятых долей. Погрешность связана с измерением Δt с точностью до 1 периода импульсов.

Средние по cos φ фазометры могут снизить погрешность за счет определения средней величины за несколько периодов Т контролируемого сигнала. Структура цифрового прибора средней величины имеет отличия от структуры дискретного счета наличием дополнительного селектора времени ВС2, генератора импульсов ГИ, создателя дискретных импульсов ФИ.

В данном случае преобразователь фазового сдвига в группе импульсов U5 вмещает в себя генератор ГИ и селектор времени ВС1. За градуированный диапазон времени Тк, который значительно больше Т, несколько групп импульсов поступают на устройство, на его выходе образуется несколько групп, что требуется для получения среднего результата.

Время импульсов U6 кратна Т0, так как создатель импульсов ФИ действует по принципу разделения частоты с определенным коэффициентом. Сигнальные импульсы U6 открывают селектор времени ВС2. В результате на вход поступает несколько групп импульсов. Разрешающая возможность прибора зависит от кратности U6.

На отклонения в показаниях фазометра влияет малая точность фиксации фазного сдвига во время перехода сигналов через нули. Однако такие погрешности уменьшаются при получении среднего результата за период Тк, который намного выше периода входных сигналов.

По числу фаз фазометры делятся на:
  • 1-фазные.
  • 3-фазные.

Эти приборы по устройству практически не отличаются, кроме того, что в 1-фазном фазометре подвижные рамки находятся под прямым углом, а в 3-фазном под 60 градусов.

Щитовые фазометры применяются для контроля технологических процессов. Они бывают цифровыми или стрелочными. Обе модели хорошо выполняют свои функции. Однако для работников удобнее работать со стрелочным прибором из-за его наглядности.

Лабораторные фазометры применяются для запуска и наладки электроустановок, также для ремонта и настройки аппаратуры в радиоэлектронике.

В инновационных измерительных цифровых комплексах для настройки оборудования чаще всего приборы изготавливаются цифровые. Они входят в устройство одного универсального прибора, который определяет сразу несколько параметров.

Также обстоит дело и с щитовыми фазометрами. Чтобы уменьшить число приборов, применяют универсальные комплексы, которые выдают на один экран несколько измеряемых параметров в одно время. Оператор имеет возможность быстро изменить их состав в зависимости от режима функционирования электроустановки. При этом на дисплей выводятся различные физические параметры, или один из них, для каждой контрольной фазы.

Похожие темы:

особенности и как правильно пользоваться?

Фазометр – это специальное устройство, которое относится к электроизмерительной серии. В его функции входит измерение угла сдвига фаз относительно пары электрических колебаний с постоянной частотой.

Что такое фазометр?

С помощью этого устройства у вас появится замечательная возможность определить угол, который показывает сдвиг фаз в сети напряжения трехфазного типа. Именно это и является его основной областью использования. В этой статье мы расскажем про устройство и принцип работы фазометра. Также вы узнаете правила его использования.

Что такое фазометр

В процессе включения устройства в цепь измерения его одновременно подсоединяют к токовым цепям, а также к цепям напряжения. Если возникает необходимость одновременно осуществлять рабочий процесс с тремя фазами тогда подключение устройства осуществляется к каждой фазе. Подключение по току должно выполняться ко вторичным обмоткам трансформатора.

В приборе присутствует упрощенная схема подключения. Поэтому разобраться с назначением фазометра будет достаточно просто. Подключение по току выполняется по двум фазам. Именно поэтому третья фаза будет определяться на основе сложения векторов только пары токов (фазы, которые измерялись). Назначение фазометра заключается в измерении коэффициента мощности. В некоторых случаях этот прибор называют еще косинусфиметром.

На данный момент в специализированных магазинах можно встретить два вида фазометра. Их область применения заключается в определении коэффициента мощности. Это цифровой, а также электродинамический прибор. Теперь пришло время рассмотреть каждый вид фазометра более детально.

Электродинамический

Электродинамический фазометр в некоторых случаях называют электромагнитным. В основе конструкции этого прибора лежит цепь простейшего типа с механизмом логометрического направления. Именно он позволяет проводить различные работы по измерению сдвига фаз. В конструкции прибора также можно заметить пару рамок, которые жестко соединяются друг с другом. Между ними присутствует острый угол, который равняется 60 градусам. Рамки в свою очередь устанавливаются на осях, которые закреплены в опорах, поэтому противодействующий момент механического характера в этом приборе отсутствует.

Подвижный компонент фазометра поворачивается на величину угла, равную углу, который характеризует показатель сдвига фаз. На приборе присутствует шкала линейного типа, которая дает возможность фиксировать результаты проведенных измерений.

Электродинамический фазометр

Теперь пришло время рассмотреть принцип работы электродинамического фазометра. В конструкции этого устройства присутствует катушка неподвижного типа и пара катушек в подвижном виде. В каждой из катушек будут протекать свои токи, создающие магнитные потоки в неподвижной и подвижной катушке. В результате этого можно предположить, что потоки катушек, которые взаимодействуют между собой порождают пару вращающихся моментов. Величины этих моментов будут находиться в прямой зависимости от расположения пары катушек относительно друг друга, а также угла на который будут поворачиваться все подвижные компоненты вашего фазометра.

Принцип действия электродинамического фазометра

Эти элементы направлены в стороны противоположные друг другу. Средние величины этих элементов будут находиться в зависимости от токов, которые текут в подвижных катушках и от тока в неподвижной катушке. Также есть зависимость от конструкции катушек и от углов сдвига фаз между катушками.

Исходя из информации выше можно сделать вывод, что подвижная составляющая фазометра будет поворачиваться под работой этих моментов, пока не получится состояние равновесия, которое будет вызвано равенством моментов по итогам поворота. Сама шкала может иметь градацию в системе коэффициентов мощности, что будет достаточно удобно для проведения ряда измерений. Электродинамические фазометры также могут иметь и минусы. К основному относят то, что существует прямая зависимость получаемых показаний от величины частоты. Кроме этого, также будет отличаться значительная мощность потребления от источника, который подвергается исследованию.

Цифровой

Цифровой фазометр могут изготовлять несколькими способами. Например самую высокую степень точности будет иметь фазометр компенсационного типа. Принцип работы подобного устройства совершенно другой. В конструкции прибора присутствует пара напряжений синусоидального типа. Назначение прибора заключается в определении фазового сдвига между ними.

Цифровой фазометр

Изначально напряжение подается на фазовращатель, который управляется специальным кодом с управляющего устройства. Сдвиг между фазами будет изменяться постепенно, пока не будет достигнуто состояние синфазности. В процессе подстройки знак сдвига этих фаз будут определять с помощью детектора фазочувствительного типа. Выходной сигнал из этого детектора будет подаваться на управляющее устройство. Алгоритм управления будет реализовываться методом кодирования импульсов. После уравновешивания входной код фазовращателя покажет величину сдвига между фазами. В этом заключается основной принцип работы этого устройства.

Принцип работы цифровых фазометров основывается на дискретном счете. Этот метод способен осуществлять свою работу в двух этапах. Изначально происходит процесс, который связан с преобразованием сдвига фаз в показатель сигнала, который имеет определенную длительность. Затем будет происходить изменение длины этого импульса с помощью дискретного счета. В составе этого устройства присутствует специальный преобразователь для сдвига фаз в импульс, селектор временного типа, формирователь дискретных импульсов, а также счетчик и устройство управления.

Важно знать! Многие специалисты утверждают, что именно цифровые фазометры имеют наименьшую погрешность измерений. Этого удалось добиться благодаря нескольким периодам вычислений.

Если будет интересно тогда можете прочесть о том, как использовать мультиметр.

Рекомендации по эксплуатации

Перед тем, как использовать определенный фазометр, вам потребуется изучить его инструкцию по эксплуатации. Перед тем, как приступить к измерениям также следует выполнить ряд последовательных действий. Убедитесь в том, что диапазон частот полностью соответствует метрологическим характеристикам. Также убедитесь, что внешние условия полностью соответствуют рабочим. После этого можно приступать к сборке устройства.

Использование фазометра

Процесс эксплуатации фазометра должен осуществляться в следующей последовательности:

  1. Ознакомьтесь с инструкцией по эксплуатации. Обычно она прилагается в комплекте с вашим прибором.
  2. С помощью корректора установите стрелку на отметке нулевого значения.
  3. Посмотрите, чтобы все кнопки на приборе находились в отжатом положении.
  4. Подключите пробники в соответствующие разъемы.
  5. Включите кнопку сети и в этом случае должен загореться специальный индикатор.
  6. Сразу приступать к измерениям не следует. Это связано с тем, что сначала устройство должно прогреться. Обычно подобная процедура занимает 15 минут.
  7. Найдите напряжение сигнала со стороны входа.
  8. Нажмите на специальную кнопку, которая отвечает за установку необходимого диапазона частот.
  9. Теперь нажмите «>0<» двух каналов и «+-».
  10. Пробники каналов следует включить в четырехполюсный вход.
  11. Затем переключатель для пределов нужно поставить в положение «20».
  12. Стрелку самого измерителя вам потребуется выставить с использованием регулятора «>0<» на нулевое положение.

Конечно, профессионалы утверждают, что намного проще использовать цифровой прибор. Он более современный и позволяет получить достаточно точные результаты проводимых измерений.

Теперь вы точно знаете, как пользоваться фазометром и зачем нужен этот прибор. Надеемся, что эта информация была полезной и интересной.

Рекомендуем прочесть: перечень указателей высокого и низкого напряжения.

С302-М1-1 — фазометр трехфазный. — ООО «Элтехника», Смоленск

Фазометр С302-М1-1 предназначен для измерения коэффициента мощности в трехфазных трехпроводных сетях переменного тока частотой 50 Гц с симметричной нагрузкой фаз и симметрией линейных напряжений.

Прибор С302-М1-1 состоит из индикатора магнитоэлектрической системы и электронного преобразователя, размещенных в одном корпусе.

Технические характеристики фазометра С302-М1-1

Номинальное значение частоты, Гц Номинальное значение напряжения, В Номинальное значение тока при подключении непосредственно через измерительный трансформатор, А
непосредственное подключение подключение через измерительный трансформатор
50 127; 220; 380 5
60; 500; 1000; 2400; 2880; 4000; 8000; 10000 100 5

 

Класс точности 1,5
Диапазон измерений коэффициента мощности 0,5 — 1 — 0,5 или 0,9 — 1 — 0,2
Габаритные размеры, мм 96х96х95
Масса, кг 0,5

Фазометр С302-М1-1 предназначен для работы при температуре от — 20 до + 50 оС и относительной влажности воздуха 95% при 30 оС.

По заказу могут изготавливаться приборы, работающие при температуре от — 40 до + 50 оС в сетях с номинальной частотой 60 Гц.

При заказе С302-М1-1 указать: напряжение, ток, способ включения, диапазон измерений, коэффициент мощности.

 

Возможные наименования:  указатель, фаз, фазоуказатель, фазометр, щитовой, стрелочный, с302, с-302, с302м1, с-302м1, с302-м1, c302, c-302, c302m1, c-302m1, c302-m1, с302-1, с-302-1, с302м1-1, с-302м1-1, с302-м1-1, c302-1, c-302-1, c302m1-1, c-302m1-1, c302-m1-1,

назначение, устройство и принцип работы

Фазометром принято именовать устройство электроизмерительной серии, в функции которого входит измерение угла сдвига фаз относительно пары электрических колебаний с постоянной частотой. Например, с помощью такого устройства можно определить угол, показывающий сдвиг фаз в сети напряжения трёхфазного типа. Это его основная область применения. В этой статье мы рассмотрим устройство и принцип работы фазометра, а также правила пользования данным прибором.

Кратко о фазометре

Во время включения устройства в цепь измерения, его подсоединяют одновременно к токовым цепям и цепям напряжения. Если же необходимо работать с сетями, имеющими три фазы напряжения, то выполняется подключение устройства одновременно ко всем этим фазам по напряжению. Подключение по току выполняется ко вторичным обмоткам трансформатора.

В приборе используется упрощённая схема подключения. Поэтому несложно будет разобраться самому с назначением фазометра. Подключение по току выполняется по двум фазам, поэтому третья фаза определяется на основе сложения векторов лишь пары токов (имеется в виду измеряемые фазы). Также назначение фазометра заключается в измерении коэффициента мощности. Этот прибор на простом языке именуется ещё как косинусфиметром.

На данный момент встречается два вида фазометров, область применения которых состоит в определении коэффициента мощности. Это цифровой и электродинамический прибор. Рассмотрим их более подробно.

Электродинамический

Электродинамический фазометр ещё часто именуется электромагнитным. В основе конструкции этого вида измерителя лежит цепь простейшего типа с механизмом логометрического направления, который позволяет проводить работы по измерению сдвига фаз. В этом фазометре присутствует пара рамок, жёстко соединённых друг с другом. Между ними существует острый угол, равный 60 градусам. Рамки устанавливаются на осях, которые закреплены в опорах, поэтому противодействующий момент механического характера отсутствует в устройстве.

Есть определённые условия, задавать которые возможно только при помощи сдвига фаз токов именно в цепях таких рамок. Подвижный компонент фазометра проворачивается на величину угла, равную углу, который характеризует показатель сдвига фаз. Шкала линейного типа на приборе даёт возможность фиксации результата проведённого измерения.

Рассмотрим принцип работы электродинамического фазометра. В таком устройстве есть катушка неподвижного типа с током и пара катушек в подвижном виде. В каждой из катушек подвижного типа протекают свои токи, создающие магнитные потоки в неподвижной и в подвижных катушках. Поэтому можно предположить, что потоки катушек, которые взаимодействуют, порождают пару вращающихся моментов. Величины этих моментов во многом находятся в прямой зависимости от расположения пары катушек относительно друг друга, а также угла, на который поворачиваются подвижные компоненты фазометра. Эти моменты направлены в разные стороны, противоположные друг другу. Средние величины данных моментов находятся в зависимости от токов, которые текут в подвижных катушках, и от тока в неподвижной катушке. Есть зависимость также от конструкции катушек и от углов сдвига фаз между катушками.

Таким образом, подвижная составляющая фазометра будет проворачиваться под работой этих моментов, пока не получится состояние равновесия, которое будет вызвано равенством самих моментов по итогам поворота. Сама же шкала такого прибора может иметь градацию в системе коэффициентов мощности, что будет удобно для проведения ряда измерений.

Минусом электродинамических фазометров в основном является прямая зависимость получаемых показаний от величины частоты. Кроме этого отмечается и большая мощность потребления от источника, который подвергается исследованию

Цифровой

Данный тип фазометра изготавливается несколькими способами. К примеру, фазометр компенсационного типа имеет одну из самых высоких степеней точности, несмотря на то, что выполняется в ручном виде. Принцип действия компенсационного фазометра совсем другой. В таком приборе имеется пара напряжений синусоидального типа. При этом назначение состоит в определении именно фазового сдвига между ними.

Первоначально напряжение подаётся на так называемый фазовращатель, управляемый специальным кодом непосредственно с управляющего устройства. Сдвиг между фазами будет изменяться постепенно, пока не достигнет состояния синфазности. Во время подстройки знак сдвига этих фаз определяется при помощи детектора фазочувствительного типа.

Выходной сигнал подается непосредственно с этого детектора на управляющее устройство. Алгоритм управления реализуется непосредственно методом кодирования импульсов. После уравновешивания входной код фазовращателя покажет величину сдвига между фазами. В этом есть его основной принцип работы.

На сегодняшний день цифровые фазометры используют в своей работе принцип, основанный на дискретном счёте. Такой метод работает в двух этапах. Первоначально происходит процесс, связанный с преобразованием сдвига фаз в показатель сигнала, имеющего определённую длительность. Потом происходит изменение самой длины данного импульса при помощи дискретного счёта. Данное устройство в своём составе имеет преобразователь для сдвига фаз в импульс, селектор временного типа, формирователь дискретных импульсов, а также счётчик и устройство управления. Важно знать, что цифровые фазометры имеют меньшую погрешность измерений, т.к. вычисления проводятся за счет несколько периодов.

Инструкция по эксплуатации

Лучшим пособием, объясняющим как пользоваться фазометром, является его инструкция по эксплуатации, которая должна обязательно входить в комплектацию. Перед началом работы необходимо выполнить ряд последовательных действий. Важно первым делом убедиться, что диапазон частот соответствует метрологическим характеристикам, а также что внешние условия соответствуют рабочим. После этого уже можно собирать схему.

Итак, эксплуатация фазометра должна осуществляться в следующей последовательности:

  1. Первоначально необходимо внимательно ознакомится с инструкцией по эксплуатации, прилагаемой к прибору, где можно узнать о его назначении и правилах пользования.
  2. При помощи корректора устанавливается стрелка на отметке нулевого значения.
  3. Нужно посмотреть, чтобы все кнопки были в положении отжатого типа.
  4. Пробники на входе подключите к соответствующим разъёмам.
  5. Теперь необходимо включить кнопку сети. В это момент должен загореться специальный индикатор.
  6. Далее не следует сразу приступать к измерениям, так как прибору необходимо время для прогрева. Примерно на данную процедуру понадобиться четверть часа.
  7. Теперь находим напряжение сигнала со стороны входа.
  8. Нажимаем одну из кнопок в зависимости от нужного напряжения и устанавливаем необходимый диапазон частот.
  9. После этого нажимаем «>0<» двух каналов и «+-«.
  10. Пробники для каналов включаются в четырёхполюсный вход.
  11. Далее переключатель для пределов ставим на положение «20».
  12. После этого стрелку самого измерителя выставляем с применением регулятора «>0<» на нулевое положение.

Гораздо проще пользоваться цифровым фазомтером. На видео обзоре ниже наглядно показывается эксплуатация данного прибора:

Теперь вы знаете, как пользоваться фазометром и для чего нужен этот прибор. Надеемся, предоставленный материал был для вас полезным и понятным!

Наверняка вы не знаете:

Как подключить трехфазный счетчик электроэнергии? Установка 3-х фазного счетчика электроэнергии.

Как подключить трехфазный счетчик электроэнергии? (3-фазный, 4-проводной счетчик электроэнергии)

Установка трехфазного счетчика электроэнергии

сегодня мы собираемся показать, что как подключить и установить 3-фазный счетчик электроэнергии кВтч  (трехфазный или многофазный ( 3-фазный, 4-проводной ) (цифровой или аналоговый счетчик энергии) от источника питания до Главный распределительный щит?

Ниже приведено подключение 3-фазного (трехфазного или полифазного (3-фазного, 4-проводного)) счетчика кВтч (цифрового или аналогового счетчика энергии) от источника питания к главному распределительному щиту.

Как подключить 3-фазный счетчик электроэнергии

Ниже приведено наиболее распространенное внутреннее соединение 3-фазного счетчика электроэнергии .

Вот еще один живой пример трехфазного счетчика электроэнергии, который был установлен на главном полюсе источника питания.

Как установить трехфазный счетчик электроэнергии кВтч?

На приведенных выше рисунках и диаграммах

R = КРАСНАЯ Фаза / Провод под напряжением от источника напряжения питания

Y = ЖЕЛТЫЙ Фаза / Провод под напряжением от источника напряжения питания

B = СИНЯЯ Фаза / Провод под напряжением от источника напряжения питания

Линия или IN = Входящая фаза / фаза или нейтраль от источника напряжения питания

OUT = исходящая фаза / фаза или нейтраль к домашнему главному распределительному щиту.

Предупреждение : В этом примере показана наиболее распространенная в мире компоновка, но в некоторых областях также имеются вариации. В разных странах используются и эквивалентны RYB , ABC (старый стандарт) или UVW (новый стандарт) и, возможно, другие (как Цветовые коды электрических проводов ). Настройка может отличаться для других типов счетчиков кВт/ч или энергии в разных местах по всему миру. Для безопасности.Пожалуйста, свяжитесь с поставщиком и поставщиком услуг, чтобы подтвердить тип подключения перед установкой.

Вам также может быть интересно прочитать в

Тенденции в трехфазном измерении энергии: новая инновационная изолированная архитектура АЦП позволяет использовать трехфазные счетчики энергии с шунтами

Краткая идея

Традиционные трехфазные счетчики электроэнергии используют трансформаторы тока (ТТ) для измерения фазного и нулевого токов. Одним из преимуществ трансформаторов тока является присущая им электрическая изоляция, которую они обеспечивают между линией электропередачи, работающей при напряжении в сотни вольт, и заземлением счетчика, обычно подключенным к нейтрали.Трансформаторы тока обеспечивают хорошую линейность и могут измерять широкий диапазон токов за счет регулировки коэффициента трансформации и нагрузочных резисторов. Однако они также имеют некоторые недостатки для использования в счетчиках электроэнергии. Во-первых, магнитопровод ТТ может насыщаться внешними постоянными магнитными полями. Среднему домовладельцу теперь легко получить чрезвычайно мощные магниты постоянного тока из редкоземельных металлов и применить их для взлома счетчиков. Во-вторых, трансформаторы тока также могут насыщаться силовым электронным оборудованием, таким как инверторы прямого подключения для распределенной солнечной генерации, которые создают в линии постоянный ток.Производители могут противодействовать этим двум эффектам за счет экранирования и использования трансформаторов тока, устойчивых к постоянному току; однако это увеличивает стоимость, и некоторые предполагают, что для каждого такого ТТ можно найти постоянный магнит для его взлома. В-третьих, трансформаторы тока вносят фазовую задержку измерения, которая зависит от частоты линейных токов. Если интерес представляет только основная составляющая линейного тока, эту задержку относительно легко компенсировать. Однако измерение содержания гармоник становится все более важным, и очень трудно компенсировать задержки основной гармоники и всех гармоник вместе взятых.

Другие датчики тока используются реже в трехфазных счетчиках, включая датчики di/dt, такие как катушки Роговского или датчики на эффекте Холла. Хотя они могут обеспечить преимущества в некоторых приложениях, они сопряжены со своими проблемами. Например, пояса Роговского обладают отличной линейностью и могут воспринимать очень большие токи, но их сложнее изготовить и сложнее добиться хорошей помехоустойчивости, необходимой для точных измерений малых токов. С точки зрения несанкционированного доступа они также могут быть восприимчивы к переменным магнитным полям.Датчики Холла требуют активной компенсации смещения по температуре и по своей природе чувствительны к магнитным полям.

Шунты и трехфазный учет электроэнергии

Использование резистивных шунтов в однофазных счетчиках в последние годы быстро растет, что обусловлено стоимостью, магнитной невосприимчивостью и размерами. Во многих случаях эти однофазные счетчики привязаны к линейному напряжению и, таким образом, не требуют дополнительной изоляции. В трехфазных счетчиках необходимо решить проблему создания изолирующего барьера между каждым шунтом и сердечником счетчика.Проблемы с нагревом также становятся проблемой, обычно ограничивая использование шунтов счетчиками с максимальным током 120 А или меньше.

Сначала рассмотрим фазу А трехфазной системы и ее нагрузку. Представьте, что шунт используется для измерения фазного тока (рис. 1).

Рис. 1. Определение тока и напряжения фазы А при измерении тока фазы с помощью шунта.

Это точно однофазная конфигурация счетчика электроэнергии: шунт размещен в линии электропередачи, а делитель напряжения измеряет напряжение между фазой и нейтралью.Напряжения на шунте и делителе напряжения воспринимаются аналого-цифровым преобразователем (АЦП). Земля — это полюс шунта, общий с делителем напряжения. Однофазные счетчики в основном используются в жилых помещениях, и их максимальный ток обычно ниже 120 А. Этот предел и низкая стоимость делают шунты наиболее часто используемыми датчиками тока в однофазном учете энергии.

При повторении этой схемы на всех трех фазах каждый АЦП имеет собственную землю (рис. 2).

Рис. 2. Измерение трехфазного тока и напряжения при измерении фазных токов с помощью шунтов.

Поскольку микроконтроллер (MCU), который управляет всеми ими, находится на одном потенциале с нейтральной линией, для обеспечения работы связи между АЦП и MCU необходимо изолировать каналы данных. Затем каждый АЦП должен иметь собственный изолированный источник питания (рис. 3).

Рис. 3. Трехфазный счетчик с шунтами, отдельными источниками питания и изолированной связью.

Эта архитектура измерителя уже используется: двухканальные АЦП последовательно передают информацию на микроконтроллер через изолирующий барьер с помощью оптронов или трансформаторов на микросхемах. Изолированные источники питания строятся с использованием автономных компонентов или изолированных преобразователей постоянного тока, в которых используются трансформаторы масштаба микросхемы.

В идеале все фазные токи и напряжения должны измеряться одновременно, чтобы можно было использовать их мгновенные значения для комплексного трехфазного анализа.Но показания АЦП на каждой фазе полностью независимы от остальных, поскольку синхронизация АЦП отсутствует. Это первое ограничение этой архитектуры. Счетчики энергии, в которых используются трансформаторы тока или катушки Роговского, не имеют такой проблемы, поскольку они могут использовать измерительный аналоговый интерфейс (AFE), который одновременно считывает все фазные токи и напряжения.

Еще одной проблемой этой архитектуры является большое количество компонентов: микроконтроллер, три АЦП, три многоканальных изолятора данных и четыре блока питания.У счетчиков, использующих ТТ, такой проблемы нет, так как на печатной плате обычно есть MCU, измерительный AFE и один источник питания.

Тогда как можно создать счетчик, обладающий преимуществами шунтов, с наименьшим количеством компонентов для этой архитектуры (т. е. один микроконтроллер, один блок питания и три АЦП) и одновременно измерять все фазные токи и напряжения?

Архитектура изолированного АЦП

Ответом на эту проблему является создание микросхемы, объединяющей как минимум два АЦП, один изолированный преобразователь постоянного тока и изоляцию данных, а также технологию, позволяющую АЦП, принадлежащим разным микросхемам, одновременно производить выборку данных (рис. 4).Источник питания VDD микроконтроллера также питает эту микросхему. Изолированный преобразователь постоянного тока, использующий технологию трансформатора в масштабе микросхемы, обеспечивает изолированное питание для первого каскада АЦП. Один АЦП измеряет напряжение на шунте, а второй измеряет напряжение между фазой и нейтралью с помощью делителя напряжения. Земля, определяемая одним из полюсов шунта, является землей изолированной стороны микросхемы. АЦП являются сигма-дельта, и только первый каскад размещен на изолированной стороне микросхемы.Поток битов, выходящий из первой ступени, проходит через микросхемные преобразователи, составляющие изолированные каналы передачи данных. Биты принимаются на неизолированной стороне микросхемы, фильтруются, помещаются в 24-битные слова и передаются на последовательный порт SPI.

Рис. 4. Новая архитектура АЦП, включающая двухканальные АЦП, изоляцию данных и один изолированный преобразователь постоянного тока в постоянный.

Технология преобразователя в масштабе микросхемы вносит наиболее важный вклад в эту новую архитектуру АЦП: запатентованные компанией Analog Devices преобразователи i . Цифровые изоляторы ® обладают большей надежностью по сравнению с оптопарами, меньшими размерами, меньшим энергопотреблением, более высокой скоростью связи и лучшей синхронизацией. точность.Но этого недостаточно. Изолированные сигма-дельта модуляторы уже давно присутствуют на рынке, в них используются либо оптопары, либо трансформаторы в масштабе микросхемы. Наиболее важным вкладом технологии трансформаторов в масштабе чипа является сопутствующий изолированный преобразователь постоянного тока iso Power ® , который может быть интегрирован с АЦП, цифровым блоком и изолированными каналами данных в одном и том же поверхностном монтаже. низкопрофильный пакет.

Поскольку сердечником трансформаторов со шкалой микросхем является воздух, цифровые изоляторы i соединителя и изолированный преобразователь постоянного тока iso Power не подвержены влиянию постоянных магнитов, что делает эту сторону счетчика энергии полностью невосприимчивой. к постоянному магнитному тамперу.Трансформаторы также очень устойчивы к переменным магнитным полям. Площадь катушек настолько мала, что для воздействия на поведение катушки iso Power потребовалось бы создать магнитное поле 10 кГц силой 2,8 Тл. Другими словами, нужно было бы создать ток 10 кГц 69 кА через провод и отвести этот провод на 5 мм от микросхемы, чтобы повлиять на поведение трансформаторов масштаба микросхемы.

Информация передается через изолирующий барьер с помощью импульсов ШИМ очень высокой частоты.Это создает высокочастотные токи, которые распространяются по печатной плате, вызывая краевое и дипольное излучение. Нагрузка изолированного преобразователя постоянного тока состоит только из первого каскада сигма-дельта АЦП, и ее величина хорошо известна. Таким образом, катушки рассчитаны на известную нагрузку, что снижает излучение, обычно связанное с преобразователями постоянного тока, и устраняет необходимость в четырехслойных печатных платах. Производители счетчиков электроэнергии могут использовать двухслойные печатные платы и соответствовать требуемому стандарту CISPR 22 класса B при использовании ИС с такой архитектурой.

Чтобы сделать интерфейс с MCU максимально простым, цифровой блок микросхемы выполняет фильтрацию битового потока, поступающего с первого каскада, и формирует 24-битные выходы АЦП через простой последовательный порт SPI подчиненного устройства. Поскольку счетчик энергии имеет один изолированный АЦП на каждой фазе, остается проблема получения когерентных выходных сигналов АЦП. Первый каскад АЦП может выполнять выборку в один и тот же момент на всех фазах, если они работают с одним и тем же тактовым сигналом. Этого легко добиться, если сигнал CLKIN, показанный на рис. 4, генерируется MCU.Альтернативой является использование одного кристалла для создания тактового сигнала для одного чипа и использование буферизованного сигнала CLKOUT для тактирования всех остальных изолированных АЦП. Все изолированные АЦП управляются таким образом, чтобы их выходные сигналы АЦП генерировались в один и тот же момент. Теперь счетчик энергии может выполнять точный и всесторонний трехфазный анализ, используя шунты для измерения тока.

На рис. 5 представлен трехфазный счетчик с тремя изолированными АЦП. Измеритель имеет только один источник питания, который питает MCU и изолированные АЦП.MCU использует интерфейс SPI для считывания выходных сигналов АЦП с каждой микросхемы.

Рис. 5. Трехфазный счетчик с новыми изолированными АЦП.

Предыдущее описание предполагает использование внешнего MCU для выполнения метрологических расчетов. Для производителей счетчиков, предпочитающих решения, включающие метрологию, есть возможность соединить изолированные АЦП с ИС, выполняющей все метрологические расчеты, как показано на рис. 6.

Рис. 6. Трехфазный счетчик с новыми изолированными АЦП и метрологической ИС.

Новые продукты на основе этой архитектуры

Эта архитектура уже используется в новом семействе продуктов Analog Devices: ADE7913, ADE7912, ADE7933 и ADE7932. На рис. 7 представлена ​​блок-схема ADE7913. Он очень похож на рис. 4, но имеет дополнительный канал АЦП, который воспринимает вспомогательное напряжение, мультиплексированное с датчиком температуры. Вспомогательное напряжение может быть напряжением на выключателе, а датчик температуры может использоваться для коррекции колебаний температуры шунта.ADE7912 — это вариант без измерения вспомогательного напряжения, но с датчиком температуры.

Рис. 7. Новый изолированный АЦП ADE7913 на основе этой архитектуры.

ADE7933 и ADE7932 заменяют интерфейс SPI интерфейсом битового потока и в остальном копируют характеристики ADE7913 и ADE7912 соответственно. Это изолированные АЦП, представленные на рисунке 6. Метрологическая ИС на рисунке реализована как ADE7978.

Заключение

Представлена ​​новая изолированная архитектура АЦП.Он содержит изолированный преобразователь постоянного тока iso Power, который использует блок питания MCU для питания первого каскада многоканального сигма-дельта АЦП через изолирующий барьер. Битовые потоки, выходящие из АЦП, проходят через изоляторы данных ответвителя и и принимаются цифровым блоком. Этот блок фильтрует их и создает 24-битные выходные данные АЦП, которые можно считывать с помощью простого интерфейса SPI. Один АЦП может измерять ток, проходящий через шунт, второй может измерять напряжение между фазой и нейтралью с помощью делителя напряжения, а третий может измерять вспомогательное напряжение или датчик температуры.Он позволяет использовать трехфазные счетчики энергии с использованием шунтов, обеспечивая полную невосприимчивость к постоянным и переменным магнитным полям и определение тока без фазового сдвига, снижая при этом общую стоимость системы. Небольшой форм-фактор обеспечивает очень маленькую печатную плату с очень небольшим количеством компонентов для сборки. Встроенные трансформаторы iso Power рассчитаны на известную нагрузку АЦП для минимизации излучаемых помех и прошли испытания на соответствие стандарту CISPR 22 класса B с двухслойными печатными платами.

Разумеется, измерение тока с помощью шунтов не ограничивается измерением энергии.Мониторинг качества электроэнергии, солнечные инверторы, мониторинг процессов и защитные устройства могут извлечь выгоду из этой новой архитектуры АЦП.

VPInstruments представляет широкий диапазон трехфазных измерителей мощности

VPInstruments с гордостью представляет новую модель трехфазного измерителя мощности. С помощью 3-фазного измерителя мощности вы можете измерять напряжение и ток всех трех фаз, тем самым обеспечивая высокоточное измерение фактического энергопотребления.

Трехфазный измеритель мощности новой модели может работать с очень широким диапазоном напряжений: один и тот же измеритель может использоваться для всех номинальных напряжений от 100 до 600 В переменного тока, с конфигурациями треугольник и звезда на частоте 50 Гц или 60 Гц.С этой универсальной моделью выбор теперь очень прост. Новая модель заменяет все текущие модели, оставляя только одну модель для вашего измерительного приложения.

Трехфазный измеритель мощности с широким диапазоном обеспечивает мощность, напряжение, ток, cos(phi) и многие другие электрические параметры. Все они передаются через интерфейс RS485 (Modbus RTU). Трехфазный измеритель мощности VPInstruments рекомендуется для постоянных измерений. Входы трансформатора тока 0,333 В переменного тока позволяют подключать универсальные трансформаторы тока.Или просто положитесь на трансформаторы тока VPInstruments для завершения решения по измерению мощности.

Применение Трехфазное измерение мощности:
  • Потребляемая мощность крупных потребителей (например, компрессоров, осушителей, насосов, охладителей воды)
  • Подсчет
  • Распределение затрат
  • Контроль состояния
  • Управление энергопотреблением
  • Расчет эффективности (т. е. потребление электроэнергии компрессором по сравнению с выходной мощностью)

 

Технические характеристики трехфазного электросчетчика широкого диапазона:
  • Измерение истинной среднеквадратичной мощности однофазных или трехфазных систем
  • Один размер подходит всем: одна модель для 100–600 В переменного тока, 50/60 Гц
  • Выход RS485 (Modbus RTU)
  • Звезда или треугольник в одной модели
  • Для стационарной установки
  • Вход 3333 В переменного тока для трансформаторов тока (ТТ)
  • Светодиодный индикатор состояния ТТ и последовательной связи
  • Конфигурируется с помощью Modbus

Мониторинг только одной или двух из трех фаз

Вопросы

«Из-за нехватки места мы можем установить только два трансформатора тока (ТТ) для контроля трехфазной цепи.Есть ли поправочный коэффициент, который мы можем использовать, чтобы компенсировать мониторинг только двух из трех фаз?»

«Что, если мы будем контролировать только одну из трех фаз?»

Ответить

Для симметричных трехфазных четырехпроводных цепей (звезда) каждый ТТ будет измерять ровно одну треть полного тока. Таким образом, если вы измеряете две из трех фаз, вы должны умножить свои результаты на 1,5, чтобы масштабировать показание до правильного значения. Если вы измеряете только одну фазу, вы должны умножить на 3, чтобы масштабировать показание до правильного значения.

Ограничения

Существует несколько различных способов разбалансировки трехфазной цепи, которые могут привести к снижению точности при таком подходе:

  • Возможно, нагрузка не сбалансирована. Трехфазные двигатели, как правило, хорошо сбалансированы, но другие нагрузки могут быть не сбалансированы. Если ваша нагрузка на самом деле представляет собой несколько нагрузок (например, мониторинг трехфазной сети на этаже здания), то существует высокая вероятность дисбаланса.
  • Напряжения от нейтрали (или земли) к каждой фазе могут быть несимметричными.Всегда есть небольшой дисбаланс, но дисбаланс может быть больше в зависимости от сервиса и других нагрузок. Например, если напряжение одной фазы на 1,0 % выше, чем напряжение других фаз, и вы не отслеживаете одну фазу с высоким уровнем, ваши показания мощности будут на 0,5 % ниже.
  • В редких случаях однофазное напряжение может быть заземлено (так называемый «заземленный треугольник» или «заземленная ветвь»). В этом случае измеритель WattNode будет измерять нулевую мощность на заземленной фазе, поэтому простым решением является контроль двух других фаз и устранение поправочного коэффициента, равного 1.5. В этом случае для получения точных результатов необходимо контролировать обе активные фазы (незаземленные).

Рекомендации

По возможности следует использовать портативный анализатор мощности или мультиметр (DMM), чтобы убедиться, что нагрузка достаточно хорошо сбалансирована. С помощью анализатора мощности вы можете измерить мощность на каждой фазе и сравнить. С помощью цифрового мультиметра вы можете проверить напряжения между фазой и нейтралью или между фазой и землей, чтобы убедиться, что они очень похожи. Если у вас есть измеритель с токоизмерительными клещами, вы также можете проверить ток в каждой фазе, чтобы убедиться, что они хорошо сбалансированы.

Разве теорема Блонделя не позволяет использовать два ТТ для контроля трехфазной трехпроводной (треугольник) цепи?

Да, это означает, что можно спроектировать счетчик только с двумя элементами (и только с двумя трансформаторами тока) для контроля трехпроводной схемы треугольник. Но это не значит, что все счетчики могут воспользоваться этим преимуществом. Чтобы использовать теорему Блонделя, одну из трех фаз необходимо использовать в качестве точки отсчета, чтобы две другие фазы измерялись относительно этой точки отсчета.

Архитектура счетчиков WattNode серии WNB и WNC допускает использование только земли или нейтрали в качестве опорных точек, а не одной из фаз напряжения. Следовательно, теорема Блонделя не может быть применена к этой серии счетчиков WattNode, чтобы разрешить использование двух трансформаторов тока для трехпроводных незаземленных цепей треугольника. Как отмечалось выше, если ваша нагрузка сбалансирована, вы можете использовать только один ТТ и умножить показания на 3. Или использовать два ТТ и умножить показания на 1,5.

Однако в приложениях, использующих трансформаторы напряжения (PT), вторичная обмотка PT может быть проводной, чтобы обеспечить контрольную точку.Следовательно, в этом приложении счетчики серий WNB и WNC могут использоваться только с двумя ТТ. См. Рисунок 3: Мониторинг схемы треугольника на странице «Использование трансформаторов напряжения».

Счетчики серии WND могут измерять 3-фазные сети с 3-проводным треугольником, 4-проводным треугольником и заземленным треугольником, используя только два трансформатора тока.

См. также

Как проверить, есть ли у вас трехфазное питание

Однофазное или трехфазное питание, вот в чем вопрос.

Ну, по крайней мере, если вы просматриваете наш ассортимент энергомониторов.

Вот два простых способа проверить, подключены ли в вашем доме или офисе одна, две или три фазы.

1) Однофазное или трехфазное питание

— Сервисные предохранители

Однофазные узлы имеют один «рабочий предохранитель», а трехфазные узлы имеют три.

Сервисный предохранитель представляет собой большой прямоугольный предохранитель черного цвета. Как правило, их довольно легко обнаружить на главном распределительном щите или на счетчике.

Домохозяйство с 3-фазным источником питания и 3-фазным смарт-счетчиком.Обратите внимание на 3 служебных предохранителя в левом верхнем углу платы. Однофазные сайты имеют только один из них.

2) Однофазное или трехфазное питание

— Главный выключатель

Еще один способ отличить три фазы от однофазных — ширина главного выключателя. Однофазные выключатели имеют ширину «один полюс», тогда как трехфазные выключатели имеют ширину «три полюса». Посмотрите на картинку ниже, чтобы понять, что я имею в виду.

Однофазный/однополюсный главный выключатель (слева) итрехфазный/трехполюсный главный выключатель (справа).

Эти «главные выключатели» обычно находятся на панели счетчиков. В больших помещениях или блоках вы также можете найти главные выключатели на каждом дополнительном щите или распределительном щите.

Как насчет однофазной или трехфазной солнечной энергии?

Наш монитор солнечной энергии также требует, чтобы вы выбрали, является ли ваша фотоэлектрическая система однофазной или трехфазной. Как и выше, вы можете решить это, наблюдая за «главным выключателем солнечной энергии» в соответствии с приведенными ниже примерами.

Однофазная солнечная батарея (слева) и трехфазная солнечная батарея (справа).

Что насчет двухфазного питания?

Двухфазные источники питания также довольно распространены в Австралии. Двухфазное питание лучше всего определяется с помощью описанного выше метода «служебного предохранителя». Будет два служебных предохранителя на две фазы, а не на один или три.

Нажмите здесь, чтобы увидеть все мониторы энергопотребления

Однофазное и трехфазное питание: что это такое и в чем разница?

Если ваш дом подключен к электросети в Австралии (а большинство домов подключены к ней, особенно в застроенных районах), вы, скорее всего, будете получать либо однофазное, либо трехфазное питание.Но многие домовладельцы по всей стране на самом деле не знают, что это такое, не говоря уже о том, на каком они находятся. Часто они узнают об этом больше только после того, как изучат возможность получения солнечной энергии.

Итак, что такое однофазное и трехфазное питание? А на чем работает ваш дом?

 

Однофазный

Однофазное питание чаще всего используется в новых жилых домах и на малых предприятиях.

Дома с однофазным питанием обычно имеют два электрических провода, идущих над землей или под землей от линий электропередач к дому.Это включает в себя один «активный» провод, по которому проходит электричество (как из сети в ваш дом, так и, если у вас есть солнечные панели, из вашей системы в сеть). Другой провод является «нейтральным».

 

3-фазный

Напротив, дома с трехфазным питанием имеют три активных провода (и один нейтральный).

Это чаще встречается в домах с более высокими потребностями в энергии — возможно, ваш дом особенно большой, у вас есть энергоемкие элементы, такие как насос для бассейна, или у вас есть ферма.Эти объекты, как и многие предприятия, обычно питаются от трехфазной сети.

Таким образом, в случае с 3 фазами электричество поступает в ваш дом и выходит из него по трем электрическим проводам, а не только по одному.

Также существует двухфазное питание, но оно менее распространено, чем однофазное и трехфазное питание.

 

Как определить, подключено ли питание к однофазному или трехфазному питанию?

Пожалуй, самый простой способ узнать, подключено ли питание к однофазному или трехфазному питанию, — это проверить распределительный щит.Посмотрите на «главный выключатель» или «главный выключатель нормального питания» на распределительном щите.

Если выключатель выглядит как три выключателя, объединенных в один, и имеет ширину более 3 см, у вас трехфазное питание.

Если это один переключатель и тонкий, у вас есть однофазное питание.

 

Солнечные батареи и аккумуляторы для одно- и трехфазного питания

Независимо от того, используете ли вы однофазное или трехфазное питание, вам подойдет солнечная энергия.

В компании DC Power Co мы разработали пакет солнечных батарей и аккумуляторов, который объединяет лучшие в мире солнечные панели уровня 1 и разработанное в Австралии решение для аккумуляторов в одном оптимизированном и экономичном пакете для однофазных и трехфазных домов.

Солнечные батареи и аккумуляторы предлагаются в различных размерах в зависимости от ваших потребностей в энергии, домашнего хозяйства и бюджета. Кроме того, доступны варианты финансирования, поэтому вы можете начать экономить на своей солнечной и аккумуляторной системе сейчас и погасить ее со временем.

Если у вас однофазное питание, вы можете начать с бесплатной онлайн-оценки цен здесь.

Если у вас 3-фазное питание, вам понадобится немного более индивидуальное решение для солнечных батарей. Узнайте больше о солнечных батареях для 3-х фаз и получите предложение здесь.

Посмотреть комплект солнечной батареи и аккумулятора

 

У вас уже есть солнечные панели и вы просто хотите добавить аккумулятор?

Если у вас уже есть солнечная батарея, но вы хотите добавить батарею, ознакомьтесь с нашим пакетом солнечных батарей, который также подходит как для однофазных, так и для трехфазных домов.

Это наш мощный, но простой и доступный аккумуляторный блок, совместимый с любой существующей солнечной системой. Начиная всего с 6750 долларов США плюс установка, это модульный комплект батарей, который поставляется с расширенной гарантией и защитой от отключения электроэнергии без дополнительной платы.

Если у вас трехфазное питание, просто добавьте в комплект трехфазный счетчик электроэнергии за дополнительные 100 долларов.

Посмотреть комплект аккумуляторов

импульсов кВтч/3 | 3 Phase 80Amp KW Hour Meter

Эта политика конфиденциальности определяет, как мы используем и защищаем любую информацию, которую вы предоставляете нам при использовании этого веб-сайта.

Мы стремимся обеспечить защиту вашей конфиденциальности. Если мы попросим вас предоставить определенную информацию, по которой вас можно идентифицировать при использовании этого веб-сайта, вы можете быть уверены, что она будет использоваться только в соответствии с настоящим заявлением о конфиденциальности.

Время от времени мы можем изменять эту политику, обновляя эту страницу. Вам следует время от времени проверять эту страницу, чтобы убедиться, что вы довольны любыми изменениями.

Что мы собираем

Мы можем собирать следующую информацию:

  • имя и должность
  • контактная информация, включая адрес электронной почты
  • демографическая информация, такая как почтовый индекс, предпочтения и интересы
  • прочая информация, относящаяся к опросам клиентов и/или предложениям

Что мы делаем с собранной информацией

Нам нужна эта информация, чтобы понять ваши потребности и предоставить вам лучший сервис, в частности, по следующим причинам:

  • Внутренний учет.
  • Мы можем использовать эту информацию для улучшения наших продуктов и услуг.
  • Мы можем периодически отправлять рекламные электронные письма о новых продуктах, специальных предложениях или другой информации, которая, по нашему мнению, может показаться вам интересной, используя предоставленный вами адрес электронной почты.
  • Время от времени мы также можем использовать вашу информацию, чтобы связаться с вами в целях исследования рынка. Мы можем связаться с вами по электронной почте, телефону, факсу или почте. Мы можем использовать эту информацию для настройки веб-сайта в соответствии с вашими интересами.

Безопасность

Мы стремимся обеспечить безопасность вашей информации. Чтобы предотвратить несанкционированный доступ или раскрытие информации, мы внедрили подходящие физические, электронные и управленческие процедуры для защиты и защиты информации, которую мы собираем в Интернете.

Как мы используем файлы cookie

Файл cookie — это небольшой файл, который запрашивает разрешение на размещение на жестком диске вашего компьютера. Как только вы соглашаетесь, файл добавляется, и файл cookie помогает анализировать веб-трафик или сообщает вам, когда вы посещаете определенный сайт.Файлы cookie позволяют веб-приложениям реагировать на вас как на личность. Веб-приложение может адаптировать свои операции к вашим потребностям, симпатиям и антипатиям, собирая и запоминая информацию о ваших предпочтениях.

Мы используем файлы cookie журнала трафика, чтобы определить, какие страницы используются. Это помогает нам анализировать данные о трафике веб-страницы и улучшать наш веб-сайт, чтобы адаптировать его к потребностям клиентов. Мы используем эту информацию только для целей статистического анализа, после чего данные удаляются из системы.
В целом файлы cookie помогают нам сделать веб-сайт лучше, позволяя нам отслеживать, какие страницы вы считаете полезными, а какие нет. Файл cookie никоим образом не дает нам доступа к вашему компьютеру или какой-либо информации о вас, кроме данных, которыми вы решили поделиться с нами.
Вы можете принять или отклонить файлы cookie. Большинство веб-браузеров автоматически принимают файлы cookie, но обычно вы можете изменить настройки своего браузера, чтобы отказаться от файлов cookie, если хотите. Это может помешать вам воспользоваться всеми преимуществами веб-сайта.

Ссылки на другие сайты

Наш веб-сайт может содержать ссылки на другие интересующие вас веб-сайты. Однако, как только вы использовали эти ссылки, чтобы покинуть наш сайт, вы должны помнить, что мы не имеем никакого контроля над этим другим сайтом. Поэтому мы не можем нести ответственность за защиту и конфиденциальность любой информации, которую вы предоставляете во время посещения таких сайтов, и такие сайты не регулируются настоящим заявлением о конфиденциальности. Вам следует проявлять осторожность и ознакомиться с заявлением о конфиденциальности, применимым к рассматриваемому веб-сайту.

Управление вашей личной информацией

Вы можете ограничить сбор или использование вашей личной информации следующими способами:

  • всякий раз, когда вас просят заполнить форму на веб-сайте, найдите поле, которое вы можете щелкнуть, чтобы указать, что вы не хотите, чтобы информация использовалась кем-либо в целях прямого маркетинга
  • , если вы ранее давали согласие на использование нами вашей личной информации в целях прямого маркетинга, вы можете изменить свое решение в любое время, написав нам или отправив электронное письмо.

Мы не будем продавать, распространять или сдавать в аренду вашу личную информацию третьим лицам, если у нас нет вашего разрешения или это требуется по закону. Мы можем использовать вашу личную информацию для отправки вам рекламной информации о третьих лицах, которая, по нашему мнению, может вас заинтересовать, если вы сообщите нам, что хотите, чтобы это произошло.

Если вы считаете, что какая-либо информация, которую мы храним о вас, неверна или неполна, пожалуйста, напишите или напишите нам как можно скорее по указанному выше адресу.Мы оперативно исправим любую информацию, которая окажется неверной.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *