Флюс для пайки металла: Флюс для пайки стали оловом

Содержание

Пайка металлов. Способы, материалы, припои, флюсы для пайки металлов

Использование пайки известно с древнейших времен. В гробнице вавилонской царицы (III тыс . лет до н. э.), в засыпанной пеплом Везувия Помпее (79 г. до н.э.), во время других раскопок в Египте, Риме и Греции — всюду археологи находили паяные металлические изделия. Припои древних римлян церарий и аргентарий по своему химическому составу близки к существующим в настоящее время ПОС-30 и ПОС-50.

В истории использования пайки можно выделить три периода, которые связаны с развитием источников нагрева и особенностями применяемой техники. Первый период начался в бронзовом веке, когда человечество начало изготавливать изделия из бронзы и источником нагрева служило твердое топливо. Второй период (конец XIX ст.) характеризуется началом применения для нагрева электрической энергии. Третий период начался в 1930–1940-х годах и связан с созданием техники из новых металлов и их сплавов — циркония, вольфрама, алюминиевых, титановых, высокопрочных и жаропрочных сталей и сплавов. Это привело во второй половине ХХ ст. к разработке принципиально новых способов пайки. В настоящее время технические возможности пайки значительно расширились. Во многих случаях пайка является единственно возможной технологией неразъемного соединения новых материалов.

Пайка — процесс получения неразъемного соединения металлов, находящихся в твердом состоянии, расплавленным припоем. Припоем является материал с температурой плавления ниже температуры плавления паяемых материалов. При пайке (в отличие от сварки) плавится только присадочный сплав — припой, а между паяемым материалом и припоем протекает процесс взаимного растворения компонентов.

Требования, предъявляемые к паяному соединению и характеризующие условия его эксплуатации, определяются служебными свойствами изделия в целом: механическими свойствами, герметичностью, вакуум-плотностью, электросопротивлением, коррозионной стойкостью, стойкостью против термоударов, перегрузок и др.

В процессе пайки расплавленный припой вводится в зазор между нагретыми соединяемыми деталями. Припой смачивает поверхности деталей, растекается и заполняет зазор между ними. Взаимодействие припоя с материалом сопровождается растворением основного металла в жидком припое с образованием эвтектик и твердых растворов, взаимной диффузией компонентов припоя в сторону основного металла и компонентов основного металла в сторону припоя с последующей кристаллизацией жидкой прослойки.

Формирование прочного и надежного соединения зависит от химического состава взаимодействующих металлов, температуры и продолжительности пайки, определяющих физико-химические и диффузионные процессы, протекающие между припоем и основным металлом. Чем выше температура процесса и его длительность, тем больше степень взаимной диффузии между расплавленным припоем и основным металлом и тем выше механическая прочность соединяемых деталей. Кроме того, прочность пайки зависит от величины зазора между паяемыми деталями. Так, при малых зазорах улучшается затекание припоя под действием капиллярных сил, вследствие чего значение временного сопротивления паяного соединения больше значения временного сопротивления самого припоя.

Припой прочно соединяется с поверхностью изделия только тогда, когда хорошо смачивает ее. Для этого поверхность должна быть тщательно очищена от загрязнений. Кроме этого, для удаления пленок оксидов с поверхностей паяемого материала и припоя и для предотвращения их образования при пайке используют паяльные флюсы. Флюсы, кроме того, способствуют лучшему затеканию припоя в зазор между соединяемыми деталями и растеканию по их поверхности. Некоторые припои, содержащие эффективные раскислители (бор, кремний, барий, щелочные металлы

иудтр.) мог ные пленки.

сами выполнять роль флюсов, переводя в шлак оксидКачество паяных соединений зависит от правильного выбора способа пайки, используемых основных и вспомогательных материалов, технологического процесса пайки.

Способы пайки. Современные способы пайки принято классифицировать по следующим признакам: механизмам удаления оксидной пленки с поверхности паяемого материала, видам процессов образования припоя в зазоре, условиям заполнения зазора припоем, температурным и временным режимами кристаллизации паяного шва, температуре пайки и используемым источникам нагрева, наличию или отсутствию давления на паяемые деталив, роедмнеонности и очередности выполнения паяных соединений (рис. 3.76).

По механизмам удаления оксидной пленки способы пайки делятся на флюсовые и бесфлюсовые.

Флюсовая пайка — пайка с применением флюса. При этом флюс может также участвовать в образовании самого припоя путем выделения компонентов, плавящихся при пайке.

Бесфлюсовая пайка — пайка без применения флюса, когда удаление оксидных пленок осуществляется в восстановительной или инертной газовой среде, вакууме, а также за счет применения ультразвука.

В первом случае удаление оксидов происходит при высоких температурах за счет их восстановления или самопроизвольного распада (диссоциации), а при ультразвуковой пайке их разрушение осуществляется за счет ультразвуковых колебаний, создаваемых в расплавленном припое, наносимом на соединяемый металл специальным паяльником.

По видам процессов образования припоя в зазоре способы пайки подразделяются на пайку готовым припоем, контактно-реактивную и реактивно-флюсовую.

Рис. 3.76. Классификация способов пайки

Пайка готовым припоем — способ пайки, при котором используется заранее приготовленный припой. В качестве припоя может использоваться металлический (полностью расплавляемый) или композиционный припой. В композиционном припое помимо металлической основы содержится тугоплавкий наполнитель (порошки, волокна, сетки), который сам не плавится, а при плавлении металла припоя образует разветвленную сеть капилляров, удерживающих под действием капиллярных сил его жидкую часть в зазоре между соединяемыми деталями.

Контактно-реактивная пайка — способ пайки, при котором жидкий припой образуется в результате межфазного взаимодействия и последующего контактного плавления соединяемых материалов или соединяемых материалов и прослойки промежуточного металла. К этому способу пайки относится сваркопайка. Сваркопайка — пайка разнородных материалов, при которой более легкоплавкий материал локально нагревается до температуры, превышающей температуру его плавления, и выполняет роль припоя.

Реактивно-флюсовая пайка — способ пайки, при котором припой образуется в результате химических реакций между основным металлом и флюсом. Например, при пайке алюминия с использованием флюса ZnCl3 в результате химической реакции восстановления

3ZnCl3 + 2Al ↔2AlCl3 + 3Zn

образуется цинк, который служит припоем.

По условиям заполнения зазора припоем пайку можно разделить на капиллярную (ширина зазора

При капиллярной пайке припой заполняет зазор между соединяемыми поверхностями и удерживается в нем за счет капиллярных сил. Соединение образуется в результате растворения металла основы в жидком припое и последующей кристаллизации раствора. Некапиллярная пайка — способ пайки, при котором припой заполняет зазор под действием силы тяжести или прилагаемых извне сил (магнитных, электромагнитных и др.). К этому способу пайки относится пайкосварка. При пайкосварке форма кромок соединяемых заготовок подобна форме кромок при сварке плавлением. Соединение деталей осуществляется приемами, характерными для сварки, а в качестве присадочного металла используется припой,

который под действием силы тяжести заполняет зазор.

Способы пайки по температурным и временным режимам кристаллизации паяного шва подразделяются на пайку с кристаллизацией при охлаждении и кристаллизацией при выдержке (диффузионная).

Температурный режим пайки с кристаллизацией при охлаждении состоит из нагрева припоя до температуры на 50…100 °С выше

температуры его плавления и последующего охлаждения соединения. Этот способ из-за относительно быстрого охлаждения характеризуется отсутствием диффузии в объеме взаимодействующих металлов.

Пайка с кристаллизацией при выдержке (диффузионная пайка) — способ пайки с изотермической выдержкой, при которой образование соединения сопровождается взаимной диффузией припоя и паяемого материала. Для диффузионной пайки характерна продолжительная выдержка при температуре образования паяного шва, а после завершения процесса — при температуре ниже солидуса припоя. В результате диффузии в шве образуются твердые растворы, что обеспечивает более однородный состав паяного шва и позволяет повысить его прочность и пластичность.

В зависимости от температуры пайки различают низкои высокотемпературную пайку. При низкотемпературной пайке температура плавления припоя tплtпл ≥ 450 ° С. Целесообразность такого деления обусловлена тем, что используемые основные и вспомогательные материалы существенно отличаются по своим свойствам в зависимости от температуры процесса.

Способы пайки в зависимости от используемых источников нагрева разделяют на пайку в печах, индукционную, погружением, газопламенную, плазменную и паяльниками.

При пайке в печах соединяемые заготовки нагревают в специальных печах: электросопротивления, с индукционным нагревом, газопламенных и газовых. Припой заранее закладывают в шов собранного узла, на место пайки наносят флюс и затем изделие помещают в печь, где его нагревают до температуры пайки. Этот способ обеспечивает равномерный нагрев соединяемых деталей без заметной их деформации.

При индукционной пайке паяемый участок нагревают в индукторе токами высокой частоты. Для предохранения от окисления изделие нагревают в вакууме или в защитной среде с применением флюсов.

Пайку погружением выполняют в ваннах с расплавленными солями или припоями. Соляная смесь обычно состоит из 55 % K Сl и 45 % НС1. Температура ванны — 700…800 °С. При пайке погружением в ванну с расплавленным припоем покрытые флюсом детали предварительно нагревают до температуры 550 ° С. Пайку погружением в расплавленный припой используют для соединения деталей из стальных, медных и алюминиевых сплавов.

При газопламенной пайке заготовки нагревают и припой расплавляют горелками для газовой сварки. В качестве горючих газов используют ацетилен, природные газы, водород, пары керосина и т. п.

При плазменной пайке плазмотроном, обеспечивающим более высокую температуру нагрева, паяют тугоплавкие металлы — вольфрам, тантал, молибден, ниобий и т. п.

При пайке паяльниками основной металл нагревают, а припой расплавляют за счет теплоты, аккумулированной в массе металла паяльника. Для низкотемпературной пайки применяют паяльники с периодическим и непрерывным нагревом и ультразвуковые. Паяльник с периодическим нагревом в процессе работы периодически подогревают посторонним источником теплоты. Для непрерывного нагрева используют электропаяльники. Паяльники с периодическим и непрерывным нагревом чаще используют для флюсовой пайки черных и цветных металлов легкоплавкими припоями с температурой плавления ниже 300…350 °С. Ультразвуковые паяльники применяют для бесфлюсовой пайки на воздухе и пайки алюминия. В этом случае оксидные пленки разрушаются за счет колебаний ультразвуковой частоты.

По наличию или отсутствию давления на паяемые детали способы пайки подразделяются на пайку без давления и пайку под давлением (прессовая пайка). Прессовая пайка используется в тех случаях, когда необходимо обеспечить четкую фиксацию взаимного положения деталей и требуемую величину зазора. Для сжатия деталей с требуемым усилием применяют специальные приспособления — механические зажимы. При высоких температурах этот способ нередко является единственно возможным.

По одновременности выполнения паяных соединений способы пайки делятся на одновременную пайку и ступенчатую. При одновременной пайке за один цикл нагрева в одном изделии (узле) выполняют несколько паяных соединений, а при ступенчатой — каждое последующее соединение выполняют после предыдущего.

Материалы, применяемые при пайке. Материалы, применяемые при пайке, делятся на основные и вспомогательные. К основным материалам относятся припои, а к вспомогательным — паяльные флюсы, восстановительные, инертные газовые среды и вакуум.

Классификация припоев осуществляется по многим признакам, основными из которых являются химический состав и температура плавления. Классификация по химическому составу осуществляется по основным химическим элементам, входящим в их состав (оловянно-свинцовые, оловянные, свинцовые, медно-цинковые, серебряные, медные, палладиевые и др.).

По температуре плавления все припои подразделяют на припои для низкотемпературной пайки (tплtпл ≤ 145 °С) и легкоплавкие (145 ° С tплtпл ≥ 450 °С): среднеплавкие (450 °С ≤ tпл ≤ 1 100 °С), высокоплавкие (1 100 °С tпл ≤ 1 850 °С) и тугоплавкие (tпл ≥ 1 850 °С). Припои для низкотемпературной пайки используют в промышленности и в быту для пайки изделий, которые не подвергаются воздействию высоких температур и значительных механических нагрузок. Припои для высокотемпературной пайки применяют тогда, когда требуется высокая прочность и (или) работоспособность при больших температурах.

Припои для низкотемпературной пайки. К особо легкоплавким припоям с температурой плавления 45…145 °С относятся сплавы эвтектического состава, содержащие висмут, свинец, олово, кадмий. К таким сплавам относятся, например, сплавы Гутри (tпл = 45 °С), Вуда (tпл = 60,5 °С), Липовица (tпл = 70 °С), Д’Арсенваля (tпл = 79 °С), Розе (tпл = 93,7 °С), Ньютона (tпл = 96 °С), ПОСВ 33 ( tпл = 130 °С), ПОСК 50-18 (tпл = 145 °С).

Особолегкоплавкие припои находят применение, когда опасен перегрев не только паяемого материала, но и материала деталей изделия, не подвергаемых пайке. Такие припои широко применяются в электронике, электротехнике, в частности, при изготовлении приборов противопожарного назначения. Припой ПОСВ 33 применяется для пайки плавких сигнальных предохранителей, а ПОСК 50-18 — для деталей из меди и ее сплавов, не допускающих местного перегрева, в частности, полупроводниковых приборов.

Наиболее распространенными легкоплавкими припоями являются оловянно-свинцовые.

Маркировка оловянно-свинцовых припоев состоит из букв, обозначающих: П — припой, ОС — оловянно-свинцовый, Су — легированный сурьмой, и цифр, следующих после букв через дефис и обозначающих соответственно содержание олова и сурьмы. Буква М в марке припоя ПОС 61М обозначает легирующий элемент Cu

(1,2…2 %). Содержание свинца в марке не указывается и определяется по разности. Например, ПОССу 10-2: П — припой, ОС — оловянно-свинцовый, 10 % Sn, 2 % Sb, остальное — Pb.

Оловянно-свинцовые припои (ПОС 90, ПОС 61, ПОС 40, ПОС 18, ПОС 10 и др.) обладают высокими технологическими свойствами и весьма пластичны. Пайку этими припоями проводят обычно при нагреве паяльником. Минимальную температуру плавления (tпл = 190 °C) и лучшие технологические свойства имеет припой ПОС 61. Его состав близок к эвтектическому в системе «олово – свинец». Наиболее тугоплавким является припой ПОС 10 (tпл = 299 °C). Такие оловянно-свинцовые припои применяются для пайки электрои радиоаппаратуры (контактные поверхности электрических аппаратов, приборов, реле), точных приборов с высокогерметичными швами, где недопустим перегрев.

Для повышения прочности в оловянно-свинцовые припои вводят сурьму (ПОССу 61-0,5, ПОССу 25-0,5, ПОССу 9-2, ПОССу 10-2,

ПОССу 4-4, ПОССу 4-6 и др.). Малосурьмянистые припои, содержащие 0,2…0,5 % Sb и обладающие повышенной пластичностью, обеспечивают получение герметичных швов и применяются для пайки оцинкованных и цинковых деталей. Такие припои применяются для пайки электроаппаратуры, обмоток электрических машин, оцинкованных радиодеталей при жестких требованиях к температуре, свинцовых кабельных оболочек электротехнических изделий неответственного назначения, радиаторов, теплообменников и др. Сурьмянистые припои, содержащие 2…6 % Sb, широко используются в различных отраслях техники, требующих повышенной прочности паяных соединений. Такие припои применяются для пайки холодильных устройств, деталей автомобилестроения, деталей с клепаными швами из латуни и меди и др.

Для уменьшения склонности меди к химической эрозии при пайке используют оловянно-свинцовый припой ПОС 61М, легированный медью в количестве (1,2…2 %), близком к его предельной растворимости при температуре пайки, но не ухудшающим технологических и специальных свойств припоя и паяных соединений. Припой ПОС 61М применяется для пайки тонких (толщиной менее 0,2 мм) медных проволок, фольги, проводников в кабельной, электрои радиоэлектронной промышленности.

К легкоплавким припоям также относятся серебряные припои

(ПСрО 10-90, ПСрОСу 8, ПСрМО 5, ПСрОС 3,5-95, ПСр 3,

ПСр 3Кд, ПСр 2 и др.), содержащие серебро в незначительных количествах (1…10 %), а также олово, свинец или кадмий. В качестве легирующих элементов легкоплавких серебряных припоев выступают сурьма, медь или цинк. Максимальная температура плавления этих припоев составляет от 183 до 342 °С.

Легкоплавкие серебряные припои применяются для пайки меди, никеля и медных и медно-никелевых сплавов с посеребренной керамикой, проводов, работающих во всех климатических условиях без защиты соединений лакокрасочными покрытиями, стальных и серебряных изделий.

Припои для высокотемпературной пайки. Припои для высокотемпературной пайки обеспечивают более прочные соединения, чем припои для низкотемпературной, т. к. вследствие высокой температуры нагрева более интенсивно происходит взаимная диффузия элементов основного металла и припоя. Однако переходное электросопротивление таких припоев ниже, чем низкотемпературных.

К среднеплавким припоям с температурой до 1 100 °С относятся серебряные и меднок-цоивные припои.

К среднеплавким серебряным припоям относятся припои, в состав которых помимо серебра (10…70 %) в значительных количествах входят медь (ПСр 72, ПСр 50 и др.) или медь и цинк (ПСр 70, ПСр 45 и др.). Широкое применение находит припой ПСр 72, имеющий эвтектический состав с очень хорошими технологическими свойствами. Припои ПСр 45, ПСр 50, ПСр 70, ПСр 72 отличаются высокой пластичностью и технологичны. Такие припои применяются для пайки меди, медных и медно-никелевых сплавов, никеля, ковара, нейзильбера, латуней и бронз, а также железоникелевых сплавов с посеребренными деталями из стали, титана и титановых сплавов с нержавеющей сталью и т. п.

Некоторые припои, помимо этих элементов, содержатикйадм (ПСрКдМ 50-34-16 и др.), олово (ПСр 62 и др.), марганец (ПСр 37,5), фосфор (ПСр 25Ф) и др. Припои с кадмием применяются для пайки цветных металлов и стали, с марганцем — меди и медных сплавов с жаропрочными сплавами и нержавеющими сталями, с фосфором (самофлюсующиеся припои) — меди с бронзой,

меди с медью, бонрозонйзы с бр

и т. п.

Медно-цинковые припои (ПМЦ 36, ПМЦ 48, ПМЦ 54) используются для пайки меди, медных сплавов и сталей. Маркировка медно-цинковых припоев состоит из букв: П — припой, МЦ — медно-цинковый, и цифр, показывающих процентное содержание меди, остальное — цинк.

К высокоплавким припоям с температурой плавления более

1 100 °С относятся припои на основе меди и палладия.

Чистая раскисленная медь М0, M1 весьма широко применяется для пайки углеродистых и легированных сталей, никеля и его сплавов. Она хорошо смачивает сталь и растекается по ней, имеет более высокую прочность, чем среднеплавкие припои, высокую пластичность и менее дефицитна, чем серебро. Температура пайки медью находится в интервале 1 100…1 200 °С.

Особенности взаимодействия меди с другими элементами позволяют создавать припои на ее основе с широким диапазоном температур пайки (700…1 200 ° С). Например, легирование меди палладием и никелем вызывает непрерывное повышение температуры плавления медного припоя.

Для пайки деталей, работающих при высоких температурах, особенно подвергающихся трению (вентили и т. п.), используют медные припои, содержащие 2,5…10 % Fe, с температурой ликвидуса 1 180…1 230 °С или содержащие 20…30 % Fe, с температурой ликвидуса 1 200…1 230 ° С. Припой, содержащий 75 % Сu и 25 % Ni (tпл = 1 205 °С), используется для пайки вольфрама и молибдена. Припои с палладием, несмотря на их дороговизну и дефицитность, в последнее время находят широкое применение. Палладий, во-первых, менее дефицитен, чем другие металлы платиновой группы, во-вторых, образует непрерывный ряд твердых растворов

со многими металлами (Ag, Cu, Au, Fe, Co, Ni и др.).

Использование палладия в качестве основы или в качестве легирующего элемента позволяет получать припои с температурой ликвидуса от 810 °С до температуры плавления палладия (1 552 °С).

Припои на основе палладия и никеля, легированные хромом, имеют высокую жаростойкость. Наименьшая температура ликвидуса таких сплавов 1 250 ° С. Припой состава: 24 % Pd, 33 % Сr, 39 % Ni и 4 % Si используется для пайки жаропрочных сплавов.

Палладиевые припои применяют также для пайки керамики и графита со сталью и тугоплавкими металлами. Припой состава:

60 % Pd, 40 % Ni, легированный литием и бором, применяют для пайки графита с графитом или с тугоплавкими металлами — Mo, W или их сплавами. Паяные соединения, полученные с помощью таких припоев, работают в условиях нейтронного облучения в ядерных реакторах.

Припои на основе палладия и титана имеют температуру солидуса 1 440 °С, а соединения, паянные такими припоями, могут работать при температуре до 1 640 °С.

К тугоплавким припоям с температурой плавления более 1 850 °С относятся припои на основе тугоплавких металлов. Так, для диффузионной пайки сплава тантала с содержанием 1 % W в качестве припоя применяют чистый титан. Припой в виде фольги укладывается в места соединений, а пайку производят в вакуумной печи при температуре 1 900 ºС и выдержкой 10 мин. Для капиллярной пайки применяют припой на основе Та с 40 % Hf. Пайку выполняют при температуре 2 205 º С с выдержкой 1 мин . Также для пайки тантала применяется припой, содержащий 20 % Та, 5 % Nb, 3 % W, остальное — Ti.

Для высокотемпературной пайки вольфрама используют припои с температурой плавления до 3 000 °С, в том числе чистые металлы (Ta, Nb, Ni, Cu) и сплавы (Ni–Ti, Ni–Cu, Mn–Ni–Co, Мо–В и др.).

Флюсы. Классификация флюсов осуществляется по нескольким признакам, основными из которых являются температура пайки и природа активатора.

В зависимости от температурного интервала активности паяльные флюсы подразделяются на флюсы для низкотемпературной (

Флюсы для низкотемпературной пайки по природе активатора подразделяются на канифольные, галогенидные, гидразиновые, анилиновые и др.

В качестве флюса применяют чистую канифоль. В ее составе преобладают смоляные кислоты (80…95 %), имеющие общую формулу C19H29COOH. Канифоль удаляет оксиды таких металлов, как медь, серебро, олово, и широко используется для пайки соединений, в том случае когда промыть изделие после пайки нельзя (остатки канифоли не вызывают коррозии). Кроме того, в качестве флюса используют раствор канифоли в спирте, а также с добавками хлоридов (ZnCl2 и др.), анилина С6H5NH2 и органических веществ,

например, гидразина N2H4, глицерина НОСН2–СНОН–СН2ОН и др. С их помощью можно паять не только медные сплавы, но также стали, оцинкованное железо, никелированное железо, конструкционные и коррозионно-стойкие сплавы.

Галогенидные флюсы используют для низкотемпературной пайки почти всех черных и цветных металлов. Чаще всего применяют хлористый аммоний NH4Cl и хлористый цинк ZnCl2, а также смеси, содержащие эти и другие хлориды.

Широкое применение находят флюсы на основе солянокислого гидразина N2H4·2HCl и анилина C6H5NH2, а также других органических веществ. Соли гидразина при нагреве разлагаются с выделением водорода и хлористого водорода HCl, создающими защитную и восстановительную атмосферы. Анилин обладает высокой флюсующей активностью, причем образующийся после пайки остаток защищает шов от коррозии.

Флюсы для высокотемпературной пайки по природе активатора определяющего действия подразделяются на боридно-углекислые, галогенидные, фторборатные и др.

При пайке углеродистых сталей, чугуна и медных сплавов медно-цинковыми и серебряными припоями в качестве флюса используют борную кислоту H3BO3 и буру Na 2B4O7 в различных сочетаниях. При пайке легированных сталей и жаропрочных сплавов флюсующего действия буры и борной кислоты недостаточно, поэтому в состав флюса вводят галогениды. Чаще всего вводят фториды натрия NaF, калия KF, лития LiF и кальция CaF 2, а также фторбораты натрия NaBF4 и калия KBF4.

Флюсы для высокотемпературной пайки алюминиевых, магниевых и титановых сплавов состоят из различных хлоридов (ZnCl 2, NH4Cl и др.) и фторидов (NaF, KF и др.).

К вспомогательным материалам для пайки также относятся стоп-материалы, используемые при подготовке паяемой поверхности и наносимые на места, где нежелательно смачивание паяемого металла жидким припоем. Такие вещества подразделяют на стоппасты и покрытия, наносимые, например, гальваническим методом или распылением.

Технологический процесс пайки. Технологический процесс пайки изделия состоит из ряда операций и переходов, посредством которых он может быть осуществлен в определенном порядке. Помимо основной операции пайки он включает ряд подготовительных и финишных операций, обеспечивающих требуемые геометрические, механические и коррозионные характеристики паяных соединений и изделий.

К предварительным операциям пайки относится подготовка паяных поверхностей, включающая, во-первых, удаление жиров, масел, грязи, окалины и толстых неметаллических, в том числе оксидных пленок, образовавшихся в процессе химикотермической обработки, которые не могут быть удалены при пайке с помощью флюсов или газовых сред, во-вторых, обеспечение требуемой степени шероховатости паяемых участков и оптимального направления рисок, образующихся при этом, необходимых для лучшего растекания и затекания припоя в зазор, в-третьих, правильное закрепление припоя и соединяемых деталей, внесение флюса.

К финишным операциям относятся удаление остатков флюсов, зачистка соединения от наплывов припоя, обработка изделия резанием, термообработка и контроль качества паяных соединений.

Паяное соединение и его типы. Паяное соединение — элемент паяной конструкции, полученной пайкой. Паяное соединение состоит из паяного шва 1 и диффузионных зон 2 (рис. 3.77). Паяный шов — часть паяного соединения, закристаллизовавшаяся при пайке. Диффузионная зона — часть паяного соединения с измененным химическим составом паяемого материала в результате взаимной диффузии компонентов припоя и паяемого материала.

Рис. 3.77. Паяное соединение: а — схема; б — внешний вид; 1 — паяный шов; 2 — диффузионная зона; 3 — зона термического влияния; 4 — спай; 5 — паяемый материал

К паяному соединению примыкает зона термического влияния 3 — часть паяемого материала 5 с измененными под влиянием нагрева при пайке структурой и свойствами. Пограничный слой между паяным материалом и швом в сечении паяного соединения называется зоной сплавления (спаем) 4.

Тип паяного соединения определяется взаимным расположением и формой паяемых элементов. Основными типами паяных соединений являются нахлесточное, стыковое, угловое, тавровое, соприкасающееся и комбинированное (рис. 3.78).

Рис. 3.77. Типы паяных соединений: а — нахлесточное; б — телескопическое; в — стыковое; г — косостыковое; д — угловое; е — тавровое; ж — соприкасающееся; з — комбинированное

Нахлесточное паяное соединение (рис. 3.78, а) является наиболее удобным для выполнения и обеспечивает наибольшую прочность. Увеличение длины нахлестки в сочетании с пластичными высокотемпературными припоями почти всегда позволяет достичь равнопрочности соединения с основным металлом. Разновидностью нахлесточного является телескопическое паяное соединение — соединение труб или трубы с прутком (рис. 3.78, б). В практике телескопические паяные соединения получили наиболее широкое применение для соединения фланцев или втулок с трубами, втулок со стержнем, труб с заглушками, компенсаторов и т. д.

Стыковые соединения (рис. 3.78, в) при пайке используют реже, т. к. они не обеспечивают равнопрочность всего соединения. Для повышения прочности стыкового соединения его выполняют косостыковым (рис. 3.78, г). При таком соединении прочность стыка повышается и нередко достигается равнопрочность с основным металлом.

Угловое и тавровое паяные соединения (рис. 3.78, д, е) применяют сравнительно редко, т. к. их прочность в значительной степени зависит от пластичности паяного шва, модуля упругости паяемого металла и формы поверхности шва.

Соприкасающееся паяное соединение — соединение, в котором паяемые элементы различной геометрической формы соединены по линии или в точках (рис. 3.78, ж). Такие соединения допустимы при конструировании изделий, швы которых работают на сжатие или при небольших нагрузках.

Комбинированное паяное соединение — соединение, представляющее собой различные комбинации паяных соединений: нахлесточного, стыкового, косостыкового, таврового, телескопического, соприкасающегося (рис. 3.78, з).

Пайка по сравнению со сваркой имеет следующие преимущества:

1) она позволяет соединять всевозможные сплавы, в том числе плохо сваривающиеся, однородные и разнородные, а также соединять металл со стеклом, керамикой, графитом, полупроводниками;

2) за один прием можно получить протяженное соединение или сварить узел из множества заготовок. Последнее важно при массовом производстве и, кроме того, позволяет изготавливать сложные по конструкции узлы, которые невозможно сделать другими способами;

3) кромки деталей не оплавляются, поэтому при пайке можно сохранить размеры и форму деталей и паяного узла в целом;

4) многие паяные соединения можно распаивать, что важно при монтаже и ремонте в приборостроении.

Процесс пайки дешев, легко поддается механизации и автоматизации, особенно при массовом производстве. Все это обеспечило широкое применение пайки для изготовления сложных, тяжело нагруженных деталей в разных областях машиностроения (при производстве радиаторов автомобилей и тракторов, камер сгорания жидкостных реактивных двигателей, лопаток турбин, топливных и масляных трубопроводов и др.). В ремонтном производстве пайку используют для соединения или закрепления тонкостенных деталей и деталей из разнородных металлов, уплотнения резьбовых соединений, устранения пористости сварных швов чугунных и бронзовых отливок, заделки свищей, трещин и т. д.

Флюсы используемые при пайке металлов


Флюсы используемые при пайке металлов

Категория:

Пайка



Флюсы используемые при пайке металлов

Получение доброкачественного паяного соединения возможно, если поверхности соединяемых деталей перед пайкой будут тщательно очищены от окислов жира и других загрязнений. Но даже при хорошей очистке в процессе пайки поверхности деталей и припоя могут окисляться и образовавшаяся окисная пленка препятствует получению прочного и плотного шва.

Поэтому необходимым условием получения высококачественного паяного соединения является удаление окислов с поверхности припоя и обрабатываемых деталей в процессе пайки. Для этой цели применяют флюсы.

Паяльными флюсами называются материалы, которые служат при пайке для очистки поверхности деталей и припоя от окислов и загрязнений с целью улучшения смачивания расплавленным припоем соединяемых поверхностей и обеспечения затекания припоя в зазоры между ними.

Паяльные флюсы должны удовлетворять следующим требованиям:
— обладать способностью активно очищать поверхности соединяемых металлов от окислов путем их растворения с образованием легкоплавких химических соединений;
— иметь температуру плавления несколько ниже температуры плавления припоя, а температуру испарения значительно выше температуры процесса пайки;
— обладать сравнительно малым удельным весом, чтобы в процессе пайки легко всплывать на поверхность металла, а не оставаться в паяном соединении;
— иметь достаточную жидкотекучесть при температуре пайки и обладать способностью полностью заполнять зазоры в соединениях, обеспечивать образование защитных слоев для предохранения нагретого металла и расплавленного припоя от окисления;
— не оказывать на металл вредного химического действия;
— легко удаляться по окончании пайки (остатки).

Как и припои, флюсы делят на две группы: для пайки легкоплавкими (мягкими) припоями и для пайки тугоплавкими (твердыми) припоями.

Флюсы для пайки легкоплавкими припоями делятся на три типа: кислотные, бескислотные и активизированные.

Кислотные, или активные, флюсы, составленные на основе хлористых соединений, хорошо растворяют окисные пленки на деталях и предохраняют их поверхности от дальнейшего окисления в процессе пайки., К этой группе флюсов относится хлористый цинк, хлористый аммоний (нашатырь) и другие химические соединения.

Флюсы на основе хлористого цинка применяют при пайке металлов оловянно-свинцовыми припоями или другими сравнительно легкоплавкими припоями на свинцовой или оловянной основе.

Широкое распространение хлористого цинка как самостоятельного флюса, а также введение его в состав сложных флюсов объясняется тем, что он обладает высокой активностью в отношении окислов черных и цветных металлов и их сплавов.

Флюсы на основе хлористого цинка применяют для пайки с помощью паяльника, нагревом в печах, газовыми горелками и Другими способами.

При монтаже электрорадиоаппаратуры применение кислотных флюсов категорически запрещается.

Бескислотные флюсы, составленные на основе канифоли и других органических соединений, применяют для пайки металлов оловянно-свинцовыми припоями или другими сравнительно легкоплавкими припоями на свинцовой или оловянной основе.

Канифоль, основная составляющая бескислотных флюсов, представляет собой твердое хрупкое стекловидное вещество, полученное из сосновой смолы. При нагревании до температуры 125° С канифоль переходит в жидкое состояние. При этом она способна растворять окислы, а после затвердевания на паяном соединении остатки флюса не вызывают коррозии, поэтому их удаление с изделий во многих случаях необязательно.

Наиболее широко бескислотные флюсы используют при пайке с помощью паяльника и методом погружения в расплавленный припой.

Активизированные флюсы представляют собой составы, в которые входят, кроме канифоли, активизаторы, повышающие активность канифольных флюсов. В качестве активизато-ров в канифоль вводят в небольших количествах гидразин, анилин, триэтаноламин, салициловую кислоту и некоторые другие..

Активизированными являются также флюсы на основе глицерина с добавками хлористого цинка, гидразина, хлористого аммония.

Флюсы для пайки тугоплавкими припоями. Для пайки тугоплавкими припоями на медной, серебряной и других основах требуются активные флюсы с повышенной температурой плавления. Основой этих флюсов является главным образом борная кислота Н3ВО3, бура Na2B407, борный ангидрид В203 и некоторые другие соли. Флюсы для пайки тугоплавкими припоями делят на две группы: для припоев с температурой пайки от 850 до 1100 °С и для припоев с температурой пайки 600—850 °С.

К первой группе относятся флюсы для пайки медью, медно-цинковыми и наиболее тугоплавкими припоями на основе серебра.

Применение буры и борной кислоты в качестве флюса при пайке стали, меди и ее сплавов дает хорошие результаты с припоями, имеющими температуру плавления выше 800 °С.

Бура жидкотекуча и энергично растворяет окислы многих металлов, в особенности меди. Она применяется в виде безводной соли прокаленной или плавленой.

Менее активным флюсом является борная кислота, при нагревании она разлагается, образуя воду и борный ангидрид, который образует с окислами меди, цинка, железа и никеля легко-растворяющиеся соединения. Наиболее активное действие борной кислоты проявляется при температурах 900 °С и выше.

Для повышения активности флюсов на основе буры и борной кислоты в них вводят добавки других компонентов (флюсы 200,201).

Флюс БМ-1 в отличие от порошкообразных флюсов (1, 200, 201) представляет собой легкоиспаряющуюся жидкость с температурой кипения 54—56 °С. Пары этой жидкости обеспечивают более эффективное флюсование, чем борная кислота.

Ко второй группе относятся флюсы на основе фтористых соединений. Помимо фтористых соединений, в состав этих флюсов входит борная кислота, борный ангидрид и другие компоненты. Флюсы этой группы применяют для пайки наиболее низкотемпературных припоев из категории тугоплавких. Например, с этими флюсами паяют припоями ПСр 45, ПСр 40 и т. д. Флюсы этой группы теряют активность при температуре выше 850 °С, поэтому применять их можно при пайке конструкционных и нержавеющих сталей, медных и жаропрочных сплавов с серебряными припоями, имеющими температуру плавления 550— 850 °С.

Флюсы для пайки алюминия и его сплавов. Флюсы для пайки алюминия и его сплавов должны обладать повышенной активностью и способностью разрушать плотные окисные пленки. Эти флюсы состоят из смеси хлористых солей с добавками фтористых солей калия, натрия, лития.

С помощью указанных флюсов можно производить пайку бензовоздушной горелкой, в печах, токами высокой частоты и погружением в расплавленный припой. Пайка алюминия и его сплавов ацетилено-кислородным пламенем недопустима.

Остатки флюсов данной группы вызывают сильную коррозию алюминиевых сплавов, поэтому детали после пайки тщательно промывают.

Флюсы для напайки твердосплавных пластин на инструмент. Для напайки твердосплавных пластин в качестве флюса рекомендуется бура, а также бура в смеси с борной кислотой и фтористыми солями кальция, натрия, калия и лития.

Химический состав флюсов, применяемых для напайки твердосплавных пластин на инструмент, указан в табл. 21.

Бура и борная кислота являются основой указанных флюсов, а фтористые соединения солей выполняют роль растворителей поверхностных пленок окислов металлов. Флюс наносится на место спая в виде порошка, концентрированного водного раствора или в виде пасты.


Реклама:

Читать далее:
Типы паяных соединений

Статьи по теме:

Флюс для пайки цветных металлов ФК-235 высокотемпературный

Купить флюс для пайки цветных металлов ФК-235 высокотемпературный в Алматы по цене производителя ТОО «KMI Company-Almaty»

Флюс представляет из себя особое вещество, чаще всего смесь, органического и неорганического происхождения, предназначенные для удаления оксидов с поверхности под пайку, снижения поверхностного натяжения, улучшения растекания жидкого припоя и/или защиты от действия окружающей среды.

Может представлять собой мелкодисперсионный однородный порошок, жидкость или пасту.

Характеристики

  • Марка: ФК-235
  • Исполнение: Порошок или паста.
  • Температура плавления: 280 — 320°С.
  • Температурный интервал активности: 450 — 850°С.
  • Применяемый припой: высоко-температурные припои, замена флюса ПВ-284Х, ПВ 209 и ПВ 284.
  • Стандарт:  ТУ 48-17228138.

Состав флюса ФК-235

В 10,5 — 13,0%
К 28 — 32%
F 38 — 42%

Флюс ФК-235. Применение 

Высокотемпературная пайка меди, никеля, серебра, их сплавов, сталей.

Купить флюс для пайки цветных металлов ФК-235 высокотемпературный по выгодной цене из наличия и под заказ вы можете напрямую от ТОО «KMI Company-Almaty»

Цена формируется из объема продукции, условий оплаты, места и способа доставки. Минимальная сумма заказа – 28000 тенге. Окончательную стоимость уточняйте в отделе продаж.

Преимущества работы с ТОО «KMI Company-Almaty»

  • KAZAKHSTAN METAL INDUSTRIAL COMPANY – это часть крупного международного холдинга, работающего в России, Казахстане, Китае, Узбекистане и Киргизии уже более 10 лет.
  • Благодаря сети своих складов в разных странах мы предлагаем наиболее выгодные условия по приобретению металлопроката.
  • Мы создали разветвлённую систему работы с крупнейшими производителями металлопродукции и отладили логистику чтобы вы экономили время и деньги.

Данный прайс-лист носит исключительно информационный характер и ни при каких условиях не является публичной офертой, определяемой положением ст. 447 Гражданского кодекса Республики Казахстан.

Сварка и пайка алюминия. Припои и флюсы.

Пайка различных металлов и сплавов

Изделия, очищенные и подготовленные для пайки, не должны храниться продолжительное время во избежание окисления. Их следует возможно скорее загружать в печь или контейнер с обеспечением защитной среды. Особенное внимание должно быть уделено удалению воздуха при пайке высоколегированных сталей и сплавов, содержащих легкоокисляемые элементы. Удаление воздуха может достигаться вакуумированием или продуванием защитного газа — аргона. При продувании температура должна повышаться постепенно, начиная от комнатной до 800—900 С (1073— 1173 К). Этот процесс требует значительного расход аргона. Вакуумирование более рационально, так как при этом значительно снижается расход аргона. Большое значение при пайке имеет контроль температуры нагрева изделия; перегрев может оказать вредное влияние.

Общее время пребывания припоя в расплавленном состоянии состоит из времени:

t = t1 + t2 + t3

где t1 — время нагрева от температуры плавления припоя до температуры пайки; t2 — время выдержки при пайке; t3 — время охлаждения от температуры пайки до температуры кристаллизации припоя.

В случае взаимодействия припоя с основным металлом t1 и следует, возможно, сокращать. После окончания процесса панки необходимо удалить флюс, очистить окисленные поверхности, устранить наплывы и участки растекания припоя, в особенности в тех местах, которые подлежат последующей обработке. Требование удаления флюса вызвано возможным отрицательным влияние его, например появлением коррозии (в алюминиевых сплавах).

Флюсы (для пайки алюминиевого сплава) удаляют промывкой горячей и холодной водой при условии последующей обработки в растворе хромового ангидрида. Флюсы на основе буры образуют на поверхности твердую корку. Их удаляют механическим путем или погружением деталей в горячую воду. Паяные швы на алюминиевых сплавах обрабатывают металлической щеткой и вторично промывают от флюсов, могущих остаться в порах швов. Растекающийся припой удаляют механическим, химическим или электромеханическим способами.

Для контроля качества паяных соединений применяют разные методы. Существенное значение имеет внешний осмотр швов. Швы проверяются на прочность, плотность, электропроводность. Паяные швы можно контролировать физическими методами: рентгеновским просвечиванием, применением радиоактивных изотопов, прозвучиванием.

Кроме испытания паяных образцов без их разрушения, нередко применяют испытания с доведением их до разрушения. Результаты, полученные при испытаниях до разрушения нескольких образцов, позволяют установить механические свойства серии аналогичных изделий.

К углеродистым и низколегированным сталям относится стали, имеющие температуру плавления 1450—1520 С (1723—1793 К). При низкотемпературной пайке сталей применяются главным образом оловянно-свинцовые припои с активными флюсами. Перед пайкой рекомендуется детали облуживать. Это ускоряет процесс пайки и позволяет обеспечивать высокие механические свойства соединений.

Более часто для пайки сталей применяют высокотемпературные медно-цинковые припои с добавкой серебра (температура плавления 940—700 С (1213—973 К). Однако вследствие легкого испарения цинка эти припои не применяют для вакуумной панки. Их целесообразно использовать при пайке в среде с низкими окислительными свойствами, например продуктов неполного сгорания азотно-водородной смеси с флюсом в виде буры, борного ангидрида и т. д. Для пайки углеродистых сталей в качестве припоя применяют также чистую медь, в особенности при пайке в печах в среде водорода. Медь хорошо растекается, заполняет малые зазоры. При этом прочность соединений превосходит прочность самой меди.

К высоколегированным сплавам относятся коррозионно-стойкие аустенитные стали 0Х18Н9, 12Х18Н9 со стабилизирующими добавками — титаном, ванадием, ниобием и т. д., кислотоупорные хромистые стали Х17, Х25 и другие ферритного класса, жароустойчивые никелевые сплавы, например, имеющие около 80% Ni и др.

Указанные сплавы могут паяться легкоплавкими припоями с применением активных флюсов. Однако пайка легкоплавкими припоями указанной группы сплавов технически нецелесообразна. Рациональнее применять для их соединений высокотемпературные припои (табл. 1).

В соответствии с маркой припоя применяются флюсы с различными составляющими. Некоторые припои при быстром нагреве т. в. ч. теряют свои составляющие.

Высоколегированные сплавы и стали можно паять в среде аргона, водорода, в вакуумных печах, Недостаток пайки в аргоне — не вполне удовлетворительная растекаемость припоя. Для улучшения растекаемости во флюсы вводят добавки, например литий. Пайка в атмосфере водорода требует высокой его чистоты; использование водорода всегда сопряжено с некоторой опасностью взрыва.

Пайка в вакууме дает хорошие результаты при применении припоев, не содержащих легко испаряющихся элементов (цинка и др.). При пайке указанных выше материалов могут возникать поры вследствие испарения некоторых составляющих припоя, например, цинка: непровары в результате неудовлетворительного смачивания расплавленным припоем соединяемых частей или недостаточной очистки поверхностей; трещины при проникновении жидкого припоя между границами зерен основного металла. Особенно часто образуются трещины при пайке медно-цинковыми и медно-серебряными припоями. Применением более высокотемпературных припоев можно избежать растрескивания паяных соединений.

Таблица 1. Состав припоев, %

Применение никелевых припоев иногда сопровождается образованием подрезов основного металла в местах перехода к швам. Это происходит вследствие того, что припой этого рода имеет способность растворять основной металл. Чтобы избежать этого явления, следует вести технологический процесс пайки при возможно более низкой температуре.

При помощи пайки хорошо соединяются изделия из чистой меди и медных сплавов. Чистая медь хорошо паяется при нагреве в вакуумных печах, а также в атмосфере хорошо очищенного водорода без каких-либо примесей кислорода. Медно-цинковые сплавы, содержащие 4—38% Zn, при длительном нагреве теряют его (цинк испаряется), поэтому латунные детали перед пайкой целесообразно покрывать медью.

Пайка широко применяется для соединений различных бронз; алюминиевых, содержащих 5—10% Аl; бериллиевых, применяемых в приборостроении и имеющих в своем составе 2—2,5% Be; хромовых, содержащих около 0,5% Сr; оловянных, применяемых при обработке давлением, содержащих олово, а также фосфор и др.

Медь и ее сплавы легко паяются при применении низкотемпературных припоев с использованием канифольных флюсов, не вызывающих коррозии. Нередко перед пайкой поверхности деталей облуживают чистым оловом слоем толщиной 0,005 мм на стали и 0,0075 мм на меди. Низкотемпературные припои не обеспечивают высокой прочности паяных соединений, поэтому рекомендуется пайка в печах высокотемпературными твердыми припоями. Целесообразно применение медно-фосфорных и серебряных припоев и флюсов на основе буры с добавлением фтористых соединений. Алюминиевые бронзы хорошо паяются серебряными припоями с никелем, который препятствует проникновению в припой алюминия и повышает производительность технологического процесса.

Титан и его сплавы паяют в электрических печах, т. в. ч., газопламенным горелками. Наилучшие механические свойства спая достигаются при пайке ТВЧ. Это объясняется тем, что в результате сокращения термического цикла при этом способе пайки отсутствует рост зерна, приводящий к охрупчиванию соединений. При пайке титановых сплавов целесообразно применять серебряные припои, имеющие температуру плавления ниже температуры рекристаллизации титана и выше температуры, требуемой для удовлетворения условий смачивания припоем паяных деталей.

Очень важная задача производства — соединение пайкой различного рода керамических материалов и окислов друг с другом и с металлами. Возможны разные случаи: металлы более тугоплавки, нежели керамика, при этом соединение обеих деталей происходит в твердом состоянии, контакт обеспечивается необходимым давлением, применением покрытий. В последнем случае соединение достигается при температурах ниже температуры плавления каждой из соединяемых деталей.

Особенно благоприятные условия для соединения, когда металлы имеют температуру плавления ниже температуры плавления керамики и в результате своих специфических химических свойств склонны к образованию связи с последней. Гак, например, титан и цирконий имеют большое сродство к кислороду и образуют твердые растворы со многими металлами и окислами. Окислы титана и циркония весьма тугоплавки. При некоторых условиях эти металлы восстанавливают окислы металлов, образующих керамику, и присоединяют к себе освобожденный кислород. Такое восстановление, необходимое для прессовой пайки, следует проводить в условиях вакуума или в среде аргона.

Серьезные затруднение пайки керамик с металлами — существенная разница в их температурных коэффициентах расширения, в результате чего в соединениях образуются остаточные напряжения значительной величины. В неблагоприятных случаях, при недостаточной пластичности материалов в них возникают трещины. Для устранения этого явления иногда между соединяемым металлом и керамикой прокладывают пластины из пластичного металла, например молибдена. При пластических деформациях последнего опасность возникновения трещин в керамике значительно уменьшается.

С помощью специальных присадочных металлов можно получать качественные соединения не только однородных элементов, например Al2O3 + Al2O3, но и разнородных. Сплавы, содержащие сильные карбидообразующие элементы — молибден, тантал, титан, цирконий и др., — хорошо смачивают графит.

 

Припои и флюсы для пайки

Большинство способов пайки осуществляют с применением различных припоев и лишь в тех случаях, когда в процессе пайки между металлами могут образоваться легкоплавкие эвтектики, пайка возможна без специального припоя.

К припоям предъявляют ряд требований общего характера. Припой должен хорошо растекаться по поверхности основного металла, смачивать и растворять его, легко заполнять зазоры между деталями, обеспечивать необходимую прочность соединения и т. п.
Припои применяют в виде лент, паст, прутьев. Особенно распространены припои в виде проволочных контуров и прокладок из фольги, штампуемых в соответствии с поверхностью соединяемых частей.

Широкое применение в качестве припоев получили высокотемпературные припои — сплавы на основе серебра, алюминия, меди и др., обладающие, как правило, температурой плавления выше 450—500 С (723—773 К). Медно-цинковые припои ПМЦ 36, ПМЦ 48, ПМЦ 54 имеют предел прочности σв = 21-35 кгс/мм2 (206,0—343,2 МН/м3), относительное удлинение до 26%, рекомендуются для пайки изделий из меди, томпака, латуни, бронзы. Серебряные припои имеют температуру плавления 740—830 С (413—1103 К). Согласно ГОСТ 8190-56 марки припоев разделяют в зависимости от содержания в сплавах серебра, которое изменяется в пределах от 10 (ПСр 10) до 72% (ПСр 72). В них также содержатся цинк, медь и в небольшом количестве свинец. Эти припои применяют для пайки тонких деталей, соединения медных проводов и в случаях, когда место спая не должно резко уменьшать электропроводность стыковых соединений.

Низкотемпературные припои имеют температуру плавления ниже 450—400 С (723—673 К). Они обладают небольшой прочностью. Их применяют для пайки почти всех металлов и сплавов в разных их сочетаниях. В большинстве случаев низкотемпературные припои содержат значительный процент олова. 

Низкотемпературные оловянно-свинцовые припои (ГОСТ 1499—70) имеют верхнюю критическую точку плавления 209—327° С (482—600 К). Олово имеет точку плавления 232 С (505 К). Его предел прочности при растяжении 1,9 кгс/мм2 (18,6 МН/м2), относительное удлинение 49%, НВ 6.2 кгс/мм2 (60,8 МН/м2). Оловянно-свинцовые припои ПОС-90, ПОС-61, ПОС-40 и др. применяют при пайке медных аппаратов, авиационных радиаторов, изделий из латуни и железа, медных проводов и т. д.

Образование качественного паяного соединения в значительной степени зависит от возможности наиболее полного удаления с поверхности металла окисных, адсорбированных газовых и жидких пленок. В практике пайки для удаления поверхностных пленок применяют различного рода флюсы, восстановительную атмосферу или вакуум. В последнее время для этой цели успешно используют механическое разрушение пленок с помощью ультразвуковых упругих колебаний.

Флюсы при пайке имеют несколько назначений. Они защищают основной металл и припои от окисления, растворяют или восстанавливают образовавшиеся окислы, улучшают смачивание поверхностей, способствуют растеканию припоев. Флюсы можно применять в твердом, жидком и газообразном виде (в виде порошков, паст, растворов газов). Роль флюса выполняют некоторые специальные газовые атмосферы и вакуум, которые также могут способствовать восстановлению окислов и улучшению условий смачивания. Флюсующее действие оказывают в некоторых случаях отдельные составляющие, входящие в состав припоев. Например, фосфористые припои не требуют флюсов при пайке медных сплавов.

 

Флюсы сварочные

Флюсами называют специально приготовленные неметаллические гранулированные порошки с определенным размером зерен.

Назначение флюсов – расплавляясь, они создают шлаковый купол над зоной дуги, а после химико-металлургического воздействия образуют шлаковую корку на поверхности, в ней остаются окислы, вредные примеси и газы.

Флюсы делят на неплавящиеся, керамические и плавильные.

Керамические флюсы.

Изготавливают так же, как и электродное покрытие.

Сухие компоненты шихты замешиваются в жидком стекле. Полученную массу измельчают путем продавливания. Потом прокаливают, просеивают для получения частиц определенного размера.
Частицы сухой смеси могут быть скреплены за счет спекания. Происходит это при повышенных температурах без расплавления. Затем гранулируют до необходимого размера.

Не плавильные флюсы приготавливаются в виде механической смеси. Наиболее распространенны керамические флюсы. По составу близки к составу основного покрытия.
Легирование металла флюсом достигается путем введения в их состав ферросплавов.
Сочетание легирующих элементов может быть различно, а это позволяет получать практически любой состав металла шва.

Это наиболее характерная особенность керамических флюсов.

Химический состав шва также зависит от параметров сварки.

Чтобы определить, как изменились свойства шва, надо замерить твердость в различных местах.

Наиболее критичная зона – зона сплавления и околошовная зона. Керамические флюсы имеют и свои недостатки: малая прочность, вследствие чего в процессе транспортировки или эксплуатации меняют свою грануляцию.

Часто применяют для сварки высоколегированных и специальных сталей, а также для наплавочных работ.

Плавильные флюсы.

Сплавы оксидов и солей металлов. Процесс их изготовления включает следующие стадии:

1. Расчет и подготовка шихты.
2. Выплавка флюса.
3. Грануляция.
4. Сушка, если использовалась мокрая грануляция.
5. Просеивание.

Предварительно измельченные части флюса загружают в дуговые или плавильные печи. После расплавления и выдержки до окончания реакции при температуре 1400 C флюс выпускают из печи.

При сухой грануляции флюс выливается в металлические формы. После остывания отливка дробится, при этом используются валки. Размер частиц 0,1-3 мм. Затем флюсы просеивают.

Сухая грануляция применяется для гигроскопических флюсов, содержащих большое количество фтористых и хромистых солей.

Преимущество этих флюсов в том, что они могут быть использованы несколько раз.

Используют для сварки алюминиевых и титановых сплавов.

Мокрый способ грануляции: расплавленный флюс выпускается из печи достаточно тонкой струей и попадает в емкость с проточной водой. В ряде случаев используют дополнительную струю воды.
Далее идет просеивание.

Получают различную грануляцию. Флюс сушат при температуре 250-300 C, а после дробят, если возникает необходимость. После этого просеивают.

Флюс представляет из себя неровные зерна светло-серого, красно-бурого и коричневого цвета.

Транспортируют в герметичной таре, полиэтиленовых мешках, бочках.

Плавильный флюс не может содержать легирующих элементов в чистом виде, так как они окисляются в процессе изготовления. Поэтому легирование происходит путем восстановления окислов флюсов.


В основу классификации флюсов по химическому составу положено содержание в нем оксидов и солей.

Различают окислительные флюсы, имеющие оксид марганца и кремния в составе.

Для получения определенных свойств флюса, в его состав вводят другие компоненты – плавиковый шпат, более прочные оксиды.

Чем больше во флюсе оксида марганца и кремния, тем сильнее он может легировать металл данными элементами, но тем больше он будет окислять этот металл.

Плавильные флюсы применяются для сварки углеродистых и низколегированных сталей.

Безокислительные флюсы практически не содержат оксидов марганца и кремния, в их состав входят фториды, используются для сварки высоколегированных сталей.
Также безокислительные флюсы могут состоять из фтористых и хлоридных солей и элементов, не содержащих кислород.
Используют для сварки высокоактивных металлов – алюминия и титана.

В связи с широким применением флюсов, есть ГОСТ на основные марки: ГОСТ 9087-81 «Флюсы сварочные плавильные».
Регламентирует химический состав.

Различают стекловидный и пемзовидный характер зерна.
Строение зерна зависит от состава расплава флюса, степени его перегрева.
В зависимости от этого, флюс может получаться плотным, прозрачным, пористым, рыхлым.
Следует учитывать, что пемзовидный флюс при том же химическом составе, имеет в полтора-два раза меньший вес, чем стекловидный.

Данные флюсы хуже защищают металл от воздействия воздуха, но обеспечивают хорошее формирование шва при больших плотностях тока и скоростях сварки.

Буквы в обозначениях флюсов:

  • М – мелкий
  • С – стекловидный
  • П – пемзовидный
  • СП – смешанный

 

Сварка под флюсом

На первый взгляд может показаться, что одно из основных преимуществ сварки под флюсом — возможность получения большой глубины проплавления свариваемого металла — противоречит условиям сварки тонколистовой стали. Однако при определенных условиях сварка под флюсом допускает регулирование глубины проплавления металла, начиная от долей миллиметра, и поэтому хорошо известные ее достоинства могут быть использованы для сварки тонколистовой стали.

Успешное внедрение в производство сварки под флюсом изделий из тонколистовой стали стало возможным, главным образом, благодаря применению тонкой сварочной проволоки. Известны примеры сварки тонколистовой стали и обычной электродной проволокой диаметром, например, 4 мм. Однако в этом случае удавалось сваривать сталь толщиной не менее 3—4 мм при условии весьма тщательной сборки изделия.

Для сварки тонколистовой стали большое значение имеет применение приспособлений, облегчающих точную сборку изделия и обеспечивающих надежное поджатие к свариваемому стыку медной или флюсомедной подкладки, флюсовой подушки и т. п. Опыт показывает, что производительность автоматической сварки изделий из тонколистовой стали со сравнительно короткими швами зависит не столько от машинной скорости сварки, сколько от затрат времени на подготовительные и вспомогательные операции. Поэтому важной задачей является разработка эффективно действующих сборочных и сборочно-сварочных приспособлений.

Чем меньше величина тепловой энергии, передающейся от дуги основному металлу в процессе сварки, тем меньше глубина его проплавления и, следовательно, тем более тонкий металл можно сваривать без прожогов. Тепловая энергия, передаваемая основному металлу, может быть уменьшена за счет уменьшения мощности дуги или увеличения скорости ее перемещения по свариваемому соединению.

Для сварки тонколистовой стали в основном применяют уменьшение мощности дуги, а не увеличение скорости сварки. Это в значительной мере объясняется тем, что применение больших скоростей сварки (более 150—200 м/час) связано с жесткими требованиями к точности поддержания режима сварки, необходимостью тщательной очистки свариваемых кромок, с очень точной сборкой стыков, в ряде случаев со специальным наклоном изделия и электрода и т. п. При указанных скоростях сварки металл шва может быть поражен порами, поперечными трещинами и другими дефектами. Если при этом учесть, что производительность сварки тонколистовой стали, как указывалось выше, главным образом, зависит от затрат времени на установочные и подготовительные операции, то станет ясным, почему увеличение скорости не стало основным способом уменьшения погонной тепловой энергии.

Устойчивость процесса сварки

При сварке тонколистовой стали равномерность глубины проплавления имеет особенно важное значение. Если сваривая сталь толщиной более 4—5 мм, можно допустить колебание глубины проплавления в пределах ± 1 мм, не опасаясь возникновения прожогов, то в случае сварки тонких листов стали такое же колебание совершенно недопустимо.

Равномерность глубины проплавления зависит от устойчивости режима сварки, главным образом, от колебаний сварочного тока. Колебания скорости сварки, а также напряжения дуги сказываются в меньшей степени. Исходя из этого, для сварки тонколистовой стали следует рекомендовать сварочные автоматы с постоянной скоростью подачи электродной проволоки, так как они обеспечивают практически почти постоянные значения тока при колебании напряжения в сети или случайных изменениях длины дуги в процессе сварки. При этом сохраняются почти постоянной глубина проплавления, а также количество наплавляемого металла. Сварочные головки с регулируемой скоростью подачи электродной проволоки в тех же условиях не обеспечивают постоянство тока и поэтому применять их не рекомендуется.

Понижение мощности дуги, требующееся для сварки тонколистовой стали, может быть осуществлено только до определенного предела, зависящего от диаметра электродной проволоки. Дальнейшее снижение мощности резко ухудшает устойчивость процесса сварки и приводит к неудовлетворительному формированию шва. В случае сварки переменным током этот предел достигается при значительно большей мощности дуги, чем в случае сварки постоянным током обратной полярности. Поэтому сварку тонколистовой стали рекомендуется осуществлять постоянным током обратной полярности (положительный полюс присоединен к электроду). В табл. 1 приведены полученные опытным путем значения минимально-допустимых сварочных токов для электродной проволоки различных диаметров при сварке под флюсом АН-348 постоянным током обратной полярности.


Как следует из табл. 1, для обеспечения устойчивого горения дуги при понижении ее мощности необходимо увеличивать плотность тока в электроде, что практически достигается путем уменьшения диаметра электродной проволоки. Эту таблицу можно использовать для выбора диаметра электродной проволоки при сварке на заданном режиме.

При рассмотрении условий устойчивого горения электрической дуги пользуются ее статическими вольтамперными характеристиками. Вольтамперной характеристикой называется зависимость между током и напряжением дуги при постоянной ее длине. На фиг. 1 приведены такие характеристики для дуг различной длины. Каждая вольт- амперная характеристика дуги состоит из нескольких участков: падающего (с ростом тока напряжение падает), почти горизонтального (жесткий участок) и растущего (с ростом тока напряжение увеличивается). В зависимости от условии сварки, дуге соответствует тот или иной участок характеристики. Так, например, при сварке неплавящимся угольным или вольфрамовым электродом, при ручной сварке качественными электродами, при автоматической сварке под флюсом со сравнительно небольшой плотностью тока и в некоторых других случаях характеристика сварочной дуги является падающей с переходом к жесткой. При сварке под флюсом или в защитной газовой среде с повышенной плотностью тока в плавящейся электродной проволоке характеристика дуги становится растущей.

Если дуга имеет падающую вольтамперную характеристику, то устойчивое ее горение возможно только при том условии, что внешняя характеристика сварочного генератора также будет падающей, т. е. напряжение холостого хода генератора значительно превышает напряжение дуги при сварке.

С ростом плотности тока в плавящемся электроде изменяются свойства сварочной дуги. Эти изменения настолько существенны, что позволяют предъявить совершенно другие требования к характеристикам источников питания постоянного тока.

Еще в 1950 г. в Институте электросварки им. Е. О. Па- тона было доказано, что при повышении плотности тока в плавящемся электроде может быть получен устойчивый процесс сварки при использовании в качестве источника питания генератора постоянного тока с жесткой внешней характеристикой (напряжение холостого хода генератора практически равно напряжению дуги при сварке). В отечественной и зарубежной практике в последние годы такие генераторы нашли широкое применение.

Генераторы с жесткими внешними характеристиками значительно более экономичны, чем обычные сварочные генераторы с крутопадающими характеристиками и высоким напряжением холостого хода, так как пропорционально снижению напряжения холостого хода генератора снижаются затраты на активные материалы, уменьшается вес генератора и его стоимость.

Чем больше скорость подачи электродной проволоки п меньше сварочный ток, тем труднее возбудить дугу путем непосредственной подачи электродной проволоки к изделию. Опыт показывает, что при использовании обычных сварочных генераторов с крутопадающей внешней характеристикой в ряде случаев этот способ возбуждения дуги практически оказывается неосуществимым. Совершенно иное наблюдается в случае применения генераторов с жесткими внешними характеристиками. Резкое нарастание тока при закорачивании электрода на изделие обеспечивает безотказное возбуждение дуги. Короткое замыкание не наносит ущерба генератору, так как тонкая электродная проволока выполняет роль плавкой вставки в цепи, ограничивая время протекания и величину тока короткого замыкания.

В тех случаях, когда генераторы с жесткими внешними характеристиками по какой-либо причине не могут быть применены для сварки тонкого металла, следует применять генераторы с весьма пологопадающими характеристиками, т. е. с большой величиной тока короткого замыкания.

Чем резче изменяется ток в цепи при случайных изменениях длины дуги, тем интенсивнее протекают процессы саморегулирования и тем быстрее восстанавливается заданный режим сварки. Генераторы с крутопадающими внешними характеристиками дают значительно меньшие изменения тока при случайных колебаниях длины дуги, чем генераторы с пологопадающими, жесткими или растущими характеристиками, благодаря чему обеспечивают большую устойчивость процесса сварки тонкой электродной проволокой.

Весьма характерно влияние внешних характеристик генераторов на процесс сварки и формирование шва при изменении величины зазора в соединении. Опыт показывает, что в случае питания дуги от генераторов с жесткой или пологопадающей внешней характеристикой можно допустить большие по величине зазоры в стыке, не нарушая нормального формирования шва. Такое же явление наблюдается при увеличении плотности тока в электроде.

В табл. 2 приведены режимы сварки стыковых соединений стали толщиной 3 мм, собранных с постепенно возрастающим зазором от 0 до 5 мм при длине образцов 500 мм. Образцы сваривались электродной проволокой диаметром 3 мм при питании от генератора с крутопадающей внешней характеристикой и генератора с пологопадающей характеристикой. Один из образцов был сварен электродной проволокой диаметром 1,6 мм при питании от генератора с крутопадающей характеристикой. Как следует из табл. 2 и фиг. 2, где изображены образцы сварных соединений, в случае внешней характеристики генератора, приближающейся к жесткой (пологопадающей), а также в случае большей плотности тока в электроде (меньший диаметр электрода), максимальный зазор, при котором еще происходит правильное формирование шва, значительно больше.

Не следует считать, что приведенные в таблице максимальные зазоры могут быть рекомендованы как допустимые при сборке стыков. В данном случае имеет место плавное возрастание зазора, что не равноценно резким изменениям зазоров, которые могут наблюдаться в практике.

Влияние формы внешней характеристики, а также плотности тока на формирование швов при сварке с зазорами в стыке связано, по-видимому, с изменением интенсивности процессов саморегулирования.

При автоматической сварке стыкового соединения одно из активных пятен дуги расположено на расплавленном металле ванны, заполняющей разделку. В отдельные моменты времени скорость перемещения ванны расплавленного металла может отличаться от скорости движения электрода вдоль стыка. Одной из причин этого бывает изменение величины зазора между свариваемыми кромками или изменение зазора между подкладкой и свариваемыми листами.

При увеличении зазора в стыковом соединении или возникновении большего зазора между подкладкой и свариваемыми листами скорость перемещения ванны расплавленного металла уменьшается. Так как скорость движения электрода при этом остается прежней, имеет место рост дугового промежутка. Резкое увеличение дугового промежутка вызывает обрыв дуги и нарушение процесса сварки. При плавном удлинении дуги процесс может не нарушиться, активное пятно успеет занять новое положение, обеспечивая восстановление прежней длины дуги.

Если питание дуги осуществляется от генератора с крутопадающей внешней характеристикой, то при удлинении дуги, как показали исследования, наблюдается рост ее мощности, что ведет к дополнительному оплавлению кромок в месте повышенного зазора, где начала удлиняться дута. При этом электродного металла окажется недостаточно для заполнения зазора между оплавленными кромками, в результате чего образуется не заполненный металлом участок — прожог.

Увеличение интенсивности саморегулирования дуги, имеющее место в случае применения генераторов с жесткими внешними характеристиками или при повышенной плотности тока в электроде, в известных пределах может предотвратить возникновение прожогов. Благодаря интенсивному саморегулированию значительное удлинение или обрывы дуги не будут наблюдаться при отставании ванны жидкого металла в месте увеличившегося зазора. При этом длина дуги будет поддерживаться постоянной и опасный участок с увеличенным зазором может быть пройден без нарушения процесса сварки (без обрывов дуги, прожогов и пр.). Этот участок от остальной части шва будет отличаться только меньшим усилением шва или даже полным отсутствием усиления.

Как известно из практики автоматической сварки под флюсом, с увеличением плотности тока в электроде глубина проплавления заметно возрастает. Например, при сварке на токе 500 а увеличение плотности тока приблизительно в 3 раза, за счет уменьшения диаметра электродной проволоки от 5 до 3 мм, вызывает увеличение глубины проплавления на 25%. Так как переход к сварке тонкой электродной проволокой связан с еще большим увеличением плотности тока в электроде, то возникает опасение, не может ли интенсивный рост глубины про­плавления в этом случае стать препятствием на пути применения тонкой электродной проволоки и повышенной плотности тока для сварки тонколистовой стали. Проведенные опыты показали, что это опасение несостоятельно.

На фиг. 3 приведен график зависимости глубины проплавления от диаметра электродной проволоки. Как видно из графика, рост глубины проплавления с увеличением плотности тока (уменьшением диаметра электрода) наблюдается только при сварке на токах, превосходящих 300—350 а. Что же касается интересующего пас диапазона токов, применяемых для сварки тонкой стали (до 300—350 а), то в нем увеличение плотности тока не вызывает изменения глубины проплавления. Это объясняется некоторыми особенностями, отличающими маломощные электрические дуги от дуг большей мощности.

 

Материал с сайта: http://ruswelding.com

 

Флюс для пайки цветных металлов

В этом разделе Вы получите информацию по следующим темам: Флюсы для высокотемпературной пайки металлов. Флюсы для низкотемпературной пайки металлов. В состав флюсов обычно входят основа, растворитель окисной пленки и активное флюсующее вещество. Иногда эти функции сочетаются в одном веществе, применяемом в качестве флюса.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам. ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Какой флюс выбрать для пайки? Обзор флюсов моей мастерской.

Пайка металлов. Технология пайки. Припои для пайки. Флюсы для пайки.


Во многих отраслях промышленности и в бытовых условиях для соединения металлических деталей и для ремонта любой аппаратуры применяется пайка. Для того чтобы работа была качественной, необходим специальный инструмент и расходные материалы в виде припоя и флюса. И если с инструментами и припоем все относительно понятно, то о флюсе знают немногие. Поэтому перед процессом пайки необходимо разобраться — что такое флюс и зачем он нужен?

Флюсами являются химические активные вещества, с помощью которых паяемые поверхности очищаются от жировых загрязнений и оксидных пленок.

На обработанных флюсом деталях снижается поверхностное натяжение, вследствие чего улучшается растекание припоя. Кроме этого, это химическое вещество способно защитить места соединения от воздействия внешней среды. Без обработки флюсом припой может не прикрепиться к поверхности обрабатываемых деталей. Поэтому материал следует выбирать тщательно, руководствуясь следующими требованиями:. Чаще всего материал для пайки готовят из 10 грамм хлорида аммония и 30 грамм хлорида цинка , растворяя их в 60 миллилитрах воды.

Их можно приготовить из консервированной соляной кислоты и металлического цинка:. Жидкость можно не сливать, а выпарить досуха. Затем непосредственно перед пайкой полученная смесь растворяется в воде Однако приготовленные таким образом флюсы подходят не для всех металлов. По степени эффективности они подразделяются на три группы:. Защитные или некоррозиные материалы из-за своей слабой активности не способны очистить поверхность большинства металлов от коррозийной пленки.

Главным образом они используются для соединения меди, ее сплавов и покрытых кадмием, оловом или серебром стальных изделий. При этом припои должны быть только легкоплавкими. К защитным флюсам относится канифоль и ее различные растворы, вазелин, стеарин, воск, древесные смолы. Слабокоррозийные вещества по сравнению с некоррозийными более активны. Чаще всего это растворенные в спирте, воде или производных органических кислотах минеральные масла, животные жиры, органические кислоты щавелевая, бензольная, стеариновая, олеиновая, лимонная, молочная и т.

Для того чтобы ослабить коррозийное действие таких веществ, к ним добавляется канифоль или другие вещества, которые не вызывают коррозии. Применяются слабокоррозийные вещества при пайке только с легкоплавкими припоями, так как они легко разлагаются, сгорают и испаряются. Коррозийные флюсы для пайки состоят из фторидов и хлоридов металла, неорганических кислот.

Они способны разрушать любые стойкие пленки цветных и черных металлов, поэтому эффективны при пайке любым способом. Применяются коррозийные материалы в виде водных растворов в пастообразном и твердом состоянии. Соединить алюминиевые изделия с помощью пайки в обычных условиях удается с трудом, так как оксидная пленка на его поверхности образуется мгновенно. Поэтому расплавленной канифолью его следует заливать сразу после зачистки. В большинстве случаев соединения алюминиевых деталей производится оловянно-свинцовыми и многокомпонентными припоями, в состав которых входит висмут, кадмий, цинк и другие материалы.

Применяться они могут и к сплавам алюминия. Такие припои способствуют долговечному и отличному соединению алюминиевых изделий. Безотмывочный материал на деталь необходимо наносить тонким слоем до тех пор, пока поверхность не побелеет. Также использовать можно активный безотмывочный флюс, после применения которого промывка поверхностей не требуется.

С его помощью можно производить пайку меди и нержавеющей стали. Для нержавейки в большинстве случае применяется ортофосфорная кислота. Это вещество неорганического происхождения средней силы представляет собой гигроскопические бесцветные кристаллы. Доведенная до С, она превращается в пирофосфорную кислоту.

Однако использовать можно и другие растворители, например, этанол. Кислота на поверхность стали наносится тонким слоем, очищая тем самым ее от загрязнений и ржавчины и образовывая защитную от коррозии пленку.

Такой материал требует специального флюса. Однако использовать можно и универсальный, который подходит для пайки оцинкованного железа, алюминия, меди, коррозийно-стойких сплавов, бронзы. Перед употреблением специальный для латуни флюс необходимо взболтать. С его помощью получится прочное соединение и образуется антикоррозийное покрытие. Для пайки серебра выбор рекомендуется остановить на специализированном флюсе.

Этот материал обезвредит зону пайки и предотвратит появление оксидной пленки. Перед его применением поверхность серебряных изделий надо немного подогреть с помощью газовой горелки.

Диапазон рабочей температуры флюса для серебра — С. Благодаря ему достигается отличное крепкое соединение серебряных деталей. Для пайки черных металлов используется хлорид цинка, который является активным флюсом. Кроме него, можно выбрать материалы малой или средней активности, например, хлорид аммония.

Подобный флюс также применяется для эмалированных металлических ванн. Активный флюс может быть в виде раствора, порошка или пасты. Наиболее востребована паяльная паста. Достойная альтернатива ей — трубка припоя, которая имеет в своем составе флюс-наполнитель.

Раньше для пайки плат и других различных деталей использовалась только канифоль, которая относится к активным флюсам. Однако спиртовой канифольный раствор для ремонта микросхем применять не рекомендуется, так как он имеет несколько существенных недостатков:.

Но выход для радиолюбителей есть. Современные рынки материалов предлагают большой выбор разных флюсов, с помощью которых обеспечивается высокое качество пайки, не разрушается жало паяльника и которые легко смываются водой. Продаются такие материалы чаще всего в удобных для их применения упаковках — шприцах. После использования флюса готовую пайку следует обязательно прочистить смоченной в растворителе жесткой кисточкой или щеточкой, а также протереть смоченной в спирте-ректификате тряпочкой.

Сейчас выпускаются флюсы, которые не содержат вызывающих коррозию и окисление компонентов и не проводят электрический ток. Поэтому после их применения плату промывать необязательно. Нужно только удалять излишки. Стоит такое приспособление достаточно дорого, поэтому дешевле сделать его самому:. Для этого нужно слегка нажать на шланг и выдавить капельку флюса. Чтобы иголка не засыхала, в нее нужно вставить кусочек проволоки.

Флюсы в виде пасты или геля наносить на соединяемые детали можно одноразовым шприцем с толстой иглой. Разобравшись, что такое флюс, и начав применять его для припоя металлических деталей, важно делать это в соответствии с техникой безопасности. Во время работ с химически активными веществами помещение нужно обязательно проветривать, а саму пайку производить в очках и защитных перчатках.

Если Вам нравятся статьи, подпишитесь на наш канал в Яндекс Дзене, чтобы не пропустить свежие публикации. Вы с нами? Главная Оборудование Разное Флюс для пайки металлов — что это такое? Флюс для пайки металлов — что это такое? Содержание 1 Флюсы — определение, предназначение. Пайка алюминия и других материалов: флюсы и припои для пайки.

Как правильно паять паяльником: пайка проводов и видео. Пайка латуни с помощью газовой горелки и паяльника.


Материалы для пайки

В качестве источников теплоты при пайке используют газокислородное и газовоздушное пламя, электронагрев, индукционный нагрев , паяльники. К преимуществам пайки относятся отсутствие расплавления и незначительный нагрев основного металла. Эти преимущества позволяют получать высококачественные соединения не только однородных металлов, но и разнородных металлов и сплавов. Согласно ГОСТ , различают две основных вида пайки:. В основу высокотемпературных припоев входят медь Сu , цинк Zn , серебро Ag , а низкотемпературных — свинец Pb , олово Sn , сурьма Sb.

Соединение двух и более неметаллических или металлических материалов и веществ посредством присаживаемого металла, называется пайка.

Припои и флюсы для пайки чёрных и цветных металлов

Пайка металлов своими руками Как способ неразъемного соединения металлов пайка известна с давних пор. Удивительно, но за тысячелетия, прошедшие с тех пор, технология пайки изменилась не так сильно, как этого можно было бы ожидать. Пайка металлов. Способы соединения паяемых деталей. Применение пайки. Самодельный газовый паяльник. Пайка металла газовой горелкой. Индукционная пайка резцов.

Пайка металлов. Способы, материалы, припои, флюсы для пайки металлов

Образование соединения без расплавления основного металла обеспечивает возможность распая изделия. По прочности паяные соединения уступают сварным. Паять можно углеродистые и легированные стали всех марок, твердые сплавы, цветные металлы, серые и ковкие чугуны. По механизму образования шва капиллярная пайка подразделяется на пайку с готовым припоем, когда затвердевание шва происходит при охлаждении; контактно-реактивную пайку; реактивно-флюсовую; диффузионную. Соединение образуется за счет растворения основы в жидком припое и последующей кристаллизации раствора.

HTS — это универсальный твердый припой для ремонта разного рода металлических деталей. Этот припой обладает отличной текучестью и подходит для контактной пайки и ремонта изделий из стали, чугуна, меди, бронзы, никеля и латуни, а также для качественного соединения этих разнородных металлов Припой был испытан на более чем 50 металлах и сплавах.

Справочник химика 21

Использование пайки известно с древнейших времен. В гробнице вавилонской царицы III тыс. Припои древних римлян церарий и аргентарий по своему химическому составу близки к существующим в настоящее время ПОС и ПОС В истории использования пайки можно выделить три периода, которые связаны с развитием источников нагрева и особенностями применяемой техники. Первый период начался в бронзовом веке, когда человечество начало изготавливать изделия из бронзы и источником нагрева служило твердое топливо.

Флюс-паста для пайки цветных металлов ACTIV уп-25г

Пайка — это процесс соединения заготовок путём введения в зазор между ними горячего жидкого материала припоя , в отличие от технологии сварки, при пайке кромки деталей не расплавляются. В специально заданном зазоре имеет место процесс взаимной диффузии основного материала и припоя. Когда нагрев прекращается, припой твердеет — кристаллизуется. В результате мы имеем соединительный сплав, более прочный, чем чистый припой. Технология пайки имеет свои положительные особенности: 1. Соединять можно металлы в различных сочетаниях, допускается также спаивание металлов с неметаллами. Не изменяется форма и геометрические размеры заготовок, так как нет плавления, нет коробления и сильных внутренних напряжений.

Способы, материалы, припои, флюсы для пайки металлов: для флюсовой пайки черных и цветных металлов легкоплавкими припоями.

Сущность и применение пайки металлов

Во многих отраслях промышленности и в бытовых условиях для соединения металлических деталей и для ремонта любой аппаратуры применяется пайка. Для того чтобы работа была качественной, необходим специальный инструмент и расходные материалы в виде припоя и флюса. И если с инструментами и припоем все относительно понятно, то о флюсе знают немногие.

Флюс для пайки: особенности, виды, советы

Соединение двух и более неметаллических или металлических материалов и веществ посредством присаживаемого металла, называется пайка. Мы предлагаем рассмотреть, что такое флюс для пайки, как его можно изготовить своими руками, а также рассмотрим характеристики, и как сделать припой для меди, серебра, олова, нержавейки. Чтобы получить действительно качественное соединение нужно выдержать специальную температуру в зоне шва. В среднем этот показатель варьируется в пределах градусов.

Процесс соединения заготовок, в результате которого их материал не расплавляется, называется пайкой. То есть, материал не изменяет своих технических характеристик и качеств.

Пайка — это технологический процесс получения неразъемных соединений металлов нагревом до расплавления более легкоплавкого присадочного металла — припоя, заполняющего зазор между соединяемыми деталями. Основной металл при пайке не плавится, а нагревается до температуры расплавления припоя. В качестве источника тепла при пайке используется водороднокислородное пламя. К преимуществам пайки относятся отсутствие расплавления и незначительный нагрев основного металла. Эти преимущества позволяют получать высококачественные соединения не только однородных металлов, но и разнородных металлов и сплавов.

Флюс-паста ACTIV — является химически активным флюсом, который используется для паяльных работ изделий из меди и её сплавов , высоколегированной стали, бериллиевой бронзы, а так же их нихрома. Химический состав флюса содержит: соляная кислота с примесью нейтральных составляющих загустители , так же присутствует вода и краситель. Кислота характеризуется высокими корродирующими свойствами, поэтому, после окончания работ, остатки флюса необходимо удалять с поверхности паяемого металла, используя для этого горячую воду или спирт. Флюс обладает вязкой пастообразной формой.


Делаем своими руками флюс для пайки

18 марта 2021

Флюс — это вспомогательное вещество, использование которого необходимо для качественной очистки разнообразных поверхностей деталей выполненных из металла от процессов окисления. Если выполняется пайка без использования флюса, тогда рассчитывать на правильно выполненные работы не стоит. Поэтому, рекомендуется перед началом работ по пайке разнообразных механических элементов, при помощи использования паяльника, выбрать качественный флюс, который поможет надежно соединить детали. Многие радиолюбители используют флюс для пайки, который делают сами. Этот флюс отличается высокими показателями эффективности в использовании и надежно защищает детали, которые были соединены при помощи пайки.

Особенности использования

Специальные флюсы, самым первым делом применяют для качественного удаления различных загрязнений находящихся на металле соединяемых деталей. Помимо этого, при осуществлении пайки паяльником, флюс надежно защищает металл от процессов окисления и возникновения с течением времени коррозии. Это дает возможность равномерной растекаемости используемого припоя и значительного улучшению общего качества выполняемой пайки различных металлических элементов.

Качественный флюс имеется возможность выбрать при учете показателей соединений и используемого сплава припоя. Имеющиеся остатки используемых флюсов по завершению пайки, рекомендуется убирать с поверхности соединений, потому как они с течением времени могут привести к нежелательному появлению коррозии метала.

Виды флюсов для выполнения пайки

В прямой зависимости от назначения, имеется возможность разделить флюсы на два вида, такие как:

  • Окислительные флюсы.
  • Восстановительные флюсы.

Активные флюсы, даже несмотря на достаточно большое распространение не очень хорошо подходят для выполнения пайки современной радиоаппаратуры, потому как их остатки очень быстро могут разъедать места, где производилось соединение различных элементов при помощи пайки паяльником. Канифоль, считается бескислотным флюсом для осуществления пайки разнообразных деталей и очень часто используется радиолюбителями для выполнения работ по пайки различных деталей. Это вещество выполнено на основе использования спирта в который добавляется в требуемом количестве глицерин.

Как сделать флюс самому

Одним из распространенных и относительно простых способов для того, чтобы сделать флюс для пайки собственными руками, считается использование канифольно-спиртового материала. Перед приготовлением этого флюса, потребуется засыпать в небольшую емкость необходимое количество канифоли и залить раствором с содержанием спирта. Спустя определенное время, спирт полностью испарится и полученный флюс получит требуемую консистенцию. Этот состав очень удобен для расположения данного вещества на элементы различных деталей, которые требуется соединить.

Ну конечно, если Вы не хотите сэкономить время, флюс для пайки можно купить в нашем каталоге!

Флюс для пайки

Использование флюса во время пайки является одним из основных условий для достижения качественного результата, особенно, если речь идет о спаивании сложных металлов и сплавов, которые плохо поддаются этому процессу. Существует масса разновидностей данного расходного материала, каждая из которых предназначается для своей сферы использования и придает нужные свойства припою или основному металлу. Флюс для пайки предназначается для улучшения свойств спаивания, он понижает температуру плавления у некоторых металлов, увеличивает их смачиваемость, создает защиту от окислов и так далее. В некоторых случаях, без использования флюса невозможно провести процесс пайки, так как припой попросту не расплавится. В данном разделе освещены все методы применения этого материала.

Здесь вы узнаете, какие бывают разновидности и как их лучше всего применять. В основном тут разбираются стандартные варианты защитных флюсов, которые можно найти на современном рынке. Но пайка часто используется не в профессиональной сфере, так что некоторых материалов у людей дома может не быть в наличии. В отдельных статьях вы узнаете, что можно использовать вместо канифоли, самого распространенного паяльного флюса, а также как заменить другие варианты и что не имеет альтернативных аналогов. Для тех, кто предпочитает делать все самостоятельно, полезно будет знать, как сделать жидкую канифоль своими руками. Этот же вопрос касается и приготовления кислот для пайки, так как практически все их компоненты можно найти в свободном доступе и приготовить состав самостоятельно.

Флюс паяльный проявляется в массе других вариантов, таких как паяльная кислота, жир, бура, ортофосфорная кислота и так далее. Практически в каждой статье, где речь идет об опасных для здоровья компонентах и материалах указываются особенности применения и техника безопасности, что поможет сохранить здоровье и получить при этом качественное соединение. Некоторые разновидности имеют специфическое применение, так как издают неприятный запах во время расплавления. В таком случае полезно будет знать, как заранее подготовить рабочее место, чтобы избежать негативных последствий.

Отдельные пункты расскажут, как вести работу с платами и микросхемами, в которых пайка является одним из немногих вариантов ремонта, а тонкие детали требуют особого подхода, так как слишком активные флюсы могут повредить их. Это же касается и тонких проводов в некоторых соединениях. К каждой разновидности материала прилагаются противопоказания к применению, чтобы не навредить основному материалу.

Помимо основных свойств флюсов здесь описываются альтернативные методы применения, особые способы подготовки материала к работе, как правильно разбавлять или переводить материал в жидкое состояние и так далее. Ведь некоторые флюсы обладают коррозионными свойствами, что приводит к появлению ржавчине на шве. Широко охватываются вопросы домашней пайки, когда приходится искать альтернативные способы решения задач и подбора материалов. Для каждой разновидности описываются особенности правильного применения, так как из-за разницы в составе появляется существенная разница в свойствах.

Если речь заходит о кислотах и прочих химических разновидностях материалов, куда входит также паяльный жир, то в статьях разделах перечисляются компоненты состава, их соотношения и возможные изменения в зависимости от разновидностей. Таким образом, страницы сайта дают максимально полный охват информации в рассматриваемых вопросах.

Читать дальше

840 Флюс для пайки новой металлической кровли из меди, цинка и нержавеющей стали

Описание

Гель-флюс Express Gel Solder Flux предназначен для пайки металлических кровельных покрытий из меди, цинка и нержавеющей стали, стеновых панелей и любых объектов, использующих эти металлы. Этот гелевый флюс идеально подходит для пайки новых медных и цинковых металлических кровель, стеновых панелей и водосточных желобов, а также всего, что требует пайки.

  • 840 Флюс (красная крышка) предназначен для использования на новых, чистых металлах. Флакон 320 мл (10,8 унции)

Нужно паять старые окисленные металлы? Используйте флюс Express 845 (черный колпачок).

Этот продукт не может быть доставлен по воздуху, поэтому не выбирайте доставку на следующий день, 2-дневную авиаперевозку или 3-дневную доставку.

Гавайи, Пуэрто-Рико и другие зарубежные клиенты: UPS и FedEX не отправляют этот продукт на Гавайи, Пуэрто-Рико или другие зарубежные направления с флюсом для припоя.

Только зарегистрированные клиенты, которые приобрели этот продукт, могут оставить отзыв.

Как флюс используется в ювелирном деле?

IGS может получать вознаграждение за рекомендацию клиентов от компаний, перечисленных на этой странице.Учить больше. Флюс — это паяльный состав, который поддерживает чистоту паяных соединений, блокируя кислород, вызывающий окисление. Флюс очищает, покрывает и защищает деталь и позволяет припою легко течь между соединениями при нагревании. Мы обсудим эти способы использования и поделимся некоторыми рекомендациями по продукту.

Флюс для покрытия

После травления изделия сначала покройте/окунайте его во флюс с борной кислотой, который защитит все изделие от окисления и окалины (сильное окисление, которое образуется на ювелирных изделиях из меди в металле).Окалина очень трудно удаляется.

60% борная кислота и 40% денатурат дают отличный и недорогой флюс. Добавляйте борную кислоту в спирт, пока она не перестанет растворяться и не превратится в густую пасту. Окуните весь предмет в раствор, затем высушите его легким нагревом от фонарика. Сделайте это три или четыре раза перед пайкой.

Борную кислоту и денатурат можно найти в продуктовом магазине.

Флюс потока

Теперь вам нужен флюс в месте пайки, чтобы расплавить припой без окисления.Это называется потоком потока. Batterns и Handy Flux — лучший выбор. Также можно использовать борную кислоту и воду.

  • Batterns Self-Pickling Flux используется для твердой пайки (припой, плавящийся при высокой температуре) золота, серебра и платины. Его можно разбавить дистиллированной водой, если он слишком густой. Не обманывайтесь именем. Вам все равно нужно протравить элемент перед пайкой. Вы можете купить это на Amazon в банках по 1, 3, 8, 16 и 128 унций.

Флюс для батарей

  • Handy Flux используется для легкой и средней пайки (припой, который плавится при более низкой температуре) золота и серебра.Его также можно разбавить дистиллированной водой, если он слишком густой. Вы можете купить это на Amazon в банках по 7 унций, 1/2 фунта и 1 фунт.

Ручной флюс

  • Бура и вода уже много лет используются ювелирами. Несмотря на то, что он дешевый, он также оставляет стеклообразный, трудно удаляемый налет на украшениях. Вы можете купить буру в отделе моющих средств в продуктовом магазине.

Используйте достаточное количество флюса, чтобы защитить соединения от окисления, но не настолько, чтобы предотвратить растекание припоя.Флюс будет пузыриться, когда горелка впервые коснется его, а слишком много флюса создаст много пузырей. Пузырьки могут привести к смещению припоя, поэтому немного подогрейте флюс, а затем добавьте припой.

Флюс легко высыхает. Держите достаточно в маленьком флаконе, чтобы завершить работу. Остальные храните в герметичном контейнере.

Рекомендации по набору маринадов для ювелирных изделий

Фото Имя Лучшие обзоры на Amazon
Harris SSWF1/4 Флюс для пайки Stay Silv

«Это единственный флюс, который я использую для пайки серебра.До использования этого я никогда не мог заставить припой прилипнуть. Я пробовал несколько других флюсов, думая, что флюс есть флюс. Очевидно, я был неправ. Вы должны использовать правильный флюс для типа припоя и типа металлов, с которыми вы работаете. Это сделано для припоя с высоким содержанием стерлингового серебра, и для этой цели он отлично подходит. Всегда обязательно читайте этикетку на своем серебре и флюсе, чтобы убедиться, что у вас есть совместимые продукты. Кроме этого, если вы начинаете с действительно чистого металла, наносите обильный слой флюса и используете правильный припой, остальное — просто практика, чтобы знать, когда у вас есть достаточно горячая деталь без перегрева.Недостаточно тепла, припой не расплавится. Слишком много, и он сбежит, не «прилипая» к суставу. Этот поток имел для меня все значение. Прошел путь от невозможности заставить припой затекать в соединение и приклеиваться к успеху в 99% случаев.»  читать далее

Самопротравливающий флюс Aquiflux для драгоценных металлов

«Этот продукт просто фантастический! Я нанесла легкий спрей на украшение из стерлингового серебра, которое я делаю, прежде чем припаять мое следующее кольцо для прыжков.Aquiflux помог уберечь деталь от почернения от жары, и после быстрого погружения в дистиллированную воду, чтобы охладить ее, даже прыгающее кольцо, которое я припаивал, не нужно было замачивать в травлении, чтобы очистить. Отличный продукт для экономии времени!!» читать далее

LA-CO 22101 Обычная флюсовая паста для пайки

«Я паяю медные украшения с помощью горелки с безопасным серебром 45, я пробовал два типа флюсов, прежде чем нашел этот, одному было 10+ лет, и он был бесполезен, другой был чрезвычайно переоценен из отдела изготовления ювелирных изделий в магазине товаров для рукоделия. и дал те же результаты.Я думал, что делаю что-то не так, пока не попробовал этот. Это работает отлично, и я не могу поверить, насколько это дешево. Я был шокирован тем, что это сработало, потому что я где-то читал здесь, что это не для серебра, но с моим серебряным припоем на меди он отлично работал. Это заставляет металл течь прямо на место. Обязательно смойте его с любой меди, с которой он соприкасается, когда закончите. Я сделал ошибку, поместив его на один из своих медных браслетов во время работы, и заметил это только через несколько часов, теперь его нужно хорошенько почистить и отполировать» подробнее

Серебряный припой STA-BRITE SBSK

«Я только недавно начал работать с паяльником для своих украшений, но пока это довольно просто, и этот припой и флюс работают очень хорошо.Я работаю с серебром, серебряной пластиной и некоторыми недрагоценными металлами, и это прекрасно работает со всеми ними. Кажется, я довольно быстро припою, поэтому скоро мне придется заказать еще, но я был удивлен тем, насколько это легко. Я так боялся попробовать это, и, наконец, друг дал мне несколько советов, и теперь я достаточно уверен в себе, чтобы продолжать экспериментировать. Этот конкретный припой кажется более подходящим для изготовления ювелирных изделий, и он выглядит красиво и блестит, когда я закончу возиться с ним. Некоторые припои тускнеют, но этот выглядит гораздо красивее, вроде настоящего серебра.Его также легко разогревать и перемещать, если при первом нанесении он получается слишком ухабистым. Когда я поправлюсь, я выложу несколько изображений своих украшений.» читать далее

Флюс для пайки Harris SSBF1 Stay Silv

«Я читал о StaySilv и о том, что это должен был быть превосходный флюс.Наконец-то я его купил и могу засвидетельствовать, что это отличный флюс для пайки стерлингового серебра! Это не займет много времени, а припой течет быстро, легко и чисто. Имейте в виду, что это очень темно-коричневый цвет, и есть небольшая регулировка, потому что через него может быть трудно увидеть, но как только вы привыкнете к нему, легко увидеть этапы, когда он нагревается и когда припой будет течь. . Это кремообразная текстура по сравнению с несколько кристаллизованной текстурой HandiFlux, и она не высыхает, как HandiFlux. Я так рада, что внесла изменения!» читать дальше

Будучи партнером Amazon, мы зарабатываем на соответствующих покупках, сделанных по ссылкам с нашего сайта.

Пайка и промышленный флюс | Флюсы

Жидкие флюсы для пайки

Флюс #5R #5RMA #5RA
Описание Термостабилизированный флюс на основе смолы Термостабилизированный флюс на основе смолы Термостабилизированный флюс на основе смолы
Диапазон температур пайки 125°С — 350°С 125°С — 350°С 125°С — 350°С
Металлизация под пайку Au, Ag, Pt, Pd, чистая медь Au, Ag, Pt, Pd, чистая медь, Sn, паяльная пластина Ni, Rh, Cd, латунь, бронза, BeCu, Pb, окисленная медь
Активация Нет Добавлено Слабо активированный Полностью активирован
Содержание твердых частиц 47% 46% 44%
Извлечение удельного сопротивления воды (Ом·см) >100 000 >100 000 >50 000
Удельный вес .90 .91 .88
Температура кипения 84ºC 84ºC 84ºC
Температура вспышки 11ºC 11ºC 11ºC
ИПН 84072 84032 84039
Разбавитель #8300 (номер по каталогу 84041) — все флюсы
Удаление флюса

Поскольку остатки припоя флюсов типов R и RMA считаются неагрессивными, непроводящими и негигроскопичными, удаление флюса обычно не требуется.Если требуется очистка, лучше всего это сделать с помощью имеющегося в продаже средства для удаления остатков флюса.

Передовой практикой является всегда удалять остатки RA в электронных приложениях.

Стандартная упаковка

Эти жидкие припои упакованы в 2 пластиковых контейнера разного размера:

  • 1 пинта США (0,473 литра)
  • 1 галлон США (3,785 литра)
NC-506 Флюс
Характеристики
  • Подходит для массива со штифтами и стандартного массива с шариками
  • Превосходная пайка со всеми распространенными металлизациями поверхности
  • Остаток без очистки
  • Может использоваться для печати, погружения и переноса методом игольчатого переноса
  • Обеспечивает высокую производительность в процессе BGA-штамповки
  • Подходит как для бессвинцовых, так и для SnPb приложений
Введение

Флюс для прикрепления шариков NC-506 представляет собой тиксотропный флюс с низкой вязкостью, не требующий отмывки, разработанный для использования при прикреплении шариков к подложкам (производство BGA).Это особенно полезно в приложениях, требующих пайки на поверхности с прочными оксидами, такими как никель. Его также можно использовать везде, где требуется флюс, не требующий очистки, и он подходит для различных методов осаждения.

Свойства
  Значение Метод испытаний
Тип флюса Классификация: РОЛ1 J-STD-004 (IPC-TM-650: 2.3.32 и 2.3.33)
Типичная вязкость: 320 кГц Brookfield HB DVII+-CP (5 об/мин)
SIR (Ом, после очистки): Пройдено (>109 через 7 дней при 85ºC и относительной влажности 85%) J-STD-004 (IPC-TM-650: 2.6.3.3 IPC-B-24
Типичное кислотное число: 103 мг КОН/г Титрование
Типичная сила прилипания: 250 г J-STD-005 (IPC-TM-650: 2.4.44)
Срок годности: 6 месяцев (от -20°C до +5°C)* Изменение вязкости / исследование под микроскопом

Вся информация только для справки. Не использовать в качестве входных спецификаций продукта.

WS-366 Межблочный флюс
Преимущества
  • Отличная очищаемость, остатки можно удалить водой комнатной температуры
  • Может использоваться для печати, погружения и переноса методом игольчатого переноса
  • Обеспечивает высокую производительность в процессе BGA-штамповки
  • Отличная способность к пайке
  • Широкое окно процесса
  • Подходит для SnPb, бессвинцовых и высокосвинцовых приложений
  • Предназначен для приложений Flip-Chip
Введение

WS-366 Interconnect Flux представляет собой пастообразный флюс с высокой вязкостью, предназначенный для использования в BGA-бампинге и креплении на уровне платы.Его также можно использовать везде, где требуется водорастворимый флюс с отличной очищаемостью.

Свойства
Тип флюса Классификация: ч2
Цвет: от янтарного до коричневого
Срок службы трафарета: >8 часов при комнатной температуре
Срок годности: 3 месяца при температуре от 0 до +30 °C
SIR (Ом, после очистки): Пройдено (>109 через 7 дней при 85ºC и относительной влажности 85%)
Типичная вязкость:  
Брукфилд: 425 тыс. циклов в секунду при 5 об/мин
Содержание галогенидов: Эквивалент <3% Cl
Кислотное число: 30-50
Сила прилипания: 100-400 г

Вся информация только для справки.Не использовать в качестве входных спецификаций продукта.

Бесфлюсовая пайка

Некоторые приложения очень чувствительны к использованию флюса из-за остатка после оплавления, который может присутствовать. Кроме того, флюс может быть проблемой в вакуумной среде или в приложениях, в которых он не должен содержать коррозионно-активных или летучих материалов.

Если для внешней металлизации соединяемых деталей используется золото, приемлемое смачивание возможно без использования флюса.Если это невозможно, можно использовать восстановительную атмосферу для удаления оксидов и обеспечения достаточного смачивания. Ниже приведены предложения и полезные советы по выбору восстановительной атмосферы, подходящей для вашего применения.

  • Обычные восстановительные атмосферы:
    88 % азота, 12 % водорода
    90 % азота, 10 % водорода
    95 % азота, 5 % водорода
    100 % водорода
  • Чем выше температура оплавления, тем эффективнее удаление окисления с использованием восстановительной атмосферы.Температура оплавления 350°C и выше является наилучшей для удаления оксидов.
  • Азот или аргон иногда используются при бесфлюсовой пайке, поскольку они предотвращают образование оксидов во время оплавления. Однако эти газы не удаляют ранее существовавшие оксиды при металлизации, это может сделать только водород.

Бесфлюсовая пайка также используется при соединении двух подложек вместе, когда остатки флюса могут отрицательно сказаться на работе конечного продукта.Например, образование пустот из-за захвата флюса может привести к снижению производительности из-за снижения электрической или теплопроводности.

В тех случаях, когда использование восстановительной атмосферы нецелесообразно, два или более слоя металлизации могут быть соединены с использованием флюса при начальном предварительном покрытии подложек. После завершения предварительного покрытия остатки флюса можно удалить с помощью подходящего растворителя. Затем очищенные детали можно собрать без флюса и в последний раз оплавить, чтобы соединить их.Этот метод особенно эффективен, когда необходимо соединить довольно большие детали и нельзя допустить захвата флюса.

Флюс | Oatey

Oatey® No. 5 Paste Flux

Оути

Обычный флюс

Янтарный

Включает кисть для легкого нанесения флюса

16 унций.

1,15 фунта

Сертифицированы по стандарту NSF 14 (производительность) и стандарту 61 (воздействие на здоровье)

Материал безопасен для использования с питьевой водой

Подробную информацию о гарантийном продукте см. в документе Oatey Limited Warranty

.

Эффективен для всех металлов, кроме алюминия и нержавеющей стали

Совместим со всеми распространенными припоями для сантехники

Не окрашивает медные трубы в зеленый цвет

Подходит для медных труб большого диаметра

100% бессвинцовый пастообразный флюс очищает и флюсует медные трубы, обеспечивая равномерный поток припоя

Нефтяная основа обеспечивает эффективность очистки

1.7 унций

0,15 фунта

Сертифицированы по стандарту NSF 14 (производительность) и стандарту 61 (воздействие на здоровье)

Материал безопасен для использования с питьевой водой

Подробную информацию о гарантийном продукте см. в документе Oatey Limited Warranty

.

Эффективен для всех металлов, кроме алюминия и нержавеющей стали

Совместим со всеми распространенными припоями для сантехники

Не окрашивает медные трубы в зеленый цвет

Подходит для медных труб большого диаметра

100% бессвинцовый пастообразный флюс очищает и флюсует медные трубы, обеспечивая равномерный поток припоя

Нефтяная основа обеспечивает эффективность очистки

1.7 унций

0,15 фунта

Сертифицированы по стандарту NSF 14 (производительность) и стандарту 61 (воздействие на здоровье)

Материал безопасен для использования с питьевой водой

Эффективен для всех металлов, кроме алюминия и нержавеющей стали

Совместим со всеми распространенными припоями для сантехники

Не окрашивает медные трубы в зеленый цвет

Подходит для медных труб большого диаметра

100% бессвинцовый пастообразный флюс очищает и флюсует медные трубы, обеспечивая равномерный поток припоя

Нефтяная основа обеспечивает эффективность очистки

4 унции.

0,3 фунта

Сертифицированы по стандарту NSF 14 (производительность) и стандарту 61 (воздействие на здоровье)

Материал безопасен для использования с питьевой водой

Подробную информацию о гарантийном продукте см. в документе Oatey Limited Warranty

.

Эффективен для всех металлов, кроме алюминия и нержавеющей стали

Совместим со всеми распространенными припоями для сантехники

Не окрашивает медные трубы в зеленый цвет

Подходит для медных труб большого диаметра

100% бессвинцовый пастообразный флюс очищает и флюсует медные трубы, обеспечивая равномерный поток припоя

Нефтяная основа обеспечивает эффективность очистки

0.8 унций.

0,55 фунта

Безопасен для использования с питьевой водой

Нефтяная основа обеспечивает эффективность очистки

Стандарт NSF 14 (производительность) и стандарт 61 (воздействие на здоровье) сертифицированы

Гладкий, нетекучий флюс для паяльной пасты

Эффективен для всех металлов, кроме алюминия и нержавеющей стали

Совместим с обычными припоями для сантехники

Может использоваться на медных трубах и других металлах без изменения цвета

Идеально подходит для медных труб большого диаметра

100% бессвинцовая паста очищает и флюсует медные трубы, обеспечивая равномерный поток припоя

Подробную информацию о гарантийном продукте см. в документе Oatey Limited Warranty

.

Что такое флюс для припоя? — Справочник печатных плат

Solder Flux — это химическое чистящее средство, используемое при пайке электронных компонентов на печатных платах.Он используется как при ручной ручной пайке, так и в различных автоматизированных процессах пайки, используемых контрактными производителями печатных плат.

Печатные платы обычно имеют медные дорожки, которые могут окисляться на воздухе или загрязняться при обращении с платой. Это может предотвратить образование хороших паяных соединений. Чтобы удалить это загрязнение и избежать окисления, очень важно перед пайкой очистить плату флюсом. Флюс можно использовать для очистки и удаления этих оксидов и других примесей с платы.

Физически флюс для припоя может быть твердым, полутвердым или жидким. Обычно он доступен в виде пасты в банках/жестяных банках. Он также доступен в виде жидкости во флаконах. Флюсовые ручки обычно используются для нанесения флюса при ручной пайке.

Чаще всего флюс для пайки доступен в виде химического соединения, похожего на клей, и отвечает за удержание компонентов на месте до процесса оплавления. Флюс также защищает металлические поверхности от повторного окисления во время пайки. Флюс содержит добавки для улучшения характеристик текучести расплавленного припоя и, таким образом, способствует смачиванию платы.

Категории флюсов

В соответствии со стандартами электронной промышленности J-STD-004 флюсы для пайки можно разделить на 3 основные категории в зависимости от их состава, активности (силы), наличия или отсутствия галогенидных активаторов.

1. Канифоль и заменители канифоли: Канифольный флюс является старейшим и до сих пор одним из наиболее распространенных флюсов, используемых для электрических компонентов. Эти флюсы получают из экстракта сосны. Канифольный флюс практически инертен при комнатной температуре, активизируется только при нагревании.

2. Водорастворимый флюс или флюс с органической кислотой: Флюс с органической кислотой растворим в воде и может быть очищен водой, отсюда и название. эти флюсы чаще всего используются для пайки электрических цепей. Очень быстро удаляет окисление на электрических проводах.

3. No-Clean: эти флюсы изготовлены из смол и различного количества твердых остатков. Судя по названию, эти флюсы практически не требуют очистки.

Как наносится флюс?

Флюс для пайки можно наносить на плату несколькими способами в зависимости от используемого процесса пайки.

Ручная ручная пайка: Флюс для пайки можно наносить вручную с помощью ручки для пайки или во многих случаях флюс не смешивается с проволокой или бруском припоя. Если флюс смешивается с припоем, то достаточно просто нагреть проволоку на поверхности паяльником. В качестве альтернативы можно равномерно нанести флюс на поверхность платы перед нанесением припоя.

Пайка волной припоя: В этом случае флюс распыляется на плату до того, как она пройдет через волну припоя.Оказавшись на месте, флюс очищает компоненты, подлежащие пайке. Это удаляет любые образовавшиеся оксидные слои. Если на плате используется более агрессивный тип флюса, то перед нанесением флюса на плату необходимо будет пройти предварительную очистку.

Пайка оплавлением: Флюс для пайки, используемый для процесса пайки оплавлением, представляет собой пасту, состоящую из липкого флюса и небольших сфер металлического припоя. Паяльная паста представляет собой комбинацию порошка, состоящего из частиц металлического припоя и липкого флюса, имеющего консистенцию замазки.Обычно их смешивают в соотношении 50/50.

В данном случае флюс не только выполняет свою обычную работу по очистке поверхностей пайки от загрязнений и окисления, но также обеспечивает временный клей, удерживающий компоненты поверхностного монтажа на месте.

Селективная пайка: Флюс наносится либо распылением, либо более точным методом капельной струи. Точный процесс капельной струи — это нанесение флюса в заданные места без избыточного распыления.

Очистка флюса для пайки

После завершения процесса пайки очень важно очистить плату и удалить нежелательные остатки флюса.Остатки флюса могут повлиять на работу платы и даже вызвать короткое замыкание. В случае флюса, который требует очистки после пайки, или для флюса, который является более агрессивным, можно использовать очистку растворителем или водными очистителями. Помимо проблем с коррозией, даже остатки неочищенного флюса могут помешать тестированию печатных плат, оптического контрольного оборудования и некоторых чувствительных электронных компонентов. В общем, лучше всего удалять остатки флюса, когда это возможно.

Полный процесс пайки любого твердого паяного соединения включает в себя как припой, так и флюс.Флюс предназначен для подготовки поверхностей и защиты поверхности во время пайки. Флюс — неотъемлемая часть пайки, и его применение — неотъемлемая часть всего процесса.

Добавить комментарий

Ваш адрес email не будет опубликован.