Индукционный электродвигатель: Найдите эффективный и мощный индукционный электродвигатель переменного тока

Содержание

Найдите эффективный и мощный индукционный электродвигатель переменного тока

О продукте и поставщиках:

Alibaba.com предлагает обширную коллекцию высококачественных, надежных и эффективных. индукционный электродвигатель переменного тока продается, подходит для использования в промышленном и бытовом оборудовании. Файл. индукционный электродвигатель переменного тока могут быть однофазными или трехфазными, с разным размером корпуса, частотой вращения и номинальной мощностью. Найдите блоки с фланцевым креплением, с высоким крутящим моментом, на лапах, с двойным напряжением и низким крутящим моментом от различных ведущих поставщиков и брендов.

В продаже есть высокопроизводительные и эффективные устройства постоянного тока. или AC. индукционный электродвигатель переменного тока доступны в уникальных стилях, таких как последовательный, индукционный, синхронный, асинхронный, PMDC, шунтирующий и составной намотки. Эти агрегаты, спроектированные в соответствии с последними механическими и электрическими требованиями к характеристикам двигателей, отличаются надежностью, долгим сроком службы и универсальностью. Они имеют высококачественные и высокопроизводительные компоненты, в том числе прочную алюминиевую раму, опоры на лапах, стандартные валы, конденсаторный пуск, ротор и ход.

Откройте для себя. индукционный электродвигатель переменного тока с высокоэффективной конструкцией, превосходным пусковым моментом, быстрым откликом и простотой в использовании, работающей на чрезвычайно высоких скоростях. Существуют устройства с разной выходной мощностью и мощностью, а также различные размеры и конструкции, специально разработанные для небольших бытовых приборов или электроинструментов. Независимо от машины, устройства или устройств, делайте покупки на Alibaba.com, чтобы найти продукты, отличающиеся надежной работой, превосходной производительностью, простотой обслуживания и интересным внешним видом.

Найдите на Alibaba.com информацию. индукционный электродвигатель переменного тока и покупайте товары с функциями и функциями, подходящими для различных бытовых приборов и электроинструментов. Выбирайте из разных производителей и поставщиков, которым доверяют в мире. Просматривайте товары разных брендов, чтобы фильтровать и находить высококачественные товары, соответствующие бюджетам и ожиданиям уникальных покупателей.

Индукционный электродвигатель переменного тока. Электродвигатели: какие они бывают

Зачастую основное внимание уделяется изучению трёхфазных электродвигателей, частично в связи с тем, что трёхфазные электродвигатели применяются чаще, чем однофазные. Однофазные электродвигатели имеют тот же принцип действия, что и трёхфазные электродвигатели, только с более низкими пусковыми моментами. Они подразделяются по типам в зависимости от способа пуска.

Стандартный однофазный статор имеет две обмотки, расположенные под углом 90° по отношению друг к другу. Одна из них считается главной обмоткой, другая — вспомогательной, или пусковой. В соответствии с количеством полюсов каждая обмотка может делиться не несколько секций.

На рисунке приведен пример двухполюсной однофазной обмотки с четырьмя секциями в главной обмотке и двумя секциями во вспомогательной.


Следует помнить, что использование однофазного электродвигателя — это всегда, своего рода, компромисс. Конструкция того или иного двигателя зависит, прежде всего, от поставленной задачи. Это значит, что все электродвигатели разрабатываются в соответствии с тем, что наиболее важно в каждом конкретном случае: например, КПД, вращающий момент, рабочий цикл и т.д. Из-за пульсирующего поля однофазные электродвигатели CSIR и RSIR могут иметь более высокий уровень шума по сравнению с двухфазными электродвигателями PSC и CSCR, которые работают намного тише, так как в них используется пусковой конденсатор. Конденсатор, через который производится пуск электродвигателя, способствует его плавной работе.

Основные типы однофазных индукционных электродвигателей

Бытовая техника и приборы низкой мощности работают от однофазного переменного тока, кроме того, не везде может быть обеспечено трёхфазное электропитание. Поэтому однофазные электродвигатели переменного тока получили широкое распространение, особенно в США. Очень часто электродвигателям переменного тока отдают предпочтение, так как их отличает прочная конструкция, низкая стоимость, к тому же они не требуют технического обслуживания.

Как видно из названия, однофазный индукционный электродвигатель работает по принципу индукции; тот же принцип действует и для трёхфазных электродвигателей. Однако между ними есть различия: однофазные электродвигатели, как правило, работают при переменном токе и напряжении 110 -240 В, поле статора этих двигателей не вращается. Вместо этого каждый раз при скачке синусоидального напряжения от отрицательного к положительному меняются полюса.

В однофазных электродвигателях поле статора постоянно выравнивается в одном направлении, а полюса меняют своё положение один раз в каждом цикле. Это означает, что однофазный индукционный электродвигатель не может быть пущен самостоятельно.


Теоретически, однофазный электродвигатель можно было бы запустить при помощи механического вращения двигателя с последующим немедленным подключением питания. Однако на практике пуск всех электродвигателей осуществляется автоматически.

Выделяют четыре основных типа электродвигателей:

Индукционный двигатель с пуском через конденсатор / работа через обмотку (индуктивность) (CSIR),

Индукционный двигатель с пуском через конденсатор/работа через конденсатор (CSCR),

Индукционный двигатель с реостатным пуском (RSIR) и

Двигатель с постоянным разделением емкости (PSC).

На приведённом ниже рисунке показаны типичные кривые соотношения вращающий момент/частота вращения для четырёх основных типов однофазных электродвигателей переменного тока.



Однофазный электродвигатель с пуском через конденсатор/работа через обмотку (CSIR)

Индукционные двигатели с пуском через конденсатор, которые также известны как электродвигатели CSIR, составляют самую большую группу однофазных электродвигателей.

Двигатели CSIR представлены несколькими типоразмерами: от самых маломощных до 1,1 кВт. В электродвигателях CSIR конденсатор последовательно соединён с пусковой обмоткой. Конденсатор вызывает некоторое отставание между током в пусковой обмотке и в главной обмотке.



Это способствует задержке намагничивания пусковой обмотки, что приводит к появлению вращающегося поля, которое влияет на возникновение вращающего момента. После того как электродвигатель наберёт скорость и приблизится к рабочей частоте вращения, открывается пускатель. Далее электродвигатель будет работать в обычном для индукционного электродвигателя режиме. Пускатель может быть центробежным или электронным.

Двигатели CSIR имеют относительно высокий пусковой момент, в диапазоне от 50 до 250 процентов от вращающего момента при полной нагрузке. Поэтому из всех однофазных электродвигателей эти двигатели лучше всего подходят для случаев, когда пусковые нагрузки велики, например для конвейеров, воздушных компрессоров и холодильных компрессоров.


Однофазный электродвигатель с пуском через конденсатор/ работа через конденсатор (CSCR)

Этот тип двигателей, которые коротко называются «электродвигатели CSCR», сочетает в себе лучшие свойства индукционного двигателя с пуском через конденсатор и двигателя с постоянно подключённым конденсатором. Несмотря на то, что из-за своей конструкции эти двигатели несколько дороже других однофазных электродвигателей, они остаются наилучшим вариантом для применения в сложных условиях. Пусковой конденсатор электродвигателя CSCR последовательно соединён с пусковой обмоткой, как и в электродвигателе с пуском через конденсатор. Это обеспечивает высокий пусковой момент.


Электродвигатели CSCR также имеют сходство с двигателями с постоянным разделением емкости (PSC), так как у них пуск тоже осуществляется через конденсатор, который последовательно соединён с пусковой обмоткой, если пусковой конденсатор отключен от сети. Это означает, что двигатель справляется с максимальной нагрузкой или перегрузкой.

Электродвигатели CSCR могут использоваться для работы с низким током полной нагрузки и при более высоком КПД. Это даёт некоторые преимущества, в том числе обеспечивает работу двигателя с меньшими скачками температуры, в сравнении с другими подобными однофазными электродвигателями.

Электродвигатели CSCR — самые мощные однофазные электродвигатели, которые могут использоваться в сложных условиях, например, в насосах для перекачивания воды под высоким давлением и в вакуумных насосах, а также в других высокомоментных процессах. Выходная мощность таких электродвигателей лежит в диапазоне от 1,1 до 11 кВт.


Однофазный электродвигатель с пуском через сопротивление/работа через обмотку (индуктивность) (RSIR)

Данный тип двигателей ещё известен как «электродвигатели с расщеплённой фазой». Они, как правило, дешевле однофазных электродвигателей других типов, используемых в промышленности, но у них также есть некоторые ограничения по производительности.

Пусковое устройство электродвигателей RSIR включает в себя две отдельные обмотки статора. Одна из них используется исключительно для пуска, диаметр проволоки данной обмотки меньше, а электрическое сопротивление — выше, чем у главных обмоток. Это вызывает отставание вращающегося поля, что, в свою очередь, приводит в движение двигатель. Центробежный или электронный пускатель отсоединяет пусковую обмотку, когда частота вращения двигателя достигает, приблизительно, 75% от номинальной величины. После этого электродвигатель продолжит работу в соответствии со стандартными принципами действия индукционного электродвигателя.



Как уже говорилось раньше, для электродвигателей RSIR есть некоторые ограничения. У них низкие пусковые моменты, часто в диапазоне от 50 до 150 процентов от номинальной нагрузки. Кроме того, электродвигатель создаёт высокие пусковые токи, приблизительно от 700 до 1000% от номинального тока. В результате продолжительное время пуска будет вызывать перегрев и разрушение пусковой обмотки. Это означает, что электродвигатели данного типа нельзя использовать там, где необходимы большие пусковые моменты.

Электродвигатели RSIR рассчитаны на узкий диапазон напряжения питания, что, естественно, ограничивает области их применения. Их максимальные вращающие моменты варьируются в пределах от 100 до 250% от расчетной величины. Необходимо также отметить, что дополнительной трудностью является установка тепловой защиты, так как довольно сложно найти защитное устройство, которое срабатывало бы достаточно быстро, чтобы не допустить прогорания пусковой обмотки. Электродвигатели RSIR подходят для использования в небольших приборах для рубки и перемалывания, вентиляторах, а также для применения в других областях, в которых допускается низкий пусковой момент и требуемая выходная мощность на валу от 0,06 кВт до 0,25 кВт. Они не используются там, где должны быть высокие вращающие моменты или продолжительные циклы.


Однофазный электродвигатель с постоянным разделение емкости (PSC)

Как видно из названия, двигатели с постоянным разделением емкости (PSC) оснащены конденсатором, который во время работы постоянно включен и последовательно соединён с пусковой обмоткой. Это значит, что эти двигатели не имеют пускателя или конденсатора, который используется только для пуска. Таким образом, пусковая обмотка становится вспомогательной обмоткой, когда электродвигатель достигает рабочей частоты вращения.



Конструкция электродвигателей PSC такова, что они не могут обеспечить такой же пусковой момент, как электродвигатели с пусковыми конденсаторами. Их пусковые моменты достаточно низкие: 30-90% от номинальной нагрузки, поэтому они не используются в системах с большой пусковой нагрузкой. Это компенсируется за счёт низких пусковых токов — обычно меньше 200% от номинального тока нагрузки, — что делает их наиболее подходящими двигателями для областей применения с продолжительным рабочим циклом.

Двигатели с постоянным разделением емкости имеют ряд преимуществ. Рабочие параметры и частоту вращения таких двигателей можно подбирать в соответствии с поставленными задачами, к тому же они могут быть изготовлены для оптимального КПД и высокого коэффициента мощности при номинальной нагрузке. Так как они не требуют специального устройства пуска, их можно легко реверсировать (изменить направление вращения на обратное). В дополнение ко всему вышесказанному, они являются самыми надёжными из всех однофазных электродвигателей. Вот почему Grundfos использует однофазные электродвигатели PSC в стандартном исполнении для всех областей применения с мощностями до 2,2 кВт (2-полюсные) или 1,5 кВт (4-полюсные).

Двигатели с постоянным разделением емкости могут использоваться для выполнения целого ряда различных задач в зависимости от их конструкции. Типичным примером являются низкоинерционные нагрузки, например вентиляторы и насосы.


Двухпроводные однофазные электродвигатели

Двухпроводные однофазные электродвигатели имеют две главные обмотки, пусковую обмотку и рабочий конденсатор. Они широко используются в США с однофазными источниками питания: 1 ½ 115 В / 60 Гц или 1 ½ 230 В / 60 Гц. При правильном подключении данный тип электродвигателей можно использовать для обоих видов электропитания.


Ограничения однофазных электродвигателей

В отличие от трёхфазных для однофазных электродвигателей существуют некоторые ограничения. Однофазные электродвигатели ни в коем случае не должны работать в режиме холостого хода, так как при малых нагрузках они сильно нагреваются, также рекомендуется эксплуатировать двигатель при нагрузке меньшей 25% от полной нагрузки.

Электродвигатели PSC и CSCR имеют симметричное/ круговое вращающееся поле в одной точке приложения нагрузки; это значит, что во всех остальных точках приложения нагрузки вращающееся поле асимметричное/эллиптическое. Когда электродвигатель работает с асимметричным вращающимся полем, сила тока в одной или обеих обмотках может превышать силу тока в сети. Такие избыточные токи вызывают потери, в связи с этим одна или обе обмотки (что чаще происходит при полном отсутствии нагрузки) нагреваются, даже если ток в сети относительно небольшой. Смотрите примеры.



О напряжении в однофазных электродвигателях

Важно помнить о том, что напряжение на пусковой обмотке электродвигателя может быть выше сетевого напряжения питания электродвигателя. Это относится и к симметричному режиму работы. Смотрите пример.


Изменение напряжения питания

Нужно отметить, что однофазные электродвигатели обычно не используются для больших интервалов напряжения, в отличие от трёхфазных электродвигателей. В связи с этим может возникнуть потребность в двигателях, которые могут работать с другими видами напряжения. Для этого необходимо внести некоторые конструкционные изменения, например, нужна дополнительная обмотка и конденсаторы различной ёмкости. Теоретически, ёмкость конденсатора для различного сетевого напряжения (с одной и той же частотой) должна быть равна квадрату отношения напряжений:


Таким образом, в электродвигателе, рассчитанном на питание от сети в 230 В, используется конденсатор 25µФ/400 В, для модели электродвигателя на 115 В необходим конденсатор ёмкостью 100µФ с маркировкой более низкого напряжения — например 200 В.

Иногда выбирают конденсаторы меньшей ёмкости, например 60µФ. Они дешевле и занимают меньше места. В таких случаях обмотка должна подходить для определённого конденсатора. Нужно учитывать, что производительность электродвигателя при этом будет меньше, чем с конденсатором ёмкостью 100µФ — например, пусковой момент будет ниже.

Заключение

Однофазные электродвигатели работают по тому же принципу, что и трёхфазные. Однако у них более низкие пусковые моменты и значения напряжения питания (110-240В).

Однофазные электродвигатели не должны работать в режиме холостого хода, многие из них не должны эксплуатироваться при нагрузке меньше 25 % от максимальной, так как это вызывает повышение температуры внутри электродвигателя, что может привести к его поломке.

Асинхронный (индукционный) двигатель (АД) – устройство, преобразовывающий электрическую энергию в механическую. «Асинхронный» означает разновременный. Электродвигатели асинхронные питаются от сети переменного тока.

Особенности асинхронных двигателей

Применение

Такие электродвигатели (частотные преобразователи) не используются в сетях постоянного тока. Но они имеют широкое применение во всех отраслях народного хозяйства. По статистике, до 70% электроэнергии, которая преобразуется в механическую энергию поступательного либо вращательного движения, потребляется именно индукционными электродвигателями.

Асинхронная машина не подключается к сети постоянного тока.

Асинхронные частотные преобразователи не требуют сложного производства и просты по своей конструкции, но в тоже время очень надежны. Такие двигатели могут работать от однофазной и трехфазной сети, используя разные частоты. Преобразователи не подходят для сетей постоянного тока. Для их управления применяют сравнительно несложные схемы.

При выборе асинхронного двигателя зачастую возникают проблемы с определением:

  • его мощности;
  • характеристик и приемлемой схемы, с помощью которой осуществляется управление электродвигателем;
  • расчетом мощности конденсаторов, которые нужны, чтобы преобразователь работал от одной фазы;
  • марки и сечения провода;
  • устройств защиты и управления, которыми оснащен преобразователь.

Чтобы во всем этом разобраться, необходимо знать устройство и особенности работы асинхронного агрегата. Это поможет правильно подобрать преобразователь для решения конкретной задачи.

Индукционный агрегат свое название получил благодаря тому, что магнитное поле вращается с более высокой скоростью, чем сам ротор, поэтому последний всегда пытается «догнать» скорость вращения поля.

Устройство АД

Ротор и статор – главные элементы индукционного двигателя.

Схема устройства асинхронного агрегата

Схема: вал (1), подшипники (2,6), лапы (4), крыльчатка (7), статор (10), коробка выводов (11), ротор (9), кожух вентилятора (5), щиты подшипниковые (3,8).

На рисунке представлено устройство типового агрегата. Статор АД имеет форму цилиндра. Внутренняя часть имеет размеры, обеспечивающие зазор между ротором и статором. В пазах сердечника расположены обмотки. Их оси для нормальной работы расположены относительно одна другой под углом 1200. Между собой концы обмоток собираются с помощью схемы «звезда» либо «треугольник», но это зависит непосредственно от напряжения. Ротор может быть фазным либо короткозамкнутым.

Ротор вращается по ходу движения магнитного поля.

Трехфазную обмотку устанавливают на фазный ротор, она напоминает обмотку статора. С одной стороны концы обмотки фазного ротора обычно соединяются в «звезду», а свободные концы подсоединяются к контактным кольцам. Для включения в цепь обмотки фазного ротора дополнительного сопротивления используются щетки, подключенные к кольцам. Такая конструкция не предназначена для работы в цепях постоянного тока, так как необходимое вращение обеспечивает изменение фазы.

Короткозамкнутый ротор – это сердечник, который сделан из стальных листов. Пазы в короткозамкнутом роторе заполняются расплавленным алюминием, в результате чего получаются стержни, замыкаемые накоротко торцевыми кольцами.

Таким короткозамкнутым ротором создаются условия для минимального электрического сопротивления. Эта конструкция получила название «беличья клетка» или «беличье колесо».

Конструкция «беличья клетка»

В короткозамкнутом роторе повышенной мощности пазы заполняются медью или латунью. Беличье колесо – это и есть короткозамкнутая обмотка ротора.

В зависимости от подключаемой фазы индукционный агрегат подразделяется на однофазный и трехфазный. С помощью учета данного параметра различают принцип действия асинхронного двигателя.

Однофазная индукционная машина

Чаще всего индукционный однофазный двигатель переменного тока устанавливается в бытовой технике, так как электроснабжение дома осуществляется от однофазной электросети. Преимуществом таких двигателей переменного тока является достаточно прочная конструкция и низкая стоимость, отсутствие сложных схем управления.

Они вполне подходят для длительной работы, так как не нуждаются в техническом обслуживании. Обычно однофазный двигатель малой мощности – до 0,5 кВт. Такие электродвигатели устанавливаются в стиральных машинах, компрессорах холодильников и другой бытовой технике, где ротором создается небольшая скорость вращения, сравнительно небольшой объем силы тока.

Схема работы однофазного двигателя малой мощности

В однофазных индукционных агрегатах на статоре установлено управление ротором от двух обмоток, которые сдвинуты одна от другой на 900 тока для образования пускового момента. Одна обмотка является пусковой, а вторая – рабочей.

Однофазные электродвигатели не подходят для сетей постоянного тока. Они характеризуются низкими энергопоказателями и малой перегрузочной способностью. Агрегаты функционируют в нормальном режиме, если не нарушен определенный диапазон частоты поля. После начала вращения устройство управления подключает рабочую обмотку. Это позволяет уменьшить потребление энергии.

В электрических приводах с обычным запуском устанавливаются, как правило, однофазные индукционные двигатели, имеющие экранированные полюса. В таком асинхронном электродвигателе в качестве вспомогательной фазы выступают короткозамкнутые витки, имеющие минимальные сопротивления, размещенные на выраженных полюсах статора.

Учитывая то, что пространственный угол, образованный витком и осями основной фазы, гораздо меньше 900, в таком электродвигателе есть эллиптическое поле. С помощью него создаются сравнительно небольшие силы, чем и объясняются невысокие рабочие и пусковые свойства индукционных электродвигателей, оснащенных экранированными полюсами с фазным включением.

Индукционные однофазные электродвигатели, имеющие короткозамкнутый ротор подразделяются на:

  • с усиленным сопротивлением фазы пуска;
  • агрегаты с короткозамкнутым ротором, оснащенные рабочим конденсатором;
  • оснащенные фазным пусковым конденсатором;комбинированные с фазным управлением, короткозамкнутым ротором;
  • комбинированные с фазным управлением, короткозамкнутым ротором;
  • с экранированными полюсами.

Трехфазный двигатель

В трехфазной индукционной машине обмотка предназначена для образования вращающегося по кругу магнитного поля, которое проходит через короткозамкнутую обмотку ротора. Созданные с фазным управлением аппараты не применяются в цепях постоянного тока. При прохождении поля через проводники обмотки статора образуется электродвижущая сила, которая и вызывает прохождение переменного тока в обмотке, управляющей ротором, имеющим собственное магнитное поле. Данное магнитное поле при взаимодействии с фазным магнитным вращающимся полем статора вызывает вращение определенной частоты вслед за полями между ним и ротором.

Схема работы индукционного трехфазного агрегата

Данный принцип разработал академик из Франции Араго. Иными словами, если подковообразный магнит установить вблизи металлического диска свободно закрепленным на оси и вращать его с поддержанием определенной частоты оборотов, то металлический диск без дополнительного управления начнет движение за магнитом, однако скорость его вращения будет меньше, чем скорость движения магнита.

Данное явление обусловлено правилами электромагнитной индукции. Во время вращения около поверхности металлического диска полюсов магнита в контурах под полюсом образуется электродвижущая сила соответствующей частоты, и возникают токи, создающие магнитное поле металлического диска. Магнитное поле диска начинает взаимодействовать с полем полюсов вращающегося магнита, в результате чего диск «увлекается» своим магнитным полем.

Так и в асинхронном агрегате, в качестве металлического диска выступает короткозамкнутая обмотка ротора, а в качестве магнита – магнитопровод и обмотка статора.

Чтобы облегчить управление и запуск трехфазного электродвигателя при к однофазной сети (переменного, а не постоянного тока), на момент пуска дополнительно устанавливается параллельно с рабочим и пусковой конденсатор. Им компенсируют отсутствие фазы и соответствующей частоты поля.

Запуск трехфазного двигателя

Двигатель в работе. Видео

О том, как работает асинхронный двигатель в режиме генератора, можно посмотреть в этом видео. Здесь представлены дельные советы по оптимизации процесса, в том числе и те, которые относятся к схемам управления фазным вращением.

Таким образом, зная особенности работы индукционной машины, с уверенностью можно сказать, что преобразование в механическую энергию электрической происходит в результате вращения вала электродвигателя (ротора).

Скорость вращения магнитного поля ротора и статора напрямую зависит от частоты питающей сети и количества пар полюсов. В случае, когда тип двигателя ограничивает число пар полюсов, то для управления изменением частоты питающей сети в больший диапазон используют частотный преобразователь.

Выше рассмотрены особенности управления фазным вращением. Также приведены отличия конструкции с короткозамкнутым минимальным ротором, который используется для уменьшения сопротивления. Следует помнить, что устройство некоторых агрегатов подразумевает возможность их применения только в цепях постоянного тока. Преобразователи с фазным вращением работают при питании переменным током.

Cтраница 4

На этом первом изобретении я показал, как практическая польза может отступить перед изящным решением, венчающим задачу. В подобной ситуации нетрудно погрязнуть в анализе и убить на это годы. И наоборот, можно, как произошло со мной, провести эти годы с большой пользой, выясняя такие подробности работы индукционных двигателей, какие невозможно извлечь из книг, научных статей или лекций.  

При поступлении сигнала в управляющую обмотку возникает вращающееся эл-л ИПТичеСкое магнитное. Это поле наводит токи в теле цилиндра ротора индукционного двигателя. В результате взаимодействия наведенных токов с вращающимся полем создается вращающий момент. Величина и направление скорости вращения индукционного двигателя зависит ч от величины и фазы управляющего напряжения. С изменением фазы управляющего напряжения с 90 на — 90 (фаза управляющего напряжения при этом должна повернуться на 180) направление вращения ротора меняется на обратное.  

Вследствие неполной трансформаторной связи между обмотками возникает добавочное рассеяние через воздушный зазор. Величина добавочного рассеяния зависит от углового положения ротора. Поэтому эквивалентные параметры двигателя при неподвижном роторе могут значительно зависеть от углового положения ротора, что приводит к изменению пускового момента. Это явление будет наиболее ощутимо для исполнительных индукционных двигателей с небольшим числом пазов ротора.  

Согласно последней формуле при прочих равных условиях электромеханическая постоянная времени индукционного двигателя тем больше, чем больше скорость холостого хода. Индукционные двигатели находят применение в системах переменного тока различной частоты: от 50 до 1 000 гц. Поскольку увеличение частоты означает увеличение скорости холостого хода, это одновременно приводит к росту электромеханической постоянной времени. Для примера можно указать, что среднее значение Тэы для индукционных двигателей на 50 гц составляет около 0 03 — 0 05 сек, а для двигателей на 400 гц — около 0 1 — 0 2 сек.  

Согласно формулам (3 — 33) при прочих разных условиях электромеханическая постоянная времени индукционного двигателя тем больше, чем больше скорость холостого хода. Индукционные двигатели находят применение в системах переменного тока различной частоты: от 50 до 1 000 гц. Поскольку увеличение частоты означает увеличение скорости холостого хода, это одновременно приводит к росту электромеханической постоянной времени. Для примера можно указать, что среднее значение Тэы для индукционных двигателей на 50 гц составляет около 0 05 — 0 07 сек, а для двигателей на 400 гц — около 0 2 — 0 3 сек.  

В случае же значительного кранового и транспортного оборудования вопрос о ходе тока является менее определенным. Окончательное право коллекторные двигатели переменного тока отвоевали себе пови-димому лишь в регулируемых приводах текстильной пром-сти (кольцевой ватер), хотя вопрос о приводе ситцепечатных машин с пределами регулирования от 1: 4 до 1: 10 от двигателей постоянного или переменного тока является пока спорным. Здесь возможно применение как постоянного тока по принципу прямого и обратного включения, так и шунтовых коллекторных двигателей с возбуждением со статора. Регулируемый многомоторный привод рогулечных ватеров конструируется, как указано выше, в форме регулируемых индукционных двигателей с изменением частоты питающего тока при помощи особого преобразователя частоты. Борьба между постоянным и переменным током идет и в металлообрабатьтвающей промышленности. Надлежащее использование электрически регулируемых металлообрабатывающих станков современной конструкции требует регулируемых двигателей. Коллекторные двигатели переменного тока в силу высокой стоимости и большого веса совершенно не привились для металлообрабатывающих станков. Борьба постоянного тока, имеющего в случае регулируемых реверсивных и часто пускаемых приводов ряд технич.  

Одно из плеч моста включает емкостный датчик, переменная емкость которого может быть пропорциональна измеряемой величине. Во второе плечо моста включена постоянная емкость. Два противоположных плеча моста составлены из омических сопротивлений, одно из которых переменно. Нагрузкой выходного каскада усиления является трансформатор Тр %, во вторичной обмотке которого включена управляющая обмотка индукционного двигателя.  

К настоящему времени положение сильно изменилось. Рост мощности станций и отдельг-ных распределительных трансформаторов говорит за возможность применения коротко-замкнутых двигателей значительно бблыпих мощностей, чем допускалось в Европе и у нас до сих пор. Те преимущества, которыми обладают короткозамкнутые двигатели по сравнению с двигателями с кольцами (простота обслуживания, более высокий коэфици-ент мощности и кпд, меньшая стоимость), вызвали широкое применение короткозам-кнутых индукционных двигателей как в Европе, так и в СССР.  

Механические характеристики серводвигателя оказывают большое влияние на его поведение. Форма механической характеристики в значительной степени зависит от значения полного сопротивления ротора. На рис. 7 — 6 показаны кривые механических характеристик для нескольких значений сопротивления ротора. Сопротивление ротора обычно изменяется с увеличением удельного сопротивления проводящего материала, используемого в роторе. Индукционные двигатели, применяемые в качестве силовых, проектируются с минимальным сопротивлением ротора, что дает максимальный момент при малых значениях скольжения. Увеличение роторного сопротивления линеаризует механическую характеристику.  

Cтраница 2

В нулевую группу входят однофазные системы с трех-и двухлучевыми индукционными двигателями, а также системы с магнесинами и с ферродинамометрами.  

Асинхронные машины, в виде трехфазных асинхронных двигателей (индукционные двигатели), приобретают в: е большее значение. Причиной является простая конструкция их и главным образом все большее распространение районных станций, распределяющих электрическую энергию в форме трехфазного тока.  

В том случае, когда пуск станка может производиться включением индукционного двигателя нормальной конструкции и мощности, близкой к той, которая потребляется станком во время его работы, вопрос должен решаться в принципе в сторону отказа от главной сцепной муфты. В остальных случаях необходимо принять в расчет при сравнении варианта с муфтой и без нее удорожание двигателя (если оно имеет место), стоимость вспомогательных устройств и аппаратуры управления, а также специфические недостатки, присущие указанным выше способам пуска. Решение в пользу сохранения муфты или отказа от нее определяется результатами технико-экономического расчета для сравниваемых вариантов. Так как главная фрикционная муфта станка является одновременно элементом, предохраняющим станок от поломок при случайном возрастании крутящего момента сныше установленной нормы, то в случае отказа от муфты обязательно должны быть предусмотрены автоматически действующие механические предохранительные устройства или электрическая аппаратура, выполняющая ту же функцию.  

В системах с несущей частотой этот метод получения резонансных комплексных нулей посредством присоединения параллельных ветвей осуществляется индукционным двигателем для демодуляции, схемой из массы, пружины и демпфера для создания резонансного контура п демодулирующим индукционным датчиком. Выходной сигнал индукционного датчика вычитается из сигнала входа. Это также создает два комплексных нуля относительно частоты сигнала информации (огибающей) или четыре комплексных нуля относительно модулированной несущей.  

Трансформаторы с подвижной обмоткой (потен-циал-регуля-юры), предназначенные для более высоких напряжений, выполняются в форме индукционного двигателя с закрепленным якорем, который переставляется в зависимости от требующегося дополнительного напряжения, складывающегося последовательно с основным.  

В качестве двигателей для следящих систем могут быть использованы как сериесные, так и шунтовые двигатели постоянного тока, а также индукционные двигатели переменного тока.  

Трудно сказать, как развивались бы работы в области электричества, если бы были усовершенствованы термоэлектрические машины Зеебека, построенные за пятьдесят лет до того, как получил признание индукционный двигатель Фара-дея. Но этого не случилось, и сейчас термоэлектрические генераторы во много раз менее эффективны, чем магнитные генераторы, и только чрезмерная простота термоэлементов гарантирует возможность их практического применения в малой энергетике. В равной степени со стоимостью и технологией изготовления важную роль играют размеры и вес термоэлементов. Однако наиболее важным является их кпд, определяемый как температурами 7 и Т2, при которых работает термобатарея, так и физическими свойствами материала термоэлемента.  

Трудно сказать, как развивались бы работы в области электричества, если бы были усовершенствованы термоэлектрические машины Зеебека, построенные за пятьдесят лет до того, как получил признание индукционный двигатель Фара-дея. Но этого не случилось, и сейчас термоэлектрические генераторы во много раз менее эффективны, чем магнитные генераторы, и только чрезмерная простота термоэлементов гарантирует возможность их практического применения в малой энергетике. В равной степени со стоимостью и технологией изготовления важную роль играют размеры и вес термоэлементов. Однако наиболее важным является их кпд, определяемый как температурами Тг и 7, при которых работает термобатарея, так и физическими свойствами материала термоэлемента.  

Согласно последней формуле при прочих равных условиях электромеханическая постоянная времени индукционного двигателя тем больше, чем больше скорость холостого хода. Индукционные двигатели находят применение в системах переменного тока различной частоты: от 50 до 1 000 гц. Поскольку увеличение частоты означает увеличение скорости холостого хода, это одновременно приводит к росту электромеханической постоянной времени. Для примера можно указать, что среднее значение Тэы для индукционных двигателей на 50 гц составляет около 0 03 — 0 05 сек, а для двигателей на 400 гц — около 0 1 — 0 2 сек.  

Согласно формулам (3 — 33) при прочих разных условиях электромеханическая постоянная времени индукционного двигателя тем больше, чем больше скорость холостого хода. Индукционные двигатели находят применение в системах переменного тока различной частоты: от 50 до 1 000 гц. Поскольку увеличение частоты означает увеличение скорости холостого хода, это одновременно приводит к росту электромеханической постоянной времени. Для примера можно указать, что среднее значение Тэы для индукционных двигателей на 50 гц составляет около 0 05 — 0 07 сек, а для двигателей на 400 гц — около 0 2 — 0 3 сек.  

Сложнее дело обстоит в случае регулируемых приводов. Индукционный двигатель трехфазного тока сам по себе следует считать практически почти нерегулируемым. Однофазные репульсионные двигатели, конкурирующие при малых мощностях с трехфазными коллекторными, в силу худшего использования материала постепенно вытесняются трехфазными. Подобно тому как это имело место в области электрической тяги, в ряде промышленных установок происходит борьба между постоянным и переменным током у регулируемых приводов. В случае единичных регулируемых установок порядка нескольких сот kW, например нереверсивные прокатные станы, шахтные вентиляторы, регулируемые воздуходувки, когда пределы регулировки не превышают 1: 2, применяются каскадные агрегаты в виде сист. Установки трехфазных коллекторных двигателей большой мощности (300 — 400 kW) чрезвычайно редки. Реверсивные прокатные станы (номинальной мощностью в 2 000 — 5 000 kW), требующие регулировки в широких пределах (до 200 — 300 %) номинальной скорости, приводятся исключительно двигателями постоянного тока, питаемыми от трехфазной сети по сист. В случае нескольких регулируемых установок большой и средней мощности, расположенных вместе, применяются теперь двигатели постоянного тока (напр, бумагоделательные машины, прокатные металлургич. При пределах регулировки больше чем 1: 3, для регулирования широко применяется система Леонарда; она же используется в таких случаях и для пуска в ход. США и Франции применяется постоянный ток; этот род тока принят и в СССР для вновь строящихся металлургич. В Германии эк е динамостроительные з-ды усиленно пропагандируют внедрение в эту область индукционных двигателей. Коллекторные двигатели переменного тока, для таких тяжелых условий работы непригодны.  

Известным недостатком двигателей переменного тока является их сравнительно большой вес, в 2 — 3 раза превышающий вес двигателей постоянного тока той же мощности. Однако высокая надежность индукционных двигателей (отсутствие щеток, требующих осмотра я смены) во многих случаях компенсируют указанный недостаток.  

ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ

То же, что асинхронный двигатель.

  • — ток, возникающий в проводящем контуре, находящемся в перем. магн. поле или движущемся в магн. поле. …

    Физическая энциклопедия

  • — электрич. ток, возни кающий вследствие эл.-магн. индукции…

    Естествознание. Энциклопедический словарь

  • -) — геофиз…

    Геологическая энциклопедия

  • — электрич. ток, возникающий вследствие электромагнитной индукции…

    Большой энциклопедический политехнический словарь

  • — относительный лаг, принцип действия которого основан на возникновении при движении судна дополнительной эдс в контуре, находящемся в магнитном поле, создаваемом специальным соленоидом…

    Морской словарь

  • — ИНДУКЦИОННЫЙ ток — электрический ток, возникающий вследствие электромагнитной индукции…

    Большой энциклопедический словарь

  • — …

    Орфографический словарь русского языка

  • — ИНДУ́К-ИЯ, -и,…

    Толковый словарь Ожегова

  • — ИНДУКЦИО́ННЫЙ, индукционная, индукционное…

    Толковый словарь Ушакова

  • Толковый словарь Ефремовой

  • — индукцио́нный I прил. соотн. с сущ. индукция I, связанный с ним II прил. соотн. с сущ. индукция II, связанный с ним III прил. соотн…

    Толковый словарь Ефремовой

  • — …

    Орфографический словарь-справочник

  • — индукци»…

    Русский орфографический словарь

  • — индукцио́нный относящийся к индукции2, и-ная катушка — состоит из двух обмоток на сердечнике из магнитного материала; служит для возбуждения путем индукции токов высокого напряжения…

    Словарь иностранных слов русского языка

  • — …

    Формы слова

  • — индуктивный, наведенный,…

    Словарь синонимов

«ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ» в книгах

ДВИГАТЕЛЬ

Из книги Огненный Подвиг. часть I автора Уранов Николай Александрович

ДВИГАТЕЛЬ «Величайшая мощь лежит в магните сердца. Им мы ищем, им мы творим, им мы находим, им мы притягиваем. Так запомним. Так утверждаю».Беспред., § 558От рождения тела стучит физическое сердце, и тело живет лишь постольку, поскольку сердце не перестанет стучать. Можно

6. Двигатель

Из книги Техобслуживание и мелкий ремонт автомобиля своими руками. автора Гладкий Алексей Анатольевич

6. Двигатель 6.1. Содержание вредных веществ в отработавших газах и их дымность превышают величины, установленные ГОСТ Р 520332003 и ГОСТ Р 52160-2003.6.2. Нарушена герметичность системы питания.6.3. Неисправна система выпуска отработавших газов.6.4. Нарушена герметичность системы

Индукционный измерительный прибор

автора Коллектив авторов

Индукционный измерительный прибор Индукционный измерительный прибор – электроизмерительный прибор, работа которого основана на возникновении вращающего момента его подвижной части при воздействии на нее двух (или более) переменных магнитных потоков. Индукционным

Индукционный ракетный двигатель

Из книги Большая энциклопедия техники автора Коллектив авторов

Индукционный ракетный двигатель Индукционный ракетный двигатель – разновидность электротермического ракетного двигателя, в котором нагрев рабочего тела осуществляется посредством воздействия высокочастотного магнитного поля, которое создается индукционной

1847 г. Гальске, индукционный телеграф братьев фон Сименс

Из книги Популярная история — от электричества до телевидения автора Кучин Владимир

1847 г. Гальске, индукционный телеграф братьев фон Сименс В 1847 году берлинский электромеханик ИоганнГальске (1814–1890) сконструировал специальный пресс для бесшовной изоляции медных проводов с помощью гуттаперчи.В этом же 1847 году немецкий электротехник и предприниматель

Индукционный нагрев

БСЭ

Индукционный насос

Из книги Большая Советская Энциклопедия (ИН) автора БСЭ

Индукционный прибор

Из книги Большая Советская Энциклопедия (ИН) автора БСЭ

Индукционный ускоритель

Из книги Большая Советская Энциклопедия (ИН) автора БСЭ

Двигатель

Из книги Большая Советская Энциклопедия (ДВ) автора БСЭ

2.2.6. Двигатель

Из книги 100 способов избежать аварии. Спецкурс для водителей категории В автора Каминский Александр Юрьевич

2.2.6. Двигатель Нарушена герметичность системы питания(п. 6.2 Приложения).Под этой неисправностью надо понимать протекание бензина. Очевидно, что неисправность очень опасна, ведь пары бензина могут загореться в любой момент. Казалось бы, об этом не имеет смысла говорить,

11 Электростатический индукционный генератор переменного тока

Из книги Статьи автора Тесла Никола

11 Электростатический индукционный генератор переменного тока Около полутора лет тому назад, будучи занят изучением переменных токов с коротким периодом, я пришел к мысли, что такие токи можно получать, вращая заряженные поверхности на малом расстоянии от проводников. И

Двигатель регресса Двигатель регресса Нынешняя система налогообложения — удавка для экономики России 13.02.2013

Из книги Газета Завтра 950 (7 2013) автора Завтра Газета

автора Коллектив авторов

6.6.7. ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ В ЭЛЕКТРОПРИВОДЕ. СИСТЕМЫ ТИРИСТОРНЫЙ ПРЕОБРАЗОВАТЕЛЬ — ДВИГАТЕЛЬ (ТП — Д) И ИСТОЧНИК ТОКА — ДВИГАТЕЛЬ (ИТ — Д) В послевоенные годы в ведущих лабораториях мира произошел прорыв в области силовой электроники, кардинально изменивший многие

7.1.3. ИНДУКЦИОННЫЙ НАГРЕВ

Из книги История электротехники автора Коллектив авторов

7.1.3. ИНДУКЦИОННЫЙ НАГРЕВ Начальный период. Индукционный нагрев проводников основан на физическом явлении электромагнитной индукции, открытом М. Фарадеем в 1831 г. Теорию индукционного нагрева начали разрабатывать О. Хэвисайд (Англия, 1884 г.), С. Ферранти, С. Томпсон, Ивинг. Их

Принцип работы трёхфазного индукционного двигателя

Что можно сказать об электродвигателе? Такой мотор является таким электромеханическим девайсом, который преобразует электрическую энергию в механическую энергию. В случае работы переменного тока, который является трёхфазным, наиболее часто применяющимся мотором является трехфазный индукционный мотор, ведь данный вид мотора не требует никакого стартового устройства. Можно также сказать, что данный двигатель является самозапускающимся индукционным мотором.

Для того чтобы лучше понять принцип действия трёхфазного индукционного двигателя, необходимо иметь достаточно чёткое представление об основной особенности, которая присуща конструкции данного мотора. Данный электродвигатель имеет две части, которые можно назвать основными. А именно, это статор и ротор. Чтобы хорошо представлять себе работу данного устройства нужно знать достаточно об этих составляющих.

Статор

Статор данного индукционного двигателя сделан из определённого количества слотов, для того чтобы получилась трёхфазная обмотка, которая подключена к источнику переменного тока, являющегося трёхфазным. Трёхфазная обмотка размещена в слотах таким образом, что она производит магнитное поле, которое является вращающимся. Это происходит после третьей фазы. Обмотка должна получать питание в виде переменного тока.

Ротор

Ротор данного индукционного мотора содержит многослойный сердечник, который имеет цилиндрическую форму. Этот сердечник с параллельными слотами, которые могут держать элементы, проводящие электрический ток. В роли таких элементов в данном случае выступают тяжёлые медные или алюминиевые стержни, которые подходят к каждому слоту и они замкнуты конечными кольцами.

Слоты не то что бы абсолютно параллельны оси вала. Они несколько скошены. Это обусловлено тем, что такое расположение уменьшает магнитный гудящий шум и может помочь избежать потери скорости данного мотора

О том, как работает этот двигатель

Создание магнитного поля, которое вращается

Статор мотора содержит смещённые перекрытые обмотки. Электрический угол смещения составляет 120º. Тут основная обмотка или же статор подключены к источнику тока, который является переменным и трёхфазным. Это обстоятельство уже, в свою очередь, служит причиной возникновения такого магнитного поля, которое вращается, причём вращается оно с синхронной скоростью.

Секреты вращения:

Согласно закону Фарадея “электродвижущая сила, которая вызвана в какой-либо электрической схеме, является следствием процента изменения магнитного потока, который идёт через схему”. Так как обмотка ротора в индукционном моторе тоже замкнута через внешнее сопротивление или прямо замкнуто замыкающим кольцом, и отрезает магнитное поле статора (вращающееся), электродвижущая сила появляется на медном стержне ротора, и благодаря этой силе электрический ток течёт через элемент ротора, который специально для этого предназначен.

Здесь относительная скорость между вращающемся магнитным потоком и статичным проводящим элементом ротора является причиной возникновения электрического тока. Отсюда, исходя из закона Ленца, ротор будет вращаться непосредственно в том же направлении, чтобы относительная скорость уменьшилась.

Таким образом, исходя из принципа действия этого электрического двигателя, можно заметить, что скорость, которую имеет ротор, не должна достигать синхронной скорости, которая производится статором. Если скорости были бы равны, то не было бы такой относительной скорости, так что не возникало бы и электродвижущей силы в роторе, не было бы потока электрического тока, и поэтому не было бы крутящего момента.

Следовательно, ротор не может достичь синхронной скорости. Разница между скоростью статора (синхронная скорость) и скоростью ротора называется проскальзыванием. Вращение магнитного поля в индукционном двигателе имеет преимущество, что не нужны никакие электрические связи с ротором.

Пора подвести итоги. Из перечисленных выше особенностей трехфазного индукционного мотора следует, что:

— Данный электродвигатель самозапускающийся и не нуждается в помощи какого-то другого элемента для своего старта.

— Этот мотор имеет меньше противодействия арматуры и искрообразования на щётках в силу того, что отсутствуют коммутаторы и щётки, которые могут вызывать образование искр.

— Электродвигатель данного типа прочен по конструкции, что, конечно же, является большим плюсом.

— Мотор экономичный, что делает его интересным решением во многих областях; соответственно, данный двигатель имеет неплохие перспективы, ведь он будет достаточно популярен и востребован.

— Данный электродвигатель довольно лёгок в обслуживании, что опять же позволяет назвать его перспективным, ведь данное качество интересно любому пользователю подобных устройств, который понимает важность этого нюанса.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Похожее

какие они бывают / Хабр

В прошлых статьях был рассмотрен принцип работы синхронного и асинхронного электродвигателей, а также рассказано, как ими управлять. Но видов электродвигателей существует гораздо больше! И у каждого из них свои свойства, область применения и особенности.

В этой статье будет небольшой обзор по разным типам электродвигателей с фотографиями и примерами применений. Почему в пылесос ставятся одни двигатели, а в вентилятор вытяжки другие? Какие двигатели стоят в сегвее? А какие двигают поезд метро?

Каждый электродвигатель обладает некоторыми отличительными свойствами, которые обуславливают его область применения, в которой он наиболее выгоден. Синхронные, асинхронные, постоянного тока, коллекторные, бесколлекторные, вентильно-индукторные, шаговые… Почему бы, как в случае с двигателями внутреннего сгорания, не изобрести пару типов, довести их до совершенства и ставить их и только их во все применения? Давайте пройдемся по всем типам электродвигателей, а в конце обсудим, зачем же их столько и какой двигатель «самый лучший».


С этим двигателем все должны быть знакомы с детства, потому что именно этот тип двигателя стоит в большинстве старых игрушек. Батарейка, два проводка на контакты и звук знакомого жужжания, вдохновляющего на дальнейшие конструкторские подвиги. Все ведь так делали? Надеюсь. Иначе эта статья, скорее всего, не будет вам интересна. Внутри такого двигателя на валу установлен контактный узел – коллектор, переключающий обмотки на роторе в зависимости от положения ротора. Постоянный ток, подводимый к двигателю, протекает то по одним, то по другим частям обмотки, создавая вращающий момент. Кстати, не уходя далеко, всех ведь, наверное, интересовало – что за желтые штучки стояли на некоторых ДПТ из игрушек, прямо на контактах (как на фото сверху)? Это конденсаторы – при работе коллектора из-за коммутаций потребление тока импульсное, напряжение может также меняться скачками, из-за чего двигатель создает много помех. Они особенно мешают, если ДПТ установлен в радиоуправляемой игрушке. Конденсаторы как раз гасят такие высокочастотные пульсации и, соответственно, убирают помехи.

Двигатели постоянного тока бывают как очень маленького размера («вибра» в телефоне), так и довольно большого – обычно до мегаватта. Например, на фото ниже показан тяговый электродвигатель электровоза мощностью 810кВт и напряжением 1500В.

Почему ДПТ не делают мощнее? Главная проблема всех ДПТ, а в особенности ДПТ большой мощности – это коллекторный узел. Скользящий контакт сам по себе является не очень хорошей затеей, а скользящий контакт на киловольты и килоамперы – и подавно. Поэтому конструирование коллекторного узла для мощных ДПТ – целое искусство, а на мощности выше мегаватта сделать надежный коллектор становится слишком сложно (рекорд — 12,5МВт).
В потребительском качестве ДПТ хорош своей простотой с точки зрения управляемости. Его момент прямо пропорционален току якоря, а частота вращения (по крайней мере холостой ход) прямо пропорциональна приложенному напряжению. Поэтому до наступления эры микроконтроллеров, силовой электроники и частотного регулируемого привода переменного тока именно ДПТ был самым популярным электродвигателем для задач, где требуется регулировать частоту вращения или момент.

Также нужно упомянуть, как именно в ДПТ формируется магнитный поток возбуждения, с которым взаимодействует якорь (ротор) и за счет этого возникает вращающий момент. Этот поток может делаться двумя способами: постоянными магнитами и обмоткой возбуждения. В небольших двигателях чаще всего ставят постоянные магниты, в больших – обмотку возбуждения. Обмотка возбуждения – это еще один канал регулирования. При увеличении тока обмотки возбуждения увеличивается её магнитный поток. Этот магнитный поток входит как в формулу момента двигателя, так и в формулу ЭДС. Чем выше магнитный поток возбуждения, тем выше развиваемый момент при том же токе якоря. Но тем выше и ЭДС машины, а значит при том же самом напряжении питания частота вращения холостого хода двигателя будет ниже. Зато если уменьшить магнитный поток, то при том же напряжении питания частота холостого хода будет выше, уходя в бесконечность при уменьшении потока возбуждения до нуля. Это очень важное свойство ДПТ. Вообще, я очень советую изучить уравнения ДПТ – они простые, линейные, но их можно распространить на все электродвигатели – процессы везде схожие.


Как ни странно, это самый распространенный в быту электродвигатель, название которого наименее известно. Почему так получилось? Его конструкция и характеристики такие же, как у двигателя постоянного тока, поэтому упоминание о нем в учебниках по приводу обычно помещается в самый конец главы про ДПТ. При этом ассоциация коллектор = ДПТ так прочно заседает в голове, что не всем приходит на ум, что двигатель постоянного тока, в названии которого присутствует «постоянный ток», теоретически можно включать в сеть переменного тока. Давайте разберемся.

Как изменить направление вращения двигателя постоянного тока? Это знают все, надо сменить полярность питания якоря. А ещё? А еще можно сменить полярность питания обмотки возбуждения, если возбуждение сделано обмоткой, а не магнитами. А если полярность сменить и у якоря, и у обмотки возбуждения? Правильно, направление вращения не изменится. Так что же мы ждем? Соединяем обмотки якоря и возбуждения последовательно или параллельно, чтобы полярность изменялась одинаково и там и там, после чего вставляем в однофазную сеть переменного тока! Готово, двигатель будет крутиться. Есть один только маленький штрих, который надо сделать: так как по обмотке возбуждения протекает переменный ток, её магнитопровод, в отличие от истинного ДПТ, надо изготовить шихтованным, чтобы снизить потери от вихревых токов. И вот мы и получили так называемый «универсальный коллекторный двигатель», который по конструкции является подвидом ДПТ, но… прекрасно работает как от переменного, так и от постоянного тока.

Этот тип двигателей наиболее широко распространен в бытовой технике, где требуется регулировать частоту вращения: дрели, стиральные машины (не с «прямым приводом»), пылесосы и т.п. Почему именно он так популярен? Из-за простоты регулирования. Как и в ДПТ, его можно регулировать уровнем напряжения, что для сети переменного тока делается симистором (двунаправленным тиристором). Схема регулирования может быть так проста, что помещается, например, прямо в «курке» электроинструмента и не требует ни микроконтроллера, ни ШИМ, ни датчика положения ротора.


Еще более распространенным, чем коллекторные двигатели, является асинхронный двигатель. Только распространен он в основном в промышленности – где присутствует трехфазная сеть. Про принцип его работы написана

отдельная статья

. Если кратко, то его статор – это распределенная двухфазная или трехфазная (реже многофазная) обмотка. Она подключается к источнику переменного напряжения и создает вращающееся магнитное поле. Ротор можно представлять себе в виде медного или алюминиевого цилиндра, внутри которого находится железо магнитопровода. К ротору в явном виде напряжение не подводится, но оно индуцируется там за счет переменного поля статора (поэтому двигатель на английском языке называют индукционным). Возникающие вихревые токи в короткозамкнутом роторе взаимодействуют с полем статора, в результате чего образуется вращающий момент.

Почему асинхронный двигатель так популярен? У него нет скользящего контакта, как у коллекторного двигателя, а поэтому он более надежен и требует меньше обслуживания. Кроме того, такой двигатель может пускаться от сети переменного тока «прямым пуском» – его можно включить коммутатором «на сеть», в результате чего двигатель запустится (с большим пусковым током 5-7 крат, но допустимым). ДПТ относительно большой мощности так включать нельзя, от пускового тока погорит коллектор. Также асинхронные привода, в отличие от ДПТ, можно делать гораздо большей мощности – десятки мегаватт, тоже благодаря отсутствию коллектора. При этом асинхронный двигатель относительно прост и дешев.

Асинхронный двигатель применяется и в быту: в тех устройствах, где не нужно регулировать частоту вращения. Чаще всего это так называемые «конденсаторные» двигатели, или, что тоже самое, «однофазные» асинхронники. Хотя на самом деле с точки зрения электродвигателя правильнее говорить «двухфазные», просто одна фаза двигателя подключается в сеть напрямую, а вторая через конденсатор. Конденсатор делает фазовый сдвиг напряжения во второй обмотке, что позволяет создать вращающееся эллиптическое магнитное поле. Обычно такие двигатели применяются в вытяжных вентиляторах, холодильниках, небольших насосах и т.п.

Минус асинхронного двигателя по сравнению с ДПТ в том, что его сложно регулировать. Асинхронный электродвигатель – это двигатель переменного тока. Если асинхронному двигателю просто понизить напряжение, не понизив частоту, то он несколько снизит скорость, да. Но у него увеличится так называемое скольжение (отставание частоты вращения от частоты поля статора), увеличатся потери в роторе, из-за чего он может перегреться и сгореть. Можно представлять это себе как регулирование скорости движения легкового автомобиля исключительно сцеплением, подав полный газ и включив четвертую передачу. Чтобы правильно регулировать частоту вращения асинхронного двигателя нужно пропорционально регулировать и частоту, и напряжение. А лучше и вовсе организовать векторное управление, как более подробно было описано в прошлой статье. Но для этого нужен преобразователь частоты – целый прибор с инвертором, микроконтроллером, датчиками и т.п. До эры силовой полупроводниковой электроники и микропроцессорной техники (в прошлом веке) регулирование частотой было экзотикой – его не на чем было делать. Но сегодня регулируемый асинхронный электропривод на базе преобразователя частоты – это уже стандарт-де-факто.


Про принцип работы синхронного двигателя также

была отдельная статья

. Синхронных приводов бывает несколько подвидов – с магнитами (PMSM) и без (с обмоткой возбуждения и контактными кольцами), с синусоидальной ЭДС или с трапецеидальной (бесколлекторные двигатели постоянного тока, BLDC). Сюда же можно отнести некоторые шаговые двигатели. До эры силовой полупроводниковой электроники уделом синхронных машин было применение в качестве генераторов (почти все генераторы всех электростанций – синхронные машины), а также в качестве мощных приводов для какой-либо серьезной нагрузки в промышленности.


Все эти машины выполнялись с контактными кольцами (можно увидеть на фото), о возбуждении от постоянных магнитов при таких мощностях речи, конечно же, не идет. При этом у синхронного двигателя, в отличие от асинхронного, большие проблемы с пуском. Если включить мощную синхронную машину напрямую на трехфазную сеть, то всё будет плохо. Так как машина синхронная, она должна вращаться строго с частотой сети. Но за время 1/50 секунды ротор, конечно же, разогнаться с нуля до частоты сети не успеет, а поэтому он будет просто дергаться туда-сюда, так как момент получится знакопеременный. Это называется «синхронный двигатель не вошел в синхронизм». Поэтому в реальных синхронных машинах применяют асинхронный пуск – делают внутри синхронной машины небольшую асинхронную пусковую обмотку и закорачивают обмотку возбуждения, имитируя «беличью клетку» асинхронника, чтобы разогнать машину до частоты, примерно равной частоте вращения поля, а уже после этого включается возбуждение постоянным током и машина втягивается в синхронизм.

И если у асинхронного двигателя регулировать частоту ротора без изменения частоты поля хоть как-то можно, то у синхронного двигателя нельзя никак. Он или крутится с частой поля, или выпадает из синхронизма и с отвратительными переходными процессами останавливается. Кроме того, у синхронного двигателя без магнитов есть контактные кольца – скользящий контакт, чтобы передавать энергию на обмотку возбуждения в роторе. С точки зрения сложности, это, конечно, не коллектор ДПТ, но всё равно лучше бы было без скользящего контакта. Именно поэтому в промышленности для нерегулируемой нагрузки применяют в основном менее капризные асинхронные привода.

Но все изменилось с появлением силовой полупроводниковой электроники и микроконтроллеров. Они позволили сформировать для синхронной машины любую нужную частоту поля, привязанную через датчик положения к ротору двигателя: организовать вентильный режим работы двигателя (автокоммутацию) или векторное управление. При этом характеристики привода целиком (синхронная машина + инвертор) получились такими, какими они получаются у двигателя постоянного тока: синхронные двигатели заиграли совсем другими красками. Поэтому начиная где-то с 2000 года начался «бум» синхронных двигателей с постоянными магнитами. Сначала они робко вылезали в вентиляторах кулеров как маленькие BLDC двигатели, потом добрались до авиамоделей, потом забрались в стиральные машины как прямой привод, в электротягу (сегвей, Тойота приус и т.п.), всё больше вытесняя классический в таких задачах коллекторный двигатель. Сегодня синхронные двигатели с постоянными магнитами захватывают всё больше применений и идут семимильными шагами. И все это – благодаря электронике. Но чем же лучше синхронный двигатель асинхронного, если сравнивать комплект преобразователь+двигатель? И чем хуже? Этот вопрос будет рассматриваться в конце статьи, а сейчас давайте пройдемся еще по нескольким типам электродвигателей.


У него много названий. Обычно его коротко называют вентильно-индукторный двигатель (ВИД) или вентильно-индукторная машина (ВИМ) или привод (ВИП). В английской терминологии это switched reluctance drive (SRD) или motor (SRM), что переводится как машина с переключаемым магнитным сопротивлением. Но чуть ниже будет рассматриваться другой подвид этого двигателя, отличающийся по принципу действия. Чтобы не путать их друг с другом, «обычный» ВИД, который рассмотрен в этом разделе, мы на кафедре электропривода в МЭИ, а также на фирме ООО «НПФ ВЕКТОР» называем «вентильно-индукторный двигатель с самовозбуждением» или коротко ВИД СВ, что подчеркивает принцип возбуждения и отличает его от машины, рассмотренной далее. Но другие исследователи его также называют ВИД с самоподмагничиванием, иногда реактивный ВИД (что отражает суть образования вращающего момента).


Конструктивно это самый простой двигатель и по принципу действия похож на некоторые шаговые двигатели. Ротор – зубчатая железка. Статор – тоже зубчатый, но с другим числом зубцов. Проще всего принцип работы поясняет вот эта анимация:


Подавая постоянный ток в фазы в соответствии с текущим положением ротора можно заставить двигатель вращаться. Фаз может быть разное количество. Форма тока реального привода для трех фаз показа на рисунке (токоограничение 600А):


Однако за простоту двигателя приходится платить. Так как двигатель питается однополярными импульсами тока, напрямую «на сеть» его включать нельзя. Обязательно требуется преобразователь и датчик положения ротора. Причем преобразователь не классический (типа шестиключевой инвертор): для каждой фазы у преобразователя для SRD должны быть полумосты, как на фото в начале этого раздела. Проблема в том, что для удешевления комплектующих и улучшения компоновки преобразователей силовые ключи и диоды часто не изготавливаются отдельно: обычно применяются готовые модули, содержащие одновременно два ключа и два диода – так называемые стойки. И именно их чаще всего и приходится ставить в преобразователь для ВИД СВ, половину силовых ключей просто оставляя незадействованной: получается избыточный преобразователь. Хотя в последние годы некоторые производители IGBT модулей выпустили изделия, предназначенные именно для SRD.

Следующая проблема – это пульсации вращающего момента. В силу зубчатой структуры и импульсного тока момент редко получается стабильным – чаще всего он пульсирует. Это несколько ограничивает применимость двигателей для транспорта – кому хочется иметь пульсирующий момент на колесах? Кроме того, от таких импульсов тянущего усилия не очень хорошо себя чувствуют подшипники двигателя. Проблема несколько решается специальным профилированием формы тока фазы, а также увеличением количества фаз.

Однако даже при этих недостатках двигатели остаются перспективными в качестве регулируемого привода. Благодаря их простоте сам двигатель получается дешевле классического асинхронного двигателя. Кроме того, двигатель легко сделать многофазным и многосекционным, разделив управление одним двигателем на несколько независимых преобразователей, которые работают параллельно. Это позволяет повысить надежность привода – отключение, скажем, одного из четырех преобразователей не приведет к остановке привода в целом – трое соседей будут какое-то время работать с небольшой перегрузкой. Для асинхронного двигателя такой фокус выполнить так просто не получается, так как невозможно сделать несвязанные друг с другом фазы статора, которые бы управлялись отдельным преобразователем полностью независимо от других. Кроме того, ВИД очень хорошо регулируются «вверх» от основной частоты. Железку ротора можно раскручивать без проблем до очень высоких частот.
Мы на фирме ООО «НПФ ВЕКТОР» выполнили несколько проектов на базе этого двигателя. Например, делали небольшой привод для насосов горячего водоснабжения, а также недавно закончили разработку и отладку системы управления для мощных (1,6 МВт) многофазных резервируемых приводов для обогатительных фабрик АК «АЛРОСА». Вот машинка на 1,25 МВт:

Вся система управления, контроллеры и алгоритмы были сделаны у нас в ООО «НПФ ВЕКТОР», силовые преобразователи спроектировала и изготовила фирма ООО «НПП «ЦИКЛ+». Заказчиком работы и проектировщиком самих двигателей являлась фирма ООО «МИП «Мехатроника» ЮРГТУ (НПИ)».

Это совсем другой тип двигателя, отличающийся по принципу действия от обычного ВИД. Исторически известны и широко используются вентильно-индукторные генераторы такого типа, применяемые на самолетах, кораблях, железнодорожном транспорте, а вот именно двигателями такого типа почему-то занимаются мало.


На рисунке схематично показана геометрия ротора и магнитный поток обмотки возбуждения, а также изображено взаимодействие магнитных потоков статора и ротора, при этом ротор на рисунке установлен в согласованное положение (момент равен нулю).

Ротор собран из двух пакетов (из двух половинок), между которыми установлена обмотка возбуждения (на рисунке показана как четыре витка медного провода). Несмотря на то, что обмотка висит «посередине» между половинками ротора, крепится она к статору и не вращается. Ротор и статор выполнены из шихтованного железа, постоянные магниты отсутствуют. Обмотка статора распределенная трехфазная – как у обычного асинхронного или синхронного двигателя. Хотя существуют варианты такого типа машин с сосредоточенной обмоткой: зубцами на статоре, как у SRD или BLDC двигателя. Витки обмотки статора охватывают сразу оба пакета ротора.

Упрощенно принцип работы можно описать следующим образом: ротор стремится повернуться в такое положение, при котором направления магнитного потока в статоре (от токов статора) и роторе (от тока возбуждения) совпадут. При этом половина электромагнитного момента образуется в одном пакете, а половина – в другом. Со стороны статора машина подразумевает разнополярное синусоидальное питание (ЭДС синусоидальна), электромагнитный момент активный (полярность зависит от знака тока) и образован за счет взаимодействия поля, созданного током обмотки возбуждения с полем, созданного обмотками статора. По принципу работы эта машина отлична от классических шаговых и SRD двигателей, в которых момент реактивный (когда металлическая болванка притягивается к электромагниту и знак усилия не зависит от знака тока электромагнита).

С точки зрения управления ВИД НВ оказывается эквивалентен синхронной машине с контактными кольцами. То есть, если вы не знаете конструкцию этой машины и используете её как «черный ящик», то она ведет себя практически неотличимо от синхронной машины с обмоткой возбуждения. Можно сделать векторное управление или автокоммутацию, можно ослаблять поток возбуждения для повышения частоты вращения, можно усиливать его для создания большего момента – всё так, как будто это классическая синхронная машина с регулируемым возбуждением. Только ВИД НВ не имеет скользящего контакта. И не имеет магнитов. И ротор в виде дешевой железной болванки. И момент не пульсирует, в отличие от SRD. Вот, например, синусоидальные токи ВИД НВ при работе векторного управления:

Кроме того, ВИД НВ можно создавать многофазным и многосекционным, аналогично тому, как это делается в ВИД СВ. При этом фазы оказываются несвязанными друг с другом магнитными потоками и могут работать независимо. Т.е. получается как будто бы несколько трехфазных машин в одной, к каждой из которых присоединяется свой независимый инвертор с векторным управлением, а результирующая мощность просто суммируется. Координации между преобразователями при этом не требуется никакой – только общее задание частоты вращения.

Минусы этого двигателя тоже есть: напрямую от сети он крутиться не может, так как, в отличие от классических синхронных машин, ВИД НВ не имеет асинхронной пусковой обмотки на роторе. Кроме того, он сложнее по конструкции, чем обычный ВИД СВ (SRD).

На основе данного двигателя мы также сделали несколько успешных проектов. Например, один из них – это серия приводов насосов и вентиляторов для районных теплостанций г. Москвы мощностью 315-1200кВт (ссылка на проект). Это низковольтные (380В) ВИД НВ с резервированием, где одна машина «разбита» на 2, 4 или 6 независимых трехфазных секций. На каждую секцию ставится свой однотипный преобразователь с векторным бездатчиковым управлением. Таким образом можно легко наращивать мощность на базе однотипной конструкции преобразователя и двигателя. При этом часть преобразователей подключено к одному вводу питания районной теплостанции, а часть к другому. Поэтому если происходит «моргушка питания» по одному из вводов питания, то привод не встает: половина секций кратковременно работают в перегрузке, пока питание не восстановится. Как только оно восстанавливается, на ходу в работу автоматически вводятся отдыхавшие секции. Вообще, наверное, этот проект заслуживал бы отдельной статьи, поэтому пока про него закончу, вставив фото двигателя и преобразователей:

К сожалению, двумя словами здесь не обойтись. И общими выводами про то, что у каждого двигателя свои достоинства и недостатки – тоже. Потому что не рассмотрены самые главные качества – массогабаритные показатели каждого и типов машин, цена, а также их механические характеристики и перегрузочная способность. Оставим нерегулируемый асинхронный привод крутить свои насосы напрямую от сети, тут ему конкурентов нет. Оставим коллекторные машины крутить дрели и пылесосы, тут с ними в простоте регулирования тоже потягаться сложно.

Давайте рассмотрим регулируемый электропривод, режим работы которого – длительный. Коллекторные машины здесь сразу исключаются из конкуренции по причине ненадежности коллекторного узла. Но остались еще четыре – синхронный, асинхронный, и два типа вентильно-индукторных. Если мы говорим о приводе насоса, вентилятора и чего-то похожего, что используется в промышленности и где масса и габариты особо не важны, то здесь из конкуренции выпадают синхронные машины. Для обмотки возбуждения требуются контактные кольца, что является капризным элементом, а постоянные магниты очень дороги. Конкурирующими вариантами остаются асинхронный привод и вентильно-индукторные двигатели обоих типов.

Как показывает опыт, все три типа машин успешно применяются. Но – асинхронный привод невозможно (или очень сложно) секционировать, т.е. разбить мощную машину на несколько маломощных. Поэтому для обеспечения большой мощности асинхронного преобразователя требуется делать его высоковольтным: ведь мощность – это, если грубо, произведение напряжения на ток. Если для секционируемого привода мы можем взять низковольтный преобразователь и наставить их несколько, каждый на небольшой ток, то для асинхронного привода преобразователь должен быть один. Но не делать же преобразователь на 500В и ток 3 килоампера? Это провода нужны с руку толщиной. Поэтому для увеличения мощности повышают напряжение и снижают ток. А высоковольтный преобразователь – это совсем другой класс задачи. Нельзя просто так взять силовые ключи на 10кВ и сделать из них классический инвертор на 6 ключей, как раньше: и нет таких ключей, а если есть, они очень дороги. Инвертор делают многоуровневым, на низковольтных ключах, соединенных последовательно в сложных комбинациях. Такой инвертор иногда тянет за собой специализированный трансформатор, оптические каналы управления ключами, сложную распределенную систему управления, работающую как одно целое… В общем, сложно всё у мощного асинхронного привода. При этом вентильно-индукторный привод за счет секционирования может «отсрочить» переход на высоковольтный инвертор, позволяя сделать привода до единиц мегаватт от низковольтного питания, выполненные по классической схеме. В этом плане ВИПы становятся интереснее асинхронного привода, да еще и обеспечивают резервирование. С другой стороны, асинхронные привода работают уже сотни лет, двигатели доказали свою надежность. ВИПы же только пробивают себе дорогу. Так что здесь надо взвесить много факторов, чтобы выбрать для конкретной задачи наиболее оптимальный привод.

Но всё становится еще интереснее, когда речь заходит о транспорте или о малогабаритных устройствах. Там уже нельзя беспечно относиться к массе и габаритам электропривода. И вот там уже нужно смотреть на синхронные машины с постоянными магнитами. Если посмотреть только на параметр мощности деленной на массу (или размер), то синхронные машины с постоянными магнитами вне конкуренции. Отдельные экземпляры могут быть в разы меньше и легче, чем любой другой «безмагнитный» привод переменного тока. Но здесь есть одно опасное заблуждение, которое я сейчас постараюсь развеять.

Если синхронная машина в три раза меньше и легче – это не значит, что для электротяги она подходит лучше. Всё дело в отсутствии регулировки потока постоянных магнитов. Поток магнитов определяет ЭДС машины. На определенной частоте вращения ЭДС машины достигает напряжения питания инвертора и дальнейшее повышение частоты вращения становится затруднительно. Тоже самое касается и повышения момента. Если нужно реализовать больший момент, в синхронной машине нужно повышать ток статора – момент возрастет пропорционально. Но более эффективно было бы повысить и поток возбуждения – тогда и магнитное насыщение железа было бы более гармоничным, а потери были бы ниже. Но опять же поток магнитов повышать мы не можем. Более того, в некоторых конструкциях синхронных машин и ток статора нельзя повышать сверх определенной величины – магниты могут размагнититься. Что же получается? Синхронная машина хороша, но только лишь в одной единственной точке – в номинальной. С номинальной частотой вращения и номинальным моментом. Выше и ниже – всё плохо. Если это нарисовать, то получится вот такая характеристика частоты от момента (красным):

На рисунке по горизонтальной оси отложен момент двигателя, по вертикальной – частота вращения. Звездочкой отмечена точка номинального режима, например, пусть это будет 60кВт. Заштрихованный прямоугольник – это диапазон, где возможно регулирование синхронной машины без проблем – т.е. «вниз» по моменту и «вниз» по частоте от номинала. Красной линией отмечено, что можно выжать из синхронной машины сверх номинала – небольшое повышение частоты вращения за счет так называемого ослабления поля (на самом деле это создание лишнего реактивного тока по оси d двигателя в векторном управлении), а также показана некоторая возможная форсировка по моменту, чтобы было безопасно для магнитов. Всё. А теперь давайте поставим эту машину в легковое транспортное средство без коробки передач, где батарея рассчитана на отдачу 60кВт. Желаемая тяговая характеристика изображена синим. Т.е. начиная с самой низкой скорости, скажем, с 10км/ч привод должен развивать свои 60кВт и продолжать их развивать вплоть до максимальной скорости, скажем 150км/ч. Синхронная машина и близко не лежала: её момента не хватит даже чтобы заехать на бордюр у подъезда (или на поребрик у парадной, для полит. корректности), а разогнаться машина сможет лишь до 50-60км/ч.

Что же это значит? Синхронная машина не подходит для электротяги без коробки передач? Подходит, конечно же, просто надо по-другому её выбрать. Вот так:


Надо выбрать такую синхронную машину, чтобы требуемый тяговый диапазон регулирования был весь внутри её механической характеристики. Т.е. чтобы машина одновременно могла развить и большой момент, и работать на большой частоте вращения. Как вы видите из рисунка… установленная мощность такой машины будет уже не 60кВт, а 540кВт (можно посчитать по делениям). Т.е. в электромобиль с батареей на 60кВт придется установить синхронную машину и инвертор на 540кВт, просто чтобы «пройти» по требуемому моменту и частоте вращения.

Конечно же, так как описано, никто не делает. Никто не ставит машину на 540кВт вместо 60кВт. Синхронную машину модернизируют, пытаясь «размазать» её механическую характеристику из оптимума в одной точке вверх по скорости и вниз по моменту. Например, прячут магниты в железо ротора (делают инкорпорированными), это позволяет не бояться размагнитить магниты и ослаблять поле смелее, а также перегружать по току побольше. Но от таких модификаций синхронная машина набирает вес, габариты и становится уже не такой легкой и красивой, какой она была раньше. Появляются новые проблемы, такие как «что делать, если в режиме ослабления поля инвертор отключился». ЭДС машины может «накачать» звено постоянного тока инвертора и выжечь всё. Или что делать, если инвертор на ходу пробился — синхронная машина замкнется и может токами короткого замыкания убить и себя, и водителя, и всю оставшуюся живой электронику — нужны схемы защиты и т.п.

Поэтому синхронная машина хороша там, где большого диапазона регулирования не требуется. Например, в сегвее, где скорость с точки зрения безопасности может быть ограничена на 30км/ч (или сколько там у него?). А еще синхронная машина идеальна для вентиляторов: у вентилятора сравнительно мало изменяется частота вращения, от силы раза в два – больше особо нет смысла, так как воздушный поток ослабевает пропорционально квадрату скорости (примерно). Поэтому для небольших пропеллеров и вентиляторов синхронная машина – это то, что нужно. И как раз она туда, собственно, успешно ставится.

Тяговую кривую, изображенную на рисунке синим цветом, испокон веков реализуют двигатели постоянного тока с регулируемым возбуждением: когда ток обмотки возбуждения изменяют в зависимости от тока статора и частоты вращения. При увеличении частоты вращения уменьшается и ток возбуждения, позволяя машине разгоняться выше и выше. Поэтому ДПТ с независимым (или смешанным) управлением возбуждением классически стоял и до сих пор стоит в большинстве тяговых применений (метро, трамваи и т.п.). Какая же электрическая машина переменного тока может с ним поспорить?

К такой характеристике (постоянства мощности) могут лучше приблизиться двигатели, у которых регулируется возбуждение. Это асинхронный двигатель и оба типа ВИПов. Но у асинхронного двигателя есть две проблемы: во-первых, его естественная механическая характеристика – это не кривая постоянства мощности. Потому что возбуждение асинхронного двигателя осуществляется через статор. А поэтому в зоне ослабления поля при постоянстве напряжения (когда на инверторе оно закончилось) подъем частоты в два раза приводит к падению тока возбуждения в два раза и моментоообразующего тока тоже в два раза. А так как момент на двигателе – это произведение тока на поток, то момент падает в 4 раза, а мощность, соответственно, в два. Вторая проблема – это потери в роторе при перегрузке с большим моментом. В асинхронном двигателе половина потерь выделяется в роторе, половина в статоре. Для уменьшения массогабаритных показателей на транспорте часто применяется жидкостное охлаждение. Но водяная рубашка эффективно охладит лишь статор, за счет явления теплопроводности. От вращающегося ротора тепло отвести значительно сложнее – путь отвода тепла через «теплопроводность» отрезан, ротор не касается статора (подшипники не в счет). Остается воздушное охлаждение путем перемешивая воздуха внутри пространства двигателя или излучение тепла ротором. Поэтому ротор асинхронного двигателя получается своеобразным «термосом» — единожды перегрузив его (сделав динамичный разгон на машине), требуется долгое время ждать остывания ротора. А ведь его температуру еще и не измерить… приходится только предсказывать по модели.

Здесь нужно отметить, как мастерски обе проблемы асинхронного двигателя обошли в Тесла в своей Model S. Проблему с отводом тепла из ротора они решили… заведя во вращающийся ротор жидкость (у них есть соответствующий патент, где вал ротора полый и он омывается внутри жидкостью, но достоверно я не знаю, применяют ли они это). А вторую проблему с резким уменьшением момента при ослаблении поля… они не решали. Они поставили двигатель с тяговой характеристикой, почти как у меня нарисована для «избыточного» синхронного двигателя на рисунке выше, только у них не 540кВт, а 300кВт. Зона ослабления поля в тесле очень маленькая, где-то два крата. Т.е. они поставили «избыточный» для легкового автомобиля двигатель, сделав вместо бюджетного седана по сути спорт-кар с огромной мощностью. Недостаток асинхронного двигателя обратили в достоинство. Но если бы они попытались сделать менее «производительный» седан, мощностью 100кВт или меньше, то асинхронный двигатель, скорее всего, был бы точно таким же (на 300кВт), просто его искусственно задушили электроникой бы под возможности батареи.

А теперь ВИПы. Что могут они? Какая тяговая характеристика у них? Про ВИД СВ я точно сказать не могу – это по своему принципу работы нелинейный двигатель, и от проекта к проекту его механическая характеристика может сильно меняться. Но в целом он скорее всего лучше асинхронного двигателя в плане приближения к желаемой тяговой характеристике с постоянством мощности. А вот про ВИД НВ я могу сказать подробнее, так как мы на фирме им очень плотно занимаемся. Видите вон ту желаемую тяговую характеристику на рисунке выше, которая нарисована синим цветом, к которой мы хотим стремиться? Это на самом деле не просто желаемая характеристика. Это реальная тяговая характеристика, которую мы по точкам по датчику момента сняли для одного из ВИД НВ. Так как ВИД НВ имеет независимое внешнее возбуждение, то его качества наиболее приближены к ДПТ НВ, который тоже может сформировать такую тяговую характеристику за счет регулирования возбуждения.

Так что же? ВИД НВ – идеальная машина для тяги без единой проблемы? На самом деле нет. Проблем у него тоже куча. Например, его обмотка возбуждения, которая «висит» между пакетами статора. Хоть она и не вращается, от неё тоже сложно отводить тепло – получается ситуация почти как ротором асинхронника, лишь немного получше. Можно, в случае надобности, «кинуть» трубку охлаждения со статора. Вторая проблема – это завышенные массогабаритные показатели. Глядя на рисунок ротора ВИД НВ, можно видеть, что пространство внутри двигателя используется не очень эффективно – «работают» только начало и конец ротора, а середина занята обмоткой возбуждения. В асинхронном двигателе, например, вся длина ротора, всё железо «работает». Сложность сборки – засунуть обмотку возбуждения внутрь пакетов ротора надо еще суметь (ротор делается разборным, соответственно, есть проблемы с балансировкой). Ну и просто массогабаритные характеристики пока получаются не очень-то выдающимися по сравнению с теми же асинхронными двигателями Тесла, если накладывать тяговые характеристики друг на друга.
А также есть еще общая проблема обоих типов ВИД. Их ротор – пароходное колесо. И на высоких частотах вращения (а высокая частота нужна, так высокочастотные машины при той же мощности меньше тихоходных) потери от перемешивания воздуха внутри становятся очень значительными. Если до 5000-7000 об/мин ВИД еще можно сделать, то на 20000 об/мин это получится большой миксер. А вот асинхронный двигатель на такие частоты и гораздо выше сделать вполне можно за счет гладкого статора.

Так что же лучше всего в итоге для электротяги? Какой двигатель самый лучший?
Понятия не имею. Все плохие. Надо изобретать дальше. Но мораль статьи такова – если вы хотите сравнить между собой разные типы регулируемого электропривода, то нужно сравнивать на конкретной задаче с конкретной требуемой механической характеристикой по всем-всем параметрам, а не просто по мощности. Также в этой статье не рассмотрены еще куча нюансов сравнения. Например, такой параметр как длительность работы в каждой из точек механической характеристики. На максимальном моменте обычно ни одна машина не может работать долго – это режим перегрузки, а на максимальной скорости очень плохо себя чувствуют синхронные машины с магнитами – там у них огромные потери в стали. А еще интересный параметр для электротяги – потери при движении выбегом, когда водитель отпустил газ. Если ВИПы и асинхронные двигатели будут крутиться как болванки, то у синхронной машины с постоянными магнитами останутся почти номинальные потери в стали из-за магнитов. И так далее, и так далее…
Поэтому нельзя вот так просто взять и выбрать лучший электропривод.

UPD:
Обобщая замечания в комментариях, необходимо дополнить некоторые важные, как оказалось, вещи, которые я изначально опустил как маловажные.
1. Асинхронные двигатели до эры преобразователей частоты регулировали за счет применения так называемого фазного ротора — когда ротор делался в виде обмотки, а не беличьей клетки, а через контактные кольца (как у синхронной машины) фазы ротора выводились наружу. Включая в цепь ротора резисторы можно было мягко пускать АД и безопасно регулировать частоту вращения, изменяя сопротивление. Проблема в том, что очень много энергии при этом терялось в резисторах — иногда до половины от подводимой к приводу мощности.

2. В статье не упомянуты синхронные реактивные машины и их совмещение с синхронными машинами с постоянными магнитами. Если сделать ротор синхронной машины с магнитами явнополюсным — например таким, как нарисован ротор SRD двигателя на gif анимации, то развиваемый момент может быть не только активным, но и реактивным — как у SRD. Подбирая оптимальное сочетание активного и реактивного момента можно частично исключить проблемы классической синхронной машины с магнитами, значительно расширив диапазон работы с постоянством мощности. Получается некий гибрид реактивной машины и синхронной с магнитами.

3. Шаговые двигатели не рассмотрены, потому что по принципу действия они в первом приближении схожи либо с синхронными машинами с постоянными магнитами, либо с SRD двигателями — зависит от конкретного типа шаговика. Только шаговые двигатели, в отличие от «силовых» приводов, имеют гораздо большее количество пар полюсов (зубцов) для увеличения коэффициента электрической редукции: чтобы одному периоду тока соответствовало меньшее угловое перемещение вала. Управление шаговиками обычно тривиальное — последовательный перебор фаз друг за другом (шаги). Более продвинутые системы дробят шаг, подавая в двигатель «микрошаги» — по сути приближая управление к синусоидальному. Еще более продвинутые используют датчик положения ротора и применяют полноценное векторное управление. Но в таком случае и машину нужно делать более качественную, а называться в сумме это будет уже настоящим сервоприводом.

Индукционный электродвигатель — Большая Энциклопедия Нефти и Газа, статья, страница 1

Индукционный электродвигатель

Cтраница 1

Индукционные электродвигатели превосходят размерами двигатели постоянного тока, но отсутствие коллектора делает их более надежными и уменьшает трение, а следовательно, и всегда имеющуюся в действительности ( хотя и не всегда учитываемую) зону нечувствительности.  [1]

Ткацкий станок, на основе индукционного электродвигателя по любому из предшествующих пунктов, осуществляющего рабочее перемещение челнока, причем челнок состоит из тонкой полоски неферромагнитного электропроводного материала, на которой укреплена челночная бобина.  [2]

Постоянство натяжения обеспечивается с помощью однофазного индукционного электродвигателя, работающего на режиме торможения.  [4]

При помощи зубчатого венца и шестерни 2 шпуля соединена с двухфазным индукционным электродвигателем 3, вращение которого направлено в сторону, противоположную вращению шпули от воздействия на нее провода при намотке. Электродвигатель питается пониженным ( не более 80 % от рабочего) напряжением. Провод при сматывании преодолевает стремление шпули, вызванное электродвигателем, поворачиваться по стрелке А, благодаря чему и создается требуемое натяжение провода.  [6]

После усиления этого сигнала он подается на питание обмотки управления ОУ двухфазного индукционного электродвигателя.  [7]

Я попробовал вставить в алюминиевую пластину, служившую подвижной частью, несколько постоянных магнитов, с помощью которых пластина могла разгоняться до номинальной скорости между двумя статорами линейного индукционного электродвигателя. Но в первых же двух испытаниях два комплекта так называемых постоянных магнитов совершенно размагнитились — а стоили они недешево.  [8]

Осенью 1888 г. Доливо-Добровольский, тогда еще молодой инженер, познакомился с содержанием доклада Феррариса и обратил свое внимание именно на ту часть доклада, где Феррарис делает вывод о практической непригодности индукционного электродвигателя. Доли — о — Доброволъекий не-согласился с таким выводом Феррариса.  [9]

Средняя часть ротора / / соединена с полостью внутреннего полукольца ротора / черпательной трубой ( пунктир), конец к-рой IV треугольного сечения загнут против направления потока вращаемой ротором / жидкости. Характеристика вращающего момента центробежной гидромуфты подобна характеристике трехфазного индукционного электродвигателя, ротор к-рого работает всегда с нек-рым скольжением.  [10]

Мое первое профессиональное изобретение, которое начало формироваться в моем сознании еще в студенческие годы, относилось к той самой не вполне обычной ситуации, когда теория опережает практику. Получив, если можно так выразиться, двойную порцию лекций по индукционным электродвигателям ( вначале в политехнической школе в Лондоне, где я проходил подготовку на звание офицера Королевских военно-воздушных сил, а затем в Манчестерском университете, куда я поступил после увольнения из армии в запас), я стал выделять их среди прочих электрических машин.  [11]

В начале работы по созданию нового типа электропривода для герметичной аппаратуры высокого давления важно было установить принципиальную возможность осуществления такого привода. В НИИТВЧ был испытан макет электродвигателя с экранированным ротором, специально изготовленный из обычного индукционного электродвигателя с короткозамкнутым ротором.  [12]

С предварительного усилителя сигнал поступает на основной усилитель, в качестве которого используют стандартный усилитель от электронного потенциометра. Этот усилитель имеет три ступени усиления напряжения и двухтактный усилитель мощности, который является фазочувствительным; он управляет работой двухфазного индукционного электродвигателя.  [13]

Электрооборудование — для работы с комплексными гидридами должно быть изготовлено во взрывобезопасном исполнении. Для этой цели удобно использовать индукционные электродвигатели. Одним из наиболее безопасных способов перемешивания является применение магнитных мешалок. В этом случае удобно использовать эрленмейеровские колбы с нормальным шлифом. Перемешивание проводится плоскими магнитами; при этом происходит также измельчение, что особенно важно для проведения реакций в гетерогенной среде.  [15]

Страницы:      1    2

Индукционный двигатель (однофазный) | Taiwantrade.com

Индукционный двигатель (однофазный)

single phase induction motor

Спецификация

  • Особенность : Drip-proof

Ключевые особенности

Номинальная постоянная работа

класс изоляции E

однофазный двигатель с низким уровнем шума

 

Платежные реквизиты для автономных заказов

  • Условия оплаты : TT
  • Минимальный заказ : 1 Единицы

Последнее обновление : 2016-03-10 Loading …

Your inquiry has been sent

Шаг 1Заполните формуШаг 2Завершение

Mr.Anderson Tseng , TAUNGLIX ELECTRICAL CO., LTD.

Сообщение

Вставьте шаблон

required0/1500

Загрузить файлы расширения: htm, html, doc, docx, pdf, txt, jpg, gif, png, odt, ods. Максимум 3 файла (10MB всего)

Общий размер:0

{{/if}} {{#ifCond ttLoginType 3}}

Подтвердите пароль

{{/ifCond}} {{#if isLogin}} Просмотреть и Изменить {{/if}}

Порекомендуйте подходящих поставщиков, если этот поставщик не свяжется со мной в течение 2 рабочих дней.

Please fill in all required fields.

OK

Китай 380v трехфазный 30KW индукционный электродвигатель Производители

380v трехфазный 30KW индукционный электродвигатель

Двигатель серии Y & Y2 полностью закрыт, а 3-фазный асинхронный двигатель с короткозамкнутым ротором охлажден вентилятором. Электродвигатель на 380 В заново разработан в соответствии с действующими правилами стандартов IEC и DIN42673. Моторы переменного тока, малый электрический двигатель, электрический двигатель 10 кВт

Типы продаж асинхронных двигателей широко используются в местах, где не существует горючего, взрывоопасного или агрессивного газа, и без каких-либо особых требований, таких как станки, насосы, вентиляторы, транспортные машины, смесители, сельскохозяйственные машины и пищевые машины и т. Д.

1 л.с. электродвигатель

Рабочее состояние

· Температура окружающей среды: -15 ℃ ≤θ≤40 ℃

· Высота: ≤1000 м

· Класс защиты: IP44

· Класс изоляции: B / F

· Номинальное напряжение: 220 В, другое напряжение по запросу

· Тип охлаждения: IC 0141

· Долг: Непрерывный (S1)

· Номинальная частота: 50 Гц, другая частота по запросу.

Замечания:

Напряжение и частота могут быть сделаны в соответствии с вашими требованиями. Если есть какие-либо вопросы или потребности, добро пожаловать к нам.

Упаковка и доставка

Вопросы-Ответы

Вопрос: вы предлагаете обслуживание OEM?

A: да

Вопрос: каков ваш срок оплаты?

A: 30% T / T заранее, баланс 70% при получении ч / б копии. Или безотзывный аккредитив.

Вопрос: каково ваше время?

A: около 30 дней после получения депозита или оригинального аккредитива.

Q: Какие сертификаты у вас есть?

A: у нас есть CE, ISO. И мы можем подать заявку на специальный сертификат для другой страны, такой как SONCAP для Нигерии, COI для Ирана, SASO для Саудовской Аравии и т. Д.

Наши услуги

Что мы делаем:
1. Штамповка ламинирования
2.Роторное литье
3. Обмотка и вставка — как вручную, так и полуавтоматически
4.Вакуумная лакировка
5. Обработка вала, корпуса, торцевых щитков и т. Д.
6.Роторная балансировка
7.Краска — как влажная краска, так и порошковое покрытие.
8.assembly
9.Packing
10. Проверка запасных частей каждой обработки
11,100% испытаний после каждого процесса и окончательного испытания перед упаковкой.

Группа Продуктов : Электродвигатель > Y2 Трехфазный электродвигатель с железным корпусом

Асинхронные двигатели переменного тока и мотор-редукторы

Однофазные асинхронные и мотор-редукторы переменного тока

Асинхронные двигатели переменного тока

оптимальны для однонаправленной и непрерывной работы, такой как конвейерная система. Все, что вам нужно, это подключить конденсатор и подключить двигатель к сети переменного тока, и двигатель можно будет легко использовать.

  • 1 Вт (1/750 л.с.) до 400 Вт (1/2 л.с.)
  • Мотор-редукторы с параллельным валом, прямоугольным сплошным валом, прямоугольным полым валом
    • Доступны выходные валы из нержавеющей стали
  • Круглый вал (без шестерни) Типы
  • Доступен электромагнитный тормоз
  • Однофазный 110/115 В переменного тока или однофазный 220-230 В переменного тока

Трехфазные асинхронные и мотор-редукторы переменного тока

Асинхронные двигатели переменного тока

оптимальны для однонаправленной и непрерывной работы, такой как конвейерная система.Все, что вам нужно, это подключить двигатель к сети переменного тока, и двигатель можно легко использовать.

  • 6 Вт (1/125 л.с.) до 3 л.с.
  • Мотор-редукторы с параллельным валом, прямоугольным сплошным валом, прямоугольным полым валом
    • Доступны редукторные двигатели h2, совместимые с пищевыми консистентными смазками
  • Круглый вал (без шестерни) Типы
  • Доступен электромагнитный тормоз
  • Трехфазный 200–230 В переменного тока или трехфазный 208/230/460 В переменного тока
  • Инверторы продаются отдельно

Асинхронные двигатели переменного тока и мотор-редукторы

На следующем рисунке показана конструкция асинхронного двигателя переменного тока.

1. Фланцевый кронштейн  Литой алюминиевый кронштейн с механической обработкой, запрессованный в корпус двигателя

2. Статор Состоит из сердечника статора из пластин электромагнитной стали, медной катушки с полиэфирным покрытием и изоляционной пленки

3. Корпус двигателя  Литой под давлением алюминий с механической обработкой внутри

4. Ротор  Пластины из электромагнитной стали с литым под давлением алюминием

5.Выходной вал  Предлагается с круглым валом и с валом-шестерней. Металл, используемый в валу, — S45C. Тип круглого вала имеет плоский вал (выходная мощность 25 Вт 1/30 л.с. или более), а тип вала-шестерни подвергается прецизионной чистовой обработке.

6. Шариковый подшипник

7. Отводы Отводы с термостойким полиэтиленовым покрытием

8. Окраска  Запекание из акриловой смолы или меламиновой смолы


Характеристики скорости и крутящего момента асинхронных двигателей

На приведенном ниже рисунке показаны характеристики скорость-момент асинхронных двигателей.

На холостом ходу двигатель вращается со скоростью, близкой к синхронной. По мере увеличения нагрузки скорость двигателя падает до уровня (P), при котором достигается баланс между нагрузкой и крутящим моментом двигателя (Tp). Если нагрузка увеличивается дальше и достигает точки М, двигатель не может генерировать больший крутящий момент и останавливается в точке R. Другими словами, двигатель может работать в стабильном диапазоне между M и O, в то время как диапазон между R и M подвержен нестабильности.

Асинхронные двигатели доступны двух типов: однофазные (с конденсатором) и трехфазные асинхронные двигатели.У однофазного двигателя пусковой момент обычно меньше рабочего момента, тогда как трехфазный двигатель имеет относительно больший пусковой момент.

Крутящий момент, создаваемый двигателем, изменяется пропорционально примерно удвоенному напряжению питания. Например, если 110 В подается на двигатель с номинальным напряжением 100 В, крутящий момент, создаваемый двигателем, увеличивается примерно до 120 %. В этом случае температура двигателя повысится и может превысить допустимый диапазон.Если к тому же двигателю подается 90 В, крутящий момент, создаваемый двигателем, снижается примерно до 80 %. В этом случае двигатель может не работать с автоматическим оборудованием должным образом. По вышеуказанным причинам напряжение источника питания должно поддерживаться в пределах ±10% от номинального напряжения. В противном случае, когда напряжение питания колеблется за пределами указанного выше диапазона, температура двигателя может подняться выше допустимого диапазона или крутящий момент двигателя может упасть, что приведет к нестабильной работе оборудования.

Асинхронный двигатель

(Этот документ состоит из двух основных частей: принцип работы и характеристики асинхронного двигателя)
Асинхронные двигатели или асинхронные двигатели часто называют рабочими лошадками отрасли. Это результат множества преимуществ асинхронного двигателя перед другими технологиями. Двигатель требует минимального обслуживания. Единственные детали, которые могут изнашиваться, это подшипники. Если асинхронный двигатель не используется чрезмерно (высокое напряжение, ток или механические воздействия), подшипники определяют срок службы асинхронного двигателя.В отличие от двигателя постоянного тока нет необходимости в угольных щетках для коммутации тока. Асинхронный двигатель можно легко изготовить, и при этом его цена относительно низка по сравнению с другими технологиями. Асинхронный двигатель не использует процесс сгорания для подачи энергии, поэтому нет необходимости (дозаправлять) топливом или воздухом. Охлаждение может быть интегрировано, чтобы асинхронный двигатель мог работать в герметично закрытой среде, например, под водой. Асинхронный двигатель имеет высокое отношение мощности к весу. Еще одним преимуществом является высокий пусковой крутящий момент, благодаря чему возможен запуск под нагрузкой.С момента разработки частотно-регулируемых приводов и систем векторного управления этот асинхронный двигатель также легко регулируется по скорости и крутящему моменту. Это дало массу возможностей в автоматизации процессов. В следующей статье объясняются принцип, характеристики и управление индукцией.

Принцип работы асинхронного двигателя



Принцип действия асинхронного двигателя состоит в том, чтобы создать вращающееся магнитное поле в статоре и индуцировать ток в роторе, так что оба элемента вместе создают мощность на роторе, что приводит к круговому движению с определенной скоростью и крутящим моментом.

Статор
Теоретически статор представляет собой трехфазную обмотку, разделенную на цилиндрической поверхности, так что при приложении трехфазного напряжения индуцируется вращающееся магнитное поле. Обмотки уложены в металлическую цилиндрическую конструкцию, чтобы направлять линии магнитного поля и предотвращать перемещение обмоток. Эта конструкция изготовлена ​​из ламинированных, перфорированных пластин. Это предотвращает циркуляцию сильных вихревых токов в статоре. Идеальной ситуацией является синусоидальное магнитное поле, но для объяснения принципов работы статора достаточно одной обмотки на фазу.Это показано на следующем рисунке.

Рисунок 1: Теоретическая конструкция статора с одной обмоткой на фазу


Рисунок 2: Трехфазный ток i s1 , i s2 и i s3 , который будет подключен к катушкам U, V и W

Здесь три обмотки сдвинуты на 120° так, чтобы они были симметричными. Обмотки часто называют пофазными; U 1 — U 2 , V 1 — V 2 и W 1 — W 2 .На этом рисунке есть два полюса на фазу. Три обмотки могут быть соединены по схеме звезда или треугольник. Это часто делается через перемычки вне асинхронного двигателя, потому что в зависимости от конфигурации такие характеристики, как ток, напряжение и направление вращения, меняются.

Рис. 3. Конфигурация «звезда-треугольник» с перемычками


Рисунок 4: Асинхронный двигатель в схеме звезды

На три обмотки подается трехфазное симметричное синусоидальное напряжение.Обмотки имеют определенную проводимость, так что через обмотки протекает трехфазный симметричный синусоидальный ток. Токи создают различные магнитные поля вокруг них. На рис. 5 показана эволюция этих магнитных полей за один период.

Рисунок 5: Магнитная ситуация в моменты времени с 1 по 7 (Рисунок 2)

Ток положительный при протекании со стороны 1 на сторону 2 (U 1 — U 2 , V 1 — V 2 и W 1 — W 2 ).Различные магнитные поля по фазам приводят к общему магнитному полю, показанному на рисунке mkl. Это магнитное поле вращается, в данном примере по часовой стрелке. Каждый период синуса напряжения магнитное поле совершает оборот на 360° через весь статор. Если разместить больше обмоток на фазу, так что создается 2*p полюсов на фазу, магнитные поля совершают оборот на 360°/p за период напряжения. Если частота системы напряжения f s , частота магнитного поля f s /p или количество оборотов в минуту

n с = (60f с ) / p
Как упоминалось ранее, предыдущая ситуация с одной обмоткой на фазу на полюс является упрощенной моделью.Фактическое распределение содержит больше обмоток на щель в статоре. По фазам это распределение выполняется как синусоида. Если линию с севера на юг по наведенному магнитному полю от фазы назвать опорной линией статора, то оптимальное распределение проводов N s для одной фазной катушки дается выражением:
n с = (N с / 2) sin α
Из этого выражения, в соответствии с выводом магнитной индукции в воздушном зазоре между статором и ротором, получим:
B δs1 (α) = (u 0 N s i s1 cos α) / 2δ
Также отсюда можно записать следующую формулу для эффективного значения магнитного поля в воздушном пространстве:
B δ = (3 N se u 0 I u ) / 4δ
Чтобы найти поток статора, индуктивность намагничивания и ЭДС индукции, воспользуйтесь предыдущими формулами и выражением для потока в одной обмотке.Итак, допустим один виток катушки U 1 — U 2 . Этот поворот составляет определенный угол α с базовой линией статора. Пусть статор имеет следующие характеристики: радиус r и осевую длину l. Тогда поток за один виток определяется по следующей формуле:
ф поворот = 2 В δ I r sin α
Из этого выражения можно найти максимум всего индукционного потока от катушки U 1 — U 2 , проинтегрировав его по всему распределению обмоток этой фазы:

Наведенный поток ф с1 пропорционален току намагничивания I u .Это включает в себя то, что поток и ток находятся в фазе. Отсюда можно определить индуктивность намагничивания как:

ЭДС индукции в одной катушке составляет:


Ротор
Ротор состоит из разных частей. Есть в основном два типа роторов. Асинхронные двигатели с фазным ротором имеют ротор, содержащий обычные трехфазные обмотки из изолированного провода. Другой тип, который будет использоваться далее в этой статье, — это асинхронный двигатель с короткозамкнутым ротором.Он имеет короткозамкнутый ротор. Для обоих типов кожух ротора состоит из перфорированных пластин. Они содержат прорези для трехфазных обмоток или короткозамкнутую клетку. Беличья клетка изготавливается из металлических (обычно медных или алюминиевых) стержней с соединением на обоих концах с короткозамкнутым металлическим кольцом. Вариации распространены, но принцип остается тем же. Процесс передачи крутящего момента в роторе основан на законе Фарадея и силе Лоренца. Объяснить процесс, происходящий в роторе. Представьте себе проводящую лестницу, сделанную из длинных металлических сторон и проводящих ступеней, как на рис. 6.

Рисунок 6: Лестничный эквивалент ротора

Ступени имеют длину l. Перпендикулярно над плоскостью, образованной ступенями и проводящей стороной, размещен постоянный магнит. Затем магнит перемещается параллельно сторонам по ступеням лестницы, не касаясь их. Магнит имеет определенное магнитное поле B и скорость v согласно лестнице. Если этот воображаемый эксперимент провести достаточно быстро, можно будет заметить несколько событий. В соответствии с законом Фарадея будет индуцироваться ЭДС, приводящая к возникновению напряжения на проводнике прямо под магнитом.

E = B.l.v
Это связано с тем, что проводник отсекает поток. Этот проводник образует вместе с боковинами лестницы и близлежащими проводящими ступенями замкнутый контур. Из-за напряжения на центральной ступени по этой петле будет протекать ток. Направление напряжения и тока таково, что противодействует изменению поля магнетита. В этом примере, если магнит движется вправо и его отрицательный полюс находится над лестницей, ток будет течь в центральном проводнике вперед и в соседних ступеньках назад.
Я = Е/Я
Где Z — импеданс, видимый потенциалом на центральном проводнике. Поскольку существует магнитное поле B, пересекающее ступеньку, и электрический ток, протекающий через ступеньку, на лестницу будет действовать сила Лоренца.
Ф=БИ

Рисунок 7: Ротор с короткозамкнутым ротором

Эта сила действует в том же направлении, что и движение магнита, потому что это индуцированная сила, которая противодействует ее источнику!. Если лестница может двигаться свободно, она начнет ускоряться, чтобы уменьшить разницу скоростей между лестницей и магнитом.Когда разница скоростей уменьшается, ЭДС уменьшается, что приводит к снижению силы тока, силы и ускорения. Если лестница и магнит движутся с одинаковой скоростью, сила будет равна нулю. Чтобы сделать шаг к асинхронному двигателю с короткозамкнутым ротором, ротор с короткозамкнутым ротором эквивалентен лестнице, которая согнута в цилиндр, а движущийся магнит заменен вращающимся магнитным полем за счет трехфазных обмоток. Такой цилиндр показан на рисунке 7. На этом примере объясняется принцип работы асинхронного двигателя.Исходя из формулы ЭДС в одной катушке можно провести аналогию.

E s1 = jw s ф s1 = jw s L 0 I u
Если пренебречь индуктивным и резистивным падением напряжения на катушке, ЭДС равна установленному напряжению U c1 . Вращающееся поле индуцирует ЭДС E r1-rest в обмотке ротора. Когда асинхронный двигатель не вращается, статор и ротор действуют как первичная и вторичная обмотки трансформатора.Обе частоты равны:
f r = f с
Обмотки связаны магнитным потоком, который действует как вращающееся поле. Как и в случае с реальным трансформатором, для асинхронного двигателя в этой ситуации без вращения можно определить коэффициент трансформации.
k = E s1 / E r1-остаток
Основное различие между асинхронным двигателем в этой ситуации и реальным трансформатором заключается в токе нулевой нагрузки.Из-за гораздо более высокого сопротивления асинхронного двигателя из-за воздушного зазора ток намагничивания и, тем самым, ток нулевой нагрузки значительно выше. В асинхронном двигателе этот ток составляет 20-50% от тока полной нагрузки, тогда как в реальном трансформаторе это лишь несколько процентов от тока полной нагрузки. Сила Лоренца, действующая на ротор, создает определенный крутящий момент на валу.

Этот крутящий момент максимален, когда ток ротора совпадает по фазе с магнитным потоком статора. Ток ротора сильно отстает от ЭДС ротора из-за его высокой собственной индуктивности.

tan φ = (wL r ) / R r
Это ситуация, когда ротор останавливается, например, когда асинхронный двигатель останавливается. Генерируемый крутящий момент на роторе вызовет ускорение. По мере увеличения скорости вращения ротора по направлению к скорости вращения магнитного поля, также называемой синхронной скоростью, ЭДС E r1 уменьшается точно так же, как и частота напряжения ротора f r . Если асинхронный двигатель достигнет синхронной скорости, на ротор больше не будет действовать сила, поэтому это невозможно.Вот почему асинхронный двигатель также называют асинхронным двигателем. При увеличении нагрузки скорость уменьшается, а крутящий момент увеличивается. В ситуации с нагрузкой, например, при номинальной нагрузке, скорость асинхронного двигателя обозначается буквой n.

Характеристики асинхронного двигателя

Слип
Из предыдущей главы ясно, что ротор никогда не может достичь той же скорости вращения, что и вращательное магнитное поле статора.Резюмируя: синхронная скорость потока статора n с зависит от частоты f с приложенного напряжения и числа пар полюсов p:

n с = (60f с ) / p
Поскольку ротор никогда не достигает этой скорости, определяется коэффициент, указывающий на относительную разницу между обеими скоростями. Этот коэффициент, скольжение g, определяется следующим образом:
g = (n с — n) / n с
Скольжение часто указывается в процентах.При постановке на систему координат скольжение будет иметь направление, противоположное скорости вращения ротора. Скольжение будет равно нулю, когда скорость ротора равна синхронной скорости, будет равно единице, если асинхронный двигатель стоит на месте, будет отрицательной во время генерации и будет больше единицы, когда вращающееся магнитное поле приложено в направлении, противоположном направлению вращения. ротора. Это электрическое торможение.

Характеристики ротора

Частота ротора
Частота ЭДС в роторе зависит от разности скорости вращения ротора и скорости магнитного поля в статоре:

f r = p(n s — n) / 60 = pn s g / 60 = f s g
ЭДС ротора
Когда ротор стоял на месте, разница! в скорости ротора и магнитного поля статора равна синхронной скорости.В этой ситуации ЭДС E r1-rest определяется как:
E = бульвар с
При вращении ротора с определенной скоростью n ЭДС, зависящая от разности скоростей, будет ниже:
E = Bl(v s — v r ) = gBlv s
Таким образом, при заданном скольжении g ЭДС в роторе определяется как:
E r = gE r1-остаток
Скорость магнитного поля ротора
В роторе течет ток за счет наведенного напряжения.Этот ток дает, согласно закону Гопкинсона, магнитодвижущую силу. Эта сила создает магнитное поле, которое из-за вращательного характера текущей системы также будет вращаться. Ранее было показано, что частота системы напряжения ротора f r пропорциональна частоте статора f s с коэффициентом скольжения g:
f r = gf s
Таким образом, скорость вращения магнитного поля ротора w r определяется следующими формулами:
w r = gw s = 2πf r
Сам ротор вращается со скоростью
w = (2πn/60) рад/с
Таким образом, w равно
. w = (1 — g)w с
Таким образом, когда скорость вращения ротора и его поле объединяются, результатом является магнитное поле ротора, которое вращается с той же синхронной скоростью в соответствии с опорной линией статора.
ш с = ш + ш г
Мощность и крутящий момент

Поток активной мощности
Чтобы лучше понять электрические процессы в асинхронном двигателе, полезно рассмотреть эквивалентную схему асинхронного двигателя, как показано на рисунке 8. Таким образом, гальванически развязанные процессы статора и ротора объединяются в одну электрическую эквивалентную схему одной фазы. Индекс s указывает количество статора, индекс r количество ротора. Акценты используются там, где количество ротора относится к статору.

Рисунок 8: Эквивалентная схема асинхронного двигателя

Помимо всех электрических параметров асинхронного двигателя основное назначение состоит в том, чтобы передать определенный крутящий момент на вал при определенной угловой скорости. Имея в виду электрические характеристики, можно рассмотреть блок-схему, показанную на рисунке 9. Напряжение U, приложенное к обмоткам, известно. В простых неуправляемых приложениях это напряжение сети. В процессах с частотным регулированием это напряжение, подаваемое преобразователем частоты.Асинхронный двигатель требует определенного тока I. Асинхронный двигатель имеет индуктивный характер из-за использования различных катушек. Это означает, что ток и напряжение в обмотках не совпадают по фазе. Хотя важно знать, какое приложенное напряжение влияет на изоляцию обмоток, напряжение для дальнейших отводов мощности не так важно.

Рис. 9: Поток мощности в асинхронном двигателе

Рис. 9 начинается с активной мощности, приложенной к статору

P e = √3U l I l cos φ = 3U p I p cos φ
Где φ — угол между вектором напряжения и тока в векторном представлении.Индексы I и p указывают, является ли используемая величина линейной или фазовой величиной. Далее используются фазовые величины, поскольку они согласуются с величинами статора. Из активной мощности, поступающей в асинхронный двигатель, первая часть теряется на тепло в обмотках статора. Эта часть, называемая потерями в меди статора P js , зависит от сопротивления статора и тока:
P js = 3I p 2 R s
Другая часть рассеивается в виде тепла в сердечнике статора.Эти потери представляют собой потери в стали из-за вихревых токов в сердечнике:
P f = 3V p 2 / R m ≈ 3V s 2 / R m
Оставшаяся часть мощности – это мощность зазора P r , которая передается от статора к ротору через воздушный зазор:
P r = 3(I r ) 2 R s ‘/g
Часть мощности промежутка рассеивается в виде тепла в обмотках ротора, называемого потерями в меди ротора:
P jr = 3(I r ) 2 R s ‘ =gR r
Теперь остается механическая мощность двигателя:
Р м = (1 — г) Р р
Часть механической мощности теряется из-за трения вращающихся и подвижных частей с воздухом и особенно неподвижных частей двигателя.Эта часть, обозначенная как P v , равна мощности без нагрузки:
P v = P без нагрузки
Из всех этих мощностей общий КПД асинхронного двигателя можно выразить как:
η = P из / P из = (P m — P v ) / (P m + P f + P js + P fr 90 / Р е
В таблице 1 приведены абсолютные и относительные значения нескольких величин асинхронных двигателей.Маленькие двигатели имеют мощность менее 11 кВт, большие двигатели — более 1100 кВт.
Нагрузка
Текущий родственник
Относительный крутящий момент
Относительное скольжение
Абсолютная эффективность
Абсолютный коэффициент мощности
Размер двигателя
Маленький
Большой
Маленький
Большой
Маленький
Большой
Маленький
Большой
Маленький
Большой
Полная загрузка
1
1
1
1
0.03
0,004
0,7-0,9
0,96-0,98
0,8-0,85
0,87-0,9
Без нагрузки
0,5
0,3
0
0
~0
~0
0
0
0.2
0,05
Заблокированный ротор
5-9
4-6
1,5-3
0,5-1
1
1
0
0
0,4
0.1

Кривая зависимости крутящего момента от скорости
Когда крутящий момент рассчитывается из мощности зазора P r и синхронной угловой скорости w s , можно предпринять следующие шаги, чтобы найти общее выражение для крутящего момента в зависимости от скорости:

Где
X r = w s σ r L 0
— индуктивность рассеяния ротора относительно статора.С этого момента все упомянутые термины … r заменены терминами … R для сохранения ясности. С
U с1 ≈ E с1 = φ с1 w с
Крутящий момент становится:
T = (3PR R / W R ) φ S1 S1 2 / ((R R / W R ) 2 + (Σ R L 0 ) 2 )
Максимальный крутящий момент достигается, когда
dT / dw r = 0 (это происходит, когда w r = R R / σ R L 0 )
Когда это вводится в формулу крутящего момента, это дает выражение максимального крутящего момента или крутящего момента пробоя:
T = 3pφ s1 2 / 2σ R L 0
Хорошее представление кривой крутящего момента в зависимости от скорости дано на рисунке 10.

Рисунок 10: Кривая зависимости крутящего момента от скорости асинхронного двигателя

На рисунке 10 также показано выражение для скорости при максимальном крутящем моменте. Как доказано ранее, пробивной момент достигается при скорости вращения ротора

w r = R R / σ R L 0
Скорость ротора дает разницу между синхронной скоростью и фактической скоростью. Таким образом, пробивной момент достигается при частоте вращения
w = w s — (1/p) R R / σ R L 0
или указано в оборотах в минуту RPM:
n b = n s — (30/πp) R R / σ R L 0
Скорость зависит от сопротивления ротора.Само значение пробивного момента не зависит от сопротивления ротора. Когда скорость ротора по эталонной линии статора выше синхронной скорости, значение скорости ротора w r становится отрицательным. Поток энергии будет от ротора к статору. Это происходит, когда ротор приводится в движение или асинхронная машина работает как генератор, а не двигатель. Необходимо учитывать, что крутящий момент, указанный в предыдущих выражениях, является крутящим моментом, поэтому потери ротора, потери на трение и потери на вентиляцию еще не учитываются.Теоретически асинхронный двигатель может передать максимальный крутящий момент нагрузке. В основном номинальный крутящий момент в 1,75-3 раза меньше. Это дает несколько эффектов. Номинальный ток будет ниже, рабочая точка, вероятно, будет намного более стабильной, номинальная скорость будет почти синхронной скоростью, а асинхронный двигатель будет поддерживать большой ускоряющий момент. На рисунке 11 визуализирована концепция ускоряющего момента.

Рисунок 11: Графический пример ускоряющего момента

Из состояния покоя нагрузка с противодействующим моментом T c1 будет ускоряться до точки P, где в каждый момент времени

T — T c1 = T α = J m dw/dt
Действительная причина этого последнего выражения будет объяснена далее в главе о механике.Если противодействующий момент 01f нагрузки следует курсу T c2 , асинхронный двигатель не может самостоятельно разогнать нагрузку. Чтобы получить более высокий пусковой и ускоряющий крутящий момент без использования асинхронного двигателя с завышенными характеристиками, решение состоит в том, чтобы иметь более высокое сопротивление ротора.

Это можно сделать снаружи асинхронного двигателя в случае асинхронного двигателя с фазным ротором или внутри двигателя при использовании асинхронного двигателя с двойной клеткой или стержней ротора с более высоким сопротивлением. Принцип обмотки ротора и стержня ротора с более высоким сопротивлением напрямую влияет на сопротивление ротора.Влияние на кривую зависимости крутящего момента от скорости показано на рис. 12.

Рис. 12: Крутящий момент в зависимости от скорости для различных значений сопротивления ротора

Опрокидывающий крутящий момент не изменяется, как было сказано ранее, только при действительно высоком сопротивлении. В фазном роторе с внешними зажимами сопротивления сопротивление можно регулировать, когда асинхронный двигатель работает на более высокой скорости, чтобы уменьшить скольжение. В двигателе с двойной клеткой две короткозамкнутые клетки установлены концентрично. Это показано на рисунке 13.Внутренняя клетка содержит толстые стержни и почти полностью окружена железным сердечником.

Обладает высокой индуктивностью и низким сопротивлением. Внешняя клетка состоит из более тонких стержней, расположенных близко к воздушному зазору между ротором и статором. Сопротивление выше, чем во внутренней клетке. Поток вокруг внешних стержней частично перекрывается в воздушном зазоре. Благодаря этому он имеет меньшую индуктивность. При запуске асинхронного двигателя скорость вращения ротора w r максимальна.

Рисунок 5.13: Принцип действия ротора с двойной клеткой

Важное значение имеет реактивное сопротивление ротора. Ток ротора будет высоким во внешней клетке и низким во внутренней клетке. Это клетка с более высоким сопротивлением, что означает более высокий момент ускорения. Когда асинхронный двигатель набирает скорость, скорость вращения ротора уменьшается и достигает небольшого значения (f r ~ от 1 до 4 Гц). Реактивное сопротивление больше не так важно, и ток будет в основном течь во внутренней клетке, потому что ее сопротивление намного ниже, чем во внешней клетке.Сопротивление ротора адаптируется полностью электрически. В основном возможны три ситуации, как показано на рис. 14. Первая кривая показывает асинхронный двигатель с низким сопротивлением ротора, меньшим пусковым моментом, но более высокой эффективностью. Вторая кривая иллюстрирует наиболее распространенный асинхронный двигатель с повышенным пусковым моментом. Третья кривая называется седловой кривой и используется, когда требуется действительно высокий пусковой момент, здесь пусковой момент может быть даже выше! пробивной крутящий момент.

Рисунок 5.14: Курсы крутящего момента ротора с двойной клеткой

Пусковой ток
Когда асинхронный двигатель запускается прямым подключением к сети, от сети требуется высокий пусковой ток. Кроме того, на нормальный периодический синусоидальный волновой ток будет накладываться сильный ток. Напряжение сетки подается на статор, пока ротор стоит на месте. Это эквивалентно принципу трансформатора с короткозамкнутой вторичной обмоткой. Когда асинхронный двигатель разгоняется, разница между ротором и статором уменьшается, и ЭДС индукции в роторе (вторичной обмотке эквивалентного трансформатора) уменьшается.Подобно принципу трансформатора, вторичный ток и тем самым первичный ток уменьшаются. Соотношение между пусковым током и номинальным током составляет от 3 до 7. Это сделано для ограничения воздействия на сеть и упрощения защиты асинхронного двигателя с помощью предохранителей.

Асинхронный двигатель

Я не являюсь производителем двигателей, за исключением модификации специального применения.Например, мы заменили несколько сотен моторов Национальной метеорологической службы, содержащихся в корпусе дипольной антенны. Существующий двигатель представлял собой однофазный синхронный двигатель с постоянным разделенным конденсатором, 110 вольт, 1800 об / мин. ТРЕБУЕТСЯ, из-за тахометра с обратной связью, установленного на двигателе для проверки скорости, поскольку эти приемники принимали данные о погодных условиях на верхних слоях атмосферы, от метеозондов, запущенных от двух до трех. раз в день. Расположение и отслеживание воздушных шаров было критически важным, если обратная связь тахометра отклонялась на один оборот в минуту [от 1800], электроника слежения не могла справиться с несоответствием.

Я пытался приобрести двигатели для этого приложения, но, поскольку двигатель был установлен вертикально в сплошном конусе, без вентиляции, плюс они были однофазными, с асинхронными синхронными роторами, учитывалось напряжение, и блоки были установлены от Гавайев до Гуама. во Флориду, через США и территории.

Я взял существующий однофазный двигатель PSC SYNCH MOTOR, который мало когда имел крутящий момент, либо оставался бы на 1800 об/мин, либо не работал бы до тепла.

Хотя им требовалось всего около 300 с лишним активных двигателей, им требовалось вдвое меньше, чем запасных частей, учитывая прошлую историю отказов и отсутствие возможности предоставлять точные и своевременные данные о погоде по точному маршруту.

Это был не случай чрезмерного ШУМА, это был случай воспринимаемого звука, он звучал по-другому, поэтому те, кто связан с любым правительственным агентством, знают, что форма, соответствие, функция — их мантра и предлог не принимать ничего.

У нас было несколько жалоб на шум, оказалось, что шум никоим образом не представлял опасности или вызывал беспокойство, просто был другим.

При тестировании 4, 6, 8, 2-полюсных двигателей на «шум» в контролируемой среде, это только данные из тех условий, на Диком Западе, эти условия будут меняться, монтаж, конструкция, все, что описано выше, будет влияют на уровни «шума» двигателя или воспринимаемые уровни «шума».

В связи с тем, что без нагрузки, тестирование [NEMA] не будет строгим, поскольку другие возможные более строгие испытания с другим типом параметров, если шум вызывает беспокойство, проводятся при полной нагрузке, которая также является переменной.

Что такое «скольжение» в асинхронном двигателе переменного тока?

 

AutoQuiz редактируется Джоэлом Доном, менеджером сообщества ISA в социальных сетях.

 

Этот вопрос викторины по отрасли автоматизации взят из программы сертификации ISA Certified Automation Professional (CAP).Сертификация ISA CAP обеспечивает беспристрастную, независимую, объективную оценку и подтверждение навыков специалиста по автоматизации. Экзамен CAP сосредоточен на направлении, определении, проектировании, разработке / применении, развертывании, документации и поддержке систем, программного обеспечения и оборудования, используемых в системах управления, производственных информационных системах, системной интеграции и операционном консалтинге. Щелкните эту ссылку для получения дополнительной информации о программе CAP.

 

«Проскальзывание» асинхронного двигателя переменного тока определяется как:

a) синхронная скорость минус скорость без нагрузки
b) разница между скоростью поля статора и скоростью ротора
c) номинальная скорость плюс синхронная скорость
d) скорость, при которой двигатель развивает крутящий момент
e) ничего из вышеперечисленного

 

Скольжение обычно выражается в процентах и ​​варьируется в зависимости от двигателя от номинального 0.5 процентов для очень больших двигателей и около 5 процентов для небольших специализированных двигателей. Если n s  это электрическая скорость статора, а n r  это механическая скорость ротора, скольжение, S, определяется как:

S = (n s  — n r ) / n s

Вращение двигателя развивается в асинхронном двигателе переменного тока под действием движущегося магнитного поля. Когда скорость ротора падает ниже скорости статора или синхронной скорости, скорость вращения магнитного поля в роторе увеличивается, вызывая больший ток в обмотках ротора и создавая больший крутящий момент.

Для создания крутящего момента требуется проскальзывание. Под нагрузкой скорость вращения ротора падает, а скольжение увеличивается настолько, что создается достаточный дополнительный крутящий момент для поворота нагрузки. Очень эффективным способом контроля скольжения является использование частотно-регулируемого привода

.

Правильный ответ: B , «разница между скоростью поля статора и скоростью ротора».

Ссылка Николас Сэндс, PE, CAP и Ian Verhappen, P.Eng., CAP. Руководство по своду знаний по автоматизации.Нажмите на эту ссылку, чтобы прочитать краткие вопросы и ответы авторов, а также скачать бесплатный 116-страничный отрывок из книги.

 

О редакторе
Джоэл Дон — менеджер сообщества ISA и независимый консультант по контент-маркетингу, социальным сетям и связям с общественностью. До своей работы в области маркетинга и PR Джоэл работал редактором региональных газет и национальных журналов по всей территории США. Он получил степень магистра в Школе Медилла Северо-Западного университета со специализацией в области науки, техники и биомедицинских маркетинговых коммуникаций, а также степень бакалавра. ученой степени Калифорнийского университета в Сан-Диего.

 

Связаться с Джоэлом

 

 

Трехфазный асинхронный двигатель — Simulink

Описание

Блок Induction Motor реализует трехфазный Индукционный двигатель. Блок использует трехфазные входные напряжения для регулируют отдельные фазные токи, позволяя управлять двигателем крутящий момент или скорость.

По умолчанию блок устанавливает Моделирование Введите параметр для Continuous для использования непрерывного шаг расчета во время моделирования.Если вы хотите сгенерировать код для двойного и цели с одинарной точностью, учитывая установку параметра на Дискретный . Затем укажите Sample Time, Ts параметр.

Трехфазная синусоидальная модель электрической системы

Блок реализует уравнения, которые выражаются в стационарной система отсчета ротора (qd). Ось d совпадает с осью а. Все величины в системе отсчета ротора относятся к статору.

Блок использует эти уравнения для расчета электрической скорости ( ω em ) и скорость скольжения ( ω проскальзывание ).

ωem=Pωmωslip= ωsyn−ωem

Для расчета электрической скорости ротора dq относительно оси А ротора ( dA ), блок использует разницу между скоростью оси статора ( da ) и скоростью скольжения:

Чтобы упростить уравнения для преобразования потока, напряжения и тока, блок использует стационарная система отсчета:

Расчет Уравнение
Поток

ddt[λsdλsq]= [vsdvsq]– Rs[isdisq]– ωda[0–110][λsdλsq]ddt[λrdλrq]= [vrdvrq]– Rr[irdirq]– ωdA[0–110][λrdλrq]

[λsdλsqλrdλrq]= [Ls00LsLm00LmLm00LmLr00Lr][isdisqirdirq]

Текущий

[isdisqirdirq]= (1Lm2- LrLs)[-Lr00-LrLm00LmLm00Lm-Ls00-Ls][λsdλsqλrdλrq]

Индуктивность
Электромагнитный крутящий момент

Te=PLm(isqird− isdirq)

Преобразование dq с инвариантом степени для обеспечения того, чтобы dq и трехфазные мощности равны

[vsdvsq] = 23 [cos(Θda)cos(Θda−2π3)cos(Θda+2π3)−sin(Θda)−sin(Θda−2π3)−sin(Θda+2π3)][vavbvc]

[iaibic] = 23  [cos(Θda)−sin(Θda)cos(Θda−2π3)cos(Θda+2π3)−sin(Θda−2π3)−sin(Θda+2π3)][isdisq]

В уравнениях используются эти переменные.

Ω Slip

5

5

dq Электрическая скорость статора относительно оси А ротора (рад/с)

5

Q- и D-Axis Inductives (H)

Индуктивность статора (H)

5

Статор Q- и D-ось оси (V)

Ω M

Ω EM

Электрическая скорость ротора / ы)

Ω SAN

Синхронная скорость ротора (RAD / S)

Ω DA

7

DQ Статор электрической скорости относительно ротора A-Axis (RAD / S)

Ω DA

Θ da

dq Статор электрический угол с уважением к ротору A-оси (RAD)

θ da

DQ Статор электрический угол по отношению к ротору A-AXIS (RAD)

L Q , L D

L S

L R

намагниченные индуктивности (H)

L ls

Индуктивность рассеяния статора (H)

L lr

течь ротора GE Inductance (h)

V

V SQ , V SD

I SQ , I SD

Статор Q- и D-ось оси (а)

λ SQ , λ SD

Статор Q- и D-Axis flux (WB)

I RQ , I RD

7

Rotor Q- и D-ось оси (A)

λ RQ , Λ RD

Rotor Q- и D-Axis (WB)

V A , V B , V C

Статор Фазы напряжения A, B, C (V)

I A , I , I B , I C 7

Статочные токи фазы A, B, C (A)

R S

Сопротивление обмоток статора (Ом)

R R

Сопротивление обмоток ротора (Ом)

P

Количество пар полюсов

Электромагнитный крутящий момент (Нм)

Механическая система

Угловая скорость двигателя определяется как:

ddtωm=1J(Te-Tf-Fωm-Tm)dθmdt=ωm

Уравнения используют эти переменные.2)

F

Комбинированное вязкое трение двигателя и нагрузки (N · M / (RAD / S))

θ M

Мотор Механическое угловое положение (Rad)

T

T

T

T

T

5

T E

Электромагнитный крутящий момент (NM)

T F

7

Ω M

Угловая механическая скорость двигателя (RAD / S)

Учет мощности

Для учета мощности блок реализует эти уравнения.

PwrBus

Описание Переменная Уравнения

PWRINFO

PwrTrnsfrd — Мощность, передаваемая между блоками

+ PwrMtr

Механическая мощность

Р MOT

Pmot = -ωmTe

Электрическая мощность

P автобус

Pbus= vania+ vbnib+vcnic

PwrNotTrnsfrd — Сила пересечения блока граница, но не передана

PwrElecLoss

потери резистивный мощности

Р элек

Pelec = — (Rsisd2 + Rsisq2 + -Rrird2 + Rrirq2)
PwrMechLoss

Механические потери мощности

P mech

Когда Конфигурация порта имеет значение Крутящий момент :

Pmech= −(ωm2F+ |ωm|Tf)

Когда Порт Конфигурация настроена на Скорость :

Pmech= 0 

PwrStored — Скорость изменения накопленной энергии

PWRMtrstored

хранимой моторной мощности

P утра

PSTR = PBUS + PMOT + PELEC + PMECH

Уравнения используют эти переменные.

9

5 Комбинированные моторные и загрузки крутящего момента трения (NM)

R

R S

67

Сопротивление статора (Ом)

R R

Моторное сопротивление (Ом)

я и , я б , i c

Ток фаз a, b и c статора (A)

i sq , i sd

Токи статора по оси q и d (A)

v и в бн , V CN

статора фаза A, B, и C напряжение (V)

ω M

Угловая механическая скорость ротора (RAD / S)

F

F

F

Комбинированный двигатель и нагрузка с вязкой демпфированием (N · M / (RAD / S))

T E

Электромагнитный крутящий момент (нм)

T F

Все о индукционных двигателях — то, что они и как они работают

преобразование электрической энергии в механическую энергию — и наоборот — оказало фундаментальное влияние на современный мир.Электростанции, робототехника, фабрики и многое другое использовали электродвигатели, чтобы полностью изменить темпы развития промышленности. Эти двигатели преобразуют электрический ток во вращательное движение, и в этой статье мы рассмотрим, как эта задача решается с помощью асинхронных двигателей. Эти двигатели представляют собой класс двигателей переменного тока, которые реализуют эффект электромагнитной индукции для создания вращательной энергии. Эти двигатели представляют собой мощные машины, которые доминируют в промышленном мире благодаря своей простой, но эффективной конструкции. В этой статье будут описаны функции, технические характеристики и области применения асинхронных двигателей, а также предложено, как выбрать лучший тип асинхронного двигателя для вашего проекта.

Что такое асинхронные двигатели?

Асинхронные двигатели — это тип двигателей переменного тока, изобретенных в конце 1800-х годов, и они представляют собой практическое применение науки об электромагнетизме. Эти двигатели состоят из статоров и роторов, которые являются неподвижными и вращающимися компонентами двигателя соответственно. Статор — корпус двигателя — содержит обмотки провода, подключенного к источнику переменного тока, а ротор — свободно движущийся «якорь» — устроен так, что может взаимодействовать с катушками статора посредством электромагнетизма.Свойства ротора зависят от типа асинхронного двигателя (беличья клетка, 3-фазный, обмотка и т. д.), но во всех случаях электромагнитное поле (ЭДС), создаваемое в статоре, индуцирует противодействующую ЭДС в роторе и, следовательно, создает энергия вращения от электромагнитной индукции.

Как работают асинхронные двигатели?

Несмотря на то, что асинхронные двигатели имеют элегантный дизайн, они обманчиво сложны в объяснении того, как они работают, поскольку они связаны с невидимой физикой электромагнетизма.

 Витки провода в статоре подключены к переменному току, который создает ЭДС вокруг движущихся зарядов в катушке в соответствии с законом Ампера. Переменный ток вызывает переключение направления тока в катушках, изменяя ориентацию ЭДС статора в фазе с частотой переменного тока. При правильном расчете переменный ток может создать кажущуюся «вращающуюся» ЭДС через этот статор, которая затем взаимодействует с обмотками ротора. В асинхронных двигателях вращающаяся ЭДС статора индуцирует противодействующую ЭДС в проводах ротора, заставляя его вращаться (в соответствии с законом Фарадея и законом Ленца).

Асинхронные двигатели часто называют «асинхронными» двигателями, потому что их частота вращения всегда ниже частоты переменного тока. Это несоответствие (известное как «скольжение») является результатом использования индукции для вращения ротора; скорость ротора, равная синхронной скорости (скорости, которая соответствует частоте переменного тока), приведет к отсутствию измеряемой индуктивности в катушках ротора и механического ускорения. Более подробную информацию по этим темам можно найти в нашей статье о типах двигателей переменного тока.

Технические характеристики асинхронного двигателя

Существуют некоторые важные характеристики при выборе асинхронного двигателя, и в следующих разделах кратко поясняются важные параметры, которые необходимо понимать.

Напряжение и частота переменного тока

Наиболее распространенное значение напряжения и частоты переменного тока составляет 115/120 В 60 Гц, что является стандартом для розеток в домашних условиях. Существуют и другие стандартные напряжения (208-230/240 В 60 Гц, 460/480 В 60 Гц и т. д.) для конкретных применений (освещение, промышленные машины и т. д.). Эти более высокие напряжения увеличат как возможности, так и размер двигателя, поскольку для большего тока потребуется больше проволочных обмоток для его эффективной передачи, но также увеличится выходная мощность.

Тип фазы

Электрическая сеть может подавать один переменный ток или несколько переменных токов, которые, так называемые, «не совпадают по фазе», что означает, что их частоты колебаний смещены друг относительно друга. Обычно это три тока одинаковой частоты, разделенные на 120 градусов, и это делается для того, чтобы токи создавали вращающуюся ЭДС при прохождении через катушки. Однофазные асинхронные двигатели используют только один переменный ток и, таким образом, «пульсируют» ЭДС, а не вращают ее. Таким образом, однофазные двигатели не запускаются самостоятельно, как трехфазные асинхронные двигатели, и их необходимо запускать с помощью конденсаторов или другого внешнего источника.Три тока переменного тока, используемые в трехфазных асинхронных двигателях, позволяют им самостоятельно запускаться, что является большим преимуществом. Для получения дополнительной информации о пусковых механизмах, не стесняйтесь читать нашу статью о типах пускателей двигателей.

Длительная выходная мощность

Механическая мощность двигателя, выраженная в ваттах или лошадиных силах, называется непрерывной выходной мощностью. Это значение может быть дробным, как в бытовых приборах, или довольно большим в более крупных двигателях. Это бесценный показатель, конечная цель которого — создать столько механической энергии, сколько необходимо для текущей работы.

Количество полюсов и базовая скорость

Индукционные полюса представляют собой пары север-юг в катушках статора, которые создают эффект вращения ротора и имеют четное число (2, 4, 6 и т. д.). Эти полюса влияют на скорость вращения, и уравнение, связывающее базовую скорость с полюсами, определяется как:

Поскольку число полюсов делится на входное напряжение и частоту, большее количество полюсов уменьшит скорость двигателя. Конструкторы могут захотеть увеличить количество полюсов, если им нужен более медленный двигатель, а также уменьшить количество полюсов для повышения скорости.Типичные значения скорости вращения асинхронных двигателей переменного тока составляют 3600 об/мин (2 полюса) и 1800 об/мин (4 полюса), но в зависимости от использования существуют и другие значения. Обратите внимание, что асинхронные двигатели не будут точно соответствовать этим скоростям из-за явления скольжения.

Непрерывный выходной крутящий момент и кривая крутящий момент-скорость

Крутящий момент — это «вращающая» сила, действующая по некоторому радиусу и измеряемая в фут-фунтах или Н-м. Из-за асинхронного характера асинхронных двигателей их крутящий момент варьируется от пусковой до установившейся скорости и представлен на графиках крутящий момент-скорость (см. пример, аннотированный ниже):

 

Пусковой крутящий момент — это начальный крутящий момент при запуске.Низкий пусковой крутящий момент подходит для малых нагрузок (вентиляторы, насосы), но может потребоваться указание, если высокая нагрузка присутствует при нулевой скорости (краны, автомобили и т. д.).

Подтягивающий крутящий момент — это наименьший полученный крутящий момент между скоростью запуска и скоростью полной нагрузки, и он может быть барьером для некоторых приложений, которым требуется минимальный крутящий момент на всем пути до работы с полной нагрузкой.

Момент отрыва или пусковой момент — это максимальный крутящий момент, достигаемый до того, как двигатель замедлится до установившихся условий.Этот крутящий момент необходимо понимать, если какой-то максимальный крутящий момент нельзя превзойти.

Номинальный крутящий момент определяет номинальную выходную мощность двигателя при скорости с полной нагрузкой. Существует полезное уравнение для получения номинального крутящего момента, если известны номинальная мощность и номинальная скорость:

  для английского языка или

.

для метрических

Также обратите внимание, что номинальная скорость меньше синхронной скорости, визуализируя эффект скольжения этих асинхронных двигателей.

Жилье и рабочая среда

Необходимо выбрать правильный корпус с учетом рабочей среды двигателя.NEMA и IEC разработали коды, которые стандартизируют эту защиту, включая открытый корпус, бескаркасный, полностью закрытый или устойчивый к пыли, воде или экстремальным температурам. Более подробную информацию об этих кодах можно найти в нашей статье все о двигателях.

Применение и критерии выбора

90% двигателей, используемых сегодня в промышленности, представляют собой асинхронные двигатели. В большинстве бытовых приборов используются асинхронные двигатели, хотя они, как правило, однофазные из соображений экономичности. Трехфазные асинхронные двигатели в основном используются в механизации и бывают двух основных разновидностей: двигатели с короткозамкнутым ротором и двигатели с фазным ротором (дополнительную информацию можно найти в наших статьях о двигателях с короткозамкнутым ротором и двигателях с фазным ротором).

Двигатели с круглой обмоткой

полезны в приложениях, требующих высокого пускового момента при низком пусковом токе и возможности регулирования скорости. Они находят применение в конвейерах, кранах, насосах, лифтах и ​​компрессорах.

Двигатели с короткозамкнутым ротором

имеют высокий КПД и, как правило, дешевле, чем двигатели с обмоткой. NEMA определила классы многофазных двигателей с короткозамкнутым ротором в зависимости от области применения, которые приведены ниже:

  • Двигатели класса А — нормальный пусковой момент, высокий пусковой ток, низкое скольжение, высокий КПД.Применение включает вентиляторы, воздуходувки, небольшие насосы и т. д.
  • Двигатели класса B — нормальный пусковой момент, низкий пусковой ток, малое скольжение. Области применения включают пускатели напряжения и приложения класса А.
  • Двигатели класса C
  • — высокий пусковой момент, низкий пусковой ток. Области применения включают компрессоры, конвейеры, поршневые насосы, дробилки и т. д.
  • Двигатели класса D
  • — самый высокий пусковой момент, низкий пусковой ток, высокое рабочее скольжение, низкий КПД. Области применения включают штамповочные прессы, бульдозеры, штамповочные машины, ударопрочные погрузочные машины и т. д.

Итак, как уже говорилось, при выборе правильного асинхронного двигателя для работы необходимо учитывать многое. Понимание напряжения, фазы, мощности, крутящего момента, скорости и форм-фактора поможет сузить область поиска, а определение уникальных характеристик вашего приложения поможет вам найти нужный двигатель.

Резюме

В этой статье представлено понимание того, что такое асинхронные двигатели и как они работают. Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу поиска поставщиков Thomas, чтобы найти потенциальные источники поставок или просмотреть сведения о конкретных продуктах.

Источники:
  1. https://geosci.uchicago.edu
  2. http://hyperphysics.phy-astr.gsu.edu/hbase/magnet/indmot.html
  3. http://www.egr.unlv.edu/~eebag/Induction%20Motors.pdf
  4. http://electricalacademia.com/induction-motor/torque-speed-characteristics-induction-motor/
  5. https://www.controleng.com/articles/what-to-consider-when-choosing-an-ac-induction-motor/
  6. http://ocw.uniovi.es

Другие товары для двигателей

Больше из Машины, инструменты и расходные материалы

Кто изобрел асинхронный двигатель

Асинхронный двигатель — одно из самых важных изобретений в современной истории.Она развернула колеса прогресса с новой скоростью и официально положила начало второй промышленной революции, резко повысив эффективность производства энергии и сделав возможным распределение электроэнергии на большие расстояния. Сегодня машины не только включают свет в вашем доме, но и питают многие механические гаджеты, которые люди считают само собой разумеющимися, от пылесосов и электрических зубных щеток до этой стильной модели Tesla Motors S.

. Один из оригинальных электродвигателей Теслы 1888 года. По сей день эта конструкция является основным генератором энергии для промышленности и бытовой техники.Фото: Wikimedia Commons

Первый асинхронный двигатель изобрел знаменитый Никола Тесла в 1887 году в своей мастерской на улице Свободы, 89, Нью-Йорк. Говорят, что этот одаренный изобретатель увидел свой двигатель переменного тока в один солнечный день в Будапеште в 1882 году, когда читал строфы из «Фауста» Гёте.

«В том возрасте я знала целые книги наизусть, слово в слово. Одним из них был «Фауст» Гёте. Солнце только что садилось и напомнило мне о великолепном пассаже «Sie ruckt und weicht, der Tag ist uberlebt, Dort eilt sie hin und fordert neues Leben».О, da kein Flugel mich vom Boden hebt Ihr nach und immer nach zu streben! Ein schöner Traum indessen sie entweicht, Ach, au des Geistes Flügeln wird so leicht Kein körperlicher Flügel sich gesellen!» Когда я произнес эти вдохновляющие слова, мысль пришла как вспышка молнии, и в одно мгновение истина открылась. Я нарисовал палочкой на песке схему, показанную шестью годами позже в моем выступлении перед Американским институтом инженеров-электриков, и мой спутник прекрасно их понял.

Образы, которые я видел, были удивительно четкими и четкими и обладали прочностью металла и камня, настолько, что я сказал ему: «Посмотри на мой мотор; смотреть, как я изменить его.Я не могу начать описывать свои эмоции. Пигмалион, увидев, что его статуя оживает, не мог быть более глубоко тронут. Тысячи тайн природы, на которые я мог бы наткнуться случайно, я отдал бы за ту, которую вырвал у нее вопреки всему и с риском для своего существования…»

Летом 1883 года, находясь в Париже, Тесла построил свой первый настоящий асинхронный двигатель и увидел, как он работает. Тесла отплыл в Америку в 1884 году и прибыл в Нью-Йорк с четырьмя центами в кармане, несколькими собственными стихами и расчетами для летательного аппарата.После нескольких случайных заработков он устроился к Томасу Эдисону, который поручил ему улучшить динамо-машину для его двигателя постоянного тока. Ни Эдисон, ни инвесторы Эдисона не интересовались планами Теслы по переменному току.

Как работает двигатель постоянного тока

В двигателе постоянного тока магнит, создающий магнитное поле, закреплен на месте и образует внешнюю статическую часть двигателя. Это называется статором. Катушка провода подвешена между полюсами магнита и подключена к источнику питания постоянного тока, например к батарее.Ток, протекающий по проводу, создает временное магнитное поле (это электромагнит), которое отталкивает поле от постоянного магнита, заставляя провод переворачиваться.

Обычно провод останавливается после одного поворота и снова переворачивается, однако ключевой компонент, называемый коммутатором, меняет направление тока каждый раз, когда провод переворачивается. Таким образом, провод может продолжать вращаться в одном и том же направлении до тех пор, пока по нему течет ток.

Двигатель постоянного тока был задуман Майклом Фарадеем в 1820-х годах, а десятилетие спустя Уильям Стерджен превратил его в практическое изобретение.

После ссоры с американским изобретателем Тесла покинул лабораторию Эдисона и в 1888 году стал партнером Джорджа Вестингауза, которому он продал патент на многофазную технологию переменного тока Теслы. Их партнерство стало очень прибыльным, они выиграли множество контрактов, в том числе на поставку электричества для Всемирной выставки в Чикаго в 1893 году.

Тем не менее, первый большой прорыв в двигателе переменного тока произошел, когда в том же году была выбрана многофазная конструкция переменного тока Теслы для использования энергии Ниагарского водопада.

Сам Тесла с детства мечтал овладеть силой великого чуда природы. В своей автобиографии «Мои изобретения» он рассказал:

«В классе было несколько механических моделей, которые меня заинтересовали и обратили мое внимание на водяные турбины».

Услышав описание великого Ниагарского водопада:

«Я представил в своем воображении большое колесо, вращающееся у водопада».

Он объявил своему дяде, что однажды «он поедет в Америку и осуществит этот план.

Патент США 382 279 на электромагнитный двигатель, выданный Николе Тесле в 1888 году.

Несмотря на пропаганду Эдисона, направленную на дискредитацию Теслы как изобретателя и альтернативного тока как жизнеспособной технологии — такие вещи, как публичные демонстрации, в которых животных жестоко убивали электрическим током с помощью переменного тока — проекты Теслы последовали естественный ход прогресса. Когда постоянный ток проходит по линиям электропередачи, накопленное сопротивление в проводах значительно снижает электрическую мощность, подаваемую потребителю.Переменный ток, с другой стороны, не несет таких потерь и способен преодолевать большие расстояния с гораздо меньшей потерей потенциала. Напряжение переменного тока также может увеличиваться или уменьшаться с помощью трансформаторов, поэтому электроэнергия может производиться с большой мощностью на электростанциях, а затем уменьшаться прямо в точке местного распределения.

Как работает двигатель переменного тока

Переменный ток меняет свое направление примерно 50 раз в секунду (~50 Гц), поэтому конструкция электрического двигателя должна радикально отличаться от конструкции двигателя постоянного тока.

В двигателе переменного тока статор состоит из кольца пар электромагнитов, создающих вращающееся магнитное поле. В отличие от двигателя постоянного тока, в котором мощность передается на внутренний ротор, в двигателе переменного тока мощность передается на эти электромагниты для создания поля. Блестящий трюк заключается в том, чтобы подавать питание на электромагниты одновременно, попарно. Когда одна пара полностью активна, другая полностью отключается.

Когда катушки находятся под напряжением, они создают магнитное поле, которое индуцирует электрический ток в роторе, который является электрическим проводником в соответствии с законом Фарадея.Новый ток создает собственное магнитное поле, которое пытается противодействовать полю, создавшему его в первую очередь, в соответствии с законом Ленца. Эта игра в догонялки между двумя магнитными полями и есть то, что в конечном итоге вращает ротор.

В 20-м веке во всем мире произошло массовое распространение электроэнергии. В первом десятилетии века, например, большой считался энергоблок мощностью 25 000 киловатт. Но к 1930 году самая большая установка в Соединенных Штатах имела мощность 208 000 киловатт, а давление превышало 1 200 фунтов на квадратный дюйм.Из-за эффекта масштаба цена за киловатт-час электроэнергии резко упала, что в конечном итоге помогло электрифицировать всю страну. И когда в нашем распоряжении было так много энергии, мир внезапно оказался готов к технологическому расцвету.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *