Как переделать 3 фазный двигатель на 220: Включение 3-х фазного двигателя в однофазную сеть, от теории к практике

Содержание

Как переделать 3 фазный электродвигатель на однофазный

Работа любого трехфазного асинхронного двигателя рассчитана на два основных напряжения, присутствующих в трехфазной сети, из которых чаще всего встречаются номинальные значения в 380 или 220 вольт. При возникновении определенных ситуаций, нередко возникает вопрос, как переделать трехфазный двигатель для подключения в однофазную сеть.

Как переделать электродвигатель с 380 на 220

Электродвигатель переключается с одного вида напряжения на другой при помощи специальных подключений обмоток. Для 380-ти вольт – это положение «звезда», а для 220-ти вольт применяется «треугольник». На практике, схема переключения «звезда-треугольник» осуществляются с помощью специальных колодок подключения, установленных на двигателе. Колодка имеет шесть выводов, соединенных перемычками в определенном порядке.

При отсутствии в двигателе колодок и наличии шести выводов, провода собираются в пучки, по три вывода в каждом. Один пучок содержит в себе начало обмотки, а другой пучок является концом обмотки, то есть обмотки последовательно соединяются между собой.

Таким образом, вопрос, как переделать трехфазный двигатель для подключения в однофазную сеть, технически вполне решаемый. Однако, применяемые в цепи конденсаторы, вовсе не способствуют нормальной работе электродвигателя. Конечно, электродвигатель будет работать, но его максимальная мощность будет составлять всего 70% от номинальной.

Пусковой момент находится в прямой зависимости от величины пусковой емкости конденсатора. Постоянно изменяющаяся нагрузка вызывает определенные сложности при подборе оптимальной емкости. Применение трехфазного двигателя в однофазной сети является вынужденной мерой, хотя во многих ситуациях, это единственный выход.

Расчет емкости конденсатора

Формулы, позволяющие рассчитать рабочую емкость конденсатора, в данном случае не могут быть использованы по следующим причинам:

  • Электродвигатель почти не работает с номинальной мощностью, и в случае недогрузки он будет перегреваться. Это произойдет из-за того, что конденсатор обладает излишней емкостью, а это увеличивает в обмотке силу тока.
  • Номинальная и фактическая емкость конденсатора различаются между собой на 20%, что отмечено на корпусе. На практике, это значение гораздо больше, поэтому, конденсатор следует подбирать для каждого конкретного двигателя, таким образом, выравнивая значение токов.

Любая однофазная электрическая сеть работает от напряжения 220 вольт, поэтому двигатель подключается с применением схемы «треугольника». Запускать двигатель без нагрузки можно только с одним рабочим конденсатором.

Асинхронные трехфазные двигатели, а именно их, из-за широкого распространения, часто приходится использовать, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку. Обмотки могут быть соединены по схеме «звезда» (концы обмоток соединены между собой, к их началам подводится питающее напряжение) или «треугольник» (концы одной обмотки соединены с началом другой).

В распределительной коробке контакты обычно сдвинуты — напротив С1 не С4, а С6, напротив С2 — С4.

При подключении трехфазного двигателя к трехфазной сети по его обмоткам в разный момент времени по очереди начинает идти ток, создающий вращающееся магнитное поле, которое взаимодействует с ротором, заставляя его вращаться. При включении двигателя в однофазную сеть, вращающий момент, способный сдвинуть ротор, не создается.

Среди разных способов подключения трехфазных электродвигателей в однофазную сеть наиболее простой — подключение третьего контакта через фазосдвигающий конденсатор.

Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть. К сожалению, этого нельзя сказать о мощности, потери которой достигают значительных величин. Точные значения потери мощности зависят от схемы подключения, условий работы двигателя, величины емкости фазосдвигающего конденсатора. Ориентировочно, трехфазный двигатель в однофазной сети теряет около 30-50% своей мощности.

Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно — если не считать потери мощности. В основном для работы в однофазных сетях используются асинхронные двигатели с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).

Асинхронные трехфазные двигатели рассчитаны на два номинальных напряжения сети — 220/127, 380/220 и т.д. Наиболее распространены электродвигатели с рабочим напряжением обмоток 380/220В (380В — для «звезды», 220 — для «треугольника). Большее напряжение для «звезды», меньшее — для «треугольника». В паспорте и на табличке двигателей кроме прочих параметров указывается рабочее напряжение обмоток, схема их соединения и возможность ее изменения.

Обозначение на табличке А говорит о том, что обмотки двигателя могут быть подключены как «треугольником» (на 220В), так и «звездой» (на 380В). При включении трехфазного двигателя в однофазную сеть желательно использовать схему «треугольник», поскольку в этом случае двигатель потеряет меньше мощности, чем при подключении «звездой».

Табличка Б информирует, что обмотки двигателя подсоединены по схеме «звезда», и в распределительной коробке не предусмотрена возможность переключить их на «треугольник» (имеется всего лишь три вывода). В этом случае остается или смириться с большой потерей мощности, подключив двигатель по схеме «звезда», или, проникнув в обмотку электродвигателя, попытаться вывести недостающие концы, чтобы соединить обмотки по схеме «треугольник».

Начала и концы обмоток (различные варианты)

Самый простой случай, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме «треугольник». В этом случае нужно просто подсоединить токоподводящие провода и рабочий и пусковой конденсаторы к клеммам двигателя согласно схеме подключения.

Если в двигателе обмотки соединены «звездой», и имеется возможность изменить ее на «треугольник», то этот случай тоже нельзя отнести к сложным. Нужно просто изменить схему подключения обмоток на «треугольник», использовав для этого перемычки.

Определение начал и концов обмоток. Дело обстоит сложнее, если в распределительную коробку выведено 6 проводов без указания об их принадлежности к определенной обмотке и обозначения начал и концов. В этом случае дело сводится к решению двух задач (Но прежде чем этим заниматься, нужно попробовать найти в Интернете какую-либо документацию к электродвигателю. В ней может быть описано к чему относятся провода разных цветов.):

  • определению пар проводов, относящихся к одной обмотке;
  • нахождению начала и конца обмоток.

Первая задача решается «прозваниванием» всех проводов тестером (замером сопротивления). Если прибора нет, можно решить её с помощью лампочки от фонарика и батареек, подсоединяя имеющиеся провода в цепь последовательно с лампочкой. Если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Таким способом определяются три пары проводов (A, B и C на рисунке ниже) относящихся к трем обмоткам.

Вторая задача (определение начала и конца обмоток) несколько сложнее и требует наличия батарейки и стрелочного вольтметра. Цифровой не годится из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1 и 2.

К концам одной обмотки (например, A) подключается батарейка, к концам другой (например, B) — стрелочный вольтметр. Теперь, если разорвать контакт проводов А с батарейкой, стрелка вольтметра качнется в ту или иную сторону. Затем необходимо подключить вольтметр к обмотке С и проделать ту же операцию с разрывом контактов батарейки. При необходимости меняя полярность обмотки

С (меняя местами концы С1 и С2) нужно добиться того, чтобы стрелка вольтметра качнулась в ту же сторону, как и в случае с обмоткой В. Таким же образом проверяется и обмотка А — с батарейкой, подсоединенной к обмотке C или B.

В итоге всех манипуляций должно получиться следующее: при разрыве контактов батарейки с любой из обмоток на 2-х других должен появляться электрический потенциал одной и той же полярности (стрелка прибора качается в одну сторону). Теперь остается пометить выводы одного пучка как начала (А1, В1, С1), а выводы другого — как концы (А2, В2, С2) и соединить их по необходимой схеме — «треугольник» или «звезда» (если напряжение двигателя 220/127В).

Извлечение недостающих концов. Пожалуй, самый сложный случай — когда двигатель имеет соединение обмоток по схеме «звезда», и нет возможности переключить ее на «треугольник» (в распределительную коробку выведено всего лишь три провода — начала обмоток С1, С2, С3) (см. рисунок ниже). В этом случае для подключения двигателя по схеме «треугольник» необходимо вывести в коробку недостающие концы обмоток С4, С5, С6.

Чтобы сделать это, обеспечивают доступ к обмотке двигателя, сняв крышку и, возможно, удалив ротор. Отыскивают и освобождают от изоляции место спайки. Разъединяют концы и припаивают к ним гибкие многожильные изолированные провода. Все соединения надежно изолируют, крепят провода прочной нитью к обмотке и выводят концы на клеммный щиток электродвигателя. Определяют принадлежность концов началам обмоток и соединяют по схеме «треугольник», подсоединив начала одних обмоток к концам других (С1 к С6, С2 к С4, С3 к С5). Работа по выводу недостающих концов требует определенного навыка. Обмотки двигателя могут содержать не одну, а несколько спаек, разобраться в которых не так-то и просто. Поэтому если нет должной квалификацией, возможно, не останется ничего иного, как подключить трехфазный двигатель по схеме «звезда», смирившись со значительной потерей мощности.

Схемы подключения трехфазного двигателя в однофазную сеть

Обеспечение пуска. Пуск трехфазного двигателя без нагрузки можно осуществлять и от рабочего конденсатора (подробнее ниже), но если электродвигатель имеет какую-то нагрузку, он или не запустится, или будет набирать обороты очень медленно. Тогда для быстрого пуска необходим дополнительный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже). Пусковые конденсаторы включаются только на время пуска двигателя (2-3 сек, пока обороты не достигнут примерно 70% от номинальных), затем пусковой конденсатор нужно отключить и разрядить.

Удобен запуск трехфазного двигателя с помощью особого выключателя, одна пара контактов которого замыкается при нажатой кнопке. При ее отпускании одни контакты размыкаются, а другие остаются включенными — пока не будет нажата кнопка «стоп».

Реверс. Направление вращения двигателя зависит от того, к какому контакту («фазе») подсоединена третья фазная обмотка.

Направлением вращения можно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному тумблеру, соединенному двумя своими контактами с первой и второй обмотками. В зависимости от положения тумблера двигатель будет вращаться в одну или другую сторону.

На рисунке ниже представлена схема с пусковым и рабочим конденсатором и кнопкой реверса, позволяющая осуществлять удобное управление трехфазным двигателем.

Подключение по схеме «звезда». Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.

Конденсаторы. Необходимая емкость рабочих конденсаторов для работы трехфазного двигателя в однофазной сети зависит от схемы подключения обмоток двигателя и других параметров. Для соединения «звездой» емкость рассчитывается по формуле:

Для соединения «треугольником»:

Где Ср — емкость рабочего конденсатора в мкФ, I — ток в А, U — напряжение сети в В. Ток рассчитывается по формуле:

Где Р — мощность электродвигателя кВт; n — КПД двигателя; cosф — коэффициент мощности, 1.73 — коэффициент, характеризующий соотношение между линейным и фазным токами. КПД и коэффициент мощности указаны в паспорте и на табличке двигателя. Обычно их значение находится в диапазоне 0,8-0,9.

На практике величину емкости рабочего конденсатора при подсоединении «треугольником» можно посчитать по упрощенной формуле C = 70•Pн, где Pн — номинальная мощность электродвигателя в кВт. Согласно этой формуле на каждые 100 Вт мощности электродвигателя необходимо около 7 мкФ емкости рабочего конденсатора.

Правильность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. Если её значение оказалось больше, чем требуется при данных условиях работы, двигатель будет перегреваться. Если емкость оказалась меньше требуемой, выходная мощность электродвигателя будет слишком низкой. Имеет резон подбирать конденсатор для трехфазного двигателя, начиная с малой емкости и постепенно увеличивая её значение до оптимального. Если есть возможность, лучше подобрать емкость измерением тока в проводах подключенных к сети и к рабочему конденсатору, например токоизмерительными клещами. Значение тока должно быть наиболее близким. Замеры следует производить при том режиме, в котором двигатель будет работать.

При определении пусковой емкости исходят, прежде всего, из требований создания необходимого пускового момента. Не путать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.

Если по условиям работы пуск электродвигателя происходит без нагрузки, то пусковая емкость обычно принимается равной рабочей, то есть пусковой конденсатор не нужен. В этом случае схема включения упрощается и удешевляется. Для такого упрощения и главное удешевления схемы, можно организовать возможность отключения нагрузки, например, сделав возможность быстро и удобно изменять положение двигателя для ослабления ременной передачи, или сделав для ременной передачи прижимной ролик, например, как у ременного сцепления мотоблоков.

Пуск под нагрузкой требует наличия дополнительной емкости (Сп) подключаемой на время запуска двигателя. Увеличение отключаемой емкости приводит к возрастанию пускового момента, и при некотором определенном ее значении момент достигает своего наибольшего значения. Дальнейшее увеличение емкости приводит к обратному результату: пусковой момент начинает уменьшаться.

Исходя из условия запуска двигателя под нагрузкой близкой к номинальной, пусковая емкость должна быть в 2-3 раза больше рабочей, то есть, если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора должна быть 80-160 мкФ, что даст пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Но если двигатель имеет небольшую нагрузку при запуске, емкость пускового конденсатора может быть меньше или, как писалось выше, его вообще может не быть.

Пусковые конденсаторы работают непродолжительное время (всего несколько секунд за весь период включения). Это позволяет использовать при запуске двигателя наиболее дешевые пусковые электролитические конденсаторы, специально предназначенные для этой цели (http://www.platan.ru/cgi-bin/qweryv.pl/0w10609.html).

Отметим, что у двигателя подключенного к однофазной сети через конденсатор, работающего без нагрузки, по обмотке, питаемой через конденсатор, идет ток на 20-30% превышающий номинальный. Поэтому, если двигатель используется в недогруженном режиме, то емкость рабочего конденсатора следует уменьшить. Но тогда, если двигатель запускался без пускового конденсатора, последний может потребоваться.

Лучше использовать не один большой конденсатор, а несколько поменьше, отчасти из-за возможности подбора оптимальной емкости, подсоединяя дополнительные или отключая ненужные, последние можно использовать в качестве пусковых. Необходимое количество микрофарад набирается параллельным соединением нескольких конденсаторов, исходя из того, что суммарная емкость при параллельном соединении подсчитывается по формуле: Cобщ = C1 + C1 + . + Сn.

В качестве рабочих используются обычно металлизированные бумажные или пленочные конденсаторы (МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60). Допустимое напряжение должно не менее чем в 1,5 раза превышать напряжение сети.

Все пояснения и результат на видео.Приятного просмотра ;

Смотрите также

Комментарии 60

Дискуссия с «Marsik1988 ом» навела меня на мысль, а не снять ли ролик про определение начала и конца обмотки эл-дв . Ведь есть некоторые товарищи которые полагают что электричество позволяет безграничные эксперименты. Забыл привести пример о том, как одни мои знакомые лет пять тому назад, запускали эл. дв. 75квт-1500 забыв проверить начало, конец итог был печальным .Токи близки к сварочным, рубильник выгорел напрочь, движок чуть не сгорел .Короче слава Богу никто не пострадал.

Хорошо бы схему, по куче проводов ничего не понятно.

radiostroi.ru/index.php/dliaavfto/95—3-220-.html тут описание есть полное по подключению трехфазников.

Теория вещь сильная .Только как она вяжется с результатами моего Експеримента.

3000 об/мин с такой щеткой, опасное занятие.

Можно и ежиком стать)

3000 об/мин с такой щеткой, опасное занятие.

точно, а то как бы потом любоваться одним глазом не пришлось =(

а что будет, если использовать экипировку для безопасности?

3000 об/мин с такой щеткой, опасное занятие.

Щетка как хорошая нагрузка для испытаний. К тому-же наглядней не придумаеш.А для глаз есть очки.

«Знакомый попросил поставить на него щётку «, какая нагрузка для испытаний?
Не завидую вашему соседу, даже если он в очках будет, такая проволока протыкает и рукавицы о одежду, не говоря об незащищенных частях тела.

Т.е. для Вас этого мало.

Я не собираюсь работать с вашим чудо изобретением, сосед возможно поблагодарит потом.

Я не про щетку тут толкую если Вы еще не поняли.

3000 об/мин с такой щеткой, опасное занятие.

Ничего не будет если в очках — работаю болгаркой, которая мощнее этого двигателя, обороты 6500, мелкие щетки, крацовки, радиальные, торцевые, круги с липучкой. один раз дешевый прямой круг с проволочной щеткой попался, когда он износился, я был как ёжик — повытаскивал из одежды проволоку, и дальше за дело.

а как определить что с чем соединять ?

Схема по сути стандартная .Главное воплощение (нюансы).

в данной теме дуб

А что тут нового или не известного?

А что тут нового или не известного?

Кстати, низкооборотники легче запускаются.

Кстати, низкооборотники легче запускаются.

Естественно чем больше полюсов у двигателя тем насыщенней будет магнитное поле. Поэтому эл-дв на 3000 об/мин имеет всего два полюса а 700тник аж восемь. Трёх тысячники вылазят на инерции ротора и оснастки, и если не дай бог, при хорошей нагрузке обороты упадут ниже критических и вы не успеете выключить движок, минимум подпалите а максимум хана. Не забывайте учитывать тот факт что современное эл. оборуд. Изготавливается на пределе возможностей т.е. без запаса прочности. Экономия на всём.Тем более что на рынке 70% продукции китайского производства которое даже в перемотку не все берут. Но хуже всего с качеством у Украинской продукции и майдан тут не причом. Для примера .Ещё два года назад собрал наждак на эл-дв 2.2к-3000 об/мин Укр-го. пр-ва. запускаю и наблюдаю следующий прикол .Двигатель работает, а наждак еле-еле крутится. Вопрос знатокам; в чем было дело?Ни за что не догадаетесь.

А что тут нового или не известного?

А что тут нового или не известного?

Вы не представляете сколько народа тупо собирают огромные ящики с конденсаторами. У большинства сложилось чёткая формула 70мкф на 1 квт рабочий и плюс ещё в три раза пусковых. Нахрена попу гармонь .Сколько раз слышал как народ жалуется на то что двигателя греются. Тем более повторюсь о том что ГОСТ канул лету и заводы (70% китайских) лепят каждый по своему т.е. характеристики не предсказуемые. О чем говорить если на завод отправляют бракованную партию движков у которых ток холостого хода совпадает с рабочим, а с завода приходит ответ что так и надо. Возвращаясь к нашим баранам, я предлагаю не ходить по минному полю и не собирать ящики со снарядами. Все можно сделать аккуратно и компактно .

Ну не для всех двигателей подходит данный набор кондёров!

подключал несколько моторов разной мощности 380В 3ф от 220В 1ф

собираю треугольник из обмоток(если просто 6 концов торчит в клемнике, то нужно ОБЯЗАТЕЛЬНО найти начало и конец обмотки и учитывать их последовательность). имею три провода из мотора, к примеру один на фазу, другой на ноль, а вот третий провод садим на емкость, которую соединяем с фазой или 0 (первый или второй провода) и все!

главное опытным путем подобрать емкость.емкости берутся от 250 вольт, можно и 200 но это в крайнем случае. подбирается на 1 кВт примерно по 30мкФ.

потом нужно ловить чтоб и запускался нормально(будет плавный запуск на 1-2 сек и нельзя давать в этот момент нагрузку) и при вращении не грелся.

вот! это реально полезно знать.как найти начало и конец обмоток. показывайте от и до.

лично я вызваниваю обмотки.их 3 штуки и найти любой сможет. далее методом тыка(серьезно) подключаю к 380В звездой. меняю поочередно обмотки.

вся фишка в том, что если подключить ненормально, то мотор то запустится отлично, но будет некий гул, нужен опыт чтоб определить как магнитные поля против друг друга бегают по статору. если опыта нет, то просто включаем и ждем. через минутку мотор уже будет теплым или даже горячим, даем остыть, помечаем как были провода и меняем пару проводов, снова включаем

я же это все определяю на слух и по паразитным вибрациям через 5 сек после включения. очень актуально для мелких моторов до 2-3 кВт. все, что выше уже сложнее

Таким ебразом 3-х тысчник, Вы ухандокаете за секунды и даже не заметете как спровоцируете межвитковое.Для определения начала и конца есть много гораздо безопасных способов.Стелочный тестер и батарейка, маломощный транс вольт так на 30-40 и вольтметр и т.д.

все насосы на воду, которые я подключал после перемотки успешно это выдержали. горят только по причине износа пускателя или клина насоса. не по вине виткового или подобного

я что-то не могу представить как же этим набором определить начало и конец обмоток

подключал несколько моторов разной мощности 380В 3ф от 220В 1ф

собираю треугольник из обмоток(если просто 6 концов торчит в клемнике, то нужно ОБЯЗАТЕЛЬНО найти начало и конец обмотки и учитывать их последовательность). имею три провода из мотора, к примеру один на фазу, другой на ноль, а вот третий провод садим на емкость, которую соединяем с фазой или 0 (первый или второй провода) и все!

главное опытным путем подобрать емкость.емкости берутся от 250 вольт, можно и 200 но это в крайнем случае. подбирается на 1 кВт примерно по 30мкФ.

потом нужно ловить чтоб и запускался нормально(будет плавный запуск на 1-2 сек и нельзя давать в этот момент нагрузку) и при вращении не грелся.

подключал несколько моторов разной мощности 380В 3ф от 220В 1ф

собираю треугольник из обмоток(если просто 6 концов торчит в клемнике, то нужно ОБЯЗАТЕЛЬНО найти начало и конец обмотки и учитывать их последовательность). имею три провода из мотора, к примеру один на фазу, другой на ноль, а вот третий провод садим на емкость, которую соединяем с фазой или 0 (первый или второй провода) и все!

главное опытным путем подобрать емкость.емкости берутся от 250 вольт, можно и 200 но это в крайнем случае. подбирается на 1 кВт примерно по 30мкФ.

потом нужно ловить чтоб и запускался нормально(будет плавный запуск на 1-2 сек и нельзя давать в этот момент нагрузку) и при вращении не грелся.

подключал несколько моторов разной мощности 380В 3ф от 220В 1ф

собираю треугольник из обмоток(если просто 6 концов торчит в клемнике, то нужно ОБЯЗАТЕЛЬНО найти начало и конец обмотки и учитывать их последовательность). имею три провода из мотора, к примеру один на фазу, другой на ноль, а вот третий провод садим на емкость, которую соединяем с фазой или 0 (первый или второй провода) и все!

главное опытным путем подобрать емкость.емкости берутся от 250 вольт, можно и 200 но это в крайнем случае. подбирается на 1 кВт примерно по 30мкФ.

потом нужно ловить чтоб и запускался нормально(будет плавный запуск на 1-2 сек и нельзя давать в этот момент нагрузку) и при вращении не грелся.

Зачем что-то ловить когда есть клещи.

и что ? ну измерили ток и? все равно придется дергаться с с подбором проводов.

если у человека есть клещи и он знает для чего и как их использовать, то он сможет и на слух се определить

Советую почитать прежде чем советовать другим:
1976 г. «Использование трехфазных электродвигателей в быту» или
2000 г. «Трехфазный асинхронный электродвигатель в схеме однофазного включения с конденсатором», эти книги есть в интернете.

Книги перепечатываются издателями по сто раз .Меняется лишь год издания. Текст никто не рецензирует. А технологии убежали далеко вперёд. Ещё раз повторюсь .Как тогда по Вашим расчетам может работать эл-дв в моем примере да ещё под нагрузкой.

и что ? ну измерили ток и? все равно придется дергаться с с подбором проводов.

если у человека есть клещи и он знает для чего и как их использовать, то он сможет и на слух се определить

А если человек глуховатый .Отвечаю для упрямых. Как легко и безопасно определить начало-конец обмотки. Любой эл-дв это по сути трансформатор я думаю спорить никто не будет. Определяем три обмотки с помощью тестера. Далее соединяем у двух обмоток концы (не определённые) вместе, к оставшимся подключаем тестер. На оставшуюся обмотку подаем переменное напряжение от 12 до 36в вполне хватит. В былые времена электрики использовали даже батарейки, только подключать придётся кратковременно импульсами. Далее наблюдаем реакцию тестера если на обмотке появляется напряжение (при подкл. батарейки наблюдаем импульсы), значит все в порядке. Если же напряжение отсутствует значит обмотки включены навстречу. Электродвижущая сила ЭДС никуда не денется. Со следующей обмоткой далее по инструкции. Всё просто как дважды два.

Как переделать трёхфазный двигатель в однофазный

Работа любого трехфазного асинхронного двигателя рассчитана на два основных напряжения, присутствующих в трехфазной сети, из которых чаще всего встречаются номинальные значения в 380 или 220 вольт. При возникновении определенных ситуаций, нередко возникает вопрос, как переделать трехфазный двигатель для подключения в однофазную сеть.

Как переделать электродвигатель с 380 на 220

Электродвигатель переключается с одного вида напряжения на другой при помощи специальных подключений обмоток. Для 380-ти вольт – это положение «звезда», а для 220-ти вольт применяется «треугольник». На практике, схема переключения «звезда-треугольник» осуществляются с помощью специальных колодок подключения, установленных на двигателе. Колодка имеет шесть выводов, соединенных перемычками в определенном порядке.

При отсутствии в двигателе колодок и наличии шести выводов, провода собираются в пучки, по три вывода в каждом. Один пучок содержит в себе начало обмотки, а другой пучок является концом обмотки, то есть обмотки последовательно соединяются между собой.

Таким образом, вопрос, как переделать трехфазный двигатель для подключения в однофазную сеть, технически вполне решаемый. Однако, применяемые в цепи конденсаторы, вовсе не способствуют нормальной работе электродвигателя. Конечно, электродвигатель будет работать, но его максимальная мощность будет составлять всего 70% от номинальной.

Пусковой момент находится в прямой зависимости от величины пусковой емкости конденсатора. Постоянно изменяющаяся нагрузка вызывает определенные сложности при подборе оптимальной емкости. Применение трехфазного двигателя в однофазной сети является вынужденной мерой, хотя во многих ситуациях, это единственный выход.

Расчет емкости конденсатора

Формулы, позволяющие рассчитать рабочую емкость конденсатора, в данном случае не могут быть использованы по следующим причинам:

  • Электродвигатель почти не работает с номинальной мощностью, и в случае недогрузки он будет перегреваться. Это произойдет из-за того, что конденсатор обладает излишней емкостью, а это увеличивает в обмотке силу тока.
  • Номинальная и фактическая емкость конденсатора различаются между собой на 20%, что отмечено на корпусе. На практике, это значение гораздо больше, поэтому, конденсатор следует подбирать для каждого конкретного двигателя, таким образом, выравнивая значение токов.

Любая однофазная электрическая сеть работает от напряжения 220 вольт, поэтому двигатель подключается с применением схемы «треугольника». Запускать двигатель без нагрузки можно только с одним рабочим конденсатором.

Источник: electric-220.ru

Переделать трёхфазный электродвигатель в сеть на 220В

Просмотрел немало сайтов на тему «Как переделать 3-х фазный двигатель для включения в однофазную сеть.» У меня электротехническое образование, стаж работы » на земле» не малый. Дома я занимаюсь перемоткой электродвигателей. Так вот о прочитанном, я практически ничего не понял. Либо нужно сидеть обложившись книгами по электротехнике и электромеханике, либо не стоит даже пытаться. Мне частенько приходиться переделывать трёхфазные электромоторы для включения в однофазную сеть. Делаю я это в домашних условиях, а главное — великих познаний в электричестве это не требует. Но небольшие знания всё таки нужно иметь. Ну что, попробуем переделать?

Для начала нам нужно уяснить , что электродвигатели мощностью более 3-х КВт переделывать не стоит. А если Вы решите их всё таки переделать, то Вам необходимо будет провести отдельную электропроводку и установить отдельный автоматический выключатель в электрощитке . Это при условии, что выдержит нагрузку вводной кабель. Запуск у электромотора мощностью более 3-х КВт, переделанных под сеть в 220В, очень тяжёлый. Вам придётся помучится (знаю по себе ). Так что подумайте, стоит ли.

Итак, перейдём к нашим электродвигателям

На корпусе электромотора имеется клеммная коробка. Открутив крышку коробки, мы увидим сколько проводов выходит из статора электродвигателя. Их будет либо 3, либо 6. Шесть проводов соединены попарно металлическими пластинами. Так как 6 проводов соединены попарно, то у нас тоже получается 3 контакта. На эти 3 контакта подавались три фазы (380В). Мы должны подать на них фазу и ноль (220В), и мотор должен заработать.

Рисунок номер 1

Рассмотрим рисунок номер 1. АВС — это точки соединения обмоток электромотора. Это они выходят на клеммы. АВ — это автоматический выключатель. Берём один провод от автомата (автоматический выключатель), фаза или ноль — большой роли не играет. Соединяем его с одним из контактов на клемме. На рисунке это контакт А. Затем между контактами В и С мы подсоединяем рабочий конденсатор Ср. И между этими же контактами подсоединяем пусковой конденсатор Сп с кнопкой пуска К.

Как подобрать конденсаторы

Пусковой конденсатор Сп должен быть электролитическим ( можно найти в старых телевизорах ). Рабочее напряжение у него должно быть не менее 450В. Ёмкость (мF) подбираем так: эл.двигатель на 1000об/мин с мощностью 1 КВт — 80 мF; электродвигатель на 1500об/мин 1КВт — 120 мF; эл.двигатель на 3000об/мин 1Квт — 150 мF.

Используйте на своих сайтах и блогах или на YouTube кликер для adsense

Пример: для запуска электромотора на 1500об/мин мощностью 2КВт нам нужен конденсатор Сп на 240мF и рабочим напряжением — не менее 450В.

Рабочий конденсатор Ср

Подходят бумажные конденсаторы (прямоугольные по форме). Рабочее напряжение должно быть не менее 300В. Соотношение мощности электродвигателя и ёмкости конденсатора такое: к электромоторам мощностью от 0.6 КВт до 3 КВт подбираем ёмкость конденсаторов от 16 до 40 мF. Математический расчёт не всегда даёт нужный результат. Если Вы подключите конденсатор с большей ёмкостью или меньшей, то электродвигатель при холостом ходе будет сильно гудеть. Подберите конденсатор так, чтобы электромотор работал тихо, без гула.

Рабочий конденсатор нам необходим для увеличения мощности электромотора. Переделав трёхфазный электродвигатель под однофазную сеть (220В), мы уменьшили его мощность на 1/3. Рабочим конденсатором мы немного компенсируем это.

Если электродвигатель вращается не в ту сторону, которая Вам необходима, то поменяйте местами два любых провода в клеммной коробке. На рисунке 2 — либо два зелёных провода (выходящие из коробки ) вверху рисунка, либо два любых чёрных внизу (выходящие из статора).

Обсудить интересующие вас вопросы по данной теме можно на Форуме.

Источник: elektrikdom.com

Трехфазный двигатель в однофазную сеть: 7 доступных способов

Домашнему мастеру часто приходится возиться с самодельными станками и механизмами, значительно облегчающими работу. Для этих целей используют трехфазный двигатель, подключаемый в однофазную сеть своими руками.

Однако не всегда умельцы добиваются желаемого успеха, а в отдельных случаях они терпят разочарование. Чтобы избежать подобных ошибок рекомендую прочитать материал этой статьи.

Вы узнаете не только технологию работу, но и те трудности, которые сопровождают каждый их семи методов.

Как работает трехфазный двигатель

Изначально его создают для вращения от трех симметрично расположенных в пространстве магнитных потоков, создаваемых протекающими по обмоткам токами от фазных или линейных напряжений сети 380 вольт.

Их в энергетике принято представлять графически: векторными диаграммами.

Другие математические описания, включая методы комплексных чисел, применяются специалистами расчетчиками.

Обмотки трехфазного двигателя в заводском исполнении могут быть собраны по схемам:

Более подробно с этой информацией можно отдельно ознакомиться в статье об однофазном подключении трехфазного двигателя . Надеюсь, что вам будет понятно ее изложение.

При таком подключении двигатель работает с минимальными потерями энергии, имеет лучший КПД. Ведь на этот режим он спроектирован, рассчитан и создан.

Когда трехфазный электродвигатель включают в однофазную сеть, то потери его мощности неизбежны . Они могут превышать 50% или даже больше. Это надо всегда учитывать.

Самый простой способ запуска

Если обмотки собраны в треугольник и на два любых вывода подать напряжение 220 вольт, то можно раскрутить ротор простым шнуром. Обмотав его вокруг вала, а затем резко дернув за свободный конец.

Метод не очень эффективный, но иногда он может пригодиться. Потери мощности здесь большие. Им пользуются очень редко.

Способ №2: конденсаторный запуск схемы звезда

Обмотки собирают концами на одной клемме — нейтрали, а началами выводят на калымную колодку для подключения питающих кабелей.

Напряжение 220 подают через две группы конденсаторов:

1. рабочую, сдвигающую ток относительно вектора подводимого напряжения на 90 угловых градусов;

2. пусковую, кратковременно облегчающую раскрутку ротора при начале запуска.

Способ №3: конденсаторный запуск схемы треугольника

Технология сборки обмоток отличается от предыдущего метода: они чередуются соединением начала одной с концом последующей.

Для запуска двигателя также подбираются рабочие и пусковые конденсаторы. Они рассчитываются по эмпирическим формулам и должны выдерживать увеличенное линейное напряжение. Минимальная величина должна быть не менее 500 вольт. Иначе возможен их пробой.

Эти две схемы конденсаторного запуска по системе звезды или треугольника являются самыми популярными и доступными.

Способ №4: без конденсаторный запуск трехфазного двигателя

По этой методике создается электронный ключ, который осуществляет сдвиг фазы тока в одной из подключений обмотке на угол φ.

За счет фазового сдвига происходит приложение вращающего момента к ротору, он начинает вращение.

Электронные ключи и способы подключения обмоток могут значительно отключаться. Варианты включения такой схемы показаны ниже.

Более подробно с описанием подобных устройств рекомендую ознакомиться в моей статье о работе трехфазного двигателя в однофазной сети без конденсаторного запуска.

Там рассмотрены три схемы запуска по разным технологиям. Основной недостаток их — потери энергии до 70% от начальной мощности.

Способ №5: индуктивно-емкостной преобразователь

Специальная схема подключения напряжения позволяет сдвигать токи в трех обмотках разными способами:

1. вперед на 90 градусов — за счет включения конденсаторов в одной;

2. назад на 90 градусов — индуктивным сопротивлением дросселя во второй;

3. оставить без изменения подключением активного резистора в третьей.

Схема отличается хорошим преобразованием приложенной мощности, относительно высоким КПД двигателя. Ее основной недостаток —сам преобразователь потребляет примерно столько же энергии, как и электродвигатель.

По этой причине она экономически не выгодна, да и монтаж индуктивно-емкостного преобразователя с резистором не так уж прост.

Я ее описал в статье по первой ссылке. Можете познакомиться более подробно.

Источник: zen.yandex.ru

Асинхронные трехфазные двигатели, а именно их, из-за широкого распространения, часто приходится использовать, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку. Обмотки могут быть соединены по схеме «звезда» (концы обмоток соединены между собой, к их началам подводится питающее напряжение) или «треугольник» (концы одной обмотки соединены с началом другой).

В распределительной коробке контакты обычно сдвинуты — напротив С1 не С4, а С6, напротив С2 — С4.

При подключении трехфазного двигателя к трехфазной сети по его обмоткам в разный момент времени по очереди начинает идти ток, создающий вращающееся магнитное поле, которое взаимодействует с ротором, заставляя его вращаться. При включении двигателя в однофазную сеть, вращающий момент, способный сдвинуть ротор, не создается.

Среди разных способов подключения трехфазных электродвигателей в однофазную сеть наиболее простой — подключение третьего контакта через фазосдвигающий конденсатор.

Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть. К сожалению, этого нельзя сказать о мощности, потери которой достигают значительных величин. Точные значения потери мощности зависят от схемы подключения, условий работы двигателя, величины емкости фазосдвигающего конденсатора. Ориентировочно, трехфазный двигатель в однофазной сети теряет около 30-50% своей мощности.

Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно — если не считать потери мощности. В основном для работы в однофазных сетях используются асинхронные двигатели с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).

Асинхронные трехфазные двигатели рассчитаны на два номинальных напряжения сети — 220/127, 380/220 и т.д. Наиболее распространены электродвигатели с рабочим напряжением обмоток 380/220В (380В — для «звезды», 220 — для «треугольника). Большее напряжение для «звезды», меньшее — для «треугольника». В паспорте и на табличке двигателей кроме прочих параметров указывается рабочее напряжение обмоток, схема их соединения и возможность ее изменения.

Обозначение на табличке А говорит о том, что обмотки двигателя могут быть подключены как «треугольником» (на 220В), так и «звездой» (на 380В). При включении трехфазного двигателя в однофазную сеть желательно использовать схему «треугольник», поскольку в этом случае двигатель потеряет меньше мощности, чем при подключении «звездой».

Табличка Б информирует, что обмотки двигателя подсоединены по схеме «звезда», и в распределительной коробке не предусмотрена возможность переключить их на «треугольник» (имеется всего лишь три вывода). В этом случае остается или смириться с большой потерей мощности, подключив двигатель по схеме «звезда», или, проникнув в обмотку электродвигателя, попытаться вывести недостающие концы, чтобы соединить обмотки по схеме «треугольник».

Начала и концы обмоток (различные варианты)

Самый простой случай, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме «треугольник». В этом случае нужно просто подсоединить токоподводящие провода и рабочий и пусковой конденсаторы к клеммам двигателя согласно схеме подключения.

Если в двигателе обмотки соединены «звездой», и имеется возможность изменить ее на «треугольник», то этот случай тоже нельзя отнести к сложным. Нужно просто изменить схему подключения обмоток на «треугольник», использовав для этого перемычки.

Определение начал и концов обмоток. Дело обстоит сложнее, если в распределительную коробку выведено 6 проводов без указания об их принадлежности к определенной обмотке и обозначения начал и концов. В этом случае дело сводится к решению двух задач (Но прежде чем этим заниматься, нужно попробовать найти в Интернете какую-либо документацию к электродвигателю. В ней может быть описано к чему относятся провода разных цветов.):

  • определению пар проводов, относящихся к одной обмотке;
  • нахождению начала и конца обмоток.

Первая задача решается «прозваниванием» всех проводов тестером (замером сопротивления). Если прибора нет, можно решить её с помощью лампочки от фонарика и батареек, подсоединяя имеющиеся провода в цепь последовательно с лампочкой. Если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Таким способом определяются три пары проводов (A, B и C на рисунке ниже) относящихся к трем обмоткам.

Вторая задача (определение начала и конца обмоток) несколько сложнее и требует наличия батарейки и стрелочного вольтметра. Цифровой не годится из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1 и 2.

К концам одной обмотки (например, A) подключается батарейка, к концам другой (например, B) — стрелочный вольтметр. Теперь, если разорвать контакт проводов А с батарейкой, стрелка вольтметра качнется в ту или иную сторону. Затем необходимо подключить вольтметр к обмотке С и проделать ту же операцию с разрывом контактов батарейки. При необходимости меняя полярность обмотки С (меняя местами концы С1 и С2) нужно добиться того, чтобы стрелка вольтметра качнулась в ту же сторону, как и в случае с обмоткой В. Таким же образом проверяется и обмотка А — с батарейкой, подсоединенной к обмотке C или B.

В итоге всех манипуляций должно получиться следующее: при разрыве контактов батарейки с любой из обмоток на 2-х других должен появляться электрический потенциал одной и той же полярности (стрелка прибора качается в одну сторону). Теперь остается пометить выводы одного пучка как начала (А1, В1, С1), а выводы другого — как концы (А2, В2, С2) и соединить их по необходимой схеме — «треугольник» или «звезда» (если напряжение двигателя 220/127В).

Извлечение недостающих концов. Пожалуй, самый сложный случай — когда двигатель имеет соединение обмоток по схеме «звезда», и нет возможности переключить ее на «треугольник» (в распределительную коробку выведено всего лишь три провода — начала обмоток С1, С2, С3) (см. рисунок ниже). В этом случае для подключения двигателя по схеме «треугольник» необходимо вывести в коробку недостающие концы обмоток С4, С5, С6.

Чтобы сделать это, обеспечивают доступ к обмотке двигателя, сняв крышку и, возможно, удалив ротор. Отыскивают и освобождают от изоляции место спайки. Разъединяют концы и припаивают к ним гибкие многожильные изолированные провода. Все соединения надежно изолируют, крепят провода прочной нитью к обмотке и выводят концы на клеммный щиток электродвигателя. Определяют принадлежность концов началам обмоток и соединяют по схеме «треугольник», подсоединив начала одних обмоток к концам других (С1 к С6, С2 к С4, С3 к С5). Работа по выводу недостающих концов требует определенного навыка. Обмотки двигателя могут содержать не одну, а несколько спаек, разобраться в которых не так-то и просто. Поэтому если нет должной квалификацией, возможно, не останется ничего иного, как подключить трехфазный двигатель по схеме «звезда», смирившись со значительной потерей мощности.

Схемы подключения трехфазного двигателя в однофазную сеть

Обеспечение пуска. Пуск трехфазного двигателя без нагрузки можно осуществлять и от рабочего конденсатора (подробнее ниже), но если электродвигатель имеет какую-то нагрузку, он или не запустится, или будет набирать обороты очень медленно. Тогда для быстрого пуска необходим дополнительный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже). Пусковые конденсаторы включаются только на время пуска двигателя (2-3 сек, пока обороты не достигнут примерно 70% от номинальных), затем пусковой конденсатор нужно отключить и разрядить.

Удобен запуск трехфазного двигателя с помощью особого выключателя, одна пара контактов которого замыкается при нажатой кнопке. При ее отпускании одни контакты размыкаются, а другие остаются включенными — пока не будет нажата кнопка «стоп».

Реверс. Направление вращения двигателя зависит от того, к какому контакту («фазе») подсоединена третья фазная обмотка.

Направлением вращения можно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному тумблеру, соединенному двумя своими контактами с первой и второй обмотками. В зависимости от положения тумблера двигатель будет вращаться в одну или другую сторону.

На рисунке ниже представлена схема с пусковым и рабочим конденсатором и кнопкой реверса, позволяющая осуществлять удобное управление трехфазным двигателем.

Подключение по схеме «звезда». Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.

Конденсаторы. Необходимая емкость рабочих конденсаторов для работы трехфазного двигателя в однофазной сети зависит от схемы подключения обмоток двигателя и других параметров. Для соединения «звездой» емкость рассчитывается по формуле:

Для соединения «треугольником»:

Где Ср — емкость рабочего конденсатора в мкФ, I — ток в А, U — напряжение сети в В. Ток рассчитывается по формуле:

Где Р — мощность электродвигателя кВт; n — КПД двигателя; cosф — коэффициент мощности, 1.73 — коэффициент, характеризующий соотношение между линейным и фазным токами. КПД и коэффициент мощности указаны в паспорте и на табличке двигателя. Обычно их значение находится в диапазоне 0,8-0,9.

На практике величину емкости рабочего конденсатора при подсоединении «треугольником» можно посчитать по упрощенной формуле C = 70•Pн, где Pн — номинальная мощность электродвигателя в кВт. Согласно этой формуле на каждые 100 Вт мощности электродвигателя необходимо около 7 мкФ емкости рабочего конденсатора.

Правильность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. Если её значение оказалось больше, чем требуется при данных условиях работы, двигатель будет перегреваться. Если емкость оказалась меньше требуемой, выходная мощность электродвигателя будет слишком низкой. Имеет резон подбирать конденсатор для трехфазного двигателя, начиная с малой емкости и постепенно увеличивая её значение до оптимального. Если есть возможность, лучше подобрать емкость измерением тока в проводах подключенных к сети и к рабочему конденсатору, например токоизмерительными клещами. Значение тока должно быть наиболее близким. Замеры следует производить при том режиме, в котором двигатель будет работать.

При определении пусковой емкости исходят, прежде всего, из требований создания необходимого пускового момента. Не путать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.

Если по условиям работы пуск электродвигателя происходит без нагрузки, то пусковая емкость обычно принимается равной рабочей, то есть пусковой конденсатор не нужен. В этом случае схема включения упрощается и удешевляется. Для такого упрощения и главное удешевления схемы, можно организовать возможность отключения нагрузки, например, сделав возможность быстро и удобно изменять положение двигателя для ослабления ременной передачи, или сделав для ременной передачи прижимной ролик, например, как у ременного сцепления мотоблоков.

Пуск под нагрузкой требует наличия дополнительной емкости (Сп) подключаемой на время запуска двигателя. Увеличение отключаемой емкости приводит к возрастанию пускового момента, и при некотором определенном ее значении момент достигает своего наибольшего значения. Дальнейшее увеличение емкости приводит к обратному результату: пусковой момент начинает уменьшаться.

Исходя из условия запуска двигателя под нагрузкой близкой к номинальной, пусковая емкость должна быть в 2-3 раза больше рабочей, то есть, если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора должна быть 80-160 мкФ, что даст пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Но если двигатель имеет небольшую нагрузку при запуске, емкость пускового конденсатора может быть меньше или, как писалось выше, его вообще может не быть.

Пусковые конденсаторы работают непродолжительное время (всего несколько секунд за весь период включения). Это позволяет использовать при запуске двигателя наиболее дешевые пусковые электролитические конденсаторы, специально предназначенные для этой цели (http://www.platan.ru/cgi-bin/qweryv.pl/0w10609.html).

Отметим, что у двигателя подключенного к однофазной сети через конденсатор, работающего без нагрузки, по обмотке, питаемой через конденсатор, идет ток на 20-30% превышающий номинальный. Поэтому, если двигатель используется в недогруженном режиме, то емкость рабочего конденсатора следует уменьшить. Но тогда, если двигатель запускался без пускового конденсатора, последний может потребоваться.

Лучше использовать не один большой конденсатор, а несколько поменьше, отчасти из-за возможности подбора оптимальной емкости, подсоединяя дополнительные или отключая ненужные, последние можно использовать в качестве пусковых. Необходимое количество микрофарад набирается параллельным соединением нескольких конденсаторов, исходя из того, что суммарная емкость при параллельном соединении подсчитывается по формуле: Cобщ = C1 + C1 + . + Сn.

В качестве рабочих используются обычно металлизированные бумажные или пленочные конденсаторы (МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60). Допустимое напряжение должно не менее чем в 1,5 раза превышать напряжение сети.

Источник: tool-land.ru

Подключение трехфазного двигателя к однофазной сети без потери мощности

Как известно, при включении трёхфазного асинхронного двигателя в однофазную сеть, по распространенным конденсаторным схемам: «треугольник», или «звезда», мощность двигателя используется только наполовину (в зависимости от применяемого двигателя).

Кроме того, затруднён запуск двигателя под нагрузкой.

В предлагаемой статье описан метод подключения двигателя без потери мощности.

В различных любительских электромеханических станках и приспособлениях чаще всего используются трехфазные асинхронные двигатели с короткозамкнутым ротором. К сожалению, трехфазная сеть в быту — явление крайне редкое, поэтому для их питания от обычной электрической сети любители применяют фазосдвигающий конденсатор, что не позволяет в полном объеме реализовать мощность и пусковые характеристики двигателя. Существующие же тринисторные «фазосдвигающие» устройства еще в большей степени снижают мощность на валу двигателей.

Вариант схемы устройства запуска трехфазного электродвигателя без потери мощности приведен на рис. 1.

Обмотки двигателя 220/380 В соединены треугольником, а конденсатор С1 включен, как обычно, параллельно одной из них. Конденсатору «помогает» дроссель L1, включенный параллельно другой обмотке. При определенном соотношении емкости конденсатора С1, индуктивности дросселя L1 и мощности нагрузки можно получить сдвиг фаз между напряжениями на трех ветвях нагрузки, равный точно 120°.

На рис. 2 приведена векторная диаграмма напряжений для устройства, представленного на рис. 1, при чисто активной нагрузке R в каждой ветви. Линейный ток Iл в векторном виде равен разности токов Iз и Ia, а по абсолютному значению соответствует величине Iф√3, где Iф=I1=I2=I3=Uл/R — фазный ток нагрузки, Uл=U1=U2=U3=220 В — линейное напряжение сети.

К конденсатору С1 приложено напряжение Uc1=U2, ток через него равен Ic1 и по фазе опережает напряжение на 90°.

Аналогично к дросселю L1 приложено напряжение UL1=U3, ток через него IL1 отстает от напряжения на 90°.

При равенстве абсолютных величин токов Ic1 и IL1 их векторная разность при правильном выборе емкости и индуктивности может быть равной Iл.

Сдвиг фаз между токами Ic1 и IL1 составляет 60°, поэтому треугольник из векторов Iл, Iс1 и IL1 — равносторонний, а их абсолютная величина составляет Iс1=IL1=Iл=Iф√3. В свою очередь, фазный ток нагрузки Iф=Р/ЗUL, где Р — суммарная мощность нагрузки.

Иными словами, если емкость конденсатора С1 и индуктивность дросселя L1 выбрать такими, чтобы при поступлении на них напряжения 220 В ток через них был бы равен Ic1=IL1=P/(√3⋅Uл)=P/380, показанная на рис. 1 цепь L1C1 обеспечит на нагрузке трехфазное напряжение с точным соблюдением сдвига фаз.

P, Вт IC1=IL1, A C1, мкФ L1, Гн
100 0.26 3.8 2.66
200 0.53 7.6 1.33
300 0.79 11.4 0.89
400 1.05 15.2 0.67
500 1.32 19.0 0.53
600 1.58 22.9 0.44
700 1.84 26.7 0.38
800 2.11 30.5 0.33
900 2.37 34.3 0.30
1000 2.63 38.1 0.27
1100 2.89 41.9 0.24
1200 3.16 45.7 0.22
1300 3.42 49.5 0.20
1400 3.68 53.3 0.19
1500 3.95 57.1 0.18

В табл. 1 приведены значения тока Ic1=IL1. емкости конденсатора С1 и индуктивности дросселя L1 для различных величин полной мощности чисто активной нагрузки.

Реальная нагрузка в виде электродвигателя имеет значительную индуктивную составляющую. В результате линейный ток отстает по фазе от тока активной нагрузки на некоторый угол ф порядка 20. 40°.

На шильдиках электродвигателей обычно указывают не угол, а его косинус — широко известный cosφ, равный отношению активной составляющей линейного тока к его полному значению.

Индуктивную составляющую тока, протекающего через нагрузку устройства, показанного на рис. 1, можно представить в виде токов, проходящих через некоторые катушки индуктивности Lн, подключенные параллельно активным сопротивлениям нагрузки (рис. 3,а), или, что эквивалентно, параллельно С1, L1 и сетевым проводам.

Из рис. 3,б видно, что поскольку ток через индуктивность противофазен току через емкость, катушки индуктивности LH уменьшают ток через емкостную ветвь фазосдвигающей цепи и увеличивают через индуктивную. Поэтому для сохранения фазы напряжения на выходе фазосдвигающей цепи ток через конденсатор С1 необходимо увеличить и через катушку уменьшить

Векторная диаграмма для нагрузки с индуктивной составляющей усложняется. Ее фрагмент, позволяющий произвести необходимые расчеты, приведен на рис. 4.

Полный линейный ток Iл разложен здесь на две составляющие: активную Iлcosφ и реактивную Iлsinφ.

В результате решения системы уравнений для определения необходимых значений токов через конденсатор С1 и катушку L1:

IC1sin30° + IL1sin30° = Iлcosφ, IC1cos30° — IL1cos30° = Iлsinφ,

получаем следующие значения этих токов:

IC1 = 2/√3⋅Iлsin(φ+60°), IL1 = 2/√3⋅Iлcos(φ+30°).

При чисто активной нагрузке (φ=0) формулы дают ранее полученный результат Ic1=IL1=Iл.

На рис. 5 приведены зависимости отношений токов Ic1 и IL1 к Iл от cosφ, рассчитанные по этим формулам Для (cosφ = √3/2 = 0,87) ток конденсатора С1 максимален и равен 2/√3Iл = 1.15Iл, а ток дросселя L1 вдвое меньше.

Этими же соотношениями с хорошей степенью точности можно пользоваться для типовых значений cosφ, равных 0,85. 0,9.

P, Вт IC1, A IL1, A C1, мкФ L1, Гн
100 0.35 0.18 5.1 3.99
200 0.70 0.35 10.2 2.00
300 1.05 0.53 15.2 1.33
400 1.40 0.70 20.3 1.00
500 1.75 0.88 25.4 0.80
600 2.11 1.05 30.5 0.67
700 2.46 1.23 35.6 0.57
800 2.81 1.40 40.6 0.50
900 3.16 1.58 45.7 0.44
1000 3.51 1.75 50.8 0.40
1100 3.86 1.93 55.9 0.36
1200 4.21 2.11 61.0 0.33
1300 4.56 2.28 66.0 0.31
1400 4.91 2.46 71.1 0.29
1500 5.26 2.63 76.2 0.27

В табл. 2 приведены значения токов IC1, IL1, протекающих через конденсатор С1 и дроссель L1 при различных величинах полной мощности нагрузки, имеющей указанное выше значение cosφ = √3/2.

Для такой фазосдвигающей цепи используют конденсаторы МБГО, МБГП, МБГТ, К42-4 на рабочее напряжение не менее 600 В или МБГЧ, К42-19 на напряжение не менее 250 В.

Дроссель проще всего изготовить из трансформатора питания стержневой конструкции от старого лампового телевизора. Ток холостого хода первичной обмотки такого трансформатора при напряжении 220 В обычно не превышает 100 мА и имеет нелинейную зависимость от приложенного напряжения.

Если же в магнитопровод ввести зазор порядка 0,2. 1 мм, ток существенно возрастет, а зависимость его от напряжения станет линейной.

Сетевые обмотки трансформаторов ТС могут быть соединены так, что номинальное напряжение на них составит 220 В (перемычка между выводами 2 и 2′), 237 В (перемычка между выводами 2 и 3′) или 254 В (перемычка между выводами 3 и 3′). Сетевое напряжение чаще всего подают на выводы 1 и 1′. В зависимости от вида соединения меняются индуктивность и ток обмотки.

В табл. 3 приведены значения тока в первичной обмотке трансформатора ТС-200-2 при подаче на нее напряжения 220 В при различных зазорах в магнитопроводе и разном включении секций обмоток.

Сопоставление данных табл. 3 и 2 позволяет сделать вывод, что указанный трансформатор можно установить в фазосдвигающую цепь двигателя с мощностью примерно от 300 до 800 Вт и, подбирая зазор и схему включения обмоток, получить необходимую величину тока.

Индуктивность изменяется также в зависимости от синфазного или противофазного соединения сетевой и низковольтных (например, накальных) обмоток трансформатора.

Максимальный ток может несколько превышать номинальный ток в рабочем режиме. В этом случае для облегчения теплового режима целесообразно снять с трансформатора все вторичные обмотки, часть низковольтных обмоток можно использовать для питания цепей автоматики устройства, в котором работает электродвигатель.

Зазор в
магнитопроводе, мм
Ток в сетевой обмотке, A,
при соединении выводов на напряжение, В
220 237 254
0.2 0.63 0.54 0.46
0.5 1.26 1.06 0.93
1 2.05 1.75

В табл. 4 приведены номинальные величины токов первичных обмоток трансформаторов различных телевизоров и ориентировочные значения мощности двигателя, с которыми их целесообразно использовать фазосдвигающую LC-цепь следует рассчитывать для максимально возможной нагрузки электродвигателя.

Трансформатор Номинальный
ток, A
Мощность
двигателя, Вт
ТС-360М 1.8 600. 1500
ТС-330К-1 1.6 500. 1350
СТ-320 1.6 500. 1350
СТ-310 1.5 470. 1250
ТСА-270-1,
ТСА-270-2,
ТСА-270-3
1.25 400. 1250
ТС-250,
ТС-250-1,
ТС-250-2,
ТС-250-2М,
ТС-250-2П
1.1 350. 900
ТС-200К 1 330. 850
ТС-200-2 0.95 300. 800
ТС-180,
ТС-180-2,
ТС-180-4,
ТС-180-2В
0.87 275. 700

При меньшей нагрузке необходимый сдвиг фаз уже не будет выдерживаться, но пусковые характеристики по сравнению с использованием одного конденсатора улучшатся.

Экспериментальная проверка проводилась как с чисто активной нагрузкой, так и с электродвигателем.

Функции активной нагрузки выполняли по две параллельно соединенных лампы накаливания мощностью 60 и 75 Вт, включенные в каждую нагрузочную цепь устройства (см рис. 1), что соответствовало общей мощности 400 Вт В соответствии с табл. 1 емкость конденсатора С1 составляла 15 мкф Зазор в магнитопроводе трансформатора ТС-200-2 (0,5 мм) и схема соединения обмоток (на 237 В) были выбраны из соображений обеспечения необходимого тока 1,05 А.

Измеренные на нагрузочных цепях напряжения U1, U2, U3 отличались друг от друга на 2. 3 В, что подтверждало высокую симметрию трехфазного напряжения.

Эксперименты проводились также с трехфазным асинхронным двигателем с короткозамкнутым ротором АОЛ22-43Ф мощностью 400 Вт. Он работал с конденсатором С1 емкостью 20 мкф (кстати, такой же, как и при работе двигателя только с одним фазосдвигающим конденсатором) и с трансформатором, зазор и соединение обмоток которого выбраны из условия получения тока 0,7 А.

В результате удалось быстро запустить двигатель без пускового конденсатора и заметно увеличить крутящий момент, ощущаемый при торможении шкива на валу двигателя.

К сожалению, провести более объективную проверку затруднительно, поскольку в любительских условиях практически невозможно обеспечить нормированную механическую нагрузку на двигатель.

Следует помнить, что фазосдвигающая цепь — это последовательный колебательный контур, настроенный на частоту 50 Гц (для варианта чисто активной нагрузки), и без нагрузки подключать к сети эту цепь нельзя.

Источник: electro-shema.ru

Как подключить 3х фазный двигатель на 220в

Рассмотрим вначале, почему считается, что двигатель питается напряжением 380 вольт. Имеют счастье быть три фазы по 220 вольт. Простейшие вопросы заставляют уплывать новичков, отсутствие знания теории порождает возникновение ошибок практических. Искренне благодарим энтузиастов, забросавших Ютуб обучающими роликами, без столь богатого материала сложно дать дельные советы планирующим осуществить подключение электродвигателя 380 на 220 вольт с конденсатором. Приступим к реализации теории на практике.

Работа двигателя 380 вольт

Подобные двигатели называются трехфазными. Обладают кучей преимуществ перед обычными бытовыми, широко используются промышленностью. Достоинства касаются большой мощности, КПД. Именно в трехфазных двигателях можно обойтись без пусковых обмоток, конденсаторов при наличии соответствующего питания. Конструкции удается исключить лишние элементы. Пускозащитное реле холодильника, четко следящее за целостностью, временем работы пусковой обмотки. Трехфазным двигателям доморощенные ухищрения не нужны.

Простой пример работы трех фаз

Почему так происходит? Наличием трех фаз удается создать внутри статора вращающееся электромагнитное поле без дополнительных ухищрений. Давайте посмотрим рисунок. Простоты ради, показан ротор, снабженный двумя полюсами, статор содержит по катушке на фазу переменного тока. Конфигурации типичных двигателей 380 вольт более сложная, упрощение не помешает пояснить суть процессов, протекающих внутри.

Рисунок синим показывает отрицательно заряженные поля, красным – положительные. В начальный момент статор лишен знака, три катушки белые. Ротор в нашем предположении изготовлен из постоянных магнитов, окрашен и находится в произвольном положении. Полюса всего два. Далее двигаемся согласно эпюрам:

  1. Первая картинка наградила фазу В отрицательным знаком, две другие заряжены слегка положительно (примерно треть амплитуды), схематично показано бледным розовым цветом. Положительный полюс ротора сместился к катушке В. Слабое положительное поле А-С притянуло южный полюс ротора. Поскольку уровень заряда одинаков, центр полюса находится ровно посередине.
  2. В следующий момент времени (спустя 60 градусов, примерно 3,3 мс) южный полюс появляется на фазе А статора. Ротор проворачивается на 60 градусов вдоль часовой стрелки. Слабые отрицательные поля фаз В, С удерживают между собой положительный полюс ротора.
  3. В данный момент времени северный полюс статора находится на фазе С, ротор продолжает вращение еще на 60 градусов. Дальнейшая картина должна быть понятна.

Трехфазный электродвигатель

В результате правильного распределения трех фаз поле статора вращается, увлекая ротор. Частота оборотов не совпадает с сетевыми 50 Гц. Обмоток статоре больше, количество полюсов ротора иное. В придачу имеется явление проскальзывания в зависимости от амплитуды напряжения, многих других факторов. Нюансы используются регулировать скорости вращения вала двигателя. Вплотную достигли разгадки вопроса напряжения 380 вольт. Сформировано тремя фазами с действующим значением напряжения 220 вольт (как в розетке). Взять разницу меж любыми двумя в произвольный момент времени, величина превышает указанное значение.

Получается 380 вольт. Двигатель с тремя фазами использует для работы три напряжения с действующим значением 220 вольт, сдвиг меж любыми составляет 120 градусов. Можно легко проследить из графика на нашем рисунке. Вот почему многих снедает соблазн использовать оборудование в домашних условиях, запустить, используя одну фазу, поставляемую розеткой. Напрямую снделать невозможно, как должно быть понятно, приходится изобретать ухищрения. Простейшим назовем применение конденсатора. Прохождение емкости изменяет фазу напряжения на 90 градусов. Разница меньше 120, которые хотели получить в идеале.

На практике подключение электродвигателя через конденсатор отлично работает. Правда для осуществления задумки придется немного повозиться.

Запуск трехфазного двигателя 380 В от домашней сети

Во-первых, нужно знать, как производится электрическая коммутация обмоток. Обычно корпус двигателя снабжен защитным кожухом, скрывающим электрическую разводку. Нужно снять щит, приступить к изучению схемы. Чаще рядом показана схема электрических соединений. Чтобы запуск произвести трехфазной сетью, применяется коммутация типа «звезда». Концы трех обмоток имеют одну общую точку, называемую нейтралью, противоположная сторона снабжается фазами. Одна на каждую обмотку. Получается распределение поля, рассмотренное выше.


Объединение обмотки двигателя треугольником

Подключая асинхронный двигатель 380 на 220 Вольт, потрудитесь коммутацию изменить. Пригодится электрическая схема, приводимая шильдиком корпуса. Согласно рисунку, обмотки двигателя объединяются треугольником. Каждая на обоих концах объединяется с другой. Давайте посмотрим, что получается. Чем отличается методика от штатного использования оборудования. Для простоты на рисунке показываем схему включения конденсатора. Может выглядеть следующим образом:

  • Напряжение сети 220 В приложено к обмотке С.
  • На обмотку А напряжение приходит через рабочий конденсатор в состоянии сдвига фаз на 90 градусов.
  • На обмотке В действует разница меж указанными напряжениями.

Посмотрим эпюры: как будет выглядеть практически. Сдвиг фаз неравномерный. Меж пиками, по которым построены эпюры, отложено 90 и 45 градусов. Вследствие этого вращение в принципе лишено возможностей быть равномерным. Форма фазы обмотки В отличается от синусоидальной. Запуск трехфазного двигателя сетью 220 вольт сопровождается наличием потерь энергии. Процесс возможен. Происходит часто явление, называемое залипанием. Неправильная форма поля внутри статора бессильна раскрутить статор.

Схема подключения двигателя несколько упрощена, отличается от норм исполнения чертежей проектной документации. Наглядность рисунка очевидна. Конденсатор схемы рабочий, встречается пусковой. Нужен усилить вращающий момент на начальном этапе. Любой асинхронный двигатель при старте потребляет больше тока, на первое движение тратится много энергии. Конденсатор обычно присоединяется параллельно рабочему, включается в цепь нажатием специальной кнопки. Например, можете пометить, как Ускорение.

Когда вал наберет обороты, емкость пусковая становится ненужной, снижается сопротивление движению вала. Отпуская кнопку Ускорение, исключаем элемент из сети. Чтобы пусковая емкость разрядилась (вольтаж может достигать 300 В), закоротим на значительной величины сопротивление, через которое в рабочем состоянии ток не пойдет. Постепенно электроны компенсируются, опасность поражения исчезнет. Возникает простой вопрос – как подобрать рабочую, пусковую емкости? Подключение электродвигателя 380 В на 220 В непростая задача. Давайте рассмотрим ответ.

Выбор значений рабочей, пусковой емкостей для подключения трехфазного двигателя на 220 В

Первым делом обратите внимание: рабочее напряжение конденсаторов должно значительно перекрывать номинал 220 В. Подключение двигателя 380 на 220 вольт сопровождается возникновением гораздо более весомых значений вольтажа. Среди пусковых и рабочих конденсаторов исключите элементы рабочим напряжением ниже 400 вольт. Практика накладывает коррективы, придется обойтись попавшимся под руку. Обратите внимание на провода. Токи по технической документации даны относительно напряжения 220 В. Рассматриваемая схема задействует другие значения. Возможно, придется пересчитать размеры токов.

На практике если емкость рабочая слишком мала, вал «залипает». Двигатель мог бы работать, если придать начальное ускорение, если зверь мощностью 4 кВт поотрывает пальцы, винить некого. Оказывается, номинал рабочей емкости определен минимум двумя параметрами:

  1. Мощнее двигатель, больший номинал конденсаторов нужно применить. На 250 Вт хватает значения десятков мкФ, при более значительных мощностях значение исчисляется сотнями. Логично заранее запастись солидным набором конденсаторов. Желательно брать пленочные, электролитические без специальных мер применять запрещено, предназначены работать в сетях постоянного тока. При подключении переменного напряжения 220 В могут попросту взорваться.
  2. Выше обороты двигателя, больший номинал пускового конденсатора потребуется. Достигнув разницы в несколько раз, значение емкости повышаем на порядок (10 раз). Для пуска двигателя мощностью 2,2 кВт, оборотами 3000 в минуту постарайтесь запастись батареей на 200–250 мкФ. Очень большое значение. Емкость Земного шара составляет доли мФ.

Сильно емкость пускового конденсатора зависит от приложенной нагрузки. Мотор, работающий на шкив, потребляет много энергии, объем батареи возрастает. Попытаемся выбрать номиналы. Практиками замечено: стабильнее двигатель 380 В работает, питаемый однофазной сетью, когда напряжения в плечах конденсатора равны. Обмотку, работающую непосредственно от сети, избегаем трогать, измеряем потенциал двух других. Каким образом получается, величина емкости определяет напряжение?

Асинхронный двигатель характеризуется собственным реактивным сопротивлением. При включении образуется делитель. Красиво рисовали эпюры, на практике форма фаз может значительно отличаться. Определяется реактивное сопротивление перечисленным выше набором параметров. Конструкция двигателя, обуславливающая размер мощности, скорость оборотов, нагрузка вала. Ряд параметров, учесть которые теоретическими путями в рамках обзора попросту не представляется возможным. Поэтому практики просто рекомендуют сначала найти минимальный размер батареи, при котором двигатель начинает вращаться, затем плавно увеличивать номинал, пока напряжения обмоток не станут равными.

После раскрутки двигателя может оказаться: равенство нарушилось. Сопротивление движению вала упало. Перед тем, как подключить электродвигатель с 380 на 220 окончательно, определитесь с условиями работы, постарайтесь обеспечить указанное равенство.

Обратите внимание: действующее значение может превышать 220 вольт. Значение напряжения может составить 270 В. Перед тем, как подключить электродвигатель через конденсатор, побеспокойтесь о контактах. Обеспечьте надежную стыковку во избежание потерь, перегрева в местах прохождения тока. Коммутацию лучше вести на специальные клеммы, затягивая болтами. После окончательной подборки параметров электрическую часть следует закрыть кожухом, провода пропустить через резиновый уплотнитель боковой стенки отсека.

Полагаем, теперь читатели без труда запустят двигатель, ракету, сельское хозяйством…

Бывают ситуации, когда оборудование, рассчитанное на 380 вольт, необходимо подключить к домашней сети на 220 В. Так как двигатель при этом не запустится, необходимо изменить в нем некоторые детали. Это можно без труда сделать самостоятельно. Даже несмотря на то что КПД несколько снизится, такой подход бывает оправданным.

Трехфазные и однофазные двигатели

Чтобы разобраться, как подключить электродвигатель с 380 на 220 Вольт, узнаем, что значит питание на

Трехфазные двигатели имеют множество преимуществ по сравнению с бытовыми однофазными. Поэтому их применение в промышленности обширно. И дело заключается не только в мощности, но и в коэффициенте полезного действия. В них также предусмотрены пусковые обмотки и конденсаторы. Это упрощает конструкцию механизма. К примеру, пусковое защитное реле холодильника отслеживает, сколько врублено обмотки. А в трехфазном двигателе в этом элементе необходимость отпадает.

Это достигается тремя фазами, во время работы которых внутри статора вращается электромагнитное поле.

Почему 380 В?

Когда поле внутри статора вращается, ротор двигается также. Обороты не совпадают с пятьюдесятью Герцами сети из-за того, что больше обмоток, количество полюсов отличное, а также по разным причинам происходит проскальзывание. Эти показатели применяются для регуляции вращения моторного вала.

Все три фазы имеют значение по 220 В. Однако разница между любыми двумя из них в любое время будет отличным от 220. Так и получится 380 Вольт. То есть двигатель применяет 220 В для работы, при этом имеется сдвиг фаз, составляющий сто двадцать градусов.

Потому как подключить электродвигатель 380 на 220 Вольт напрямую невозможно, приходится использовать ухищрения. Конденсатор считается самым простым способом. Когда емкость проходит фазу, последняя изменяется на девяносто градусов. Хоть до ста двадцати она не доходит, этого достаточно для запуска и работы трехфазного двигателя.

Как подключить электродвигатель с 380 на 220 В

Для реализации задачи необходимо понимать, как устроены обмотки. Обычно корпус защищен кожухом, а под ним расположена разводка. Сняв его, нужно изучить содержимое. Часто здесь можно найти схему соединений. Чтобы к сети 380-220 состоялось, используется коммутация в форме звезды. Концы обмоток находятся в общей точке, которая называется нейтралью. Фазы подаются на противоположную сторону.

«Звезду» придется изменить. Для этого обмотки мотора необходимо соединить в другую форму — в виде треугольника, объединив их на концах друг с другом.

Как подключить электродвигатель с 380 на 220: схемы

Схема может выглядеть следующим образом:

  • напряжение сети прикладывается к третьей обмотке;
  • тогда на первую обмотку напряжение перейдет через конденсатор при фазовом сдвиге в девяносто градусов;
  • на второй обмотке скажется разница напряжений.


Понятно, что сдвиг фаз получится на девяносто и сорок пять градусов. Из-за этого вращение равномерным не получится. К тому же форма фазы на второй обмотке не будет синусоидальной. Поэтому, после того как подключить трехфазный электродвигатель к 220 вольтам удастся, он не сможет реализовываться без потерь мощности. Иногда вал даже залипает и перестает крутиться.

Рабочая емкость

После набора оборотов емкость пуска уже будет не нужна, так как сопротивление движению станет незначительным. Для разряжения емкости ее укорачивают на сопротивление, через которое ток уже не пройдет. Для правильного выбора рабочей и пусковой емкости в первую очередь нужно учитывать, что рабочее конденсаторное напряжение должно существенно перекрывать 220 Вольт. Минимум оно должно составлять 400 В. Также нужно обратить внимание на провода, чтобы токи были предназначены для однофазной сети.

При слишком малой рабочей емкости вал будет залипать, поэтому для него используется начальное ускорение.

Рабочая емкость также зависит от следующих факторов:

  • Чем мощнее мотор, тем больше конденсаторный номинал потребуется. Если значение составляет 250 Вт, то хватит и нескольких десятков мкФ. Однако если мощность будет выше, то и номинал может считаться сотнями. Конденсаторы лучше приобретать пленочные, потому что электрические придется дополнительно доделывать (они предназначены для постоянного, а не переменного тока, и без переделок могут взорваться).
  • Чем больше обороты мотора, тем и номинал необходим выше. Если взять двигатель на 3000 оборотов в минуту и мощностью 2,2 кВт, то батарея ему потребуется от 200 до 250 мкФ. А это огромное значение.

Еще эта емкость зависит и от нагрузки.


Завершающий этап

Известно, что 380 В в 220 Вольтах будет лучше работать в том случае, если напряжения получатся с равными значениями. Для этого обмотку, подсоединяющуюся к сети, трогать не нужно, но потенциал измеряется на обеих других.

У асинхронного мотора имеется свое Необходимо определить минимум, при котором он начнет вращение. После этого номинал понемногу увеличивают до тех пор, пока все обмотки не выравняются.

Но когда двигатель раскрутится, может получиться, что равенство нарушится. Это происходтит из-за снижения сопротивления. Поэтому, перед тем как подключить электродвигатель с 380 на 220 Вольт и зафиксировать это, нужно сравнять значения и при работающем агрегате.

Напряжение может быть и выше 220 В. Посмотрите, чтобы обеспечивалась стабильная стыковка контактов, и не было потери мощности или перегрева. Лучше всего коммутация производится на специальных клеммах с закрепленными болтами. После того как подключить электродвигатель с 380 на 220 Вольт получилось с необходимыми параметрами, на агрегат снова надевают кожух, а провода пропускают по бокам через резиновый уплотнитель.

Что еще может случиться и как решить проблемы

Нередко после сборки обнаруживается, что вал вращается не в ту сторону, в которую нужно. Направление необходимо поменять.

Для этого третью обмотку подключают через конденсатор к резьбовой клемме второй обмотки статора.


Бывает, что из-за длительной работы с течением времени появляется шум двигателя. Однако этот звук совсем иного рода по сравнению с гулом при неправильном подключении. Случается со временем и вибрация мотора. Иногда даже приходится с силой вращать ротор. Обычно это вызвано износом подшипников, из-за чего возникают слишком большие зазоры и появляется шум. Со временем это может привести к заклиниванию, а позже — к порче деталей двигателя.

Лучше такого не допускать, иначе механизм придет в негодность. Проще заменить подшипники на новые. Тогда электродвигатель прослужит еще долгие годы.

С такой проблемой приходится сталкиваться многим рачительным хозяевам, которые привыкли все, по максимуму, делать своими руками. В том числе, и собирать различную технику для хозяйственных нужд; например, циркулярную пилу на участке, эл/наждак, небольшой подъемник в гараже и тому подобное.

Учитывая, сколько стоит электродвигатель, лучше приспособить имеющийся под рукой 3-фазный образец к работе от 1ф, тем самым адаптировав его к домашней эл/сети, чем приобретать новый. Нужно лишь понимать, как и какой электродвигатель лучше переделать с 380 вольт на 220, чтобы дополнительно не тратить деньги, и разбираться в существующих схемах их включения.

Что учесть

  1. Переделка с 380 на 220 имеет смысл, если речь идет об эл/двигателе сравнительно небольшой мощности – до 2,5, но не более (это максимум) 3 кВт. В принципе, ограничений по данной характеристике нет. Но при этом, скорее всего, понадобится провести ряд мероприятий и потратить некоторую сумму денег и время.
  • Переложить вводной кабель эл/питания, к тому же придется заниматься согласованиями с поставщиком электроэнергии в плане повышения лимита. Не следует забывать, что для частных домовладений установлен предел эн/потребления; как правило, в 15 кВт. «Впишется» ли в него новая нагрузка в виде мощного электродвигателя? Выдержит ли ее изначально заложенный кабель?
  • Для такого прибора нужно прокладывать отдельную линию от силового щита и ставить индивидуальный автомат, как минимум. Просто так подключить его через розетку вряд ли получится; лучше не экспериментировать.
  • Практика переделок показывает, что даже если все сделано грамотно, возникнет еще одна проблема, с запуском. «Старт» мощного электродвигателя будет тяжелым, с длительной раскачкой, бросками напряжения. Такая перспектива мало кого устроит, тем более, если что-то собирается не на загородном участке, а на территории, прилегающей к жилому строению. Пока будет функционировать самодельная установка на основе этого двигателя, начнутся сбои в работе бытовых приборов. Проверено, и не раз.
  1. Порядок работы по переделке зависит от внутренней схемы электродвигателя. В некоторых моделях в клеммную коробку выводится всего 3 провода, в других – 6.


В чем разница? В первом случае обмотки уже соединены по одной их традиционных схем – «звездой» или «треугольником», поэтому для маневра (в плане модификации) возможностей несколько меньше.

Вариантов немного – оставить изначальное включение или произвести разборку двигателя и перекоммутировать вторые концы. Если же выведены все шесть, то можно их соединять по любой из схем, без ограничений. Главное – грамотно выбрать ту, которая будет оптимальной для конкретной ситуации (мощность электродвигателя, специфика его применения). .

Как переделать электродвигатель

Схема

Учитывая, что мощность электродвигателя небольшая (значит, не придется при пуске его «срывать»), а запитывать его планируется от сети 220, то оптимальной схемой является «треугольник». То есть, здесь не нужно ориентироваться на высокие пусковые токи (их не будет), а потеря мощности практически сводится к нулю (можно не учитывать). Все сказанное наглядно демонстрирует рисунок.

Если в электродвигателе схема изначально собрана по «треугольнику», то переделывать в нем вообще ничего не нужно.

Расчет рабочих емкостей

Так как вместо 3-х фаз теперь будет лишь одна, она и подается на каждую из обмоток, но с небольшим сдвигом синусоиды. По сути, включением конденсаторов производится имитация питания электродвигателя от источника 380/3ф. Формулы для расчетов рабочих конденсаторов показаны на рисунках ниже.

Ставить их по принципу «больше – лучше», что часто и делают домашние умельцы, не особенно разбирающиеся в электротехнике, не следует. Только на основании вычислений требуемого номинала. Иначе возможен перегрев эл/двигателя. Если он стоит на заводском оборудовании (например, переделке подвергается газонокосилка), то придется или устраивать постоянные перерывы в работе, или готовиться к незапланированному ремонту и неоправданным финансовым тратам на новый «движок».

Примечание:
  • Емкости к обмоткам электродвигателя подбираются не только по номиналу, но и по рабочему напряжению. Раз речь идет о переделке с 380 на 220, то U р должно быть не меньше 400 В.
  • Немаловажен и такой фактор, как разновидность конденсаторов. Во-первых, они должны быть однотипными. Во-вторых, только не электролитическими. Оптимально, бумажные; например, устаревшей серии КГБ, МБГ (и их модификации) или ее современные аналоги. Они удобны в креплении (имеются проушины) и легко выдерживают скачки температуры, тока, напряжения.

Для схемы «звезда»

Для схемы «треугольник»

Наглядно весь процесс в действии можно посмотреть на видео:

На практике инженерными расчетами мало кто из людей сведущих занимается. Есть определенные пропорции, позволяющие довольно точно подобрать рабочий конденсатор к конкретному электродвигателю.

Соотношение легко запомнить: на каждые 100 Вт мощности «движка» – 7 мкф рабочей емкости. То есть, для изделия на 2 кВт понадобится в обмотки включить конденсаторы по 7 х 20 = 140 мкф.

В чем сложность? Найти емкость с таким номиналом вряд ли получится. Есть простое решение – взять несколько конденсаторов и соединить параллельно. В результате небольших вычислений несложно подобрать нужное их количество с суммарной емкостью требуемой величины. Тем, кто забыл школу, можно подсказать – при таком способе соединения конденсаторов их емкости складываются.


Пусковой

Эта емкость нужна не всегда. Она ставится в схему лишь в том случае, если при пуске на вал двигателя создается значительная нагрузка. Примеры – мощное вытяжное устройство, циркулярная пила. А вот для той же газонокосилки вполне хватит и рабочих конденсаторов.

Расчет простой – номинал Сп должен превышать Ср в 2,5 (плюс/минус). Здесь предельной точности не требуется; величина пусковой емкости определяется примерно. Дальнейший анализ работы электродвигателя на разных режимах подскажет, увеличить ее или уменьшить.


Кстати, это относится и к рабочим конденсаторам. Дело в том, что все расчеты априори предполагают, что электродвигатель новый, ни разу не бывший в эксплуатации. А так как переделываются в основном изделия б/у, то в процессе работы выяснится, что не устраивает пользователя. Вариантов много – плохой запуск, быстрый нагрев корпуса и так далее.

Вывод – подобрать емкости для переделки эл/двигателя с 380 на 220, это еще не все. В первое время нужно внимательно следить за его работой в различных режимах. Только так, опытным путем, производя замену конденсаторов по номиналам, можно подобрать идеальное значение емкости для конкретного изделия.

Как организовать реверс

Иногда необходимо изменять направление вращения вала без дополнительных переделок. Это вполне возможно и для электродвигателя на 380, переведенного на питание 220. Как видно из рисунка, ничего сложного в этом нет, понадобится лишь переключатель на 2 позиции.

Трёхфазные электродвигатели асинхронного типа с короткозамкнутым ротором доминируют над однофазными и двухфазными собратьями в применении, т.к. имеют более высокую эффективность, а также включаются в сеть без помощи пусковых устройств. По номинальному питанию отечественные электродвигатели делятся на два типа: напряжением 220 / 380 и 127 / 220 Вольт. Последний тип электромоторов небольшой мощности применяется значительно реже.

В шильдике, размещенном на корпусе электродвигателя, обозначена необходимая информация — напряжение питания, мощность, ток потребления, КПД, возможные варианты включения и коэффицент мощности, количество оборотов.

Схемы подключения ЗВЕЗДА и ТРЕУГОЛЬНИК

Производители предлагают трехфазные электродвигатели как с возможностью изменять схему подключения, так и без таковой.


Более раннему обозначению выводов обмоток С1 — С6 соответствует современное U1 — U2, W1 — W2 и V1 — V2. В распред. коробке выведены провода в количестве трёх (заводом изготовителем по умолчанию осуществлена схема подключения *звезда*) или шести (двигатель можно подключать к трехфазной сети как звездой, так и треугольником). В первом случае необходимо начала обмоток (W2, U2, V2) соединить в единой точке, три оставшихся провода (W1, U1, V1) подключить к фазам питающей сети (L1, L2, L3).


Преимущество метода звезда — плавный запуск мотора и мягкая работа (обусловленная щадящим режимом и благоприятно сказывающаяся на эксплуатационном сроке агрегата), а также меньший пусковой ток. Недостаток — потеря по мощности примерно в полтора раза и меньший крутящий момент. Применяется для оборудования, имеющего на валу свободно вращающуюся нагрузку – вентиляторы, центробежные насосы, валы станков, центрифуг и другого оборудования, не требовательного к крутящему моменту. Схему треугольник применяют для электродвигателей, изначально имеющих на валу неинерционную нагрузку, такую как вес груза лебедки или сопротивление поршневого компрессора.
Для снижения пускового тока осуществляют комбинированный тип включения (применим для электромоторов мощностью от 5 кВт) — сочетающий в себе преимущества первых двух схем — пуск происходит по схеме звезда, а после вхождения электромотора в рабочее состояние происходит автоматическое (реле времени) или ручное переключение (пакетник) — мощность возрастает до номинальной.

Включение трёхфазного двигателя в однофазную сеть через конденсатор (380 на 220)

На практике часто приходится подключать трёхфазный двигатель к сети 220 вольт; хотя КПД при этом падает до 50 % (в лучшем случае до 70%), такая переделка бывает оправданной. Фактически мотор начинает работать как двухфазный, используя фазосдвигающий элемент.
Конденсатор подбирают исходя из мощности двигателя — на каждые 100Вт потребуется ёмкость 6, 5 мкф , по рабочему напряжению должен быть больше питающего минимум в 1,5 раза, иначе от скачков напряжения в момент включения и выключения они могут выйти из строя; тип — МБГО, МБГ4, К78-17 МБГП, К75-12, БГТ, КГБ, МБГЧ. Хорошо себя зарекомендовали металлизированные полипропиленовые конденсаторы типа СВВ5, СВВ60, СВВ61. В случае применения конденсатора бОльшей ёмкости двигатель будет перегреваться, меньшей — будет работать в недогруженном режиме либо вообще не запустится. В схеме ниже Сп — пусковой, Ср — конденсатор рабочий.

Пусковой конденсатор при наличии нагрузки на валу двигателя

В случае, если на валу имеется нагрузка, либо мощность превышает 1,5 кВт, движок может не запуститься или медленно набирать обороты. *Поправить* это можно применением рабочего и пускового конденсатора, служащих для сдвига фазы и разгона. Кнопку разгона нужно удерживать пока обороты не достигнут примерно 70% от номинальных (2 — 3 секунды), после чего отпустить.


Ёмкость пускового кондера должна превышать рабочую в 2..3 раза в зависимости от нагрузки на валу. Если проблематично достать вышеуказанные конденсаторы нужной ёмкости, возможно применение электролитических, спаянных по особой схеме с диодами. Однако для работы мощных станков следует избегать подобной замены и рекомендовать её лишь для временного включения.

Важно!

Не рекомендуется подключать электродвигатель мощностью более 3 кВт к домашней сети ввиду её невысокой нагрузочной способности.
Автоматический выключатель в цепи питания электродвигателя должен быть с время — токовой характеристикой C или D ввиду существенного кратковременного пускового тока, превышающего номинальный в 3 и 5 раз (звезда / треугольник) соответственно.
Если 3 — фазный электродвигатель будет долго работать без нагрузки от однофазной сети, он сгорит!
Выбирая правильное соединение или переключение, необходимо учитывать особенности электрической сети, силовой мощности электродвигателя и варианты подключения. В каждом случае следует ознакомиться с техническими характеристиками мотора и оборудования, для которого он предназначен.

Стоимость подключения электродвигателя специалистом — 800….2000р. в зависимости от сложности, варианта подключения, условий работы.

При развитии любой гаражной мастерской, может возникнуть необходимость подключить трёхфазный электродвигатель в однофазную сеть на 220 вольт. Это не удивительно, так как промышленные трёхфазные двигатели на 380 в более распространены, чем однофазные (на 220 в), особенно больших габаритов и мощности. И изготовив какой нибудь станочек, или купив готовый (например токарный) любой гаражный мастер сталкивается с проблемой подключения трёхфазного электромотора к обычной гаражной розетке на 220 вольт. В этой статье мы и рассмотрим варианты подключения, а так же что для этого понадобится.

Для начала следует внимательно изучить шильдик (табличку) электродвигателя, чтобы узнать его мощность, так как от этой мощности будет зависеть ёмкость или количество конденсаторов, которые нужно будет купить. И прежде чем отправляться на поиски и покупку конденсаторов, для начала следует вычислить, какая ёмкость потребуется именно для вашего двигателя.

Расчёт ёмкости.

Ёмкость нужного конденсатора напрямую зависит от мощности вашего электродвигателя и высчитывается по простой формуле:

С = 66 Р мкФ.

Буква С означает ёмкость конденсатора в мкФ (микрофарад), а буква Р означает номинальную мощность электродвигателя в кВт (киловатт). Из этой простой формулы видно, что на каждые 100 ватт мощности трёхфазного двигателя, потребуется чуть менее 7 мкФ (если быть точным, то 6,6 мкФ) электрической ёмкости конденсатора. Например для эл. двигателя мощностью 1000 ватт (1 Квт) потребуется конденсатор ёмкостью 66 мкФ, а для эл. двигателя на 600 ватт нужен будет конденсатор ёмкостью примерно 42 мкФ.

Так же следует учесть, что потребуются конденсаторы, рабочее напряжение которых в 1,5 — 2 раза больше, чем напряжение в обычной однофазной сети. Обычно на базаре попадаются конденсаторы небольших ёмкостей (8 или 10 мкФ), но необходимую ёмкость легко собрать из нескольких параллельно соединённых конденсаторов маленькой ёмкости. То есть например 70 мкФ можно легко получить из семи параллельно спаянных конденсаторов по 10 мкФ.

Но всё же всегда следует стараться найти по возможности один конденсатор ёмкостью 100 мкФ, чем 10 конденсаторов по 10 мкФ, так надёжнее. Ну и рабочее напряжение, как я уже говорил, должно быть как минимум в 1,5 — 2 раза больше рабочего, а лучше в 3 — 4 раза больше (чем больше напряжение, на которое рассчитан конденсатор, тем надёжнее и долговечнее). Рабочее напряжение всегда пишется на корпусе конденсатора (как и мкФ).

Правильно вы подобрали (рассчитали) ёмкость конденсатора или нет, можно и на слух. При вращении мотора, должен быть слышен только шум от подшипников, ну и шум вентилятора воздушного охлаждения. Если же к этим шумам прибавляется и вой двигателя, нужно чуть уменьшить ёмкость (Ср) рабочего конденсатора. Если же звук нормальный, то можно наоборот немного увеличить ёмкость (так будет мощнее мотор), но только чтобы мотор работал тихо (до появления воя).

Проще говоря, нужно поймать момент, меняя ёмкость, когда к нормальному шуму от подшипников и крыльчатки, начнёт прибавляться еле слышимый посторонний вой. Это и будет необходимая ёмкость рабочего конденсатора. Это важно, так как если рабочая ёмкость конденсатора окажется больше необходимой, то мотор будет перегреваться, а если ёмкость будет меньше нужной, то мотор потеряет свою мощность.

Покупать лучше конденсаторы типа МБГЧ, БГТ, КБГ, ну а если не найдёте таких в продаже, можно применить и электролитические конденсаторы. Но при подключении электролитических конденсаторов, их корпуса нужно хорошо соединить между собой и изолировать от корпуса станка или ящика (если он металлический, но лучше использовать ящик для конденсаторов из диэлектрика — пластик, текстолит и т.п.).

При подключении трёхфазного двигателя к сети 220 вольт, частота вращения его вала (ротора) почти не изменится, а вот мощность его всё же немного уменьшится. И если подключить электродвигатель по схеме треугольник (рис 1), то мощность его уменьшится примерно процентов на 30 и будет составлять 70 — 75 % от его номинальной мощности (при звезде чуть меньше). Но можно подключить и по схеме звезда (рис 2), и при подсоединении звездой, мотор легче и быстрее запускается.

Чтобы подключить трёхфазный электродвигатель по схеме звезда, нужно его две фазные обмотки подключить в однофазную сеть, а третью фазную обмотку двигателя, подключить через рабочий конденсатор Ср к любому из проводов сети 220 в.

Чтобы подключить трёхфазный электромотор мощностью до полтора киловатта (1500 ватт), хватает только рабочего конденсатора необходимой ёмкости. Но при включении больших моторов (более 1500 ватт), движок либо очень медленно набирает обороты, либо вообще не запускается. В таком случае необходим пусковой конденсатор (Сп на схеме), ёмкость которого в два с половиной раза (лучше в 3 раза) больше ёмкости рабочего конденсатора. Лучше всего подходят в качестве пусковых конденсаторов электролитические (типа ЭП), но можно использовать и такого же типа как и рабочие конденсаторы.

Схема подсоединения трёхфазного мотора с пусковым конденсатором показана на рисунке 3 (а так же пунктирной линией на рисунках 1 и 2). Пусковой конденсатор включают только во время пуска двигателя, и когда он запустится и наберёт рабочие обороты (обычно хватает 2 секунд), пусковой конденсатор отключают и разряжают. В такой схеме используются кнопка и тумблер. При пуске аключается тумблер и кнопка одновременно и после запуска двигателя, кнопка просто отпускается и пусковой конденсатор отключается. Чтобы разрядить пусковой конденсатор, достаточно выключить двигатель (после окончания работы) и затем на короткое время нажать кнопку пускового конденсатора, и он разрядится через обмотки электродвигателя.

Определение фазных обмоток и их выводов.

При подключении необходимо знать, где какая обмотка электродвигателя. Как правило выводы обмоток статора электромоторов маркируют различными бирками с обозначением начала или конца обмоток, или помечают буквами на корпусе распределительной коробочки двигателя (или клеммной колодки). Ну а если же маркировка стёрлась или её вообще нет, то нужно прозвонить обмотки с помощью (мультиметра), установив его переключатель на прозвонку, или с помощью обычной лампочки и батарейки.

Для начала следует узнать принадлежность каждого из шести проводов к отдельным фазам обмотки статора. Для этого следует взять любой из проводов (в клеммной коробочке) и подсоединить его к батарейке, например к её плюсу. Минус батарейки подсоедините к контрольной лампе, а второй вывод (провод) от лампочки, по очереди подсоединяйте к оставшимся пяти проводам двигателя, пока контрольная лампочка не загорится. Когда на каком то проводе лампочка загорится, это будет означать, что оба провода (тот что от батарейки и тот к которому подсоединили провод от лампы и лампа загорелась) принадлежат одной фазе (одной обмотке).

Теперь эти два провода пометьте картонными бирками (или малярным скотчем) п напишите на них маркероа начало первого провода С1, а второй провод обмотки С4. С помощью лампы и батарейки (или тестера) аналогично находим и помечаем начало и конец оставшиеся четырёх проводов (двух оставшихся фазных обмоток).Начало и конец второй фазной обмотки помечаем как С2 и С5, и начало и конец третьей фазной обмотки С3 и С6.

Далее следует точно определить, где начало и конец статорных обмоток. Я опишу далее способ, который поможет определить начало и конец статорных обмоток для двигателей до 5 киловатт. Да больше и не надо, так как однофазная сеть (проводка) гаража рассчитана на мощность 4 киловата, а если мощнее, то штатные провода не выдерживают. И вообще то редко кто использует двигатели в гараже, мощнее 5 киловатт.

Для начала соединим все начала фазных обмоток (С1, С2 и С3)в одну точку (согдасно помеченным бирками выводам), по схеме «звезда». И затем включим двигатель в сеть 220 в с использованием конденсаторов. Если при таком подключении, электродвигатель без гудения сразу раскрутится до рабочих оборотов, это значит, что вы попали в одну точку всеми началами или всеми концами фазных обмоток.

Ну а если же при включении в сеть, электродвигатель загудит и не сможет раскрутиться до рабочих оборотов, то в первой фазной обмотке нужно поменять местами выводы С1 и С4 (поменять местами начало и конец). Если это не поможет, то верните выводы С1 и С4 в первонаальное положение и попробуйте теперь поменять местами выводы С2 и С5. Если двигатель опять не набирает обороты и гудит, то верните назад выводы С2 и С5 поменяйте местами выводы третьей пары С3 и С6.

При всех вышеописанных манипуляциях с проводами, строго соблюдате правила техники безопасности. Провода держите только за изоляцию, лучше плоскогубцами с ручками из диэлектрика. Ведь электромотор имеет общий стальной магнитопровод и на зажимах остальных обмоток, может возникнуть довольно большое напряжение, опасное для жизни.

Изменение вращения вала электродвигателя (ротора).

Часто бывает, что вы например сделали шлифовальный станочек, с лепестковым кругом на валу. И лепестки из наждачной бумаги расположены под определённым углом, против которого вращается вал, а нужно в другую сторону. Да и опилки летят не на пол а наоборот вверх. Значит необходимо поменять вращение вала двигателя в другую сторону. Как это сделать?

Чтобы изменить вращение трёхфазного двигателя, включенного в однофазную сеть на 220 вольт по схеме «треугольник», нужно третью фазную обмотку W (см. рисунок 1,б) подключить через конденсатор к резьбовой клемме второй фазной обмотки статора V.

Ну а чтобы изменить вращение вала трёхфазного двигателя, подключенного по схеме «звезда», необходимо третью фазную обмотку статора W (см. рисунок 2,б) подключить через конденсатор к резьбовой клемме второй обмотки V.

Ну и напоследок хочу сказать, что шум двигателя от длительной его работы (несколько лет) может возникнуть со временем, и не следует путать его с гулом от неправильного подключения. Так же со временем может возникнуть и вибрация мотора. А бывает даже ротор трудно вращать вручную. Причиной этого как правило является выработка подшипников — их дорожки и шарики износились, да и сепаратор тоже. От этого возникают повышенные зазоры между деталями подшипников и они начинают шуметь, и со временем могут даже заклинить.

Этого допускать нельзя, и дело даже не только в том, что вал труднее будет вращаться и мощность двигателя упадёт, а ещё и в том, что между статором и ротором довольно маленький зазор, и при сильном износе подшипников, ротор может начать цеплять за статор, а это уже куда серьёзнее. Детали двигателя могут испортиться и восстановить их не всегда удаётся. Поэтому намного проще заменить зашумевшие подшипники новыми, от какой то авторитетной фирмы (как выбрать подшипник читаем ), и электродвигатель снова будет работать долгие годы.

Надеюсь данная статья поможет гаражным мастерам, без проблем подключить трёхфазный двигатель какого то станка к однофазной гаражной сети на 220 вольт, ведь с применением различных станочков (шлифовальных, сверлильных, токарных, и т.д.) намного упрощается процесс доводки деталей при тюнинге или ремонте.

Переделка трехфазного электродвигателя в однофазный — Мысли и идеи

К сожалению, удачная будет проба или нет как раз зависит от емкости. У меня отец долго мыкался с маленькими (до 200 мкф) кондесаторами — 3кВт движок пускать. Решили таки этот вопрос включением двух электролитических алюминиевых конденсаторов по 1000 мкФ (500В) встречно-последовательно с шунтированием каждого диодом обратной полярности. Теперь пускается надежно даже под нагрузкой.

К сожалению не только от емкости, но и от схемы ротора. Двигатели с двойной клеткой запускаются в однофазном режиме крайне не стабильно даже при тройной емкости и при работе греются при любом подборе емкости, а всякого рода полупроводниковые преобразователи тоже не обеспечивают стабильной работы. Серия этих двигателей МА, они вообще не пригодны для работы в однофазном режиме. Лучше всего работают движки серии А4 причем чем меньше обороты тем увереннее пуск и работа их в однофазном режиме значительно эластичней.

Конденсаторы лучше МГЧБ напряжением не меньше 400 В Но мы ставили и 300 В правда во время работы хлопотно искать какой пробило поэтому сейчас меньше 400В не ставим.

На счет конденсаторов у меня мнение другое. На циркулярке 2,2КВт с 1986 года стоят кондеры на 160В, сам каждый год использую и друзья несколько дачь построили ни один конденсатор еще не взорвался. А искать какой «пробило» не придется, его на куски разорвет. Поэтому конденсаторы располагаю в металической коробке из-под пускателя, с обязательным заземлением. А на станке ТВ4 1.1 КВт пусковой с1983го года вообще МБМ на 30В и 300Мкф 🙂 Но это я думаю везение, просто ничего другого в это время не попалось, а потом было лень заменять, так с тех пор и работает почти каждый день. Правда на нем знак качества стоит. А на сварочнике 600В взорвался, поди-ж угадай, поэтому всегда только в коробке! На большое напряжение кондеры нужно еще поискать, а на 160в полно и не стоят они ничего, а если не видно разницы, зачем платить больше? Но это всего лишь мое мнение.

Как подключить трехфазный электродвигатель в сеть 220Вт

Необходимость использования трехфазного асинхронного электродвигателя самостоятельно чаще всего возникает, когда устанавливается или проектируется самодельное оборудование. Обычно на дачах или в гараже мастера хотят использовать самодельные наждачные станки, бетономешалки, приборы по заточке и обрезке изделий.

Использование трехфазного асинхронного электродвигателя самостоятельно

Тут и возникает вопрос: как подключить электродвигатель, рассчитанный на 380, к сети в 220 Вольт. Кроме того, важно как подключить электродвигатель в сеть, так и обеспечить необходимый показатель коэффициента полезного действия (КПД), сохранить эффективность и работоспособность агрегата.

Особенности устройства двигателя

На каждом двигателе есть пластина или шильдик, где указаны технические данные и схема скрутки обмоток. Символ Y обозначает соединение звездой, а ∆ – треугольником. Помимо этого, на пластине обозначено напряжение сети, для которого предназначен электродвигатель. Разводка для подсоединения к сети находится на клеммнике, куда выводят провода обмотки.

Для обозначения начала и конца обмотки используют буквы С или U, V, W. Первое обозначение было в практике раньше, а английские буквы стали применять после введения ГОСТа.

Буквы для обозначения начала и конца обмотки

Не всегда использовать для работы двигатель, предназначенный для трехфазной сети, представляется возможным. Если на клеммник выведено 3 вывода, а не 6 как обычно, то подключение возможно только с напряжением, которое указано в инженерных характеристиках. В этих агрегатах соединение треугольником или звездой уже сделано внутри самого прибора. Поэтому использовать электродвигатель на 380 Вольт с 3 выводами для однофазной системы невозможно.

Можно частично разобрать двигатель и переделать 3 вывода на 6, но это сделать не так просто.

Существует разные схемы того, как лучше подключать приборы с параметрами в 380 Вольт в однофазную сеть. Чтобы использовать трехфазный электродвигатель в сети 220 Вольт, проще воспользоваться одним из 2 способов подключения: «звезда» или «треугольник». Хотя можно осуществить запуск трехфазного двигателя с 220 без конденсаторов. Рассмотрим все варианты.

«Звезда»

На рисунке показано, как выполняется этот тип подключения. В работе электродвигателя следует дополнительно воспользоваться фазосдвигающими конденсаторами, которые ещё называют пусковыми (Спуск.) и рабочими (Сраб.).

Тип подключения «Звезда»

При подключении звездой все три конца обмотки соединяются. Для этого используют специальную перемычку. Питание подается на клеммы с начала обмоток. При этом начало обмотки С1(U1) через параллельно подключенные конденсаторы поступает на начало обмотки С3(U3). Далее этот конец и С2(U2) надо подключить к сети.

«Треугольник»

В этом виде подключения, как и в первом примере, используются конденсаторы. Для того чтобы подключить по этой схеме скрутки потребуются 3 перемычки. Они будут соединять начало и конец обмотки. Выводы, идущие с начала обмотки С6С1 через такую же параллельную схему, как и в случае с подключением «звезда», соединяются с выводом, идущим от С3С5. Затем полученный конец и вывод С2С4 следует подключить к сети.

Тип подключения «Треугольник»

Если на шильдике указаны показатели 380/220ВВ, то подключение в сеть возможно только по «треугольнику».

Как подсчитать емкость

Для рабочего конденсатора применяется формула:

Сраб.=2780хI/U, где
U – номинальное напряжение,
I – ток.

Существует и другая формула:

Сраб.= 66хР, где Р – это мощность трехфазного электродвигателя.

Получается, что 7мкФ емкости конденсатора рассчитаны на 100Вт его мощности.

Значение для емкости пускового устройства должно быть на 2,5-3 порядка больше рабочего. Такое расхождение показателей по емкости у конденсаторов требуется, потому что пусковой элемент включается при работе трехфазного двигателя на непродолжительное время. К тому же при включении высшая нагрузка на него значительно больше, оставлять в рабочем положении это устройство на более длительный период не стоит, иначе из-за перекоса тока по фазам через некоторое время электродвигатель начнет перегреваться.

Если вы используете для работы электродвигатель, мощность которого меньше 1кВт, то пусковой элемент не потребуется.

Иногда емкости одного конденсатора для начала работы не хватает, тогда схема подбирается из нескольких разных элементов, соединенных последовательно. Общую емкость при параллельном соединении можно рассчитать по формуле:

Cобщ=C1+C1+…+Сn.

На схеме подобное подключение выглядит следующим образом:

Схема параллельного подключения

О том, насколько правильно подобраны емкости конденсаторов, можно будет понять только в процессе использования. Из-за этого схема из нескольких элементов более оправдана, ведь при большей емкости двигатель будет перегреваться, а при меньшей – выходная мощность не достигнет нужного уровня. Подбор емкости лучше начать с минимального ее значения и постепенно доводить до оптимального. При этом можно замерить ток с помощью токоизмерительных щипцов, тогда подобрать оптимальный вариант станет проще. Подобный замер делают в рабочем режиме трехфазного электродвигателя.

Какие выбрать конденсаторы

Для подключения электродвигателя чаще всего используют бумажные конденсаторы (МБГО, КБП или МПГО), но все они обладают небольшими емкостными характеристиками и достаточной громоздкостью. Другой вариант – подобрать электролитические модели, хотя здесь придется дополнительно подключить в сеть диоды и резисторы. К тому же при пробое диода, а это случается довольно часто, через конденсатор начнет поступать переменный ток, что может привести к взрыву.

Специалисты по электрооборудованию рекомендуют использовать варианты металлизированных полипропиленовых конденсаторов (СВВ), которые отличаются надежностью и износостойкостью.

Кроме емкости, стоит обратить внимание на рабочее напряжение в домашней сети. При этом следует подбирать модели с техническими показателями не меньше 300Вт. Для бумажных конденсаторов подсчет рабочего напряжения для сети немного другой, и рабочее напряжение у данного типа устройств должно быть выше 330-440ВВ.

Пример подключения в сеть

Посмотрим, как это подключение рассчитывается на примере двигателя со следующими характеристиками на шильдике.

Характеристики двигателя

Итак, возьмем трехфазный асинхронный двигатель со схемой соединения для сети в 220 Вольт «треугольником» и «звездой» для 380 Вольт.

В данном случае мощность взятого для примера электродвигателя составляет 0,25 kW, что значительно меньше 1 kW, пусковой конденсатор не потребуется, а общая схема будет выглядеть следующим образом.

Схема соединения в 220 В

Для подключения в сеть необходимо найти емкость рабочего конденсатора. Для этого стоит подставить значения в формулу:
Сраб.= 2780 2А/220В=25 мкФ.

Рабочее напряжение устройства выбирается выше показателя в 300 Вольт. Исходя из этих данных, сортируют соответствующие модели. Некоторые варианты можно найти в таблице:

Зависимость емкости и напряжения от типа конденсатора

Тип конденсатораЕмкость, мкФНоминальное напряжение, В
МБГ01
2
4
10
20
30
400, 500
160, 300, 400, 500
160, 300, 400
160, 300, 400, 500
160, 300, 400, 500
160, 300
МБГ41; 2; 4; 10; 0,5250, 500
К73-21; 2; 3; 4; 6; 8; 10400, 630
К75-121; 2; 3; 4; 5; 6; 8; 10400
К75-121; 2; 3; 4; 5; 6; 8630
К75-404; 5; 6; 8; 10; 40; 60; 80; 100750

Подключение тиристорным ключом

Трехфазный электродвигатель, предназначенный для 380 Вольт, используют для однофазного напряжения, применяя тиристорный ключ. Для того чтобы запустить агрегат в таком режиме, потребуется вот эта схема:

Схема трехфазного электродвигателя для однофазного напряжения

В работе использованы:

  • транзисторы из серии VT1, VT2;
  • резисторы МЛТ;
  • кремниевые диффузионные диоды Д231
  • тиристоры серии КУ 202.

Все элементы рассчитаны на напряжение 300 Вольт и ток 10А.
Собирается тиристорный ключ, как и другие микросхемы, на плате.

Сделать такое устройство под силу всем, кто имеет начальные познания в создании микросхем. При мощности электродвигателя меньше 0,6-0,7kW при подключении в сеть нагрева тиристорного ключа не наблюдается, поэтому дополнительное охлаждение не потребуется.

Подобное подключение может показаться слишком сложным, но все зависит от того, какие у вас есть элементы, чтобы переделать двигатель из 380Вт в однофазный. Как видно, использовать трехфазный двигатель для 380 через однофазную сеть не так сложно, как это кажется на первый взгляд.

Подключение. Видео

Видео рассказывает о безопасном подключении наждака к сети 220 В и делится советами, что для этого нужно.

Оцените статью:

Подключение трехфазного мотора в сеть 220 вольт. Показываю как я это сделал. | Мастерская Самоделок

Приветствую всех, дорогие читатели. Для каждой самоделки у меня всегда есть двигатель, вот и в этот раз у меня нашелся мотор на 380 вольт от насосной станции, к сожалению питать его трёхфазным током у меня нет никакой возможности, по всему дому 220 вольт. Выход из ситуации есть, я расскажу как подключить трехфазный двигатель и получить максимальный КПД, если у вас сеть 220 вольт.

Двигатель будем запускать с использованием конденсатора, его ёмкость нужно рассчитать, учитывая мощность мотора.

Мотор от насосной станции

Мотор от насосной станции

Первым делом разберемся с типом подключения.

Источник: http://zametkielectrika.ru/podklyuchenie-trexfaznogo-dvigatelya-k-odnofaznoj-seti/

Источник: http://zametkielectrika.ru/podklyuchenie-trexfaznogo-dvigatelya-k-odnofaznoj-seti/

В двух схемах применяется по паре конденсаторов, один — пусковой, второй — рабочий. Рассчитать их можно по этой ссылке.

На клеммник двигателя подключены фазные обмотки, менять тип их подключения можно при помощи специальных перемычек.

На моем двигателе на шильдике написано 220В/380В, а рядом расположен рисунок типа подключения обмоток, то есть при сети 220 Вольт двигатель подключаем треугольником, если же сеть у нас трехфазная(380Вольт), то звездой.

Шильдик двигателя с характеристиками

Шильдик двигателя с характеристиками

Соединение обмоток звездой

Для соединения обмоток звездой необходимо соединить между собой концы 3-х обмоток перемычкой с тремя отверстиями, но в данном случае нам понадобиться трехфазная сеть, чтобы подключить остальные три вывода обмоток. Поэтому такой способ для подключения в сеть 220 вольт нам не подходит.

Соединение обмоток треугольником.

Чтобы использовать двигатель в сети 220 вольт, то его необходимо подключить треугольником, то есть соединить концы обмотки фаз с началом другой фазы, подробнее я показал на фото ниже.

Источник: http://zametkielectrika.ru/soedinenie-zvezdoj-i-treugolnikom/

Источник: http://zametkielectrika.ru/soedinenie-zvezdoj-i-treugolnikom/

В таком случае при подключении двигателя треугольником у нас получается максимально возможный КПД при работе от сети 220 вольт, мощность в данном случае теряется, но не так сильно, как при соединении звездой. Для станков и других приспособлений необходимо учитывать,что подключение звездой в данном случае будет иметь меньший вращающий момент, поэтому схема треугольник также актуальна в высоконагруженных механизмах.

Через слабо прозрачную крышку виднеется подключение треугольником, звездой двигатель не тянул диск от УШМ

Через слабо прозрачную крышку виднеется подключение треугольником, звездой двигатель не тянул диск от УШМ

На этом у меня все, кому интересна была статья, ставьте лайк и подписывайтесь на канал, также пишите свой комментарий по подключению трехфазного двигателя в сети 220 вольт без частотного преобразователя. Источником послужила статья на сайте : http://zametkielectrika.ru/soedinenie-zvezdoj-i-treugolnikom/

Благодарю за дочитывание. Желаю всем добра и позитивного настроя.

Можно ли запустить двигатель 440В на 220В? — Ответы на все

Можно ли запустить двигатель 440В на 220В?

Маловероятно, что трехфазный двигатель будет работать с однофазным напряжением 220 В, если только вы не соберете установку с трансформатором и катушкой индуктивности. Предполагая, что однофазный, 440 В обычно означает более тонкие провода и лучшую изоляцию, поэтому использование 220 В в этом сценарии не должно вызывать никакой опасности, если только мы не говорим о лифте и т. д.

Как преобразовать 440 В в 220 В?

Если у вашего соседа другая фаза, вы должны одолжить эту фазу, а затем, используя понижающий трансформатор с 440 В переменного тока на 220 В переменного тока, вы можете понизить напряжение до 220 В и использовать его.Но у вас дома уже есть 220 В переменного тока. Обычно люди делают обратное преобразование 440 В в 220/120 В переменного тока, понижая управляющее напряжение оборудования.

Почему однофазное напряжение составляет 230 В, а трехфазное — 440 В?

В 3-фазном питании есть 3 линии питания, сдвинутые по фазе на 120 градусов друг от друга. Напряжение на любой одной фазе и нейтрали составляет 220 В, а напряжение на 3-й фазе составляет 440 В, потому что мы проверяем напряжение между любыми двухфазными RY, YB или BR.

Могу ли я запустить 3-х фазный двигатель на 220?

Вы можете запустить трехфазный двигатель от стандартной однофазной сети 220 В.Во-первых, вы включаете трехфазный двигатель (вручную или лучше с помощью небольшого двигателя на 110 В), а ЗАТЕМ включаете 220 (подключенный к двум ногам), и он заработает. Он не будет работать на номинальной мощности или плавно, но будет работать (на скорости).

Что такое 3-фазное питание 220 В?

Если у вас есть 220 вольт и 3 фазы, печь будет поставляться с 3-проводным блоком питания для 3 горячих проводов, которые дают 3 фазы. Между каждым горячим проводом можно измерить 220 вольт. В этом случае к печи не нужен нейтральный провод, достаточно заземляющего провода в дополнение к трем горячим проводам.

Что такое трехфазный преобразователь?

Преобразование фазы — это процесс преобразования однофазной мощности в трехфазную. «Фазопреобразователь» создает третью линию напряжения (третью синусоиду), что позволяет использовать трехфазную мощность в однофазной среде. NAPCco предлагает три типа преобразователей: вращающийся, статический и цифровой.

Можно ли преобразовать 240 В в 3 фазы?

В общем, да. Большинство небольших односкоростных трехфазных двигателей намотаны для работы от трехфазной сети 380/415 В или 220/240 В.

Что такое 220В 3 фазы?

Можно ли получить 240В от 3 фазы?

В США питание 240 В подается в небольшие здания с большими нагрузками в виде 3-фазного напряжения 240 В с открытым треугольником. Это похоже на 120/240 В, но также обеспечивает 3 фазы 240 В для больших нагрузок (машины и т. Д.). Ее часто называют «дикой ногой» или «высокой ногой» дельты, потому что одна ветвь (фаза B) отличается.

Можете ли вы преобразовать 240 В в 3 фазы?

Всегда ли 415 В 3 фазы?

Трехфазное однофазное питание 415 В доступно между любой из трех фаз.Волновая диаграмма разности потенциалов между двумя линиями 240 В, сдвинутыми по фазе на 120°, показана на рисунке 13.11b. Три фазные линии и нейтраль вместе дают 3-фазное 4-проводное питание со среднеквадратичным напряжением 240√3 = 415 В.

Можно ли перейти на 3 фазы?

Как преобразовать трехфазный двигатель в однофазный

По сути, все, что вам нужно сделать, это подключить однофазное питание к входной стороне вашего преобразователя частоты, а затем подключить трехфазное питание вашего двигателя к выходной части привода.Вот и все! 20 февраля 2017 г.

Как перейти от трехфазного к однофазному?

Преобразуйте 3-фазное соединение переменного тока в постоянное, а затем в однофазное. Вы можете использовать электронный выпрямитель для преобразования питания в систему постоянного тока. Затем из системы постоянного тока вы можете преобразовать ее обратно в однофазное подключение к сети переменного тока.

Может ли трехфазный двигатель работать от 230 вольт?

Однофазный на 3-фазный ЧРП является лучшим вариантом для 3-фазного двигателя, работающего от однофазного источника питания (1 фаза 220 В, 230 В, 240 В), он устранит пусковой ток во время запуска двигателя, заставит двигатель работать от нулевой скорости до полный ход плавно, плюс, цена абсолютно доступная.

Как преобразовать трехфазное напряжение 415 В в однофазное?

Безусловно, самый простой способ получить однофазный выход из трехфазного источника питания состоит в том, чтобы разместить однофазный трансформатор между двумя фазами трехфазного источника питания. Эффект этой системы заключается в том, чтобы получить полный номинальный ток в двух линиях питания и нулевой ток в третьей линии.

Могу ли я использовать 3-фазное отключение для одной фазы?

Нет проблем с использованием 3-фазной панели для однофазного питания или обслуживания, если она имеет нейтральную шину (присутствует или продается отдельно).Небольшое количество систем, особенно систем с подключением к генератору, может использовать коммутируемую нейтраль в главном разъединителе или выключателе.

Что такое однофазный?

Однофазная мощность представляет собой двухпроводную силовую цепь переменного тока (ac). Как правило, имеется один силовой провод — фазный провод — и один нейтральный провод, при этом ток течет между силовым проводом (через нагрузку) и нейтральным проводом. Однофазные системы могут быть получены из трехфазных систем.

Можно ли запустить дома трехфазный двигатель?

Большая часть тяжелого оборудования предназначена для работы от трехфазной электроэнергии, потому что трехфазные двигатели проще, эффективнее и надежнее, чем однофазные.К сожалению, трехфазное питание обычно недоступно в жилых районах, но, возможно, стоит уточнить это в вашей энергетической компании.

Можете ли вы запустить 3-фазный двигатель на 2 фазы?

Да, он будет работать, но недолго. потому что, если работает трехфазный двигатель, и вдруг одна из фаз размыкается, двигатель все равно будет работать, но с пониженным КПД. если вы попытаетесь запустить трехфазный двигатель в две фазы, это не сработает.

Можете ли вы преобразовать 240 В в 3 фазы?

В общем, да.Большинство небольших односкоростных трехфазных двигателей намотаны для работы от трехфазной сети 380/415 В или 220/240 В.

Почему 415 В 3 фазы?

3-фазное питание имеет четыре провода; три активных и один нейтральный, подает питание как на 240 В, так и на 415 В. Это связано с тем, что у нас есть доступ ко всем трем фазам, поэтому, по сути, это означает, что у нас подключено 3 однофазных источника питания.

Как узнать, однофазный он или трехфазный?

Посмотрите на «главный выключатель» или «главный выключатель нормального питания» на распределительном щите.Если выключатель выглядит как три выключателя, объединенных в один, и имеет ширину более 3 см, у вас трехфазное питание. Если это один переключатель и тонкий, у вас есть однофазное питание.

Сколько стоит установка трехфазного питания?

Коммунальные сети, три фазы В среднем затраты на подключение трехфазной сети составляют примерно 50 000 долларов США за милю плюс затраты на подготовку площадки. Средняя стоимость использования составляет около 0,10 доллара США за (кВт-ч) плюс минимальные требования к использованию и плата за спрос.

Можно ли получить однофазное напряжение 220 В от трехфазного?

Для преобразования трехфазного питания в однофазное можно использовать преобразователь фазы. Это устройство можно подключить к двигателю, который вы планируете запустить и который требует однофазного питания. Обратите внимание, что это повлияет только на подключенное к нему устройство, а не на всю розетку, потому что она не подключена жестко к вашей электрической системе.

Каково значение трехфазного напряжения?

3-фазная система выражается линейными напряжениями. Напряжение в линии 440 вольт.Также напряжение между любой фазой и нейтралью для 3-фазной системы составляет 240 вольт. 440 В в 3-фазной системе представляет собой линейное напряжение, если вы рассчитаете напряжение по фазам, вы получите примерно такое же значение, как и для 1-фазной системы.

Почему в домах используется одна фаза?

Каковы преимущества использования однофазного питания? Однофазное питание вырабатывает электроэнергию для жилых домов и бытовых электроприборов, поскольку для работы большинства приборов требуется лишь небольшое количество энергии, включая вентиляторы, обогреватели, телевизоры, холодильники и осветительные приборы.

Сколько ампер в одной фазе?

Для обычного однофазного источника питания на 240 вольт максимальный ток составит 100 ампер. Ток в амперах, умноженный на напряжение в вольтах, дает мощность в ваттах (мощность = напряжение x ток). Если доступно трехфазное питание, то 24 000 Вт делятся на 3, что означает, что на каждую фазу используется 8000 Вт.

Можно ли использовать переменный ток в одной фазе?

Можно, да. Главный автоматический выключатель имеет номинальный ток не менее 25 ампер.Если вы используете 1,5 переменного тока, он имеет максимальный ток нагрузки от 7 до 8 ампер для одного переменного тока, и размер MCB должен быть выбран.

Как сделать 3 фазы дома?

Если у вас всего несколько трехфазных единиц оборудования, вы можете использовать частотно-регулируемый привод, как описано выше, или вы можете использовать двигатель-генератор, либо статический (полупроводниковый), либо вращающийся (механический). Вы можете использовать генератор двигателей Google, и он предоставит вам всю необходимую информацию. Вы также можете приобрести трехфазный генератор.

Как проверить трехфазный двигатель?

С помощью мультиметра проверьте непрерывность обмотки двигателя от фазы к фазе (от U к V, от V к W, от W к U).Каждая фаза к фазе должна иметь непрерывность, если обмотка в порядке. Если какая-либо конкретная фаза не проходит тест на непрерывность, ваш двигатель, вероятно, сгорел.

Что произойдет, если вы потеряете фазу на трехфазном двигателе?

Трехфазный двигатель, запущенный в условиях обрыва фазы, может заглохнуть под нагрузкой. Ток, протекающий в обмотках заглохшего двигателя, увеличится до тока блокировки ротора двигателя, который примерно на 600 % превышает нормальный ток полной нагрузки двигателя.

Что такое двухфазный двигатель?

Двухфазный двигатель — это система, в которой два напряжения отстоят друг от друга на 90 градусов, и которая в настоящее время больше не используется.Для них требуется 2 провода под напряжением и один провод заземления, которые работают в двух фазах. Один увеличивает ток до 240 В для движения, а другой поддерживает плавность тока для использования двигателя.

Электрический ток — однофазный и трехфазный Сила тока

В однофазной энергосистеме переменного тока имеется только одно единственное синусоидальное напряжение.

Большая часть электроэнергии переменного тока производится и распределяется как трехфазная мощность с тремя синусоидальными напряжениями, сдвинутыми по фазе на 120 градусов друг относительно друга.

Приведенную ниже диаграмму и таблицу можно использовать для преобразования силы тока между однофазным и трехфазным оборудованием и наоборот.

Загрузите и распечатайте диаграмму однофазной и трехфазной мощности переменного тока

Пример — питание электрического нагревателя

10 кВт мощности требуется электрическому нагревателю. Доступный источник питания 230 В однофазный или трехфазный. Из диаграммы выше мы можем оценить ток в двух вариантах примерно как

  • 43 А с одной фазой 230 В
  • 25 А с тремя фазами 230 В
  • с тремя фазами к электрической цепи — типично от поставщика электроэнергии к сети — для покрытия фактической и реактивной мощности, потребляемой в нагрузках.Для чисто резистивных нагрузок кажущаяся мощность равна активной мощности и 1 ​​ВА = 1 Вт .

    Для просмотра полной таблицы с трехфазными сбалансированными нагрузками — поверните экран!

    9 2500 0 9 3500 9 9 9 9 23 0 9 9 13 9 16 9 0 9 0 9 9 9 9 9 9 14 9 9 9 9 9 9 24 9 21
    Очевидная мощность
    (VA) (VA)
    Текущий (AMPS)
    Однозадач (вольт) Трифазная сбалансированная нагрузка (вольт)
    120 208 230 240 208 230 240 277 347 380 400 415 480 600
    100 0.83 0,48 0,43 0,42 0,28 0,25 0,24 0,21 0,17 0,15 0,14 0,14 0,12 0,10
    150 1,3 0.72 0,65 0.65 0.63 0.42 0.38 0,36 0,31 0,25 0,25 0,23 0.22 0,21 0,18 0,14
    200 1,7 1,0 0,87 0,83 0,56 0,50 0,48 0,42 0,33 0,30 0,29 0.28 0.24 0.24 0,24 0.19
    250 250 2.1 1.2 1.1 1.0 0.69 0.63 0,60 0,52 0,42 0,38 0,36 0,35 0,30 0,24
    300 2,5 1,4 1,3 1,3 0,83 0,75 0,72 0.72 0.63 0.50 0.50 0.46 0.43 0.42 0.36 0,29 0,29
    350 2.9 1,7 1,5 1,5 1,0 0,88 0,84 0,73 0,58 0,53 0,51 0,49 0,42 0,34
    400 3,3 1.9 1.9 1.7 1.7 1.1 1.0 1.0 0,83 0.67 0.61 0.61 0.58 0.56 0,48 0,38
    450 3,8 2,2 2,0 1,9 1,2 1,1 1,1 0,94 0,75 0,68 0,65 0,63 0.54 0.54 0.43
    500 5.2 4.4 2.4 2.2 2.1 1.4 1.3 1.2 1,0 0,83 0,76 0,72 0,70 0,60 0,48
    550 4,6 2,6 2,4 2,3 1,5 1,4 1,3 1.1 0,92 0.92 0.84 0.79 0.77 0,77 0.66 0.53
    600 5.0 2.9 2.6 2,5 1,7 1,5 1,4 1,3 1,0 0,91 0,87 0,83 0,72 0,58
    650 5,4 3,1 2,8 2.7 1.8 1.6 1.6 1.6 1.4 1.4 1.1 1.0 0,94 0,90 0.78 0.63
    700 5,8 3,4 3,0 2,9 1,9 1,8 1,7 1,5 1,2 1,1 1,0 1,0 0,84 0,67
    750 6 60240 3.6 3.3 3.1 2.1 1.9 1.8 1.6 1.2 1.1 1,1 1,0 0,90 0,72
    800 6,7 3,8 3,5 3,3 2,2 2,0 1,9 1,7 1,3 1,2 1.2 1.1 1.0 1.0 0,77 850 7.1 7.1 4.1 3,7 3.5 2.4 2.1 2,0 1,8 1,4 1,3 1,2 1,2 1,0 0,82
    900 7,5 4,3 3,9 3,8 2,5 2,3 2.2 1.9 1.9 1.5 1.4 1.3 1.3 1.1 1,1 0,87
    950 79 4.6 4,1 4,0 2,6 2,4 2,3 2,0 1,6 1,4 1,4 1,3 1,1 0,91
    1000 8,3 4,8 4.3 4,2 4,2 2.8 2.5 2.5 2.4 2.1 2.1 1.7 1.5 1.4 1.4 1.2 1.0
    1 100 9,2 5,3 4,8 4,6 3,1 2,8 2,6 2,3 1,8 1,7 1,6 1,5 1,3 1,1
    1200 1200 10 5.8 5.2 5.0 5.0 3.3 3.0 2.9 2.5 2.0 1.8 1,7 1,7 1,4 1,2
    1300 11 6,3 5,7 5,4 3,6 3,3 3,1 2,7 2,2 2,0 1.9 1.9 1.8 1.6 1.3
    1400 1400 12 6,7 6.1 5.8 3,9 3.5 3,4 2,9 2,3 2,1 2,0 1,9 1,7 1,3
    +1500 13 7,2 6,5 6,3 4,2 3,8 3.6 3.1 3.1 2.5 2.3 2.2 2.2 2.1 1.8 1.4
    1600 13 7.7 7,0 6,7 4,4 4,0 3,8 3,3 2,7 2,4 2,3 2,2 1,9 1,5
    1 700 14 8,2 70240 7,4 7.1 9.1 4.7 4.3 4.1 4.1 3.5 2.8 2.6 2.5 2.4 2.0 1.6
    1800 15 8,7 7,8 7,5 5,0 4,5 4,3 3,8 3,0 2,7 2,6 2,5 2,2 1,7
    1900 16 91 9.1 8.3 7.9 5.3 4,8 4,6 4.0 3.2 2.9 2,7 2,6 2,3 1,8
    2000 17 9,6 8,7 8,3 5,6 5,0 4,8 4,2 3,3 3,0 2.9 2.9 2.8 2.4 1.9
    21 12 11 10 6.9 6.3 6.0 6.0 5.2 4.2 4,2 3.6 3.6 3.5 3.0 2
    3000 25 14 13 13 8.3 7.5 7.2 6.3 6.3 5.0 5.0 4.6 4.3 4,2 3.6 2,9
    29 29 17 15 15 9.7 8 80240 8.8 8.4 7.4 5.8 5.3 5.1 49 4,2 3
    4000 3 9 19 17 17 10 9.6 9.6 8.3 6.7 6.1 6.1 5.8 5.6 4,8
    4500 38 22 20 19 12 11 11 9.4 7 7 6.5 6.5 6.5 6.3 5.4 4 9
    5000 42 24 22 21 14 13 12 10 8.3 7.6 7.6 7.0 7.0 6.0 4,8
    5500 46 26 24 15 14 13 11 9 .2 8 80240 7.9 7.9 7.7 60240 5.3
    50 29 26 25 17 9 10 9.1 8.1 8.7 8.3 7.2 7.2 5.8
    54 31 9 28 27 18 16 16 14 11 9 .9 9.4 9.4 9.0 9.8 6 60240
    7000 58 3 9 30 29 19 18 17 15 12 11 10 9.7 9.7 8.4 6.7
    7500 63 36 33 31 21 9 18 16 12 11 11 10 9.0 7.2 7.2
    8000 67 38 35 33 22 9 12 12 11 9.6 7.7
    8500 7100 71 41 37 35 9 24 21 20 18 14 9 13 12 12 10 8 .2
    9000 9000 43 43 39 3 9 25 23 22 9 15 13 11 8,7
    9500 9500 79 41 41 40 9 26 24 20 16 9 14 14 13 11 9.1
    10000 83 43 43 42 28 25 24 17 15 14 14 12 9
    Номограмма электрической мощности

    Приведенную ниже номограмму можно использовать для оценки зависимости мощности от напряжения и силы тока.

      Скачайте и распечатайте номограмму зависимости электрической мощности от вольта и ампера!

    10кВт двухфазный преобразователь 110/220В в 3-фазный 380В производитель,поставщик,экспортер

    Описание продукта

    Однофазный преобразователь в 3-фазный

    Наш преобразователь фазы питания серии SDT является одним из самых передовых в мире продуктов для преобразования переменного тока в переменный, который может преобразовывать обычную однофазную мощность в промышленную трехфазную мощность.Преобразователь может подавать переменный ток на все виды электрооборудования, электродвигатели, насосы, компрессоры и другие промышленные источники питания. Применяется для всех типов нагрузки.

    Особенности:

    • Входное напряжение, выходное напряжение, частота и фаза могут быть изготовлены на заказ.
    • Два вида режима пуска: пуск с понижением напряжения и пуск с переменной частотой. Частотно-регулируемый привод особенно удобен для трехфазной индуктивной нагрузки. Эта функция очень удобна для пользователей, а также сокращает использование преобразователей частоты, что снижает стоимость инвестиций в оборудование, упрощает подключение проводов и управление.
    • Выходная мощность переменного тока подходит для всех типов бытовой техники, электроинструментов, электродвигателей и т. д.
    • Использование эффективного интеллектуального модуля IPM пятого поколения от японского Mitsubishi обеспечивает высокую эффективность и стабильную работу. Он с мощной функцией защиты от короткого замыкания, перегрузки, перегрева. Срок службы может достигать 15-20 лет.
    • Выходной сигнал чистой синусоиды. с хорошей переходной характеристикой, небольшими гармоническими искажениями, более высокой эффективностью преобразования и стабильными характеристиками выходного напряжения.
    • Принят низкочастотный изолированный трансформатор, безопасный и надежный, однофазная входная мощность полностью изолирована от трехфазной выходной мощности, высокая эффективность преобразования, высокая мгновенная мощность, стабильная работа и низкие потери нагрузки.
    • Применяет новый магнитный материал, значительно снижает потребление машины, повышая эффективность до 98%.
    • Принимает американский чип DSP, безопасный и надежный.
    • Применяется черный радиатор из чистого алюминия, что подтверждает наилучшие характеристики излучения
    • Преобразователь имеет функцию одновременной фильтрации помех и помех в сети, что является хорошей характеристикой стабилизированного напряжения и мощности частоты для обеспечения более стабильного и чистое электропитание для серверных устройств
    • Интеллектуальная система управления скоростью вращения вентилятора, низкие потери холостого хода
    • ЖК-дисплей, высокая эффективность, простота установки
    • Выходная частота 50 Гц/60 Гц может быть установлена ​​

    Технические данные

    /120/220/230 / 240vac дополнительно

    84

    10KW

    0

    84

    9000/4159

    380 / 400/415 / 440 / 480VAC Дополнительно

    / 480VAC

    0

    84

    0

    84

    <40 дБ

    9024

    3000

    9

    Размеры (мм)

    Модель

    SDT-10KW

    Изоляция

    Низкочастотный трансформатор

    переменного тока

    Input номинальное напряжение (В переменного тока)

    S Plit Phase 120 / 240V

    диапазон входного напряжения

    входной номинальный ток (а)

    24A

    AC EXPORT

    Оценка AC Выходная мощность

    10KW

    Чистая синусоидальная волна

    Этапы

    Три фазы, 4 провода

    Выходные номинальные напряжение

    380VAC + 3%

    40

    Выходная частота

    50 Гц/60 Гц + 0.05HZ

    Выходной номинальный ток (а)

    15.1A (на фазу)

    15.1A (на фазу)

    0,9

    Перегрузка

    150%, 10s

    > 93%

    93%

    Коэффициент искажений формы волны (THD)

    <3% (линейная нагрузка)

    Греб (CF)

    3: 1

    LCD

    Электрические изоляционные свойства

    2500VAC, 1 минута

    Температура окружающей среды

    -15~+55

    Использование окружающей среды t влажность

    0~90%, без конденсации

    Защита

    Пониженное напряжение на входе, перенапряжение, перегрузка по току на выходе, короткое замыкание, перегрев и т. д.

    Структура

    40

    Степень защиты

    IP20 (в помещении)

    с использованием высоты (м)

    3000

    540x540x760mm

    Вес (кг)

    106 кг

    Стандарт CE

    EN60950-1:2006+A11:2009, EN61000-6-4:2007+A1:2001, EN61000-6-2:2005, EN61000-3-12:2005, EN61000-3 11:2000

    Преобразователь частоты

    , ЧРП для двигателя 220 В, однофазный, в 380 В, 3 фазы, 0.75кВт до 630 кВт, преобразователь частоты Количество VFD

    Модель VFC-102202
    Фирменное наименование Xiujiang
    Происхождение Китай
    Малые заказы Принято

    Ключевые характеристики/особенности:

    1. Применяется ко всем видам однофазных или трехфазных асинхронных двигателей переменного тока.
    2. С БТИЗ Infineon. Алгоритм отслеживания точки максимальной мощности (MPPT) для динамического VI, высокая скорость отклика, хорошая стабильность, эффективность MPPT 99.99%.
    3. Дистанционное управление, поддержка протокола RS323/RS485.
    4. Температура окружающей среды на открытом воздухе: -10~+50℃.
    5. Автоматически запускать утром и останавливать ближе к полудню.
    6.Full Practions: OneRload, по току, на напряжении, под напряжением, коротким цепью, сухой насос и т. Д.

    Сертивления продукта

    6
    Сертификат Стандарт CE
    Сертификат Изображение

    Изображение, чтобы увидеть более крупную

    номер сертификата CTL120113031-SC
    Дата выпуска 2011/10/31
    Выдано Shenzhen CTL Electroomagnetic Technology Co., ООО
    Дата истечения срока действия 31.10.2025

    Примечание. Не все сертификационные агенты предлагают онлайн-поиск, а у некоторых есть задержка для публикации новых сертификатов. если ты не можете найти сертификат в Интернете, обратитесь в агентство по сертификации или к поставщику для дальнейшей проверки.

    Информация о доставке

    Порт FOB Шанхай
    Срок поставки 7–15 дней
    60 килограммов
    Размеры на единицу 30.0 x 40.0 x 50.0 сантиметров
    US HTS код 8504.40.99 99
    единицы на экспорт 1.0
    Экспорт Размеры коробки 30 x 40 x 50 сантиметров
    Экспорт коробки весом 20 килограммов

    Главная экспортная площадка

    — ASIA

    — Australasia

    — Центральная / Южная Америка

    — Восточная Европа

    — Средний Восток/Африка

    — Северная Америка

    — Западная Европа

    Можно ли использовать трехфазный двигатель с однофазным питанием? — Решение проблем

    Согласно его профилю, ОП находится в Новой Зеландии.Насколько я знаю, система энергоснабжения там похожа на большую часть Европы и несколько отличается от американской.

     

    Однофазное бытовое электроснабжение обычно представляет собой одну фазу трехфазного трехфазного источника питания 415 В под напряжением вместе с нейтралью, взятой из точки звезды (звезды) с потенциалом земли (земли), что дает 240 В фаза-нейтраль. .

     

    Фазовый преобразователь для обеспечения трехфазного напряжения 415 В можно построить, но в качестве первой части потребуется повышающий трансформатор на 240–415 В.Это увеличивает затраты и сложность. Это все еще может быть жизнеспособным проектом «сделай сам», но он может стать хобби сам по себе, а не чем-то, собранным за выходные, чтобы вы могли заняться своим настоящим хобби.

     

    ЧРП с входом 240 В обычно дают 3-фазный выход 240 В. Есть редкие примеры, которые включают повышающий каскад до 400 В и выдают на выходе 400 В фаза-фаза. Их, как правило, трудно найти, и они очень дороги.

     

    Большинство небольших современных трехфазных двигателей (примерно до 3 кВт) имеют 6 клемм в соединительной коробке и могут быть подключены звездой (звездой) для 380–440 В или треугольником для 220–240 В.При мощности выше 4 кВт они, как правило, подключаются примерно на 400 В по схеме «треугольник» и 700 В по схеме «звезда». Это позволяет запускать по схеме «звезда-треугольник», что значительно снижает потребление тока при начальном запуске по сравнению с прямым запуском (через линию). Это то, что обычно можно увидеть на больших промышленных двигателях и вряд ли заинтересует многих из нас. Если вы покупаете трехфазный двигатель для использования с частотно-регулируемым приводом на 230 В, стоит отметить, что переход с 230/400 В на 400/700 В не соответствует стандартному размеру двигателя; это нужно проверить для конкретного двигателя.

     

    Многие старые двигатели имеют только три клеммы в соединительной коробке, поэтому могут работать только при исходном расчетном напряжении. Несколько раз читая между строк, у меня сложилось впечатление, что у OP, вероятно, есть старый двигатель на 415 В на таком же старом Power Hammer.

     

    Наиболее практичным решением кажется принятое: купить однофазный двигатель и установить его.

     

    Некоторое время назад я обсуждал частотно-регулируемые приводы с кем-то, кто немного разбирается в PH.Похоже, он думал, что частотно-регулируемый привод на определенных типах PH будет полезен для щадящих веществ. Насколько я понимаю, энергия удара меняется пропорционально квадрату скорости, так что, похоже, это могло бы сработать очень хорошо. Я недостаточно знаю о PHs, чтобы иметь мнение.

     

    Очевидный способ выяснить это — запустить PH с частотно-регулируемого привода. Однако это не обязательно хорошая идея, так как большинство старых РН имеют старые двигатели. Хотя на новом должно быть нормально.

     

    Форма сигнала частотно-регулируемого привода очень тяжела для старых двигателей, и изоляция обмотки может очень быстро выйти из строя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *