Как проверить электродвигатель мегаомметром: Как проверить электродвигатель мегаомметром

Содержание

Как проверить электродвигатель мегаомметром

В идеале чтобы была произведена проверка обмоток электродвигателя, необходимо иметь специальные приборы, предназначенные для этого, которые стоят немалых денег. Наверняка не у каждого в доме они есть. Поэтому проще для таких целей научиться пользоваться тестером, имеющим другое название мультиметр. Такой прибор имеется практически у каждого уважающего себя хозяина дома.

Электродвигатели изготавливают в различных вариантах и модификациях, их неисправности также бывают самыми разными. Конечно, не любую неисправность можно диагностировать простым мультиметром, но наиболее часто проверка обмоток электродвигателя таким простым прибором вполне возможна.

Любой вид ремонта всегда начинают с осмотра устройства: наличие влаги, не сломаны ли детали, наличие запаха гари от изоляции и другие явные признаки неисправностей. Чаще всего сгоревшую обмотку видно. Тогда не нужны никакие проверки и измерения. Такое оборудование сразу отправляется на ремонт. Но бывают случаи, когда отсутствуют внешние признаки поломки, и требуется тщательная проверка обмоток электродвигателя.

Виды обмоток

Если не вникать в подробности, то обмотку двигателя можно представить в виде куска проводника, который намотан определенным образом в корпусе мотора, и вроде бы в ней ничего не должно ломаться.

Однако, дело обстоит гораздо сложнее, так как обмотка электродвигателя выполнена со своими особенностями:
  • Материал провода обмотки должен быть однородным по всей длине.
  • Форма и площадь поперечного сечения провода должны иметь определенную точность.
  • На проволоку, предназначенную для обмотки, в обязательном порядке в промышленных условиях наносится слой изоляции в виде лака, который должен обладать определенными свойствами: прочностью, эластичностью, хорошими диэлектрическими свойствами и т.д.
  • Провод обмотки должен обеспечивать прочный контакт при соединении.

Если имеется какое-либо нарушение этих требований, то электрический ток будет проходить уже в совершенно других условиях, а электрический мотор ухудшит свои эксплуатационные качества, то есть, снизится мощность, обороты, а может и вообще не работать.

Проверка обмоток электродвигателя 3-фазного мотора . Прежде всего, отключить ее от цепи. Основная часть существующих электродвигателей имеет обмотки, соединенные по схемам, соответствующим звезде или треугольнику.

Концы этих обмоток подключают обычно на колодки с клеммами, которые имеют соответствующие маркировки: «К» — конец, «Н» — начало. Бывают варианты соединений внутреннего исполнения, узлы находятся внутри корпуса мотора, а на выводах применяется другая маркировка (цифрами).

На статоре 3-фазного электродвигателя применяются обмотки, имеющие равные характеристики и свойства, одинаковые сопротивления. При замере мультиметром сопротивлений обмоток может оказаться, что у них разные значения. Это уже дает возможность предположить о неисправности, имеющейся в электродвигателе.

Возможные неисправности

Визуально не всегда можно определить состояние обмоток, так как доступ к ним ограничен особенностями конструкции двигателя. Практически проверить обмотку электродвигателя можно по электрическим характеристикам, так как все поломки мотора в основном выявляются:

  • Обрывом, когда провод разорван, либо отгорел, ток по нему проходить не будет.
  • Коротким замыканием, возникшим из-за повреждения изоляции между витками входа и выхода.
  • Замыкание между витками, при этом изоляция повреждается между соседними витками. Вследствие этого поврежденные витки самоисключаются из работы. Электрический ток идет по обмотке, в которой не задействованы поврежденные витки, которые не работают.
  • Пробиванием изоляции между корпусом статора и обмоткой.

Способы
Проверка обмоток электродвигателя на обрыв

Это самый простой вид проверки. Неисправность диагностируется простым измерением значения сопротивления провода. Если мультиметр показывает очень большое сопротивление, то это означает, что имеется обрыв провода с образованием воздушного пространства.

Проверка обмоток электродвигателя на короткое замыкание

При коротком замыкании в моторе отключится его питание установленной защитой от замыкания. Это происходит за очень короткое время. Однако даже за такой незначительный промежуток времени может возникнуть видимый дефект в обмотке в виде нагара и оплавления металла.

Если измерять приборами сопротивление обмотки, то получается малое его значение, которое приближается к нулю, так как из измерения исключается кусок обмотки из-за замыкания.

Проверка обмоток электродвигателя на межвитковое замыкание

Это самая трудная задача по определению и выявлению неисправности. Чтобы проверить обмотку электродвигателя, пользуются несколькими способами измерений и диагностик.

Проверка обмоток электродвигателя способом омметра

Этот прибор действует от постоянного тока, измеряет активное сопротивление. Во время работы обмотка образует кроме активного сопротивления, значительную индуктивную величину сопротивления.

Если будет замкнут один виток, то активное сопротивление практически не изменится, и определить омметром его сложно. Конечно, можно произвести точную калибровку прибора, скрупулезно замерять все обмотки на сопротивление, сравнивать их. Однако, даже в таком случае очень трудно выявить замыкание витков.

Результаты гораздо точнее выдает мостовой метод, с помощью которого измеряется активное сопротивление. Этим методом пользуются в условиях лаборатории, поэтому обычные электромонтеры им не пользуются.

Измерение тока в каждой фазе

Соотношение токов по фазам изменится, если произойдет замыкание между витками, статор будет нагреваться. Если двигатель полностью исправен, то на всех фазах ток потребления одинаков. Поэтому измерив эти токи под нагрузкой, можно с уверенностью сказать о реальном техническом состоянии электродвигателя.

Проверка обмоток электродвигателя переменным током

Не всегда можно измерить общее сопротивление обмотки, и при этом учесть индуктивное сопротивление. У неисправного двигателя проверить обмотку можно переменным током. Для этого применяют амперметр, вольтметр и понижающий трансформатор. Для ограничения тока в схему вставляют резистор, либо реостат.

Чтобы проверить обмотку электродвигателя, применяется низкое напряжение, проверяется значение тока, которое не должно быть выше значений по номиналу. Измеренное падение напряжения на обмотке делится на ток, в итоге получается полное сопротивление. Его значение сравнивают с другими обмотками.

Такая же схема дает возможность определить вольтамперные свойства обмоток. Для этого необходимо сделать измерения на различных значениях тока, затем записать их в таблицу, либо начертить график. Во время сравнения с другими обмотками не должно быть больших отклонений. В противном случае имеется межвитковое замыкание.

Проверка обмоток электродвигателя шариком

Этот метод основывается на образовании электромагнитного поля с вращающимся эффектом, если обмотки исправны. На них подключается симметричное напряжение с тремя фазами, низкого значения. Для таких проверок используют три понижающих трансформатора с одинаковыми данными. Их подключают отдельно на каждую фазу.

Чтобы ограничить нагрузки, опыт проводят за короткий промежуток времени.

Подают напряжение на обмотки статора, и сразу вводят маленький стальной шарик в магнитное поле. При исправных обмотках шарик крутится синхронно внутри магнитопровода.

Если имеется замыкание между витками в какой-либо обмотке, то шарик сразу остановится там, где есть замыкание. При проведении проверки нельзя допускать превышения тока выше номинального значения, так как шарик может вылететь из статора с большой скоростью, что является опасно для человека.

Определение полярности обмоток электрическим методом

У обмоток статора имеется маркировка выводов, которой иногда может не быть по разным причинам. Это создает сложности при проведении сборки.

Чтобы определить маркировку, применяют некоторые способы:
  • Слабым источником постоянного тока и амперметром.
  • Понижающим трансформатором и вольтметром.

Статор выступает в роли магнитопровода с обмотками, действующими по принципу трансформатора.

Определение маркировки выводов обмотки амперметром и батарейкой

На наружной поверхности статора имеется шесть проводов от трех обмоток, концы которых не промаркированы, и подлежат определению по их принадлежности.

Применяя омметр, находят выводы для каждой обмотки, и отмечают цифрами. Далее, делают маркировку одной из обмоток конца и начала, произвольно. К одной из оставшихся двух обмоток присоединяют стрелочный амперметр, чтобы стрелка находилась на середине шкалы, для определения направления тока.

Минусовой вывод батарейки соединяют с концом выбранной обмотки, а выводом плюса кратковременно касаются ее начала.

Импульс в первой обмотке трансформируется во вторую цепь, которая замкнута амперметром, при этом повторяет исходную форму. Если полярность обмоток совпала с правильным расположением, то стрелка прибора в начале импульса пойдет вправо, а при размыкании цепи стрелка отойдет влево.

Если показания прибора совсем другие, то полярность выводов обмотки меняют местами и маркируют. Остальные обмотки проверяются подобным образом.

Определение полярности вольтметром и понижающим трансформатором

Первый этап аналогичен предыдущему способу: определяют принадлежность выводов обмоткам.

Далее, произвольным образом маркируют выводы первой любой обмотки для соединения их с понижающим трансформатором (12 вольт).

Две другие обмотки соединяют двумя выводами в одной точке случайным образом, оставшуюся пару соединяют с вольтметром и включают питание. Напряжение выхода трансформируется в другие обмотки с таким же значением, так как у них одинаковое количество витков.

Посредством последовательной схемы подключения 2-й и 3-й обмоток вектора напряжения суммируются, а результат покажет вольтметр. Далее маркируют остальные концы обмоток и проводят контрольные измерения.

Источник: electrosam.ru

Проверка мегомметром сопротивления изоляции двигателя

Мы смотрим на прибор для измерения сопротивления изоляции, называемый «Мегомметр». Назначение этого прибора — проверить сопротивление обмоток таких устройств, как электродвигатель, используя достаточно высокое напряжение. Вы видите три предела настроек для измерения: 250 вольт, 500 вольт и 1000 вольт. Нам нужны такие высокие напряжения, чтобы мы могли обнаружить определенные типы неисправностей. Я собираюсь показать это, используя двигатель мощностью 5 кВт. Это неисправный двигатель, он был снят при обслуживании, потому что имеет замыкание на землю одной из обмоток. Я покажу, как это проверить, с помощью мегомметра. Сначала я собираюсь взять зажим земли мегомметра, и присоединить его к корпусу двигателя. Далее прямо здесь смотрим на трехфазные обмотки на выходе из распределительной коробки двигателя. У меня есть синий, оранжевый и белый провод, и я собираюсь измерить сопротивление моим измерителем сопротивление изоляции между этими фазами и землей. При проведении измерений соблюдаем технику безопасности, потому что во время работы мегомметр выдает высокое напряжение, Я соединю измерительный щуп прибора и оголенный конец фазного провода, щуп надо удерживать только одной рукой за изолированную часть. Для запуска мегомметра нажмите на оранжевую кнопку. Итак, делаем замеры . нажав кнопку, мы видим, что стрелка качнулась до упора вправо. Так как прибор стоит на оранжевом диапазоне измерений, мы будем считывать показания по верхней части шкалы, и стрелка в правой части шкалы означает нулевое значение Ом. Это неисправность, мы не должны иметь ноль Ом. Между фазовой обмоткой и корпусом должно быть очень большое сопротивление. Я сделаю это снова на другой фазе обмотки, я присоединю к ней щуп и нажму кнопку — вы видите, что она также показывает ноль. И, конечно на последней обмотке будут такие же показания. Я говорю — конечно, потому что это не имеет значения, какая обмотка замкнула на корпус. Это измерение можно сделать на любом выводе фазной обмотки, так как они соединены вместе внутри двигателя, и пробой в любом месте обмотки даст одинаковые показания сопротивления изоляции на корпус. Теперь, чтобы доказать вам, что высокое напряжение действительно имеет значение и имеет значение для наших измерений, я переключу прибор в низковольтный диапазон. В зеленом режиме, прибор работает как обычный ом метр. И как обычный ом метр он использует очень низкое напряжение для проверки сопротивление. Чтобы показать вам, как это работает я присоединю зажим земля к корпусу двигателя и вы что стрелка остается на левой стороне шкалы, потому что на зеленой шкале «справа» бесконечность, и «слева» ноль . Итак, при «КЗ» стрелка будет на левой стороне шкалы и при «обрыве» — стрелка будет в правой части шкалы при этом низком значении выставленного напряжения. Помня об этом, я снова соединяю щуп с фазной обмотклй . и нажимаю кнопку «Проверить». Обратите внимание, что стрелка ушла вправо, мы помним, что в это означает «обрыв», и это указывает, что обмотка хорошая. Просто, чтобы убедиться, что я отсоединю щуп и нажму еще раз кнопку, стрелка остается справа, прибор показывает «разомкнуто». Другими словами — короткое замыкание на корпус не обнаруживается в режиме пониженного напряжения, но может быть обнаружено в режиме высокого напряжения. Я присоединю щуп еще раз — просто чтобы доказать, что это работает, щуп присоединен — я нажимаю кнопку, стрелка поворачивается вправо, что означает нулевое значение Ом или низкое сопротивлением. В режиме высокого напряжения, я отсоединю щуп, чтобы посмотреть, что происходит, — стрелка сдвигается влево, что означает «большое сопротивление». Итак, я ясно вижу, что есть неисправность в этом моторе при использовании высокого напряжения, но я не вижу неисправности при низкое значении напряжения. И именно в этом уникальная ценность измерителя сопротивления изоляции под названием мегомметр.

_

Источник: video.elremont.ru

Как проводить измерения мегаомметром

Для оценки работоспособности кабеля, проводки необходимо измерить сопротивление изоляции. Для этого существует специальный прибор — мегаомметр. Он подает в измеряемую цепь высокое напряжение, измеряет протекающий по ней ток, и выдает результаты на экран или шкалу. Как пользоваться мегаомметром и рассмотрим в этой статье.

Устройство и принцип действия

Мегаомметр — устройство для проверки сопротивления изоляции. Есть два типа приборов — электронные и стрелочные. Независимо от типа, любой мегаомметр состоит из:

  • Источника постоянного напряжения.
  • Измерителя тока.
  • Цифрового экрана или шкалы измерения.
  • Щупов, посредством которых напряжение от прибора передается на измеряемый объект.

Так выглядит стрелочный мегаомметр (слева) и электронный (справа)

В стрелочных приборах напряжение вырабатывается встроенной в корпус динамомашиной. Она приводится в действие измерителем — он крутит ручку прибора с определенной частотой (2 оборота в секунду). Электронные модели берут питание от сети, но могут работать и от батареек.

Работа мегаомметра основана на законе Ома: I=U/R. Прибор измеряет ток, который протекает между двумя подключенными объектами (две жилы кабеля, жила-земля и т.д.). Измерения производятся калиброванным напряжением, значение которого известно, зная ток и напряжение, можно найти сопротивление: R=U/I, что и делает прибор.

Примерная схема магаомметра

Перед проверкой щупы устанавливаются в соответствующие гнезда на приборе, после чего подключаются к объекту измерения. При тестировании в приборе генерируется высокое напряжение, которое при помощи щупов передается на проверяемый объект. Результаты измерений отображаются в мега омах (МОм) на шкале или экране.

Работа с мегаомметром

При испытаниях мегаомметр вырабатывает очень высокое напряжение — 500 В, 1000 В, 2500 В. В связи с этим проводить измерения необходимо очень осторожно. На предприятиях к работе в прибором допускаются лица, имеющие группу электробезопасности не ниже 3-й.

Перед тем как провести измерения мегаомметром, в тестируемые цепи отключают от электропитания. Если вы собираетесь проверить состояние проводки в доме или квартире, надо отключить рубильники на щитке или выкрутить пробки. После выключают все полупроводниковые приборы.

Один из вариантов современных мегаомметров

Если проверять будете розеточные группы, вынимаете вилки всех приборов, которые включены в них. Если проверяются осветительные цепи, выкручиваются лампочки. Они тестового напряжения не выдержат. При проверке изоляции двигателей они также полностью отключаются от питания. После этого к тестируемым цепям подключается заземление. Для этого к «земляной» шине крепится многожильный провод в оболочке сечением не менее 1,5 мм2. Это так называемое переносное заземление. Для более безопасной работы свободный конец с оголенным проводником крепят к сухому деревянному держаку. Но оголенный конец провода должен быть доступен — чтобы можно было им прикасаться к проводам и кабелям.

Требования по обеспечению безопасных условий работы

Даже если вы хотите в домашних условиях измерить сопротивление изоляции кабеля, перед тем как пользоваться мегаомметром стоит ознакомиться с требованиями по технике безопасности. Основных правил несколько:

  1. Держать щупы только за изолированную и ограниченную упорами часть.
  2. Перед подключением прибора отключить напряжение, убедиться в том, что поблизости нет людей (на протяжении всей измеряемой трассы, если речь идет о кабелях).

Как пользоваться мегаомметром: правила электробезопасности

Правила не очень сложные, но от их выполнения зависит ваша безопасность.

Как подключать щупы

На приборе обычно есть три гнезда для подключения щупов. Они располагаются в верхней части приборов и подписаны:

Также имеется три щупа, один из которых имеет с одной стороны два наконечника. Он используется когда необходимо исключить токи утечки и цепляется к экрану кабеля (если такой есть). На двойном отводе этого щупа есть буква «Э». Тот штекер, который идет от этого отвода и устанавливается в соответствующее гнездо. Второй его штекер устанавливается в гнездо «Л» — линия. В гнездо «земля» всегда подключается одинарный щуп.

Щупы для мегаомметра

На щупах есть упоры. При проведении измерений руками браться за них так, чтобы пальцы были до этих упоров. Это обязательное условие безопасной работы (про высокое напряжение помним).

Если проверить надо только сопротивление изоляции без экрана, ставится два одинарных щупа — один в клемму «З», другой в клемму «Л». При помощи зажимов-крокодилов на концах подключаем щупы:

  • К тестируемым проводам, если надо проверить пробой между жилами в кабеле.
  • К жиле и «земле», если проверяем «пробой на землю».

Есть буква «Э» — этот конец вставляется в гнездо с такой же буквой

Других комбинаций нет. Проверяется чаще изоляция и ее пробой, работа с экраном встречается довольно редко, так как сами экранированные кабели в квартирах и частных домах используются редко. Собственно, пользоваться мегаомметром не особо сложно. Важно только не забывать о наличии высокого напряжения и необходимости снимать остаточный заряд после каждого измерения. Это делают прикасаясь проводом заземления к только что измеренному проводу. Для безопасности этот провод можно закрепить на сухом деревянном держаке.

Процесс измерения

Выставляем напряжение, которое будет выдавать мегаомметр. Оно выбирается не произвольно, а из таблицы. Есть мегаомметры, которые работают только с одним напряжением, есть работающие с несколькими. Вторые, понятное дело, удобнее, так как их можно использовать для тестирования различных устройств и цепей. Переключение тестового напряжения производится ручкой или кнопкой на лицевой панели прибора.

Наименование элемента Напряжение мегаомметра Минимально допустимое сопротивление изоляции Примечания
Электроизделия и аппараты с напряжением до 50 В 100 В Должно соответствовать паспортным, но не менее 0,5 МОм Во время измерений полупроводниковые приборы должны быть зашунтированы
тоже, но напряжением от 50 В до 100 В 250 В
тоже, но напряжением от 100 В до 380 В 500-1000 В
свыше 380 В, но не больше 1000 В 1000-2500 В
Распределительные устройства, щиты, токопроводы 1000-2500 В Не менее 1 МОм Измерять каждую секцию распределительного устройства
Электропроводка, в том числе осветительная сеть 1000 В Не менее 0,5 МОм В опасных помещениях измерения проводятся раз в год, в друих — раз в 3 года
Стационарные электроплиты 1000 В Не менее 1 МОм Измерение проводят на нагретой отключенной плите не реже 1 раза в год

Перед тем как пользоваться мегаомметром, убеждаемся в отсутствии напряжения на линии — тестером или индикаторной отверткой. Затем, подготовив прибор (выставить напряжение и на стрелочных выставить шкалу измерения) и подключив щупы, снимаем заземление с проверяемого кабеля (если помните, оно подключается перед началом работ).

Следующий этап — включаем в работу мегаомметр: на электронных нажимаем на кнопку Test, в стрелочных крутим ручку динамо-машины. В стрелочных крутим до тех пор, пока не зажжется на корпусе лампа — это значит необходимое напряжение в цепи создано. В цифровых в какой-то момент значение не экране стабилизируется. Цифры на экране — сопротивление изоляции. Если оно не меньше нормы (средние указаны в таблице, а точные есть в паспорте к изделию), значит все в норме.

Как проводить измерения мегаомметром

После того, как измерение окончено, перестаем крутить ручку мегаомметра или нажимаем на кнопку окончания измерения на электронной модели. После этого можно отсоединять щуп, снимать остаточное напряжение.

Вкратце — это все правила пользования мегаомметром. Некоторые варианты измерений рассмотрим подробнее.

Измерение сопротивления изоляции кабеля

Часто требуется измерить сопротивление изоляции кабеля или провода. Если вы умеете пользоваться мегаомметром, при проверке одножильного кабеля это займет не более минуты, с многожильными придется возиться дольше. Точное время зависит от количества жил — придется проверять каждую.

Тестовое напряжение выбираете в зависимости от того, в сети с каким напряжением будет работать провод. Если вы планируете его использовать для проводки на 250 или 380 В, можно выставить 1000 В (смотрите таблицу).

Проверка трехжильного кабеля — можно не скручивать, а перемерять все пары

Для проверки сопротивления изоляции одножильного кабеля, один щуп цепляем на жилу, второй — на броню, подаем напряжение. Если брони нет, второй щуп крепим к «земляной» клемме и тоже подаем тестовое напряжение. Смотрим на показания. Если стрелка показывает больше 0,5 МОм, все в норме, провод можно использовать. Если меньше — изоляция пробита и его применять нельзя.

Можно проверить многожильный кабель. Тестирование проводится для каждой жилы отдельно. При этом все остальные проводники скручиваются в один жгут. Если при этом надо проверить еще и пробой на «землю», в общий жгут добавляется еще и провод, подключенный к соответствующей шине.

Если у кабеля имеется экран, металлическая оболочка или броня, они тоже добавляется в жгут. При образовании жгута важно обеспечит хороший контакт.

Примерно так же происходит измерение сопротивления изоляции розеточных групп. Из розеток выключают все приборы, отключают питание на щитке. Один щуп устанавливают на клемму заземления, второй — в одну из фаз. Тестовое напряжение — 1000 В (по таблице). Включаем, проверяем. Если измеренное сопротивление больше 0,5 МОм, проводка в норме. Повторяем со второй жилой.

Если электропроводка старого образца — есть только фаза и ноль, тестирование проводят между двумя проводниками. Параметры аналогичны.

Проверить сопротивление изоляции электродвигателя

Для проведения измерений двигатель отключается от питания. Необходимо добраться до выводов обмотки. Асинхронные двигатели, работающие на напряжении до 1000 В тестируются напряжением 500 В.

Для проверки их изоляции один щуп подключаем к корпусу двигателя, второй поочередно прикладываем к каждому из выводов. Также можно проверить целостность соединения обмоток между собой. Для этой проверки надо щупы устанавливать на пары обмоток.

Источник: stroychik.ru

Измерение сопротивления изоляции мегаомметром

Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки. Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен — зафиксировать проблему, но не определить ее масштаб. Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.

Устройство и принцип работы мегаомметра

Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.

В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).

Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.

Конструктивно модели мегаомметров принято разделять на два вида:

  • Аналоговые (электромеханические) — мегаомметры старого образца. Аналоговый мегаомметр
  • Цифровые (электронные) – современные измерительные устройства. Электронный мегаомметр

Рассмотрим их особенности.

Электромеханический мегаомметр

Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы

Упрощенная схема электромеханического мегаомметра

Обозначения:

  1. Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
  2. Аналоговый амперметр.
  3. Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
  4. Сопротивления.
  5. Переключатель измерений кОм/Мом.
  6. Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.

Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:

  • Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
  • На отображаемые данные влияет равномерность вращения динамо-машины.
  • Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
  • Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.

Современная аналоговая модель мегаомметра Ф4102

Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.

Электронный мегаомметр

Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.

Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.

Как правильно пользоваться мегаомметром?

Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов. Пример такой таблицы приведен ниже.

Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.

Испытуемый объект Уровень напряжения (В) Минимальное сопротивление изоляции (МОм)
Проверка электропроводки 1000,0 0,5>
Бытовая электроплита 1000,0 1,0>
РУ, Электрические щиты, линии электропередач 1000,0-2500,0 1,0>
Электрооборудование с питанием до 50,0 вольт 100,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с номинальным напряжением до 100,0 вольт 250,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с питанием до 380,0 вольт 500,0-1000,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Оборудование до 1000,0 В 2500,0 0,5 или более в зависимости от параметров, указанных техническом паспорте

Перейдем к методике измерений.

Пошаговая инструкция измерения сопротивления изоляции мегаомметром

Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.

Подготовка к испытаниям

Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).

Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм 2 . Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.

Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.

Подключение прибора к испытуемой линии

Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.

Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:

  • Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке. Подключение мегаомметра

Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.

  • Каждый из проводов проверяется относительно земли.
  • Осуществляется проверка каждого провода относительно других жил.

Алгоритм испытаний

Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:

  1. Подготовительный этап (полностью описан выше).
  2. Установка переносного заземления для снятия электрического заряда.
  3. На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
  4. В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
  5. Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
  6. Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
  7. Отключение переносного заземления с тестируемого объекта.
  8. Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
  9. Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
  10. Снимаем остаточное напряжение при помощи переносного заземления.
  11. Производим отключение измерительных щупов.

Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.

По итогам испытаний принимается решение о возможности эксплуатации электроустановки.

Правила безопасности при работе с мегаомметром

При испытаниях электрооборудования к работе с мегаомметром должен допускаться электротехнический персонал, у которого группа электробезопасности не ниже третьей. Даже если измерения производятся в быту, тем, кто намерен использовать мегаомметр следует ознакомиться с основными требованиями ТБ:

  • При тестировании следует использовать диэлектрические перчатки, к сожалению, данное требование часто игнорируется, что приводит к частым травмам.
  • Перед проведением испытаний, необходимо убрать посторонних лиц с тестируемого объекта, а также вывесить соответствующие предупреждающие плакаты.
  • При подключении щупов необходимо касаться их изолированных участков (рукоятей).
  • После каждого из измерений, следует не забывать подключать переносное заземление, прежде чем отключать контрольные кабели.
  • Измерения должны проводиться только при сухой изоляции, если ее влажность превышает допустимые пределы, испытания переносятся.

Источник: www.asutpp.ru

На первый взгляд обмотка представляет кусок проволоки смотанной определенным образом и в ней нечему особо ломаться. Но у нее есть особенности:

строгий подбор однородного материала по всей длине;

точная калибровка формы и поперечного сечения;

нанесение в заводских условиях слоя лака, обладающего высокими изоляционными свойствами;

прочные контактные соединения.

Если в каком-либо месте провода нарушена любое из этих требований, то изменяются условия для прохождения электрического тока и двигатель начинает работать с пониженной мощностью или вообще останавливается.

Чтобы проверить одну обмотку трехфазного двигателя необходимо отключить ее от других цепей. Во всех электродвигателях они могут собираться по одной из двух схем:

Концы обмоток обычно выводятся на клеммные колодки и маркируются буквами «Н» (начало) и «К» (конец). Иногда отдельные соединения могут быть спрятаны внутри корпуса, а для выводов используются другие способы обозначения, например, цифрами.

У трехфазного двигателя на статоре используются обмотки с одинаковыми электрическими характеристиками, обладающими равными сопротивлениями. Если при замере омметром они показывают разные значения, то это уже повод серьезно задуматься над причинами разброса показаний.

Как проявляются неисправности в обмотке

Визуально оценить качество обмоток не представляется возможным из-за ограниченного допуска к ним. На практике проверяют их электрические характеристики, учитывая, что все неисправности обмоток проявляются:

обрывом, когда нарушается целостность провода и исключается прохождение электрического тока по нему;

коротким замыканием, возникающем при нарушении слоя изоляции между входным и выходным витком, характеризующимся исключением обмотки из работы с шунтированием концов;

межвитковым замыканием, когда изоляция нарушается между одним или несколькими близкорасположенными витками, которые этим выводятся из работы. Ток проходит по обмотке, минуя короткозамкнутые витки, не преодолевая их электрическое сопротивление и не создавая ими определенной работы;

пробоем изоляции между обмоткой и корпусом статора или ротора.

Проверка обмотки на обрыв провода

Этот вид неисправности определяется замером сопротивления изоляции омметром. Прибор покажет большое сопротивление — ∞, которое учитывает образованный разрывом участок воздушного пространства.

Проверка обмотки на возникновение короткого замыкания

Двигатель, внутри электрической схемы которого возникло короткое замыкание, отключается защитами от сети питания. Но, даже при быстром выводе из работы таким способом место возникновения КЗ хорошо видно визуально за счет последствий воздействия высоких температур с ярко выраженным нагаром или следами оплавления металлов.

При электрических способах определения сопротивления обмотки омметром получается очень маленькая величина, сильно приближенная к нулю. Ведь из замера исключается практически вся длина провода за счет случайного шунтирования входных концов.

Проверка обмотки на возникновение межвиткового замыкания

Это наиболее скрытая и сложно определяемая неисправность. Для ее выявления можно воспользоваться несколькими методиками.

Способ омметра

Прибор работает на постоянном токе и замеряет только активное сопротивление проводника. Обмотка же при работе за счет витков создает значительно большую индуктивную составляющую.

При замыкании одного витка, а их общее количество может быть несколько сотен, изменение активного сопротивления заметить очень сложно. Ведь оно меняется в пределах нескольких процентов от общей величины, а подчас и меньше.

Можно попробовать точно откалибровать прибор и внимательно измерить сопротивления всех обмоток, сравнивая результаты. Но разница показаний даже в этом случае не всегда будет видна.

Более точные результаты позволяет получить мостовой метод измерения активного сопротивления, но это, как правило, лабораторный способ, недоступный большинству электриков.

Замер токов потребления в фазах

При межвитковом замыкании изменяется соотношение токов в обмотках, проявляется излишний нагрев статора. У исправного двигателя токи одинаковы. Поэтому прямое их измерение в действующей схеме под нагрузкой наиболее точно отражает реальную картину технического состояния.

Измерения переменным током

Определить полное сопротивление обмотки с учетом индуктивной составляющей в полной рабочей схеме не всегда возможно. Для этого придется снимать крышку с клеммной коробки и врезаться в проводку.

У выведенного из работы двигателя можно использовать для замера понижающий трансформатор с вольтметром и амперметром. Ограничить ток позволит токоограничивающий резистор или реостат соответствующего номинала.

При выполнении замера обмотка находится внутри магнитопровода, а ротор или статор могут быть извлечены. Баланса электромагнитных потоков, на условие которого проектируется двигатель, не будет. Поэтому используется пониженное напряжение и контролируются величины токов, которые не должны превышать номинальных значений.

Замеренное на обмотке падение напряжения, поделенное на ток, по закону Ома даст значение полного сопротивления. Его останется сравнить с характеристиками других обмоток.

Эта же схема позволяет снять вольтамперные характеристики обмоток. Просто надо выполнить замеры на разных токах и записать их в табличной форме или построить графики. Если при сравнении с аналогичными обмотками серьёзных отклонений нет, то межвитковое замыкание отсутствует.

Шарик в статоре

Способ основан на создании вращающегося электромагнитного поля исправными обмотками. Для этого на них подается трехфазное симметричное напряжение, но обязательно пониженной величины. С этой целью обычно применяют три одинаковых понижающих трансформатора, работающих в каждой фазе схемы питания.

Для ограничения токовых нагрузок на обмотки эксперимент проводят кратковременно.

Небольшой стальной шарик от шарикоподшипника вводят во вращающееся магнитное поле статора сразу после включения витков под напряжение. Если обмотки исправны, то шарик синхронно катается по внутренней поверхности магнитопровода.

Когда одна из обмоток имеет межвитковое замыкание, то шарик зависнет в месте неисправности.

Во время теста нельзя превышать ток в обмотках больше номинальной величины и следует учитывать, что шарик свободно выскакивает из корпуса со скоростью вылета из рогатки.

Электрическая проверка полярности обмоток

У статорных обмоток может отсутствовать маркировка начала и концов выводов и это затруднит правильность сборки.

На практике для поиска полярности используются 2 способа:

1. с помощью маломощного источника постоянного тока и чувствительного амперметра, показывающего направление тока;

2. методом использования понижающего трансформатора и вольтметра.

В обоих вариантах статор рассматривается как магнитопровод с обмотками, работающий по аналогии трансформатора напряжения.

Проверка полярности посредством батарейки и амперметра

На внешней поверхности статора выведены шестью проводами три отдельных обмотки, начала и концы которых надо определить.

С помощью омметра вызванивают и помечают вывода, относящиеся к каждой обмотке, например, цифрами 1, 2, 3. Затем произвольно маркируют на любой из обмоток начало и конец. К одной из оставшихся обмоток подключают амперметр со стрелкой посередине шкалы, способной указывать направление тока.

Минус батарейки жестко подключают к концу выбранной обмотки, а плюсом кратковременно прикасаются к ее началу и сразу разрывают цепь.

При подаче импульса тока в первую обмотку он за счет электромагнитной индукции трансформируется во вторую замкнутую через амперметр цепь, повторяя первоначальную форму. Причем, если полярность обмоток угадана правильно, то стрелка амперметра отклонится вправо при начале импульса и отойдет влево при размыкании цепи.

Если стрелка ведет себя по-другому, то полярность просто перепутана. Останется только промаркировать выводы второй обмотки.

Очередная третья обмотка проверяется аналогичным образом.

Проверка полярности посредством понижающего трансформатора и вольтметра

Здесь тоже вначале вызванивают обмотки омметром, определяя вывода, которые к ним относятся.

Затем произвольно маркируют концы первой выбранной обмотки для подключения к понижающему трансформатору напряжения, например, на 12 вольт.

Две оставшиеся обмотки случайным образом скручивают в одной точке двумя выводами, а оставшуюся пару подключают к вольтметру и подают питание на трансформатор. Его выходное напряжение трансформируется в остальные обмотки с такой же величиной, поскольку у них равное число витков.

За счет последовательного подключения второй и третьей обмоток вектора напряжения сложатся, а их сумму покажет вольтметр. В нашем случае при совпадении направления обмоток эта величина будет составлять 24 вольта, а при разной полярности — 0.

Останется промаркировать все концы и выполнить контрольный замер.

В статье дан общий порядок действий при проверке технического состояния какого-то произвольного двигателя без конкретных технических характеристик. Они в каждом индивидуальном случае могут меняться. Смотрите их в документации на ваше оборудование.

Источник: electrik.info

Сопротивление обмоток электродвигателя таблица — всё о электрике

Измерение сопротивления изоляции кабеля

Часто требуется измерить сопротивление изоляции кабеля или провода. Если вы умеете пользоваться мегаомметром, при проверке одножильного кабеля это займет не более минуты, с многожильными придется возиться дольше. Точное время зависит от количества жил — придется проверять каждую.

Тестовое напряжение выбираете в зависимости от того, в сети с каким напряжением будет работать провод. Если вы планируете его использовать для проводки на 250 или 380 В, можно выставить 1000 В (смотрите таблицу).

Проверка трехжильного кабеля — можно не скручивать, а перемерять все пары

Для проверки сопротивления изоляции одножильного кабеля, один щуп цепляем на жилу, второй — на броню, подаем напряжение. Если брони нет, второй щуп крепим к «земляной» клемме и тоже подаем тестовое напряжение. Смотрим на показания. Если стрелка показывает больше 0,5 МОм, все в норме, провод можно использовать. Если меньше — изоляция пробита и его применять нельзя.

Можно проверить многожильный кабель. Тестирование проводится для каждой жилы отдельно. При этом все остальные проводники скручиваются в один жгут. Если при этом надо проверить еще и пробой на «землю», в общий жгут добавляется еще и провод, подключенный к соответствующей шине.

Если у кабеля имеется экран, металлическая оболочка или броня, они тоже добавляется в жгут

При образовании жгута важно обеспечит хороший контакт

Примерно так же происходит измерение сопротивления изоляции розеточных групп. Из розеток выключают все приборы, отключают питание на щитке. Один щуп устанавливают на клемму заземления, второй — в одну из фаз. Тестовое напряжение — 1000 В (по таблице). Включаем, проверяем. Если измеренное сопротивление больше 0,5 МОм, проводка в норме. Повторяем со второй жилой.

Если электропроводка старого образца — есть только фаза и ноль, тестирование проводят между двумя проводниками. Параметры аналогичны.

Устройство и принцип действия

Мегаомметр — устройство для проверки сопротивления изоляции. Есть два типа приборов — электронные и стрелочные. Независимо от типа, любой мегаомметр состоит из:

  • Источника постоянного напряжения.
  • Измерителя тока.
  • Цифрового экрана или шкалы измерения.
  • Щупов, посредством которых напряжение от прибора передается на измеряемый объект.

Так выглядит стрелочный мегаомметр (слева) и электронный (справа)

В стрелочных приборах напряжение вырабатывается встроенной в корпус динамомашиной. Она приводится в действие измерителем — он крутит ручку прибора с определенной частотой (2 оборота в секунду). Электронные модели берут питание от сети, но могут работать и от батареек.

Работа мегаомметра основана на законе Ома: I=U/R. Прибор измеряет ток, который протекает между двумя подключенными объектами (две жилы кабеля, жила-земля и т.д.). Измерения производятся калиброванным напряжением, значение которого известно, зная ток и напряжение, можно найти сопротивление: R=U/I, что и делает прибор.

Примерная схема магаомметра

Перед проверкой щупы устанавливаются в соответствующие гнезда на приборе, после чего подключаются к объекту измерения. При тестировании в приборе генерируется высокое напряжение, которое при помощи щупов передается на проверяемый объект. Результаты измерений отображаются в мега омах (МОм) на шкале или экране.

Конструктивные особенности мегаомметров

Существуют разные модели мегаомметров, но все они включают в себя высоковольтный источник постоянного напряжения (генератор) и амперметр. Генератор выдает откалиброванное напряжение, величина которого выставляется заранее. По этой причине измерительную шкалу прибора можно сразу проградуировать в единицах измерения сопротивления, а не силы тока.

Виды мегаомметров

Можно выделить два основных вида приборов:

Мегаомметры, укомплектованные механическим генератором. Это приборы старого образца, в которых в качестве источника напряжения используются динамо-машины. Их нужно приводить в действие вручную с частотой примерно 2 об/сек. Они достаточно габаритные и тяжелые, но при этом не нуждаются в источнике питания. Такие приборы удобны своей автономностью.

Так выглядит мегаомметр с механическим генератором

Мегаомметры, укомплектованные электронным преобразователем. Это приборы нового поколения. В них источник постоянного напряжения работает от встроенных аккумуляторов или блока питания. Такие устройства компактные и легкие, но их работоспособность зависит от источника питания.

Так выглядит электронный мегаомметр

Проверка других деталей и прочие потенциальные проблемы

  • утечка масла из конденсатора;
  • наличие отверстий в корпусе;
  • вспученный конденсаторный корпус;
  • неприятные запахи.

Конденсатор тоже проверяют с помощью омметра. Щупами следует коснуться выводов конденсатора, а уровень сопротивления должен сначала быть небольшим, а затем постепенно увеличиваться по мере зарядки конденсатором напряжением от батареек. Если сопротивление не растет или конденсатор короткозамкнутый, то, скорее всего, его пора менять.

Перед проведением повторной проверки конденсатор нужно разрядить.

Переходим к следующему этапу проверки двигателя: задней части картера, где устанавливаются подшипники. В этом месте ряд электродвигателей оснащается центробежными переключателями, которые переключают пусковые конденсаторы или цепи для определения количества оборотов в минуту. Также нужно проверить контакты реле на предмет пригорелости. Кроме этого, их следует почистить от жира и грязи. Механизм выключателя проверяется посредством отвертки, пружина должна нормально и свободно работать.

И заключительный этап – это проверка вентилятора. Мы рассмотрим его на примере проверки вентилятора двигателя TEFC, который целиком закрыт и имеет воздушное охлаждение.

Посмотрите, чтобы вентилятор был надежно прикреплен и не был забит грязью и прочим мусором. Отверстия на металлической решетке должны быть достаточными для свободной циркуляции воздуха, если это не будет обеспечено, то может случиться перегрев двигателя и впоследствии он выйдет из строя.

Нормы сопротивления изоляции электрических машин

В ПУЭ (правилах устройства электроустановок) регламентируется сопротивление изоляции электродвигателей в зависимости от конструкции и мощности аппарата.

Допустимое сопротивление при испытании изоляции асинхронных электромашин

При измерении изоляции асинхронных двигателей соединение обмоток статора «звезда» или «треугольник» необходимо разобрать и проверить каждую из катушек относительно корпуса и между собой. Испытания проводятся при температуре машины 10-30°С.

Сопротивление изоляции должно быть:

  • в статоре не менее 0,5мОм;
  • в фазном роторе не менее 0,2мОм;
  • минимальное сопротивление изоляции термодатчиков не нормируется.

Для того чтобы не использовать справочник, обычно допустимое сопротивление считается 1мОм. Меньшие значения говорят о незначительных нарушениях, которые со временем приведут к выходу электромашины из строя.

Важно! Для того чтобы избежать такой ситуации аппарат целесообразно отправить на специализированное предприятие для проведения среднего ремонта

Изоляция двигателей постоянного тока

Для проверки изоляции в машинах постоянного тока необходимо вынуть щётки из щёткодержателей или подложить под них изоляционный материал.

Измерение проводится между разными частями схемы электромашины:

  • обмотками возбуждения и коллектором якоря;
  • щёткодержателем и корпусом аппарата;
  • коллектором якоря и корпусом;
  • обмотками возбуждения и корпусом электромашины.

Важно! Если есть возможность, то катушки обмотки возбуждения отключаются друг от друга и проверяются по отдельности. Минимально допустимое сопротивление изоляции зависит от температуры и номинального напряжения электромашины

При 20°С она составляет:

Минимально допустимое сопротивление изоляции зависит от температуры и номинального напряжения электромашины. При 20°С она составляет:

Кроме обмоток и якоря измеряется сопротивление бандажей обмоток возбуждения и якоря. Оно проверяется между самим бандажом и корпусом, а также закрепляемой им обмоткой. Оно не должно быть менее 0,5мОм.

Виды тестеров

При эксплуатации электрических устройств широко используются цифровые мегомметры модели: Ф4101/4102 от 100.0 до 1000.0 В. Наладчики до сих пор работают с марками тестеров М4100/1, 4100/5 и МС-05 м от 100.0 до 2500.0 В. Выбор типоразмера мегомметра базируется по номинальному сопротивлению тестируемого устройства: силовые кабели и трансформаторы, машины и изоляторы. Для определения состояния изоляции в электроустановках до 1000.0 В допускается применять мегомметры от 100.0-1000.0 В, а в установках более 1000.0 В — 1000.0-2500.0 В.

Устройства также классифицируются по генерируемому напряжению и пределам сопротивления в МОм:

  • 500.0 В — 500.0;
  • 1000.0 В — 1000.0;
  • 2500.0 В — 2500.0.

Дополнительная информация. Приборы также разнятся классами точности. У популярной модели М4100 погрешностью не более 1%, а у марки Ф4101 до 2,5%. Выбор приборов тестирования электроустановок выполняют с учетом допустимых эксплуатационных показателей.

Электронный измеритель

Электронный измеритель

Цифровой или электронный тестер — современный вид оборудования, оснащен производительным генератором с полевыми транзисторами. Замеры выполняются путем сопоставления падения напряжения в эталонной цепи с фиксированным сопротивлением. Результаты демонстрируются на панели. Функция сохранения результатов тестирования накапливает данные для последующего анализа. Эта модель отличается от аналоговых приборов компактными размерами и малым весом.
Преимущества цифрового тестера:

  • Высокий уровень точности, позволяет определять сопротивление на больших участках цепи;
  • удобная легко читаемая цифровая панель;
  • технологическая доступность для измерения одним пользователем;
  • прекрасно работает даже в очень загруженном пространстве;
  • удобный и безопасный в использовании.

Недостатки электронного типа мегомметра:

  • Требуется внешний источник энергии;
  • высокие цены на изделия.

Электромеханический измеритель

Электромеханический прибор

Эти модели имеют аналоговый дисплей на передней панели тестера и ручную рукоятку, используемую для вращения и выработки напряжения, которое проходит через электрическую систему.

Преимущества ручного мегомметра:

  1. Остается важным в современном высокотехнологичном мире, оставаясь самым старым методом определения значения сопротивления.
  2. Для работы не требуется внешний источник.
  3. Низкие цены на рынке.

Недостатки ручного мегомметра:

  1. Для работы требуется не менее 2 человек, один для вращения ручки, другой для подключения мегомметра к проверяемой электрической системе.
  2. Низкая точность измерения.
  3. Требует большое свободное место для размещения.
  4. Предоставляет аналоговый результат измерения.
  5. Высокие требования к безопасности при использовании.

Особенности конструкции схемы:

  1. Отклоняющая и управляющая катушка — подключены параллельно генератору, установлены под прямым углом друг к другу и поддерживают полярность таким образом, чтобы создавался крутящий момент в противоположном направлении.
  2. Постоянные магниты, создают магнитное поле для отклонения указателя с помощью магнитного полюса «Север-Юг».
  3. Указатель — один конец, связанный с катушкой, другой отклоняется по шкале от бесконечности до «0».
  4. Масштаб предоставляется в верхней части мегомметра от диапазона «ноль» до «бесконечности» и позволяет пользователю прочитать значение.
  5. Подключение источника постоянного тока (DC) или аккумулятора.
  6. Испытательный режим вырабатывается генератором для мегомметра с ручным управлением. Аккумулятор или электронное зарядное устройство предусмотрено для цифрового мегомметра с той же целью.

Обратите внимание! Сопротивление токовой катушки помогает защитить тестер от любых повреждений при испытании из-за низкого внешнего электросопротивления

Как подключить

Каждая модель устройства имеет свою выходную величину напряжения, по этой причине для эффективного испытания изоляции либо замера ее сопротивления, необходим правильный подбор мегаомметра.

Чтобы проверить кабельную изоляцию, необходимо сформировать случай, при котором на участок энергия будет подана выше номинальной, но в пределе, описанной в техническом документе. К примеру, если напряжение подается в количестве 500, то необходимо немного превысить эту величину.

Длительность измерения сопротивления изоляции мегаомметром, обычно должна быть не более 30 секунд. Это нужно, чтобы точно можно было выявить дефекты, а также исключить их последующее появление при сетевых перепадах.

Основой измерений является подготовка с выполнением и финальным этапом. На каждом этапе происходят свои манипуляции, которые нужны, чтобы достигнуть поставленную цель.

Обратите внимание! Подготавливая работу, нужно понимать действия, изучить электрическую установку в схематичном виде для исключения возможной поломки и обеспечения безопасности. Делая начало работы, следует осуществить проверку прибора на исправность

Далее нужно подсоединить переносное заземление к земляному контуру, проверить и обеспечить отключение напряжения на участке, установить переносной вид заземления, собрать схему измерения, убрать поступающую энергию и остаток заряда. После отключить провод соединения

Делая начало работы, следует осуществить проверку прибора на исправность. Далее нужно подсоединить переносное заземление к земляному контуру, проверить и обеспечить отключение напряжения на участке, установить переносной вид заземления, собрать схему измерения, убрать поступающую энергию и остаток заряда. После отключить провод соединения.

На финальном этапе восстанавливаются разобранные цепочки, снимаются шунты и закоротки, а также подготавливаются схемы для рабочего режима. Позднее документируются результаты измерений слоя изоляции в проверочном изоляционном акте

Профессиональное подключение мегаомметра по инструкции

Как определить межвитковое замыкание в двигателе

Добрая половина всех случаев неисправностей электродвигателей приходится на межвитковое замыкание. Межвитковым замыканием называется короткое замыкание между разными витками одной катушки или секции обмотки электрической машины. Причин межвитковых замыканий может быть несколько.

Причины межвитковых замыканий

Одна из причин межвиткового замыкания — перегрузка электродвигателя по току, когда нагрузка на двигатель в течение значительного промежутка времени превышает номинальную. В этом случае обмотка статора разогревается от чрезмерного тока настолько сильно, что изоляция в каком-то ее месте может разрушиться и способствовать короткому замыканию между соседними витками. Нормальный ток статора под нагрузкой всегда можно посмотреть в паспорте двигателя либо на информационном шильдике на его корпусе.

Перегрузка может случиться, например, из-за нештатного режима эксплуатации оборудования, приводимого в действие данным двигателем. Кроме того причиной токовой перегрузки может стать механическое повреждение непосредственно двигателя: заклинивание ротора, стопорение подшипников и т. д.

Не исключен также заводской брак обмотки, либо нарушение целостности изоляции во время ручной перемотки статора в кустарных условиях. При несоблюдении условий хранения или эксплуатации электродвигателя, случайно попавшая внутрь влага способна навредить изоляции и привести к межвитковому замыканию.

Так или иначе, какой бы ни оказалась причина межвиткового замыкания, с ним пострадавший двигатель нормально работать уже точно не сможет, либо проработает, но недолго. Поэтому при обнаружении симптомов межвиткового замыкания, следует незамедлительно начать его поиск с целью скорейшего устранения.

Как выявить межвитковое замыкание

Существует несколько простых проверенных способов выявить наличие межвиткового замыкания. Симптомом обычно является перегрев одной части статора по отношению ко всем остальным его частям. Если данное явление наблюдается, то двигатель необходимо остановить, если надо — снять с оборудования, и подвергнуть точной диагностике.

Прежде всего можно воспользоваться токовыми клещами. Достаточно по очереди измерить токи каждой из фаз обмотки статора, и если в одной из них ток существенно больше чем в остальных, то это — явный признак того, что место замыкания находится в соответствующей части обмотки. Предварительно необходимо убедиться, что напряжение на все выводы (между каждой парой из трех фаз) подается одинаковое, то есть проверить отсутствие перекоса фаз. Для этого пользуются вольтметром, поочередно измеряют напряжения на трех фазах.

Три части трехфазной обмотки следует прозвонить омметром. Сопротивления всех трех обмоток по-отдельности должны быть одинаковыми. Используемый прибор должен обладать достаточно высокой точностью, ведь если имеет место замыкание всего между двумя витками, то различие в сопротивлениях будет минимальным, и его невозможно будет различить если обмотка выполнена толстым проводом.

Наличие замыкания на корпус можно проверить при помощи мегаомметра. Для этого один щуп прибора прикладывается к корпусу двигателя, второй — поочередно к каждому из выводов обмоток. В исправном двигателе сопротивление на каждой из фаз должно быть значительным (смотрите — Как правильно пользоваться мегаомметром ).

Не будет лишним визуально рассмотреть обмотку статора. Чтобы это сделать, нужно будет снять с двигателя крышки, вытащить ротор и внимательно рассмотреть всю обмотку секция за секцией. Если замыкание есть, то подгоревшее место наверняка будет видно сразу.

Если у вас под рукой есть понижающий трехфазный трансформатор на напряжение в районе 40 вольт, то используйте его для проверки целостности статора. Выньте ротор, подключите трансформатор, включите его в сеть. Возьмите железный шарик от подшипника и запустите его в статор, немного ускорив щелчком пальца, так чтобы шарик начал бегать по кругу вслед за вращающимся магнитным полем, имитируя вращение ротора. В случае если шарик остановился и застрял на одном месте статора — значит в этом месте межвитковое замыкание.

Если нет шарика, возьмите пластину трансформаторной стали или железную линейку, приложите ее внутри к статору и перемещайте по кругу. В том месте где пластинка начнет заметно дребезжать — есть межвитковое замыкание. Если межвиткового замыкания нет, то пластинка будет везде примагничиваться к статору. Прежде чем использовать способ с шариком или с пластинкой, убедитесь, что двигатель питается от понижающего трансформатора, иначе можно получить поражение электрическим током.

Причины низкого сопротивления

Есть несколько причин низкого сопротивления изоляции.

Перегрев электромашины

Эта ситуация возникает из-за перегрузки электромашины или обрыва одной из фаз в трёхфазных электродвигателях. Устранить эту проблему в условиях мастерской невозможно и аппарат приходится отправлять для замены обмоток в специализированное предприятие.

Предотвратить такую неисправность помогают устройства защиты:

  • тепловое реле отключает электромашину при перегрузке;
  • реле напряжения отключает установку при отсутствии одной из фаз или пониженном напряжении сети.

Важно! Для лучшей защиты внутри электродвигателей встраиваются датчики температуры. В новых машинах они устанавливаются при изготовлении, а в старых такие приборы можно поставить при плановом или капитальном ремонте

Оцените статью:

пошаговая инструкция и рекомендации Как проверить эл двигатель

Как проверить состояние обмотки электрического двигателя

На 1-ый взор обмотка представляет кусочек проволоки смотанной спецефическим образом и в ней нечему особо ломаться. Но у нее есть особенности:

серьезный подбор однородного материала по всей длине;

четкая калибровка формы и поперечного сечения;

нанесение в промышленных критериях слоя лака, владеющего высочайшими изоляционными качествами;

крепкие контактные соединения.

Если в каком-либо месте провода нарушена хоть какое из этих требований, то меняются условия для прохождения электронного тока и движок начинает работать с пониженной мощностью либо вообщем останавливается.

Чтоб проверить одну обмотку трехфазного мотора нужно отключить ее от других цепей. Какие электромоторы можно проверить мультиметром? Трехфазный как проверить изоляцию. Во всех электродвигателях они могут собираться по одной из 2-ух схем:

Концы обмоток обычно выводятся на клеммные колодки и маркируются знаками «Н» (начало) и «К» (конец). Как проверить двигатель мультиметром. Время от времени отдельные соединения могут быть спрятаны снутри корпуса, а для выводов употребляются другие методы обозначения, к примеру, цифрами.


У трехфазного мотора на статоре употребляются обмотки с схожими электронными чертами, владеющими равными сопротивлениями. Если при замере омметром они демонстрируют различные значения, то это уже повод серьезно задуматься над причинами разброса показаний.

Как проявляются неисправности в обмотке

Зрительно оценить качество обмоток не представляется вероятным из-за ограниченного допуска к ним. На практике инспектируют их электронные свойства, беря во внимание, что все неисправности обмоток появляются:

обрывом, когда нарушается целостность провода и исключается прохождение электронного тока по нему;

маленьким замыканием, возникающем при нарушении слоя изоляции меж входным и выходным витком, характеризующимся исключением обмотки из работы с шунтированием концов;

межвитковым замыканием, когда изоляция нарушается меж одним либо несколькими близлежащими витками, которые этим выводятся из работы. Ток проходит по обмотке, минуя короткозамкнутые витки, не преодолевая их электронное сопротивление и не создавая ими определенной работы;

пробоем изоляции меж обмоткой и корпусом статора либо ротора.


Проверка обмотки на обрыв провода

Этот вид неисправности определяется замером сопротивления изоляции омметром. Устройство покажет огромное сопротивление — ∞, которое учитывает образованный разрывом участок воздушного места.

Проверка обмотки на возникновение короткого замыкания

Движок, снутри электронной схемы которого появилось куцее замыкание, отключается защитами от сети питания. Но, даже при резвом выводе из работы таким методом место появления КЗ отлично видно зрительно за счет последствий воздействия больших температур с ярко выраженным нагаром либо следами оплавления металлов.

При электронных методах определения сопротивления обмотки омметром выходит очень малая величина, очень приближенная к нулю. Ведь из замера исключается фактически вся длина провода за счет случайного шунтирования входных концов.

Проверка обмотки на возникновение межвиткового замыкания

Это более сокрытая и трудно определяемая неисправность. Для ее выявления можно пользоваться несколькими методиками.

Способ омметра

Устройство работает на неизменном токе и замеряет только активное сопротивление проводника. Обмотка же при работе за счет витков делает существенно огромную индуктивную составляющую.

При замыкании 1-го витка, а их полное количество может быть несколько сотен, изменение активного сопротивления увидеть очень трудно. Ведь оно изменяется в границах нескольких процентов от общей величины, а тотчас и меньше.

Как прозвонить электродвигатель

Трёхфазный асинхронный электродвигатель , проверка тестером. На практике довольно проверить электродви.

Расположение контактов трехфазного двигателя и прозвонка обмоток

Рассматриваем размещение концов обмоток трехфазного двигателя , определяем, верно ли они подключены.

Можно испытать точно откалибровать устройство и пристально измерить сопротивления всех обмоток, сравнивая результаты. Но разница показаний даже в данном случае не всегда будет видна.

Более четкие результаты позволяет получить мостовой способ измерения активного сопротивления, но это, обычно, лабораторный метод, труднодоступный большинству электриков.

Замер токов потребления в фазах

При межвитковом замыкании меняется соотношение токов в обмотках, проявляется лишний нагрев статора. У исправного мотора токи схожи. Потому прямое их измерение в действующей схеме под нагрузкой более точно отражает реальную картину технического состояния.

Измерения переменным током

Найти полное сопротивление обмотки с учетом индуктивной составляющей в полной рабочей схеме не всегда может быть. Для этого придется снимать крышку с клеммной коробки и врезаться в проводку.

У выведенного из работы мотора можно использовать для замера понижающий трансформатор с вольтметром и амперметром. Ограничить ток дозволит токоограничивающий резистор либо реостат соответственного номинала.


При выполнении замера обмотка находится снутри магнитопровода, а ротор либо статор могут быть извлечены. Баланса электрических потоков, на условие которого проектируется движок, не будет. Про то как проверить и двигатель от можно ли поверить мультиметром? И как можно. Потому употребляется пониженное напряжение и контролируются величины токов, которые не должны превосходить номинальных значений.

Замеренное на обмотке падение напряжения, поделенное на ток, по закону Ома даст значение полного сопротивления. Его остается сопоставить с чертами других обмоток.

Эта же схема позволяет снять вольтамперные свойства обмоток. Просто нужно выполнить замеры на различных токах и записать их в табличной форме либо выстроить графики. Если при сопоставлении с подобными обмотками серьёзных отклонений нет, то межвитковое замыкание отсутствует.

Шарик в статоре

Метод основан на разработке вращающегося электрического поля исправными обмотками. Как проверить электродвигатель мультиметром пошаговая. Для этого на их подается трехфазное симметричное напряжение, но непременно пониженной величины. С этой целью обычно используют три схожих понижающих трансформатора, работающих в каждой фазе схемы питания.


Для ограничения токовых нагрузок на обмотки опыт проводят краткосрочно.

Маленькой металлической шарик от шарикоподшипника вводят во крутящееся магнитное поле статора сходу после включения витков под напряжение. Если обмотки исправны, то шарик синхронно катается по внутренней поверхности магнитопровода.

Когда одна из обмоток имеет межвитковое замыкание, то шарик зависнет в месте неисправности.

Во время теста нельзя превосходить ток в обмотках больше номинальной величины и следует учесть, что шарик свободно выскакивает из корпуса со скоростью вылета из рогатки.

Электрическая проверка полярности обмоток

У статорных обмоток может отсутствовать маркировка начала и концов выводов и это сделает труднее корректность сборки.

На практике для поиска полярности употребляются 2 метода:

1. при помощи маломощного источника неизменного тока и чувствительного амперметра, показывающего направление тока;

2. способом использования понижающего трансформатора и вольтметра.

В обоих вариантах статор рассматривается как магнитопровод с обмотками, работающий по аналогии трансформатора напряжения.

Проверка полярности посредством батарейки и амперметра

На наружной поверхности статора выведены шестью проводами три отдельных обмотки, начала и концы которых нужно найти.

При помощи омметра вызванивают и отмечают вывода, относящиеся к каждой обмотке, к примеру, цифрами 1, 2, 3. Потом произвольно маркируют на хоть какой из обмоток начало и конец. К одной из оставшихся обмоток подключают амперметр со стрелкой в центре шкалы, способной указывать направление тока.

Минус батарейки агрессивно подключают к концу избранной обмотки, а плюсом краткосрочно прикасаются к ее началу и сходу разрывают цепь.


При подаче импульса тока в первую обмотку он за счет электрической индукции трансформируется во вторую замкнутую через амперметр цепь, повторяя первоначальную форму. При этом, если полярность обмоток угадана верно, то стрелка амперметра отклонится на право при начале импульса и отойдет на лево при размыкании цепи.

Если стрелка ведет себя по-другому, то полярность просто спутана. Остается только промаркировать выводы 2-ой обмотки.

Еще одна 3-я обмотка проверяется аналогичным образом.

Проверка полярности посредством понижающего трансформатора и вольтметра

Тут тоже сначала вызванивают обмотки омметром, определяя вывода, которые к ним относятся.

Потом произвольно маркируют концы первой избранной обмотки для подключения к понижающему трансформатору напряжения, к примеру, на 12 вольт.


Две оставшиеся обмотки случайным образом скручивают в одной точке 2-мя выводами, а оставшуюся пару подключают к вольтметру и подают питание на трансформатор. Его выходное напряжение трансформируется в другие обмотки с таковой же величиной, так как у их равное число витков.

За счет поочередного подключения 2-ой и третьей обмоток вектора напряжения сложатся, а их сумму покажет вольтметр. Как проверить датчик парктроника мультиметром (тестером. В нашем случае при совпадении направления обмоток данная величина будет составлять 24 вольта, а при разной полярности — 0.

Остается промаркировать все концы и выполнить контрольный застыл.

В статье дан общий порядок действий при проверке технического состояния какого-то случайного мотора без определенных технических черт. Они в каждом личном случае могут изменяться. Смотрите их в документации на ваше оборудование.

Измерение сопротивления изоляции обмоток относительно корпуса машины и между обмотками производится в целях проверки состояния изоляции и пригодности машины к проведению последующих испытаний. Рекомендуется производить измерение:

в практически холодном состоянии испытуемой машины — до начала ее испытания по соответствующей программе;

независимо от температуры обмоток — до и после испытаний изоляции обмоток на электрическую прочность относительно корпуса машины и между обмотками переменным напряжением.

Измерение сопротивления изоляции обмоток следует проводить: при номинальном напряжении обмотки до 500 В включительно — мегаомметром на 500 В; при номинальном напряжении обмотки свыше 500 В — мегаомметром не менее чем на 1000 В. При измерении сопротивления изоляции обмоток с номинальным напряжением свыше 6000 В, имеющих значительную емкость по отношению к корпусу, рекомендуется применять мегаомметр на 2500 В с моторным приводом или со статической схемой выпрямления переменного напряжения.

Измерение сопротивления изоляции относительно корпуса машины и между обмотками следует производить поочередно для каждой цепи, имеющей отдельные выводы, при электрическом соединении всех прочих цепей с корпусом машины.

Измерение сопротивления изоляции обмоток трехфазного тока, наглухо сопряженных в звезду или треугольник, производится для всей обмотки по отношению к корпусу.

Изолированные обмотки и защитные конденсаторы, а также иные устройства, постоянно соединенные с корпусом машины, на время измерения сопротивления их изоляции должны быть отсоединены от корпуса машины.

Измерение сопротивления изоляции обмоток, имеющих непосредственное водяное охлаждение, должно производиться мегаомметром, имеющим внутреннее экранирование; при этом зажим мегаомметра, соединенный с экраном, следует присоединять к водосборным коллекторам, которые при этом не должны иметь металлической связи с внешней системой питания обмоток дистиллятом.

По окончании измерения сопротивления изоляции каждой цепи следует разрядить ее электрическим соединением с заземленным корпусом машины. Для обмоток на номинальное напряжение 3000 В и выше продолжительность соединения с корпусом должна быть:

для машин мощностью до 1000 кВт (кВ·А) — не менее 15 с;

для машин мощностью более 1000 кВт (кВ·А) — не менее 1 мин.

При пользовании мегаомметром на 2500 В продолжительность соединения с корпусом должна быть не менее 3 мин независимо от мощности машины.

Измерение сопротивления изоляции заложенных термопреобразователей сопротивления следует проводить мегаомметром напряжением 500 В.

Измерение сопротивления изоляции изолированных подшипников и масляных уплотнений вала относительно корпуса следует проводить при температуре окружающей среды мегаомметром напряжением не менее 1000 В.

Таблица 2.

Таблица 3.

Таблица 4.

Сопротивление изоляции R из является основным показателем состояния изоляции статора и ротора электродвигателя.

Одновременно с измерением сопротивления изоляции обмотки статора определяют коэффи­циент абсорбции. Измерение сопротивления изоляции ротора проводится у синхронных электро­двигателей и электродвигателей с фазным ротором на напряжение 3кВ и выше или мощностью бо­лее 1МВт. Сопротивление изоляции ротора должно быть не ниже 0,2МОм .

Коэффициент абсорбции в эксплуатации обязательно определять только для электродвигате­лей напряжением выше 3кВ или мощностью боле 1МВт.

Подготовить средства измерений:

Проверить уровень заряда батареи или аккумулятора для мегаомметра типа MIC-2500.

Установить значение испытательного напряжения.

В случае использования стрелочного прибора типа ЭСО202 установить его горизонтально.

Для ЭС0202 установить требуемый предел измерений, шкалу прибора и значение испытательного напряжения мегомметра.

Проверить работоспособность мегомметра. Для этого необходимо замкнуть между собой измерительные щупы и начать вращать рукоятку генератора со скоростью 120¸140 оборотов в минуту. Стрелка прибора должна показывать «0». Разомкнуть измерительные щупы и начать вращать рукоятку генератора со скоростью 120¸140 оборотов в минуту. Стрелка прибора должна показывать «10 4 МОм».

Перед проведением измерения необходимо открыть вводное устройство электродвигателя (борно), протереть изоляторы от пыли и загрязнения и подключить мегаомметр согласно схемы, приве­дённой на рисунке.

Рисунок. Измерение сопротивления изоляции обмоток электродвигателя.

На рисунке А показана схема подключения мегаомметра к испытуемому электродвигателю, у ко­торого обмотки соединены в звезду или треугольник внутри корпуса и произвести рассоединение в борно невозможно. В этом случае мегаомметр подключает­ся к любому зажиму статора электродвигателя и со­противление изоляции измеряется у всей обмотки сразу относительно корпуса.

На рисунке Б измерение сопротивление изо­ляции производится у электродвигателя по каждой из частей обмотки отдельно, при этом другие части обмотки (которые в данный момент не обрабаты­ваются) закорачиваются и соединяются на землю.

При измерении сопротивления изоляции отсчёт показаний мегаомметра производят каждые
15 секунд и результатом считается сопротивление, отсчитанное через 60 секунд после начала измерения, а отношение показаний R 60 /R 15 считается коэффициентом абсорбции.

Для электродвигателей с номинальным на­пряжением 0,4кВ (электродвигатели до 1000В) одноминутное измерение изоляции мегаомметром на 2500В приравнивается к высоковольтному испытанию.

У синхронных электродвигателей при изме­рении сопротивления изоляции обмоток статора (обмотки статора) необходимо закоротить и за­землить обмотку ротора. Это необходимо сделать для исключения возможности повреждения изо­ляции ротора.

Сегодня статья – ответ на вопрос читателей.

Будут вопросы будут и новые статьи.

Когда электродвигатель не работает, бывает недостаточно просто взглянуть на него, чтобы понять причину. Электродвигатель, давно хранящийся на складе, может работать, а может не работать независимо от его внешнего вида. Быструю проверку можно сделать с помощью омметра, ниже дается намного больше информации, чтобы верно оценить состояние электродвигателя.

Шаги

Часть 1

Внешний осмотр

Часть 2

Проверка подшипников

    Начните с проверки подшипников электродвигателя. Многие неисправности электромоторов вызваны неисправностью подшипников. Подшипники позволяют валу (ротору) свободно и плавно вращаться в статоре. Подшипники расположены на обоих концах вала ротора двигателя в колоколообразных нишах.

  • Есть несколько типов подшипников, которые используются в электродвигателях. Два самых популярных типа: латунные подшипники скольжения и шарикоподшипники. Многие из них имеют фитинги для смазки, в другие смазка заложена при производстве («не обслуживаемые»).
  • Выполните проверку подшипников. Для выполнения беглого контроля подшипников поместите двигатель на твердую поверхность и положите одну руку на верхнюю часть двигателя, покрутите ротор другой рукой. Внимательно следите, старайтесь почувствовать и услышать трение, царапающие звуки, неравномерность вращения ротора. Ротор должен вращаться спокойно, свободно и равномерно.

    Затем проверьте продольный люфт ротора, потолкайте, потяните ротор за ось из статора. Небольшой люфт допустим (в наиболее распространенных бытовых двигателях люфт должен быть не более 3 мм), но чем он ближе к «0», тем лучше. Двигатель, у которого проблемы с подшипниками, шумно работает, подшипники перегреваются, что приводит к поломке двигателя.

    Часть 3

    Проверка обмоток электродвигателя

      Проверьте обмотки двигателя на короткое замыкание на корпус. Большинство бытовых электродвигателей с замкнутыми обмотками работать не будут: скорее всего сгорит предохранитель или сработает автомат защиты (двигатели, рассчитанные на 380 Вольт являются «незаземленными», поэтому такие двигатели могут работать с замкнутыми на корпус обмотками, при этом предохранитель не сгорит).

      Используйте омметр, чтобы проверить сопротивление. Установите омметр в режим измерения сопротивления, подключите щупы к соответствующим гнездам, обычно к «общему» и гнезду «Ом» (изучите руководство по эксплуатации измерительного прибора при необходимости). Выберите шкалу с самым высоким множителем (R*1000 или подобную) и установите стрелку на “0”, касаясь щупами друг друга. Найдите винт, предназначенный для заземления двигателя (они часто зеленые, с шестигранной головкой) или любую металлическую часть корпуса (при необходимости установить хороший контакт с металлом нужно соскрести краску) и прижмите один щуп омметра к этому месту, а другой щуп поочередно к каждому из электрических контактов двигателя. В идеале стрелка омметра должна едва отклониться от самого высокого сопротивления. Убедитесь, что ваши руки не соприкасаются со щупами, так как это приведет к неточным измерениям.

    • Омметр должен указать на значение сопротивления в миллионы Ом (или «МОм»). Иногда значение может достигать всего лишь нескольких сотен тысяч Ом (500000 или около того). Это может быть приемлемым, но чем больше величина сопротивления, тем лучше.
    • Многие цифровые омметры не предлагают возможности установить прибор на “0”, так что пропустите «обнуление», если у вас цифровой омметр.
  • Убедитесь, что обмотки двигателя не оборваны или короткозамкнуты . Многие простые однофазные и 3-фазные двигатели (используются в бытовой технике и в промышленности соответственно) можно проверить, просто переключив диапазон омметра на самый низкий (RX*1), установите стрелку на ноль снова и еще раз измерьте сопротивление между проводами двигателя. Обратитесь к схеме двигателя, чтобы убедиться, что вы измеряете каждую обмотку.

    • Вы можете увидеть очень низкое значение сопротивления. Величина сопротивления может быть довольно низкой. Убедитесь, что ваши руки не прикасаются к щупам омметра, так как это приведет к неточными показаниям прибора. Большое значение сопротивления указывает на потенциальную проблему с обмотками электродвигателя, которые могут иметь разрыв. Двигатель с высоким сопротивлением обмоток не будет работать или не будет работать его регулятор скорости (это может быть с 3-фазными электродвигателями).
  • Часть 4

    Поиск и устранение других потенциальных проблем
    1. Проверьте пусковой конденсатор, используемый для запуска некоторых двигателей. Большинство конденсаторов защищены от повреждений металлической крышкой на внешней стороне двигателя. Необходимо снять крышку, чтобы получить доступ к конденсатору для его проверки. Визуальный осмотр поможет обнаружить утечку масла из конденсатора, отверстия в корпусе, вспученный корпус конденсатора, запах гари или дыма – все это говорит о потенциальных проблемах.

      • Проверку конденсатора можно выполнить с помощью омметра. Прикоснитесь щупами к выводам конденсатора, сопротивление должно начинаться с низких значений и постепенно увеличиваться, так как небольшое напряжение, подающееся от батареек омметра, постепенно заряжает конденсатор. Если конденсатор остается короткозамкнутым или сопротивление не растет, то, вероятно, проблема с конденсатором, его необходимо заменить. Конденсатор должен быть разряжен перед повторной попыткой проведения этого теста.
    2. Проверьте заднюю часть картера двигателя в месте, где устанавливается подшипник. Там некоторые двигатели имеют центробежные переключатели, используемые для переключения пускового конденсатора или для подключения цепей, определяющих количество оборотов в минуту. Проверьте контакты реле, не пригорели ли они, очистите их от грязи и жира. С помощью отвертки проверьте механизм выключателя, пружина должна работать свободно.

      Проверьте вентилятор. Тип «TEFC» (полностью закрытый, с воздушным охлаждением электродвигатель). У двигателей этого типа лопасти вентилятора находятся за металлической решеткой на задней части двигателя. Убедитесь, что вентилятор надежно закреплен и не забит грязью и другим мусором. Отверстия в металлической решетке должны обеспечивать свободное движение воздуха, в противном случае может случиться перегрев двигателя и выход его из строя.

    3. Подбирайте правильный двигатель под условия, в которых он будет работать. Во влажной среде используются брызгозащищенные двигатели, а открытые двигатели не должны подвергаться воздействию воды или влаги.

      • Брызгозащищенные двигатели могут быть установлены в сырых или влажных местах, они устроены таким образом, что вода (или другие жидкости) не могут проникнуть внутрь двигателя под действием силы тяжести или под воздействием потока воды (или другой жидкости).
      • Открытый двигатель, как следует из названия, полностью открыт. С торцов эти двигатели имеют довольно большие отверстия, и обмотки статора явно видны. Эти отверстия не должны быть заблокированы, и эти двигатели не должны устанавливаться во влажных, загрязненных или пыльных местах.
      • TEFC двигатели, с другой стороны, могут быть использованы во всех упомянутых выше областях, но они также не должны использоваться в условиях, на которые они не рассчитаны.
    • Нельзя сказать, что для обмоток двигателя является редкостью быть как «в разрыве», так и «в коротком замыкании» в одно и то же время. На первый взгляд, это может показаться оксюмороном, но на самом деле это не так. Примером может быть «разрыв» цепи, вызванный инородным предметом, который попал в двигатель, или чрезмерное напряжение питания, что буквально заставляет провода в обмотках плавиться и приводит к разрыву в цепи. Если конец расплавленного медного провода соприкоснется с корпусом двигателя или с другой заземленной частью двигателя – это приведет к «короткому замыканию». Такое случается не часто, но может произойти.
    • A NEMA Quick Reference По данной ссылке вы сможете узнать типовые посадочные места и размеры электродвигателей.

    При помощи мультиметра и нескольких приспособлений, не особо разбираясь в принципе работы электродвигателей, можно проверить:

    Испытание изоляции обмоток

    Независимо от конструкции, электродвигатель нужно проверить при помощи мегомметра на пробой изоляции между обмотками и корпусом. Проверки при помощи одного только мультиметра может быть недостаточно для выявления повреждения изоляции, поэтому используют высокое напряжение.


    мегомметр для измерения сопротивления изоляции

    В паспорте электродвигателя должно указываться напряжение для испытания изоляции обмоток на электрическую прочность. Для двигателей, подключаемых к сети 220 или 380 В, при их проверке используются 500 или 1000 Вольт, но за неимением источника, можно воспользоваться сетевым напряжением.


    паспорт асинхронного двигателя

    Изоляция обмоточных проводов низковольтных двигателей не рассчитана выдерживать такие перенапряжения, поэтому при проверке нужно свериться с паспортными данными. Иногда у некоторых электродвигателей вывод обмоток, соединённых звездой, может быть подключён на корпус, поэтому следует внимательно изучать подключение отводов, делая проверку.

    Проверка обмоток на обрыв и междувитковое замыкание

    Чтобы прозвонить обмотки на обрыв нужно переключить мультиметр в режим омметра. Выявить междувитковое замыкание можно сравнив сопротивление обмотки с паспортными данными или с измерениями симметричных обмоток проверяемого двигателя.

    Нужно помнить, что у мощных электродвигателей поперечное сечение проводов обмоток достаточно большое, поэтому их сопротивление будет близким к нулю, а такую точность измерений в десятые доли Ома обычные тестеры не обеспечивают.

    Поэтому нужно собрать измерительное приспособление из аккумулятора и реостата, (приблизительно 20 Ом) выставив ток 0,5-1А. Измеряют падение напряжения на резисторе, подключенном последовательно в цепь аккумулятора и измеряемой обмотки.

    Для сверки с паспортными данными, можно рассчитать сопротивление по формуле, но, можно этого и не делать – если требуется идентичность обмоток, то достаточно будет совпадения падения напряжения по всем измеряемым выводам.

    Измерения можно производить любым мультиметром

    Цифровой мультиметр Mastech MY61 58954

    Ниже приведены алгоритмы проверки электродвигателей, у которых необходимым условием работоспособности является симметричность обмоток.

    Проверка асинхронных трёхфазных двигателей с короткозамкнутым ротором

    У подобных двигателей можно прозвонить только статорные обмотки, электромагнитное поле которых в замкнутых накоротко стержнях ротора наводит токи, создающие магнитное поле, взаимодействующее с полем статора.

    Неисправности в роторах данных электродвигателей случаются крайне редко, и для их выявления, необходимо специальное оборудование.


    ротор двигателя

    Чтобы проверить трёхфазный мотор, нужно снять крышку клеммника – там находятся клеммы подключения обмоток, которые могут быть соединены по типу «звезда»

    или «треугольник».


    Прозвонку можно сделать, даже не снимая перемычки –

    достаточно измерить сопротивление между фазными клеммами – все три показания омметра должны совпадать.

    При несовпадении показаний необходимо будет разъединить обмотки и проверить их по отдельности. Если расчётное сопротивление у одной из обмоток меньше, чем у остальных – это указывает на наличие междувиткового замыкания, и электродвигатель нужно отдавать на перемотку.

    Проверка конденсаторных двигателей

    Чтобы проверить однофазный асинхронный двигатель с короткозамкнутым ротором, по аналогии с трёхфазным мотором, необходимо прозвонить только статорные обмотки.

    Но у однофазных (двухфазных) электродвигателей имеются только две обмотки – рабочая и пусковая.

    Сопротивление рабочей обмотки всегда меньше, чем у пусковой

    Таким образом, измеряя сопротивление, можно идентифицировать выводы, если табличка со схемой и обозначениями затёрлась или затерялась.

    Часто у таких двигателей рабочая и пусковая обмотки соединены внутри корпуса, и от точки соединения сделан общий вывод.

    Принадлежность выводов идентифицируют следующим образом – сумма сопротивлений, измеренных от общего отвода должна соответствовать суммарному сопротивлению обмоток.

    Проверка коллекторных двигателей

    Поскольку коллекторные электродвигатели переменного и постоянного тока имеют схожую конструкцию, то алгоритм прозвонки будет одинаков.

    Сначала проверить обмотку статора (в двигателях постоянного тока её может заменять магнит). Потом проверяют роторные обмотки, сопротивление которых должно быть одинаково, коснувшись щупами щёток коллектора, или противоположных контактных выводов.

    Удобней проверять обмотки ротора на выводах щёток, прокручивая вал, добиваясь, чтобы щётки контактировали только с одной парой контактов – таким способом можно выявить подгорание у некоторых контактных площадок.

    Чтобы проверить роторные обмотки, нужно найти выводы от данных колец, и удостовериться в совпадении измеренных сопротивлений. Часто такие двигатели оснащаются механической системой отключения роторных обмоток при наборе оборотов, поэтому отсутствие контакта может быть из-за поломки в данном механизме.

    Статорные обмотки проверяются как у обычного трёхфазного двигателя.

    Наладка движков неизменного тока

    Наладку движков неизменного тока делают в последующем объеме: наружный осмотр, измерение сопротивлений обмоток неизменному току, измерение сопротивлений изоляции обмоток относительно корпуса и меж собой, испытание междувитковой изоляции обмотки якоря, пробный запуск.

    Наружный осмотр мотора неизменного тока, как и осмотр асинхронного двигателя , начинают со щитка. На щитке двигателя постоянного тока должны быть указаны последующие данные:

    • наименование либо товарный символ завода-изготовителя,
    • заводской номер машины,
    • номинальные данные (мощность, напряжение, ток, частота вращения),
    • метод возбуждения машины,
    • масса и ГОСТ машины.

    Выводы обмотки мотора постоянного тока должны быть накрепко изолированы друг от друга и от корпуса, расстояние меж ними и корпусом должно быть более 12-15 мм. Повышенное внимание при наружном осмотре обращают на коллектор и щеточный механизм (щетки, траверсу и щеткодержатели), потому что их состояние в значимой мере оказывает влияние на коммутацию машины, а как следует, и на устойчивость ее работы.

    При осмотре коллектора убеждаются в отсутствии на рабочей поверхности следов резца, выбоин, пятен лака и краски, также следов нагара от неудовлетворительной работы щеточного механизма. Изоляция меж коллекторными пластинами должна быть выбрана на глубину 1-2 мм, с краев пластинок должна быть снята фаска шириной 0,5-1 мм (зависимо от мощности мотора). Промежутки меж пластинами должны быть совсем чисты — в их не должно быть железных стружек либо опилок, пыли от графитовых щеток, масла, лака и т. п.

    На работу мотора неизменного тока, а в особенности его щеточного механизма, оказывают влияние биение коллектора и его вибрация. Чем выше окружная скорость коллектора, тем меньше величина допустимого биения. Для быстроходных движков максимально допустимая величина биения не должна превосходить 0,02-0,025 мм. Величину амплитуды вибрации определяют индикатором часового типа.

    При проведении измерения наконечник индикатора придавливают к поверхности в том направлении, в каком нужно произвести измерение вибрации. Потому что поверхность коллектора прерывающаяся (чередуются пластинки коллектора и впадины), употребляют отлично притертую щетку, в которую должен упираться наконечник индикатора. Корпус индикатора должен быть укреплен на основании, не подверженном вибрации.

    При измерении стрелка индикатора колеблется с частотой измеряемой вибрации в границах определенного угла, величина которого и оценивается по шкале индикатора в сотых толиках мм. Но этот устройство позволяет определять вибрации при частоте вращения менее 750 об/мин. Для движков, частота вращения которых превосходит 750 об/мин, нужно воспользоваться особыми приборами-виброметрами либо вибрографами, которые позволяют определять либо записывать вибрацию тех либо других узлов машины.

    Биение также определяют при помощи индикатора. Биение коллектора определяют как в прохладном, так и в нагретом состоянии машины. При измерении обращают свое внимание на поведение стрелки индикатора. Плавное движение стрелки показывает на достаточную цилиндричность поверхности, а подергивание стрелки свидетельствует о местных нарушениях цилиндричности поверхности, в особенности небезопасной для щеточного механизма мотора. Измерение биения носит условный нрав, потому что опыт работы оказывает, что есть движки, у каких при малых частотах вращения значения биений значительны, а при номинальной скорости они работают удовлетворительно. Поэтому окончательное заключение о качестве работы коллектора можно дать только после проверки работы мотора под нагрузкой.

    Осматривая механическую часть мотора неизменного тока, следует уделять свое внимание на состояние паек н соединений обмоток, подшипниковых узлов, на равномерность зазора (при разобранном движке). Зазор, измеренный в диаметрально обратных точках меж якорем и главными полюсами мотора, не должен отличаться от среднего значения более чем на 10% при зазорах наименее 3 мм и менее чем на 5% при зазорах более 3 мм.

    После проверки биений и вибраций приступают к регулировке щеточного механизма мотора. Щетки в обоймах должны свободно передвигаться, но не должны пошатываться. Обычный зазор меж щеткой и обоймой в направлении вращения не должен превосходить 0,1- 0,4 мм, в продольном направлении 0,2-0,5 мм.

    Обычное удельное давление щеток на коллектор зависимо от марки материала щетки должно быть более 150-180 г/см2 для графитовых щеток, 220- 250 г/см2 для медно-графитовых. Во избежание неравномерного рассредотачивания тока давление отдельных щеток не должно отличаться от среднего более чем на 10%. Величину удельного давления определяют следующим образом . Между коллектором и щеткой помещают лист тонкой бумаги, к щетке прикрепляют динамометр, а затем, оттягивая динамометром щетку, находят такое положение, когда можно будет свободно вытянуть лист бумаги. Показание динамометра в этот момент соответствует Давлению щетки на коллектор. Удельное давление определяют путем деления показания динамометра на площадь основания щетки.

    Правильная установка щеток является одним из важнейших факторов нормальной работы машины. Щеткодержатели устанавливают таким образом, чтобы щетки стояли строго параллельно пластинам коллектора и расстояния между их сбегающими краями были равны полюсному делению машины с погрешностью не более 2%.

    У двигателей, имеющих несколько траверс, щеткодержатели размещают таким образом, чтобы щетки перекрывали по возможности большую часть длины коллектора (так называемое шахматное расположение). Это позволит участвовать в коммутации всей длине коллектора, что способствует более равномерному его износу. Однако при таком размещении щеток необходимо следить за тем, чтобы щетки не выступали при работе (с учетом разбега вала) за край коллектора. Щетки перед пуском двигателя в ход тщательно притирают к коллектору (рис. 1) стеклянной (но не карборундовой) бумагой с зернами средней крупности. Зерна карборундовой бумаги могут внедриться в тело щетки и затем при работе наносить царапины на коллектор, тем самым ухудшая условия коммутации машины.

    Как

    проверить коллекторный электродвигатель мультиметром — обмотки статора и ротора

    Читайте так же:

    Электродвигатель постоянного тока. Принцип работы.

    Электродвигатели постоянного тока можно найти во многих портативных бытовых устройствах, автомобилях.

    Прежде чем приступить к проверке правильности включения обмоток, изучают маркировку выводов машины конкретного типа. В двигателях постоянного тока выводы обмоток маркируют согласно ГОСТ 183-66 первыми прописными буквами их наименования с добавлением после них цифры 1 — для начала обмотки и 2 — для ее конца. При наличии в двигателе других обмоток такого же наименования, начала и концы их маркируют цифрами 3-4, 5-6 и т. д. Обозначения выводов могут соответствовать схемам возбуждения и направлениям вращения двигателя, которые приведены на рис. 2.

    Правильность включения обмоток полюсов проверяют для уточнения чередования их полярности. Чередование полярности дополнительных и главных полюсов для любой машины должно быть строго определенным для данного направления вращения машины. При переходе от полюса к полюсу по направлению вращения машины, работающей в режиме двигателя, после каждого главного полюса следует дополнительный полюс той же полярности, например N-п, S-s. Чередование полярности полюсов может быть определено несколькими способами: внешним осмотром, с помощью магнитной стрелки, и с помощью специальной катушки.

    Первый способ применяют в тех случаях, когда направление намотки обмоток можно проследить визуально.

    Рис. 1. Притирание щеток к коллектору: а — неправильно; б — правильно

    Рис. 2. Обозначения выводов обмоток двигателей постоянного тока при различных схемах возбуждения и направлениях вращения

    Зная направление намотки обмотки и пользуясь правилом «буравчика», определяют полярность полюсов. Этот способ удобен для катушек последовательной обмотки возбуждения, направление намотки которой благодаря значительному сечению витков определить очень легко.

    Второй способ применяют в основном для катушек обмоток параллельного возбуждения. Сущность этого способа заключается в следующем. В обмотку двигателя подают ток, подвешивают на нитке магнитную стрелку, полярность концов которой помечена, и подносят ее поочередно к каждому полюсу. В зависимости от полярности полюса стрелка повернется к нему концом противоположной полярности.

    Читайте так же:

    При использовании указанного способа необходимо помнить, что стрелка обладает способностью перемагиичиваться, поэтому опыт необходимо производить как можно быстрее. Способ магнитной стрелки редко применяют для определения полярности обмотки последовательного возбуждения, так как для создания достаточно сильного поля необходимо пропустить через обмотку значительный ток.

    Третий способ определения полярности обмоток применим для любой обмотки, он носит название способа пробной катушки. Катушка может иметь любую форму — торроидальную, прямоугольную, цилиндрическую. Катушку наматывают с возможно большим числом витков из тонкой изолированной медной проволоки на каркас из картона, целлулоида и т. п. Катушку присоединяют к чувствительному гальванометру и прикладывают к поверхности полюса (рис. 3), а затем быстро сдергивают с него и замечают направление отклонения стрелки милливольтметра.

    Соединение обмоток считают правильным, если под каждыми двумя соседними полюсами стрелки прибора отклоняются в разные стороны, при условии, что пробная катушка обращена к полюсам одной и той же стороной. Проверку правильности присоединения обмотки добавочных полюсов по отношению к обмотке якоря производят по схеме, приведенной на рис. 4.

    При замыкании ключа К стрелка милливольтметра будет отклоняться. При правильном включении намагничивающая сила обмотки дополнительных полюсов направлена встречно намагничивающей силе обмотки якоря, поэтому обмотка якоря и обмотка дополнительных полюсов должны включаться встречно, т. е. минус (или плюс) якоря следует соединить с минусом (или с плюсом) обмотки дополнительных полюсов.

    Рис. 3. Определение полярности полюсов двигателей постоянного тока с помощью пробной катушки

    Рис. 4. Схема проверки правильности включения обмотки добавочных полюсов по отношению к обмотке якоря

    Для проверки взаимного включения обмотки дополнительных полюсов и компенсационной обмотки можно использовать схему, приведенную на рис. 5, для небольших по мощности двигателей .

    При нормальней работе двигателя постоянного тока магнитный поток, создаваемый компенсационной обмоткой, должен совпадать по направлению с магнитным потоком обмотки дополнительных полюсов. После определения полярности обмоток компенсационная обмотка и обмотка дополнительных полюсов должны включаться согласованно, т. е. минус одной обмотки следует соединить с плюсом другой.

    Рис. 5. Схема проверки правильности включения обмотки дополнительных полюсов к компенсационной обмотке

    Прежде чем определять полярность щеток и производить необходимые измерения сопротивлений обмоток, устанавливают щетки на нейтраль. Под нейтралью электрического двигателя понимается такое взаимное расположение обмоток главных полюсов и якоря, когда коэффициент трансформации между ними равен нулю. Для установки щеток на нейтраль собирают схему (рис. 6).

    Обмотку возбуждения подключают к источнику питания (батарее) через ключ, а к щеткам якоря подключают чувствительный милливольтметр. При подаче в обмотку возбуждения тока толчком, стрелка милливольтметра отклоняется в ту или иную сторону. При положении щеток строго по нейтрали стрелка прибора отклоняться не будет.

    Диагностика и ремонт якоря стартера в критериях гаража Стартер представляет собой узел, без которого не обходится ни одно тс, так как этот элемент является одним из главных в системе зажигания. Как понятно, нескончаемых деталей не бывает и временами стартерный узел имеет свойство выходить из строя. Как проверить и отремонтировать батарейку в ключе…

    Точность обычных приборов невелика — в лучшем случае 0,5%. Поэтому щетки устанавливают в положение, соответствующее минимальному показанию прибора, и считают, что это нейтраль. Трудность установки щеток на нейтраль заключается в том, что положение нейтрали зависит от положения пластин коллектора.

    Очень часто бывает, что нейтраль, найденная для одного положения якоря, сдвигается при его проворачивании. Поэтому определяют положение нейтрали для двух различных положений вала. Если положение нейтрали оказывается различным для различных положений якоря, то следует выставить щетки в среднем положении между двумя отметками. Точность установки щеток на нейтраль зависит от степени прилегания поверхности щетки к коллектору. Поэтому для получения более точного результата при определении нейтрали двигателя предварительно притирают щетки к коллектору.

    Полярность щеток определяется одним из следующих способов.

    1. К двум точкам коллектора (рис. 7), отстоящим от разноименных щеток на одинаковом расстоянии, присоединяют вольтметр. При подаче возбуждения стрелка вольтметра отклонится в ту или иную сторону. Если стрелка отклонится вправо, то «плюс» находится в точке 1, а «минус» — в точке 2. Ближайшая против направления вращения щетка будет иметь полярность присоединенного зажима прибора.

    2. Через обмотку возбуждения пропускают постоянный ток определенной полярности, к якорю подключают вольтметр и приводят якорь во вращение толчком от руки или с помощью механизма. Стрелка вольтметра при этом отклонится. Направление отклонения стрелки укажет полярность щеток.

    Измерение сопротивления обмоток двигателя постоянного тока является весьма важным элементам проверки двигателей постоянного тока, так как по результатам измерения судят о состоянии контактных соединений обмоток (паек, болтовых, сварных соединений). Измерение сопротивления обмоток двигателя производят одним из следующих методов: амперметра-вольтметра, одинарного или двойного моста и микроомметром. Необходимо помнить о некоторых особенностях измерений сопротивления обмоток двигателей постоянного тока.

    1. Сопротивление последовательной обмотки возбуждения, уравнительной обмотки, обмотки добавочных полюсов невелико (тысячные доли ома), поэтому измерения производят микроомметром или двойным мостом.

    2. Сопротивление обмотки якоря измеряют по методу амперметра-вольтметра с использованием специального двухконтактного щупа с пружинами в изоляционной рукоятке (рис. 8). Измерение проводят следующим образом: к пластинам коллектора неподвижного якоря со снятыми щетками поочередно подводят постоянный ток от хорошо заряженной батареи напряжением 4-6 В. Между пластинами, к которым подводится ток, измеряют падение напряжения с помощью милливольтметра. Искомая величина сопротивления одной ветви якоря

    Рис. 6. Схема проверки правильности установки щеток на нейтраль

    Как проверить электродвигатель мультиметром в домашних условиях

    Конструкции многих механизмов и оборудования имеют электродвигатель. Эта неотъемлемая часть практически всей электротехники предназначена для преобразования электрической энергии в механическую. Сложность конструкции определяет то, что она может довольно часто выходить из строя.

    Нарушение установленных стандартов применения и некоторое воздействие могут стать причиной появления серьезных проблем, для определения которых можно использовать мультиметр. Чтобы не тратить деньги на услуги мастерской, надо узнать, как можно сомостоятельно прозвонить электродвигатель мультиметром. У этой работы есть довольно большое количество особенностей.

    Классификация электродвигателей

    При проверке электродвигателя на исправность следует учитывать, что не все разновидности моторов могут проверяться подобным образом. Существуют самые различные варианты исполнения электродвигателей, большинство неполадок можно диагностировать при помощи мультиметра. При этом необязательно быть специалистом в этой сфере.

    Современные электродвигатели можно разделить на несколько групп:

    1. Асинхронный трехфазный с короткозамкнутым ротором. Эта модель пользуется большой популярностью, так как устройство простое и подвергается диагностике при применении обычного измерительного инструмента.
    2. Асинхронный конденсаторный, короткозамкнутый с одной или двумя фазами. Такой вариант исполнения устанавливается в бытовой технике, питаться устройство может от обычной сети 220 В. Сегодня подобный электродвигатель также получил широкое распространение, встречается практически в каждом доме. Проверка на неисправность в этом случае проводится при применении стандартного тестера. Однофазная модель обладает экономичностью и практичностью в применении.
    3. Асинхронный, оснащенный фазным ротором. Прозвонок этого мотора проводится довольно часто, что связано с более мощным стартовым моментом. Устанавливается эта модель на различном производственном оборудовании и различной крупной технике. Примером назовем краны, подъемники или различные станки.
    4. Коллекторные, которые питаются от постоянного тока. Ревизия подобного прибора проводится довольно часто, используется в различных автомобилях для вентиляторов и насосов, дворников. Подобный электромотор может сгореть по различным причинам, своевременная проверка позволяет определить проблему.
    5. Коллекторный с переменным током. Ручной электрический инструмент получил весьма широкое распространение. Для передачи вращения устанавливается коллекторный мотор, проверить который можно при помощи мегаомметра.

    Перед тем как проверить электродвигатель мультиметром, проводится его визуальный осмотр. Даже невооруженным взглядом можно определить сгоревшую обмотку или серьезные механические повреждения. Однако если визуально конструкция не имеет дефектов, то следует использовать специальный измерительный инструмент.

    Конструктивные особенности

    Устройство электродвигателей может существенно отличаться, но зачастую оно представлено сочетанием сходных элементов. Подвижный элемент принято называть ротором, неподвижный — стартером. Медная проволока может наматываться следующим образом:

    1. Катушка только на роторе.
    2. Катушка только на стартере.
    3. Обмотка на подвижной и неподвижной части.

    Критерии выбора мультиметра

    Для тестирования различного электрооборудования применяют мультиметры. В продаже можно встретить различные варианты исполнения этого измерительного прибора, все они имеют свои особенности. Основными критериями выбора назовем следующие моменты:

    1. Стрелочный или цифровой циферблат. Цифровой сегодня более востребован, так как обладает большим количеством различных функций и высокой точностью. Сегодня стрелочные модели практически не встречаются в продаже.
    2. Функциональные возможности. Чем больше функций, тем более широкая область применения устройства. За счет этого повышается стоимость измерительного прибора.
    3. Подсветка и кнопка удержания снятых показателей позволяют повысить комфорт применения мультиметра.
    4. Чем ниже погрешность в работе, тем точнее тестер. Большинство моделей имеют погрешность не более 3%.
    5. Если предусматривается профессиональное предоставление услуг, то следует уделить внимание модели с высокой степенью защиты от пыли или влаги. Чем выше степень защиты устройства, тем больше оно прослужит.
    6. Класс электробезопасности. Все измерительные приборы делятся на 4 класса, которые определяют область применения мультиметра.

    Проверить основные показатели электрического двигателя можно при применении самого простого оборудования.

    Проверка асинхронного трехфазного двигателя

    Наибольшее распространение получили асинхронные двигатели, которые рассчитаны на две или три фразы.

    Трехфазный мотор обладает высокой производительностью. Существует две основные неполадки этой конструкции:

    1. Контакт возникает в неположенном месте.
    2. Контакт отсутствует.

    Конструкция представлена тремя катушками, которые соединяются в форме звезды или треугольника. Чтобы сделать проверку правильно, следует учитывать, что работоспособность мотора определяется несколькими факторами:

    1. Качество изоляции.
    2. Надежность всех контактов.
    3. Правильность намотки.

    Сопротивление определяется следующим образом:

    1. Замыкание на корпус обычно проверяется при помощи мегомметра. При отсутствии этого инструмента можно использовать тестер, выставляется максимальный омический показатель. В случае применения тестера не следует рассчитывать на то, что показатель будет точным.
    2. Стоит учитывать, что перед использованием измерительного прибора следует отключить электрический двигатель от сети. В противном случае он сгорит.
    3. Перед применением измерительного прибора следует произвести калибровку прибора. Для этого нужно поставить стрелку на ноль при замкнутом положении щупов.
    4. Один щуп прикладывается к корпусу. Это делается для того, чтобы проверить наличие контакта. После этого проверяется показатель, для чего второй щуп также должен касаться корпуса. При нормальном показателе проводится проверка каждой фазы поочередно.

    После проверки качества изоляции следует убедиться в том, что все три обмотки целые. Для этого можно их прозвонить. При обнаружении обрыва ее следует исправить, после чего дальше проводить проверку.

    Тестирование двухфазной модели

    Статор и многие другие конструктивные элементы двухфазного электрического двигателя имеют свои отличительные признаки, которые и определяют особенности проверки.

    К особенностям проверки двухфазного электрического двигателя отнесем следующие моменты:

    1. В этом случае обязательно проверяется сопротивление на корпусе. Слишком низкий показатель указывает на то, что нужно выполнить перемотку статора.
    2. Для получения более точных показателей рекомендуется использовать мегомметр, однако подобный измерительный инструмент встречается дома крайне редко.

    Перед тестированием электрического двигателя следует провести визуальный осмотр. Механические повреждения могут привести к серьезным проблемам с работой.

    Коллекторная конструкция

    Коллекторные модели также получили весьма широкое распространение. Их конструктивные особенности существенно отличаются, если сравнить с асинхронными моделями. Проверка работоспособности при применении мультиметра проводится следующим образом:

    1. Тестер устанавливается на определение Ом. Проверка начинается с замера сопротивления на коллекторных ламелях. Стоит учитывать, что в норме полученные данные не должны существенно различаться.
    2. Далее измеряется показатель сопротивления, для чего один щуп прибора прикладывается к корпусу якоря, другой — к коллектору. Полученное значение сопротивления должно быть высоким, стремиться к бесконечности. Это указывает на то, что изоляция находится в хорошем состоянии.
    3. Следующий шаг предусматривает определение статора на целостность обмотки. Для этого один щуп прикладывается на корпус статора, а другой — к выводам. Чем выше показатель, тем лучше.

    При применении мультиметра проверить межвитковое замыкание не получится. Для этого применяется специальный аппарат.

    Дополнительное оснащение

    Электрические силовые установки довольно часто снабжаются специальными дополнительными элементами. Они предназначены для защиты устройства и оптимизации работы. Наиболее распространенным дополнительным оборудованием можно считать:

    1. Термический предохранитель. При повышении температуры до критического значения может нарушиться целостность изоляции. Термический предохранитель позволяет решить проблему с целостностью изолирующего материала. Как правило, предохранитель убирается под изоляцию обмотки или фиксируется на корпусе. Получить доступ к выводам довольно просто, при применении обычного тестера можно получить требующуюся информацию.
    2. В последнее время часто термический предохранитель заменяют на температурное реле. Выделяют два типа: замкнутый и разомкнутый. Марка устройства указывается на корпусе. Реле выбирается в соответствии с техническими параметрами электрического двигателя.
    3. Датчики оборотов устанавливаются на стиральных машинах. Подобное оборудование работает по принципу измерения разности потенциалов в пластинке, через которую проходит наиболее слабый ток. При этом есть три контакта, третий предназначен для проверки тока в рабочем режиме. Не рекомендуется проверять величину электропитания на момент включенного двигателя, так как это может привести к сгоранию измерительного прибора.

    Обычный мультиметр может применяться для диагностики самых различных показателей, а также проверки неисправностей. Однако если этот измерительный прибор не позволил выявить неполадку, то могут применяться другие специальные инструменты. Их высокая стоимость определяет низкую доступность. Кроме этого, профессиональным оборудованием нужно уметь правильно пользоваться.

    Важно не только определить основные показатели, но и правильно их интерпретировать. Именно поэтому при отклонении показателей от нормы многие решают сдать электрический двигатель на проверку в фирму, которая специализируется на тестировании и ремонте подобного оборудования.

    Узнаем как проверить электродвигатель мультиметром: пошаговая инструкция и рекомендации

    Часто возникает вопрос, как проверить электродвигатель после выхода из строя, а также после ремонта, если он не крутится. Для этого существует несколько способов: внешний осмотр, специальный стенд, «прозвонка» обмоток мультиметром. Последний способ наиболее экономичный и универсальный, но он дает верные результаты не всегда. У большинства постоянников сопротивление обмотки практически равно нулю. Поэтому потребуется дополнительная схема для измерений.

    Конструкция мотора

    Чтобы быстро освоить, как проверить электродвигатель, нужно чётко представлять себе устройство основных деталей. В основе всех моторов лежит две части конструкции: ротор и статор. Первая составляющая всегда вращается под действием электромагнитного поля, вторая неподвижная и как раз создаёт этот вихревой поток.

    Чтобы понимать, как проверить электродвигатель, потребуется хотя бы раз его разобрать собственными руками. У различных производителей конструктив отличается, но принцип диагностики электрической части пока что остаётся неизменным. Между ротором и статором находится зазор, в котором может скапливаться мелкая металлическая стружка при разгерметизации корпуса.

    Подшипники при износе могут давать завышенные показатели тока, вследствие чего защиту будет выбивать. Разбираясь с вопросом, как проверить электродвигатель, не стоит забывать о механических повреждениях подвижных частей и борно, где находятся контакты.

    Трудности диагностики

    Перед тем как проверить электродвигатель мультиметром, следует провести внешний осмотр корпуса, охлаждающей крыльчатки, проверить температуру прикосновением руки к металлическим поверхностям. Нагретый корпус свидетельствует о завышенном токе из-за проблем с механической частью.

    Проанализировать потребуется состояние внутренностей борно, проверить затяжку болтов или гаек. При ненадежном соединении токоведущих частей выход из строя обмоток может произойти в любой момент. Поверхность двигателя должна быть очищена от загрязнений, а внутри отсутствовать влага.

    Если рассматривать вопрос, как проверить электродвигатель мультиметром, то нужно учитывать несколько нюансов:

    • Кроме мультиметра понадобятся клещи для бесконтактного замера тока, проходящего через провод.
    • Мультиметром можно измерить только незначительно высокие сопротивления. Для проверки состояния изоляции (где сопротивление — от кОм до МОм) используют мегоомметр.
    • Чтобы сделать выводы о годности мотора, потребуется отсоединить механические узлы (редуктор, насос и другие) либо нужно быть уверенным в полной исправности этих компонентов.

    Коммутирующая аппаратура

    Для пуска вращения обмоток используется плата либо реле. Чтобы начать разбираться с вопросом, как проверить обмотку электродвигателя, нужно расцепить подводящую цепь. Через неё могут «звониться» элементы платы управления, что внесет ошибку в измерения. При откинутых проводах можно измерить поступающее напряжение, чтобы быть уверенным в исправности электронной схемы.

    В двигателях бытовой техники часто применяется конструкция с пусковой обмоткой, сопротивление которой превышает значение рабочей индуктивности. При замерах учитывают тот факт, что могут присутствовать токосъемные щётки. В месте контакта с ротором часто появляется нагар, очистив его, нужно восстановить надежность прилегания щеток во время вращения.

    В стиральных машинках применяются малогабаритные двигатели с одной рабочей обмоткой. Вся суть диагностики сводится к замерам её сопротивления. Ток замеряется реже, но по снятию характеристик на разных оборотах можно сделать выводы об исправности мотора.

    Подробности диагностики электрической части

    Рассмотрим, как проверить исправность электродвигателя. В первую очередь осматривают контактные соединения. Если в них нет видимых повреждений, то вскрывают место соединения проводов с двигателем и отключают их. Желательно определить тип мотора. Если он коллекторный, то имеются ламели или секции в месте прилегания щеток.

    Требуется измерить омметром сопротивление между каждыми соседними ламелями. Оно должно быть одинаковым во всех случаях. Если наблюдаются короткозамкнутые секции либо их обрыв, то таходатчик мотора требуется заменить. Если же «прозванивать» саму катушку ротора, то 12 В мультиметра может быть недостаточно. Чтобы точно оценить состояние обмотки, потребуется внешний источник питания. Он может быть блоком от ПК или аккумулятором.

    Для измерения малых значений сопротивления последовательно с измеряемой обмоткой устанавливается резистор известным номиналом. Достаточно выбрать сопротивление около 20 Ом. После подачи питания от внешнего источника замеряют падение напряжения на обмотке и резисторе. Результирующее значение получается из формулы R1 = U1*R2/U2, где R2 — резистор, U2 — падение напряжения на нем.

    Диагностика асинхронных моторов

    На промышленных стиральных машинах могут использоваться мощные трехфазные электродвигатели. Ротор у них чаще выполняется в виде наборных пластин с магнитным сердечником. Фазные обмотки чаще неподвижные и расположены в статоре.Мультиметром такой мотор проверить намного проще. Омметром нужно прозвонить сопротивление каждой обмотки. Оно должно быть одинаковым. Не забывают проверять пробой на корпус замером сопротивления на корпус. Однако изоляцию надежнее проверять мегаомметром.

    Отвечая на вопрос, как проверить обмотки электродвигателя тестером, нужно отметить, что «перекоса фаз» у асинхронного мотора не допускается. Разность сопротивления не должна превышать одного ома. В противном случае ток на меньшей индуктивности растет, что приводит к подгоранию обмотки.

    Если мотор постоянного тока

    У таких двигателей сопротивление обмотки очень мало и измерения проводятся при помощи двух приборов. Одновременно снимают показания с амперметра и вольтметра. В качестве источника выбирают батарею напряжением 4-6 В. Результирующее значение определяется по формуле R = U/I.

    Проверяют все имеющиеся сопротивления обмоток якоря, замеряют значения между пластинами коллектора. Все показатели мультиметра должны быть равными. По этому сравнению можно сделать выводы, как проверить якорь электродвигателя.

    Разность в показаниях сопротивления между соседними пластинами коллектора допускается не более 10 %. Когда в конструктиве предусмотрена уравнительная обмотка, работа мотора будет нормальной при разности значений в 30 %. Показания мультиметра не всегда дают точный прогноз о состоянии двигателя стиральной машины. Дополнительно часто требуется анализ работы мотора на поверочном стенде.

    Проверка мотора прямого привода

    Если рассматривать вопрос, как проверить электродвигатель стиральной машины, то следует учитывать вид подсоединения барабана к валу. От этого зависит тип конструкции электрической части. Мультиметром прозванивают обмотки и делают выводы об их целостности.

    Проверку работоспособности проводят уже после замены датчика Холла. Именно он выходит из строя в большинстве случаев. После прозвонки обмоток при их целостности опытные мастера рекомендуют подключить мотор напрямую в сеть 220 В. В результате наблюдают равномерное вращение, чтобы сменить его направление, можно перевоткнуть вилку в розетке, повернув её другими контактами.

    Этот простой метод помогает выявить общую неисправность. Однако наличие вращения не гарантирует нормальную работу на всех режимах, отличающихся при отжиме и полоскании.

    Последовательность диагностики

    Первым делом рекомендуется сразу обращать внимание на состояние щеток, проводки. Нагар на токоведущих частях говорит о ненормальных режимах работы двигателя. Сами токосъемники должны быть ровными, без сколов и трещин. Царапины также приводят к искрению, что для обмоток двигателя губительно.

    У стиральных машинок часто ротор перекашивается, из-за этого происходит скол или поломка ламелей. Управляющая плата постоянно отслеживает положение ротора через датчик Холла или тахогенератор, добавляя или уменьшая приложенное на рабочую обмотку напряжение. Отсюда появляется сильный шум при вращении, искрение, нарушение режимов работы при отжиме.

    Такое явление можно заметить только при отжиме, а режим стирки проходит стабильно. Диагностика работы машинки не всегда проходит через анализ состояния электрической части. Механика может быть причиной неправильной работы. Без нагрузки двигатель может крутиться вполне равномерно и стабильно набирать обороты.

    Если всё же выбивает защиту

    После проделанных замеров при плавающих неисправностях не рекомендуется подключаться к сети для проверки. Можно вывести мотор из строя окончательно, не подозревая о проблеме. Как проверить обмотку электродвигателя мультиметром, подскажет мастер сервисного центра по телефону. Под его руководством будет проще определить тип конструкции и порядок диагностики неисправной стиральной машины.

    Однако часто и опытные мастера не справляются с ремонтом сложных случаев, когда неисправность плавающая. Для проверки в сервисе требуется использовать стиральную машинку, решающее значение имеют механические узлы. Перекос вала двигателя является частным случаем проблем с вращением барабана.

    Как проверить трехфазный двигатель тестером. Как проверить якорь электродвигателя Как прозвонить трехфазный электродвигатель

    Модификации электродвигателей друг с другом различаются, равно как и их дефекты. Не каждая неисправность может быть диагностирована с помощью тестера, но в большинстве случаев – вполне возможно.

    Ремонт начинают со зрительного осмотра: есть ли повреждённые части, не залит ли водой электродвигатель, не появился ли запах горелой изоляции и так далее. Обмотка в асинхронном двигателе может сгореть из-за короткого замыкания между двумя соседними витками. Агрегат перегревается из-за перегрузок, возникновения больших токов.

    Нередко обгоревшие обмотки видны при визуальном осмотре, и в этом случае любые измерения будут лишними. Когда никаких шансов на исправление нет, нужно удалить и заменить обмотки на новые. Иногда требуется более тщательно проверить электродвигатель.

    Для начала необходимо изучить конфигурацию двигателя, например, какие обмотки используются. Все вращающиеся машины имеют две части: статор и ротор.

    В электродвигателях постоянного тока имеются:

    • обмотка возбуждения, имеющая важное значение для производства магнитного поля. Она позволяет преобразовать энергию из механической в электрическую и наоборот;
    • обмотка якоря, несущая нагрузку току и регулирующая переменный ток для уменьшения вихревых потерь.

    Двигатель переменного тока, обычно состоит из двух частей:

    1. статора, имеющего катушку для создания вращающегося магнитного поля;
    2. ротора, прикрепленного к выходному валу и предназначенного для производства второго вращающегося магнитного поля.

    Как проверить цельность обмоток мотора?

    При помощи мультиметра и нескольких подручных средств можно проверить:

    • асинхронные движки одно-, трёхфазные;

    • коллекторные электродвигатели постоянного, переменного тока;

    • асинхронные моторы с короткозамкнутым, фазным ротором.

    Тестирование обмоток катушки

    Существует простой тест, используемый для проверки состояния катушки мотора. Для чего измеряется сопротивление обмоток, которое варьируется в зависимости от длины, толщины и материала провода. Если сопротивление слишком низкое, это указывает на короткое замыкание изоляции между витками.

    Можно использовать мультиметр, но лучше проверить это с мегомметром, потому что на нём используется более высокое напряжение при проверке сопротивления. Это исключает ложные показания, вызванные индуктивностью катушки мотора.

    Тест показывает качество изоляции провода, которое определяется по сопротивлению измеряемой детали системы. Полученные результаты сверяются с табличными данными допустимых сопротивлений изоляции кабеля до 1 кВ, изложенными в правилах устройства электроустановок (ПУЭ). По результатам проверки может быть предсказан сбой, прежде чем он произойдёт на самом деле. Это позволяет в производственном цеху осуществить ремонт или замену оборудования во время работы.

    Как проверяется катушка электродвигателя мультиметром можно посмотреть на видео:

    Диагностика якоря

    Проверить исправность электродвигателя тоже можно с помощью цифрового специального устройства проверки якорей Э236. Для этого помещают якорь на призму приборчика, который потом подключают к сети.

    Процесс диагностики включает в себя следующие шаги:

    1. располагают ножовочное полотно параллельно пазу исследуемой детали;
    2. удерживая одной рукой металл, другой медленно проворачивают якорь.

    При наличии межвиткового замыкания полотно, близкорасположенное к пазу, начнет вибрировать и притягиваться к механизму.

    Наглядная демонстрация проверки якоря показана по видео:

    Чтобы оперативно прозвонить обрыв в цепях движка, можно воспользоваться рабочим стендом с источником постоянного тока, инвертором, цифровым вольтметром, компаратором напряжений, световым индикатором и зуммером обрыва.

    На нём же можно определить междувитковое замыкание.

    Заключение

    Далеко не всегда имеется возможность приобрести дорогостоящие аппараты специального назначения. Поэтому важно знать, как проверить двигатель простым мультиметром, очень нужным в хозяйстве электроизмерительным прибором. Он заменяет множество отдельных инструментов, необходимых для проверки цепей.

    Посмотреть видео урок проверки статора на обрыв можно здесь:

    Многие приборы, с которыми имеет дело человек, в своей конструкции предусматривают наличие электрического двигателя. В процессе работы, в нем могут возникать неисправности по различным причинам, которые придется выявлять и устранять.

    Электрический двигатель занимается преобразованием электрической энергии в механическую, с целью приведения в движение различных механизмов и машин. Преобладающее большинство электрических двигателей являются двигателями вращательного движения.

    Конструкция мотора

    По своей механической конструкции любой электродвигатель складывается из двух элементов:

    • статора – неподвижной части мотора (индуктор). Включает в себя станину и магнитные полюса. В своей комплектации может включать постоянные магниты, электромагниты с обмотками, короткозамкнутые обмотки. Его назначение – создать в системе магнитный поток;
    • ротор – начинает вращение после подачи напряжения к обмоткам двигателя (якорь). Он представляет собой катушки с токопроводящими обмотками. Они способствуют устранению неравномерности крутящего момента и снижению коммутируемого тока, что приводит к нормальному взаимодействию магнитных полей индуктора и ротора.

    Также имеется щеточно-коллекторный узел, который выступает между ротором и статором связующим звеном. В нем сконцентрированы все выводы роторных катушек. Этот участок является переключателем тока со скользящими контактами. Дополнительно выполняет функцию датчика углового положения ротора.

    Существуют несколько вариантов обмотки катушки медной проволокой:

    • катушки только на роторе;
    • только на статоре;
    • обмотка на подвижной и неподвижной частях.

    Катушка – это несколько витков, уложенных соответствующими сторонами в два паза и соединенные между собой последовательно. А обмоткой называют несколько катушечных групп, уложенных в пазы и соединенных по определенной схеме.

    У большинства электродвигателей ротор размещен внутри статора.

    Щетки являются неподвижным контактом, который подводит ток к ротору. Задачей щеточно-коллекторного узла является обеспечение вращения ротора в одном и том же направлении.

    Важно! Самостоятельный ремонт электродвигателя неквалифицированными работниками, может закончиться трагически.

    Трудности диагностирования

    Целью любой диагностики является обнаружение и профилактика неисправностей. Что касается диагностики обмотки двигателя, то самой сложной задачей является добраться непосредственно до предмета диагностирования. Чтобы это произошло, понадобится не только демонтировать двигатель, но и разобрать его.

    Учитывая то, что ротор находится внутри станины, то в процессе снимается и ротор, и подшипники. А в случае выявления сгоревшей обмотки статора, ремонт будет не только объемным, но и очень дорогим, так как не каждый специалист возьмется за перемотку двигателя.

    Коммутирующая аппаратура

    Такая аппаратура служит для управления агрегатами электрооборудования. В зависимости от способа управления они подразделяются на:

    • прямое – для коммутации цепей с током не больше 35 А. К ним относятся выключатели, переключатели и кнопки;
    • дистанционное – состоит из контактной группы, электромагнита и рычажнопружинного механизма;
    • автоматическое;
    • программное – происходит автоматическое включение, выключение и переключение.

    По принципу своей работы выключатели и переключатели могут быть:

    • перекидными – имеют фиксированное положение контактов и рукояти управления, чтобы вернуть в исходное положение, понадобиться приложить усилие;
    • нажимными – процесс обеспечивается кинематической схемой самовозврата.

    В зависимости от токовой нагрузки в цепи, коммутирующие устройства подразделяются на:

  • контакторы – до 600 А.
  • Подробности диагностики электрической части

    Чтобы найти поврежденный участок изоляции обмотки понадобится, разъединить фазные обмотки и измерить сопротивление на каждой обмотке. Проверку нужно начинать от магнитопровода, в результате чего выявляется участок с покоробленной изоляцией. Чтобы обнаружить такие места, можно применить несколько подходов:

    • измерить напряжение между концов обмотки и магнитопровода;
    • определить направление тока в частях обмотки;
    • делить обмотку на части;
    • способ «прожигания».

    Первый способ предусматривает подачу пониженного напряжения (переменного либо постоянного) на фазную обмотку мотора с покоробленной изоляцией. Затем выполняют замеры напряжения между концами магнитопровода и обмотки. Соотношение полученных значений даст понимание о нахождении места повреждения.

    При втором способе на концы фазной обмотки и магнитопровод подают постоянное напряжение. Подключают реостат, для того чтобы регулировать ток. Направления токов в обоих концах обмотки будут обратными. К концам каждой катушечной группы дотрагиваются двумя проводами милливольтметра. Стрелка прибора будет постоянно отклоняться в одну сторону до тех пор, пока не прикоснется концами к группе с покоробленной изоляцией. После этого участка стрелка прибора будет отклоняться в противоположную сторону.

    Третий метод подразумевает разделение фазовой обмотки соединенной с магнитопроводом путем распайки междукатушечных соединений. Затем занимаются поиском покоробленной изоляции с помощью мегомметра или контрольной лампочки. Такие разделения делают до тех пор, пока не найдется неисправная катушка.

    А вот если фазную обмотку с нарушенной изоляцией и магнитопровод присоединить к источнику пониженного напряжения (сварочному генератору или трансформатору), то постепенно нагреваясь в проблемном месте начнется дымление, а временами искрение (изоляция «прожигается»).

    Диагностика асинхронных моторов

    Для того что двигатель работал долго, следует обращать внимание на шум подшипников во время работы. Избегать свистящих, хрустящих или царапающих звуков. Они говорят о том, что смазки недостаточно и требуется ее восполнить. Повреждение обоймы, шариков, сепараторов отражаются глухими ударами.

    Если наблюдается перегрев или нетипичный шум в работе подшипников, то следует обязательно их разобрать и осмотреть. Со всех деталей удаляется старая смазка и происходит их промывание бензином.

    Перед тем как установить новые подшипники, их прогревают в масле, для того чтобы новая смазка заполнила их рабочую часть на треть.

    Следует систематически проверять контактные кольца. Если обнаружены появления ржавчины, то поверхность зачищается мягкой наждачной бумагой, с последующим протиранием керосином.

    При моторе постоянного тока

    Чтобы выполнить проверку такого двигателя, делают замеры сопротивления его обмоток. Полученные результаты дадут возможность судить о техсостоянии контактных соединений обмоток.

    С этой целью используются такие методы:

    • амперметра-вольтметра – применяется двухконтактный щуп с пружинами в изоляционной рукоятке. Этим способом замеряют сопротивления последовательной обмотки возбуждения;
    • одинарного или двойного моста и микроомметром;

    Проверка прочности изоляции и измерение ее сопротивления выполняются также, как и у асинхронного двигателя.

    Проверка мотора прямого привода

    Существует два варианта проверки:

    • подать напряжение на стартерную и роторную обмотку двигателя, предварительно подсоединив поочередно эти элементы. Недостаток метода в том, что даже если он начнет вращаться, то это не говорит о его исправном функционировании;
    • требуется взять специальное оборудование – автотрансформатор мощностью от 500 ватт. Этот способ более безопасен, потому что дает возможность регулировать скорость оборотов.

    Последовательность диагностики

    При осуществлении диагностики совершаются такие операции:

    • электрическая машина отсоединяется от сети;
    • щетками производится очищение от пыли и грязи;
    • сжатым воздухом из компрессора обдуваются все элементы;
    • осматривается щеточно-коллекторный механизм на поломки щеткодержателя и сколов на щетках, износ щеток, царапины и выбоины на поверхности коллектора;
    • для обнаружения поломок в электрической части понадобиться прозвонить обмотку электродвигателя мультиметром. Возможны обрывы электрической цепи, замыкание отдельных цепей между собой, витковые замыкания;
    • замена неисправных участков обмотки;
    • осмотр подшипников и в случае необходимости заменить на новые;
    • сборка двигателя;
    • обследование вращающих узлов на наличие ровной нагрузки на двигатель;
    • испытание на холостом ходу и под нагрузкой.

    Если выбивает защиту?

    Чтобы защитить обмотки электродвигателя от перегрева и токовых перегрузок, подключается электротепловое реле. Мотор подсоединяется к выходным контактам реле. Данное реле внутри состоит из трех биметаллических пластин. Эти пластины взаимодействуют с механизмом подвижной системы, которая принимает участие в схеме защиты мотора через дополнительные контакты.

    Под действием проходящего по пластине тока, она постепенно нагревается и выгибается, чем больший ток пройдет через нее, тем быстрее сработает защита и отключит нагрузку.

    Если при работе электродвигателя отчетливо слышится визг или скрипение, которые отсутствовали на небольших оборотах, то причина очевидно в недостаточном количестве смазки в подшипниках, либо же их сильное загрязнение.

    Также на изношенный подшипник указывает мощная вибрация вала, который вращается по инерции. Возможно, это говорит о дисбалансе колеса вентилятора. Допускается вариант, что у него отломилась одна из лопастей.

    Важно! В случае обнаружения нарушений изоляции обмотки, ремонт двигателя лучше производить в специальных сервисных центрах.

    Если ситуация требует проведения диагностики обмотки электродвигателя, то не имея общих понятий электротехники, желательно доверить эту работу настоящим профессионалам. Этот трудоемкий процесс требует не только навыков в работе, но также использования специальной техники, которая позволит провести качественный ремонт.

    Наладка движков неизменного тока

    Наладку движков неизменного тока делают в последующем объеме: наружный осмотр, измерение сопротивлений обмоток неизменному току, измерение сопротивлений изоляции обмоток относительно корпуса и меж собой, испытание междувитковой изоляции обмотки якоря, пробный запуск.

    Наружный осмотр мотора неизменного тока, как и осмотр асинхронного двигателя , начинают со щитка. На щитке двигателя постоянного тока должны быть указаны последующие данные:

    • наименование либо товарный символ завода-изготовителя,
    • заводской номер машины,
    • номинальные данные (мощность, напряжение, ток, частота вращения),
    • метод возбуждения машины,
    • масса и ГОСТ машины.

    Выводы обмотки мотора постоянного тока должны быть накрепко изолированы друг от друга и от корпуса, расстояние меж ними и корпусом должно быть более 12-15 мм. Повышенное внимание при наружном осмотре обращают на коллектор и щеточный механизм (щетки, траверсу и щеткодержатели), потому что их состояние в значимой мере оказывает влияние на коммутацию машины, а как следует, и на устойчивость ее работы.

    При осмотре коллектора убеждаются в отсутствии на рабочей поверхности следов резца, выбоин, пятен лака и краски, также следов нагара от неудовлетворительной работы щеточного механизма. Изоляция меж коллекторными пластинами должна быть выбрана на глубину 1-2 мм, с краев пластинок должна быть снята фаска шириной 0,5-1 мм (зависимо от мощности мотора). Промежутки меж пластинами должны быть совсем чисты — в их не должно быть железных стружек либо опилок, пыли от графитовых щеток, масла, лака и т. п.

    На работу мотора неизменного тока, а в особенности его щеточного механизма, оказывают влияние биение коллектора и его вибрация. Чем выше окружная скорость коллектора, тем меньше величина допустимого биения. Для быстроходных движков максимально допустимая величина биения не должна превосходить 0,02-0,025 мм. Величину амплитуды вибрации определяют индикатором часового типа.

    При проведении измерения наконечник индикатора придавливают к поверхности в том направлении, в каком нужно произвести измерение вибрации. Потому что поверхность коллектора прерывающаяся (чередуются пластинки коллектора и впадины), употребляют отлично притертую щетку, в которую должен упираться наконечник индикатора. Корпус индикатора должен быть укреплен на основании, не подверженном вибрации.

    При измерении стрелка индикатора колеблется с частотой измеряемой вибрации в границах определенного угла, величина которого и оценивается по шкале индикатора в сотых толиках мм. Но этот устройство позволяет определять вибрации при частоте вращения менее 750 об/мин. Для движков, частота вращения которых превосходит 750 об/мин, нужно воспользоваться особыми приборами-виброметрами либо вибрографами, которые позволяют определять либо записывать вибрацию тех либо других узлов машины.

    Биение также определяют при помощи индикатора. Биение коллектора определяют как в прохладном, так и в нагретом состоянии машины. При измерении обращают свое внимание на поведение стрелки индикатора. Плавное движение стрелки показывает на достаточную цилиндричность поверхности, а подергивание стрелки свидетельствует о местных нарушениях цилиндричности поверхности, в особенности небезопасной для щеточного механизма мотора. Измерение биения носит условный нрав, потому что опыт работы оказывает, что есть движки, у каких при малых частотах вращения значения биений значительны, а при номинальной скорости они работают удовлетворительно. Поэтому окончательное заключение о качестве работы коллектора можно дать только после проверки работы мотора под нагрузкой.

    Осматривая механическую часть мотора неизменного тока, следует уделять свое внимание на состояние паек н соединений обмоток, подшипниковых узлов, на равномерность зазора (при разобранном движке). Зазор, измеренный в диаметрально обратных точках меж якорем и главными полюсами мотора, не должен отличаться от среднего значения более чем на 10% при зазорах наименее 3 мм и менее чем на 5% при зазорах более 3 мм.

    После проверки биений и вибраций приступают к регулировке щеточного механизма мотора. Щетки в обоймах должны свободно передвигаться, но не должны пошатываться. Обычный зазор меж щеткой и обоймой в направлении вращения не должен превосходить 0,1- 0,4 мм, в продольном направлении 0,2-0,5 мм.

    Обычное удельное давление щеток на коллектор зависимо от марки материала щетки должно быть более 150-180 г/см2 для графитовых щеток, 220- 250 г/см2 для медно-графитовых. Во избежание неравномерного рассредотачивания тока давление отдельных щеток не должно отличаться от среднего более чем на 10%. Величину удельного давления определяют следующим образом . Между коллектором и щеткой помещают лист тонкой бумаги, к щетке прикрепляют динамометр, а затем, оттягивая динамометром щетку, находят такое положение, когда можно будет свободно вытянуть лист бумаги. Показание динамометра в этот момент соответствует Давлению щетки на коллектор. Удельное давление определяют путем деления показания динамометра на площадь основания щетки.

    Правильная установка щеток является одним из важнейших факторов нормальной работы машины. Щеткодержатели устанавливают таким образом, чтобы щетки стояли строго параллельно пластинам коллектора и расстояния между их сбегающими краями были равны полюсному делению машины с погрешностью не более 2%.

    У двигателей, имеющих несколько траверс, щеткодержатели размещают таким образом, чтобы щетки перекрывали по возможности большую часть длины коллектора (так называемое шахматное расположение). Это позволит участвовать в коммутации всей длине коллектора, что способствует более равномерному его износу. Однако при таком размещении щеток необходимо следить за тем, чтобы щетки не выступали при работе (с учетом разбега вала) за край коллектора. Щетки перед пуском двигателя в ход тщательно притирают к коллектору (рис. 1) стеклянной (но не карборундовой) бумагой с зернами средней крупности. Зерна карборундовой бумаги могут внедриться в тело щетки и затем при работе наносить царапины на коллектор, тем самым ухудшая условия коммутации машины.

    Как

    проверить коллекторный электродвигатель мультиметром — обмотки статора и ротора

    Читайте так же:

    Электродвигатель постоянного тока. Принцип работы.

    Электродвигатели постоянного тока можно найти во многих портативных бытовых устройствах, автомобилях.

    Прежде чем приступить к проверке правильности включения обмоток, изучают маркировку выводов машины конкретного типа. В двигателях постоянного тока выводы обмоток маркируют согласно ГОСТ 183-66 первыми прописными буквами их наименования с добавлением после них цифры 1 — для начала обмотки и 2 — для ее конца. При наличии в двигателе других обмоток такого же наименования, начала и концы их маркируют цифрами 3-4, 5-6 и т. д. Обозначения выводов могут соответствовать схемам возбуждения и направлениям вращения двигателя, которые приведены на рис. 2.

    Правильность включения обмоток полюсов проверяют для уточнения чередования их полярности. Чередование полярности дополнительных и главных полюсов для любой машины должно быть строго определенным для данного направления вращения машины. При переходе от полюса к полюсу по направлению вращения машины, работающей в режиме двигателя, после каждого главного полюса следует дополнительный полюс той же полярности, например N-п, S-s. Чередование полярности полюсов может быть определено несколькими способами: внешним осмотром, с помощью магнитной стрелки, и с помощью специальной катушки.

    Первый способ применяют в тех случаях, когда направление намотки обмоток можно проследить визуально.

    Рис. 1. Притирание щеток к коллектору: а — неправильно; б — правильно

    Рис. 2. Обозначения выводов обмоток двигателей постоянного тока при различных схемах возбуждения и направлениях вращения

    Зная направление намотки обмотки и пользуясь правилом «буравчика», определяют полярность полюсов. Этот способ удобен для катушек последовательной обмотки возбуждения, направление намотки которой благодаря значительному сечению витков определить очень легко.

    Второй способ применяют в основном для катушек обмоток параллельного возбуждения. Сущность этого способа заключается в следующем. В обмотку двигателя подают ток, подвешивают на нитке магнитную стрелку, полярность концов которой помечена, и подносят ее поочередно к каждому полюсу. В зависимости от полярности полюса стрелка повернется к нему концом противоположной полярности.

    Читайте так же:

    При использовании указанного способа необходимо помнить, что стрелка обладает способностью перемагиичиваться, поэтому опыт необходимо производить как можно быстрее. Способ магнитной стрелки редко применяют для определения полярности обмотки последовательного возбуждения, так как для создания достаточно сильного поля необходимо пропустить через обмотку значительный ток.

    Третий способ определения полярности обмоток применим для любой обмотки, он носит название способа пробной катушки. Катушка может иметь любую форму — торроидальную, прямоугольную, цилиндрическую. Катушку наматывают с возможно большим числом витков из тонкой изолированной медной проволоки на каркас из картона, целлулоида и т. п. Катушку присоединяют к чувствительному гальванометру и прикладывают к поверхности полюса (рис. 3), а затем быстро сдергивают с него и замечают направление отклонения стрелки милливольтметра.

    Соединение обмоток считают правильным, если под каждыми двумя соседними полюсами стрелки прибора отклоняются в разные стороны, при условии, что пробная катушка обращена к полюсам одной и той же стороной. Проверку правильности присоединения обмотки добавочных полюсов по отношению к обмотке якоря производят по схеме, приведенной на рис. 4.

    При замыкании ключа К стрелка милливольтметра будет отклоняться. При правильном включении намагничивающая сила обмотки дополнительных полюсов направлена встречно намагничивающей силе обмотки якоря, поэтому обмотка якоря и обмотка дополнительных полюсов должны включаться встречно, т. е. минус (или плюс) якоря следует соединить с минусом (или с плюсом) обмотки дополнительных полюсов.

    Рис. 3. Определение полярности полюсов двигателей постоянного тока с помощью пробной катушки

    Рис. 4. Схема проверки правильности включения обмотки добавочных полюсов по отношению к обмотке якоря

    Для проверки взаимного включения обмотки дополнительных полюсов и компенсационной обмотки можно использовать схему, приведенную на рис. 5, для небольших по мощности двигателей .

    При нормальней работе двигателя постоянного тока магнитный поток, создаваемый компенсационной обмоткой, должен совпадать по направлению с магнитным потоком обмотки дополнительных полюсов. После определения полярности обмоток компенсационная обмотка и обмотка дополнительных полюсов должны включаться согласованно, т. е. минус одной обмотки следует соединить с плюсом другой.

    Рис. 5. Схема проверки правильности включения обмотки дополнительных полюсов к компенсационной обмотке

    Прежде чем определять полярность щеток и производить необходимые измерения сопротивлений обмоток, устанавливают щетки на нейтраль. Под нейтралью электрического двигателя понимается такое взаимное расположение обмоток главных полюсов и якоря, когда коэффициент трансформации между ними равен нулю. Для установки щеток на нейтраль собирают схему (рис. 6).

    Обмотку возбуждения подключают к источнику питания (батарее) через ключ, а к щеткам якоря подключают чувствительный милливольтметр. При подаче в обмотку возбуждения тока толчком, стрелка милливольтметра отклоняется в ту или иную сторону. При положении щеток строго по нейтрали стрелка прибора отклоняться не будет.

    Диагностика и ремонт якоря стартера в критериях гаража Стартер представляет собой узел, без которого не обходится ни одно тс, так как этот элемент является одним из главных в системе зажигания. Как понятно, нескончаемых деталей не бывает и временами стартерный узел имеет свойство выходить из строя. Как проверить и отремонтировать батарейку в ключе…

    Точность обычных приборов невелика — в лучшем случае 0,5%. Поэтому щетки устанавливают в положение, соответствующее минимальному показанию прибора, и считают, что это нейтраль. Трудность установки щеток на нейтраль заключается в том, что положение нейтрали зависит от положения пластин коллектора.

    Очень часто бывает, что нейтраль, найденная для одного положения якоря, сдвигается при его проворачивании. Поэтому определяют положение нейтрали для двух различных положений вала. Если положение нейтрали оказывается различным для различных положений якоря, то следует выставить щетки в среднем положении между двумя отметками. Точность установки щеток на нейтраль зависит от степени прилегания поверхности щетки к коллектору. Поэтому для получения более точного результата при определении нейтрали двигателя предварительно притирают щетки к коллектору.

    Полярность щеток определяется одним из следующих способов.

    1. К двум точкам коллектора (рис. 7), отстоящим от разноименных щеток на одинаковом расстоянии, присоединяют вольтметр. При подаче возбуждения стрелка вольтметра отклонится в ту или иную сторону. Если стрелка отклонится вправо, то «плюс» находится в точке 1, а «минус» — в точке 2. Ближайшая против направления вращения щетка будет иметь полярность присоединенного зажима прибора.

    2. Через обмотку возбуждения пропускают постоянный ток определенной полярности, к якорю подключают вольтметр и приводят якорь во вращение толчком от руки или с помощью механизма. Стрелка вольтметра при этом отклонится. Направление отклонения стрелки укажет полярность щеток.

    Измерение сопротивления обмоток двигателя постоянного тока является весьма важным элементам проверки двигателей постоянного тока, так как по результатам измерения судят о состоянии контактных соединений обмоток (паек, болтовых, сварных соединений). Измерение сопротивления обмоток двигателя производят одним из следующих методов: амперметра-вольтметра, одинарного или двойного моста и микроомметром. Необходимо помнить о некоторых особенностях измерений сопротивления обмоток двигателей постоянного тока.

    1. Сопротивление последовательной обмотки возбуждения, уравнительной обмотки, обмотки добавочных полюсов невелико (тысячные доли ома), поэтому измерения производят микроомметром или двойным мостом.

    2. Сопротивление обмотки якоря измеряют по методу амперметра-вольтметра с использованием специального двухконтактного щупа с пружинами в изоляционной рукоятке (рис. 8). Измерение проводят следующим образом: к пластинам коллектора неподвижного якоря со снятыми щетками поочередно подводят постоянный ток от хорошо заряженной батареи напряжением 4-6 В. Между пластинами, к которым подводится ток, измеряют падение напряжения с помощью милливольтметра. Искомая величина сопротивления одной ветви якоря

    Рис. 6. Схема проверки правильности установки щеток на нейтраль

    Измерение сопротивления изоляции обмоток относительно корпуса машины и между обмотками производится в целях проверки состояния изоляции и пригодности машины к проведению последующих испытаний. Рекомендуется производить измерение:

    в практически холодном состоянии испытуемой машины — до начала ее испытания по соответствующей программе;

    независимо от температуры обмоток — до и после испытаний изоляции обмоток на электрическую прочность относительно корпуса машины и между обмотками переменным напряжением.

    Измерение сопротивления изоляции обмоток следует проводить: при номинальном напряжении обмотки до 500 В включительно — мегаомметром на 500 В; при номинальном напряжении обмотки свыше 500 В — мегаомметром не менее чем на 1000 В. При измерении сопротивления изоляции обмоток с номинальным напряжением свыше 6000 В, имеющих значительную емкость по отношению к корпусу, рекомендуется применять мегаомметр на 2500 В с моторным приводом или со статической схемой выпрямления переменного напряжения.

    Измерение сопротивления изоляции относительно корпуса машины и между обмотками следует производить поочередно для каждой цепи, имеющей отдельные выводы, при электрическом соединении всех прочих цепей с корпусом машины.

    Измерение сопротивления изоляции обмоток трехфазного тока, наглухо сопряженных в звезду или треугольник, производится для всей обмотки по отношению к корпусу.

    Изолированные обмотки и защитные конденсаторы, а также иные устройства, постоянно соединенные с корпусом машины, на время измерения сопротивления их изоляции должны быть отсоединены от корпуса машины.

    Измерение сопротивления изоляции обмоток, имеющих непосредственное водяное охлаждение, должно производиться мегаомметром, имеющим внутреннее экранирование; при этом зажим мегаомметра, соединенный с экраном, следует присоединять к водосборным коллекторам, которые при этом не должны иметь металлической связи с внешней системой питания обмоток дистиллятом.

    По окончании измерения сопротивления изоляции каждой цепи следует разрядить ее электрическим соединением с заземленным корпусом машины. Для обмоток на номинальное напряжение 3000 В и выше продолжительность соединения с корпусом должна быть:

    для машин мощностью до 1000 кВт (кВ·А) — не менее 15 с;

    для машин мощностью более 1000 кВт (кВ·А) — не менее 1 мин.

    При пользовании мегаомметром на 2500 В продолжительность соединения с корпусом должна быть не менее 3 мин независимо от мощности машины.

    Измерение сопротивления изоляции заложенных термопреобразователей сопротивления следует проводить мегаомметром напряжением 500 В.

    Измерение сопротивления изоляции изолированных подшипников и масляных уплотнений вала относительно корпуса следует проводить при температуре окружающей среды мегаомметром напряжением не менее 1000 В.

    Таблица 2.

    Таблица 3.

    Таблица 4.

    Сопротивление изоляции R из является основным показателем состояния изоляции статора и ротора электродвигателя.

    Одновременно с измерением сопротивления изоляции обмотки статора определяют коэффи­циент абсорбции. Измерение сопротивления изоляции ротора проводится у синхронных электро­двигателей и электродвигателей с фазным ротором на напряжение 3кВ и выше или мощностью бо­лее 1МВт. Сопротивление изоляции ротора должно быть не ниже 0,2МОм .

    Коэффициент абсорбции в эксплуатации обязательно определять только для электродвигате­лей напряжением выше 3кВ или мощностью боле 1МВт.

    Подготовить средства измерений:

    Проверить уровень заряда батареи или аккумулятора для мегаомметра типа MIC-2500.

    Установить значение испытательного напряжения.

    В случае использования стрелочного прибора типа ЭСО202 установить его горизонтально.

    Для ЭС0202 установить требуемый предел измерений, шкалу прибора и значение испытательного напряжения мегомметра.

    Проверить работоспособность мегомметра. Для этого необходимо замкнуть между собой измерительные щупы и начать вращать рукоятку генератора со скоростью 120¸140 оборотов в минуту. Стрелка прибора должна показывать «0». Разомкнуть измерительные щупы и начать вращать рукоятку генератора со скоростью 120¸140 оборотов в минуту. Стрелка прибора должна показывать «10 4 МОм».

    Перед проведением измерения необходимо открыть вводное устройство электродвигателя (борно), протереть изоляторы от пыли и загрязнения и подключить мегаомметр согласно схемы, приве­дённой на рисунке.

    Рисунок. Измерение сопротивления изоляции обмоток электродвигателя.

    На рисунке А показана схема подключения мегаомметра к испытуемому электродвигателю, у ко­торого обмотки соединены в звезду или треугольник внутри корпуса и произвести рассоединение в борно невозможно. В этом случае мегаомметр подключает­ся к любому зажиму статора электродвигателя и со­противление изоляции измеряется у всей обмотки сразу относительно корпуса.

    На рисунке Б измерение сопротивление изо­ляции производится у электродвигателя по каждой из частей обмотки отдельно, при этом другие части обмотки (которые в данный момент не обрабаты­ваются) закорачиваются и соединяются на землю.

    При измерении сопротивления изоляции отсчёт показаний мегаомметра производят каждые
    15 секунд и результатом считается сопротивление, отсчитанное через 60 секунд после начала измерения, а отношение показаний R 60 /R 15 считается коэффициентом абсорбции.

    Для электродвигателей с номинальным на­пряжением 0,4кВ (электродвигатели до 1000В) одноминутное измерение изоляции мегаомметром на 2500В приравнивается к высоковольтному испытанию.

    У синхронных электродвигателей при изме­рении сопротивления изоляции обмоток статора (обмотки статора) необходимо закоротить и за­землить обмотку ротора. Это необходимо сделать для исключения возможности повреждения изо­ляции ротора.

    Сегодня статья – ответ на вопрос читателей.

    Будут вопросы будут и новые статьи.

    В идеале чтобы была произведена проверка обмоток электродвигателя, необходимо иметь специальные приборы, предназначенные для этого, которые стоят немалых денег. Наверняка не у каждого в доме они есть. Поэтому проще для таких целей научиться пользоваться тестером, имеющим другое название . Такой прибор имеется практически у каждого уважающего себя хозяина дома.

    Электродвигатели изготавливают в различных вариантах и модификациях, их неисправности также бывают самыми разными. Конечно, не любую неисправность можно диагностировать простым мультиметром, но наиболее часто проверка обмоток электродвигателя таким простым прибором вполне возможна.

    Любой вид ремонта всегда начинают с осмотра устройства: наличие влаги, не сломаны ли детали, наличие запаха гари от изоляции и другие явные признаки неисправностей. Чаще всего сгоревшую обмотку видно. Тогда не нужны никакие проверки и измерения. Такое оборудование сразу отправляется на ремонт. Но бывают случаи, когда отсутствуют внешние признаки поломки, и требуется тщательная проверка обмоток электродвигателя.

    Виды обмоток

    Если не вникать в подробности, то обмотку двигателя можно представить в виде куска проводника, который намотан определенным образом в корпусе мотора, и вроде бы в ней ничего не должно ломаться.

    Однако, дело обстоит гораздо сложнее, так как обмотка электродвигателя выполнена со своими особенностями:
    • Материал провода обмотки должен быть однородным по всей длине.
    • Форма и площадь поперечного сечения провода должны иметь определенную точность.
    • На проволоку, предназначенную для обмотки, в обязательном порядке в промышленных условиях наносится слой изоляции в виде лака, который должен обладать определенными свойствами: прочностью, эластичностью, хорошими диэлектрическими свойствами и т.д.
    • Провод обмотки должен обеспечивать прочный контакт при соединении.

    Если имеется какое-либо нарушение этих требований, то электрический ток будет проходить уже в совершенно других условиях, а электрический мотор ухудшит свои эксплуатационные качества, то есть, снизится мощность, обороты, а может и вообще не работать.

    Проверка обмоток электродвигателя 3-фазного мотора . Прежде всего, отключить ее от цепи. Основная часть существующих электродвигателей имеет обмотки, соединенные по схемам, соответствующим .

    Концы этих обмоток подключают обычно на колодки с клеммами, которые имеют соответствующие маркировки: «К» — конец, «Н» — начало. Бывают варианты соединений внутреннего исполнения, узлы находятся внутри корпуса мотора, а на выводах применяется другая маркировка (цифрами).

    На статоре 3-фазного электродвигателя применяются обмотки, имеющие равные характеристики и свойства, одинаковые сопротивления. При замере мультиметром сопротивлений обмоток может оказаться, что у них разные значения. Это уже дает возможность предположить о неисправности, имеющейся в электродвигателе.

    Возможные неисправности

    Визуально не всегда можно определить состояние обмоток, так как доступ к ним ограничен особенностями конструкции двигателя. Практически проверить обмотку электродвигателя можно по электрическим характеристикам, так как все поломки мотора в основном выявляются:

    • Обрывом, когда провод разорван, либо отгорел, ток по нему проходить не будет.
    • Коротким замыканием, возникшим из-за повреждения изоляции между витками входа и выхода.
    • Замыкание между витками, при этом изоляция повреждается между соседними витками. Вследствие этого поврежденные витки самоисключаются из работы. Электрический ток идет по обмотке, в которой не задействованы поврежденные витки, которые не работают.
    • Пробиванием изоляции между корпусом статора и обмоткой.

    Способы
    Проверка обмоток электродвигателя на обрыв

    Это самый простой вид проверки. Неисправность диагностируется простым измерением значения сопротивления провода. Если мультиметр показывает очень большое сопротивление, то это означает, что имеется обрыв провода с образованием воздушного пространства.

    Проверка обмоток электродвигателя на короткое замыкание

    При коротком замыкании в моторе отключится его питание установленной защитой от замыкания. Это происходит за очень короткое время. Однако даже за такой незначительный промежуток времени может возникнуть видимый дефект в обмотке в виде нагара и оплавления металла.

    Если измерять приборами сопротивление обмотки, то получается малое его значение, которое приближается к нулю, так как из измерения исключается кусок обмотки из-за замыкания.

    Проверка обмоток электродвигателя на межвитковое замыкание

    Это самая трудная задача по определению и выявлению неисправности. Чтобы проверить обмотку электродвигателя, пользуются несколькими способами измерений и диагностик.

    Проверка обмоток электродвигателя способом омметра

    Этот прибор действует от постоянного тока, измеряет активное сопротивление. Во время работы обмотка образует кроме активного сопротивления, значительную индуктивную величину сопротивления.

    Если будет замкнут один виток, то активное сопротивление практически не изменится, и определить омметром его сложно. Конечно, можно произвести точную калибровку прибора, скрупулезно замерять все обмотки на сопротивление, сравнивать их. Однако, даже в таком случае очень трудно выявить замыкание витков.

    Результаты гораздо точнее выдает мостовой метод, с помощью которого измеряется активное сопротивление. Этим методом пользуются в условиях лаборатории, поэтому обычные электромонтеры им не пользуются.

    Измерение тока в каждой фазе

    Соотношение токов по фазам изменится, если произойдет замыкание между витками, статор будет нагреваться. Если двигатель полностью исправен, то на всех фазах ток потребления одинаков. Поэтому измерив эти токи под нагрузкой, можно с уверенностью сказать о реальном техническом состоянии электродвигателя.

    Проверка обмоток электродвигателя переменным током

    Не всегда можно измерить общее сопротивление обмотки, и при этом учесть индуктивное сопротивление. У неисправного двигателя проверить обмотку можно переменным током. Для этого применяют амперметр, вольтметр и понижающий трансформатор. Для ограничения тока в схему вставляют резистор, либо реостат.

    Чтобы проверить обмотку электродвигателя, применяется низкое напряжение, проверяется значение тока, которое не должно быть выше значений по номиналу. Измеренное падение напряжения на обмотке делится на ток, в итоге получается полное сопротивление. Его значение сравнивают с другими обмотками.

    Такая же схема дает возможность определить вольтамперные свойства обмоток. Для этого необходимо сделать измерения на различных значениях тока, затем записать их в таблицу, либо начертить график. Во время сравнения с другими обмотками не должно быть больших отклонений. В противном случае имеется межвитковое замыкание.

    Проверка обмоток электродвигателя шариком

    Этот метод основывается на образовании электромагнитного поля с вращающимся эффектом, если обмотки исправны. На них подключается симметричное напряжение с тремя фазами, низкого значения. Для таких проверок используют три понижающих трансформатора с одинаковыми данными. Их подключают отдельно на каждую фазу.

    Чтобы ограничить нагрузки, опыт проводят за короткий промежуток времени.

    Подают напряжение на обмотки статора, и сразу вводят маленький стальной шарик в магнитное поле. При исправных обмотках шарик крутится синхронно внутри магнитопровода.

    Если имеется замыкание между витками в какой-либо обмотке, то шарик сразу остановится там, где есть замыкание. При проведении проверки нельзя допускать превышения тока выше номинального значения, так как шарик может вылететь из статора с большой скоростью, что является опасно для человека.

    Определение полярности обмоток электрическим методом

    У обмоток статора имеется маркировка выводов, которой иногда может не быть по разным причинам. Это создает сложности при проведении сборки.

    Чтобы определить маркировку, применяют некоторые способы:
    • и амперметром.
    • и вольтметром.

    Статор выступает в роли магнитопровода с обмотками, действующими по принципу трансформатора.

    Определение маркировки выводов обмотки амперметром и батарейкой

    На наружной поверхности статора имеется шесть проводов от трех обмоток, концы которых не промаркированы, и подлежат определению по их принадлежности.

    Применяя омметр, находят выводы для каждой обмотки, и отмечают цифрами. Далее, делают маркировку одной из обмоток конца и начала, произвольно. К одной из оставшихся двух обмоток присоединяют стрелочный амперметр, чтобы стрелка находилась на середине шкалы, для определения направления тока.

    Минусовой вывод батарейки соединяют с концом выбранной обмотки, а выводом плюса кратковременно касаются ее начала.

    Импульс в первой обмотке трансформируется во вторую цепь, которая замкнута амперметром, при этом повторяет исходную форму. Если полярность обмоток совпала с правильным расположением, то стрелка прибора в начале импульса пойдет вправо, а при размыкании цепи стрелка отойдет влево.

    Если показания прибора совсем другие, то полярность выводов обмотки меняют местами и маркируют. Остальные обмотки проверяются подобным образом.

    Определение полярности вольтметром и понижающим трансформатором

    Первый этап аналогичен предыдущему способу: определяют принадлежность выводов обмоткам.

    Две другие обмотки соединяют двумя выводами в одной точке случайным образом, оставшуюся пару соединяют с вольтметром и включают питание. Напряжение выхода трансформируется в другие обмотки с таким же значением, так как у них одинаковое количество витков.

    Посредством последовательной схемы подключения 2-й и 3-й обмоток вектора напряжения суммируются, а результат покажет вольтметр. Далее маркируют остальные концы обмоток и проводят контрольные измерения.

    Измерение сопротивления изоляции обмоток электродвигателя мегаомметром

    При испытаниях электродвигателя после ремонта или хранения на складе одним из важных параметров является сопротивление изоляции.

    Измерение сопротивление изоляции электродвигателя

    Проверку изоляции производят разными способами.

    Испытание изоляции мегомметром

    Измерение сопротивления производится механическим или электронным мегомметром.

    Важно! Проверка изоляции двигателей до 380В выполняется прибором напряжением 500 вольт, а от 0,4 до 1 кВ аппаратом 1000В.

    Перед проверкой сопротивления изоляции производится осмотр электромашины на отсутствие повреждений корпуса. Мокрый электродвигатель перед испытанием необходимо просушить. Все обмотки желательно отключить друг от друга для проверки изоляции между ними.

    Порядок измерения сопротивления изоляции:

    1. подключить вывода или установить переключатель в положение «мегаомы»;
    2. проверить мегомметр замыканием концов между собой и проведением кратковременного измерения;
    3. результат должен быть около «0»;
    4. присоединить один из проводов к испытуемой катушке, а другой к очищенному от краски месту корпуса или другой обмотке;
    5. в течении 15-60 секунд вращать ручку прибора с частотой 120 оборотов в минуту;
    6. не прекращая вращения рукоятки проверить показания прибора.

    Обмотка и корпус или две обмотки с изоляцией между ними представляют собой конденсатор. При измерении этот конденсатор заряжается до напряжения мегомметра – 500 или 1000 вольт. Поэтому клеммы электромашины и вывода прибора после проверки необходимо закоротить между собой.

    Проверка межвитковой изоляции обмоток

    Этот вид испытаний проводится для проверки изоляции между витками катушек асинхронных электромашин.

    Для этого после разгона двигатель с короткозамкнутым ротором, вращающийся на холостом ходу, подключается на повышенное напряжение. Это напряжение на 30% выше номинального, а время работы в таких условиях – 3 минуты. Включение машины производится через амперметры, установленные на каждой фазе. После испытаний напряжение уменьшается до номинального и аппарат выключается.

    Важно! Повышение и понижение напряжения производится плавно, при помощи регулируемого автотрансформатора или электронного блока питания.

    При появлении шума, стуков, дыма или «плавающих» показаний амперметров, электродвигатель отключается и отправляется на ремонт.

    Испытания электромашины с фазным ротором проводятся в заторможенном состоянии при отключенном роторе.

    Испытание изоляции повышенным напряжением переменного тока

    Такая проверка проводится при помощи трансформатора, имеющего плавную регулировку напряжения со стороны вторичной обмотки. В схеме испытательного прибора также предусматривается автоматический выключатель с величиной уставки максимальной защиты, достаточной для отключения установки в аварийных ситуациях. Вторичная обмотка подключается к обмоткам электромашины и корпусу.

    Продолжительность испытаний составляет 1 минута при проверке изоляции между обмотками и корпусом и 5 минут при испытании изоляции между обмотками. Для проведения межобмоточной проверки напряжение подаётся на одну из обмоток, а остальные присоединяются к корпусу.

    Напряжение поднимается и опускается плавно, в течение 10 секунд со значения 50%Uном до 200%Uном.

    Нормы сопротивления изоляции электрических машин

    В ПУЭ (правилах устройства электроустановок) регламентируется сопротивление изоляции электродвигателей в зависимости от конструкции и мощности аппарата.

    Допустимое сопротивление при испытании изоляции асинхронных электромашин

    При измерении изоляции асинхронных двигателей соединение обмоток статора «звезда» или «треугольник» необходимо разобрать и проверить каждую из катушек относительно корпуса и между собой. Испытания проводятся при температуре машины 10-30°С.

    Сопротивление изоляции должно быть:

    • в статоре не менее 0,5мОм;
    • в фазном роторе не менее 0,2мОм;
    • минимальное сопротивление изоляции термодатчиков не нормируется.

    Для того чтобы не использовать справочник, обычно допустимое сопротивление считается 1мОм. Меньшие значения говорят о незначительных нарушениях, которые со временем приведут к выходу электромашины из строя.

    Важно! Для того чтобы избежать такой ситуации аппарат целесообразно отправить на специализированное предприятие для проведения среднего ремонта.

    Изоляция двигателей постоянного тока

    Для проверки изоляции в машинах постоянного тока необходимо вынуть щётки из щёткодержателей или подложить под них изоляционный материал.

    Измерение проводится между разными частями схемы электромашины:

    • обмотками возбуждения и коллектором якоря;
    • щёткодержателем и корпусом аппарата;
    • коллектором якоря и корпусом;
    • обмотками возбуждения и корпусом электромашины.

    Важно! Если есть возможность, то катушки обмотки возбуждения отключаются друг от друга и проверяются по отдельности.

    Минимально допустимое сопротивление изоляции зависит от температуры и номинального напряжения электромашины. При 20°С она составляет:

    Кроме обмоток и якоря измеряется сопротивление бандажей обмоток возбуждения и якоря. Оно проверяется между самим бандажом и корпусом, а также закрепляемой им обмоткой. Оно не должно быть менее 0,5мОм.

    Причины низкого сопротивления

    Есть несколько причин низкого сопротивления изоляции.

    Перегрев электромашины

    Эта ситуация возникает из-за перегрузки электромашины или обрыва одной из фаз в трёхфазных электродвигателях. Устранить эту проблему в условиях мастерской невозможно и аппарат приходится отправлять для замены обмоток в специализированное предприятие.

    Предотвратить такую неисправность помогают устройства защиты:

    • тепловое реле отключает электромашину при перегрузке;
    • реле напряжения отключает установку при отсутствии одной из фаз или пониженном напряжении сети.

    Важно! Для лучшей защиты внутри электродвигателей встраиваются датчики температуры. В новых машинах они устанавливаются при изготовлении, а в старых такие приборы можно поставить при плановом или капитальном ремонте.

    Сушка электродвигателя

    Если пониженное сопротивление вызвано попаданием на двигатель влаги или хранением в сыром помещении, то электромашину можно высушить. Для этого её необходимо разобрать – снять крышки подшипниковых щитов и вынуть ротор. Это делается для свободного выхода влаги.

    Совет! Можно снять только один щит, а ротор вынуть вместе со вторым.

    После разборки осуществляется сушка одним из способов:

    • Подачей на обмотки пониженного напряжения. Ток при этом не должен превышать номинальный.
    • Вставить в статор нагреватель. Чаще всего для этого используется лампа накаливания 60-100Вт.

    Через сутки проводится повторное измерение изоляции. Если сопротивление растёт, то сушка продолжается до полного высыхания, если нет, то двигатель отправляется на средний ремонт в специализированное предприятие. Этот вид ремонта включает в себя пропитку обмоток лаком и повторную сушку.

    Проверка изоляции является необходимой частью испытаний электродвигателя. Виды проверок в отдельных случаях определяются ПУЭ и другими нормативными документами.

    Помимо проверки состояния механических элементов и смазки, при капитальных и текущих ремонтах электромоторов переменного тока производятся их электрические испытания, измеряются электрические характеристики.

    Объем этих испытаний, условия их проведения, а также нормируемые предельные значения измеренных величин зависят от:

    • номинального напряжения;
    • мощности;
    • конструктивного исполнения и типа двигателей.

    Рассмотрим по порядку, какие испытания проводятся, и ознакомимся с критериями исправности электродвигателей.

    Измерение сопротивления изоляции электродвигателей

    Такие измерения производятся не только при ремонте. Например, если в процессе эксплуатации требуется провести диагностику электродвигателя и питающего кабеля в случае отключения от защит. Также требуется измерять этот параметр перед пуском аппарата после его длительного простоя, особенно в неблагоприятных рабочих условиях.

    Для измерения используется мегаомметр, напряжение которого зависит от номинального для испытуемого электродвигателя. Для аппаратов до 500 В используется мегаомметр на 500 В. Для номинала 500 — 1000 В — соответственно на 1000 В. Для высоковольтных электродвигателей используется мегаомметр, вырабатывающий напряжение 2500 В.

    Для статоров низковольтных двигателей норма составляет 1 МОм, при этом температура испытуемого объекта находится в пределах 10-30˚С. При температуре 60˚С допустимая величина снижается до 0,5 МОм.

    Аппараты напряжением выше 1000 В разделяются на две категории. Для мощностей обмотки статора 1 — 5 МВт предельные значения указаны в таблице.


    Для более мощных, свыше 5 МВт, моторов, подход к процессу более ответственный. Измерения производятся в строгом соответствии с инструкциями изготовителя.

    У асинхронных машин с фазным ротором, в том числе синхронных, имеющих обмотку возбуждения, тестируется и изоляция обмотки ротора. Но только у высоковольтных движков, имеющих мощность свыше 1 МВт. Используется мегаомметр на 1000 В. Предельное значение — 0,2 МОм.

    Мощные электродвигатели для предотвращения появления паразитных токов в валах, замыкающихся на установочной раме, имеют изоляцию опор с подшипниками. Также подшипники изолируются от маслопроводов, осуществляющих их смазку при работе. Состояние этого вида изоляции проверяется мегаомметром на 1000 В.

    Этот параметр контролируется после капитальных ремонтов, связанных с выемкой ротора. Сопротивление должно иметь значение, отличное от нуля, и не снизиться резко относительно ранее полученных результатов. Более точного значения правилами не предусмотрено.

    Измерение коэффициента абсорбции

    Параметр характеризует степень увлажненности изоляции электродвигателей. Он измеряется только у высоковольтных аппаратов. Для этого на обмотку статора подключают испытательное напряжение от мегаомметра, держат его в течение минуты, засекая значения через 15 и 60 секунд. Разделив шестидесятисекундное значение на пятнадцатисекундное, получают искомую величину.

    Нормативы зависят от материала изоляции двигателя. Если она термореактивная, то коэффициент не должен быть ниже 1,3. Для микалентной компаундированной – ниже 1,2.

    Малый коэффициент абсорбции, особенно – близкий к единице, указывает на влажную изоляцию. Обмотку требуется просушить.

    Испытание повышенным напряжением

    Испытание проводится после окончания капитального ремонта двигателя, а для аппаратов до 1000 В может не проводиться вовсе. Решение принимает технический руководитель, что закрепляется соответствующим приказом.

    Испытание заключается в подаче повышенного напряжения промышленной частоты от постороннего источника. Для этого применяются переносные или передвижные испытательные установки. Одно из важных требований – они должны быть рассчитаны на повышенные токи утечки. Поэтому не все из них, пригодные к испытаниям изоляции распределительных устройств, годятся для электродвигателей. Испытательные напряжения указаны в таблице.

    Напряжение выше номинального для изоляции является стрессом. Подъем его производится медленно и без рывков. Критерием исправности служит отсутствие разрядов внутри двигателя, наличие которых контролируется по показаниям миллиамперметра, включенного последовательно с испытуемым объектом. Сами же показания прибора не нормируются. Также не должно произойти срабатывания защиты установки.

    При испытаниях схема соединения обмоток не разбирается, они испытываются относительно корпуса совместно. Но при пробое для поиска поврежденного участка придется не только разобрать схему звезды или треугольника, но и рассоединить все секции обмотки в поврежденной фазе. Неисправная секция меняется на новую.

    Измерение сопротивления постоянному току

    • для статоров напряжением выше 3 кВ;
    • для роторов таких же аппаратов.

    Для обмоток статоров значения, полученные для каждой фазы, не должны отличаться более, чем на ±2%. Во всех описанных случаях величины сопротивлений не должны различаться от измеренных ранее более, чем на ту же величину.

    Для измерений используются микроомметры, рассчитанные на точное измерение малых величин сопротивления. Для исключения влияния сопротивления соединительных проводов и контактов в месте подключения используется мостовая (четырехпроводная) схема подключения прибора.

    Для сравнения с предыдущими значениями, полученные данные нужно привести к той же температуре обмоток. Для чего ее, собственно, потребуется измерить. Формулы для приведения зависят от материала проводников обмоток.

    Для меди формула выглядит так:

    R2 = R1 (235 + t2)/(235 + t1).

    Сопротивление R1 – измеренное при температуре t1. Сопротивление R2 – значение, приведенное к температуре t2.

    Для алюминия меняется только числовой коэффициент:

    R2 = R1 (245 + t2)/(245 + t1).

    На основании измерений делается заключение о наличии витковых замыканий в проверяемой обмотке. При выявлении его наличия потребуется определить место замыкания и заменить поврежденный участок.

    Электродвигатели используются практически везде: как автомобилестроении, так и в других областях промышленности. Однако, как и любые агрегаты, они имеют свой срок службы и их периодически необходимо проверять. Одним из приборов, который позволяет выявить неисправности, является мегаомметр. Как мегаомметром проверить двигатель, расскажем ниже.

    Чаще всего используются два вида электрических двигателей: асинхронные и коллекторные.

    Прозвонка асинхронного двигателя мегаомметром

    Им чаще всего оборудованы приборы бытового использования. Измерение сопротивления изоляции электродвигателя мегаомметром производится следующим образом:

    1. Проводим замеры сопротивления между выводами двигателя. Переводим прибор в режим до 100 Ом. После этого подключаем мегаомметр. Между крайним и средним выводом сопротивление должно быть от 30 до 50 Ом, а между вторым и крайним – до 20. Если такие значения получены во время прозвона, то двигатель исправен.
    2. Для исключения утечки тока на «массу» мегаомметр переводится в положение до 2000 Ом. Каждая клемма соединяется щупами с корпусом самого двигателя. Если никаких отклонений не произошло, то такой двигатель исправен.

    Проверка коллекторного электродвигателя мегаомметром

    Проводить измерения такого двигателя можно, только полностью его разобрав.

    1. Соединяем щупы с каждым выводом. Если будет выявлено отсутствие сопротивления, то такой двигатель неисправен и его требуется заменить.
    2. Проверяем ротор. Переводим прибор в положение до 200 Ом и располагаем щупы на максимальном расстоянии. Фактически щупы занимают место щеток и таким образом всё прозванивается. Для ускорения процесса можно вручную поворачивать ротор, до прикосновения каждой обмотки с щупом.

    Если мегаомметр показывает примерно одинаковые значения, то двигатель абсолютно исправен и нареканий к нему быть не может.

    Как измерить мегомметр двигателя, также известный как испытание изоляции — Трёхфазное обучение

    Обучающее видео о том, как выполнить мегомметр двигателя и как правильно использовать мегомметр.

    Вы когда-нибудь задумывались, что делает тест мегомметра? Что делает мегомметр? Это специальный измеритель, предназначенный для измерения мегаомов…. и дальше. Что такое мегаом?

    Один мегаом эквивалентен 1 000 000 Ом. Зачем нам нужно измерять такое сопротивление? Вместо того, чтобы думать об измерении сопротивления, подумайте об этом как о тестовом приборе.Он специально проверяет изоляцию обмоток двигателя. В зависимости от класса изоляции двигателя, хороший двигатель может измерять сопротивление до 1 000 000 000 000 Ом!

    Это испытание изоляции обмоток двигателя, обычно называемое мегомметром, мегомметром или мегомметром. Мы проверяем изоляцию двигателя, в частности, между обмотками двигателя и корпусом двигателя. Если протекает небольшая часть тока, это можно измерить с помощью этих высокочувствительных измерителей. Изоляция двигателя рассчитана и выдерживает различные температуры.Время и тепло разрушают изоляцию двигателя. Правильное использование мегомметра позволит проверить изоляцию двигателя. В зависимости от того, какой класс изоляции вы проверяете, это повлияет на величину сопротивления, которую должен показывать измеритель. Для проверки изоляции высокого класса вам следует использовать мегомметр, способный измерять сопротивление до тераомов. В противном случае ваш тест может быть ненадежным или точным.

    Triple Phase Training сделал видео выше как бесплатный инструмент для всех. Мы надеемся, что это видео прояснит, как и зачем использовать эти счетчики.При правильном использовании мегомметра можно легко определить повреждение изоляции. Помните, что тепло разрушает изоляцию двигателя, поэтому, если вы не уверены в двигателе, который вы только что протестировали, попробуйте проверить двигатель еще раз, пока он еще теплый от использования. Если вы каждый раз получаете более низкие значения сопротивления, ваш двигатель следует как можно скорее вывести из эксплуатации.

    Большинство частотно-регулируемых приводов и инверторов очень чувствительны к потере изоляции, привод может аварийно выключить двигатель, чтобы уберечь его от повреждения.Убедитесь, что номинальные характеристики двигателя соответствуют окружающей среде, и проверьте номинальные характеристики по нагреву, а также коэффициент эксплуатации.

    Пожалуйста, посмотрите все наши видео на нашем канале YouTube.

    Чтобы получить дополнительную информацию о наших курсах по ремонту мостовых кранов, отправьте нам электронное письмо.

    Как использовать мегомметр для измерения и проверки изоляции двигателя

    Когда дело доходит до проверки электродвигателей, существуют специальные измерительные инструменты, которые можно использовать для обнаружения и диагностики неисправностей. Тестер сопротивления изоляции, широко известный под торговой маркой Megger, может предоставить важную информацию о состоянии изоляции двигателя.На промышленном объекте рекомендуется проводить периодические испытания и записывать результаты, чтобы можно было выявить и исправить тенденции к разрушению, чтобы предотвратить простои и длительные простои.

    Тестер сопротивления изоляции похож на обычный омметр. Но Megger обеспечивает гораздо более высокое напряжение, чем типичное испытательное напряжение в три вольта омметра, получаемое от внутренней батареи. (Некоторые устройства могут также включать ручной генератор для выработки высокого напряжения.Другие предназначены для приема входного сигнала от источника высокого напряжения.) Megger подает напряжение в течение заданного периода времени. Ток утечки через изоляцию, выраженный в сопротивлении, отображается на графике. Это испытание может проводиться при установке или намотке кабеля, инструментов, приборов, трансформаторов, подсистем распределения энергии, конденсаторов, двигателей и любого типа электрического оборудования или проводки.

    Испытание может быть неразрушающим для работающего оборудования.Megger может также подавать повышенное напряжение в течение длительных периодов времени на разрабатываемые прототипы, пока они не смогут оценить предлагаемую конструкцию. Использование Megger требует некоторого обучения. Необходимо соблюдать правильные настройки, процедуры подключения, продолжительность испытаний и меры безопасности, чтобы избежать повреждения оборудования или возможного поражения электрическим током.

    Тестируемый двигатель должен быть выключен и отключен от всего оборудования и проводки, не включенных в тест. Такое постороннее оборудование не только делает тест недействительным, но и может быть повреждено приложенным напряжением.Кроме того, ничего не подозревающие люди могут увидеть опасную электрическую энергию. Это потому, что приложенные напряжения обязательно высокие.

    Вся проводка и оборудование имеют определенную емкость. А в больших двигателях емкость может быть высокой. Поскольку оборудование фактически является накопительным конденсатором, важно, чтобы остаточная электрическая энергия разряжалась до и после каждого испытания. Для этого зашунтируйте соответствующий провод (и) на землю и друг на друга перед повторным подключением источника питания.Устройство должно быть разряжено как минимум в четыре раза до тех пор, пока подавалось испытательное напряжение.

    Megger может подавать различные напряжения, и уровень должен быть согласован с типом тестируемого оборудования и объемом запроса. Испытание обычно проводится при подаче напряжения от 100 до 5000 В или более. Операторы должны составить протокол, включающий уровень напряжения, продолжительность, интервалы между тестами и методы подключения, принимая во внимание тип и размер оборудования, его значение и роль в производственном процессе, а также другие факторы.

    Очень ценное руководство с замечательным названием «Стежок во времени» доступно бесплатно на сайте www.biddlemegger.com/biddle/Stitch-new.pdf. Другой полезный текст — это Рекомендуемая практика IEEE для испытания сопротивления изоляции вращающегося оборудования .

    Как выполнить мегомметр двигателя -Electrical4uonline

    «Меггер двигателя» технически невозможно, и вы не можете измерить никакие двигатели, поскольку мегомметр является зарегистрированной торговой маркой, а не электрическим тестом, но в реальной жизни это выражение используется при описании «Проверка сопротивления изоляции электродвигателя».

    Что такое тест мегомметра?


    Megger — это прибор, который в основном используется для проверки и расчета внутреннего сопротивления и качества сопротивления изоляции любого электрического устройства. Этот процесс известен как «тест мегомметра». Имеет генератор постоянного тока и омметр. Обычный омметр не может рассчитать высокое сопротивление, поэтому для этой цели используется мегомметр.

    Для проведения теста мегомметром мы применяем источник постоянного тока высокого напряжения в течение определенного времени. Также мы можем убедиться в электробезопасности, используя мегомметр.

    Для начала нужно задать важный вопрос! Почему ?

    Зачем проводить испытание сопротивления изоляции электродвигателя?

    Если у вас новый асинхронный двигатель, поэтому его изоляция должна быть в очень хорошем состоянии, Кто бы, несмотря на то, что производители двигателей сильно улучшили изоляцию, эта изоляция по-прежнему подвержена повреждениям из-за коррозии, влажности, влаги, тепла, холода и механические повреждения при транспортировке и транспортировке.

    Даже если изоляция двигателя в начале срока службы находится в очень хорошем состоянии, со временем вышеупомянутые факторы влияют на сопротивление изоляции, вызывая ток утечки через изоляцию, а затем могут привести к выходу из строя.

    Хорошая изоляция имеет высокое сопротивление, а плохая — низкое. Это сопротивление постепенно уменьшается, поэтому важно иметь график проверок, проводить тест мегомметром и иметь хорошую запись значений теста для каждого двигателя.

    Кроме того, сбой в тесте мегомметра может привести к опасным условиям или к возгоранию двигателя из-за электрического короткого замыкания.

    Испытание электродвигателя с помощью Megger

    Megger — электродвигатель для проверки двух различных типов сопротивления, т. Е. Сопротивления обмоток электродвигателя и сопротивления изоляции электродвигателя. Процесс каждого испытания описан ниже.

    Проверка сопротивления обмоток двигателя с помощью мегомметра

    В этом процессе выполняется первый шаг по проверке сопротивления обмотки.Меггер работает как мультиметр. Поэтому поместим поворотный переключатель на Ом. Как только мы начнем проверку, он обнаружит и измерит электрическую непрерывность. Теперь, чтобы проверить сопротивление обмотки, соединим зонд с двигателем.

    Этот процесс можно повторить для проверки межфазного сопротивления обмотки. Теперь, чтобы угадать результат о двигателе, исправен он или нет, мы должны получить более высокое и почти такое же значение из всех испытаний обмоток.

    Проверка сопротивления изоляции двигателя с помощью мегомметра (тест мегомметром)


    Изоляция играет жизненно важную роль в электрическом оборудовании i.е. двигатели и генераторы. Как упоминалось выше, на изоляцию двигателя влияют различные факторы. Тест мегомметра также используется для определения сопротивления изоляции двигателя.

    Принцип этого теста прост: прибор подает напряжение и измеряет ток, а затем выдает значение сопротивления.

    Никогда не проводите испытание оборудования, находящегося под напряжением.

    Для выполнения этого теста поворотный переключатель должен быть под напряжением. При проведении этого теста необходимо учитывать, что уровень напряжения должен превышать 250 В.

    Теперь выполните шаги по проверке различных фаз и сопротивления заземления, следуя той же процедуре, которая описана ниже.

    Для проверки сопротивления заземления подключите зонд мегомметра к клемме заземления. Зарегистрированное значение представляет собой сопротивление изоляции относительно земли. Теперь, чтобы найти сопротивление первой, второй и третьей обмоток, подключите второй датчик к каждой обмотке соответственно.

    Что такое хорошее значение сопротивления?

    Теперь значение сопротивления должно быть в мегаомах i.e 1 МОм , Вы должны получить практически одинаковые значения для каждой обмотки. Другой способ проверить двигатель: если мы подключим оба щупа к одной обмотке, он покажет нулевое значение.

    Преимущества и важность теста мегомметром


    1. Тест мегомметра прост в использовании.
    2. Точность на высоте.
    3. Megger безопасно использовать, и тест мегомметра не разрушителен.
    4. Это приборы для измерения высокого сопротивления, которые могут определять сопротивление от нуля до бесконечности.
    5. Нарушение изоляции может привести к внутреннему короткому замыканию и возгоранию оборудования.
    6. Периодически проверяйте оборудование мегомметром и записывайте значение сопротивления изоляции.

    Методы испытаний двигателей

    В большинстве промышленных предприятий промышленные двигатели являются основным элементом рабочего пространства. Производство приводов двигателей. Без полнофункционального двигателя основные производственные задачи будут поставлены под угрозу, и их невозможно будет продолжить. Следовательно, отказ двигателя может оказаться чрезвычайно дорогостоящим и разрушительным для вашего бизнеса, что приведет к незапланированным остановкам в работе и росту затрат на техническое обслуживание.Однако, используя различные методы тестирования двигателя — как в периоды регулярного, планового обслуживания, так и при наличии признаков надвигающейся неисправности, — проблемы с двигателем можно легко спрогнозировать, предотвратить и, следовательно, решить с минимальным перерывом в обслуживании или без него. Ниже мы расскажем вам о нескольких доступных методах тестирования двигателей, которые вы можете использовать, чтобы сократить время простоя вашего бизнеса.

    Тест Hipot на диэлектрическую прочность

    Испытание высокого потенциала (hipot), также известное как испытание на электрическую прочность изоляции, обычно выполняется для проверки слабости и потенциальной слабости внутри кабеля или изоляции провода.Как правило, испытание на высоковольтное напряжение следует проводить после проведения первоначального визуального осмотра, а также некоторых испытаний сопротивления изоляции. Тест Hipot включает в себя приложение тока между электрическими цепями и корпусом с использованием переменного или постоянного напряжения. Стандартное испытание проводится при непрерывном приложении 1000 вольт, 50-60 Гц, плюс удвоенное номинальное напряжение машины в течение 60 секунд. Эксперты говорят, что испытание гипота должно проводиться только один раз на полную мощность, а затем на 85% при дополнительных испытаниях.Это исключает возможность перегрузки оцениваемой изоляции. Однако, если ваша изоляция была восстановлена, испытание следует проводить при 60% нормального испытательного напряжения, чтобы избежать перегрузки изоляции.

    Испытание на скачок напряжения

    Импульсный тест может быть важным методом диагностики и обнаружения перегорания двигателя. Кроме того, его можно использовать в качестве предиктора отказа двигателя в будущем. Используя испытательную машину типа Baker или Electrom, технические специалисты могут определить, показывает ли двигатель явные признаки короткого замыкания проводов двигателя и / или нарушения изоляции проводов, которые часто являются первыми признаками электрического пробоя.Интенсивное использование, ошибки изготовления или перемотки, а также химические отложения могут привести к износу изоляции или обмоток двигателя. Применяя импульс напряжения (скачок) к каждому набору обмоток двигателя, чтобы изолировать индивидуальную производительность, технические специалисты могут легко оценить и смягчить проблемы, прежде чем они станут серьезными.

    Тест Меггера

    Измеритель сопротивления изоляции мегомметр («мегомметр») проверяет общие характеристики изоляции различных инструментов, двигателей, приборов, катушечных кабелей, конденсаторов и практически любого электрического оборудования или высокопроизводительной проводки.Подавая высокое напряжение на систему в течение заданного периода времени и измеряя ток утечки через изоляцию, тест Megger может выявить характер износа и повреждений, позволяя техническим специалистам и операторам решать проблемы технического обслуживания до того, как проблема станет действительно ужасной и серьезной. может произойти. Из-за сложной природы оборудования и высокого напряжения тест Megger должен проводиться с особой осторожностью и осторожностью, чтобы предотвратить повреждение персонала и оборудования.

    Испытание на падение напряжения

    Пожалуй, самый простой для проведения тест, но при этом потенциально наиболее ценный, испытание на падение напряжения позволяет просто оценить качество и эффективность работы схемы двигателя.Используя цифровой вольтметр (DVM) и базовую нагрузку, DVM может измерять находящееся под напряжением соединение на предмет потенциального падения напряжения в цепи под нагрузкой. Из-за того, что электрический ток будет образовывать дугу на пути наименьшего сопротивления, любой избыточный ток будет естественным образом течь к DVM, создавая таким образом показания. Падение напряжения часто указывает на необходимость чистки, технического обслуживания и текущего ремонта.

    Тест на потери в сердечнике

    Наконец, тест без сердечника показывает разницу между входной и выходной мощностью двигателя.В то время как двигатели по своей сути испытывают небольшие потери энергии, повышенные потери мощности могут быть симптомом более серьезной проблемы — физического повреждения, перегрева или неэффективной намотки или перемотки. В таких ситуациях проверка потерь в сердечнике может помочь выявить ремонтируемые проблемы до того, как они станут критическими. Кроме того, этот тест может определить, нуждается ли двигатель в полной замене до того, как он полностью перестанет работать, что потенциально избавит предприятия от незапланированных простоев.

    Если хотите узнать больше, свяжитесь со специалистом ACD !

    Вас также может заинтересовать:

    Как проверить двигатель с помощью Megger?

    Измерители изоляции или мегомметры — это приборы, используемые для измерения электрической изоляции при высоком напряжении.Название этого прибора, мегомметры, происходит от измерения изоляции кабелей, трансформаторов, изоляторов и т. Д., Выраженной в мегомах (МОм).

    Мегомметр или мегомметр — это измерительный инструмент, который анализирует высокое электрическое сопротивление.

    Цель измерения сопротивления изоляции

    Измерение сопротивления обмоток двигателя позволяет выявить износ из-за погодных условий, коррозию, грязь, влажность и чрезмерную вибрацию до того, как двигатель выйдет из строя.

    Существуют очень четкие ограничения на возможность проверки сопротивления изоляции только для оценки рабочего состояния электродвигателя. Следует позаботиться о том, чтобы между изоляционной системой и кожухом машины оставался свободный путь.

    Как проверить двигатель с помощью Megger?

    Для проведения этих измерений необходимо выполнить следующее:

    Отключите двигатель от источника питания и подключите мегомметр между обмотками.

    Создайте безопасную рабочую зону, чтобы не допустить неуполномоченного персонала к мегомметру, так как он будет подавать высокое напряжение. Неправильное использование мегомметра может привести к повреждению частей оборудования и травмам пользователей.

    Используйте стандартный мультиметр для проверки межфазного сопротивления на всех трех фазах.

    1. Все показания должны быть примерно одинаковыми и будут варьироваться в зависимости от размера и типа двигателя.

    2. Если прибором обнаружено полное короткое замыкание (0 Ом) или перегрузка (OL), возможно, двигатель неисправен.

    Для измерения высокого сопротивления подайте высокое напряжение (до двукратного рабочего напряжения). Например, на двигатель 480 В подайте 1000 В.

    Измеряйте значения в МОмах.

    Для двигателя с номиналом 240–480 В следует отметить, что разные компании имеют разные минимальные допуски на сопротивление изоляции в используемом оборудовании, в пределах от 1 до 10 МОм. Сопротивление изоляции в новом оборудовании должно быть намного выше — от 100 до 200 МОм.

    Поскольку прочность изоляции зависит от температуры и влажности, вам может потребоваться выполнить несколько измерений сопротивления в течение некоторого времени, чтобы получить стабильный результат.

    • Поместите один вывод мегомметра на клемму или провод заземления, а другой вывод — на один из фазных проводов или клемм.
    • Пресс-тест мегомметра.
    • Очень высокое значение сопротивления (более 10 МОм) указывает на хорошую изоляцию двигателя.
    • При необходимости рекомендуется проконсультироваться с руководством пользователя производителя двигателя.
    • Повторите шаги с двумя другими фазами.

    Профилактическое обслуживание

    Периодическое измерение сопротивления изоляции покажет состояние двигателей и необходимость их замены или модернизации.

    Если вам понравилась эта статья, то подпишитесь на наш канал YouTube для видеоуроков по КИП, электрике, ПЛК и SCADA.

    Вы также можете подписаться на нас в Facebook и Twitter, чтобы получать ежедневные обновления.

    Читать дальше:

    Об авторе

    Инженер по реализации проекта в Инженеры и консультанты Tree-Tech | + сообщения

    Проницательный профессионал с 25-летним стажем работы инженером по КИПиА начал карьеру в целлюлозно-бумажной промышленности. Со временем был переведен на электростанцию, установку целлюлозы, химические заводы (сульфид углерода, Clo2 и серную кислоту), нефть и газ (разведка и добыча).

    Как проверить электродвигатель: методы, часть 2

    В части 1 книги «Как проверить электродвигатель» мы говорили о важности тестирования и различных типах тестов, которые вы можете выполнять.Во второй части мы поговорим об этих тестах и ​​о том, как можно эффективно использовать тестовые данные.

    Проверка тока вала

    Если вы подозреваете, что подшипники двигателя получили электрическое повреждение, вам, вероятно, потребуется выполнить проверку тока на валу .

    Итак, как подшипники могут получить электрическое повреждение? Когда между двигателями и обмотками существует емкостная связь, она может создавать напряжение на валу, которое может сниматься через подшипники , двигателя.Когда это происходит, остаются поверхностные повреждения, такие как точечная коррозия, бороздки и кратеры. Этот тип повреждения сокращает срок службы подшипников двигателя и может привести к его преждевременному выходу из строя.

    Вы можете обнаруживать и измерять напряжение на валу (и возникающие из-за этого токи в подшипниках) либо с помощью осциллографа со специальными пробниками напряжения, либо с помощью тестера напряжения на валу, такого как прибор Aegis . Если вам интересно, почему вы не можете использовать мультиметр, это потому, что напряжения возникают слишком быстро, чтобы он мог их уловить.Осциллограф, с другой стороны, позволяет вам наблюдать эти изменения с течением времени, несмотря на это.

    Испытание ступенчатого напряжения

    В предыдущем посте о тестировании электродвигателей мы обсудили тест Hipot и то, как вы можете использовать его для проверки слабых мест изоляции. Тест ступенчатого напряжения служит той же цели, что и тест высокого напряжения, но предоставляет гораздо больше информации.

    В этом тесте вы постепенно увеличиваете напряжение, измеряя и записывая ток утечки.Затем вы наносите на график полученные данные, и если они линейны, то серьезных проблем нет. Нелинейный график токов утечки и напряжения указывает на наличие проблемы с изоляцией. Проблема будет в том напряжении, при котором происходит скачок тока утечки.

    Тест мегомметра

    Тест Megger оценивает изоляционные характеристики электродвигателей. Термин «мегомметр» происходит от измеряемых им уровней сопротивления в мегаомах. Тест Megger требует использования специализированного прибора, который упоминается его торговым наименованием Megger.Прибор Megger может измерять уровни сопротивления при очень высоком напряжении.

    Megger работает, подавая высокое напряжение в течение определенного периода времени, когда двигатель отключен. В течение этого времени он измеряет утечку тока через изоляцию с точки зрения сопротивления. Обратите внимание, что вам нужно будет выключить двигатель и отсоединить его от всего, что не входит в тест. Кроме того, вы должны позаботиться о том, чтобы не повредить двигатель или себя из-за высокого напряжения.

    Инфракрасная термография

    Не все методы испытаний электродвигателей связаны с электричеством: некоторые из них: visual . Одним из примеров этого может быть инфракрасная термография . Термография — это бесконтактный онлайн-метод получения тепловых данных во время работы двигателя. Одним из ключевых преимуществ этого подхода к тестированию является то, что он не мешает нормальной работе. Это означает, что вы можете собирать данные, пока двигатель работает под нормальной нагрузкой.

    Для выполнения термографических тестов вам понадобится инфракрасная камера.Инфракрасная камера фиксирует изображения, которые предоставляют данные о температурном профиле двигателя, включая горячие точки и тепловые характеристики. Необычные горячие точки или области, где вы заметили значительные изменения температуры, могут привести к таким проблемам, как ухудшение или отказ изоляции, недостаточный воздушный поток и нестабильное напряжение.

    Усиление движения

    Усиление движения измеряет и записывает движение, которое не может быть обнаружено человеческим глазом. Движение фиксируется с помощью технологии видеокамеры, которая измеряет смещения с высочайшей точностью.Затем программное обеспечение используется для анализа и масштабирования данных смещения для использования в визуализациях и графиках. К этим визуализациям прилагаются видеоролики, которые воспроизводят движение в увеличенном масштабе, чтобы его было легче увидеть. Пример такого видео ниже показывает использование системы IRIS M от RDI Technologies.

    Данные усиления движения не только помогают увидеть, где может происходить нежелательное движение, но и помогают понять различные компоненты и взаимосвязи, связанные с движением.

    Что делать с данными испытаний электродвигателя

    Тестовые данные полезны не только для поиска и устранения неисправностей. Данные испытаний являются неотъемлемой частью любой программы профилактического обслуживания на основе состояния или . Когда вы начнете собирать данные с течением времени, вы сможете сформировать базовый уровень для моторных свойств, поведения и производительности. С помощью этой информации вы можете сказать, когда двигатель нуждается в обслуживании или у него возникают новые проблемы, которые вам необходимо решить.

    Когда вы добавляете излишки двигателей в график испытаний, любой двигатель, который вам нужно вытащить для обслуживания или ремонта, можно заменить с гораздо меньшим временем простоя.

    Со временем разумное использование данных тестирования приведет к сокращению времени простоя, увеличению среднего наработки на отказ, снижению затрат на M&O и гораздо более высокой производительности двигателей, находящихся под вашим контролем.

    Заключение

    Тестирование электродвигателей — важная часть поддержания работы электродвигателей. Хотя мы не рассмотрели все возможные тесты, которые могут вам понадобиться, эти два сообщения должны были стать для вас хорошей отправной точкой.И помните: тестирование важно не только для устранения неполадок.

    Автор и контактная информация: Стив Мацциотта ( [email protected] ) 440-429-0656

    Можно ли проверить электродвигатель мультиметром? — AnswersToAll

    Можно ли проверить электродвигатель мультиметром?

    Проверьте обмотки двигателя с помощью мультиметра. Для начала установите мультиметр на показание сопротивления, а затем проверьте провода и клеммы двигателя.Чтобы проверить двигатель на замыкание на массу, вам необходимо установить мультиметр на сопротивление и отключить двигатель от источника питания. Затем осмотрите каждый провод и ищите бесконечные показания.

    Какое значение мегомметра приемлемо для двигателя?

    Можно сформулировать правило: сопротивление изоляции должно составлять приблизительно один МОм на каждые 1000 вольт рабочего напряжения с минимальным значением в один МОм. Например, двигатель, рассчитанный на 2400 вольт, должен иметь минимальное сопротивление изоляции 2.4 МОм.

    Как проверить мегомметр?

    Для проверки изоляции мегомметры используют высоковольтный слаботочный заряд постоянного тока, который измеряет сопротивление внутри проводов и обмоток двигателя для выявления утечки тока и неисправной или поврежденной изоляции. Это называется тестом мегомметра.

    Как проверить двигатель на 12 В с помощью мультиметра?

    Прикоснитесь красным отрицательным (-) проводом вольтметра к красной отрицательной клемме аккумулятора. Одновременно прикоснитесь черным положительным (+) проводом вольтметра к черной положительной клемме аккумулятора.Прочтите показания вольтметра. Полностью заряженный автомобильный аккумулятор должен показывать 12,6 вольт при комнатной температуре.

    Можно ли использовать мультиметр как мегомметр?

    Нет, не понимаешь. Megger обычно производит 500_1000 В постоянного тока на своих клеммах, а затем определяет ток утечки через испытательные щупы. Мультиметры предназначены только для измерений и не генерируют такие высокие напряжения.

    Как узнать, что трехфазный двигатель неисправен?

    С помощью мультиметра проверьте целостность обмотки двигателя от фазы к фазе (U — V, V — W, W — U).Каждая фаза должна иметь непрерывность, если обмотка в порядке. Если какая-либо конкретная фаза не проходит проверку целостности, вероятно, ваш двигатель сгорел.

    Как определить, что мотор 12v плохой?

    Если счетчик по-прежнему показывает обрыв цепи после вращения вала, возможно, проводящие щетки неисправны.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *