Как выбрать конденсатор для электродвигателя: Как подобрать нужный конденсатор

Содержание

Как подобрать конденсатор для однофазного двигателя таблица

Расчет конденсаторов для работы трехфазного асинхронного двигателя в однофазном режиме

Для включения трехфазного электродвигателя (что такое электродвигатель ➠ ) в однофазную сеть обмотки статора могут быть соединены в звезду или треугольник.

Напряжение сети подводят к началам двух фаз. К началу третьей фазы и одному из зажимов сети присоединяют рабочий конденсатор 1 и отключаемый (пусковой) конденсатор 2, который необходим для увеличения пускового момента.

После пуска двигателя конденсатор 2 отключают.

Рабочую емкость конденсаторного двигателя для частоты 50 Гц определяют по формулам:

где Ср — рабочая емкость при номинальной нагрузке, мкФ;
Iном — номинальный ток фазы двигателя, А;
U — напряжение сети, В.

Нагрузка двигателя с конденсатором не должна превышать 65—85% номинальной мощности, указанной на щитке трехфазного двигателя.

Если пуск двигателя происходит без нагрузки, то пусковая емкость не требуется — рабочая емкость будет в то же время пусковой. В этом случае схема включения упрощается.

При пуске двигателя под нагрузкой, близкой к номинальному моменту необходимо иметь пусковую емкость Сп = (2,5 ÷ 3) Ср .

Выбор конденсаторов по номинальному напряжению производят по соотношениям:

где Uк и U — напряжения на конденсаторе и в сети.

Основные технические данные некоторых конденсаторов приведены в таблице.

Если трехфазный электродвигатель, включенный в однофазную сеть, не достигает номинальной частоты вращения, а застревает на малой скорости, следует увеличить сопротивление клетки ротора проточкой короткозамыкающих колец или увеличить воздушный зазор шлифовкой ротора на 15—20%.

В том случае, если конденсаторы отсутствуют, можно использовать резисторы, которые включаются по тем же схемам, что и при конденсаторном пуске. Резисторы включаются вместо пусковых конденсаторов (рабочие конденсаторы отсутствуют).

Сопротивление (Ом) резистора может быть определено по формуле

где R — сопротивление резистора;
κ и I — кратность пускового тока и линейный ток в трехфазном режиме.

Пример расчета рабочей емкости конденсатора для двигателя

Определить рабочую емкость для двигателя АО 31/2, 0.6 кВт, 127/220 В, 4.2/2.4 А, если двигатель включен по схеме, изображенной на рис. а, а напряжение сети равно 220 В. Пуск двигателя без нагрузки.

1. Рабочая емкость

2. Напряжение на конденсаторе при выбранной схеме

По таблице выбираем три конденсатора МБГО-2 по 10 мкФ каждый с рабочим напряжением 300 В. Конденсаторы включать параллельно.

Источник: В.И. Дьяков. Типовые расчеты по электрооборудованию.

Видео о том, как подключить электродвигатель на 220 вольт:

Помощь студентам

Однофазный асинхронный двигатель, схема подключения и запуска

Работа асинхронных электрических двигателей основывается на создании вращающегося магнитного поля, приводящего в движение вал. Ключевым моментом является пространственное и временное смещение обмоток статора по отношению друг к другу. В однофазных асинхронных электродвигателях для создания необходимого сдвига по фазе используется последовательное включение в цепь фазозамещающего элемента, такого как, например, конденсатор.

Отличие от трехфазных двигателей

Использование асинхронных электродвигателей в чистом виде при стандартном подключении возможно только в трехфазных сетях с напряжением в 380 вольт, которые используются, как правило, в промышленности, производственных цехах и других помещениях с мощным оборудованием и большим энергопотреблением. В конструкции таких машин питающие фазы создают на каждой обмотке магнитные поля со смещением по времени и расположению (120˚ относительно друг друга), в результате чего возникает результирующее магнитное поле. Его вращение приводит в движение ротор.

Однако нередко возникает необходимость подключения асинхронного двигателя в однофазную бытовую сеть с напряжением в 220 вольт (например в стиральных машинах). Если для подключения асинхронного двигателя будет использована не трехфазная сеть, а бытовая однофазная (то есть запитать через одну обмотку), он не заработает. Причиной тому переменный синусоидальный ток, протекающий через цепь. Он создает на обмотке пульсирующее поле, которое никак не может вращаться и, соответственно, двигать ротор. Для того, чтобы включить однофазный асинхронный двигатель необходимо:

  1. добавить на статор еще одну обмотку, расположив ее под 90˚ углом от той, к которой подключена фаза.
  2. для фазового смещения включить в цепь дополнительной обмотки фазосдвигающий элемент, которым чаще всего служит конденсатор.

Редко для сдвига по фазе создается бифилярная катушка. Для этого несколько витков пусковой обмотки мотаются в обратную сторону. Это лишь один из вариантов бифиляров, которые имеют несколько другую сферу применения, поэтому, чтобы изучить их принцип действия, следует обратиться к отдельной статье.

После подключения двух обмоток такой двигатель с конструкционной точки зрения является двухфазным, однако его принято называть однофазным из-за того что в качестве рабочей выступает лишь одна из них.

Схема подключения коллекторного электродвигателя в 220В

Схема подключения однофазного асинхронного двигателя (схема звезда)

Как это работает

Пуск двигателя с двумя расположенными подобным образом обмотками приведет к созданию токов на короткозамкнутом роторе и кругового магнитного поля в пространстве двигателя. В результате их взаимодействия между собой ротор приводится в движение. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем.

Несмотря на то, что функцию фаз определяет схема присоединения двигателя к сети, дополнительную обмотку нередко называют пусковой. Это обусловлено особенностью, на которой основывается действие однофазных асинхронных машин – крутящийся вал, имеющий вращающее магнитное поле, находясь во взаимодействии с пульсирующим магнитным полем может работать от одной рабочей фазы. Проще говоря, при некоторых условиях, не подсоединяя вторую фазу через конденсатор, мы могли бы запустить двигатель, раскрутив ротор вручную и поместив в статор. В реальных условиях для этого необходимо запустить двигатель с помощью пусковой обмотки (для смещения по фазе), а потом разорвать цепь, идущую через конденсатор. Несмотря на то, что поле на рабочей фазе пульсирующее, оно движется относительно ротора и, следовательно, наводит электродвижущую силу, свой магнитный поток и силу тока.

Основные схемы подключения

В качестве фазозамещающего элемента для подключения однофазного асинхронного двигателя можно использовать разные электромеханические элементы (катушка индуктивности, активный резистор и др.), однако конденсатор обеспечивает наилучший пусковой эффект, благодаря чему и применяется для этого чаще всего.

однофазный асинхронный двигатель и конденсатор

Различают три основные способа запуска однофазного асинхронного двигателя через:

  • рабочий;
  • пусковой;
  • рабочий и пусковой конденсатор.

В большинстве случаев применяется схема с пусковым конденсатором. Это связано с тем, что она используется как пускатель и работает только во время включения двигателя. Дальнейшее вращение ротора обеспечивается за счет пульсирующего магнитного поля рабочей фазы, как уже было описано в предыдущем абзаце. Для замыкания цепи пусковой цепи зачастую используют реле или кнопку.

Поскольку обмотка пусковой фазы используется кратковременно, она не рассчитана на большие нагрузки, и изготавливается из более тонкой проволоки. Для предотвращения выхода её из строя в конструкцию двигателей включают термореле (размыкает цепь после нагрева до установленной температуры) или центробежный выключатель (отключает пусковую обмотку после разгона вала двигателя).

Таким путем достигаются отличные пусковые характеристики. Однако данная схема обладает одним существенным недостатком – магнитное поле внутри двигателя, подключенного к однофазной сети, имеет не круговую, а эллиптическую форму. Это увеличивает потери при преобразовании электрической энергии в механическую и, как следствие, снижает КПД.

Схема с рабочим конденсатором не предусматривает отключение дополнительной обмотки после запуска и разгона двигателя. В данном случае конденсатор позволяет компенсировать потери энергии, что приводит к закономерному увеличению КПД. Однако в пользу эффективности проходится жертвовать пусковыми характеристиками.

Для работы схемы необходимо подбирать элемент с определенной ёмкостью, рассчитанной с учетом тока нагрузки. Неподходящий по емкости конденсатор приведет к тому, что вращающееся магнитное поле будет принимать эллиптическую форму.

Своеобразной «золотой серединой» является схема подключения с использованием обоих конденсаторов – и пускового, и рабочего. При подключении двигателя таким способом его пусковые и рабочие характеристики принимают средние значения относительно описанных выше схем.

На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации – вторая, с рабочим.

Другие способы

При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.

С экранированными полюсами и расщепленной фазой

В конструкции такого двигателя используется короткозамкнутая дополнительная обмотка, а на статоре присутствуют два полюса. Аксиальный паз делит каждый из них на две несимметричные половины, на меньшей из которых располагается короткозамкнутый виток.

После включения двигателя в электрическую сеть пульсирующий магнитный поток разделяется на 2 части. Одна из них движется через экранированную часть полюса. В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Благодаря индуктивности появляется электродвижущая сила и сдвиг магнитных потоков по фазе и времени.

Витки короткозамкнутой обмотки приводят к существенным потерям энергии, что и является главным недостатком схемы, однако она относительно часто используется в климатических и нагревательных приборах с вентилятором.

С асимметричным магнитопроводом статора

Особенностью двигателей с данной конструкцией заключается в несимметричной форме сердечника, из-за чего появляются явно выраженные полюса. Для работы схемы необходим короткозамкнутый ротор и обмотка в виде беличьей клетки. Характерным отличием этой конструкции является отсутствие необходимости в фазовом смещении. Улучшенный пуск двигателя осуществляется благодаря оснащению его магнитными шунтами.

Среди недостатков этих моделей асинхронных электродвигателей выделяют низкий КПД, слабый пусковой момент, отсутствие реверса и сложность обслуживания магнитных шунтов. Но, несмотря на это, они имеют широкое применение в производстве бытовой техники.

Подбор конденсатора

Перед тем как подключить однофазный электродвигатель, необходимо произвести расчет необходимой ёмкости конденсатора. Это можно сделать самостоятельно или воспользоваться онлайн-калькуляторами. Как правило, для рабочего конденсатора на 1 кВт мощности должно приходиться примерно 0,7-0,8 мкФ емкости, и около 1,7-2 мкФ – для пускового. Стоит отметить, что напряжение последнего должно составлять не менее 400 В. Эта необходимость обусловлена возникновением 300-600 вольтного всплеска напряжения при старте и останове двигателя.

Керамический и электролитический конденсатор

Ввиду своих функциональных особенностей однофазные электродвигатели находят широкое применение в бытовой технике: пылесосах, холодильниках, газонокосилках и других приборов, для работы которых достаточно частоты вращения двигателя до 3000 об/мин. Большей скорости, при подключении к стандартной сети с частотой тока в 50 Гц, невозможно. Для развития большей скорости используют коллекторные однофазные двигатели.

Поделиться с друзьями:

Схема подключения и расчёт пускового конденсатора

Выход из строя конденсаторов в цепи компрессора кондиционеров случается не так уж и редко. А зачем вообще нужен конденсатор и для чего он там стоит?

Бытовые кондиционеры небольшой мощности в основном питаются от однофазной сети 220 В. Самые распространённые двигатели которые применяют в кондиционерах такой мощности- асинхронные со вспомогательной обмоткой, их называют двухфазные электродвигатели или конденсаторные .

В таких двигателях две обмотки намотаны так, что их магнитные полюсы расположены под углом 90 град. Эти обмотки отличаются друг от друга количеством витков и номинальными токами, ну соответственно и внутренним сопротивлением. Но при этом они рассчитаны так что при работе они имеют одинаковую мощность.

В цепь одной из этих обмоток, её производители обозначают как стартовую(пусковую), включают рабочий конденсатор, который постоянно находится в цепи. Этот конденсатор ещё называют фазосдвигающим, так как он сдвигает фазу и создаёт круговое вращающееся магнитное поле. Рабочая или основная обмотка подключена напрямую к сети.

Схема подключения пускового и рабочего конденсатора

Рабочий конденсатор постоянно включён в цепь обмотки через него протекает ток равный току в рабочей обмотке. Пусковой конденсатор подключается на время запуска компрессора – не более 3 секунд (в современных кондиционерах используется только рабочий конденсатор, пусковой не используется)

Расчёт ёмкости и напряжения рабочего конденсатора

Расчёт сводится к подбору такой емкости, чтобы при номинальной нагрузке было обеспечено круговое магнитное поле, так как при значении ниже или выше номинального магнитное поле изменяет форму на эллиптическое, а это ухудшает рабочие характеристки двигателя и снижает пусковой момент. В инженерных справочниках приведена формула для расчёта ёмкости конденсатора:

I и sinφ –ток и сдвиг фаз между напряжением и током в цепи при вращающемся магнтном поле без конденсатора

f- частота переменного тока

U – напряжение питания

n- коэффициент трансформации обмоток. определяется как соотношение витков обмоток с конденсатором и без него.

Напряжение на конденсаторе рассчитывается по формуле

Uc -рабочее напряжение конденсатора

U – напряжение питания двигателя

n – коэффициент трансформации обмоток

Из формулы видно, что рабочее напряжение фазосдвигающего конденсатора выше напряжения питания двигателя.

В пособиях по расчёту приводят приближённое вычисление – 70-80 мкФ ёмкости конденсатора на 1 кВт мощности электродвигателя, а номинал напряжения конденсатора для сети 220 В обычно ставят – 450 В.

Также параллельно к рабочему конденсатору подключают пусковой конденсатор на время пуска, примерно на три секунды, после чего срабатывает реле и отключает пусковой конденсатор. В настоящее время в кондиционерах схемы с дополнительным пусковым конденсатором не применяют.

В более мощных кондиционерах используют компрессоры с трёхфазными асинхронными двигателями, пусковые и рабочие конденсаторы для таких двигателей не требуются.

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

  • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
  • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
  • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т.е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.

Наши сети электропитания созданы трехфазными. Потому что генераторы, работающие на электростанциях, имеют трехфазные обмотки и вырабатывают три синусоидальных напряжения, сдвинутых по фазе относительно друг друга на 120°.

Но мы чаще всего пользуемся всего одной фазой — проводим себе один фазный провод из трех и все к нему подключаем. Только в технике нашей часто встречаются электродвигатели, и они по природе своей трехфазны. Ну а фаза от фазы чем отличается? Только сдвигом во времени. Сдвига такого очень просто добиться, включив в цепь питания реактивные элементы: емкости или индуктивности.

Но ведь обмотка на статоре сама и является индуктивностью. Поэтому остается добавить к двигателю снаружи только емкость, конденсатор, а обмотки подключить так, чтобы одна из них в другой сдвигала фазу в одну сторону, а конденсатор в третьей делал то же самое, только в другую. И получатся те же самые три фазы, только «вынутые» из одной фазы питающих проводов.

Последнее обстоятельство означает, что мы нагружаем трехфазным двигателем только одну из фаз приходящего питания. Разумеется, это вносит дисбаланс в потребление энергии. Поэтому все-таки лучше, когда трехфазный двигатель питается трехфазным напряжением, а построить цепь его питания от одной приходящей фазы хорошо, только если мощность двигателя не особо велика.

Включение трехфазного электродвигателя в однофазную сеть питания

Обмотки электродвигателя соединяют двумя способами: звезда (Y) или треугольник (Δ).

При подключении трехфазного двигателя к однофазной сети предпочтительнее соединение типа треугольник. На шильдике двигателя об этом есть информация, и когда там обозначено Y — звезда, самым лучшим вариантом было бы открыть его кожух, найти концы обмоток и правильно переключить обмотки в треугольник. Иначе потери мощности будут слишком большими.

Включение двигателя на одну фазу питающей сети требует создания из нее и двух остальных. Это можно сделать по следующей схеме

При запуске двигателя в работу в самом начале требуется высокий стартовый ток, поэтому емкости рабочего конденсатора обычно не хватает. Чтобы «ему помочь», используют специальный стартовый конденсатор, который подключается к рабочему конденсатору параллельно. В самом простом случае (невысокая мощность двигателя) его выбирают точно таким же, как и рабочий. Но для этой цели выпускаются и специально стартовые конденсаторы, на которых так и написано: starting.

Стартовый конденсатор должен быть включен в работу только во время пуска и разгона двигателя до рабочей мощности. После этого его отключают. Используется кнопочный выключатель. Или двойной: одной клавишей включается сам двигатель и кнопка фиксируется во включенном положении, кнопка же, замыкающая цепь рабочего конденсатора, каждый раз размыкается.

Как подобрать конденсатор

Конденсаторы для трехфазного двигателя нужны достаточно большой емкости — речь идет о десятках и сотнях микрофарад. Однако конденсаторы электролитические для этой цели не годятся. Они требуют подключения однополярного, то есть специально для них придется городить выпрямитель из диодов и сопротивлений. Кроме того, со временем в электролитических конденсаторах высыхает электролит и они теряют емкость. Поэтому если будете ставить такой на двигатель, необходимо делать на это скидку, а не верить тому, что на них написано. Ну и еще одно за ними числится: электролитические конденсаторы имеют свойство иногда взрываться.

Поэтому задачу, как выбрать конденсатор под трехфазный двигатель, часто решают в несколько этапов

Сначала подбираем приблизительно. Надо рассчитать емкость конденсатора по простейшему соотношению как 7 мкФ на каждые 100 ватт мощности. То есть 700 ватт дает нам 49 мкФ первоначально. Емкость выбираемого пускового конденсатора берется в диапазоне 1–3-кратного превышения емкости рабочего конденсатора. Выберите 2*50 = 100 мкФ — будет само то. Ну, для начала можно взять побольше, потом подобрать конденсаторы, ориентируясь на работу двигателя. От емкости конденсаторов зависит реальная мощность движка. Если ее мало, двигатель при тех же оборотах потеряет мощность (обороты не зависят от мощности, а только от частоты напряжения), так как ему будет не хватать тока. При чрезмерной емкости конденсаторов у него будет перегрев от избытка тока.

Нормальная работа двигателя, без шума и рывков — это неплохой критерий правильно выбранного конденсатора. Но для большей точности можно сделать расчет конденсаторов по формулам, а такую проверку оставить на потом в качестве окончательного подтверждения успешности результатов подбора конденсаторов.

Однако надо все-таки подключить конденсаторы.

Подключение пускового и рабочего конденсаторов для трехфазного электромотора

Вот оно соответствие всех нужных приборов элементам схемы

Теперь выполним подключение, внимательно разобравшись с проводами

Так можно подключить двигатель и предварительно, используя неточную прикидку, и окончательно, когда будут подобраны оптимальные значения.

Подбор можно сделать и экспериментально, имея несколько конденсаторов разных емкостей. Если их присоединять параллельно друг другу, то суммарная емкость будет увеличиваться, при этом нужно смотреть, как ведет себя двигатель. Как только он станет работать ровно и без перенагрузки, значит, емкость находится где-то в районе оптимума. После этого приобретается конденсатор, по емкости равный этой сумме емкостей испытываемых конденсаторов, включенных параллельно. Однако можно при таком подборе измерять фактический потребляемый ток, используя измерительные токовые клещи, а провести расчет емкости конденсатора по формулам.

Как рассчитать емкость рабочего конденсатора

Для двух соединений обмоток берутся несколько разные соотношения.

В формуле введен коэффициент соединения Кс, который для треугольника равен 4800, а для звезды — 2800.

Где значения Р (мощность), U (напряжение 220 В), η (КПД двигателя, в процентном значении деленном на 100) и cosϕ (коэффициент мощности) берутся с шильдика двигателя.

Вычислить значение можно с помощью обычного калькулятора или воспользовавшись чем-то вроде подобной вычислительной таблицы. В ней нужно подставить значения параметров двигателя (желтые поля), результат получается в зеленых полях в микрофарадах

Однако не всегда есть уверенность, что параметры работы двигателя соответствуют тому, что написано на шильдике. В этом случае нужно измерить реальный ток измерительными клещами и воспользоваться формулой Cр = Кс*I/U.

Определение емкостей фазосдвигающих конденсаторов. Рабочий и пусковой конденсаторы

Самый простой способ включения трехфазного электродвигателя в однофазную сеть, это с помощью одного фазосдвигающего конденсатора. В качестве такого конденсатора нужно использовать только неполярные конденсаторы, а не полевые (электролитические).

Фазосдвигающий конденсатор.

При подключении трехфазного электродвигателя к трехфазной сети пуск обеспечивается за счет переменного магнитного поля. А при подключении двигателя к однофазной сети достаточный сдвиг магнитного поля не создается, поэтому нужно использовать фазосдвигающий конденсатор.

Емкость фазосдвигающего конденсатора нужно рассчитать так:

  • для соединения «треугольником»: Сф=4800•I/U;
  • для соединения «звездой»: Сф=2800•I/U.

Об этих типах соединения можно подробнее ознакомиться тут: 

В этих формулах: Сф – емкость фазосдвигающего конденсатора, мкФ; I– номинальный ток, А; U– напряжение сети, В.

Номинальный ток, тоже можно высчитать, так: I=P/(1,73•U•n•cosф).

В этой формуле такие сокращения: P – мощность электродвигателя, обязательно в кВт; cosф – коэффициент мощности; n – КПД двигателя.

Коэффициент мощности или смещения тока к напряжению, а также КПД электродвигателя указывается в паспорте или в табличке (шильдике) на двигателе. Значения эти двух показателей часто бывают одинаковыми и чаще всего равны 0,8-0,9.

Грубо можно определить емкость фазосдвигающего конденсатора так: Сф=70•P. Получается так, что на каждые 100 Вт нужно по 7мкФ емкости конденсатора, но это не точно.

В конечном итоге правильность определения емкости конденсатора покажет работа электродвигателя. Если двигатель не будет запускаться, значит, емкости мало. В случае, когда двигатель при работе сильно нагревается, значит, емкости много.

Рабочий конденсатор.

Найденной по предложенным формулам емкости фазосдвигающего конденсатора достаточно только для пуска трехфазного электродвигателя, не нагруженного. То есть, когда на валу двигателя нет никаких механических передач.

Рассчитанный конденсатор будет обеспечивать работу электродвигателя и когда он выйдет на рабочие обороты, поэтому такой конденсатор еще называется рабочим.

Пусковой конденсатор.

Ранее было сказано, что ненагруженный электродвигатель, то есть небольшой вентилятор, шлифовальный станок можно запустить от одного фазосдвигающего конденсатора. А вот, запустить сверлильный станок, циркулярную пилу, водяной насос уже не получиться запустить от одного конденсатора.

Чтобы запустить нагруженный электродвигатель нужно к имеющемуся фазосдвигающему конденсатору кратковременно добавить емкости. А конкретно, нужно уже к подсоединенному рабочему конденсатору подключить параллельно еще один фазосдвигающий конденсатор. Но только на короткое время на 2 – 3 секунды. Потому что когда электродвигатель наберет высокие обороты, через обмотку, к торой подключены два фазосдвигающих конденсатора, будет протекать завышенный ток. Большой ток нагреет обмотку электродвигателя, и разрушит ее изоляцию.

Подключенный дополнительно и параллельно конденсатор к уже имеющемуся фазосдвигающему (рабочему) конденсатору называется пусковым.

Для слабонагруженных электродвигателей вентиляторов, циркулярных пил, сверлильных станков емкость пускового конденсатора выбирается равной емкости рабочего конденсатора.

Для нагруженных двигателей водяных насосов, циркулярных пил нужно выбирать емкость пускового конденсатора в два раза больше, чем у рабочего.

Очень удобно, для точного подбора нужных емкостей фазосдвигающих конденсаторов (рабочего и пускового) собрать батарею параллельно соединенных конденсаторов. Конденсаторы соединенные вместе нужно взять небольшими емкостями 2, 4, 10, 15 мкФ.

При выборе по напряжению любого конденсатора нужно пользоваться универсальным правилом. Напряжение, на которое конденсатор рассчитан должно быть в 1,5 раз выше того напряжения, куда он будет подключен.

Конденсатор для запуска двигателя — советы электрика

Конденсатор для электродвигателя: советы по подбору и правила подключения пускового конденсатора

Хорошо, если можно подключить двигатель к необходимому типу напряжения.

А, если такой возможности нет? Это становится головной болью, поскольку не все знают, как использовать трехфазную версию двигателя на основе однофазных сетей.

Такая проблема появляется в различных случаях, может быть, необходимо использовать двигатель для наждачного или сверлильного станка — помогут конденсаторы. Но они бывают множества видов, и не каждый сможет в них разобраться.

Чтобы вы получили представление об их функциональности далее разберемся, как выбрать конденсатор для электродвигателя. В первую очередь рекомендуем определиться с правильной емкостью этого вспомогательного устройства, и способами ее точного расчета.

А, что такое конденсатор?

Его устройство отличается простотой и надежностью — внутри две параллельные пластины в пространстве между ними установлен диэлектрик необходимый для защиты от поляризации в виде заряда, создающегося проводниками. Но различные виды конденсаторов для электродвигателей отличаются поэтому легко ошибиться в момент приобретения.

Рассмотрим их по отдельности:

Полярные версии не подходят для подключения на основе переменного напряжения, поскольку увеличивается опасность исчезновения диэлектрика, что неминуемо приведет к перегреву и возникновению аварийной ситуации — возгоранию либо появлению короткого замыкания.

Обратите внимание

Электролитические часто называются оксидными считаются лучшими для работы с электродвигателями на основе низкой частоты, поскольку их максимальная емкость, может, достигать 100000 МКФ. Это возможно за счет тонкого вида оксидной пленки, входящей в конструкцию в качестве электрода.

Теперь ознакомьтесь с фото конденсаторов для электродвигателя — это поможет отличить их по внешнему виду. Такая информация пригодится во время покупки, и поможет приобрести необходимое устройство, поскольку все они похожи. Но помощь продавца тоже, может, оказаться полезной — стоит воспользоваться его знаниями, если не хватает своих.

Если необходим конденсатор для работы с трехфазным электродвигателем

Необходимо правильно рассчитать емкость конденсатора электродвигателя, что можно сделать по сложной формуле или с помощью упрощенного способа. Для этого уточняется мощность электродвигателя на каждые 100 Ватт потребуется около 7-8 мкФ от емкости конденсатора.

Если запуск двигателя, может, происходить лишь на основе максимальной нагрузки придется добавить пусковой конденсатор. Он отличается кратковременностью работы, поскольку используется примерно 3 секунды до момента выхода на пик оборотов ротора.

Необходимо учитывать, что для него потребуется мощность увеличенная в 1,5, а емкость примерно в 2,5 — 3 раза, чем у сетевой версии конденсатора.

Если необходим конденсатор для работы с однофазным электродвигателем

Обычно различные конденсаторы для асинхронных электродвигателей используются для работы с напряжением в 220 В с учетом установки в однофазную сеть.

Но процесс их использования немного сложнее, поскольку трехфазные электродвигатели работают с помощью конструктивного подключения, а для однофазных версий потребуется обеспечить смещенный вращательный момент у ротора. Это обеспечивается с помощью увеличенного количества обмотки для запуска, а фаза смещается усилиями конденсатора.

В чем сложность выбора такого конденсатора?

В принципе большего отличия нет, но различные конденсаторы для асинхронных электродвигателей потребует другого расчета допустимого напряжения. Потребуется около 100 ватт для каждого мкФ емкости устройства.

И они отличаются доступными режимами работы электродвигателей:

  • Используется пусковой конденсатор и слой дополнительной обмотки (только для процесса пуска) тогда расчет емкости конденсатора — 70 мкФ для 1 кВт от мощности электродвигателя;
  • Используется рабочий вариант конденсатора с емкостью в 25 — 35 мкФ на основе дополнительной обмотки с постоянным подключением в процессе всей длительности работы устройства;
  • Применяется рабочий вариант конденсатора на основе параллельного подключения пусковой версии.

Но в любом случае необходимо отслеживать уровень разогревания элементов двигателя в процессе его эксплуатации. Если замечено перегревание тогда необходимо принять меры.

В случае с рабочим вариантом конденсатора рекомендуем уменьшить его емкость. Рекомендуем использовать конденсаторы, работающие на основе мощности в 450 или больше В, поскольку они считаются оптимальным вариантом.

Чтобы избежать неприятных моментов до подключения к электродвигателю рекомендуем убедится в работоспособности конденсатора с помощью мультиметра. В процессе создания необходимой связки с электродвигателем пользователь, может, создать полностью работоспособную схему.

Почти всегда выводы обмоток и конденсаторов находятся в клеммной части корпуса электродвигателя. За счет этого можно создать фактически любую модернизацию.

Так, чем отличается однофазный асинхронный вариант электродвигателя? Разберемся в этом подробно:

  • Его часто применяют для бытовых приборов;
  • Для его запуска используется дополнительная обмотка и потребуется элемент для сдвигания фазы — конденсатор;
  • Подключается на основе множества схем с помощью конденсатора;
  • Для улучшения пускового момента применяется пусковая версия конденсатора, а рабочие характеристики увеличиваются с помощью рабочего варианта конденсатора.

Теперь вы получили необходимую информацию и знаете, как подключить конденсатор к асинхронному двигателю чтобы обеспечить максимальную эффективность. А также у вас появились знания о конденсаторах и способах их применения.

Фото конденсаторов для электродвигателя

Источник: http://electrikmaster.ru/kondensator-dlya-elektrodvigatelya/

Пусковой конденсатор: отличия от рабочего и подключение электродвигателей

Асинхронный трехфазный двигатель можно подключить без особого ущерба к обычной однофазной электрической сети через конденсаторы. С их помощью обеспечивается запуск и достижение нужных режимов функционирования при такой системе питания. Различают рабочий и пусковой конденсаторы.

  • Отличия между ними
  • Способы присоединения
  • Условия работы

Они заключаются в их предназначении, ёмкости, способе присоединения, а также в условиях работы. Первое различие заключается в том, что рабочий (первый) конденсатор служит для сдвига фаз.

В результате между обмотками появляется вращающееся магнитное поле, необходимое для приведения в движение мотора, находящегося без механической нагрузки.

Такой электродвигатель стоит, например, в точильном станке.

Пусковой (второй) обеспечивает повышение стартового момента мотора, находящегося под механической нагрузкой, благодаря чему он более легко выходит на нужный режим.

Важно

Ресурсов одного рабочего может не хватить, из-за чего ротор двигателя просто не начнёт вращаться. Применение оправдано вместе со станками, подъёмными механизмами, насосами и подобными тяжёлыми приспособлениями.

А также можно использовать с более мощным трехфазным мотором, если рабочего не хватает для его надёжного запуска.

Способы присоединения

Первый конденсатор в самом распространённом случае подключается в разрыв одной из обмоток асинхронного электродвигателя, которая также часто называется «вспомогательной».

Другая присоединяется напрямую к электрической сети, а третья остаётся незадействованной. Тип этой схемы носит название «звезда». Есть также подключение в «треугольник».

Оно различается и по способу соединения, и по сложности.

Условия работы

Они различаются для каждого из конденсаторов. Поскольку первый из них постоянно присоединён к обмотке мотора, эта цепь образует собой элементарный колебательный контур.

Из-за этого в определённые моменты на её выводах образуется напряжение, превышающее входящее в два с половиной — три раза.

Это обстоятельство стоит учитывать при подборе, необходимо ориентироваться на детали, рассчитанные на 500—600 вольт.

Пусковые конденсаторы для электродвигателей — 220 В работают в других, менее жёстких условиях, в отличие от рабочих. Прикладываемое к этому ёмкостному элементу напряжение превышает основное примерно в 1,15 раза. Он присоединяется к цепям время от времени, что также положительно сказывается на условиях его работы, и значительно продлевает срок службы.

Наиболее часто применяются отечественные бумажные или маслонаполненные конденсаторы марок МБГО или МБГЧ. Их преимущество — это стойкость к высоким напряжениям переменного тока. Но есть и недостаток — большой размер. В качестве альтернативного решения допускается использование оксидных конденсаторов. Они подключаются не напрямую, а через диоды, по определённым схемам.

Обычные электролитические конденсаторы, применяемые в различных приборах, и рассчитанные на немалые рабочие напряжения, подойдут для асинхронных двигателей только в роли пусковых.

Связано это с тем, что через них проходит большая реактивная мощность ввиду малого сопротивления обмоток.

Подключение ёмкостных элементов с нарушениями или отклонениями от схемы приведёт к повреждению или закипанию электролита, способному причинить вред мотору и персоналу.

Таким образом, можно вывести из этого несколько советов, как отличить пусковой конденсатор от рабочего:

  • Первый из них играет вспомогательную роль. Он подключается параллельно рабочему на время запуска мотора — в течение нескольких секунд, чтобы облегчить старт.
  • Второй из них присоединён постоянно, обеспечивая необходимый сдвиг фаз, в результате которого трехфазный двигатель может работать от однофазной сети.

Источник: https://220v.guru/elementy-elektriki/kondensatory/otlichiya-puskovyh-kondensatorov-na-220v-ot-rabochih.html

Конденсатор для трехфазного двигателя

Конденсатор для трехфазного двигателя является ключевой комплектующей частью. Для работоспособности двигателя в однофазной сети необходимо правильно подобрать его тип с определенной емкостью.

В независимости от того, какой тип соединения используется, необходимо подобрать конденсатор для трехфазного двигателя, емкость которого будет соответствовать требованиям. Для этого можно произвести расчет при помощи формул. Таким образом, для соединения «звездой», при вычислении нужно применить следующую формулу:

В случае, если используется тип соединения «треугольником», нужно воспользоваться иной формулой:

Совет

Параметр силы тока необходимо вычислить формулой:
Чтобы узнать КПД, а также коэф. мощности, необходимо заглянуть в паспорт или же взять эти параметры с таблички, размещенной на двигателе. Как правило, эти значения колеблются в интервале от 0,8 до 0,9.

При применении типа соединения «треугольник» можно использовать упрощенную формулу: Ср=70*Р. Согласно этой формуле можно уверенно говорить о том, что, если Р = 200 кВт, емкость конденсатора должна быть в районе четырнадцати мкФ.

Узнать верно ли подобрана емкость конденсатора можно только при непосредственном запуске двигателя. В случае, если емкость больше, чем требуется, двигатель будет подвержен перегреву. В случае заниженного количественного показателя, двигатель не сможет функционировать на пределе возможностей, которые прописаны в паспорте.

Очень часто специалисты припаивают конденсатор с меньшей емкостью и, если двигатель не будет работать в нормальном рабочем режиме, его нужно менять на конденсатор с чуть большей емкостью.

Но если есть возможность провести замеры силы тока в используемой электросети и на выходе к конденсатору, лучше этой возможностью воспользоваться, потому, что это считается наиболее оптимальным вариантом для расчета количественного показателя емкости.

Для расчета пусковой емкости, в первую очередь учитываются требования, которые необходимы для пускового момента.

Если пуск производится без нагрузок, то конденсатор не нужен совсем, а это позволит упростить схему и сэкономить финансы.

Нагрузки можно уменьшить искусственно, например, сделать возможным изменение положения двигателя, чтобы уменьшить ременную передачу или установить для нее прижимной ролик.

Обратите внимание

Если же пуск осуществляется с нагрузкой, потребуется дополнительная пусковая емкость на момент старта работы. При увеличении емкости, пусковой момент поступательно растет и в определенный отрезок времени он достигает своего максимального значения, но после этого, если емкость будет продолжать увеличиваться, это приведет к абсолютно обратному результату и пусковой момент будет падать.

В случае старта работы двигателя с нагрузкой, которая эквивалентна номинальной, пусковая емкостная характеристика должна быть в два или в три раза больше, чем рабочая.

Но, при небольшой стартовой нагрузке, конденсатор может иметь низкий показатель емкости или же, как уже было ранее сказано, он может и вовсе не устанавливаться.

Учитывая то, пусковой конденсатор работает лишь в момент включения несколько мгновений, для установки можно выбрать недорогие, из серии электролитических, которые созданы специально для этих потребностей.

Как подобрать пусковой конденсатор для электродвигателя

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

  • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
  • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
  • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т.е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.

Время чтения: 2 минуты Нет времени?

Отправим материал вам на e-mail

Когда асинхронный двигатель подключается в однофазную сеть 220/230 В необходимо обеспечить сдвиг фаз в обмотках статора, имитирующий вращающееся магнитное поле. Это и приводит к вращению вала ротора электродвигателя, как в «родных» трехфазных сетях переменного тока. Для достижения этой цели в «не родных сетях» и служит конденсатор.

Подключение конденсатора к электродвигателю

Подбирать конденсатор следует очень внимательно, поэтому специально для читателей нашего онлайн-журнала был разработан удобный калькулятор с необходимыми пояснениями.

Калькулятор расчета емкости рабочего и пускового конденсатора

Пояснения к расчету

Схема соединения обычно отмечена на самом конденсаторе, и может обозначаться либо звёздой, либо треугольником. Как правило, это две разные формы, ёмкость которых рассчитывается, по- разному:

Схема подключения рабочего и пускового конденсатора при разных способах подключения обмоток Расчетные зависимости
Ср = 2800*I/U;
I = P/(√3*U*η*cosϕ)

Ср – емкость рабочего конденсатора

Ср = 4800*I/U;
I = P/(√3*U*η*cosϕ)

Ср – емкость рабочего конденсатора

Сп = 2,5*Ср, где Сп – емкость пускового конденсатора при любом способе подключения Расшифровка обозначений:

Ср – емкость рабочего конденсатора, мкФ
Сп – емкость пускового конденсатора, мкФ
I – ток, А
U – напряжение в сети, В
η – КПД двигателя в %, деленных на 100
cosϕ – коэффициент мощности

Полученные результаты расчета используются для подбора конденсаторов нужных номиналов. Номинала именно расчетного значения вряд ли можно будет найти, поэтому правила подбора следующие:

  • если расчетное значение точно попало в существующий номинал, то в этом случае повезло – берете именно такой.
  • если совпадения нет, то рекомендуется выбирать емкость ближайшего нижнего номинального значения. Выбирать выше не следует (особенно для рабочих конденсаторов), так как существует вероятность значительного возрастания рабочих токов и перегрева обмоток.
  • По напряжению конденсаторы обязательно подбираются с номиналом не менее, чем в 1,5 раза выше напряжения сети, поскольку в момент пуска напряжение на самом конденсаторе всегда повышенное. Например, для однофазного напряжения 220 В рабочее напряжение конденсатора должно быть не менее 360 В, а по опыту электриков даже не менее 400 В.

Ниже мы приведем таблицу номинальных значений конденсаторов серий СВВ60 и СВВ65. Эти конденсаторы чаще всего применяют при подключении асинхронных двигателей. Серия СВВ65 отличается от серии СВВ60 металлическим корпусом. В качестве пусковых часто применяют электролитические конденсаторы серии CD60. Причем опытные профессионалы не рекомендуют использовать их в качестве рабочих, поскольку продолжительные время работы быстро выводит их из строя.

Полипропиленовые пленочные конденсаторы серий СВВ60 и СВВ65 Электролитические неполярные конденсаторы серии CD60
Изображение
Номинальное рабочее напряжение, В 400; 450; 630 220-275; 300; 450
Номинальный ряд, мкФ 1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 7,0; 8,0; 10; 12; 14; 15; 16; 20; 25; 30; 35; 40; 45; 50; 60; 65; 70; 75; 80; 85; 90; 100; 120; 150 5; 10; 15; 20; 25; 50; 75; 100; 150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 1000; 1200; 1500

Иногда бывает рациональнее использовать два и более конденсатора, чтобы получить нужную емкость. При этом они могут быть соединены последовательно или параллельно. При параллельном соединении результирующая емкость будет складываться, при последовательном она будет меньше емкости любого из конденсаторов. Для расчета данного соединения мы также подготовили для вас специальный калькулятор.

Калькулятор расчета результирующей емкости двух последовательно соединенных конденсатора

Экономьте время: отборные статьи каждую неделю по почте

При подключении асинхронного трехфазного электродвигателя на 380 В в однофазную сеть на 220 В необходимо рассчитать емкость фазосдвигающего конденсатора, точнее двух конденсаторов – рабочего и пускового конденсатора. Онлайн калькулятор для расчета емкости конденсатора для трехфазного двигателя в конце статьи.

Как подключить асинхронный двигатель?

Подключение асинхронного двигателя осуществляется по двум схемам: треугольник (эффективнее для 220 В) и звезда (эффективнее для 380 В).

На картинке внизу статьи вы увидите обе эти схемы подключения. Здесь, я думаю, описывать подключение не стоит, т.к. это описано уже тысячу раз в Интернете.

Во основном, у многих возникает вопрос, какие нужны емкости рабочего и пускового конденсаторов.

Пусковой конденсатор

Стоит отметить, что на небольших электродвигателях, используемых для бытовых нужд, например, для электроточила на 200-400 Вт, можно не использовать пусковой конденсатор, а обойтись одним рабочим конденсатором, я так делал уже не раз – рабочего конденсатора вполне хватает. Другое дело, если электродвигатель стартует со значительной нагрузкой, то тогда лучше использовать и пусковой конденсатор, который подключается параллельно рабочему конденсатору нажатием и удержанием кнопки на время разгона электродвигателя, либо с помощью специального реле. Расчет емкости пускового конденсатора осуществляется путем умножения емкостей рабочего конденсатора на 2-2.5, в данном калькуляторе используется 2.5.

При этом стоит помнить, что по мере разгона асинхронному двигателю требуется меньшая емкость конденсатора, т.е. не стоит оставлять подключенным пусковой конденсатор на все время работы, т.к. большая емкость на высоких оборотах вызовет перегрев и выход из строя электродвигателя.

Как подобрать конденсатор для трехфазного двигателя?

Конденсатор используется неполярный, на напряжение не менее 400 В. Либо современный, специально на это рассчитанный (3-й рисунок), либо советский типа МБГЧ, МБГО и т.п. (рис.4).

Итак, для расчета емкостей пускового и рабочего конденсаторов для асинхронного электродвигателя введите данные в форму ниже, эти данные вы найдете на шильдике электродвигателя, если данные неизвестны, то для расчета конденсатора можно использовать средние данные, которые подставлены в форму по умолчанию, но мощность электродвигателя нужно указать обязательно.

Конденсаторы для электродвигателей 250V и 330V : Tetracorp

Область применения пусковых конденсаторов

Пусковые конденсаторы предназначены для создания дополнительного крутящего момента при запуске электродвигателя. Обычно они подключаются параллельно рабочему конденсатору на время, необходимое для раскручивания вала электродвигателя до рабочей скорости.

Поскольку инерция двигателя тем больше, чем выше его мощность, вопрос правильного выбора пускового конденсатора наиболее актуален в промышленной сфере. В ряде случаев, когда двигатель имеет небольшую мощность и относительно низкую рабочую скорость – пусковой конденсатор может отсутствовать, а его роль будет выполнять рабочий конденсатор. Однако следует учитывать, что такой режим влечет перегрузку по току и  дополнительный нагрев обмоток, что негативно сказывается на долговечности электродвигателя.

Особенности пускового конденсатора

Конденсатор для запуска двигателя подключается к электросети на относительно короткий промежуток времени и выход из строя от перегрева ему не грозит. Поэтому конденсатор пусковой может иметь меньшие  размеры, по сравнению с рабочим. Обычно принимают, что для запуска двигателя фазосдвигающая емкость должна быть в 2,5-3 раза больше рабочей. Так как пусковой подключается параллельно рабочему конденсатору, его емкость должна быть приблизительно в полтора — два раза больше. Номинальное напряжение может соответствовать напряжению питания, но лучше конденсаторы пусковые купить с запасом, который перекрывает возможные пиковые выбросы в момент переходных процессов при подключении-отключении этого конденсатора пусковой системой.  При этом приходится учитывать, что режим запуска отличается большими токами. Поэтому, если сетевое питание подведено проводами малой площади сечения, напряжение при запуске «проседает» и время запуска увеличивается. А это, в свою очередь, может вызвать перегрев пускового конденсатора.

Точный расчет параметров пускового конденсатора достаточно сложен и выполняется еще на этапе проектирования двигателя. Обычно производители указывают эти данные в паспорте или технических данных своего изделия.

Как выбирать пусковой конденсатор для электродвигателя

Конденсаторы для пуска двигателя чаще всего выходят из строя в случае нарушения условий эксплуатации самого электродвигателя. Это могут быть такие причины: перегрузка двигателя в момент запуска, частые затяжные включения, отказ работы пускового устройства, использование пускового конденсатора в качестве рабочего, перегрев из-за отсутствия вентиляции или высокой температуры окружающего воздуха, высоковольтные скачки сетевого напряжения. Поэтому, прежде чем пусковые конденсаторы купить, следует устранить причины выхода из строя штатных конденсаторов.

Новые конденсаторы пусковые и рабочие должны иметь номинальное напряжение, равное или боле, чем указано в параметрах электродвигателя. Например, конденсатор 250в может быть без проблем  заменен на конденсатор 330в.

Как работает конденсатор в электродвигателе — Про дизайн и ремонт частного дома

Конденсаторные двигатели — устройство, принцип действия, применение

В этой статье поговорим о конденсаторных двигателях, которые по сути являются обычными асинхронными, отличающимися лишь способом подключения к сети. Затронем тему подбора конденсаторов, разберем причины необходимости точного подбора емкости. Отметим основные формулы, которые помогут в приблизительной оценке требуемой емкости.

Конденсаторным двигателем называется асинхронный двигатель, в цепь статора которого включена дополнительная емкость, с целью создать сдвиг фаз тока в обмотках статора. Зачастую это касается однофазных цепей при использовании трехфазных или двухфазных асинхронных двигателей.

Обмотки статора асинхронного двигателя физически сдвинуты друг относительно друга, и одна из них включается непосредственно в сеть, в то время как вторая, либо вторая и третья подключаются к сети через конденсатор. Емкость конденсатора подбирается так, чтобы сдвиг фаз токов между обмотками получился бы равным или хотя бы близким к 90°, тогда ротору будет обеспечен максимальный вращающий момент.

При этом модули магнитной индукции обмоток должны получиться одинаковыми, чтобы магнитные поля обмоток статора оказались бы сдвинуты относительно друг друга так, чтобы суммарное поле вращалось по кругу, а не по эллипсу, увлекая за собой ротор с наибольшей эффективностью.

Очевидно, ток и его фаза в подключенной через конденсатор обмотке связаны как с емкостью конденсатора, так и с эффективным импедансом обмотки, который в свою очередь зависит от скорости вращения ротора.

При старте двигателя импеданс обмотки определяется лишь ее индуктивностью и активным сопротивлением, поэтому он относительно мал в момент пуска, и здесь нужен конденсатор большей емкости для обеспечения оптимального пуска.

Когда же ротор разгонится до номинальных оборотов, магнитное поле ротора станет индуцировать в обмотках статора ЭДС, которая будет направлена против питающего обмотку напряжения — эффективное сопротивление обмотки теперь растет, и требуемая емкость снижается.

При оптимально подобранной емкости в каждом режиме (пусковой режим, рабочий режим) магнитное поле будет круговым, и здесь имеет значение как скорость вращения ротора, так и напряжение, и число витков обмотки, и подключенная в текущий момент емкость. Если оптимальное значение какого-нибудь параметра нарушено, поле становится эллиптическим, характеристики двигателя соответственно падают.

Для двигателей разного назначения схемы подключения емкостей разные. Когда требуется значительный пусковой момент, применяют конденсатор большей емкости, чтобы обеспечить оптимальные ток и фазу именно в момент пуска. Если пусковой момент не особо важен, то внимание уделяют только созданию оптимальных условий рабочего режима, при номинальной скорости вращения, и емкости подбирается для номинальных оборотов.

Довольно часто для качественного пуска применяют пусковой конденсатор, который на время запуска подключается параллельно рабочему конденсатору относительно малой емкости, чтобы вращающееся магнитное поле и при пуске было круговым, затем пусковой конденсатор отключают, и двигатель продолжает работу только с рабочим конденсатором. В особых случаях прибегают к набору конденсаторов с возможностью переключения для разных нагрузок.

Если пусковой конденсатор случайно не будет отключен после выхода двигателя на номинальные обороты, сдвиг фаз в обмотках уменьшится, не будет уже оптимальным, и магнитное поле статора станет эллиптическим, что ухудшит рабочие характеристики двигателя. Крайне важно правильно подобрать пусковую и рабочую емкости, чтобы двигатель работал эффективно.

На рисунке показаны типичные схемы включения конденсаторных двигателей, применяемые на практике. Например рассмотрим двухфазный двигатель с короткозамкнутым ротором, статор которого имеет две обмотки для питания в двух фазах А и В.

В цепь дополнительной фазы статора включен конденсатор С, поэтому токи IA и IВ текут в обеих обмотках статора в двух фазах. Наличием емкости добиваются фазового сдвига токов IA и IВ в 90°.

Векторная диаграмма показывает, что суммарный ток сети образован геометрической суммой токов обеих фаз IA и IВ. Подбором емкости С добиваются такого сочетания с индуктивностями обмоток, чтобы фазовый сдвиг токов получился именно 90°.

Ток IA запаздывает относительно приложенного сетевого напряжения UА на угол φА, а ток IВ — на угол φВ относительно напряжения UB, приложенного к зажимам второй обмотки в текущий момент. Угол между напряжением сети и напряжением, приложенным ко второй обмотке составляет 90°. Напряжение на конденсаторе UС образует угол 90° с током IВ.

По диаграмме видно, что полная компенсация фазового сдвига при φ = 0 достигается тогда, когда реактивная мощность потребляемая двигателем из сети равна реактивной мощности конденсатора С. Рядом на рисунке показаны типичные схемы включения трехфазных двигателей с конденсаторами в цепях обмоток статоров.

Промышленностью сегодня выпускаются конденсаторные двигатели на базе двухфазных. Трехфазные легко модифицируются вручную для питания от однофазной сети. Встречаются и мелкосерийные трехфазные модификации, уже оптимизированные при помощи конденсатора под однофазную сеть.

Часто такие решения можно встретить в бытовых приборах, таких как посудомоечные машины и комнатные вентиляторы. Промышленные циркуляционные насосы, воздуходувки и дымососы также часто используют в своей работе конденсаторные двигатели. Если требуется включить трехфазный двигатель в однофазную сеть — применяют фазосдвигающий конденсатор, то есть опять же переделывают двигатель в конденсаторный.

Для приблизительного расчета емкости конденсатора применяют известные формулы, в которые достаточно подставить напряжение питания и рабочий ток двигателя, и легко вычислить необходимую емкость для соединения обмоток звездой или треугольником.

Для нахождения рабочего тока двигателя достаточно прочитать данные на его шильдике (мощность, кпд, косинус фи), и так же подставить в формулу. В качестве пускового конденсатора принято устанавливать конденсатор в два раза большей емкости, чем рабочий.

К преимуществам конденсаторных двигателей, по сути — асинхронных, относится главным образом одно — возможность включить трехфазный двигатель в однофазную сеть. Из недостатков — необходимость оптимальной емкости под конкретную нагрузку, и недопустимость питания от инверторов с модифицированной синусоидой.

Надеемся, что эта статья была для вас полезной, и теперь вы понимаете, для чего асинхронным двигателям конденсаторы, и как подбирать их емкость.

Как подключить электродвигатель через конденсатор: все способы включения

Чтобы подключить трехфазный двигатель к однофазной сети используют конденсаторы для запуска электродвигателей. Они могут быть разной модификации, поэтому вопрос о том, как их правильно рассчитать и на что обращать внимание при выборе, совсем не праздный. Перед тем как ответить на вопрос, какой конденсатор необходим, стоит вспомнить, что же это вообще такое?

Устройство и принцип работы

Устройство конденсатора и его изображение на схемах

Конденсатор использует свойство проводников заряжаться, находясь на близком расстоянии друг от друга. Это называется поляризацией. Но чтобы этот заряд можно было снять, используют две пластины, одна напротив другой, с диэлектриком между ними. Если их разъединить, заряд снять не удастся.

Современные технологии позволяют выпускать емкостные приборы всевозможных моделей и назначений. Это и приборы, работающие только в цепях постоянного тока, и для запуска электродвигателей, и выравнивающие модели. Все, что остается конечному потребителю – выбрать подходящий, произвести расчет параметров и поставить в электрическую схему.

Практическое применение

Электродвигатели делятся на две большие категории: постоянного и переменного тока. Каждая категория, в свою очередь, тоже имеет свои деления. Как пример, электромашины переменного тока: однофазные и трехфазные, синхронные и асинхронные, с фазным ротором и короткозамкнутые. Многие из этих моделей можно подключать к сети различным образом, отличающимся от паспортных данных.

Во многих случаях используют фазосдвигающий конденсатор, который позволяет произвести пуск двигателя в однофазной сети 220в. Чтобы рассчитать его значения, необходимо учитывать некоторые параметры, а именно: какой тип электродвигателя используется, его мощность, потребляемый ток. Однофазная сеть в нашей местности преимущественно 220 вольт, поэтому расчет емкостей тоже будет описан именно для этого напряжения.

Существует большой выбор типов этих накопительных приборов. Очень хорошо, если кроме расчета параметров, учитывается также этот момент.

Самый удачный вариант – бумажный, типа МБГЧ. Его цена, в зависимости от емкости, будет несколько варьироваться, однако всегда можно найти элементы б/у. В некоторых случаях допустимо использовать приборы постоянного тока, однако стоит знать о некоторых особенностях их использования.

Трехфазная сеть

Трехфазные двигатели

Схема включения трехфазных электродвигателей по звезде

Основные схемы включения трехфазных электродвигателей: звезда и треугольник. Для их работы предпочтительнее будет «треугольник». Формула расчета: Сраб.=k*Iф / U сети. Теперь немного подробнее.

  • Iф – значение тока, которое потребляет электродвигатель в номинальном режиме. Проще всего посмотреть на нем самом. Иногда, если есть возможность, измерить клещами.
  • Uсети – с этим все понятно. Это напряжение питания – 220 вольт.
  • K – специальный коэффициент. Для треугольника он равен 4800, а для звезды – 2800. Он просто подставляется к формуле расчета.

В некоторых случаях, а именно когда пусковые характеристики достигают значительных величин (пуск двигателя под нагрузкой), необходимо использовать дополнительные, пусковые, конденсаторы для запуска электродвигателя. Их параметры считают так: берут рабочий элемент и умножают его значения на 2,5…3. Также рабочее напряжение этой запчасти должно быть минимум в 1,5 раза выше сетевого.

Стоит отметить, что при включении трехфазного двигателя к 220в происходит потеря мощности до 30% и с этим ничего не сделать.

Однофазные двигатели

Также существует большая группа асинхронных машин, изначально рассчитанных на работу в однофазной сети. Их, как правило, подключают на 220 вольт, но это не значит, что все так гладко. Хотя они, в отличие от трехфазников, момент не теряют, однако момент пусковой у них достаточно низок, а значит конденсаторы необходимы и для этих двигателей.

На поверку, это двухфазные электродвигатели: у них две обмотки, смещенные на 90 градусов друг относительно друга. И если подать 220в с таким же смещением, то никакой фазосдвигатель для запуска не нужен!

Но такого не происходит и поэтому для его запуска на 220 нужен пусковой элемент

Один конденсатор рабочий, для постоянного подключения, другой – пусковой. Он отключается после разгона электродвигателя до расчетных значений и больше схеме 220 вольт не нужен. В качестве приборов запуска на 220в применяются только в приводах до 1 кВт. Дело в том, что при более высоких мощностях цена на необходимые фазосдвигатели настолько высока, что их применение экономически невыгодно.

Что касается расчета основной емкости, то можно пользоваться такой зависимостью: на каждые 100 ватт берется 1 мкФ. Дальше – дело арифметики уровня второго класса. Значение пускового прибора – в 2…2,5 раза выше.

Обратите внимание! Это не значение отдельного конденсатора, а общей емкости Сраб+Спуск.!

Для 220 вольт необходимо брать элементы запуска с напряжением хотя бы на 450 вольт, так как на них напряжение отличается от сетевого 220в!

Другие виды двигателей

Какой конденсатор необходим для запуска двигателя постоянного тока? Такие двигатели в емкостных элементах для этой цели не нуждаются. Их ставят на щеточный механизм для того, чтобы устранить искрение и помехи в сеть. Работают же такие электрические машины несколько по иному принципу.

Электролитические емкости

Схема электролитического катализатора

В некоторых маломощных двигателях для их запуска в работу используют электролитические конденсаторы. Иногда некоторые неопытные электрики, увидев такое устройство у соседа, сталкиваются с проблемой: нагрев и взрыв элемента. В чем же дело, какой вариант необходим?

Электролитические конденсаторы – приборы постоянного напряжения. Для использования их в качестве фазосдвигающих элементов необходимо выполнить подключение по специальной схеме.

При параллельном соединении емкость суммируется, при последовательном – вычитается. Однако для кратковременного включения на 220в такие элементы использовать допускается.

Конденсаторы, несмотря на кажущуюся простоту, требуют тщательного подбора. При включении двигателя к 220 вольтам нужно все внимательно посчитать, выбрать нужные элементы и тогда проблем не возникнет.

Конденсатор для пуска электродвигателя

Если требуется присоединить трехфазный электродвигатель к обычной электросети, то потребуется создать электросхему для сдвига фаз. Основой такой схемы может служить конденсатор. Применяется он и для однофазного двигателя с целью облегчения его пуска.

Что такое конденсатор

Это устройство для накопления электрического заряда. Он состоит из пары проводящих пластин, находящихся на малом отстоянии друг от друга и разделенных слоем изолирующего материала.

Широко распространены следующие виды накопителей электрического заряда:

  • Полярные. Работают в цепях с постоянным напряжением, подключаются в соответствии с указанной на них полярностью.
  • Неполярные. Работают в цепях с переменным напряжение, подключать можно как угодно
  • Электролитические. Пластины представляют собой тонкие оксидные пленки на листе фольги.

Электролитические лучше других подходят на роль конденсатора для пуска электродвигателя.

Описание разновидностей конденсаторов

Различным типам электродвигателей соответствуют подходящие им по своим характеристикам накопители.

Так, для низкочастотных высоковольтных (50 герц, 220-600 вольт) двигателей хорошо подходит электролитический конденсатор. Такие устройства обладают высокой емкостью, доходящей до 100 тысяч микрофарад. Нужно внимательно следить за соблюдением полярности, в противном случае из-за перегрева пластин возможно возгорание.

Неполярные накопители не имеют таких ограничений, но стоят они с несколько раз дороже.

Различные виды конденсаторов

Кроме перечисленных выше, производятся также вакуумные, газовые, жидкостные устройства, но как пусковой или рабочий конденсатор в схеме подключения электромотора, они не применяются.

Выбор емкости

С целью максимизации эффективности электродвигателя нужно рассчитать ряд параметров электроцепи, и прежде всего емкость.

Для рабочего конденсатора

Существуют сложные и точные методы расчета, однако в домашних условиях вполне достаточно оценить параметр по приближенной формуле.

На каждые 100 ватт электрической мощности трехфазного электродвигателя должно приходиться 7 микрофарад.

Недопустимо также подавать на фазовую статорную обмотку напряжение, превышающее паспортное.

Для пускового конденсатора

Если электродвигатель должен запускаться при наличии высокой нагрузки на приводном валу, то рабочий конденсатор не справится, и на время запуска потребуется подключать пусковой. После достижения рабочих оборотов, что происходит в среднем за 2-3 секунды, он отключается вручную или устройством автоматики. Доступны специальные кнопки включения электрооборудования, автоматически размыкающие одну из цепей через заданное время задержки.

Недопустимо оставлять пусковой накопитель подключенным в рабочем режиме. Фазовый перекос токов может привести к перегреву и возгоранию двигателя. Определяя емкость пускового прибора, следует принимать ее в 2-3 раза выше, чем у рабочего. При этом при запуске крутящий момент электродвигателя достигает максимального значения, а после преодоления инерции механизма и набора оборотов он снижается до номинального.

Для набора требуемой емкости конденсаторы для запуска электродвигателя подключают в параллель. Емкость при этом суммируется.

Простые способы подключения электродвигателя

Самый простой способ подключения трехфазного электродвигателя к бытовой электросети – применение частотного преобразователя. Потери мощности будут минимальны, но стоит такое устройство зачастую дороже самого двигателя.

Частотный преобразователь станет экономически эффективным лишь при большом объеме использования оборудования.

При другом способе для преобразования питающего напряжения используется обмотка самого асинхронного электродвигателя. Схема получится громоздкая и массивная. Конденсатор для запуска электродвигателя подключают по одной из двух популярных схем

Подключение двигателя по схемам «звезда» и «треугольник»

При реализации подключения этими способами важно свести к минимуму потери по мощности.

Схема подключения «треугольник»

Схема достаточно простая, для облегчения понимания обозначим контакты мотора символами A — ноль, B — рабочий и C — фазовый

Сетевой шнур подсоединяется коричневым проводником к контакту A, туда же следует подсоединить один из выводов конденсатора. К контакту И подсоединяется второй вывод прибора, а синий проводник сетевого шнура — к контакту С.

В случае небольшой мощности электромотора, не превышающей 1,5 киловатта, допустимо подключать только один конденсатор, пусковой при этом не нужен.

Если же мощность выше и нагрузка на валу значительная, то используют два параллельно соединенных прибора.

Схема подключения «звезда»

В случае если на клеммнике электродвигателя 6 выводов — следует их прозвонить по отдельности и определить, какие выводы связаны друг с другом. В паспорте мотора нужно найти назначение выводов. После этого схема переподключается, формируя привычный «треугольник».

С этой целью снимаются перемычки и контактам присваивают условные обозначения от A до F. Далее последовательно соединяются контакты: A и D, B и E, C и F.

Теперь контакты D, E и F станут соответственно нулевым, рабочим и фазовым проводом. Конденсатор присоединяют к ним точно так же, как в предыдущем случае.

При первом включении нужно внимательно следит за тем, чтобы обмотки не перегревались. В этом случае следует немедленно отключить устройство и определить причину перегрева.

Рабочее напряжение

После емкости напряжение является важнейшим параметром. Если взять слишком большой запас по напряжению — сильно вырастут габариты, вес и цена всего устройства. Еще хуже – взять устройства, которым не хватает рабочего напряжения. Такое использование приведет к их быстрому износу, выходу из строя, пробою. При этом возможно возгорание или даже взрыв.

Оптимальный запас по напряжению — 15-20%.

Важно! Для конденсаторов с диэлектриком из бумаги в цепях с переменным напряжением номинальное напряжение, указанное для постоянного тока, нужно поделить на 3.

Если указано 600 вольт, то в цепях переменного тока безопасно применять такие конденсаторы можно до 300 вольт.

Использование электролитических конденсаторов

Конденсаторы с диэлектриком из бумаги отличаются малой удельной емкостью и значительными габаритами. Для двигателя даже не самой большой мощности они будут занимать много места. Теоретически их можно заменить электролитическими, обладающими в несколько раз более высокой удельной емкостью.

Разновидности устройства электролитического конденсатора

Для этого электрическую схему придется дополнить несколькими элементами: диодами и резисторами. Такой вариант неплох для эпизодически работающего двигателя. Если же планируются продолжительные нагрузки, то от экономии места и веса лучше отказаться — при случайном выходе диода из строя он начнет пропускать на накопитель переменный ток, что приведет к его пробою и взрыву.

Выходом могут служить полипропиленовые конденсаторы с металлическим напылением серии СВВ, разработанные для использования в качестве пусковых.

Как подобрать конденсатор для трехфазного электродвигателя

Для вычисления емкости основного конденсатора применяют формулу:

  • k- коэффициент, принимаемый за 4800 при схеме «треугольник» и 2800 при схеме «звезда»;
  • Iφ-ток статора, его берут из паспорта или таблички на корпусе;
  • U- напряжение сети.

Результат получается в микрофарадах. Вместо точной формулы можно применять правило: на каждые 100 ватт мощности — 7 микрофарад емкости.

Если при старте двигателю приходится преодолевать большой момент инерции подключенного к валу оборудования, то в помощь основному на время запуска и набора номинальных оборотов подключают пусковой конденсатор.

Емкость пускового накопителя принимают в 2-3 раза больше основного.

Подключение трехфазного электродвигателя к сети

После выхода на режим его обязательно отключают — вручную или с помощью автоматики. Если на рассчитанную емкость нет точно подходящего по номиналу прибора, конденсаторы можно подключать параллельно.

Как подобрать пусковой конденсатор для однофазного электромотора

До использования в пусковой цепи конденсатор проверяют тестером на исправность. При подборе рабочего конденсатора можно применять такое же приближенное правило а-7 микрофарад на 100 ватт номинальной электрической мощности. Емкость пускового также берется в 2-3 раза выше.

При подборе конденсатора на 220 вольт следует выбирать модели с номиналом не менее 400. Это объясняется переходными электромагнитными процессами при запуске, дающими кратковременные пусковые броски напряжения до 350-550 вольт.

Однофазные асинхронные электромоторы часто применяются в домашних электроприборах и электроинструменте. Для пуска таких устройств, особенно под нагрузкой, требуется пусковая обмотка и сдвиг фазы. Для этого используется конденсатор, подключаемый по одной из известных схем.

Конструкция асинхронного однофазного электродвигателя

Если запуск осуществляется с преодолением большого момента инерции, подсоединяют пусковой конденсатор.

Почему однофазный электродвигатель запускают через конденсатор

Статор электродвигателя с единственной обмоткой при пропускании переменного тока не сможет начать вращение, а лишь начнет подрагивать. Чтобы начать вращение, перпендикулярно основной обмотке размещают пусковую. В цепь этой обмотки включают компонент для сдвига фазы, такой, как конденсатор. Электромагнитные поля этих двух обмоток, прикладываемые к ротору со сдвигом по фазе, и обеспечат начало вращения.

В трехфазном двигателе обмотки и так размещены под углами 120 ° . Соответственно сориентированы и наводимые ими в роторе электромагнитные поля. Для начала вращения достаточно обеспечить сдвиг их работы по фазе, чтобы обеспечить пусковой момент вращения.

Как выбрать конденсатор для электродвигателя

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

  • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
  • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
  • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т.е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.

голоса

Рейтинг статьи

Конденсатор для электродвигателя — какой выбрать? обзор лучших пусковых конденсаторов смотрите здесь!

Главная > Дополнительно > Конденсатор для электродвигателя: советы по подбору и правила подключения пускового конденсатора

Проверка и замена пускового конденсатора

Термоваккумная обработка увеличивает срок службы конденсатора, исключая возможность внутренней коррозии элементов. Чистая комната, с контролем влажности и температуры воздуха, высокопроизводительное швейцарское оборудование. Мы готовы к выпуску до 20 шт. Там, где на других завода работают люди, у нас автоматизированные станки. Быстрее, качественнее, надежней.

Наличие собственных тестовых лабораторий на все типы выпускаемой продукции позволяют дать дополнительную гарантию клиентам в качестве продукции. Завод активно участвует в тематических выставках, региональных тематических мероприятиях. Моторные конденсаторы производства ООО «Нюкон» серии К предназначены для соединения с обмотками асинхронных электродвигателей, питающихся от однофазной сети чаcтотой не более 60Гц, а также для перевода трехфазных двигателей на питание от однофазной сети.

В целях безопасности все пусковые конденсаторы должны использоваться с разрядным резистором. Сопротивление разрядного резистора подбирается так, чтобы по истечении 50 секунд полностью снять остаточное напряжение с конденсатора.

В случаях когда конденсатор используется при последовательной схеме включения со вспомогательной обмоткой электродвигателя, напряжение на клеммах конденсатора при рабочей скорости может быть значительно выше напряжения сети. В процессе эксплуатации конденсаторов они могут устанавливаться непосредственно в физическом контакте с электродвигателем. В этом случае при выборе типа конденсатора необходимо учитывать, что конденсатор будет подвергаться воздействию повышенной температуры и вибраций – как от самого электродвигателя, так и от других пассивных элементов различного рода устройств, в составе которых будет применятся конденсатор.

В процессе выбора необходимой емкости и рабочего напряжения нужно учитывать фактор резонанса, то есть когда значения напряжения вспомогательной обмотки электродвигателя и конденсатора находятся в околорезонансной точке. В этом случае происходит повышение напряжения на клеммах изделия.

Предельное напряжение на клеммах пускового конденсатора должно быть не более В, а его емкость выбирается, как правило, в два и более раз больше емкости рабочего конденсатора. Для определения пусковой емкости Спуск. В случае если пуск двигателя происходит без нагрузки, пусковая емкость не требуется. Для получения пускового момента, близкого к номинальному, достаточно иметь пусковую емкость, определяемую соотношением Сп. Рис 1. Конденсаторы создают сдвиг фаз между токами обмоток, оси которых сдвинуты в пространстве.

При пуске конденсаторного асинхронного двигателя оба конденсатора включены, а после его разгона один из конденсаторов отключают; это обусловлено тем, что при номинальной частоте вращения требуется значительно меньшая емкость, чем при пуске. Применяется в электроприводах малой мощности; при мощностях свыше 1 квт используется редко вследствие значительной стоимости и размеров конденсаторов. Пользуясь данным сайтом и любым его сервисами, Вы подтверждаете свое согласие на обработку персональной информации.

Расположение завода:. Контакты Покупателю Пресс-центр О заводе. Спасибо за интерес, проявленный к нашей Компании. Версия для печати. Как показывает практика, на каждые Вт мощности электродвигателя требуется около мкФ. Область применения конденсаторов для асинхронных двигателей Таблица: Область применения конденсаторов для асинхронных двигателей рабочий пусковой Применение В схемах асинхронных электродвигателей В схемах асинхронных электродвигателей Тип подключения Последовательно со вспомогательной обмоткой электродвигателя Параллельно рабочему конденсатору В качестве Является фазосмещающим элементом Предназначение Позволяет получить круговое вращающееся магнитное поле, необходимое для работы электродвигателя Позволяет получить магниное поле, необходимое для повышения пускового момента электродвигателя Время включения В процессе работы электродвигателя В момент пуска электродвигателя Существуют две основные области применения конденсаторов для асинхронных электродвигателей.

Приблизительный расчет для данного типа соединения производится по следующей формуле: Сраб. Рис 2. Подбор конденсаторной установки:. Номинальная мощность, кВАр. Построить маршрут к заводу из: м.

Выбор пускового конденсатора для электродвигателя

Современный подход к данному вопросу предусматривает использование специальных калькуляторов в интернете, которые проводят быстрый и точный расчет.

Для проведения расчета следует знать и ввести нижеприведенные показатели:

  1. Тип соединения обмоток двигателя: треугольник или звезда. От типа соединения зависит также и емкость.
  2. Мощность двигателя является одним из определяющих факторов. Этот показатель измеряется в Ваттах.
  3. Напряжение сети учитывается при расчетах. Как правило, оно может быть 220 или 380 Вольт.
  4. Коэффициент мощности – постоянное значение, которое зачастую составляет 0,9. Однако, есть возможность изменить этот показатель при расчете.
  5. КПД электродвигателя также оказывает влияние на проводимые расчеты. Эту информацию, как и другую, можно узнать, изучив нанесенную информацию производителем. Если ее нет, следует ввести модель двигателя в интернете для поиска информации о том, какой КПД. Также, можно ввести приблизительное значение, которое свойственно для подобных моделей. Стоит помнить, что КПД может изменяться в зависимости от состояния электродвигателя.

Подобная информация вводится в соответствующие поля и проводится автоматический расчет. При этом, получаем емкость рабочего конденсата, а пусковой должен иметь показатель в 2,5 раза больше.

Провести подобный расчет можно самостоятельно.

Для этого можно воспользоваться следующими формулами:

  1. Для типа соединения обмоток «звезда», определение емкости проводится при использовании следующей формулы: Cр=2800*I/U. В случае соединения обмоток «треугольником», используется формула Cр=4800*I/U. Как видно из вышеприведенной информации, тип соединения является определяющим фактором.
  2. Вышеприведенные формулы определяют необходимость расчета величины тока, который проходит в системе. Для этого используется формула: I=P/1,73Uηcosφ. Для расчета понадобятся показатели работы двигателя.
  3. После вычисления тока можно найти показатель емкости рабочего конденсатора.
  4. Пусковой, как ранее было отмечено, в 2 или 3 раза должен превосходить по показателю емкости рабочий.

При выборе, стоит также учесть нижеприведенные нюансы:

  1. Интервал рабочей температуры.
  2. Возможное отклонение от расчетной емкости.
  3. Сопротивление изоляции.
  4. Тангенс угла потерь.

Обычно на вышеуказанные параметры не обращают особого внимания. Однако их можно учесть для создания идеальной системы питания электродвигателя.

Габаритные размеры также могут стать определяющим фактором. При этом, можно выделить следующую зависимость:

  1. Увеличение емкости приводит к увеличению диаметрального размера и расстояния выхода.
  2. Наиболее распространенный максимальный диаметр 50 миллиметров при емкости 400 мкФ. При этом, высота составляет 100 миллиметров.

Кроме этого, стоит учитывать, что на рынке можно встретить модели от иностранных и отечественных производителей. Как правило, зарубежные имеют большую стоимость, но и надежнее. Российские варианты исполнения также часто используются при создании сети подключения электродвигателя.

Блиц-советы

Самой важное при «звездном» подключении определить путь обмотки, потому что если не угадали хоть одну пару обмоток и, допустим начало-конец, начало-конец, конец-начало, то работа будет плохой и это будет сразу же видно, есть также возможность спалить двигатель в этом случае.

Не во всех двигателях есть маркировка клемм, чаще всего помечена «масса», остальные нужно «прозванивать» с помощью мультиметра, либо же читать инструкцию, зачастую производители указывают данную информацию там.

Все зависит от напряжения сети в которую будет включен двигатель; если сеть 220 В, то нужно использовать схему – треугольник, а вот для 380 В в ходу будет – звезда.

При подключении к сети в 660 В некоторые используют метод комбинированного запуска. То есть запуск происходит на «треугольнике», а при достижении необходимой мощности идет переход на звезду

Но это все-таки рискованный случай, может произойти сгорание обмоток. Лучше использовать специализированные двигатели, которые работают при заданном напряжении.

Для того чтоб изменить направление вращения ротора в статоре нужно подсоединить конденсатор не к нулю, а к фазе. Это также является маячком при неправильном подключении.

Подключение пускового конденсатора к электродвигателю

При реализации подобных схем на практике и подключении пусковых устройств необходимо будет проделать следующие действия:

  1. Первоначально проверить пусковой конденсатор при помощи мультиметра, чтобы убедиться в его работоспособности.
  2. Выбрать наиболее подходящую схему подключения, здесь владельцу оборудования предоставляется полная свобода. Обмоточные и конденсаторные выводы у большинства двигателей находятся в клеммной коробке.
  3. В некоторых ситуациях возникает необходимость в доработке имеющейся схемы, при этом необходимо самостоятельно провести перерасчет основных показателей по уже рассмотренным схемам.

Подключение однофазного электродвигателя: использование магнитного пускателя

Но есть другой путь — подключение однофазного электродвигателя как генератора для получения трехфазного напряжения.


Магнитное поле основной обмотки поддерживает вращение длительное время. Решение — установка 3-х полюсного переключателя. Данная процедура реализуется простым изменением порядка включения пусковой обмотки при ее соединении с рабочей обмоткой. Это связано с тем, что при включении в сеть только рабочей обмотки С1-С2 у однофазного конденсаторного двигателя возникнет пульсирующее магнитное поле, а не вращающееся, то есть он не запустится. С каждым из сетевых проводов необходимо подключить дроссели для исключения помех.

В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем. Это и будет, один из сетевых проводов. Наиболее удобным является магнитный пускатель с управлением от в переменного тока. Все емкости, которые включаются в схему, должны быть однотипными.

Если после этого двигатель окажется горячим, то: Возможно, подшипники загрязнились, зажались или просто износились. Идея применения пускового конденсатора состоит в его включении в цепь лишь в момент запуска мотора. Станках для обработки сырья и т.
Подключение конденсатора. Как подключить конденсатор к электродвигателю. Схема.

Реверс направления движения двигателя

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

Здравствуйте!

Имеется двигатель 750 Ватт, 240 В асинхронный. Из него выходят 4 провода: 2 красных и 2 чёрных. Померив сопротивление, сделал вывод, что два чёрных провода это пусковая обмотка, там сопротивление больше, два красных это рабочая. Так же имеются два конденсатора, которые были вместе с двигателем. Один на 80 МКФ 220275 В, другой на 20 МКФ400 В, у того что на 20 четыре ножки. Ножки звонятся попарно:

4 5

4 5

4 и 4 5 и 5.(просто условное обозначение)

Сегодня попробовал его подключить напрямую подсоединил провода 220 В к рабочей обмотке, двигатель закрутился, но потом после нескольких попыток затих. В бытовой вилке стоит предохранитель на 13 А. Думаю он полетел. Прикол в том что двигатель запустился и без конденсаторов, но потом не хотел, говорю полетел предохранитель в вилке.

Теперь вопросы:

1. Почему постоянно вылетает предохранитель на 13 А? Что я делал не так?

2. Нужны ли мне рабочий и пусковой конденсаторы, если да то зачем? Можно ли без них обойтись? 3. Как правильно подсоединить вместе с конденсаторами? 4. Почему у конденсатора на 20 МКФ 4 ножки? 5. Где пусковой где рабочий конденсаторы? Я прочитал что на каждые 100 Ватт мощности двигателя нужно 10 МКФ, значит так как у меня 750 Ватт то пусковой будет 80 мкф, а другой рабочим? Прав ли я?

Помогите пожалуйста.

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя.

Оцените статью:

Понимание и выбор конденсаторов | Новости промышленного оборудования (IEN)

Двигатель может быть сердцем любой системы HVAC, но он бесполезен без качественных конденсаторов, которые, подобно автомобильному аккумулятору, обеспечивают правильную работу двигателя и системы. Насколько хорошо вы понимаете критическую функцию конденсаторов в системе HVAC?

Эта статья поможет вам понять некоторые отраслевые стандарты, установленные в отношении качества, безопасности и производительности конденсаторов, и даст вам представление о выборе конденсаторов на рабочем месте.

Что делают конденсаторы

Почти каждый двигатель оснащен пусковым конденсатором, рабочим конденсатором или обоими.

Пусковой конденсатор включен в электрическую цепь двигателя в состоянии покоя. Он дает двигателю начальный «толчок» при запуске, кратковременно увеличивая его пусковой момент и позволяя быстро включать и выключать двигатель. Типичный номинал пускового конденсатора находится в диапазоне от 25 мкФ до 1400 мкФ и от 110 до 330 В переменного тока.

Когда двигатель достигает определенной скорости, пусковой конденсатор отключается от цепи обмотки переключателем (или реле).Если скорость двигателя падает ниже этой скорости, конденсатор снова включается в электрическую цепь, чтобы довести двигатель до требуемой скорости.

Предназначен для непрерывной работы, рабочий конденсатор всегда остается под напряжением и подключен к электрической цепи двигателя. Типичный номинал рабочего конденсатора составляет от 2 мкФ до 80 мкФ и рассчитан либо на 370 В переменного тока, либо на 440 В переменного тока.

Рабочий конденсатор надлежащего размера повысит эффективность работы двигателя, обеспечивая правильный «фазовый угол» между напряжением и током для создания вращательного электрического поля, необходимого двигателю.

Правильная установка/замена конденсаторов

Насколько важно соответствие номинальной емкости, указанной для двигателя? Короче говоря, это очень важно, даже критично. Чтобы обеспечить правильную работу двигателя, для которой его разработал изготовитель, и предотвратить повреждение двигателя, всегда используйте точно такое же номинальное значение емкости, которое указано на паспортной табличке двигателя.

Всегда существует уровень допуска в микрофарадах (мкФ). Типичный допуск на емкость рабочего конденсатора двигателя для систем отопления, вентиляции и кондиционирования воздуха составляет +/- 6 %.При этом это означает, что конденсатор емкостью 40 мкФ может иметь номинал от 37,6 до 42,4 мкФ и при этом считаться проходным конденсатором.

Когда инженеры проектируют двигатели, они учитывают этот тип диапазона допусков. Они указывают номинальную мощность (40 мкФ) вместе с допуском (+/-6%), чтобы гарантировать, что в случае замены конденсатора двигатель будет обеспечивать те же характеристики, для которых он был разработан.

Учитывая вышеприведенное объяснение допустимых диапазонов, не рекомендуется использовать 35 мкФ вместо 40 мкФ.

40 мкФ ±6% = от 37,6 до 42,4 мкФ     35 мкФ ±6% = от 32,9 до 37,1 мкФ допустимой емкости конденсатора 40 мкФ (37,6 мкФ), которым вы пытаетесь его заменить. Это также относится к конденсаторам емкостью 5 мкФ и 4 мкФ.

5 мкФ ±6 % = от 4,7 до 5,3 мкФ                4 мкФ ±6 % = от 3,76 до 4,24 мкФЕсли номинал конденсатора в мкФ меньше, чем рассчитан на двигатель, ток обмотки двигателя будет слишком большим. Если номинал конденсатора в мкФ выше, чем рассчитанный на двигатель, ток обмотки двигателя будет слишком низким. Любая сценарий может привести к одному или нескольким из следующих действий:

  • Увеличение скорости двигателя
    • Уменьшает систему воздуха / охлаждение
    • Увеличение Система Шум
  • Увеличение температуры
    • Призыв к износу подшипника
    • Разбие
    • Увеличивает шум
  • Нижняя эффективность двигателя
  • Увеличивает энергопотребление
  • Уменьшает систему и мотор-срок службы
  • Неправильное оборудование Эксплуатация
    • Приводит к неподходящему Cycling
    • Увеличение Шум
    • Стрессы Другие компоненты

    Двигатели рассчитаны на определенные номинальные характеристики и допуски.

    Если что-то выходит за эти пределы, двигатель будет работать быстрее или медленнее. В любом случае конечным результатом будет то, что машина не будет работать должным образом, а двигатель, конденсатор или любой другой компонент машины получат дополнительную нагрузку, которая приведет к повреждению, шуму и потребует ремонта.

    Также были вопросы о том, какое напряжение использовать при замене конденсаторов. Эмпирическое правило заключается в том, чтобы всегда использовать напряжение, превышающее или равное номинальному напряжению, требуемому двигателем.Требуемое напряжение всегда указано на паспортной табличке двигателя. НИКОГДА не используйте более низкое напряжение, чем требуется, потому что это сокращает срок службы конденсатора в геометрической прогрессии. Использование конденсатора с более низким номинальным напряжением не повредит систему, но ускорит окончание срока службы конденсатора.

    Номинальное напряжение — это рабочее напряжение, при котором конденсатор достигает 60 000 часов работы. Если блок обогрева или кондиционирования воздуха увеличивает напряжение на конденсаторе (например, конденсатор рассчитан на 370 В переменного тока, а от блока поступает 440 В переменного тока), то срок службы конденсатора значительно сократится.С другой стороны, если блок обогрева или кондиционирования воздуха снижает напряжение на конденсаторе (например, конденсатор рассчитан на 440 В переменного тока, но получает от блока 370 В переменного тока), то срок службы конденсатора увеличивается.

    Несмотря на то, что конденсатор является недорогим компонентом, установка неправильного размера может оказать существенное влияние на всю систему!

    Отраслевые стандарты 

    Итак, вопрос в том, как узнать, какой конденсатор обладает качеством и надежностью, требуемыми производителями двигателей, без необходимости размещать конденсаторы в реальном блоке ОВКВ годами и смотреть, работают ли они?

    Существуют различные инструменты для обеспечения хорошего качества конденсаторов, а именно электрические и механические испытания, описанные в нескольких отраслевых стандартах для конденсаторов.Для обеспечения долгосрочной надежности основным и единственным инструментом является ускоренное испытание на долговечность (HALT). Сегодня на рынке представлено множество отраслевых стандартов, основными из которых являются:

    • Tecumseh H-115
    • IEC-60252-1
    • EIA-456-A

    На рынке наблюдается растущий спрос на качественные конденсаторы. за последние несколько лет. Кажется, что многие производители урезали углы в отношении качества материалов и производственных процессов, поэтому, несмотря на то, что конденсаторы хорошо тестируются в готовом виде, в полевых условиях они не служат более 6–12 месяцев.Очевидно, что с более дешевыми материалами и устранением некоторых производственных процессов цена конденсатора упала до очень низкого уровня. Наряду с более низкими ценами на рынке также появились конденсаторы с чрезвычайно низким сроком службы.

    Ключом к созданию качественного конденсатора, помимо использования качественных материалов в производстве, является конструкция конденсатора, системы контроля качества и тестирование производительности на протяжении всего производственного процесса, чтобы изготовить конденсатор, который пройдет испытание HALT.Большинство, если не все конденсаторы будут тестироваться одинаково, но в течение срока службы конденсатора вы увидите резкие изменения от одного поставщика к другому. Здесь в игру вступают отраслевые стандарты.

    Tecumseh H-115

    Tecumseh H-115 был одной из первых попыток стандартизировать критерии испытаний пленочных конденсаторов. Этот стандарт использовался и до сих пор используется в основном в США и применяется только к приложениям, работающим с конденсаторными двигателями. Этот стандарт включает тест на надежность с двумя коэффициентами ускорения, которые включают приложенное напряжение и приложенную температуру.

    Условия тестирования:

    • Количество конденсаторов Испытано: 12 единиц
    • Нанесенное напряжение: 126% от номинального напряжения
    • Применяемая температура: 80ºC (газовый конденсатор обычно рассчитан на 70ºC)
    • Тестовое время (часы) : 500 часов
    • Срок службы моделирования (часы): 60 000 часов

    Рассмотренные неудачи:

    • Микрофарад (мкФ) Потеря: более 5%
    • Уровень рассеивания: не обсуждается
    • сбои: 1 единица из 12 единиц

    IEC-60252-1

    IEC-60252-1, созданный Международной электротехнической комиссией (IEC), использовался и до сих пор используется в основном в Европе и Азиатско-Тихоокеанском регионе.Как и в случае с Tecumseh H-115, этот стандарт также применяется только к приложениям, работающим от конденсаторных двигателей. Этот стандарт использует только один коэффициент ускорения (приложенное напряжение) для проверки надежности.

    В этом стандарте номиналы различных классов определяют разный срок службы конденсаторов. Различные рейтинги классов зависят от количества часов испытаний, через которые проходит конденсатор.

    • Класс A указывает срок службы 30 000 часов
    • Класс B указывает срок службы 10 000 часов
    • Класс C указывает срок службы 3000 часов
    • Класс D указывает срок службы 1000 часов
    • фокусируется только на спецификации класса B стандарта IEC-60252-1.

      Условия испытаний для спецификации класса B:  

      • Количество испытанных конденсаторов: не указано
      • Прикладываемое напряжение: 125 % от номинального напряжения Тестовое время (часы): 2000 часов
      • Моделирование жизни (часы): 10 000 часов

    Рассмотренные неудачи:

    • Microfarad (мкФ) Потеря: больше 3%
    • Уровень рассеивания: не обсуждает
    • Допустимые отказы: должны быть определены между покупателем и поставщиком .S. EIA взяла оба вышеупомянутых стандарта и улучшила их, опубликовав всеобъемлющий стандарт для металлизированных пленочных конденсаторов для приложений переменного тока.

      Он охватывает не только устройства, работающие от двигателя, но также включает конденсаторы, используемые в устройствах разрядного освещения высокой интенсивности, а также в устройствах общего назначения, таких как источники питания и блоки коррекции коэффициента мощности.

      Условия тестирования:

      • Количество конденсаторов Испытано: 12 единиц
      • Нанесенное напряжение: 125% от номинального напряжения
      • Нанесенная температура: + 10ºC Над Номинальной максимальной рабочей температуры
      • Время испытания (часы): 2000 часов
      • Моделирование срока службы (часы): 60 000 часов

      Рассмотренные отказы:

      • Микрофарад (мкФ) Потери: более 3%
      • Коэффициент рассеяния: более 0.15% 
      • Допустимые отказы: должны быть определены между заказчиком и поставщиком 

      При сравнении этих трех стандартов EIA-456-A является самым жестким и тщательным. Он также является основой для многих, если не большинства, стандартов надежности производителей оригинального оборудования HVAC (OEM) для конденсаторов.

      Многие производители конденсаторов заявляют, что у них есть конденсатор со сроком службы 60 000 часов, но реальный вопрос заключается в том, какие испытания были применены к их продукции? При сравнении Tecumseh H-115 (500 часов испытаний) и EIA-456-A (2000 часов испытаний) существует четырехкратная разница.

      Поскольку условия испытаний Tecumseh H-115 и EIA-456-A одинаковы, можно видеть, что 500 часов испытаний по шкале EIA-456-A равны примерно 15 000 часов применения (см. Таблицу 5). Время наработки Tecumseh H-115 очень похоже на стандарт IEC-60252-1 класса B, предусматривающий 10 000 часов наработки.

      В США стандарт составляет 5000 расчетных рабочих часов; таким образом, вы можете предположить, что стандарт EIA-456-A, который определяет 60 000 рабочих часов для конденсатора, оценивает срок службы конденсатора примерно от 10 до 12 лет, в то время как Tecumseh H-115 оценивает срок службы конденсатора только от 2 до 12 лет. 3 года, так как это соответствует 15 000 прикладных часов вместо 60 000 часов.

      Вы получаете то, за что заплатили?

      Здесь было много подробностей, но мы надеемся, что они помогли вам лучше понять номиналы конденсаторов и стандарты, используемые в отрасли HVAC.

      Важно помнить, что все конденсаторы хорошо выдерживают испытания сразу после распаковки, но важен срок службы конденсатора. Перед покупкой конденсаторов рекомендуется сделать домашнее задание. Это может сэкономить вам деньги и головную боль в будущем.

      Задайте производителям вопросы о том, насколько их продукция соответствует отраслевому стандарту EIA-456-A.Не бойтесь спрашивать производителей об их возможностях тестирования надежности. Любой уважаемый производитель сможет обсудить это с вами. Исходя из этого, вы сможете самостоятельно оценить качество конденсаторного изделия. Экономия нескольких долларов на конденсаторах может в конечном итоге стоить вам сотен долларов в долгосрочной перспективе, поэтому важно понимать, что вы получаете.

      Перепечатано с разрешения журнала RSES

      Рекомендации по входному конденсатору системы двигателя постоянного тока и разрядной цепи для семейства MPQ6526 и MPQ6527 | Примечание по применению

      Примечание по применению

      СКАЧАТЬ PDF

      Получайте ценные ресурсы прямо на свой почтовый ящик — рассылается раз в месяц

      Мы ценим вашу конфиденциальность


      ВВЕДЕНИЕ

      Для системы управления двигателем, когда скорость двигателя снижается, энергия, накопленная в механической системе или другой индуктивной нагрузке, может быть рециркулирована обратно через драйвер двигателя на входную шину источника питания постоянного тока.В реальных приложениях необходимо добавить достаточную входную емкость для поглощения этой энергии.

      1. Керамический конденсатор (шунтирующий конденсатор)

      Керамический конденсатор — это конденсатор обхода питания, который должен быть типа X5R или X7R с номинальным питанием, керамический конденсатор емкостью 0,1 мкФ должен быть размещен как можно ближе к устройству, которое подключается от вывода VIN (или VS, VM) к контакт PGND.

      2. Объемный конденсатор

      Кроме того, на выводе VIN должен быть установлен объемный конденсатор, который необходим для поглощения энергии, поступающей от двигателя или источника питания, и его размеры должны соответствовать требованиям приложения

      В этом примечании по применению описаны рекомендации по использованию конденсаторов большой емкости и схема разряда устройств семейства MPQ6526 и MPQ6527.Семейство MPQ6526 и MPQ6527 представляют собой драйверы с несколькими полумостовыми выходами DMOS со встроенными мощными полевыми МОП-транзисторами, которые поддерживают применение Н-мостов для управления двигателями постоянного тока.

      ПЕРЕРАБОТКА МЕХАНИЧЕСКОЙ ЭНЕРГИИ ОТ ГРУЗОВ НА ВХОДНУЮ ЖЕЛЕЗНУЮ ЖЕЛЕЗУ

      Когда скорость двигателя снижается или движение прекращается, двигатель работает как генератор, который преобразует механическую энергию в электрическую и нуждается в каком-то пути для прохождения тока. Эта энергия будет в основном рассеиваться в виде тепла или возвращаться обратно во входную шину постоянного тока.

      1. Замыкание выхода двигателя

      Если путь обеспечивается за счет короткого замыкания на выходе двигателя, что приводит к остановке двигателя. В этом случае энергия в основном рассеивается в виде тепла в сопротивлении обмотки двигателя, а также в любом сопротивлении на пути тока, замыкая двигатель.

      Рис. 1. Энергия, рассеиваемая в виде тепла (M3/M4 вкл.)

      Это короткое замыкание обычно возникает путем включения полевых МОП-транзисторов нижнего плеча H-моста для обеспечения пути тока.

      2. Возврат энергии к источнику питания

      Когда система управления хочет быстро уменьшить скорость двигателя, полярность тока, подаваемого на двигатель, меняется на противоположную, чтобы обеспечить крутящий момент, противоположный движению, который применяется путем включения другой диагональной пары H-моста или выключение всех МОП-транзисторов (ток будет течь через диоды корпуса). Когда это сделано, накопленная энергия возвращается через схему драйвера двигателя в источник питания.

      Есть два источника энергии, вытекающей из двигателя: 1.остаточная коммутация тока индуктора, 2. BEMF. Что касается остаточного тока индуктора, как видно на рис. 2, происходящего от коммутации с M1/M4 на M2/M3, ток в паразитном индукторе якоря не рассеивается сразу после выключения M1/M4. После этого энергия катушки индуктивности возвращается к входному конденсатору через внутренние диоды М2 и М3. Обратный ток BEMF возникает в результате переключения скорости двигателя с высокой на низкую: если приложенное напряжение двигателя падает (через ШИМ или вход), чтобы снизить скорость двигателя, часть BEMF, пропорциональная скорости двигателя, не изменится немедленно, поэтому BEMF больше приложенного напряжения.Реверсирование энергии может зарядить входной конденсатор и вызвать всплеск напряжения.

      Рисунок 2: Энергия, возвращающаяся к источнику питания

      Если бы источником питания была идеальная батарея, то энергия возвращалась бы обратно в батарею и повторно использовалась. Однако источником питания обычно является источник питания постоянного тока, особенно с защитным диодом от обратной полярности, который может только генерировать ток и не может потреблять ток, единственное место, куда должна идти энергия, — это объемная емкость, расположенная на Vs. контакт питания.

      Количество энергии, хранящейся в объемном конденсаторе, можно рассчитать с помощью ½ CV2, где C — емкость, а V — напряжение. Напряжение на конденсаторе должно увеличиваться по мере поступления в него энергии. Таким образом, на контакте VIN должен быть подключен объемный конденсатор, который необходим для поглощения энергии, поступающей от двигателя или источника питания, и его размер должен соответствовать требованиям приложения.

      Если энергии много или емкости недостаточно, напряжение может подняться и превысить максимальный предел напряжения питания (т.г. 40 В MPQ6526 и MPQ6527), что приведет к повреждению микросхемы драйвера двигателя или других цепей, подключенных к тому же источнику питания.

      ПУЛЬСАЦИЯ ПИТАНИЯ И РАЗРЯДНАЯ ЦЕПЬ

      Во многих типичных приложениях используется диод защиты от обратной полярности, такой как D1 на рис. 3. Но этот метод сопряжен с определенной опасностью. В режиме запрета ИС потребляет только очень малый ток АС, например 20 мкА максимум. Любые пики напряжения питания будут постепенно заряжать блокировочный конденсатор. D1 предотвращает разряд конденсатора через источник питания; из-за крайне малого тока покоя разрядом через ИС также можно пренебречь.Это означает, что в течение длительных периодов времени в режиме запрета напряжение питания ИС может непрерывно возрастать до тех пор, пока не будет превышен максимальный предел напряжения питания, что приведет к повреждению ИС. Таким образом, семейство MPQ6526 и MPQ6527 имеет схему разрядника, которая предотвращает такие нежелательные эффекты. Если VS превышает пороговое значение примерно 37 В, блокировочный конденсатор разряжается через встроенный резистор до тех пор, пока VS снова не упадет ниже порога.

      Рисунок 3: Принцип работы разрядной цепи

      РЕКОМЕНДАЦИИ ПО ВХОДНЫМ КОНДЕНСАТОРАМ ДЛЯ ПИТАНИЯ PIN

      Обычно рекомендуется использовать объемный электролитический конденсатор параллельно с керамическим конденсатором.Керамический конденсатор емкостью 100 нФ, рассчитанный на контакт питания, должен располагаться как можно ближе к устройству. Кроме того, на контакте источника питания должен быть размещен объемный конденсатор соответствующего размера, рекомендуется электролитический конденсатор > 22 мкФ, что является рекомендуемым значением, но для определения объемного конденсатора соответствующего размера требуется тестирование на уровне системы.

      Номинальное напряжение для конденсаторов большой емкости должно быть выше типичного рабочего напряжения и обеспечивать достаточный запас для случаев, когда переработанная энергия возвращается в источник питания.

      Значение необходимого электролитического конденсатора зависит от многих факторов, включая:

      • Внешняя нагрузка
      • Ток обратной проводимости.
      • Емкость источника питания по отношению к току источника.
      • Величина паразитной индуктивности между источником питания и системой двигателя, которая ограничивает скорость изменения тока от источника питания. Чем больше входная емкость, тем стабильнее напряжение двигателя и более высокий ток можно быстро подать.
      • Максимальный предел напряжения питания и допустимая пульсация напряжения.
      • Метод торможения двигателя, короткое замыкание на выходе или торможение с изменением полярности тока.

      Как показано на рис. 2, повторно используемая электрическая энергия заряжает входной конденсатор. Если емкость входной шины постоянного тока недостаточна, возникает всплеск высокого напряжения, который может повредить силовой каскад. Если установка достаточной емкости на входной шине нецелесообразна, можно также использовать схему OVP для разряда энергии и ограничения напряжения на входной шине.

      ОБЗОР КОНСТРУКЦИИ

      Энергия, возвращаемая обратно во входной источник питания, вызывает скачок напряжения и потенциальный риск. Необходимо добавить достаточную входную емкость, чтобы поглотить эту энергию. Достаточная входная объемная емкость важна при проектировании системы привода двигателя. Выгодно иметь большую объемную емкость, а недостатками являются повышенная стоимость и физический размер. Это примечание по применению должно помочь вам понять, как энергия может возвращаться к источнику питания и почему нам необходимо использовать достаточный объемный конденсатор.Математика, необходимая для правильного определения значений компонентов для данной системы, выходит за рамки этой статьи, но более подробная информация, включая расчеты емкостных и фиксирующих компонентов, представлена ​​в примечаниях по применению AN132 «Конструкция входного конденсатора и схемы защиты от перенапряжения». ».

      _______________________

      Вам было интересно? Получайте ценные ресурсы прямо на свой почтовый ящик — рассылка раз в месяц!

      Получить техническую поддержку

      9.Борьба с шумом двигателя

      Одним из основных недостатков работы с двигателями является большое количество электрических шумов, которые они производят. Этот шум может мешать вашим датчикам и может даже повредить ваш микроконтроллер, вызывая провалы напряжения в регулируемой линии электропередач. Достаточно большие провалы напряжения могут повредить данные в регистрах микроконтроллера или привести к сбросу микроконтроллера.

      Основным источником шума двигателя являются щетки коллектора, которые могут подпрыгивать при вращении вала двигателя.Этот дребезг в сочетании с индуктивностью катушек и выводов двигателя может привести к большому шуму в вашей линии электропередачи и даже вызвать шум в близлежащих линиях.

      Есть несколько мер предосторожности, которые вы можете предпринять, чтобы уменьшить влияние шума двигателя на вашу систему:

      1) Припаяйте конденсаторы к клеммам двигателя. Конденсаторы, как правило, являются наиболее эффективным способом подавления шума двигателя, и поэтому мы рекомендуем вам всегда припаивать хотя бы один конденсатор к клеммам двигателя.Обычно требуется использовать от одного до трех 0,1 мкФ керамических конденсаторов , припаянных как можно ближе к корпусу двигателя. Для приложений, требующих двунаправленного управления двигателем, очень важно не использовать поляризованные конденсаторы!

      Если вы используете один конденсатор, припаяйте по одному проводу к каждой из двух клемм двигателя, как показано справа выше.

      Для лучшего подавления шума вы можете припаять к двигателю два конденсатора, по одному от каждой клеммы двигателя к корпусу двигателя, как показано на рисунке справа.

      Для наибольшего шумоподавления можно впаять все три конденсатора: по одному между выводами и по одному от каждого вывода к корпусу двигателя.

      2) Двигатель и кабели питания должны быть как можно короче. Вы можете уменьшить шум, скрутив провода двигателя так, чтобы они закручивались вокруг друг друга.

      3) Проложите двигатель и провода питания вдали от сигнальных линий. Ваши моторные линии могут индуцировать токи в близлежащих сигнальных линиях. Мы наблюдали скачки напряжения до 20 В, индуцированные в совершенно отдельных цепях рядом с шумным двигателем.

      4) Разместите развязывающие конденсаторы (также известные как «шунтирующие конденсаторы») на линии питания и заземления рядом с любой электроникой, которую вы хотите изолировать от помех. Чем ближе вы сможете расположить их к электронике, тем эффективнее они будут, и вообще говоря, чем большую емкость вы используете, тем лучше. Мы рекомендуем использовать электролитические конденсаторы емкостью не менее нескольких сотен мкФ. Обратите внимание, что электролитические конденсаторы поляризованы, поэтому позаботьтесь о том, чтобы их отрицательный вывод был подключен к земле, а положительный вывод был подключен к VIN, и убедитесь, что вы выбрали конденсатор с номинальным напряжением, достаточно высоким, чтобы выдерживать пики шума, которые вы пытаетесь подавить. .Хорошее эмпирическое правило состоит в том, чтобы выбрать тот, который рассчитан как минимум на удвоенное входное напряжение.

      Схема

      — Размещение и номиналы развязывающих конденсаторов — как выбрать?

      Вы задали здесь очень сложный вопрос. Мне потребовалось бы 5 страниц, чтобы ответить на этот вопрос в меру своих знаний и способностей в области EE. Таким образом, в доступном пространстве я могу предложить только несколько рекомендаций и принципов, которые я узнал о применении шунтирующих конденсаторов за многолетний опыт проектирования.

      A. Их никогда не бывает достаточно.

      B. Не существует практического способа рассчитать необходимое значение для данного приложения. (см. G ниже).

      C. Не существует практического способа количественно оценить их эффективность в конечном контуре. (Т.е. нет известного «байпасометра», который вы можете подключить к схеме для измерения их фактического эффекта.) Лучшее, на что вы можете надеяться, — это сравнительный анализ «работает лучше» — «работает хуже».

      D. Причина, по которой мы в первую очередь используем блокирующие конденсаторы, различна для разных цепей, и правила часто путаются или заменяются неосведомленными пользователями.Например. Байпасные заглушки используются/требуются по одной причине при применении биполярных логических схем TTL 7400. Они также используются/требуются по другой причине при применении логических схем CMOS 74HCT00. В схемах операционных усилителей они используются по совершенно другой причине, а в устройствах управления двигателем, подобных вашему, — по другой причине. Не говоря уже об их использовании в радиочастотных цепях.

      E. Разрешить различные конфигурации и комбинации в ваших первых печатных платах. Это дополнительные возможности, поэтому у вас есть варианты сборки, когда вы переходите к этапу отладки проекта.Опять же, необходимо много проб и ошибок, но вы не сможете сделать это очень эффективно, если не запланировали это.

      F. Как правило, чем ниже частота сигналов и чем больше потребляемые токи и результирующая энергия, тем больше размер шунтирующих конденсаторов. Это использование электролитов и тантала в этих ситуациях, потому что они имеют большие возможности накопления энергии и более высокие номинальные токи, чем эквивалентная емкость керамики, пластмассы и аналогичные конденсаторы слабого типа.

      G. Практически невозможно рассчитать «правильное» значение для байпасного конденсатора, потому что нет «правильного ответа» на проблему, для решения которой они используются. Это нечеткая задача с нечетким решением. Вы будете часто сталкиваться с этим сценарием: одно решение устраняет определенные аспекты проблемы, другое решение устраняет другие аспекты проблемы, кажется, что ни одно решение не решает все аспекты.

      H. Мне нравится эта аналогия с машиностроением: шунтирующие конденсаторы подобны стопорным шайбам в механических конструкциях.Как рассчитать размер или тип стопорной шайбы (например, внутренняя звездочка, внешняя звездочка, разрезное кольцо и т. д.), необходимые для данной вибрационной среды? Ответ: вы не можете. Вы делаете предположение, если оно не работает, вы пробуете альтернативы, пока не наткнетесь на ту, которая дает желаемые или достаточно близкие к желаемым результаты.

      Вы находитесь на правильном пути со схемой B — конденсатор на IC. Тем не менее, я бы запараллелил керамику на 100 нФ небольшим танталовым (не электролитическим), скажем, 2.От 2 до 4,7 MFD (16 Вт постоянного тока, поскольку ваше питание составляет 9 вольт, 10 Вт постоянного тока будет слишком мало для комфорта.) Почему? Это заняло бы еще страницу или две, чтобы объяснить.

      Вы можете задать более конкретные вопросы об одном и том же приложении. Например. из вашего раздела № 2 можно было бы составить хороший вопрос по одной теме.

      Удачи и держите ваши варианты открытыми!

      Пристальный взгляд на конденсаторы промежуточного контура в электромобилях

      Конденсаторы промежуточного контура обычно используются в силовых преобразователях в качестве промежуточного буфера между входным источником и выходной нагрузкой, которые имеют разные мгновенные мощности, напряжения и частоты.В приложениях для электромобилей (EV) конденсаторы звена постоянного тока помогают компенсировать влияние индуктивности в инверторах, контроллерах двигателей и аккумуляторных системах. Они также служат фильтрами, которые защищают подсистемы электромобиля от скачков напряжения, скачков напряжения и электромагнитных помех (ЭМП).

      Рис. 1. Распространенные варианты использования конденсаторов звена постоянного тока в системах преобразования энергии (источник: Центр надежной силовой электроники )

      Взгляните на бортовое зарядное устройство (OBC) на рисунке 2, которое отвечает за зарядку тяговой батареи.Внутри OBC находится:

      • Преобразователь переменного тока в постоянный, который преобразует переменный ток (AC) из электрической сети в постоянный ток (DC) с помощью выпрямления и коррекции коэффициента мощности (PFC)
      • Цепь промежуточного звена постоянного тока для буферизации энергии
      • Преобразователь постоянного тока следующей ступени, который регулирует вырабатываемое напряжение постоянного тока, чтобы обеспечить правильный уровень постоянного тока для батареи.

       

      Рис. 2. Упрощенная блок-схема каскада переменного/постоянного тока OBC

       Конденсатор звена постоянного тока C объемный  размещается между выпрямителем и преобразователем постоянного тока.Желаемые характеристики конденсатора включают:

      • Высокое напряжение постоянного тока: от 300 до 500 В
      • Очень большая емкость: от 200 мкФ до 1500 мкФ
      • Диапазон рабочих температур: от -40°C до +250°C
      • Низкое эквивалентное последовательное сопротивление (ESR): < 1,5 мОм
      • Максимально допустимый ток (СКЗ)
      • Высокая механическая прочность

       Чтобы соответствовать большим значениям емкости, требуется несколько конденсаторов или массив конденсаторов.Для таких применений мы рекомендуем использовать наши конденсаторы StackiCap 1812-4040 высокой емкости 250 В-1,2 кВ 100 нФ-5,6 мкФ X7R. Конденсатор звена постоянного тока также должен выдерживать удвоенную частоту сети. Таким образом, общие схемы включают многослойные керамические конденсаторы (MLCC), соединенные параллельно с конденсаторами других технологий для достижения этой цели.

      Еще одна подсистема EV, в которой обнаружены конденсаторы звена постоянного тока, — это инвертор в цепях привода двигателя (показан на рис. 3). Инвертор преобразует мощность постоянного тока от батареи в трехфазную мощность переменного тока для привода тяговых двигателей во время разгона, а затем преобразует мощность переменного тока обратно в постоянный ток во время торможения.Он также определяет скорость и положение двигателя и управляет силовыми каскадами на биполярных транзисторах с изолированным затвором (IGBT).

       

      Рис. 3. Упрощенная блок-схема инвертора в схеме драйвера двигателя

       

      В этой подсистеме звено постоянного тока или сглаживающий конденсатор C размещается параллельно между сторонами постоянного тока (аккумулятор) и стороной переменного тока (нагрузка) инвертора напряжения. Характеристики конденсатора очень похожи на предыдущий пример OBC, поэтому рекомендуется тот же StackiCap X7R с высокой среднеквадратичной допустимой нагрузкой по току.Из-за высоких требований к емкости малогабаритные MLCC можно использовать вместе с пленочными и алюминиевыми электролитическими конденсаторами, чтобы интегрировать их ближе к переключающему устройству IGBT и улучшить затухание на высоких частотах.

      Учитывая большое количество преобразователей и инверторов, применяемых в электромобилях, выбор правильного высоковольтного конденсатора звена постоянного тока большой емкости имеет большое значение для общего успеха системы. Для получения дополнительной информации свяжитесь с нами, чтобы обсудить ваш конкретный вариант использования, или прочитайте наш технический документ «Соображения по выбору автомобильных многослойных керамических конденсаторов в электромобилях».

      Конденсатор двигателя – типы, характеристики, применение и испытания

      Конденсатор двигателя переменного тока представляет собой конденсатор, специально разработанный для работы двигателей переменного тока или компрессоров. Он в основном используется в вентиляторах, водяных насосах, морозильных установках, концентраторах кислорода и т. д. В зависимости от применения они в основном бывают двух типов. Они запускают и запускают конденсаторы. Однако также может быть конденсатор двойного типа, который работает как в режиме запуска, так и в режиме запуска.

      В этом блоге мы будем обсуждать различия между этими типами конденсаторов двигателя.Также мы будем рассчитывать необходимую мощность для данного электродвигателя.

      Сколько существует типов конденсаторов двигателя?

      1. Рабочий конденсатор

      Рабочий конденсатор — это тип конденсатора двигателя, который необходим для работы однофазного электродвигателя переменного тока. Таким образом, он имеет 100% рабочий цикл, что означает, что рабочий конденсатор постоянно используется.

      Скорее всего конденсаторы полимерные, пропиленовые пленочные. Наиболее распространенными номиналами напряжения являются 370 и 440 В переменного тока .Наиболее распространенными значениями емкости рабочих конденсаторов являются 1,5, 2,5, 5, 10, 15, 20, 25, 30, 40, 50 и 60 мкФ .

      2. Пусковой конденсатор

      Пусковой конденсатор — тип конденсатора двигателя, который необходим для запуска однофазного электродвигателя переменного тока. После включения мотора он остается пассивным.

      В основном это неполяризованные алюминиевые электролитические конденсаторы с нетвердым электролитом.

      Номинальное напряжение ниже 370 В переменного тока .Наиболее часто встречающиеся номиналы напряжения: 125, 165, 250 и 330 В переменного тока . Точно так же номинал емкости выше 70 мкФ .

      Рабочий конденсатор против пускового конденсатора

      Некоторые общие различия между рабочими и пусковыми конденсаторами заключаются в следующем.

      Рабочий конденсатор двигателя Пусковой конденсатор двигателя
      Работает при напряжении выше 370 В переменного тока. Работает при напряжении ниже 370 В переменного тока.
      Как правило, он имеет низкое значение емкости (ниже 70 MFD). Как правило, он имеет высокое значение емкости (выше 70 MFD).
      В основном точная емкость указана на внешней поверхности конденсатора. В основном диапазон значений емкости указан на внешней поверхности конденсатора.
      Конденсатор всегда используется Конденсатор используется только один раз, для включения двигателя.

      (Примечание: Номинальные значения также могут быть указаны в MFD вместо мкФ.Здесь MFD означает Micro Farad, что тоже одно и то же. )

      Можно ли использовать рабочий конденсатор в качестве пускового?

      Да, рабочий конденсатор можно использовать в качестве пускового конденсатора двигателя . Но из-за малой емкости рабочего конденсатора его будет недостаточно для включения двигателя. В таком случае вам необходимо добавить его в параллельную комбинацию. При параллельном соединении общая емкость увеличивается. Таким образом, общей емкости будет достаточно для двигателя.

      Мы не можем использовать пусковой конденсатор в качестве конденсатора двигателя . Мы знаем, что пусковой конденсатор работает с более высокой емкостью. Таким образом, использование его в качестве рабочего конденсатора приведет к нагреву двигателя. Таким образом, сокращается срок службы двигателя.

      Расчет конденсатора однофазного двигателя

      Прежде чем приступать к расчетам, необходимо знать, является ли конденсатор рабочим или пусковым. Зная тип, вы можете использовать приведенную ниже формулу.

      Для пускового конденсатора

      C (мкФ)     = (I x 1000000)/(2ΠFV)

                    = (I x 1000000)/(6,285FV)

      где I = ток

      F = частота переменного тока, в основном 50 Гц или 60 Гц (в зависимости от страны)

      В = номинальное напряжение, указанное на внешней поверхности однофазного двигателя переменного тока.

      Π= 22/7 = 3,14

      Используйте приведенную ниже формулу для расчета значения текущего

      I = Мощность/(В x P.е)

      где В = напряжение

      P.f = коэффициент мощности

      (Примечание. Если вы найдете коэффициент мощности машины, используйте его в формуле. В противном случае предположим, что значение коэффициента мощности для данного двигателя равно 0,8.

      Если мощность указана в лошадиных силах (л.с.), переведите ее в ватты по формуле 1 л.с. = 746 ватт )

      Теперь возьмем пример

      Дано,

      Мощность = 1 л.с.

      П. ф = 0.8 (предположительно)

      Напряжение (В) = 220 В переменного тока

      Частота (F) = 50 Гц

      Текущий ток (I) = Мощность/(Напряжение X P.f)

      = (1 х 746)/(220 х 0,8)

      = 4,238 А

      Сейчас,

      Кл (мкФ) = (I x 1000000)/(2ΠFV)

      = (4,238 х 1000000)/(2 х 3,14 х 50 х 220)

      = 4238000/ 69080

      = 91,349 мкФ

      Следовательно, пусковой конденсатор двигателя мощностью 1 л.с. имеет приблизительное значение 91,349 мкФ.

      (Примечание: возможно, вам не удастся найти номер 91.Пусковой конденсатор 349 мкФ на рынке. В таком случае выберите конденсатор с немного большей емкостью.)

      Для рабочего конденсатора

      C (мкФ) = (Мощность X Эффективность (в %) X 1000)/ (В² X F)

      где Eff = КПД (если значение задано в двигателе, то подставить его в формулу. Иначе считать, что КПД однофазного двигателя равен 80 %. Также при использовании этой формулы подставить значение КПД в процентах)

      В= номинальное напряжение (заданное в двигателе)

      F = частота переменного тока

      Теперь возьмем пример

      Мощность = 1 л.с.

      Эффективность = 80% (предположим)

      В = 220 В переменного тока

      F = 50 Гц

      Затем

      C (мкФ) = (Мощность X Эффективность X 1000)/ (В² X F)

      = (1 х 746 х 80 х 1000)/(220² х 50)

      = 59680000/2420000

      = 24.661 (мкФ)

      Следовательно, рабочий конденсатор двигателя мощностью 1 л.с. имеет приблизительное значение 24,661 мкФ.

      (Примечание: рабочий конденсатор емкостью 24,661 мкФ может отсутствовать в продаже. В таком случае выберите рабочий конденсатор с немного большей емкостью.)

      Таблица размеров конденсатора двигателя

      Как видно из приведенного выше расчета, конденсатор двигателя может зависеть от ряда факторов, таких как частота переменного тока, напряжение, эффективность машины и т. д.Следовательно, я не могу дать вам общую таблицу размеров конденсатора двигателя.

      Различные двигатели могут иметь разные таблицы размеров. Однако диаграмму можно определить для двигателей различной мощности, используя приведенные выше формулы.

      Симптомы неисправности конденсатора двигателя

      Основные симптомы неисправности конденсатора двигателя следующие.

      • Конденсатор может быть сломан, разорван или вздут. Из него тоже могут быть утечки.
      • В случае пускового конденсатора двигателя двигатель может не включиться.Или может быть некоторая задержка перед запуском двигателя.
      • В случае конденсатора двигателя двигатель может перегреться или может не вращаться с полной эффективностью.
      • Конденсаторы могут дымить из-за перегрева. Кроме того, двигатель может отключиться.

      Испытание конденсатора двигателя

      Прежде всего осмотрите конденсатор снаружи. Если конденсатор внешне исправен, то проверить его можно следующими способами.

      Перед выполнением любого теста обязательно посмотрите показания на поверхности конденсатора.

      Первый метод

      Первый способ довольно рискованный. Кроме того, результат, который вы получите, также не будет надежным. Таким образом, это наименее рекомендуемый метод. В этом методе возьмите источник переменного тока. Подсоедините два кабеля к двум клеммам конденсатора. Затем подключите другие концы кабелей к источнику питания. Теперь включите питание на долю секунды. За это время происходит зарядка конденсатора

      (Примечание: зарядка должна производиться с точностью до доли секунды.Если вы заряжаете его в течение секунды или более, конденсатор выйдет из строя. )

      После этого снимите две клеммы с блока питания. Затем закоротите две клеммы. Здесь происходит процесс разрядки. Итак, вы увидите искры с шумом в процессе разрядки. Если он не производит никаких искр вместе с шумом, то конденсатор может быть неисправен.

      Как было сказано ранее, этот метод неэффективен. Метод показывает только зарядку и разрядку конденсатора.Тем не менее, он не может измерить значение емкости.

      Второй метод

      Второй способ аналогичен первому. Тем не менее, это несет низкий риск.

      Для этого метода подайте питание постоянного тока на данный конденсатор двигателя в течение короткого периода времени. За это время конденсатор зарядится. После полной зарядки приложите нагрузку (например, зуммер постоянного тока) к тем же двум точкам. При этом происходит разрядка конденсатора. Следовательно, нагрузка активируется (например, зуммер издаст шум).

      Третий метод

      Для третьего метода нужен мультиметр (клещи).

      Прежде всего разрядите конденсатор. После этого поставьте мультиметр на шкалу Ом. Подсоедините два щупа мультиметра к двум клеммам конденсатора. Затем наблюдайте за значением на дисплее. Конденсатор начинает заряжаться. Следовательно, значение сопротивления начинает расти. В определенный момент на дисплее появится символ OL, обозначающий перегрузку. Это означает, что конденсатор полностью заряжен.

      После этого поменяйте местами два щупа в точке конденсатора. Затем наблюдайте за дисплеем. Здесь значение будет уменьшаться от OL до 0. Это означает, что конденсатор разряжен. После этого значение снова будет увеличиваться в обратном направлении. Таким образом, зарядка будет происходить на противоположной обкладке конденсатора.

      Четвертый метод

      Четвертый и самый лучший метод – использовать мультиметр с функцией измерения емкости.

      Для этого подключите два вывода конденсатора к мультиметру.Установите мультиметр в емкостной режим. Затем наблюдайте за результатом на дисплее измерителя. Если полученное значение находится в пределах номинального значения конденсатора, то он исправен. В противном случае он может быть неисправен.

      Пятый метод

      В первую очередь измерьте напряжение питания. Затем подключите два вывода конденсатора к двум точкам источника питания с помощью провода. Затем поместите крючок зажима на провод под напряжением. После этого включите питание.Токоизмерительные клещи показывают силу тока в амперах. Через 5 секунд отключить блок питания

      (Примечание. Если конденсатор рабочего типа, то вы можете подать питание на 5-10 секунд. Однако, если конденсатор пускового типа, вы не должны подавать питание более чем на 5 секунд. В противном случае пусковой конденсатор может выйти из строя.)

      После получения напряжения и тока можно использовать следующую формулу для расчета емкости.

      (Примечание. Не снимайте конденсатор голыми руками. Поскольку он несет заряд, вы можете получить удар электрическим током. Вы можете закоротить два контакта и разрядить их. После этого снимите конденсатор)

      Формула
      • Емкость в МФД (50 Гц) = 3100 * Ампер/Напряжение
      • Емкость в МФД (60 Гц) = 2650*Ампер/Напряжение

      где МФД обозначает микрофарад

      После получения значения сравните его с фактическим значением, указанным на внешней поверхности конденсатора.Если полученное значение выходит за пределы требуемой емкости, то замените конденсатор на такой же.

      Что происходит с конденсатором, если на обкладки подается слишком большое напряжение?

      Что происходит с конденсатором, если на обкладки подается слишком большое напряжение?

      4 ответа. Если на пластинах конденсатора есть напряжение, а питание отключено, заряд сохраняется независимо от расстояния, поэтому, если расстояние увеличивается (и емкость падает), напряжение увеличивается пропорционально.Если пластины отвести на бесконечное расстояние, напряжение станет бесконечным.

      Можно ли перезарядить конденсатор?

      1 Ответ. С источником статического напряжения последовательно включенный конденсатор будет заряжаться до тех пор, пока его напряжение не станет таким же, как у источника. Однако работа конденсатора вблизи предела напряжения может привести к уменьшению емкости, а зарядка выше предела может сильно его разрушить.

      Что происходит при перегрузке конденсатора?

      Если к конденсатору приложить высокое напряжение, превышающее номинальное, его диэлектрическая прочность нарушится, и в конечном итоге конденсатор взорвется.# Электролитические конденсаторы выходят из строя из-за утечки или испарения электролита внутри. Это может быть вызвано нагревом во время работы.

      Как долго можно хранить электролитические конденсаторы?

      примерно 2 года

      Конденсаторы выходят из строя, если их не использовать?

      Да, электролитические конденсаторы портятся, если они не используются в течение длительного времени, выдерживаемое напряжение снижается. вниз, значение емкости уменьшается, значение esr и утечка увеличиваются, электролит может испаряться.да, электролит, используемый в конденсаторах, имеет срок годности. Через несколько лет он высыхает, и конденсаторы теряют свои свойства.

      Деградируют ли конденсаторы, если они не используются?

      Если электролитический конденсатор просто не используется в течение длительного периода времени, диэлектрик деградирует; чем дольше он не используется, тем хуже становится диэлектрик. Емкость уменьшается, а скорость утечки увеличивается.

      Как долго прослужит конденсатор?

      Конденсаторы имеют ограниченный срок службы.Большинство из них рассчитаны примерно на 20 лет, но ряд факторов может привести к их более быстрому износу.

      Может ли конденсатор убить вас?

      Конденсаторы не смертельны, они не могут вас убить. Напряжение, хранящееся в конденсаторе, и ток во время разряда могут навредить вам. Во времена телевизоров на основе ЭЛТ в источнике высокого напряжения был небольшой конденсатор емкостью 300 пФ или около того, который использовался в качестве фильтра.

      Насколько опасен конденсатор?

      Существует еще одна форма вреда: конденсатор очень большой емкости, заряженный до безопасного напряжения, может вызвать очень большой ток при коротком замыкании его выводов.Искры и тепло могут причинить вам вред, а сам конденсатор может взорваться.

      В чем разница между рабочим конденсатором и пусковым конденсатором?

      Пусковой конденсатор создает отставание по току от напряжения в отдельных пусковых обмотках двигателя. Ток нарастает медленно, и якорь имеет возможность начать вращаться вместе с полем тока. Рабочий конденсатор использует заряд диэлектрика для увеличения тока, который обеспечивает питание двигателя.

      Могу ли я использовать переменный ток без конденсатора?

      Большинство двигателей вашего кондиционера не могут работать без хорошего конденсатора.Они помогают двигателю запускаться и работать эффективно. Некоторые люди подошли к своему кондиционеру и заметили, что вентилятор не вращается, как должно быть.

      Каковы симптомы неисправного конденсатора?

      Контрольный список признаков неисправного конденсатора переменного тока

      • Дым или запах гари от внешних компонентов кондиционера.
      • Гудение вашего кондиционера.
      • Вашему кондиционеру требуется некоторое время, чтобы начать цикл охлаждения после его включения.
      • Система кондиционирования воздуха отключается произвольно.

      Можно ли использовать конденсатор на 440 В для питания 230 В?

      440 вольт, указанные на крышке, являются максимально допустимым напряжением, которое может выдержать конденсатор. На самом деле вы можете использовать крышку на 370 вольт на 230 вольт. Можно работать даже с 230 В.

      Можно ли использовать конденсатор с большей емкостью мкФ?

      Краткий ответ: Нет. Длинный ответ: Это зависит от того, что конденсатор делает в цепи. Обычно безопасно заменить конденсатор с тем же значением, но с более высоким номинальным напряжением, но емкость может иметь свое значение по какой-то причине.В игре есть нечто большее, чем просто емкость.

      Можно ли использовать конденсатор на 440 В вместо конденсатора на 370 В?

      В номинальном напряжении отображается значение «не превышать», что означает, что вы можете заменить 370 В на 440 В, но не можете заменить 440 В на 370 В. Это заблуждение настолько распространено, что многие производители конденсаторов начали штамповать конденсаторы на 440 В как 370/440 В только для того, чтобы избежать путаницы.

      Как выбрать пусковой конденсатор?

      Разделите пусковую энергию двигателя в джоулях на «x», чтобы получить требуемый размер конденсатора в фарадах.Пусковая энергия двигателя указана либо в его документации, либо написана на самом двигателе.

      Как выбрать конденсатор нужного размера?

      Физический размер конденсатора в большинстве случаев прямо пропорционален номинальному напряжению. Например, в примере схемы выше максимальный уровень напряжения на конденсаторе — это пиковый уровень 120 В (среднеквадратичное значение), который составляет около 170 В (1,41 X 120 В). Итак, номинальное напряжение конденсатора должно быть 226,67 В (170/0,75).

      Как выбрать размер конденсатора?

      Умножьте ток полной нагрузки на 2650.Разделите это число на напряжение питания. Ток полной нагрузки и напряжение питания можно найти в руководстве пользователя. Полученное число и есть микрофарад нужного вам конденсатора.

      Как выбрать пусковой конденсатор?

      Номинальное напряжение пусковых конденсаторов электродвигателя должно быть примерно в 1,5 раза больше линейного напряжения, подаваемого на двигатель. Для меня это говорит о том, что ваша крышка 330 В — это правильное напряжение. Пусковые конденсаторы электродвигателей обычно рассчитаны на 125, 165, 250 или 330 В переменного тока и находятся в диапазоне от 25 мкФ до 1400 мкФ в микрофарадах.

      Что вызывает выход из строя пусковых конденсаторов?

      Перегрев является основной причиной выхода из строя пускового конденсатора. Пусковые конденсаторы не предназначены для рассеивания тепла, связанного с непрерывной работой; они предназначены для того, чтобы оставаться в цепи только на мгновение, пока двигатель запускается. Если пусковой конденсатор останется в цепи слишком долго, он перегреется и выйдет из строя.

      Как проверить конденсатор?

      Как измерить емкость

      1. С помощью цифрового мультиметра (DMM) убедитесь, что питание цепи отключено.
      2. Осмотрите конденсатор.
      3. Поверните циферблат в режим измерения емкости.
      4. Для правильного измерения конденсатор необходимо удалить из цепи.
      5. Подсоедините измерительные провода к клеммам конденсатора.

      Что произойдет, если в двигателе выйдет из строя конденсатор?

      При коротком замыкании конденсатора может сгореть обмотка в двигателе. Когда конденсатор изнашивается или открывается, двигатель имеет плохой пусковой момент.Плохой пусковой момент может помешать пуску двигателя, что обычно приводит к отключению из-за перегрузок.

      Как узнать, исправен ли конденсатор?

      Один из способов проверить, работает ли конденсатор, — зарядить его напряжением, а затем считать напряжение на аноде и катоде. Для этого необходимо зарядить конденсатор напряжением, а на выводы конденсатора подать постоянное напряжение. В этом случае очень важна полярность.

      Конденсаторы разряжаются?

      Иногда конденсаторы разряжены и требуют замены.Если у вас нет тестера конденсаторов… Я бы посоветовал отнести конденсатор поставщику запчастей для бытовой техники и спросить его, будут ли они достаточно любезны, чтобы проверить конденсатор для вас.

      Что происходит при выходе из строя конденсатора?

      Во время сбоя половина конденсатора может открыться, что приведет к потере общей емкости. Или половина конденсатора может выйти из строя, что приведет к уменьшению общей емкости вдвое. Однако это приводит к повышению температуры, что, в свою очередь, вызывает увеличение внутреннего давления.

      Можно ли прыгнуть через конденсатор?

      Попробуйте «Начать с прыжка»! Конденсатор и реле напряжения можно проверить в полевых условиях без использования диагностического оборудования. Если однофазный компрессор не запускается, запустите его от внешнего источника! Прикасаясь одним проводом к одной клемме, а другим проводом к другой клемме заглушки, включите компрессор.

      Почему конденсаторы кондиционера выходят из строя?

      Причины проблем с конденсатором переменного тока Физическое повреждение конденсатора, например попадание мусора в устройство.Неправильное напряжение или ток, проходящий через конденсатор. Перегрев агрегата. Возрастной износ.

      Как звучит неисправный конденсатор?

      Если вентилятор начинает вращаться сам по себе и продолжает вращаться, у вас неисправен конденсатор. Если ваш кондиционер гудит, но не работает, вероятно, сломался конденсатор.

      .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *