На микроконтроллере: Схемы на микроконтроллерах – Радиодед

Содержание

Самое простое устройство на микроконтроллере

Микроконтроллеры / Создание устройств /

Разработка устройств на микроконтроллерах

Возможно, вы уже научились чему-то в теме программирования микроконтроллеров. Возможно, вы уже можете написать программу для простого устройства типа бегущих огней новогодней гирлянды. Однако аппетит приходит во время еды. И наверняка вам хочется чего-то большего. Наверняка вам хочется шагнуть на уровень профессионала. Ну хотя бы на первую ступеньку… Подробнее…

До сих пор я выдавал вам общие сведения о микроконтроллерах, отрывки из документации, иногда немного говорил о программировании. Но ещё ни разу не приводил примеров устройств на микроконтроллерах. А ведь именно в этом весь смысл обучения — в создании собственных устройств.

Так что с этой статьи я начинаю исправлять положение дел, и буду рассказывать именно о создании устройств с примерами схем, программ и т.

п. Рассказы будут для начинающих. Как всегда буду стараться, чтобы понятно было даже людям, далёким от электроники и программирования. И первый пример будет настолько простым, насколько это вообще возможно…

Пример устройства на микроконтроллере

Итак, наше первое устройство на микроконтроллере будет не простым, а очень простым. И хотя сделать какой-то полезный прибор с наипростейшей схемой и наипростейшей программой крайне сложно, я всё-таки постараюсь. Конечно, эта полезность будет весьма сомнительной, но всё-таки применить это устройство можно будет не только для обучения, но и на практике (конечно, скорее как игрушку, но всё же).

Для опытов возьмём один из самых дешёвых микроконтроллеров — ATtiny13A, о котором я уже немало поведал на этом сайте.

Самая простая схема на микроконтроллере

Наше первое устройство, можно сказать, почти не будет делать ничего полезного. Но зато оно очень простое и новичкам будет проще разобраться как со схемотехникой, так и с программой микроконтроллера.

Итак, наше устройство — это простейшая сигнализация. Если вход микроконтроллера замкнут, то на выходе ноль. Если вход разомкнуть, то на выходе, к которому подключен светодиод, появится сигнал. Светодиод включится, и это будет означать, что сигнализация сработала.

Конечно, это всё достаточно примитивно. Однако в давние времена, когда я занимался (в том числе) и обслуживанием систем сигнализации, мы использовали такие самодельные “датчики”. Например, обматывали решётку на окне тонким проводом и подключали его в шлейф прибора сигнализации. Если злодей выдернет решётку — провод порвётся и сигнализация сработает.

Ну а теперь к схеме.

Микроконтроллер ATtiny13A по умолчанию использует внутренний генератор на 9,6 МГц (это следует из документации, и я писал об этом здесь). И если нас такое решение устраивает (а нас оно устраивает), то это означает, что никаких внешних цепей для задания тактовой частоты нам не потребуется.

Микроконтроллер ATtiny13A выпускается в нескольких корпусах. Будем считать, что у нас корпус 8PDIP/SOIC (подробнее об этом здесь). Тогда схема будет такой:

Наверно вы знаете, что у этих МК есть встроенные подтягивающие резисторы. Но эти резисторы очень маломощные и могут перегореть, если их использовать с нагрузкой. Поэтому последовательно со светодиодом лучше ставить внешний резистор.

На схеме SA1 может быть либо охранным датчиком, либо просто тонким проводом, обмотанным, например, вокруг какого-то охраняемого предмета. При обрыве провода (или размыкании контакта) сигнализация “срабатывает” и светодиод загорается.

Конечно, это слишком несовершенная система. Но мы же только учимся. И в начале пути создания устройств на микроконтроллерах это лучшее решение, потому что оно самое простое.

Простая программа микроконтроллера

Ну а теперь можно перейти к программированию. Я буду использовать ассемблер и среду разработки AVRStudio 4. Почему я использую именно эту среду, хотя есть более новые версии, я рассказал здесь.

Итак, пройдём путь от создания проекта до написания программы.

Запускаем среду разработки AVRStudio 4 и видим окно:

Нажимаем кнопку NEW PROJECT. Откроется окно:

Здесь можно выбрать вид проекта — на ассемблере или на Си, задать имя проекта и выбрать каталог для файлов проекта.

ВНИМАНИЕ!
В пути к файлу не должно быть русских букв. То есть если вы сохраните проект в папку МОИ_ПРОГРАММЫ, то программа не скомпилируется, так как AVR Studio 4 может не понять путь с русскими буквами.

Мы будем писать программу на ассемблере. Проект назовём myprog.

Теперь можно нажать кнопку ДАЛЕЕ (NEXT).

В следующем окне надо выбрать отладочную платформу и тип микроконтроллера:

Выберем AVR Simulator. Ну и поскольку у нас микроконтроллер ATtiny13A, то выберем ATtiny13. Затем нажимаем FINISH.

Ну вот. Проект создан. Редактор исходного кода открыт. Теперь можно приступить к написанию программы. Она может быть примерно такой:


; Сообщить ассемблеру модель микроконтроллера
.device ATtiny13A
.nolist
; Подключить файл с объявлениями для ATtiny13A
.include "tn13def.inc"  
.list

; Инициализация
Init:
  ; PB0 - вход, остальные - выходы
  LDI R16,  0b11111110
  OUT DDRB, R16
  ; Включить подтяжку для PB0
  LDI R16,  0b00000001
  OUT PortB, R16

; Начало программы
Start:
  SBIS PinB,  0   ; Проверить датчик
  SBI  PortB, 1   ; Если обрыв, то включить светодиод
  SBIC PinB,  0   ; Проверить датчик
  CBI  PortB, 1   ; Если замкнут, то погасить светодиод
  RJMP Start      ; Возвращаемся к началу программы

При инициализации мы определяем, какие выводы будут входами, а какие — выходами. Если в бит регистра DDRB записать 0, то соответствующий вывод порта В будет входом, если 1 — выходом.

У нас к выводу РВ0 подключен датчик, следовательно, РВ0 будет входом. К выводу РВ1 подключен светодиод, значит, РВ1 будет выходом. Неиспользуемые выводы лучше всегда делать выходами (хотя здесь у каждого свои предпочтения).

С помощью команды LDI мы записываем число в регистр R16, который используем как временную переменную. Это необходимо, потому что команда OUT не может записать в регистр DDRB непосредственное значение.

Далее мы включаем подтягивающий резистор для вывода РВ0. Для этого в регистр PortB надо в соответствующий бит записать 1.

Ну а далее начинается программа.

Сначала выполняем команду

SBIS. Эта команда проверяет указанный вход. И если на этом входе 1, то следующая команда НЕ БУДЕТ выполнена. То есть в этом коде:


SBIS PinB,  0 
SBI  PortB, 1 
SBIC ...

мы проверяем РВ0. Если там единица, то мы переходим к команде SBIC. Если же ноль (датчик разомкнут — сигнализация сработала), то выполняем команду SBI, которая устанавливает указанный выход (то есть в нашем случае зажигает светодиод, подавая напряжение на вывод РВ1).

Затем выполняем команду SBIC. Эта команда также проверяет указанный вход. Но если на этом входе 0, то следующая команда не будет выполнена. Если же 1 (контакты датчика замкнуты), то будет выполнена команда CBI, которая обнуляет указанный вывод. То есть на РВ1 будет подан 0, и светодиод погаснет.

Таким образам исполняется наш простой алгоритм: если датчик “не сработал” (контакт замкнут), то светодиод не горит. Если контакты разомкнулись, то светодиод светится.

На этом пока всё. Если что-то осталось непонятно — посмотрите видео в начале статьи.



Микроконтроллеры для ЧАЙНИКОВ

Бесплатная рассылка о микроконтроллерах. Рассылка содержит как бесплатную информацию для начинающих, так и ссылки на платные продукты (книги, видеокурсы и др.) для тех, кто захочет вникнуть в тему более глубоко. Подробнее…


Схемы, устройства и проекты на микроконтроллерах AVR

Цифровое измерение расстояний в настоящее время находит широкое применение в системах контроля движения транспортных средств, медицине, устройствах для слабовидящих и т.д. Наиболее дешевым способом измерения расстояний является использование для этой цели ультразвуковых датчиков, среди которых наиболее распространен датчик HC-SR04. В … Читать далее →

На данной странице представлена карта статей по микроконтроллерам AVR, опубликованным на нашем сайте «Мир микроконтроллеров». По мере добавления статей данной тематики данная карта статей также будет дополняться. Микроконтроллеры семейства AVR в настоящее время являются одними из самых популярных микроконтроллеров. Они … Читать далее →

Микроконтроллер ATtiny85 является удобной и сравнительно мощной альтернативой старшим моделям микроконтроллеров семейства AVR. Его применение особенно оправданно в тех случаях, когда вы стремитесь к минимизации размеров вашего устройства. Микросхема ATtiny85 содержит 8 контактов – 6 контактов ввода/вывода (включая Reset) и … Читать далее →

ATtiny – это серия самых маленьких микроконтроллеров из семейства AVR. Эти микроконтроллеры могут использовать большинство библиотек, доступных для платформы Arduino. ATtiny85 – это 8-пиновый 8-битный микроконтроллер семейства AVR. Его исключительно малый размер и низкое энергопотребление делают его чрезвычайно удобным для … Читать далее →

В этой статье мы рассмотрим создание портативного счетчика шагов (шагомера) на основе микроконтроллера AVR ATtiny85, акселерометра и гироскопа MPU6050, и OLED дисплея. Питание на шагомер будет подавать от простой батарейки на 3V, что позволяет сделать его достаточно компактным и удобным … Читать далее →

GPS модули широко используются в современной электронике для определения местоположения, основываясь на координатах долготы и широты. Системы мониторинга транспортных средств, часы GPS, системы предупреждения о чрезвычайных происшествиях, системы наблюдения – это лишь небольшой список приложений, в которых может потребоваться технология … Читать далее →

Как показывают многочисленные исследования в современном мире люди более склонны доверять машинам нежели другим людям. Сейчас, когда в мире активно развиваются такие технологии как искусственный интеллект, машинное обучение, чат-боты, синергия (совместная деятельность) между людьми и роботами с каждым годом все … Читать далее →

Двигатели постоянного тока относятся к числу наиболее часто используемых двигателей. Их можно встретить где угодно – начиная от простейших конструкций до продвинутой робототехники. В этой статье мы рассмотрим подключение двигателя постоянного тока к микроконтроллеру ATmega16 (семейство AVR). Но сначала немного … Читать далее →

Принцип действия датчиков Холла основан на так называемом «эффекте Холла», открытым Эдвином Холлом (Edwin Hall) в 1869 году. Этот эффект гласит: «эффект Холла основан на явлении возникновения поперечной разности потенциалов (называемой также холловским напряжением) при помещении проводника с постоянным током … Читать далее →

Широтно-импульсная модуляция (сокр. ШИМ, от англ. PWM — Pulse Width Modulation) является технологией, позволяющей изменять ширину импульсов в то время как частота следования импульсов остается постоянной. В настоящее время она применяется в разнообразных системах контроля и управления, а также в … Читать далее →

Электронные самоделки на микроконтроллерах. Схемы и устройства на микроконтроллерах

В данной статье предлагается схема цифрового термометра на микроконтроллере AVR ATtiny2313, датчике температуры DS1820 (или DS18b20), подключенному к микроконтроллеру по протоколу 1-wire, и ЖК-дисплее 16×2 на контроллере HD44780. Описываемое устройство может найти широкое применение среди радиолюбителей.

Программа для микроконтроллера написана на ассемблере в среде AVR Studio. Монтаж выполнен на макетной плате, кварцевый резонатор на 4МГц, микроконтроллер ATtiny2313 можно заменить на AT90S2313, предварительно перекомпилировав исходный код программы. Погрешность датчика DS1820 около 0,5 С. В архиве также находится прошивка для случая если используется датчик DS18B20. Опрос датчика производится каждую секунду.

WAV-плеер собран на микроконтроллере AVR ATtiny85 (можно использовать ATtiny25/45/85 серии). У микроконтроллеров этой серии всего восемь ножек и два ШИМ (Fast PWM) с несущей 250kHz. Для управления картой памяти достаточно всего 6 проводов: два для питания и четыре сигнальные. Восемь ножек микроконтроллера вполне достаточно для работой с картой памяти, вывода звука и кнопки управления. В любом случае данный плеер очень прост.

С помощью данного измерителя ёмкости можно легко измерить любую ёмкость от единиц пФ до сотен мкФ. Существует несколько методов измерения емкости. В данном проекте используется интеграционный метод.

Главное преимущество использования этого метода в том, что измерение основано на измерении времени, что может быть выполнено на МК довольно точно. Этот метод очень подходит для самодельного измерителя ёмкости, к тому же он легко реализуем на микроконтроллере.

Данный проект был сделан по просьбе друга для установки на дверь в складское помещение. В дальнейшем было изготовлено ещё несколько по просьбе друзей и знакомых. Конструкция оказалась простой и надёжной. Работает данное устройство так: пропускает только те RFID-карты, которые были заранее занесены в память устройства.

Эта декоративная звезда состоит из 50 специальных светодиодов RGB, которые контролируются ATtiny44A . Все светодиоды непрерывно изменяют цвет и яркость в случайном порядке. Также есть несколько разновидностей эффектов, которые также активируются случайно. Три потенциометра могут изменять интенсивность основных цветов. Положение потенциометра индицируется светодиодами при нажатии кнопки, а изменение цвета и скорость эффекта можно переключать в три этапа. Этот проект был полностью построен на компонентах SMD из-за специальной формы печатной платы. Несмотря на простую схему, структура платы довольно сложная и вряд ли подойдет для новичков.

В этой статье описывается универсальный трехфазный преобразователь частоты на микроконтроллере(МК) ATmega 88/168/328P . ATmega берет на себя полный контроль над элементами управления, ЖК-дисплеем и генерацией трех фаз. Предполагалось, что проект будет работать на готовых платах, таких как Arduino 2009 или Uno, но это не было реализовано. В отличие от других решений, синусоида не вычисляется здесь, а выводится из таблицы. Это экономит ресурсы, объем памяти и позволяет МК обрабатывать и отслеживать все элементы управления. Расчеты с плавающей точкой в программе не производятся.

Частота и амплитуда выходных сигналов настраиваются с помощью 3 кнопок и могут быть сохранены в EEPROM памяти МК. Аналогичным образом обеспечивается внешнее управление через 2 аналоговых входа. Направление вращения двигателя определяется перемычкой или переключателем.

Регулируемая характеристика V/f позволяет адаптироваться ко многим моторам и другим потребителям. Также был задействован интегрированный ПИД-регулятор для аналоговых входов, параметры ПИД-регулятора могут быть сохранены в EEPROM. Время паузы между переключениями ключей (Dead-Time) можно изменить и сохранить.

Этот частотомер с AVR микроконтроллером позволяет измерять частоту от 0,45 Гц до 10 МГц и период от 0,1 до 2,2 мкс в 7-ми автоматически выбранных диапазонах. Данные отображаются на семиразрядном светодиодном дисплее. В основе проекта микроконтроллер Atmel AVR ATmega88/88A/88P/88PA, программу для загрузки вы можете найти ниже. Настройка битов конфигурации приведена на рисунке 2 .

Принцип измерения отличается от предыдущих двух частотомеров. Простой способ подсчета импульсов через 1 секунду, используемый в двух предыдущих частотомерах(частотомер I, частотомер II), не позволяет измерять доли Герц. Вот почему я выбрал другой принцип измерения для своего нового частотомера III. Этот метод намного сложнее, но позволяет измерять частоту с разрешением до 0,000 001 Гц.

Это очень простой частотомер на микроконтроллере AVR. Он позволяет измерять частоты до 10 МГц в 2-х автоматически выбранных диапазонах. Он основан на предыдущем проекте частотомера I , но имеет 6 разрядов индикатора вместо 4-х. Нижний диапазон измерения имеет разрешение 1 Гц и работает до 1 МГц. Более высокий диапазон имеет разрешение 10 Гц и работает до 10 МГц. Для отображения измеренной частоты используется 6-разрядный светодиодный дисплей. Прибор построен на основе микроконтроллера Atmel AVR ATtiny2313A или ATTiny2313

Микроконтроллер тактируется от кварцевого резонатора частотой 20 МГц (максимально допустимая тактовая частота). Точность измерения определяется точностью этого кристалла, а также конденсаторов C1 и C2. Минимальная длина полупериода измеряемого сигнала должна быть больше периода частоты кварцевого генератора (ограничение архитектуры AVR). Таким образом, при 50% рабочем цикле можно измерять частоты до 10 МГц.

Это, вероятно, самый простой частотомер на микроконтроллере AVR. Он позволяет измерять частоты до 10 МГц в 4-х автоматически выбранных диапазонах. Самый низкий диапазон имеет разрешение 1 Гц. Для отображения измеренной частоты используется 4-разрядный светодиодный дисплей. Прибор построен на основе микроконтроллера Atmel AVR ATtiny2313A или ATtiny2313 . Настройку битов конфигурации вы можете найти ниже.

Микроконтроллер тактируется от кварцевого резонатора частотой 20 МГц (максимально допустимая тактовая частота). Точность измерения определяется точностью этого кристалла. Минимальная длина полупериода измеряемого сигнала должна быть больше периода частоты кварцевого генератора (ограничение архитектуры MCU). Таким образом, при 50% рабочем цикле можно измерять частоты до 10 МГц.


Вариант 1: ATmega8 + Nokia 5110 LCD + питание 3V

В схеме используются Atmega8-8PU (внешний кварц частотой 8MHz), Nokia 5110 LCD и транзистор для обработки импульсов от геркона. Регулятор напряжения на 3,3V обеспечивает питание для всей цепи.

Все компоненты были смонтированы на макетной плате, включая разъемы для: ISP — программатора (USBAsp), 5110 Nokia LCD, питания (5V, подаваемого на 3.3V — регулятор), геркона, кнопки сброса и 2-контактный разъем, используемый для считывания полярности обмотки двигателя привода станка, чтобы знать, увеличивать или уменьшать счетчик.

Дозатор предназначен для автоматической подачи в аквариум жидких удобрений. Подача удобрений может осуществляться по четырем независимым каналам. Каждый канал может осуществлять подачу удобрений один раз в сутки с выбором любых дней недели. Объем подаваемых удобрений настраивается для каждого канала в отдельности.

Исполнительным устройством дозатора являются насосы-помпы вибрационного типа линейки ULKA. В связи с возможностью использования разных моделей данных насосов в устройстве предусмотрена калибровка производительности каждого канала и регулировка подводимой мощности методом ШИМ. В моем устройстве применены насосы широко распространенной модели ULKA EX5 230V 48W .

В данном радиоприемнике используется готовый модуль на чипе TEA5767 . Информация отображается на красивом OLED-дисплеем (SSD1306 ), разрешением 128×64 пикселя. Модулем приемника и дисплеем управляет микроконтроллер ATmega8 , тактируется от внутреннего генератора частотой 8MHz. Печатная плата приемника (наряду с батареей от телефона Samsung L760) была спроектирована так, чтобы она могла вписаться в спичечную коробку. Имеются 4 клавиши управления + клавиша сброса. В настоящее время радио не имеет аудиоусилителя (планируется установка соответствующего усилительного модуля).

Предоставляю вам схему спец сигнала (Крякалка), для самостоятельной сборки. Решил поставить ребенку на велосипед (пусть прохожих под домом пугает), но так же можно и в автомобиль поставить (если есть связи в ГАИ). Данное устройство состоит из минимум деталей, а так же простая в сборке и под силу каждому.

Часы на лампах ИН своими руками

В интернете цены на часы основанные на лампах ИН-14 если и попадаются еще, то цены на них весьма дороговаты. Мы рассмотрим как спаять часы на лампах ИН своими руками , так как это намного дешевле чем купить готовые,при этом они всегда будут радовать ваши глаза.

JDM программатор своими руками с внешним питанием

Пришло время еще раз затронуть тему изготовление программатора, так как цены на них не такие и маленькие,и при этом гарантии нет что он заработает. Рассмотрим схему программатора jdm с внешним питанием ,с помощью которого програмируются микросхемы PIC и подключаемому к стационарному компьютеру через COM(rs232) порт.

Список прошиваемых PIC микроконтроллеров в статье.

Простое ИК управление своими руками

Простое ИК управление своими руками


Управление устройствами по ИК каналу может пригодиться для разных нужд, как в квартире так и за ее пределами. Например приспособить для открытия или закрытия дверей автомобиля, включение и выключения люстры с пульта и т.д. Данная схема ИК управления является лишь главным устройством передатчика и приемника.

Данное устройство предназначено для управления на небольшой дистанции. За основу взят дешевый, миниатюрный ПДУ с eBay. К нему был изготовлен дешифратор на микроконтроллере PIC12F675. Режим работы — кнопка. Состояние на выходе дешифратора удерживается до тех пор, пока нажата кнопка на пульте.

Схема новогодней гирлянды на микроконтроллере своими руками

Гирлянда на микроконтроллере своими руками

С наступающим вас дорогие пользователи. И к предстоящему празднику решил порадовать вас схемой- новогодняя гирлянда на микроконтроллере pic.

И прошу к просмотру подробнее данной статьи.

Полицейская крякалка своими руками на PIC

Полицейская крякалка своими руками на PIC

Предлагаю вам для повторения схему звукового устройства, имитирующего сигнал «Милицейской Сирены». Устройство сделано на микроконтроллере PIC16F628 . Схема имеет две различные сирены и «Крякалку».

В основном полицейскую крякалку ставят в автомобиль,так что смотрите еще другие схемы для авто

Так же вам понадобиться программатор для PIC, вот схема

Схема простого измерителя емкости

Простой измеритель емкости и индуктивности

Вы скажите что современные измерительные приборы имеют функцию измерять емкость и индуктивность . Но не так давно такие приборы очень много весили так как микросхемы только появлялись и требовали особого навыка работы.

В статье предлагается проверенная схема своими руками измерителя емкости и индуктивности катушки.Если вы задавались вопросом как измерить емкость или индуктивность .То вам сюда.Схема собрана на микроконтроллере PIC 16F84A.

Дубликатор(копировальщик) ключей от домофона своими руками

Схема копирования ключей от домофона

Бывает что нам нужно изготовить ключ от всех домофонов,но в интернете есть не всех шифровки, и для копирования предлогаю схему копирования или как называют копирщика домофонных ключей на микроконтроллере pic

Схемы на микроконтроллере, статьи и описания с прошивками и фотографиями для автомобиля.

Простой тахометр на микроконтроллере ATmega8

Тахометр применяется в автомобилях для измерения частоты вращения всяких деталей которые способны вращаться. Есть много вариантов таких устройств, я предложу вариант на AVR микроконтроллере ATmega8. Для моего варианта, вам также…

Читать полностью

Цветомузыка на микроконтроллере Attiny45 в авто

Эта цветомузыка, имея малый размер и питание 12В, как вариант может использоваться в авто при каких-либо мероприятиях. Первоисточник этой схемы Радио №5, 2013г А. ЛАПТЕВ, г. Зыряновск, Казахстан. Схема…

Читать полностью

Контроллер обогрева зеркал и заднего стекла

Позволяет управлять одной кнопкой раздельно обогревом заднего стекла и зеркал, плюс настраиваемый таймер отключения до полутора часов для каждого канала. Схема построена на микроконтроллере ATtiny13A. Описание работы:

Читать полностью

Диммер для плафона автомобиля

Почти во всех автомобилях есть управление салонным светом, которое осуществляется с помощью бортового компьютера или отдельной бортовой системой. Свет включается плавно, и гаснет также с некой задержкой (для…

Читать полностью

GSM сигнализация с оповещением на мобильник

Представляю очень популярную схему автомобильной сигнализации на базе микроконтроллера ATmega8. Такая сигнализация дает оповещение на мобильник админа в виде звонков или смс. Устройства интегрируется с мобильником с помощью…

Читать полностью

Моргающий стопак на микроконтроллере

Сделал новую версию моргающего стопака. Отличается алгоритм работы и схема управления, размер и подключение такое же. Возможно регулировать частоту моргания, длительность до перехода в постоянное свечение и скважность…

Читать полностью

ДХО плюс стробоскопы

Эта поделка позволяет стробоскопить светодиодными ДХО. Поделка имеет малый размер, управление всего одной кнопкой, широкие возможности настройки. Размер платы 30 на 19 миллиметров. С обратной стороны расположен клемник…

Читать полностью

Делаем и подключаем доводчик к сигнализации

Количества автомобилей с автоматическим стеклоподъемниками постоянно растет, и даже если в машине нет такого, многие делают его своими руками. Моей целю было собрать такое устройства и подключить его к…

Читать полностью

Светодиоды включаются от скорости

Получился «побочный продукт»: нужно было оттестить режим работы датчика скорости для проекта отображения передач на матрице 5х7, для этого собрал небольшую схемку. Схемка умеет включать светодиоды в зависимости…

Читать полностью

Цифровой тахометр на AVR микроконтроллере (ATtiny2313)

Тахометр измеряет частоту вращения деталей, механизмов и других агрегатах автомобиля. Тахометр состоит из 2-х основных частей — из датчика, который измеряет скорость вращения и из дисплея, где будет…

Читать полностью

Простой цифровой спидометр на микроконтроллере ATmega8

Спидометр это измерительное устройства, для определения скорости автомобиля. По способу измерения, есть несколько видов спидометра центробежные, хронометрические, вибрационные, индукционные, электромагнитные, электронные и напоследок спидометры по системе GPS.

Читать полностью

Плавный розжиг приборки на микроконтроллере

Эта версия немного отличается схемой: добавлена вторая кнопка настройки и убран потенциометр скорости розжига. Возможности: Два отдельных независимых канала. Для каждого канала три группы настраиваемых параметра: время задержки до начала…

Поделки с микроконтроллерами – вопрос, как никогда актуальный и интересный. Ведь мы живем в 21 веке, эпохе новых технологий, роботов и машин. На сегодняшний день каждый второй, начиная с малого возраста, умеет пользоваться интернетом и различного рода гаджетами, без которых порою и вовсе сложно обойтись в повседневной жизни.

Поэтому в этой статье мы будем затрагивать, в частности, вопросы пользования микроконтроллерами, а также непосредственного применения их с целью облегчения миссий, каждодневно возникающих перед всеми нами. Давайте разберемся, в чем ценность этого прибора, и как просто использовать его на практике.

Микроконтроллер − это чип, целью которого является управление электрическими приборами. Классический контроллер совмещает в одном кристалле, как работу процессора, так и удаленных приборов, и включает в себя оперативное запоминающее устройство. В целом, это монокристальный персональный компьютер, который может осуществлять сравнительно обыкновенные задания.

Разница между микропроцессором и микроконтроллером заключается в наличии встроенных в микросхему процессора приборов «пуск-завершение», таймеров и иных удаленных конструкций. Применение в нынешнем контроллере довольно сильного вычисляющего аппарата с обширными способностями, выстроенного на моносхеме, взамен единого комплекта, существенно уменьшает масштабы, потребление и цену созданных на его основе приборов.

Из этого следует, что применить такое устройство можно в технике для вычисления, такой, как калькулятор, материнка, контроллеры компакт-дисков. Используют их также в электробытовых аппаратах – это и микроволновки, и стиральные машины, и множество других. Также микроконроллеры широко применяются в индустриальной механике, начиная от микрореле и заканчивая методиками регулирования станков.

Микроконроллеры AVR

Ознакомимся с более распространенным и основательно устоявшимся в современном мире техники контроллером, таким как AVR. В его состав входят высокоскоростной RISC-микропроцессор, 2 вида затратной по энергии памяти (Flash-кэш проектов и кэш сведений EEPROM), эксплуатационная кэш по типу RAM, порты ввода/вывода и разнообразные удаленные сопряженные структуры.

  • рабочая температура составляет от -55 до +125 градусов Цельсия;
  • температура хранения составляет от -60 до +150 градусов;
  • наибольшая напряженность на выводе RESET, в соответствии GND: максимально 13 В;
  • максимальное напряжение питания: 6.0 В;
  • наибольший электроток линии ввода/вывода: 40 мА;
  • максимальный ток по линии питания VCC и GND: 200 мА.

Возможности микроконтроллера AVR

Абсолютно все без исключения микроконтроллеры рода Mega обладают свойством самостоятельного кодирования, способностью менять составляющие своей памяти драйвера без посторонней помощи. Данная отличительная черта дает возможность формировать с их помощью весьма пластичные концепции, и их метод деятельности меняется лично микроконтроллером в связи с той либо иной картиной, обусловленной мероприятиями извне или изнутри.

Обещанное количество оборотов переписи кэша у микроконтроллеров AVR второго поколения равен 11 тысячам оборотов, когда стандартное количество оборотов равно 100 тысячам.

Конфигурация черт строения вводных и выводных портов у AVR заключается в следующем: целью физиологического выхода имеется три бита регулирования, а никак не два, как у известных разрядных контроллеров (Intel, Microchip, Motorola и т. д.). Это свойство позволяет исключить потребность обладать дубликатом компонентов порта в памяти с целью защиты, а также ускоряет энергоэффективность микроконтроллера в комплексе с наружными приборами, а именно, при сопутствующих электрических неполадках снаружи.

Всем микроконтроллерам AVR свойственна многоярусная техника пресечения. Она как бы обрывает стандартное течение русификатора для достижения цели, находящейся в приоритете и обусловленной определенными событиями. Существует подпрограмма преобразования запрашивания на приостановление для определенного случая, и расположена она в памяти проекта.

Когда возникает проблема, запускающая остановку, микроконтроллер производит сохранение составных счетчика регулировок, останавливает осуществление генеральным процессором данной программы и приступает к совершению подпрограммы обрабатывания остановки. По окончании совершения, под шефствующей программы приостановления, происходит возобновление заранее сохраненного счетчика команд, и процессор продолжает совершать незаконченный проект.

Поделки на базе микроконтроллера AVR

Поделки своими руками на микроконтроллерах AVR становятся популярнее за счет своей простоты и низких энергетических затрат. Что они собой представляют и как, пользуясь своими руками и умом, сделать такие, смотрим ниже.

«Направлятор»

Такое приспособление проектировалось, как небольшой ассистент в качестве помощника тем, кто предпочитает гулять по лесу, а также натуралистам. Несмотря на то, что у большинства телефонных аппаратов есть навигатор, для их работы необходимо интернет-подключение, а в местах, оторванных от города, это проблема, и проблема с подзарядкой в лесу также не решена. В таком случае иметь при себе такое устройство будет вполне целесообразно. Сущность аппарата состоит в том, что он определяет, в какую сторону следует идти, и дистанцию до нужного местоположения.

Построение схемы осуществляется на основе микроконтроллера AVR с тактированием от наружного кварцевого резонатора на 11,0598 МГц. За работу с GPS отвечает NEO-6M от U-blox. Это, хоть и устаревший, но широко известный и бюджетный модуль с довольно четкой способностью к установлению местонахождения. Сведения фокусируются на экране от Nokia 5670. Также в модели присутствуют измеритель магнитных волн HMC5883L и акселерометр ADXL335.


Беспроводная система оповещения с датчиком движения

Полезное устройство, включающее в себя прибор перемещения и способность отдавать, согласно радиоканалу, знак о его срабатывании. Конструкция является подвижной и заряжается с помощью аккумулятора или батареек. Для его изготовления необходимо иметь несколько радиомодулей HC-12, а также датчик движения hc-SR501.

Прибор перемещения HC-SR501 функционирует при напряжении питания от 4,5 до 20 вольт. И для оптимальной работы от LI-Ion аккумулятора следует обогнуть предохранительный светодиод на входе питания и сомкнуть доступ и вывод линейного стабилизатора 7133 (2-я и 3-я ножки). По окончанию проведения этих процедур прибор приступает к постоянной работе при напряжении от 3 до 6 вольт.


Внимание: при работе в комплексе с радиомодулем HC-12 датчик временами ложно срабатывал. Во избежание этого необходимо снизить мощность передатчика в 2 раза (команда AT+P4). Датчик работает на масле, и одного заряженного аккумулятора, емкостью 700мА/ч, хватит свыше, чем на год.

Минитерминал

Приспособление проявило себя замечательным ассистентом. Плата с микроконтроллером AVR нужна, как фундамент для изготовления аппарата. Из-за того, что экран объединён с контроллером непосредственно, то питание должно быть не более 3,3 вольт, так как при более высоких числах могут возникнуть неполадки в устройстве.


Вам следует взять модуль преобразователя на LM2577, а основой может стать Li-Ion батарея емкостью 2500мА/ч. Выйдет дельная комплектация, отдающая постоянно 3,3 вольта во всём трудовом интервале напряжений. С целью зарядки применяйте модуль на микросхеме TP4056, который считается бюджетным и достаточно качественным. Для того чтобы иметь возможность подсоединить минитерминал к 5-ти вольтовым механизмам без опаски сжечь экран, необходимо использовать порты UART.

Основные аспекты программирования микроконтроллера AVR

Кодирование микроконтоллеров зачастую производят в стиле ассемблера или СИ, однако, можно пользоваться и другими языками Форта или Бейсика. Таким образом, чтобы по факту начать исследование по программированию контроллера, следует быть оснащенным следующим материальным набором, включающим в себя: микроконтроллер, в количестве три штуки — к высоковостребованным и эффективным относят — ATmega8A-PU, ATtiny2313A-PU и ATtiny13A- PU.

Чтобы провести программу в микроконтроллер, нужен программатор: лучшим считают программатор USBASP, который дает напряжение в 5 Вольт, используемое в будущем. С целью зрительной оценки и заключений итогов деятельности проекта нужны ресурсы отражения данных − это светодиоды, светодиодный индуктор и экран.


Чтобы исследовать процедуры коммуникации микроконтроллера с иными приборами, нужно числовое приспособление температуры DS18B20 и, показывающие правильное время, часы DS1307. Также важно иметь транзисторы, резисторы, кварцевые резонаторы, конденсаторы, кнопки.

С целью установки систем потребуется образцовая плата для монтажа. Чтобы соорудить конструкцию на микроконтроллере, следует воспользоваться макетной платой для сборки без пайки и комплектом перемычек к ней: образцовая плата МВ102 и соединительные перемычки к макетной плате нескольких видов — эластичные и жесткие, а также П-образной формы. Кодируют микроконтроллеры, применяя программатор USBASP.

Простейшее устройство на базе микроконтроллера AVR. Пример

Итак, ознакомившись с тем, что собой представляют микроконтроллеры AVR, и с системой их программирования, рассмотрим простейшее устройство, базисом для которого служит данный контроллер. Приведем такой пример, как драйвер низковольтных электродвигателей. Это приспособление дает возможность в одно и то же время распоряжаться двумя слабыми электрическими двигателями непрерывного тока.

Предельно возможный электроток, коим возможно загрузить программу, равен 2 А на канал, а наибольшая мощность моторов составляет 20 Вт. На плате заметна пара двухклеммных колодок с целью подсоединения электромоторов и трехклеммная колодка для подачи усиленного напряжения.

Устройство выглядит, как печатная плата размером 43 х 43 мм, а на ней сооружена минисхемка радиатора, высота которого 24 миллиметра, а масса – 25 грамм. С целью манипулирования нагрузкой, плата драйвера содержит около шести входов.

Заключение

В заключение можно сказать, что микроконтроллер AVR является полезным и ценным средством, особенно, если дело касается любителей мастерить. И, правильно использовав их, придерживаясь правил и рекомендаций по программированию, можно с легкостью обзавестись полезной вещью не только в быту, но и в профессиональной деятельности и просто в повседневной жизни.

Рекомендуем также

На микроконтроллере

Полицейская крякалка своими руками Автор: Administrator Просмотров: 7294
Часы на лампах ИН своими руками Автор: Administrator Просмотров: 5555
JDM программатор своими руками с внешним питанием Автор: Administrator Просмотров: 8427
Простое ИК управление своими руками Автор: Administrator Просмотров: 32454
Схема новогодней гирлянды на микроконтроллере своими руками Автор: Administrator Просмотров: 40485
Полицейская крякалка своими руками на PIC Автор: Administrator Просмотров: 67990
Схема простого измерителя емкости Автор: Administrator Просмотров: 47038
Дубликатор(копировальщик) ключей от домофона своими руками Автор: Administrator Просмотров: 101337
Схема электронных часов на PIC микроконтроллере Автор: Administrator Просмотров: 44751
Схема электронных часов Автор: Administrator Просмотров: 42838

Курс «Современная схемотехника: микроконтроллеры»

АктуальностьИдёт набор
Стоимость19 000 руб
Продолжительность36 часов
Группаот 8 до 10 человек
Начало занятийПо мере формирования группы