Ne555 datasheet на русском: datasheet на русском, описание и схема включения

Содержание

datasheet на русском, описание и схема включения

3 наиболее популярные схемы на основе NE555

Одновибратор

Практический вариант схемы одновибратора на TTL NE555 приведен на рисунке. Схема питается однополярным напряжением от 5 до 15В. Времязадающими элементами здесь являются: резистор R1 – 200кОм-0,125Вт и электролитический конденсатор С1 – 4,7мкФ-16В. R2 поддерживает на входе высокий потенциал, пока некоторое внешнее устройство не сбросит его до низкого уровня (например, транзисторный ключ). Конденсатор С2 защищает схему от сквозных токов в моменты переключения.

Активизация одновибратора происходит в момент кратковременного замыкания на землю входного контакта. При этом на выходе формируется высокий уровень длительностью:

t=1,1*R1*C1=1,1*200000*0,0000047=1,03 c.

Таким образом, данная схема формирует задержку выходного сигнала относительно входного на 1 секунду.

Мигание светодиодом на мультивибраторе

Отталкиваясь от рассмотренной выше схемы мультивибратора можно собрать простую светодиодную мигалку. Для этого к выходу таймера последовательно с резистором подключают светодиод. Номинал резистора находят по формуле:

R=(UВЫХ-ULED)/ILED,

UВЫХ – амплитудное значение напряжения на выводе 3 таймера.

Количество подключаемых светодиодов зависит от типа применяемой микросхемы NE555, её нагрузочной способности (КМОП или ТТЛ). Если необходимо мигать светодиодом мощностью более 0,5 Вт, то схему дополняют транзистором, нагрузкой которого станет светодиод.

Реле времени

Схема регулируемого таймера (электронное реле времени) показана на рисунке. С её помощью можно вручную задавать длительность выходного сигнала от 1 до 25 секунд. Для этого последовательно с постоянным резистором в 10 кОм устанавливают переменный номиналом в 250 кОм. Ёмкость времязадающего конденсатора увеличивают до 100 мкФ.

Схема работает следующим образом. В исходном состоянии на выводе 2 присутствует высокий уровень (от источника питания), а на выводе 3 низкий уровень. Транзисторы VT1, VT2 закрыты. В момент подачи на базу VT1 положительного импульса по цепи (Vcc-R2-коллектор-эмиттер-общий провод) протекает ток. VT1 открывается и переводит NE555 в режим отсчета времени. Одновременно на выходе ИМС появляется положительный импульс, который открывает VT2. В результате ток эмиттера VT2 приводит к срабатыванию реле. Пользователь может в любой момент прервать выполнение задачи, кратковременно закоротив RESET на землю.

Рассмотреть все популярные схемы на основе NE555 в одной статье невозможно. Для этого существуют целые сборники, в которых собраны практические наработки за всё время существования таймера. Надеемся, что приведенная информация послужит ориентиром во время сборки схем, в том числе нагрузкой которых служат светодиоды.

Плюсы и минусы

   Плюсы: независимая от частоты регулировка скважности, SSTC никогда не уйдет в CW режим, если подгорит прерыватель.    Минусы: скважность нельзя увеличивать «бесконечно много», как например на UC3843, она ограничена емкостью конденсатора и скважностью самого генератора (не может быть больше скважности генератора)

Ток через конденсатор идет плавно

   Минусы: скважность нельзя увеличивать «бесконечно много», как например на UC3843, она ограничена емкостью конденсатора и скважностью самого генератора (не может быть больше скважности генератора). Ток через конденсатор идет плавно

   На последнее не знаю как драйвер реагирует (плавную зарядку). С одной стороны драйвер также плавно может открывать транзисторы и они будут сильнее греться. С другой стороны UCC27425 — цифровая микросхема. Для нее существует только лог. 0 и лог. 1. Значит пока напряжение выше порогового — UCC работает, как только опустилось ниже минимального — не работает. В этом случае все работает в штатном режиме, и транзисторы открываются полностью.

Структурная интегральная схема внутри чипа

Итак, процесс создания интегральной схемы начинается от монокристалла кремния, напоминающего по форме длинную сплошную трубу, «нарезанную» тонкими дисками — пластинами. Такие пластины размечаются на множество одинаковых квадратных или прямоугольных областей, каждая из которых представляет один кремниевый чип (микрочип). Пример внутренней структуры интегральной схемы, демонстрирующий возможности такой уникальной технологии интеграции полноценных электронных схемотехнических решений.

Затем на каждом таком чипе создаются тысячи, миллионы или даже миллиарды компонентов путём легирования различных участков поверхности — превращения в кремний N-типа или P-типа. Легирование осуществляется различными способами. Один из вариантов — распыление, когда ионами легирующего материала «бомбардируют» кремниевую пластину.

Другой вариант — осаждение из паровой фазы, включающий введение легирующего материала газовой фазой с последующей конденсацией. В результате такого ввода примесные атомы образуют тонкую пленку на поверхности кремниевой пластины. Самым точным вариантом осаждения считается молекулярно-лучевая эпитаксия.

Конечно, создание интегральных микросхем, когда упаковываются сотни, миллионы или миллиарды компонентов в кремниевый чип размером с ноготь, видится сложнейшим процессом. Можно представить, какой хаос принесёт даже небольшая крупинка в условиях работы в микроскопическом (наноскопическом) масштабе. Вот почему полупроводники производятся в лабораторных условиях безупречно чистых. Воздух лабораторных помещений тщательно фильтруется, а рабочие обязательно проходят защитные шлюзы и облачаются в защитную одежду.

Кто создал интегральную схему?

Разработка интегральной схемы приписывается двум физикам — Джеку Килби и Роберту Нойсу, как совместное изобретение. Однако фактически Килби и Нойс вынашивали идею интегральной схемы независимо друг от друга. Между учёными даже существовала своего рода конкуренция за права на изобретение.

Джек Килби трудился в «Texas Instruments», когда учёному удалось реализовать идею монолитного принципа размещения различных частей электронной схемы на кремниевом чипе. Учёный вручную создал первую в мире интегральную микросхему (1958 год), использовав чип на основе германия. Компания «Texas Instruments» спустя год подала заявку на патент.

Тем временем представитель другой компании «Fairchild Semiconductor» — Роберт Нойс, проводил эксперименты с миниатюрными цепями своего устройства. Благодаря серии фотографических и химических методов (планарный процесс), учёный всего лишь на год позже Килби создал практичную интегральную схему. Методика получения также была оформлена заявкой на патент.

Микросхемы на плате

Перейдем от теории к практике

Собирал генератор Тесла в корпус от АТХ. Конденсатор по питанию 1000 мкф 400в. Диодный мост из того же АТХ на 8А 600В. Перед мостом поставил резистор 10 Вт 4,7 Ом. Это обеспечивает плавный заряд конденсатора. Для питания драйвера поставил трансформатор 220-12В и еще стабилизатор с конденсатором 1800 мкФ.

Диодные мосты прикрутил на радиатор для удобства и для отвода тепла, хотя они почти не греются.

Прерыватель собрал почти навесом, взял кусок текстолита и канцелярским ножом вырезал дорожки.

Силовая была собрана на небольшом радиаторе с вентилятором, позже выяснилось, что этого радиатора вполне достаточно для охлаждения. Драйвер смонтировал над силовой через толстый кусок картона. Ниже фото почти собранной конструкции генератора Тесла, но находящейся на проверке, измерял температуру силовой при различных режимах (видно обычный комнатный термометр, прилепленный к силовой на термопласту).

Тороид катушки собран из гофрированной пластиковой трубы диаметром 50 мм и обклеенным алюминиевым скотчем. Сама вторичная обмотка намотана на 110 мм трубе высотой 20 см проводом 0,22 мм около 1000 витков. Первичная обмотка содержит аж 12 витков, сделал с запасом, дабы уменьшить ток через силовую часть. Делал с 6 витками в начале, результат почти одинаков, но думаю не стОит рисковать транзисторами ради пары лишних сантиметров разряда. Каркасом первички служит обычный цветочный горшок. С начала думал что не будет пробивать если вторичку обмотать скотчем, а первичку поверх скотча. Но увы, пробивало. В горшке конечно тоже пробивало, но здесь скотч помог решить проблему. В общем готовая конструкция выглядит так:

Ну и несколько фоток с разрядом

Теперь вроде бы все.

Схемы генераторов на 555

Тогда решил изменить принципиально схему и сделать независимую длительность на конденсаторе, диоде и резисторе. Возможно многие посчитают эту схему абсурдной и глупой, но это работает. Принцип такой: сигнал на драйвер идет до тех пор пока конденсатор не зарядится (с этим думаю никто не поспорит)

NE555 генерирует сигнал, он идет через резистор и конденсатор, при этом если сопротивление резистора 0 Ом, то идет только через конденсатор и длительность максимальна (на сколько хватает емкости) не зависимо от скважности генератора. Резистор ограничивает время заряда, т.е

чем больше сопротивление, тем меньшей времени будет идти импульс. На драйвер идет сигнал меньшей длительностью, но тоже частоты. Разряжается конденсатор быстро через резистор (который на массу идет 1к) и диод.

Пример №7 — Простой генератор прямоугольных импульсов на NE555

В момент включения схемы, конденсатор C1 разряжен и на выходе 3 таймера NE555 находится высокий уровень. Затем конденсатор C1 через резистор R1 начинает постепенно заряжаться.

В момент, когда потенциал на конденсаторе, и соответственно на выводе 6 (стоп) таймера, достигнет примерно 2/3 напряжения питания, сигнал на выводе 3 переключится на низкий уровень. Теперь конденсатор через сопротивление R1 начинает разряжаться. Когда уровень напряжения на входе 2 (запуск) упадет до 1/3 Uпит., на выходе снова будет высокий уровень. И процесс повторится снова.

Если к выходу добавить еще RC-цепь (выделено красным цветом), то выходной сигнал по форме будет приближен к синусоиде.

Проверка работоспособности

Для своих самоделок NE555 можно выпаять из старого, ненужного или уже неисправного оборудования. Она встречается в пультах управления, терморстатах, терморегуляторах, ёлочных гирляндах, светомузыкальных и различных устройствах с временной задержкой включения, автомобильных тахометрах и др. Если повезло и Вам удалось найти её, то перед использованием в своих электронных конструкциях, необходимо определить её на работоспособность.

Проверить мультиметром не получится. Поэтому для этих целей обычно используют простенький тестер – он же «мигалка на светодиодах». Если после подключения питания оба диода поочередно помигивают, то NE-шка рабочая. В противном случае – неисправна.

Схема импульсного источника питания на двух NE555

      На рис.2 показана схема импульсного источника питания с двумя таймерами NE555. Первая из этих микросхем (DD1) включена по схеме мультивибратора, на выходе которого проявляются короткие прямоугольные импульсы, снимаемые с ножки 3. Частота следования этих импульсов изменяется с помощью потенциометра R3.       Этим импульсы поступают на дифференцирующую цепочку C3R5 и параллельно подключенный к резистору R5 диод VD1. Поскольку катод диода подключен к шине питания, короткие положительные всплески продифференцированных импульсов (фронты) шунтируются малым прямым сопротивлением диода и имеют незначительную величину, а отрицательные всплески (спады), попадая на запертый диод VD1, свободно проходят на вход ждущего мультивибратора МС DD2 (ножка 2) и запускают его. Хотя на схеме VD1 указан как Д9И, в этой позиции желательно использовать маломощный диод Шотки, а, в крайнем случае, можно использовать кремниевый диод КД 522.

      Резистор R6 и конденсатор С6 определяют длительность выходного импульса ждущего мультивибратора (одновибратора) DD2, управляющего ключом VT1.       Как в предыдущей схеме импульсного источника питания ток через транзистор VT1 регулируется резистором R7, а нагрузкой служит дроссель из балласта экономичных ламп дневного света 3 мГн.       Поскольку частота генерации МС ниже, чем в первой схеме, то конденсатор выпрямителя с удвоением напряжения С7 имеет емкость 10 мкФ, а для уменьшения габаритов в этой позиции использован керамический SMD-конденсатор, но можно использовать и другие типы конденсаторов: К73, КБГИ, МБГЧ, МБМ или электролитические на подходящее напряжение.       Входные и выходные напряжения, потребляемый ток и частоты следования импульсов для схемы рис.2 приведены в табл.2.

Производители

Рассмотренный универсальный таймер, созданный американской компанией Signeticsв далеком 1971 г., до сих пор продолжают выпускать почти все известными мировые брэнды полупроводниковой промышленности. При этом маркировка её полных аналогов у различных компании может отличатся от оригинала, несмотря на полную функциональную и физическую идентичность. Например судя по datasheet NE555 P (она же LM555P) и NE555N являются одним и тем же устройством двух конкурентов: Texas Instruments и STMicroelectronics соответственно. NE555L является продуктом китайской Unisonic Technologies Co (UTC). Японская Motorolа когда то делала CMOS-версии с обозначением MC1455. В настоящее время продолжается процесс её совершенствования и модернизации под современные требования.

Режимы работы NE555

Таймер 555 серии работает в одном из трёх режимов, рассмотрим их более детально на примере микросхемы NE555.

Одновибратор

Принципиальная электрическая схема одновибратора приведена на рисунке. Для формирования одиночных импульсов, кроме микросхемы NE555, понадобится сопротивление и полярный конденсатор. Схема работает следующим образом. На вход таймера (2) подают одиночный импульс низкого уровня, который приводит к переключению микросхемы и появлению на выходе (3) высокого уровня сигнала. Продолжительность сигнала рассчитывается в секундах по формуле:

t=1,1*R*C.

По истечении заданного времени (t) на выходе формируется сигнал низкого уровня (исходное состояние). По умолчанию вывод 4 объединен с выводом 8, то есть имеет высокий потенциал.

Во время разработки схем нужно учесть 2 нюанса:

  1. Напряжение источника питания не влияет на длительность импульсов. Чем больше напряжение питания, тем выше скорость заряда времязадающего конденсатора и тем больше амплитуда выходного сигнала.
  2. Дополнительный импульс, который можно подать на вход после основного, не повлияет на работу таймера, пока не истечет время t.

На работу генератора одиночных импульсов можно влиять извне двумя способами:

  • подать на Reset сигнал низкого уровня, который переведёт таймер в исходное состояние;
  • пока на вход 2 поступает сигнал низкого уровня, на выходе будет оставаться высокий потенциал.

Таким образом, с помощью одиночных сигналов на входе и параметров времязадающей цепочки можно получать на выходе импульсы прямоугольной формы с чётко заданной длительностью.

Мультивибратор

Мультивибратор представляет собой генератор периодических импульсов прямоугольной формы с заданной амплитудой, длительностью или частотой, в зависимости от поставленной задачи. Его отличие от одновибратора состоит в отсутствии внешнего возмущающего воздействия для нормального функционирования устройства. Принципиальная схема мультивибратора на базе NE555 показана на рисунке.

В формировании повторяющихся импульсов участвуют резисторы R1, R2 и конденсатор С1

Время импульса (t1), время паузы(t2), период (T) и частоту (f) рассчитывают по нижеприведенным формулам: Из данных формул несложно заметить, что время паузы не сможет превысить время импульса, то есть достичь скважности (S=T/t1) более 2 единиц не удастся. Для решения проблемы в схему добавляют диод, катод которого соединяют с выводом 6, а анод с выводом 7

Схема работает следующим образом. В момент подачи питания конденсатор С1 разряжен, что переводит выход таймера в состояние высокого уровня. Затем С1 начинает заряжаться, набирая ёмкость до верхнего порогового значения 2/3 UПИТ. Достигнув порога ИМС переключается, и на выходе появляется низкий уровень сигнала. Начинается процесс разряда конденсатора (t1), который продолжается до нижнего порогового значения 1/3 UПИТ. По его достижении происходит обратное переключение, и на выходе таймера устанавливается высокий уровень сигнала. В результате схема переходит в автоколебательный режим.

Прецизионный триггер Шмитта с RS-триггером

Внутри таймера NE555 встроен двухпопроговый компаратор и RS-триггер, что позволяет реализовывать прецизионный триггер Шмитта с RS-триггером на аппаратном уровне. Входное напряжение делится компаратором на три части, при достижении каждой из которых происходит очередное переключение. При этом величина гистерезиса (обратного переключения) равна 1/3 UПИТ. Возможность применения NE555 в качестве прецизионного триггера востребована в построении систем автоматического регулирования.

Плюсы и минусы

Плюсы : независимая от частоты регулировка скважности, SSTC никогда не уйдет в CW режим, если подгорит прерыватель. Минусы : скважность нельзя увеличивать «бесконечно много», как например на UC3843, она ограничена емкостью конденсатора и скважностью самого генератора (не может быть больше скважности генератора)

Ток через конденсатор идет плавно

Минусы : скважность нельзя увеличивать «бесконечно много», как например на UC3843, она ограничена емкостью конденсатора и скважностью самого генератора (не может быть больше скважности генератора). Ток через конденсатор идет плавно

На последнее не знаю как драйвер реагирует (плавную зарядку). С одной стороны драйвер также плавно может открывать транзисторы и они будут сильнее греться. С другой стороны UCC27425 — цифровая микросхема. Для нее существует только лог. 0 и лог. 1. Значит пока напряжение выше порогового — UCC работает, как только опустилось ниже минимального — не работает. В этом случае все работает в штатном режиме, и транзисторы открываются полностью.

Серии микросхем

Аналоговые и цифровые микросхемы выпускаются сериями. Серия — это группа микросхем, имеющих единое конструктивно-технологическое исполнение и предназначенные для совместного применения. Микросхемы одной серии, как правило, имеют одинаковые напряжения источников питания, согласованы по входным и выходным сопротивлениям, уровням сигналов.

Корпуса


Корпуса интегральных микросхем, предназначенные для поверхностного монтажа

Основная статья: Типы корпусов микросхем

Микросборка с бескорпусной микросхемой, разваренной на печатной плате

Корпус микросхемы — это конструкция, предназначенная для защиты кристалла микросхемы от внешних воздействий, а также для удобства монтажа микросхемы в электронную схему. Содержит собственно корпус из диэлектрического материала (пластмасса, реже керамика), набор проводников для электрического соединения кристалла с внешними цепями посредством выводов, маркировку.

Существует множество вариантов корпусов микросхем, различающихся по количеству выводов микросхемы, методу монтажа, условиям эксплуатации. Для упрощения технологии монтажа производители микросхем стараются унифицировать корпуса, разрабатывая международные стандарты.

Иногда микросхемы выпускают в бескорпусном исполнении — то есть кристалл без защиты. Бескорпусные микросхемы обычно предназначены для монтажа в гибридную микросборку. Для массовых дешевых изделий возможен непосредственный монтаж на печатную плату.

Специфические названия


Фирма Intel первой изготовила микросхему, которая выполняла функции микропроцессора (англ. microproccessor) — Intel 4004. На базе усовершенствованных микропроцессоров и фирма IBM выпустила свои известные персональные компьютеры.

Микропроцессор формирует ядро вычислительной машины, дополнительные функции, типа связи с периферией выполнялись с помощью специально разработанных наборов микросхем (чипсет). Для первых ЭВМ число микросхем в наборах исчислялось десятками и сотнями, в современных системах это набор из одной-двух-трёх микросхем. В последнее время наблюдаются тенденции постепенного переноса функций чипсета (контроллер памяти, контроллер шины PCI Express) в процессор.

Микропроцессоры со встроенными ОЗУ и ПЗУ, контроллерами памяти и ввода-вывода, а также другими дополнительными функциями называют микроконтроллерами.

Типовые характеристики

NE555 не относится к биполярным ИС, КМОП или ТТЛ-схемам, однако совместима с ними. Рекомендуемое питание для неё находится в диапазоне от +4.5В до +16В. Если его значение составляет +5В, то выход таймера согласуется с ТТЛ-входами других ИС. Иначе надо применять дополнительные согласующие устройства для задания импульсам необходимого уровня.

Предельные допустимые

Рассмотрим типовые предельные эксплуатационные параметры NE555, характерные большинству её модификаций. Они могут незначительно отличаться между собой в  зависимости от компании-изготовителя, но в основном повторяются во всех технических описаниях:

  • напряжение источника питания от +4.5 до +18В;
  • мощность рассеивания до 600 мВт;
  • выходной ток до 200 мА;
  • максимальная рабочая частота  500 кГц;
  • температура: рабочая от 0 до 70ОС; хранения от -65 до +150ОС.

Аналоги

Чем можно заменить и какой подобрать аналог для ne555 ? В советские годы, примерно с 1975 года, полным аналогичным устройством являлась КР1006ВИ1. Сейчас её продолжают выпускать на Рижском заводе «Аlfa Rpar» в Латвии. Сохранилось производство и на белорусском предприятии «Интеграл», там её маркируют так — IN555.

Понятно, что данные на КР1006ВИ1 указаны на русском языке и почти полностью повторяют информацию представленную в англоязычном datasheet на 555. Поэтому многие радиолюбители предпочитают ознакамливаться именно с русскоязычной версией этого универсального таймера.

Но есть один нюанс, который стоит знать, особенно когда надо подобрать подходящую замену. Так, в нашей версии устройства имеется логический приоритет в работе выводов «останова» над «запуском», в то время как у оригинала все наоборот. И хотя в большинстве типовых схем данный функционал не используется, его все же необходимо учитывать в своих разработках.

Схема импульсного источника питания двухполярного напряжения

      Он собран на одной микросхеме NE555 (рис.1), которая служит задающим генератором прямоугольных импульсов. Генератор собран по классической схеме. Частота следования выходных импульсов генератора 6,474…6,37 кГц. Она изменяется в зависимости от напряжения питания, которое может быть 3,6 В (3 аккумулятора в кассете питания) и 4,8 В (при 4 аккумуляторах в кассете). В схеме импульсного источника питания были использованы аккумуляторы ENERGIZER типоразмера АА емкостью 2500 мА-ч.       Прямоугольные импульсы с выхода 3 МС 555 через ограничивающий резистор R5 подаются на базу транзисторного ключа VT1, нагрузкой которого является дроссель L1 индуктивностью 3 мГн. При резком запирании этого транзистора в дросселе L1 наводится большая ЭДС самоиндукции. Полученные таким образом высоковольтные импульсы поступают на два параллельных выпрямителя с удвоением напряжения, на выходах которых будут два разнополярных напряжения ±4,5…15 В.

      Эти напряжения можно регулировать, изменяя скважность выходных импульсов с помощью потенциометра R1.    Постоянное напряжение с движка R1 попадает на вывод 5 МС555 и меняет скважность, а следовательно, и выходные напряжение обоих выпрямителей. Выходные напряжения этого источника будут идеально равны только в том случае, когда скважность импульсов генератора будет равна 2 (длительность импульсов равна паузе между ними)

При другой скважности импульсов выходные напряжения источника в точках А и Б будут несколько разниться (до 1…2 В). Столь небольшая разница обеспечивается применением в схеме импульсного источника питания выпрямителей удвоения, конденсаторы которых заряжаются как положительными, так и отрицательными импульсами. Этот недостаток компенсируется простотой и дешевизной схемы.

      В этой схеме импульсного источника питания можно использовать дроссели от электронных балластов негодных экономичных ламп дневного света. Разбирая эти лампы, старайтесь не повредить спиральные или U-образные стеклянные трубки, так как они содержат ртуть. Делать это лучше на открытом воздухе.       На некоторых дросселях, особенно импортных, нанесена величина индуктивности в мГн (2.8, 2.2, 3.0, 3,6 и т.д.).       Входные и выходные напряжения, потребляемый ток и частоты следования импульсов для схемы рис.1 приведены в табл.1.

Генератор пилообразного напряжения на 555 таймере

Пилообразный сигнал может быть сформирован разными способами, одним из наиболее популярных способов является заряд конденсатора стабильным током. При этом напряжение на конденсаторе будет линейно нарастать, и если полностью разряжать конденсатор при достижении на нём максимального напряжения, то и будет сформирован пилообразный сигнал. По сути дела схема является обычным релаксационным генератором.

Обычно для реализации такого генератора используют тиристор или его аналог на биполярных транзисторах. Но можно использовать альтернативный способ, применив интегральный таймер 555 (КР1006ВИ1). Схема такого генератора пилообразного напряжения изображена на рисунке 1. Она состоит из , выполненного на транзисторе VT1 и стабилитроне D1, и узла управления разрядом, выполненным на микросхеме интегрального таймера 555 (КР1006ВИ1) и диоде D2.

Рис. 1. Принципиальная схема генератора пилообразного напряжения на 555 таймере (КР1006ВИ1).

Выход 3 таймера соединён со входом 5 через диод D2, что позволяет снизить напряжение на внутреннем делителе до нуля при наличии на выходе таймера сигнала низкого уровня. Такая конфигурация позволяет почти полностью разрядить конденсатор С1. Как только конденсатор разрядится до некоторого минимального напряжения, то таймер переключается и конденсатор начинает заряжаться от источника тока, и далее процесс циклично повторяется.

Частота колебаний генератора пилообразного напряжения зависит от ёмкости конденсатора С1 и сопротивления резистора R1. Частота определяется по формулеF=0,4/R1C1. При указанных на схеме номиналах она будет составлять примерно 4 кГц.

Ток, протекающий через резистор R1 должен быть небольшим, так как в процессе разряда конденсатора выход источника тока замыкается на землю. Этот ток рассчитывается по формулеI=(VD1-Vbe)/R1, где VD1 — это напряжение стабилизации стабилитрона D1 (в данном случае 4,7В) и Vbe — прямое напряжение на переходе база-эмиттер транзистора VT1 (0,7В). Для получения хорошей формы сигнала ток, протекающий через резистор R1 не должен превышать 20 мА.

В качестве транзистора VT1 можно использовать практически любой маломощный низкочастотный pnp транзистор, например, КТ502. Стабилитрон D1 — любой с напряжением стабилизации 4,7 вольт. Если применить стабилитрон на напряжение 2,7 вольт, то напряжение питания схемы можно будет снизить до 5В. Диод D2 — любой кремниевый, например, кд503, кд 509.

Схема генератора на микросхеме NE555

Представленная схема генератора на NE555 предназначена для генерации прямоугольных импульсов с частотами 0.1, 1, 10, 100Гц.Настройка осуществляется при помощи переключателя P, который подключается к конденсаторам разных номиналов. Комбинируя значения емкости конденсаторов, а также сопротивления R1, R2 можно получать любую частоту.

На выходе для световой индикации установлен светодиод, который мигает с той же частотой что и выходной сигнал. Для ограничения его от больших токов установлен резистор номиналом в 270 Ом. Схема питается от источника питания номиналом в 5В.

Данную схему генератора можно, к примеру использовать для запуска строчника.

Оцените статью:

Ne555n datasheet на русском • Вэб-шпаргалка для интернет предпринимателей!

Каждый радиолюбитель не раз встречался с микросхемой NE555. Этот маленький восьминогий таймер завоевал колоссальную популярность за функциональность, практичность и простоту использования. На 555 таймере можно собрать схемы самого различного уровня сложности: от простого триггера Шмитта, с обвеской всего в пару элементов, до многоступенчатого кодового замка с применением большого количества дополнительных компонентов.

В данной статье детально ознакомимся с микросхемой NE555, которая, несмотря на свой солидный возраст, по-прежнему остается востребована. Стоит отметить, что в первую очередь данная востребованность обусловлена применением ИМС в схемотехнике с использованием светодиодов.

Описание и область применения

NE555 является разработкой американской компании Signetics, специалисты которой в условиях экономического кризиса не сдались и смогли воплотить в жизнь труды Ганса Камензинда. Именно он в 1970 году сумел доказать важность своего изобретения, которое на тот момент не имело аналогов. ИМС NE555 имела высокую плотность монтажа при низкой себестоимости, чем заслужила особый статус.

Впоследствии её стали копировать конкурирующие производители из разных стран мира. Так появилась отечественная КР1006ВИ1, которая так и осталась уникальной в данном семействе. Дело в том, что в КР1006ВИ1 вход останова (6) имеет приоритет над входом запуска (2). В импортных аналогах других фирм такая особенность отсутствует. Данный факт следует учитывать при разработке схем с активным использованием двух входов.

Однако в большинстве случаев приоритеты не влияют на работу устройства. С целью снижения мощности потребления, ещё в 70-х годах прошлого века был налажен выпуск таймера КМОП-серии. В России микросхема на полевых транзисторах получила название КР1441ВИ1.

Наибольшее применение 555 таймер нашёл в построении схем генераторов и реле времени с возможностью задержки от микросекунд до нескольких часов. В более сложных устройствах он выполняет функции по исключению дребезга контактов, ШИМ, восстановлению цифрового сигнала и так далее.

Особенности и недостатки

Особенностью таймера является внутренний делитель напряжения, который задаёт фиксированный верхний и нижний порог срабатывания для двух компараторов. Ввиду того что делитель напряжения нельзя исключить, а пороговым напряжением нельзя управлять, область применения NE555 сужается.

Таймер на биполярных транзисторах имеет один существенный недостаток, связанный с переходом выходного каскада из одного состояния в противоположное. Каждое переключение сопровождается паразитным сквозным током, который в пике может достигать 400 мА, увеличивая тепловые потери. Решение проблемы заключается в установке полярного конденсатора ёмкостью до 0,1 мкФ между выводом управления (5) и общим проводом. Благодаря ему, повышается стабильность при запуске и надёжность всего устройства. Кроме того, для повышения помехоустойчивости цепь питания дополняют неполярным конденсатором 1 мкФ.

Таймеры, собранные на КМОП-транзисторах, лишены перечисленных недостатков и не нуждаются в монтаже внешних конденсаторов.

Основные параметры ИМС серии 555

Внутреннее устройство NE555 включает в себя пять функциональных узлов, которые можно видеть на логической диаграмме. На входе расположен резистивный делитель напряжения, который формирует два опорных напряжения для прецизионных компараторов. Выходные контакты компараторов поступают на следующий блок – RS-триггер с внешним выводом для сброса, а затем на усилитель мощности. Последним узлом является транзистор с открытым коллектором, который может выполнять несколько функций, в зависимости от поставленной задачи.

Рекомендуемое напряжение питания для ИМС типа NA, NE, SA лежит в интервале от 4,5 до 16 вольт, а для SE может достигать 18В. При этом ток потребления при минимальном Uпит равен 2–5 мА, при максимальном Uпит – 10–15 мА. Некоторые ИМС 555 КМОП-серии потребляют не более 1 мА. Наибольший выходной ток импортной микросхемы может достигать значения в 200 мА. Для КР1006ВИ1 он не выше 100 мА.

Качество сборки и производитель сильно влияют на условия эксплуатации таймера. Например, диапазон рабочих температур NE555 составляет от 0 до 70°C, а SE555 от -55 до +125°C, что важно знать при конструировании устройств для работы в открытой окружающей среде. Более детально ознакомиться с электрическими параметрами, узнать типовые значения напряжения и тока на входах CONT, RESET, THRES, и TRIG можно в datasheet на ИМС серии XX555.

Расположение и назначение выводов

NE555 и её аналоги преимущественно выпускаются в восьмивыводном корпусе типа PDIP8, TSSOP или SOIC. Расположение выводов независимо от корпуса – стандартное. Условное графическое обозначение таймера представляет собой прямоугольник с надписью G1 (для генератора одиночных импульсов) и GN (для мультивибраторов).

  1. Общий (GND). Первый вывод относительно ключа. Подключается к минусу питания устройства.
  2. Запуск (TRIG). Подача импульса низкого уровня на вход второго компаратора приводит к запуску и появлению на выходе сигнала высокого уровня, длительность которого зависит от номинала внешних элементов R и С. О возможных вариациях входного сигнала написано в разделе «Одновибратор».
  3. Выход (OUT). Высокий уровень выходного сигнала равен (Uпит-1,5В), а низкий – около 0,25В. Переключение занимает около 0,1 мкс.
  4. Сброс (RESET). Данный вход имеет наивысший приоритет и способен управлять работой таймера независимо от напряжения на остальных выводах. Для разрешения запуска необходимо, чтобы на нём присутствовал потенциал более 0,7 вольт. По этой причине его через резистор соединяют с питанием схемы. Появление импульса менее 0,7 вольт запрещает работу NE555.
  5. Контроль (CTRL). Как видно из внутреннего устройства ИМС он напрямую соединен с делителем напряжения и в отсутствие внешнего воздействия выдаёт 2/3 Uпит. Подавая на CTRL управляющий сигнал, можно получить на выходе модулированный сигнал. В простых схемах он подключается к внешнему конденсатору.
  6. Останов (THR). Является входом первого компаратора, появление на котором напряжения более 2/3Uпит останавливает работу триггера и переводит выход таймера в низкий уровень. При этом на выводе 2 должен отсутствовать запускающий сигнал, так как TRIG имеет приоритет перед THR (кроме КР1006ВИ1).
  7. Разряд (DIS). Соединен напрямую с внутренним транзистором, который включен по схеме с общим коллектором. Обычно к переходу коллектор-эмиттер подключают времязадающий конденсатор, который разряжается, пока транзистор находится в открытом состоянии. Реже используется для наращивания нагрузочной способности таймера.
  8. Питание (VCC). Подключается к плюсу источника питания 4,5–16В.

Режимы работы NE555

Таймер 555 серии работает в одном из трёх режимов, рассмотрим их более детально на примере микросхемы NE555.

Одновибратор

Принципиальная электрическая схема одновибратора приведена на рисунке. Для формирования одиночных импульсов, кроме микросхемы NE555, понадобится сопротивление и полярный конденсатор. Схема работает следующим образом. На вход таймера (2) подают одиночный импульс низкого уровня, который приводит к переключению микросхемы и появлению на выходе (3) высокого уровня сигнала. Продолжительность сигнала рассчитывается в секундах по формуле:

По истечении заданного времени (t) на выходе формируется сигнал низкого уровня (исходное состояние). По умолчанию вывод 4 объединен с выводом 8, то есть имеет высокий потенциал.

Во время разработки схем нужно учесть 2 нюанса:

  1. Напряжение источника питания не влияет на длительность импульсов. Чем больше напряжение питания, тем выше скорость заряда времязадающего конденсатора и тем больше амплитуда выходного сигнала.
  2. Дополнительный импульс, который можно подать на вход после основного, не повлияет на работу таймера, пока не истечет время t.

На работу генератора одиночных импульсов можно влиять извне двумя способами:

  • подать на Reset сигнал низкого уровня, который переведёт таймер в исходное состояние;
  • пока на вход 2 поступает сигнал низкого уровня, на выходе будет оставаться высокий потенциал.

Таким образом, с помощью одиночных сигналов на входе и параметров времязадающей цепочки можно получать на выходе импульсы прямоугольной формы с чётко заданной длительностью.

Мультивибратор

Мультивибратор представляет собой генератор периодических импульсов прямоугольной формы с заданной амплитудой, длительностью или частотой, в зависимости от поставленной задачи. Его отличие от одновибратора состоит в отсутствии внешнего возмущающего воздействия для нормального функционирования устройства. Принципиальная схема мультивибратора на базе NE555 показана на рисунке.

В формировании повторяющихся импульсов участвуют резисторы R1, R2 и конденсатор С1. Время импульса (t

1), время паузы(t2), период (T) и частоту (f) рассчитывают по нижеприведенным формулам: Из данных формул несложно заметить, что время паузы не сможет превысить время импульса, то есть достичь скважности (S=T/t1) более 2 единиц не удастся. Для решения проблемы в схему добавляют диод, катод которого соединяют с выводом 6, а анод с выводом 7.

В datasheet на микросхемы часто оперируют величиной, обратной скважности — Duty cycle (D=1/S), которую отображают в процентах.

Схема работает следующим образом. В момент подачи питания конденсатор С1 разряжен, что переводит выход таймера в состояние высокого уровня. Затем С1 начинает заряжаться, набирая ёмкость до верхнего порогового значения 2/3 UПИТ. Достигнув порога ИМС переключается, и на выходе появляется низкий уровень сигнала. Начинается процесс разряда конденсатора (t1), который продолжается до нижнего порогового значения 1/3 U

ПИТ. По его достижении происходит обратное переключение, и на выходе таймера устанавливается высокий уровень сигнала. В результате схема переходит в автоколебательный режим.

Прецизионный триггер Шмитта с RS-триггером

Внутри таймера NE555 встроен двухпопроговый компаратор и RS-триггер, что позволяет реализовывать прецизионный триггер Шмитта с RS-триггером на аппаратном уровне. Входное напряжение делится компаратором на три части, при достижении каждой из которых происходит очередное переключение. При этом величина гистерезиса (обратного переключения) равна 1/3 UПИТ. Возможность применения NE555 в качестве прецизионного триггера востребована в построении систем автоматического регулирования.

3 наиболее популярные схемы на основе NE555

Одновибратор

Практический вариант схемы одновибратора на TTL NE555 приведен на рисунке. Схема питается однополярным напряжением от 5 до 15В. Времязадающими элементами здесь являются: резистор R1 – 200кОм-0,125Вт и электролитический конденсатор С1

– 4,7мкФ-16В. R2 поддерживает на входе высокий потенциал, пока некоторое внешнее устройство не сбросит его до низкого уровня (например, транзисторный ключ). Конденсатор С2 защищает схему от сквозных токов в моменты переключения.

Активизация одновибратора происходит в момент кратковременного замыкания на землю входного контакта. При этом на выходе формируется высокий уровень длительностью:

Таким образом, данная схема формирует задержку выходного сигнала относительно входного на 1 секунду.

Мигание светодиодом на мультивибраторе

Отталкиваясь от рассмотренной выше схемы мультивибратора можно собрать простую светодиодную мигалку. Для этого к выходу таймера последовательно с резистором подключают светодиод. Номинал резистора находят по формуле:

UВЫХ – амплитудное значение напряжения на выводе 3 таймера.

Количество подключаемых светодиодов зависит от типа применяемой микросхемы NE555, её нагрузочной способности (КМОП или ТТЛ). Если необходимо мигать светодиодом мощностью более 0,5 Вт, то схему дополняют транзистором, нагрузкой которого станет светодиод.

Реле времени

Схема регулируемого таймера (электронное реле времени) показана на рисунке. С её помощью можно вручную задавать длительность выходного сигнала от 1 до 25 секунд. Для этого последовательно с постоянным резистором в 10 кОм устанавливают переменный номиналом в 250 кОм. Ёмкость времязадающего конденсатора увеличивают до 100 мкФ.

Схема работает следующим образом. В исходном состоянии на выводе 2 присутствует высокий уровень (от источника питания), а на выводе 3 низкий уровень. Транзисторы VT1, VT2 закрыты. В момент подачи на базу VT1 положительного импульса по цепи (Vcc-R2-коллектор-эмиттер-общий провод) протекает ток. VT1 открывается и переводит NE555 в режим отсчета времени. Одновременно на выходе ИМС появляется положительный импульс, который открывает VT2. В результате ток эмиттера VT2 приводит к срабатыванию реле. Пользователь может в любой момент прервать выполнение задачи, кратковременно закоротив RESET на землю.

Транзисторы SS8050, приведенные на схеме, можно заменить на КТ3102.

Рассмотреть все популярные схемы на основе NE555 в одной статье невозможно. Для этого существуют целые сборники, в которых собраны практические наработки за всё время существования таймера. Надеемся, что приведенная информация послужит ориентиром во время сборки схем, в том числе нагрузкой которых служат светодиоды.

Каждый радиолюбитель не раз встречался с микросхемой NE555. Этот маленький восьминогий таймер завоевал колоссальную популярность за функциональность, практичность и простоту использования. На 555 таймере можно собрать схемы самого различного уровня сложности: от простого триггера Шмитта, с обвеской всего в пару элементов, до многоступенчатого кодового замка с применением большого количества дополнительных компонентов.

В данной статье детально ознакомимся с микросхемой NE555, которая, несмотря на свой солидный возраст, по-прежнему остается востребована. Стоит отметить, что в первую очередь данная востребованность обусловлена применением ИМС в схемотехнике с использованием светодиодов.

Описание и область применения

NE555 является разработкой американской компании Signetics, специалисты которой в условиях экономического кризиса не сдались и смогли воплотить в жизнь труды Ганса Камензинда. Именно он в 1970 году сумел доказать важность своего изобретения, которое на тот момент не имело аналогов. ИМС NE555 имела высокую плотность монтажа при низкой себестоимости, чем заслужила особый статус.

Впоследствии её стали копировать конкурирующие производители из разных стран мира. Так появилась отечественная КР1006ВИ1, которая так и осталась уникальной в данном семействе. Дело в том, что в КР1006ВИ1 вход останова (6) имеет приоритет над входом запуска (2). В импортных аналогах других фирм такая особенность отсутствует. Данный факт следует учитывать при разработке схем с активным использованием двух входов.

Однако в большинстве случаев приоритеты не влияют на работу устройства. С целью снижения мощности потребления, ещё в 70-х годах прошлого века был налажен выпуск таймера КМОП-серии. В России микросхема на полевых транзисторах получила название КР1441ВИ1.

Наибольшее применение 555 таймер нашёл в построении схем генераторов и реле времени с возможностью задержки от микросекунд до нескольких часов. В более сложных устройствах он выполняет функции по исключению дребезга контактов, ШИМ, восстановлению цифрового сигнала и так далее.

Особенности и недостатки

Особенностью таймера является внутренний делитель напряжения, который задаёт фиксированный верхний и нижний порог срабатывания для двух компараторов. Ввиду того что делитель напряжения нельзя исключить, а пороговым напряжением нельзя управлять, область применения NE555 сужается.

Таймер на биполярных транзисторах имеет один существенный недостаток, связанный с переходом выходного каскада из одного состояния в противоположное. Каждое переключение сопровождается паразитным сквозным током, который в пике может достигать 400 мА, увеличивая тепловые потери. Решение проблемы заключается в установке полярного конденсатора ёмкостью до 0,1 мкФ между выводом управления (5) и общим проводом. Благодаря ему, повышается стабильность при запуске и надёжность всего устройства. Кроме того, для повышения помехоустойчивости цепь питания дополняют неполярным конденсатором 1 мкФ.

Таймеры, собранные на КМОП-транзисторах, лишены перечисленных недостатков и не нуждаются в монтаже внешних конденсаторов.

Основные параметры ИМС серии 555

Внутреннее устройство NE555 включает в себя пять функциональных узлов, которые можно видеть на логической диаграмме. На входе расположен резистивный делитель напряжения, который формирует два опорных напряжения для прецизионных компараторов. Выходные контакты компараторов поступают на следующий блок – RS-триггер с внешним выводом для сброса, а затем на усилитель мощности. Последним узлом является транзистор с открытым коллектором, который может выполнять несколько функций, в зависимости от поставленной задачи.

Рекомендуемое напряжение питания для ИМС типа NA, NE, SA лежит в интервале от 4,5 до 16 вольт, а для SE может достигать 18В. При этом ток потребления при минимальном Uпит равен 2–5 мА, при максимальном Uпит – 10–15 мА. Некоторые ИМС 555 КМОП-серии потребляют не более 1 мА. Наибольший выходной ток импортной микросхемы может достигать значения в 200 мА. Для КР1006ВИ1 он не выше 100 мА.

Качество сборки и производитель сильно влияют на условия эксплуатации таймера. Например, диапазон рабочих температур NE555 составляет от 0 до 70°C, а SE555 от -55 до +125°C, что важно знать при конструировании устройств для работы в открытой окружающей среде. Более детально ознакомиться с электрическими параметрами, узнать типовые значения напряжения и тока на входах CONT, RESET, THRES, и TRIG можно в datasheet на ИМС серии XX555.

Расположение и назначение выводов

NE555 и её аналоги преимущественно выпускаются в восьмивыводном корпусе типа PDIP8, TSSOP или SOIC. Расположение выводов независимо от корпуса – стандартное. Условное графическое обозначение таймера представляет собой прямоугольник с надписью G1 (для генератора одиночных импульсов) и GN (для мультивибраторов).

  1. Общий (GND). Первый вывод относительно ключа. Подключается к минусу питания устройства.
  2. Запуск (TRIG). Подача импульса низкого уровня на вход второго компаратора приводит к запуску и появлению на выходе сигнала высокого уровня, длительность которого зависит от номинала внешних элементов R и С. О возможных вариациях входного сигнала написано в разделе «Одновибратор».
  3. Выход (OUT). Высокий уровень выходного сигнала равен (Uпит-1,5В), а низкий – около 0,25В. Переключение занимает около 0,1 мкс.
  4. Сброс (RESET). Данный вход имеет наивысший приоритет и способен управлять работой таймера независимо от напряжения на остальных выводах. Для разрешения запуска необходимо, чтобы на нём присутствовал потенциал более 0,7 вольт. По этой причине его через резистор соединяют с питанием схемы. Появление импульса менее 0,7 вольт запрещает работу NE555.
  5. Контроль (CTRL). Как видно из внутреннего устройства ИМС он напрямую соединен с делителем напряжения и в отсутствие внешнего воздействия выдаёт 2/3 Uпит. Подавая на CTRL управляющий сигнал, можно получить на выходе модулированный сигнал. В простых схемах он подключается к внешнему конденсатору.
  6. Останов (THR). Является входом первого компаратора, появление на котором напряжения более 2/3Uпит останавливает работу триггера и переводит выход таймера в низкий уровень. При этом на выводе 2 должен отсутствовать запускающий сигнал, так как TRIG имеет приоритет перед THR (кроме КР1006ВИ1).
  7. Разряд (DIS). Соединен напрямую с внутренним транзистором, который включен по схеме с общим коллектором. Обычно к переходу коллектор-эмиттер подключают времязадающий конденсатор, который разряжается, пока транзистор находится в открытом состоянии. Реже используется для наращивания нагрузочной способности таймера.
  8. Питание (VCC). Подключается к плюсу источника питания 4,5–16В.

Режимы работы NE555

Таймер 555 серии работает в одном из трёх режимов, рассмотрим их более детально на примере микросхемы NE555.

Одновибратор

Принципиальная электрическая схема одновибратора приведена на рисунке. Для формирования одиночных импульсов, кроме микросхемы NE555, понадобится сопротивление и полярный конденсатор. Схема работает следующим образом. На вход таймера (2) подают одиночный импульс низкого уровня, который приводит к переключению микросхемы и появлению на выходе (3) высокого уровня сигнала. Продолжительность сигнала рассчитывается в секундах по формуле:

По истечении заданного времени (t) на выходе формируется сигнал низкого уровня (исходное состояние). По умолчанию вывод 4 объединен с выводом 8, то есть имеет высокий потенциал.

Во время разработки схем нужно учесть 2 нюанса:

  1. Напряжение источника питания не влияет на длительность импульсов. Чем больше напряжение питания, тем выше скорость заряда времязадающего конденсатора и тем больше амплитуда выходного сигнала.
  2. Дополнительный импульс, который можно подать на вход после основного, не повлияет на работу таймера, пока не истечет время t.

На работу генератора одиночных импульсов можно влиять извне двумя способами:

  • подать на Reset сигнал низкого уровня, который переведёт таймер в исходное состояние;
  • пока на вход 2 поступает сигнал низкого уровня, на выходе будет оставаться высокий потенциал.

Таким образом, с помощью одиночных сигналов на входе и параметров времязадающей цепочки можно получать на выходе импульсы прямоугольной формы с чётко заданной длительностью.

Мультивибратор

Мультивибратор представляет собой генератор периодических импульсов прямоугольной формы с заданной амплитудой, длительностью или частотой, в зависимости от поставленной задачи. Его отличие от одновибратора состоит в отсутствии внешнего возмущающего воздействия для нормального функционирования устройства. Принципиальная схема мультивибратора на базе NE555 показана на рисунке.

В формировании повторяющихся импульсов участвуют резисторы R1, R2 и конденсатор С1. Время импульса (t1), время паузы(t2), период (T) и частоту (f) рассчитывают по нижеприведенным формулам: Из данных формул несложно заметить, что время паузы не сможет превысить время импульса, то есть достичь скважности (S=T/t1) более 2 единиц не удастся. Для решения проблемы в схему добавляют диод, катод которого соединяют с выводом 6, а анод с выводом 7.

В datasheet на микросхемы часто оперируют величиной, обратной скважности — Duty cycle (D=1/S), которую отображают в процентах.

Схема работает следующим образом. В момент подачи питания конденсатор С1 разряжен, что переводит выход таймера в состояние высокого уровня. Затем С1 начинает заряжаться, набирая ёмкость до верхнего порогового значения 2/3 UПИТ. Достигнув порога ИМС переключается, и на выходе появляется низкий уровень сигнала. Начинается процесс разряда конденсатора (t1), который продолжается до нижнего порогового значения 1/3 UПИТ. По его достижении происходит обратное переключение, и на выходе таймера устанавливается высокий уровень сигнала. В результате схема переходит в автоколебательный режим.

Прецизионный триггер Шмитта с RS-триггером

Внутри таймера NE555 встроен двухпопроговый компаратор и RS-триггер, что позволяет реализовывать прецизионный триггер Шмитта с RS-триггером на аппаратном уровне. Входное напряжение делится компаратором на три части, при достижении каждой из которых происходит очередное переключение. При этом величина гистерезиса (обратного переключения) равна 1/3 UПИТ. Возможность применения NE555 в качестве прецизионного триггера востребована в построении систем автоматического регулирования.

3 наиболее популярные схемы на основе NE555

Одновибратор

Практический вариант схемы одновибратора на TTL NE555 приведен на рисунке. Схема питается однополярным напряжением от 5 до 15В. Времязадающими элементами здесь являются: резистор R1 – 200кОм-0,125Вт и электролитический конденсатор С1 – 4,7мкФ-16В. R2 поддерживает на входе высокий потенциал, пока некоторое внешнее устройство не сбросит его до низкого уровня (например, транзисторный ключ). Конденсатор С2 защищает схему от сквозных токов в моменты переключения.

Активизация одновибратора происходит в момент кратковременного замыкания на землю входного контакта. При этом на выходе формируется высокий уровень длительностью:

Таким образом, данная схема формирует задержку выходного сигнала относительно входного на 1 секунду.

Мигание светодиодом на мультивибраторе

Отталкиваясь от рассмотренной выше схемы мультивибратора можно собрать простую светодиодную мигалку. Для этого к выходу таймера последовательно с резистором подключают светодиод. Номинал резистора находят по формуле:

UВЫХ – амплитудное значение напряжения на выводе 3 таймера.

Количество подключаемых светодиодов зависит от типа применяемой микросхемы NE555, её нагрузочной способности (КМОП или ТТЛ). Если необходимо мигать светодиодом мощностью более 0,5 Вт, то схему дополняют транзистором, нагрузкой которого станет светодиод.

Реле времени

Схема регулируемого таймера (электронное реле времени) показана на рисунке. С её помощью можно вручную задавать длительность выходного сигнала от 1 до 25 секунд. Для этого последовательно с постоянным резистором в 10 кОм устанавливают переменный номиналом в 250 кОм. Ёмкость времязадающего конденсатора увеличивают до 100 мкФ.

Схема работает следующим образом. В исходном состоянии на выводе 2 присутствует высокий уровень (от источника питания), а на выводе 3 низкий уровень. Транзисторы VT1, VT2 закрыты. В момент подачи на базу VT1 положительного импульса по цепи (Vcc-R2-коллектор-эмиттер-общий провод) протекает ток. VT1 открывается и переводит NE555 в режим отсчета времени. Одновременно на выходе ИМС появляется положительный импульс, который открывает VT2. В результате ток эмиттера VT2 приводит к срабатыванию реле. Пользователь может в любой момент прервать выполнение задачи, кратковременно закоротив RESET на землю.

Транзисторы SS8050, приведенные на схеме, можно заменить на КТ3102.

Рассмотреть все популярные схемы на основе NE555 в одной статье невозможно. Для этого существуют целые сборники, в которых собраны практические наработки за всё время существования таймера. Надеемся, что приведенная информация послужит ориентиром во время сборки схем, в том числе нагрузкой которых служат светодиоды.

Теория и практика применения таймера 555. Часть первая.

Автор:
Опубликовано 01.01.1970

Часть первая. Теоретическая.

Наверное нет такого радиолюбителя (Мяу, и его кота! — Здесь и далее прим. Кота), который не использовал бы в своей практике эту замечательную микросхему. Ну а уж слышали о ней так точно все.

Её история началась в 1971 году, когда компания Signetics Corporation выпустила микросхему SE555/NE555 под названием «Интегральный таймер» (The IC Time Machine).
На тот момент это была единственная «таймерная» микросхема доступная массовому потребителю. Сразу после поступления в продажу микросхема завоевала бешеную популярность и среди любителей и среди профессионалов. Появилась куча статей, описаний, схем, использующих сей девайс.
За прошедшие 35 лет практически каждый уважающий себя производитель полупроводников считал свои долгом выпустить свою версию этой микросхемы, в том числе и по более современным техпроцессам. Например, компания Motorola выпускает CMOS версию MC1455. Но при всем при этом в функциональности и расположении выводов никаких различий у всех этих версий нет. Все они полные аналоги друг друга.
Наши отечественные производители тоже не остались в стороне и выпускают эту микросхему под названием КР1006ВИ1.

А вот список заморских производителей, которые выпускают таймер 555 и их коммерческие обозначения:

Производитель

Название микросхемы

В некоторых случаях указано два названия. Это означает, что выпускается две версии микросхемы — гражданская, для коммерческого применения и военная. Военная версия отличается большей точностью, широким диапазоном рабочих температур и выпускается в металлическом или керамическом корпусе. Ну и дороже, разумеется.

Начнем с корпуса и выводов.

Микросхема выпускается в двух типах корпусов — пластиковом DIP и круглом металлическом. Правда, в металлическом корпусе она все же выпускалась — сейчас остались только DIP-корпуса. Но на случай, если вам вдруг достанется такое счастье, привожу оба рисунка корпуса. Назначения выводов одинаковые в обоих корпусах. Помимо стандартных, выпускается еще две разновидности микросхем — 556 и 558. 556 — это сдвоенная версия таймера, 558 — счетверенная.

Функциональная схема таймера показана на рисунке прямо над этим предложением.
Микросхема содержит около 20 транзисторов, 15 резисторов, 2 диода. Состав и количество компонентов могут несущественно меняться в зависимости от производителя. Выходной ток может достигать 200 мА, потребляемый — на 3- 6 мА больше. Напряжение питания может изменяться от 4,5 до 18 вольт. При этом точность таймера практически не зависит от изменения напряжения питания и составляет 1% от расчетного. Дрейф составляет 0,1%/вольт, а температурный дрейф — 0,005%/С.

Теперь мы посмотрим на принципиальную схему таймера и перемоем ему кости, вернее ноги — какой вывод для чего нужен и что все это значит.

Итак, выводы (Мяу! Это он про ноги. ):

1. Земля. Особо комментировать тут нечего — вывод, который подключается к минусу питания и к общему проводу схемы.

2. Запуск. Вход компаратора №2. При подаче на этот вход импульса низкого уровня (не более 1/3 Vпит) таймер запускается и на выходе устанавливается напряжение высокого уровня на время, которое определяется внешним сопротивлением R (Ra+Rb, см. функциональную схему) и конденсатором С — это так называемый режим моностабильного мультивибратора. Входной импульс может быть как прямоугольным, так и синусоидальным. Главное, чтобы по длительности он был короче, чем время заряда конденсатора С. Если же входной импульс по длительности все-таки превысит это время, то выход микросхемы будет оставаться в состоянии высокого уровня до тех пор, пока на входе не установится опять высокий уровень. Ток, потребляемый входом, не превышает 500нА.

3. Выход. Выходное напряжение меняется вместе с напряжением питания и равно Vпит-1,7В (высокий уровень на выходе). При низком уровне выходное напряжение равно примерно 0,25в (при напряжении питания +5в). Переключение между состояниями низкий — высокий уровень происходит приблизительно за 100 нс.

4. Сброс. При подаче на этот вывод напряжения низкого уровня (не более 0,7в) происходит сброс выхода в состояние низкого уровня не зависимо от того, в каком режиме находится таймер на данный момент и чем он занимается. Reset, знаете ли, он и в Африке reset. Входное напряжение не зависит от величины напряжения питания — это TTL-совместимый вход. Для предотвращения случайных сбросов этот вывод настоятельно рекомендуется подключить к плюсу питания, пока в нем нет необходимости.

5. Контроль. Этот вывод позволяет получить доступ к опорному напряжению компаратора №1, которое равно 2/3Vпит. Обычно, этот вывод не используется. Однако его использование может весьма существенно расширить возможности управления таймером. Все дело в том, что подачей напряжения на этот вывод можно управлять длительностью выходных импульсов таймера и таким образом, забить на RC времязадающую цепочку. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в до напряжения питания. При этом мы получаем ЧМ (FM) модулированный сигнал на выходе. Если же этот вывод таки не используется, то его рекомендуется подключить к общему проводу через конденсатор 0,01мкФ (10нФ) для уменьшения уровня помех и всяких других неприятностей.

6. Останов. Этот вывод является одним из входов компаратора №1. Он используется как эдакий антипод вывода 2. То есть используется для остановки таймера и приведения выхода в состояние (Мяу! Тихой паники?!) низкого уровня. При подаче импульса высокого уровня (не менее 2/3 напряжения питания), таймер останавливается, и выход сбрасывается в состояние низкого уровня. Так же как и на вывод 2, на этот вывод можно подавать как прямоугольные импульсы, так и синусоидальные.

7. Разряд. Этот вывод подсоединен к коллектору транзистора Т6, эмиттер которого соединен с землей. Таким образом, при открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор открыт, когда на выходе микросхемы низкий уровень и закрыт, когда выход активен, то есть на нем высокий уровень. Этот вывод может также применяться как вспомогательный выход. Нагрузочная способность его примерно такая же, как и у обычного выхода таймера.

8. Плюс питания. Как и в случае с выводом 1 особо ничего не скажешь. Напряжение питания таймера может находиться в пределах 4,5-16 вольт. У военных версий микросхемы верхний диапазон находится на уровне 18 вольт.

Впитали? Едем дальше.
Большинство таймеров нуждаются во времязадающей цепочке, обычно состоящей из резистора и конденсатора. Таймер 555 не исключение. Давайте посмотрим на диаграмму работы микросхемы.

Итак, предположим, что мы подали питание на микросхему. Вход находится в состоянии высокого уровня, на выходе — низкий уровень, конденсатор С разряжен. Все спокойно, все спят. И тут БАХ — мы подаем серию прямоугольных импульсов на вход таймера. Что происходит?
Первый же импульс низкого уровня переключает выход таймера в состояние высокого уровня. Транзистор Т6 закрывается и конденсатор начинает заряжаться через резистор R. Все то время пока конденсатор заряжается, выход таймера остается во включенном состоянии — на нем сохраняется высокий уровень напряжения. Как только конденсатор зарядится до 2/3 напряжения питания, выход микросхемы выключается и на нем появляется низкий уровень. Транзистор T6 открывается и конденсатор С разряжается.
Однако есть два нюанса, которые показаны на графике пунктирными линиями.
Первый — если после окончания заряда конденсатора на входе сохраняется низкий уровень напряжения — в таком случае выход остается активным — на нем сохраняется высокий уровень до тех пор, пока на входе не появится высокий уровень. Второй — если мы активируем вход Сброс напряжением низкого уровня. В этом случае выход сразу же выключится, не смотря на то, что конденсатор все еще заряжается.
Так, лирическую часть закончили — перейдем к суровым цифрам и расчетам. Как же нам определить время, на которое будет включаться таймер и номиналы RC цепочки, необходимые для задания этого времени? Время, за которое конденсатор заряжается до 63,2% (2/3) напряжения питания называется временной константой, обозначим её буковкой t. Вычисляется это время потрясающей по своей сложности формулой. Вот она: t = R*C, где R — сопротивление резистора в МегаОм-ах, С — емкость конденсатора в микроФарад-ах. Время получается в секундах.

К формуле мы еще вернемся, когда будем подробно рассматривать режимы работы таймера. А сейчас пока посмотрим на простенький тестер для этой микросхемы, который запросто скажет вам — работает ваш экземпляр таймера или нет.

Если после включения питания мигают оба светодиода — значит все хорошо и микросхема во вполне рабочем состоянии. Если же хотя бы один из диодов не горит или наоборот — горит постоянно, значит такую микросхемы можно спустить в унитаз с чистой совестью или вернуть назад продавцу, если вы её только что купили. Напряжение питания — 9 вольт. Например, от батареи «Крона».

Теперь рассмотрим режимы работы этой микросхемы.
Собственно говоря, режимов у нее две штуки. Первый — моностабильный мультивибратор. Моностабильный — потому что стабильное состояние у такого мультивибратора одно — выключен. А во включенное состояние мы его переводим временно, подав на вход таймера какой-либо сигнал. Как уже отмечалось выше, время, на которое мультивибратор переходит в активное состояние, определяется RC цепочкой. Эти свойства могут быть использованы в самых разнообразных схемах. Для запуска чего-либо на определенное время или наоборот — для формирования паузы на заданное время.

Второй режим — это генератор импульсов. Микросхема может выдавать последовательность прямоугольных импульсов, параметры которых определяются все той же RC цепочкой. (Мяу! Хочу цепочку. На хвост. Ну или браслетик. Антистатический.)
Все-таки Кот у нас — зануда.
Начнем сначала, то есть с первого режима.

Схема включения микросхемы показана на рисунке. RC цепочка включена между плюсом и минусом питания. К соединению резистора и конденсатора подключен вывод 6 — Останов. Это вход компаратора №1. Сюда же подключен вывод 7 — Разряд. Входной импульс подается на вывод 2 — Запуск. Это вход компаратора №2. Совершенно простецкая схема — один резистор и один конденсатор — куда уж проще? Для повышения помехоустойчивости можно подключить вывод 5 на общий провод через конденсатор емкостью 10нФ.
Итак, в исходном состоянии, на выходе таймера низкий уровень — около нуля вольт, конденсатор разряжен и заряжаться не хочет, поскольку открыт транзистор Т6. Это состояние стабильное, оно может продолжаться неопределенно долгое время. При поступлении на вход импульса низкого уровня, срабатывает компаратор №2 и переключает внутренний триггер таймера. В результате на выходе устанавливается высокий уровень напряжения. Транзистор Т6 закрывается и начинает заряжаться конденсатор С через резистор R. Все то время, пока он заряжается, на выходе таймера сохраняется высокий уровень. Таймер не реагирует ни на какие внешние раздражители, буде они поступают на вывод 2. То есть, после срабатывания таймера от первого импульса дальнейшие импульсы не оказывают никакого действия на состояние таймера — это очень важно. Так, что там у нас происходит то? А, да — заряжается конденсатор. Когда он зарядится до напряжения 2/3Vпит, сработает компаратор №1 и в свою очередь переключит внутренний триггер. В результате на выходе установится низкий уровень напряжения, и схема вернется в свое исходное, стабильное состояние. Транзистор Т6 откроется и разрядит конденсатор С.

Время, на которое таймер, так сказать «выходит из себя», может быть от одной миллисекунды до сотен секунд.
Считается оно так: T=1.1*R*C
Теоретически, пределов по длительности импульсов нет — как по минимальной длительности, так и по максимальной. Однако, есть некоторые практические ограничения, которые обойти можно, но сначала стоит задуматься — нужно ли это делать и не проще ли выбрать другое схемное решение.
Так, минимальные значения, установленные практическим образом для R составляет 10кОм, а для С — 95пФ. Можно ли меньше? В принципе — да. Но при этом, если еще уменьшить сопротивление резистора — схема начнет трескать слишком много электричества. Если уменьшить емкость С, то всякие паразитные емкости и помехи могут существенно повлиять на работу схемы.
С другой стороны, максимальное значение резистора примерно равно 15Мом. Здесь ограничение накладывает ток, потребляемый входом Останов (около 120нА) и ток утечки конденсатора С. Таким образом, при слишком большом значении резистора таймер просто никогда не выключится, если сумма токов утечки конденсатора и тока входа превысит 120 нА.
Ну а что касается максимальной емкости конденсатора, то дело не столько в самой емкости, сколько в токе утечки. Понятно, что чем больше емкость, тем больше ток утечки и тем хуже будет точность таймера. Поэтому, если таймер будет использоваться для больших временных интервалов, то лучше пользоваться конденсаторами с малыми токами утечки — например, танталовыми.

Перейдем ко второму режиму.

В эту схему добавлен еще один резистор. Входы обоих компараторов соединены и подключены к соединению резистора R2 и конденсатора. Вывод 7 включен между резисторами. Конденсатор заряжается через резисторы R1 и R2.
Теперь посмотрим, что же произойдет, когда мы подадим питание на схему. В исходном состоянии конденсатор разряжен и на входах обоих компараторов низкий уровень напряжения, близкий к нулю. Компаратор №2 переключает внутренний триггер и устанавливает на выходе таймера высокий уровень. Транзистор Т6 закрывается и конденсатор начинает заряжаться через резисторы R1 и R2.

Когда напряжение на конденсаторе достигает 2/3 напряжения питания, компаратор №1 в свою очередь переключает триггер и выключает выход таймер — напряжение на выходе становится близким к нулю. Транзистор Т6 открывается и конденсатор начинает разряжаться через резистор R2. Как только напряжение на конденсаторе опустится до 1/3 напряжения питания, компаратор №2 опять переключит триггер и на выходе микросхемы снова появится высокий уровень. Транзистор Т6 закроется и конденсатор снова начнет заряжаться. фууу, чет у меня голова закружилась уже.
Короче говоря, в результате всего этого шаманства, на выходе мы получаем последовательность прямоугольных импульсов. Частота импульсов, как вы вероятно уже догадались, зависит от величин C, R1 и R2. Определяется она по формуле:

Значения R1 и R2 подставляются в Омах, C — в фарадах, частота получается в Герцах.
Время между началом каждого следующего импульса называется периодом и обозначается буковкой t. Оно складывается из длительности самого импульса — t1 и промежутком между импульсами — t2. t = t1+t2.
Частота и период — понятия обратные друг другу и зависимость между ними следующая:
f = 1/t.
t1 и t2 разумеется тоже можно и нужно посчитать. Вот так:
t1 = 0.693(R1+R2)C;
t2 = 0.693R2C;

Ну, с теоретической частью вроде бы покончили. В следующей части рассмотрим конкретные примеры включения таймера 555 в различных схемах и для самого разнообразного использования.
Если у вас еще остались вопросы — их можно задать тут.

Рекомендуем к прочтению

Описание таймера NE555 | joyta.ru

Микросхема таймер NE555 включает около 20 транзисторов, 15 резисторов, 2 диода. Выходной ток 200 мА, ток потребления примерно  на 3 мА больше. Напряжение питания от 4,5 до 18 вольт. Точность таймера   не зависит от изменения напряжения питания и составляет не более 1% от расчетного значения.

Datasheet микросхемы NE555, а также калькулятор для расчета обвязки можно скачать в конце статьи.

Назначение выводов:

Вывод №1 — Земля.

Вывод подключается  к минусу питания или к общему проводу схемы.

Вывод №2 — Запуск.

Этот вывод является одним из входов компаратора №2. При подаче на этот вход импульса низкого уровня, который должно быть не более  1/3 напряжения питания, происходит запуск таймера и на выводе №3 появляется напряжение высокого уровня на время, которое задается внешним сопротивлением Ra+Rb и конденсатором С.  Данный режим работы называется —  режим моностабильного мультивибратора. Импульс, подаваемый на вывод №2, может быть как прямоугольным, так и синусоидным и по длительности он должен быть меньше чем время  заряда конденсатора С.

Вывод №3 — Выход.

Высокий уровень  равен напряжению питания минус 1,7 Вольта. Низкий уровень равен примерно 0,25 вольта. Время переключения с одного уровня на другой происходит примерно за 100 нс.

Вывод №4 — Сброс.

При подаче на этот вывод напряжения низкого уровня (не более 0,7в) произойдет  сброс таймера и на выходе его установится напряжение  низкого уровня. Если в схеме нет необходимости в режиме сброса, то данный вывод необходимо подключить к плюсу питания.

Вывод №5 — Контроль.

Обычно, этот вывод не используется. Однако его применение может значительно расширить функциональность таймера. При подаче напряжения на этот вывод можно управлять длительностью выходных импульсов таймера, а значит отказаться от  RC времязадающей цепочки. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в и до напряжения питания. Соответственно на выходе получится FM модулированный сигнал.

Если  этот вывод  не используется, то его лучше подключить через конденсатор 0,01мкФ к общему проводу.

Вывод №6 — Стоп.

Этот вывод является одним из входов компаратора №1.  При подаче на этот вывод импульса высокого уровня (не менее 2/3 напряжения питания), работа таймера останавливается, и на выходе таймера устанавливается  напряжение низкого уровня. Как и на вывод №2, на этот вывод можно подавать импульсы как прямоугольные, так и синусоидные.

Вывод №7 — Разряд.

Этот вывод соединен с  коллектором транзистора Т1, эмиттер которого соединен с общим проводом.  При открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор закрыт, когда на выходе таймера высокий уровень и открыт, когда на выходе низкий уровень.

Вывод №8 — Питание.

Напряжение питания таймера составляет от 4,5 до16 вольт.

Таймер может работать в двух режимах:  моностабильный мультивибратор и  генератор прямоугольных импульсов.

1. Моностабильный мультивибратор.

Моностабильный означает, что стабильное состояние у таймера только одно, когда он выключен. Во включенное состояние его можно перевести временно, подав на вход таймера какой-либо сигнал. Время нахождения таймера в активном режиме определяется RC цепочкой.

В начальном состоянии, на выходе таймера (вывод №3) низкий уровень — примерно 0,25 вольт, транзистор Т1 открыт и соответственно конденсатор разряжен. Это состояние таймера стабильное. При поступлении на вход (вывод №2) импульса низкого уровня, включается компаратор №2, который переключает триггер таймера, и как результат на выходе таймера устанавливается высокий уровень. Транзистор Т1 закрывается и через резистор R начинает заряжаться конденсатор С. И пока заряжается конденсатор С  на выходе таймера сохраняется высокий уровень. За это время изменения сигнала на входе (вывод №2)  не вызовут никакое воздействие на таймер. После того как напряжение на конденсаторе С достигнет 2/3 напряжения питания, включается компаратор №1 и тем самым переключает триггер. В результате на выходе (вывод №3)  установится низкий уровень, и таймер восстановит исходное, стабильное состояние. Транзистор Т1 откроется и разрядит конденсатор С.

2. Генератор прямоугольных импульсов.

Таймер генерирует последовательность прямоугольных импульсов определяемых RC цепочкой.

В начальном состоянии конденсатор С разряжен и на входах обоих компараторов низкий уровень, близкий к нулю. Компаратор №2 переключает внутренний триггер и как следствие этого на выходе таймера (вывод №3) устанавливается высокий уровень. Транзистор Т1 закрывается и конденсатор С начинает заряжаться через цепочку резисторов R1 и R2.

Когда, в результате зарядки, напряжение на конденсаторе достигает 2/3 напряжения питания, компаратор №1  переключает триггер, который в свою очередь устанавливает низкий уровень на выходе таймера (вывод №3). Транзистор Т1 открывается и через резистор R2 начинает разряжаться конденсатор С. Как только напряжение на конденсаторе достигнет   1/3 напряжения питания, компаратор №2 снова переключит триггер и на выходе таймера (вывод №3) снова появится высокий уровень. Транзистор Т1 закроется и конденсатор С снова начнет заряжаться.

Частота импульсов,   зависит от величин C, R1 и R2, и рассчитывается по вышеприведенной формуле.

Сопротивления R1 и R2 подставляются в Омах;

Емкость конденсатора C — в фарадах;

Результат в получается в Герцах.

Время между началом одного и началом следующего импульса называется периодом (t). Оно состоит из длительности самого импульса  (t1) и промежутком между импульсами (t2).

Значения t1 и t2 можно рассчитать по следующим формулам:

t1 = 0.693(R1+R2)C;

t2 = 0.693R2C;

Файлы к данной схеме (1,4 MiB, скачано: 18 151)

Скачать Datasheet NE555 (1,1 MiB, скачано: 8 132)

Смотреть видео: Таймер NE555

Таймер 555 даташит на русском

На чтение 22 мин Просмотров 73 Опубликовано

Микросхема интегрального таймера NE555 — это настоящий прорыв в области электроники. Она была создана в 1972 году сотрудником компании Signetics Гансом Р. Камензиндом. Изобретение не утратило своей актуальности и по сегодняшний день. Позднее устройство стало основой таймеров с удвоенной (IN556N) и счетверенной конфигурацией (IN558N).

Без сомнения, детище электронщика позволило занять ему свою видную нишу в истории технических изобретений. По уровню продаж данное устройство с момента своего появления превзошло любое другое. На второй год существования микросхема 555 стала самой покупаемой деталью.

Лидерство сохранялось и во все последующие годы. Микросхема 555, применение которой возрастало с каждым годом, продавалась очень хорошо. К примеру, в 2003 году было реализовано более чем 1 миллиард экземпляров. Конфигурация самого агрегата за это время не изменилась. Она существует свыше 40 лет.

Появление устройства стало неожиданностью для самого создателя. Камензинд преследовал цель сделать гибкую в использовании ИС, но, что она окажется столь многофункциональной, он не ожидал. Изначально она употреблялась как таймер или же генератор импульсов. Микросхема 555, применение которой увеличивалось быстрыми темпами, сегодня используется от игрушек для детей до космических кораблей.

Устройство отличает выносливость, поскольку оно построено на основе биполярной технологии, и для применения его в космосе специально предпринимать ничего не требуется. Только испытательные работы проводятся с особой строгостью. Так, при тесте схемы NE 555 для ряда приложений создаются индивидуальные пробные спецификации. При производстве схем не существует никаких различий, но подходы при выходном контроле заметно разнятся.

Появление схемы в отечественной электронике

Первое упоминание об инновации в советской литературе по радиотехнике появилось в 1975 году. Статью об изобретении опубликовали в журнале «Электроника». Микросхема 555, аналог которой был создан советскими электронщиками в конце 80-х годов прошлого столетия, в отечественной радиоэлектронике получила название КР1006ВИ1.

В производстве эту деталь употребляли при сборке видеомагнитофонов «Электроника ВМ12». Но это был не единственный аналог, так как многие производители во всем мире создавали подобное устройство. Все агрегаты имеют обячный корпус DIP8, а также корпус малых размеров SOIC8.

Технические характеристики схемы

Микросхема 555, графическое изображение которой представлено ниже, включает в себя 20 транзисторов. На блок-схеме устройства находятся 3 резистора с сопротивлением 5кОм. Отсюда и название прибора «555».

Основными техническими характеристиками изделия являются:

  • напряжение питания 4,5-18В;
  • максимальный показатель тока на выходе 200 мА;
  • потребляемая энергия составляет до 206 мА.

Если его рассмотреть на выход, то это цифровое устройство. Он может находиться в двух положениях — низком (0В) и высоком ( от 4,5 до 15 В). В зависимости от блока питания может показатель достигать и 18 В.

Для чего нужно устройство?

NE 555 микросхема — унифицированное устройство с широким спектром применения. Его часто используют при сборке различных схем, и это только придает изделию популярность. Соответственно, повышается уровень спроса потребителя. Такая известность вызвала падение цены на таймер, что радует многих мастеров.

Внутреннее строение таймера 555


Что же заставляет это устройство функционировать? Каждый из выводов агрегата подсоединен к цепи, содержащей 20 транзисторов, 2 диода и 15 резисторов.

Удвоенный формат модели

Следует отметить, что NE 555 (микросхема) выпускается в удвоенном формате под названием 556. Она содержит два свободных IC.

Таймер 555 оснащен 8 контактами, тогда как модель 556 содержит 14 контактов.

Режимы работы устройства

Микросхема 555 обладает тремя режимами работы:

  1. Моностабильный режим микросхемы 555. Он работает как одноразовый односторонний. Во время функционирования выбрасывается импульс заданной длины как ответ на вход триггера при нажимании кнопки. Выход пребывает в низком напряжении до включения триггера. Отсюда он и получил название ждущий (моностабильный). Такой принцип функционирования сохраняет устройство в бездействии до включения. Режим обеспечивает включение таймеров, переключателей, сенсорных переключателей, делителей частоты и др.
  2. Нестабильный режим является автономной функцией устройства. Он позволяет схеме пребывать в генераторном режиме. Напряжение в выходе изменчиво: то низкое, то высокое. Эта схема применима при надобности задавания устройству толчков прерывистого характера (при недолговременном включении и выключении агрегата). Режим используется при включении ламп на светодиодах, функционирует в логической схеме часов и др.
  3. Бистабильный режим, или же триггер Шмидта. Понятно, что он работает по системе триггера при отсутствии конденсатора и обладает двумя устойчивыми состояниями, высоким и низким. Низкий показатель триггера переходит в высокий. При сбрасывании низкого напряжения система устремляется к низкому состоянию. Эта схема применима в сфере железнодорожного строительства.

Выводы таймера 555

Генератор микросхема 555 включает восемь выводов:

  1. Вывод 1 (земля). Он подсоединен к минусовой стороне питания (общий провод схемы).
  2. Вывод 2 (триггер). Он подает высокое напряжение на время (все зависит от мощности резистора и конденсатора). Эта конфигурация и является моностабильной. Вывод 2 контролирует вывод 6. Если напряжение в обоих низкое, то на выходе оно будет высоким. В противном случае, при высоком напряжении в выводе 6 и низком в выводе 2, выход на таймере будет низким.
  3. Вывод 3 (выход). Выходы 3 и 7 располагаются в фазе. Подавая высокое напряжение с показателем примерно 2 В и низкое с 0,5 В будет получаться до 200 мА.
  4. Вывод 4 (сброс). Подача напряжения на этот выход низка, несмотря на режим работы таймера 555. Во избежание случайных сбросов, следует производить подключение этого выхода к плюсовой стороне при использовании.
  5. Вывод 5 (контроль). Он открывает доступ к напряжению компаратора. Это вывод в российской электронике не применяется, но при его подключении можно достичь широких возможностей управления устройством 555.
  6. Вывод 6 (остановка). Входит в компаратор 1. Он противоположен выводу 2, применим для остановки устройства. При этом получается низкое напряжение. Это вывод может принимать синусоидальные и прямоугольные импульсы.
  7. Вывод 7 (разряд). Он подсоединяется к транзисторному коллектору Т6, а эмиттер последнего заземлен. При открытом транзисторе конденсатор разряжается до его закрытия.
  8. Вывод 8 (плюсовая сторона питания), которая составляет от 4,5 до 18 В.

Применение выхода Output

Выход 3 (Output) может пребывать в двух состояниях:

  1. Осуществляется подключение цифрового выхода прямо к входу другого драйвера на цифровой основе. Цифровой выход может осуществлять управление другими устройствами при посредстве нескольких дополнительных составляющих (напряжение источника питания равно 0 В).
  2. Показатель напряжения во втором состоянии высок (Vcc на источнике питания).

Возможности агрегата

  1. При понижении напряжения в Output ток направляется через устройство и осуществляет его подключение. Это и есть понижение, так как ток производится из Vcc и проходит сквозь агрегат до 0 В.
  2. При возрастании Output ток, проходя через прибор, обеспечивает его включение. Этот процесс можно назвать источником текущих. Электроэнергия в этом случае производится от таймера и идет через прибор до 0 В.

Возрастание и понижение могут функционировать вместе. Таким образом достигается поочередное включение и выключение прибора. Такой принцип применим при функционировании ламп на светодиодах, реле, двигателей, электромагнитов. К минусам такого свойства можно отнести то, что прибор надо подключать к Output разными способами, так как выход 3 может выступать как в роли потребителя, так и в роли источника тока до 200 мА. Используемый блок питания дожжен подать достаточный ток для обоих устройств и таймера 555.

Микросхема LM555

Микросхема 555 Даташит (LM555) обладает широкими функциональными возможностями.

Она используется от генераторов прямоугольных импульсов с изменяемым показателем скважности и реле и задержкой срабатывания до сложных конфигураций ШИМ генераторов. Микросхема 555 цоколевка и внутреннее строение отражены на рисунке.

Уровень точности приспособления равен 1% от расчетного показателя, что является оптимальным. На такой агрегат, как NE 555 микросхема даташит, не воздействуют температурные условия окружающей среды.

Аналоги микросхемы NE555

Микросхема 555, аналог которой в России был назван КР1006ВИ1, представляет интегральное устройство.

Среди рабочих блоков следует выделить RS-триггер (DD1), компараторы (DA1 и DA2), усилительный каскад на выходе, основанный на двухтактной системе и дополняющий транзистор VT3. Назначение последнего заключается в сбросе задающего время конденсатора при использовании агрегата в роли генератора. Сбрасывание триггера происходит при подаче логической единицы (Юпит/2…Юпит) на входы R.

В случае сброса триггера на выходе устройства (вывод 3) будет наблюдаться низкий показатель напряжения (транзистор VT2 открыт).

Уникальность схемы 555

При функциональной схеме устройства очень трудно понять, в чем же заключается ее необычность. Оригинальность устройства состоит в том, что оно обладает особым управлением триггера, а именно формирует управляющие сигналы. Их создание происходит на компараторах DA1 и DA2 (на один из входов, на который подано опорное напряжение). Для формирования управляющих сигналов на входах триггера (выходах компараторов) следует получить сигналы с высоким напряжением.

Как произвести запуск устройства?

Чтобы запустить таймер, на выход 2 надо подать напряжение с показателем от 0 до 1/3 Юпит. Этот сигнал способствует срабатыванию триггера, и при выходе создается сигнал с высоким напряжением. Сигнал выше предельного показателя не вызовет каких-либо изменений в схеме, так как опорное напряжение для компаратора равно DA2 и составляет 1/3 Юпит.

Остановить таймер можно при сбрасывании триггера. С этой целью напряжение на выходе 6 должно превышать показатель 2/3 Юпит (опорное напряжение для компаратора DA1 составляет 2/3 Юпит). При сбросе установится сигнал с низким напряжением и разряд конденсатора, задающего время.

Регулировать опорное напряжение можно посредством подключения дополнительного сопротивления или источника питания к выводу агрегата.

Подмотка спидометра на 555 микросхеме

В последнее время среди владельцев автомобилей стало модным сматывать на спидометре пройденный машиной километраж.

Многие интересуются, подмотка спидометра на 555 микросхеме выполнима ли самостоятельно?

Эта процедура не представляет особой трудности. Для его изготовления используется микросхема 555, которая может функционировать в качестве счетчика импульсов. Отдельные составляющие схемы можно брать с показателями, отклоняющимися на 10-15 % от расчетных значений.

Микросхема таймер NE555 включает около 20 транзисторов, 15 резисторов, 2 диода. Выходной ток 200 мА, ток потребления примерно на 3 мА больше. Напряжение питания от 4,5 до 18 вольт. Точность таймера не зависит от изменения напряжения питания и составляет не более 1% от расчетного значения.

Datasheet микросхемы NE555, а также калькулятор для расчета обвязки можно скачать в конце статьи.

Вывод №1 — Земля.

Вывод подключается к минусу питания или к общему проводу схемы.

Вывод №2 — Запуск.

Этот вывод является одним из входов компаратора №2. При подаче на этот вход импульса низкого уровня, который должно быть не более 1/3 напряжения питания, происходит запуск таймера и на выводе №3 появляется напряжение высокого уровня на время, которое задается внешним сопротивлением Ra+Rb и конденсатором С. Данный режим работы называется — режим моностабильного мультивибратора. Импульс, подаваемый на вывод №2, может быть как прямоугольным, так и синусоидным и по длительности он должен быть меньше чем время заряда конденсатора С.

Вывод №3 — Выход.

Высокий уровень равен напряжению питания минус 1,7 Вольта. Низкий уровень равен примерно 0,25 вольта. Время переключения с одного уровня на другой происходит примерно за 100 нс.

Вывод №4 — Сброс.

При подаче на этот вывод напряжения низкого уровня (не более 0,7в) произойдет сброс таймера и на выходе его установится напряжение низкого уровня. Если в схеме нет необходимости в режиме сброса, то данный вывод необходимо подключить к плюсу питания.

Вывод №5 — Контроль.

Обычно, этот вывод не используется. Однако его применение может значительно расширить функциональность таймера. При подаче напряжения на этот вывод можно управлять длительностью выходных импульсов таймера, а значит отказаться от RC времязадающей цепочки. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в и до напряжения питания. Соответственно на выходе получится FM модулированный сигнал.

Если этот вывод не используется, то его лучше подключить через конденсатор 0,01мкФ к общему проводу.

Вывод №6 — Стоп.

Этот вывод является одним из входов компаратора №1. При подаче на этот вывод импульса высокого уровня (не менее 2/3 напряжения питания), работа таймера останавливается, и на выходе таймера устанавливается напряжение низкого уровня. Как и на вывод №2, на этот вывод можно подавать импульсы как прямоугольные, так и синусоидные.

Вывод №7 — Разряд.

Этот вывод соединен с коллектором транзистора Т1, эмиттер которого соединен с общим проводом. При открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор закрыт, когда на выходе таймера высокий уровень и открыт, когда на выходе низкий уровень.

Вывод №8 — Питание.

Напряжение питания таймера составляет от 4,5 до16 вольт.

Таймер может работать в двух режимах: моностабильный мультивибратор и генератор прямоугольных импульсов.

1. Моностабильный мультивибратор.

Моностабильный означает, что стабильное состояние у таймера только одно, когда он выключен. Во включенное состояние его можно перевести временно, подав на вход таймера какой-либо сигнал. Время нахождения таймера в активном режиме определяется RC цепочкой.

В начальном состоянии, на выходе таймера (вывод №3) низкий уровень — примерно 0,25 вольт, транзистор Т1 открыт и соответственно конденсатор разряжен. Это состояние таймера стабильное. При поступлении на вход (вывод №2) импульса низкого уровня, включается компаратор №2, который переключает триггер таймера, и как результат на выходе таймера устанавливается высокий уровень. Транзистор Т1 закрывается и через резистор R начинает заряжаться конденсатор С. И пока заряжается конденсатор С на выходе таймера сохраняется высокий уровень. За это время изменения сигнала на входе (вывод №2) не вызовут никакое воздействие на таймер. После того как напряжение на конденсаторе С достигнет 2/3 напряжения питания, включается компаратор №1 и тем самым переключает триггер. В результате на выходе (вывод №3) установится низкий уровень, и таймер восстановит исходное, стабильное состояние. Транзистор Т1 откроется и разрядит конденсатор С.

2. Генератор прямоугольных импульсов.

Таймер генерирует последовательность прямоугольных импульсов определяемых RC цепочкой.

В начальном состоянии конденсатор С разряжен и на входах обоих компараторов низкий уровень, близкий к нулю. Компаратор №2 переключает внутренний триггер и как следствие этого на выходе таймера (вывод №3) устанавливается высокий уровень. Транзистор Т1 закрывается и конденсатор С начинает заряжаться через цепочку резисторов R1 и R2.

Когда, в результате зарядки, напряжение на конденсаторе достигает 2/3 напряжения питания, компаратор №1 переключает триггер, который в свою очередь устанавливает низкий уровень на выходе таймера (вывод №3). Транзистор Т1 открывается и через резистор R2 начинает разряжаться конденсатор С. Как только напряжение на конденсаторе достигнет 1/3 напряжения питания, компаратор №2 снова переключит триггер и на выходе таймера (вывод №3) снова появится высокий уровень. Транзистор Т1 закроется и конденсатор С снова начнет заряжаться.

Частота импульсов, зависит от величин C, R1 и R2, и рассчитывается по вышеприведенной формуле.

Сопротивления R1 и R2 подставляются в Омах;

Емкость конденсатора C — в фарадах;

Результат в получается в Герцах.

Время между началом одного и началом следующего импульса называется периодом (t). Оно состоит из длительности самого импульса (t1) и промежутком между импульсами (t2).

Значения t1 и t2 можно рассчитать по следующим формулам:

Файлы к данной схеме (1,4 Mb, скачано: 16 820)

Скачать Datasheet NE555 (1,1 Mb, скачано: 7 010)

Смотреть видео: Таймер NE555

Каждый радиолюбитель не раз встречался с микросхемой NE555. Этот маленький восьминогий таймер завоевал колоссальную популярность за функциональность, практичность и простоту использования. На 555 таймере можно собрать схемы самого различного уровня сложности: от простого триггера Шмитта, с обвеской всего в пару элементов, до многоступенчатого кодового замка с применением большого количества дополнительных компонентов.

В данной статье детально ознакомимся с микросхемой NE555, которая, несмотря на свой солидный возраст, по-прежнему остается востребована. Стоит отметить, что в первую очередь данная востребованность обусловлена применением ИМС в схемотехнике с использованием светодиодов.

Описание и область применения

NE555 является разработкой американской компании Signetics, специалисты которой в условиях экономического кризиса не сдались и смогли воплотить в жизнь труды Ганса Камензинда. Именно он в 1970 году сумел доказать важность своего изобретения, которое на тот момент не имело аналогов. ИМС NE555 имела высокую плотность монтажа при низкой себестоимости, чем заслужила особый статус.

Впоследствии её стали копировать конкурирующие производители из разных стран мира. Так появилась отечественная КР1006ВИ1, которая так и осталась уникальной в данном семействе. Дело в том, что в КР1006ВИ1 вход останова (6) имеет приоритет над входом запуска (2). В импортных аналогах других фирм такая особенность отсутствует. Данный факт следует учитывать при разработке схем с активным использованием двух входов.

Однако в большинстве случаев приоритеты не влияют на работу устройства. С целью снижения мощности потребления, ещё в 70-х годах прошлого века был налажен выпуск таймера КМОП-серии. В России микросхема на полевых транзисторах получила название КР1441ВИ1.

Наибольшее применение 555 таймер нашёл в построении схем генераторов и реле времени с возможностью задержки от микросекунд до нескольких часов. В более сложных устройствах он выполняет функции по исключению дребезга контактов, ШИМ, восстановлению цифрового сигнала и так далее.

Особенности и недостатки

Особенностью таймера является внутренний делитель напряжения, который задаёт фиксированный верхний и нижний порог срабатывания для двух компараторов. Ввиду того что делитель напряжения нельзя исключить, а пороговым напряжением нельзя управлять, область применения NE555 сужается.

Таймер на биполярных транзисторах имеет один существенный недостаток, связанный с переходом выходного каскада из одного состояния в противоположное. Каждое переключение сопровождается паразитным сквозным током, который в пике может достигать 400 мА, увеличивая тепловые потери. Решение проблемы заключается в установке полярного конденсатора ёмкостью до 0,1 мкФ между выводом управления (5) и общим проводом. Благодаря ему, повышается стабильность при запуске и надёжность всего устройства. Кроме того, для повышения помехоустойчивости цепь питания дополняют неполярным конденсатором 1 мкФ.

Таймеры, собранные на КМОП-транзисторах, лишены перечисленных недостатков и не нуждаются в монтаже внешних конденсаторов.

Основные параметры ИМС серии 555

Внутреннее устройство NE555 включает в себя пять функциональных узлов, которые можно видеть на логической диаграмме. На входе расположен резистивный делитель напряжения, который формирует два опорных напряжения для прецизионных компараторов. Выходные контакты компараторов поступают на следующий блок – RS-триггер с внешним выводом для сброса, а затем на усилитель мощности. Последним узлом является транзистор с открытым коллектором, который может выполнять несколько функций, в зависимости от поставленной задачи.

Рекомендуемое напряжение питания для ИМС типа NA, NE, SA лежит в интервале от 4,5 до 16 вольт, а для SE может достигать 18В. При этом ток потребления при минимальном Uпит равен 2–5 мА, при максимальном Uпит – 10–15 мА. Некоторые ИМС 555 КМОП-серии потребляют не более 1 мА. Наибольший выходной ток импортной микросхемы может достигать значения в 200 мА. Для КР1006ВИ1 он не выше 100 мА.

Качество сборки и производитель сильно влияют на условия эксплуатации таймера. Например, диапазон рабочих температур NE555 составляет от 0 до 70°C, а SE555 от -55 до +125°C, что важно знать при конструировании устройств для работы в открытой окружающей среде. Более детально ознакомиться с электрическими параметрами, узнать типовые значения напряжения и тока на входах CONT, RESET, THRES, и TRIG можно в datasheet на ИМС серии XX555.

Расположение и назначение выводов

NE555 и её аналоги преимущественно выпускаются в восьмивыводном корпусе типа PDIP8, TSSOP или SOIC. Расположение выводов независимо от корпуса – стандартное. Условное графическое обозначение таймера представляет собой прямоугольник с надписью G1 (для генератора одиночных импульсов) и GN (для мультивибраторов).

  1. Общий (GND). Первый вывод относительно ключа. Подключается к минусу питания устройства.
  2. Запуск (TRIG). Подача импульса низкого уровня на вход второго компаратора приводит к запуску и появлению на выходе сигнала высокого уровня, длительность которого зависит от номинала внешних элементов R и С. О возможных вариациях входного сигнала написано в разделе «Одновибратор».
  3. Выход (OUT). Высокий уровень выходного сигнала равен (Uпит-1,5В), а низкий – около 0,25В. Переключение занимает около 0,1 мкс.
  4. Сброс (RESET). Данный вход имеет наивысший приоритет и способен управлять работой таймера независимо от напряжения на остальных выводах. Для разрешения запуска необходимо, чтобы на нём присутствовал потенциал более 0,7 вольт. По этой причине его через резистор соединяют с питанием схемы. Появление импульса менее 0,7 вольт запрещает работу NE555.
  5. Контроль (CTRL). Как видно из внутреннего устройства ИМС он напрямую соединен с делителем напряжения и в отсутствие внешнего воздействия выдаёт 2/3 Uпит. Подавая на CTRL управляющий сигнал, можно получить на выходе модулированный сигнал. В простых схемах он подключается к внешнему конденсатору.
  6. Останов (THR). Является входом первого компаратора, появление на котором напряжения более 2/3Uпит останавливает работу триггера и переводит выход таймера в низкий уровень. При этом на выводе 2 должен отсутствовать запускающий сигнал, так как TRIG имеет приоритет перед THR (кроме КР1006ВИ1).
  7. Разряд (DIS). Соединен напрямую с внутренним транзистором, который включен по схеме с общим коллектором. Обычно к переходу коллектор-эмиттер подключают времязадающий конденсатор, который разряжается, пока транзистор находится в открытом состоянии. Реже используется для наращивания нагрузочной способности таймера.
  8. Питание (VCC). Подключается к плюсу источника питания 4,5–16В.

Режимы работы NE555

Таймер 555 серии работает в одном из трёх режимов, рассмотрим их более детально на примере микросхемы NE555.

Одновибратор

Принципиальная электрическая схема одновибратора приведена на рисунке. Для формирования одиночных импульсов, кроме микросхемы NE555, понадобится сопротивление и полярный конденсатор. Схема работает следующим образом. На вход таймера (2) подают одиночный импульс низкого уровня, который приводит к переключению микросхемы и появлению на выходе (3) высокого уровня сигнала. Продолжительность сигнала рассчитывается в секундах по формуле:

По истечении заданного времени (t) на выходе формируется сигнал низкого уровня (исходное состояние). По умолчанию вывод 4 объединен с выводом 8, то есть имеет высокий потенциал.

Во время разработки схем нужно учесть 2 нюанса:

  1. Напряжение источника питания не влияет на длительность импульсов. Чем больше напряжение питания, тем выше скорость заряда времязадающего конденсатора и тем больше амплитуда выходного сигнала.
  2. Дополнительный импульс, который можно подать на вход после основного, не повлияет на работу таймера, пока не истечет время t.

На работу генератора одиночных импульсов можно влиять извне двумя способами:

  • подать на Reset сигнал низкого уровня, который переведёт таймер в исходное состояние;
  • пока на вход 2 поступает сигнал низкого уровня, на выходе будет оставаться высокий потенциал.

Таким образом, с помощью одиночных сигналов на входе и параметров времязадающей цепочки можно получать на выходе импульсы прямоугольной формы с чётко заданной длительностью.

Мультивибратор

Мультивибратор представляет собой генератор периодических импульсов прямоугольной формы с заданной амплитудой, длительностью или частотой, в зависимости от поставленной задачи. Его отличие от одновибратора состоит в отсутствии внешнего возмущающего воздействия для нормального функционирования устройства. Принципиальная схема мультивибратора на базе NE555 показана на рисунке.

В формировании повторяющихся импульсов участвуют резисторы R1, R2 и конденсатор С1. Время импульса (t1), время паузы(t2), период (T) и частоту (f) рассчитывают по нижеприведенным формулам: Из данных формул несложно заметить, что время паузы не сможет превысить время импульса, то есть достичь скважности (S=T/t1) более 2 единиц не удастся. Для решения проблемы в схему добавляют диод, катод которого соединяют с выводом 6, а анод с выводом 7.

В datasheet на микросхемы часто оперируют величиной, обратной скважности — Duty cycle (D=1/S), которую отображают в процентах.

Схема работает следующим образом. В момент подачи питания конденсатор С1 разряжен, что переводит выход таймера в состояние высокого уровня. Затем С1 начинает заряжаться, набирая ёмкость до верхнего порогового значения 2/3 UПИТ. Достигнув порога ИМС переключается, и на выходе появляется низкий уровень сигнала. Начинается процесс разряда конденсатора (t1), который продолжается до нижнего порогового значения 1/3 UПИТ. По его достижении происходит обратное переключение, и на выходе таймера устанавливается высокий уровень сигнала. В результате схема переходит в автоколебательный режим.

Прецизионный триггер Шмитта с RS-триггером

Внутри таймера NE555 встроен двухпопроговый компаратор и RS-триггер, что позволяет реализовывать прецизионный триггер Шмитта с RS-триггером на аппаратном уровне. Входное напряжение делится компаратором на три части, при достижении каждой из которых происходит очередное переключение. При этом величина гистерезиса (обратного переключения) равна 1/3 UПИТ. Возможность применения NE555 в качестве прецизионного триггера востребована в построении систем автоматического регулирования.

3 наиболее популярные схемы на основе NE555

Одновибратор

Практический вариант схемы одновибратора на TTL NE555 приведен на рисунке. Схема питается однополярным напряжением от 5 до 15В. Времязадающими элементами здесь являются: резистор R1 – 200кОм-0,125Вт и электролитический конденсатор С1 – 4,7мкФ-16В. R2 поддерживает на входе высокий потенциал, пока некоторое внешнее устройство не сбросит его до низкого уровня (например, транзисторный ключ). Конденсатор С2 защищает схему от сквозных токов в моменты переключения.

Активизация одновибратора происходит в момент кратковременного замыкания на землю входного контакта. При этом на выходе формируется высокий уровень длительностью:

Таким образом, данная схема формирует задержку выходного сигнала относительно входного на 1 секунду.

Мигание светодиодом на мультивибраторе

Отталкиваясь от рассмотренной выше схемы мультивибратора можно собрать простую светодиодную мигалку. Для этого к выходу таймера последовательно с резистором подключают светодиод. Номинал резистора находят по формуле:

UВЫХ – амплитудное значение напряжения на выводе 3 таймера.

Количество подключаемых светодиодов зависит от типа применяемой микросхемы NE555, её нагрузочной способности (КМОП или ТТЛ). Если необходимо мигать светодиодом мощностью более 0,5 Вт, то схему дополняют транзистором, нагрузкой которого станет светодиод.

Реле времени

Схема регулируемого таймера (электронное реле времени) показана на рисунке. С её помощью можно вручную задавать длительность выходного сигнала от 1 до 25 секунд. Для этого последовательно с постоянным резистором в 10 кОм устанавливают переменный номиналом в 250 кОм. Ёмкость времязадающего конденсатора увеличивают до 100 мкФ.

Схема работает следующим образом. В исходном состоянии на выводе 2 присутствует высокий уровень (от источника питания), а на выводе 3 низкий уровень. Транзисторы VT1, VT2 закрыты. В момент подачи на базу VT1 положительного импульса по цепи (Vcc-R2-коллектор-эмиттер-общий провод) протекает ток. VT1 открывается и переводит NE555 в режим отсчета времени. Одновременно на выходе ИМС появляется положительный импульс, который открывает VT2. В результате ток эмиттера VT2 приводит к срабатыванию реле. Пользователь может в любой момент прервать выполнение задачи, кратковременно закоротив RESET на землю.

Транзисторы SS8050, приведенные на схеме, можно заменить на КТ3102.

Рассмотреть все популярные схемы на основе NE555 в одной статье невозможно. Для этого существуют целые сборники, в которых собраны практические наработки за всё время существования таймера. Надеемся, что приведенная информация послужит ориентиром во время сборки схем, в том числе нагрузкой которых служат светодиоды.

схема включения, характеристики, datasheet микросхемы NE555

При разработке электронных устройств часто возникает необходимость в формировании импульсов заданной длины или в генерации прямоугольного сигнала с заданной частотой и определенным соотношением длины к паузе. Опытному конструктору не составит труда спроектировать такое устройство на отдельных цифровых элементах, но удобнее использовать для этой цели специализированную микросхему.

Что из себя представляет микросхема NE555 и где её можно использовать

Микросхема NE555 разработана в 70-е годы прошлого столетия и по настоящее время пользуется огромной популярностью у профессионалов и любителей. Она представляет собой таймер, заключенный в корпус с 8 выводами. Выпускается в исполнении DIP или в различных вариантах для поверхностного монтажа (SMD).

Микросхема содержит два компаратора – верхний и нижний. На их входах сформировано опорное напряжение, равное 2/3 и 1/3 питающего напряжения. Делитель образован резисторами сопротивлением 5 кОм. Компараторы управляют RS-триггером. К его выходу подключены буферный усилитель и транзисторный ключ. У каждого компаратора свободен один вход, он служит для подачи внешних управляющих сигналов. Верхний компаратор срабатывает при появлении высокого уровня и переводит выход микросхемы в низкий уровень. Нижний «караулит» снижение напряжения ниже 1/3 VCC и устанавливает на выходе таймера логическую единицу.

Основные характеристики микросхемы NE555

Характеристики таймера у разных производителей могут отличаться в небольших пределах, но принципиальных отклонений нет ни у кого (кроме микросхем неизвестного происхождения, от них можно ждать чего угодно):

  • Напряжение питания стандартно указывается от +5 до +15 В, хотя в даташитах содержатся пределы 4,5…18 В.
  • Выходной ток составляет 200 мА.
  • Выходное напряжение – максимум VCC минус 1,6 В, но не менее 2 В при напряжении питания 5 В.
  • Потребляемый ток при 5 В не более 5 мА, при 15 В – до 13 мА.
  • Погрешность формирования длительности импульса – не более 2,25%.
  • Максимальная рабочая частота – 500 кГц.

Все параметры указаны для температуры окружающей среды +25 °С.

Расположение и назначение выводов

Выводы таймера расположены стандартно независимо от исполнения корпуса – по возрастанию от ключа против часовой стрелки (если смотреть сверху), от 1 до 8. Каждый вывод имеет своё назначение:

  1. GND – общий провод питания устройства.
  2. TRIG – при подаче низкого уровня запускает второй (нижний по схеме) компаратор, на его выходе появляется логическая единица, устанавливающая внутренний RS-триггер в 0. К нему подключается внешняя времязадающая RC-цепочка. Имеет приоритет перед THR.
  3. OUT – выход. Высокий уровень сигнала чуть ниже напряжения питания, низкий – 0,25 В.
  4. RESET – сброс. Независимо от сигналов на других входах, при наличии низкого уровня сбрасывает выход в 0 и запрещает работу таймера.
  5. CTRL – управление. На нём всегда присутствует уровень 2/3 напряжения шины питания. Сюда можно подать внешний сигнал и промодулировать им выход.
  6. THR – при появлении высокого уровня (более 2/3 питания) первый (верхний по схеме) триггер устанавливается в 1 и внутренний RS-триггер переходит в состояние логической единицы.
  7. DIS – разряд времязадающего конденсатора. При появлении на выходе триггера высокого уровня, внутренний транзистор открывается, происходит быстрый разряд. Таймер готов к следующему циклу работы.
  8. VCC – выход питания. На него можно подавать напряжение от 5 до 15 В.

Описание режимов работы микросхемы NE555

Хотя архитектура таймера позволяет использовать его в различных режимах, существует три типовых вида работы NE555.

Одновибратор (ждущий мультивибратор)

Исходное положение:

  • на входе 2 высокий логический уровень;
  • на входах R и S триггера – нули;
  • выход триггера – 1;
  • транзистор цепи разряда открыт, конденсатор С зашунтирован;
  • на выходе 3 — уровень 0.

При появлении на входе 2 нулевого уровня, нижний компаратор переключается в 1, перебрасывая триггер в 0. На выходе микросхемы появляется высокий уровень. Одновременно закрывается транзистор, переставая шунтировать конденсатор. Он начинает заряжаться через резистор R. Как только напряжение на нем достигнет 2/3 от VCC, сработает верхний компаратор, установит триггер обратно в 1, а выход таймера — в 0. Транзистор откроется и разрядит ёмкость. Так на выходе сформируется положительный импульс, начало которого определяется внешним сигналом на входе 2, а завершение зависит от времени заряда конденсатора, которое вычисляется по формуле t=1,1⋅R⋅C.

Мультивибратор

При подаче питания конденсатор разряжен, на входе 2 (и 6) логический 0, на выходе таймера 1 (этот процесс описан в предыдущем разделе). После заряда емкости через R1 и R2 до уровня 2/3 VCC высокий уровень на входе 6 перебросит выход 3 в ноль, а разряжающий транзистор откроется. Но разряжаться конденсатор будет не напрямую, а через R2. В итоге схема придет к исходному положению, и цикл повторится вновь и вновь. Из описания процесса видно, что время заряда определяется суммой сопротивлений R1, R2 и емкостью конденсатора, а время разряда задают R1 и С. Вместо R1 и R2 можно поставить переменные резисторы и оперативно управлять частотой и скважностью импульсов. Формулы для расчета:

  • длительность импульса t1=0,693⋅(R1+R2)⋅C;
  • длительность паузы t2=0,693⋅R2⋅C;
  • частота следования импульсов f=1/(0,693(R1+2⋅R2)⋅C.

Время паузы не может превысить время импульса. Чтобы обойти это ограничение, цепи разряда и заряда разделяют, включив в схему диод (катодом к выводу 6, анодом к выводу 7).

Триггер Шмитта

На микросхеме 555 можно построить триггер Шмитта. Это устройство преобразовывает медленно изменяющийся сигнал (синусоиду, пилу и т.п.) в прямоугольный. Здесь времязадающие цепи не используются, сигнал подается на входы 2 и 6, соединенные между собой. При достижении порога 2/3 VCC напряжение на выходе скачком переключается в 1, при снижении до уровня 1/3 также скачкообразно уменьшается до нуля. Зона неоднозначности составляет 1/3 напряжения питания.

Достоинства и недостатки

Главным достоинством микросхемы NE555 является простота применения – для построения схемы достаточно небольшой обвязки, хорошо поддающейся расчёту. При этом стоимость устройства невелика.

Основным минусом таймера является выраженная зависимость длительности импульсов от напряжения питания. Обусловлено это тем, что конденсатор в схеме одновибратора или мультивибратора заряжается через резистор (или через два), а верхний вывод резистора подсоединен к питающей шине. Ток через сопротивление формируется напряжением VCC – чем оно выше, тем больше ток, тем быстрее зарядится конденсатор, тем раньше сработает компаратор, тем короче будет формируемый временной интервал. По неизвестной причине этот момент отсутствует в технической документации, но хорошо знаком разработчикам.

Другой недостаток таймера состоит в том, что пороговые напряжения компараторов формируются внутренними делителями и регулировке не подлежат. Это сужает возможности применения NE555.

И ещё одна неприятная особенность. В связи с двухтактной схемой построения выходного каскада, в момент переключения (когда верхний транзистор уже открыт, а нижний еще не закрыт или наоборот) идет импульс сквозного тока. Его длительность невелика, но он приводит к дополнительному нагреву микросхемы и формирует помехи по цепям питания.

Какие существуют аналоги

За время существования таймера, разработано и выпущено большое количество клонов. Выпускаются они различными фирмами, но все содержат в названии цифры 555. Среди заводов, производящих аналог, есть как популярные производители электронных компонентов, так и неизвестные изготовители из Юго-Восточной Азии. Если первые обеспечивают задекларированные параметры, то от вторых не стоит ждать никаких гарантий. Отклонения от заявленных характеристик могут быть велики.

В СССР разработан аналогичный таймер КР1006ВИ1. Его функциональность полностью повторяет оригинал, с одним исключением: у него вывод 2 имеет приоритет над выводом 6 (а не наоборот, как у NE555). Это надо учитывать при разработке схем. И ещё один момент: индекс КР означает, что микросхема выпускается только в корпусе DIP8.

Примеры практического использования

Область практического применение таймера широка, в рамках данного обзора полностью раскрыть тему не получится. Но наиболее распространенные примеры разобрать стоит.

В режиме одновибратора на нескольких микросхемах можно построить кодовый замок с ограничением времени набора кода. Другой путь – использование в качестве сигнализатора достижения порогового уровня (освещенности, уровня наполнения ёмкости и т.д.) совместно с различными датчиками.

В режиме мультивибратора (астабильный режим) таймер находит широчайшее применение.  На нескольких таймерах можно построить переключатель гирлянд с раздельным регулированием частоты мигания, времени включения и времени паузы. Можно применять NE555 как основу для реле времени и формировать время включения потребителей от 1 до 25 секунд.  Можно построить метроном для музыканта. Это самый используемый режим микросхемы, и все способы применения описать невозможно.

В качестве триггера Шмитта таймер используется нечасто. Но в бистабильном режиме без частотозадающих элементов NE555 применяют в качестве подавителя дребезга контактов или двухкнопочного выключателя в режиме «старт-стоп». Фактически, используется только встроенный RS-триггер. Также известно о построении на базе таймера ШИМ-регулятора.

Существуют сборники схем, в которых описаны различные варианты применения таймера NE555. В них описаны тысячи способов использования микросхемы. Но пытливому уму конструктора и этого может оказаться недостаточно, и он найдет дополнительное, ещё нигде не описанное использование таймера. Возможности, заложенные разработчиками микросхемы, это позволяют.

Параметры 555. Микросхема таймер NE555 радиолюбительские конструкции

Электронные интегральные схемы — такая отрасль нашей науки и техники, возможности которой еще далеко не исчерпаны. Видимо, это и есть ростки того самого искусственного интеллекта, о котором так много уже сказано. Причем, если наш природный интеллект строится на элементах — нейронах — которые можно назвать электронно-химическими, то созданные руками человека интегральные схемы в природе не встречаются. Это чистое изобретение человеческого разума. Оно получено в результате долгой работы по совершенствованию самых обыкновенных электроприборов, которые понадобились людям сразу после открытия электричества — выключателей, резисторов, конденсаторов, полупроводниковых приборов. Совершенствование шло как в направлении усложнения схем, так и в стремлении уместить большое количество элементов на ограниченной площади или в ограниченном объеме. А также создать из все тех же схемных примитивов нечто универсальное, долгоиграющее и омниполезное.

Таймер NE555

История изобретения этого таймера показывает, что настоящие шедевры делаются не всегда в самые лучшие для изобретателей времена, и часто даже в совершенно не высокотехнологичных условиях. Ганс Камензинд в свои 33 года кроме служебных обязанностей имел мечту. Это не всегда бывает по вкусу начальству, и ему пришлось уволиться. Свой шедевр он придумал, сидя в гараже в 1971 году, а через год микросхема на восьми ножках бойко пошла в производство и продажу. Схема простая и, как оказалась, полезная. Быть может, не последнюю роль в удаче сыграло и название, которое толком и объяснить не могут: почему NE — от названия фирмы Signetics? Почему 555 — потому что им полюбилась пятерка? Таймер? — да, но не такой, как обычные. Те, что всегда только безостановочно тикают импульсами, а этот может выдать очень точный интервал времени, и не в каких-то привычных в импульсной технике микросекундах, а в достаточно ощутимом интервале: взять и включить лампочку на несколько секунд.

Схема, как часто и все гениальное, оказалась на стыке двух техник: импульсной и аналоговой.

Аналоговые — операционные усилители — усиливают сигнал до нужного стандарта (2 на входах (двухпороговый компаратор) и 1 на выходе). А в середине работает импульсный RS-триггер, который может как генерировать импульсы (мультивибратор), так и выдавать одиночный импульс заданной протяженности (одновибратор).

И все очень легко регулируется — практически, соотношением параметров двух резисторов и одной емкости, подключенных к микросхеме на входах, а также подачей других сигналов на входы.

Видимо, схема имеет какое-то неуловимо удачное соотношение простоты управления и простоты конструкции, что в сочетании с неожиданным многообразием работы элементов и придало ей популярности на протяжении стольких лет. Потому что перечисленные свойства, как следствие, выразились в совсем даже невысокой стоимости и в применимости в разных схемах — и ширпотребовских, и профессиональных. Они хороши для использования в детских игрушках, реле времени, кодовых замках, космических аппаратах. А ежегодные продажи исчисляются до сих пор миллиардами штук по всему миру. Причем за все время схема не претерпела практически никаких изменений. По какой причине слово «эволюция» под рисунком выше и взято в кавычки. Таймер 555 выпускают многие фирмы по всему миру. Известны и отечественные аналоги NE555 — микросхема КР1006ВИ1 и ее КМОП вариант КР1441ВИ1.

Функциональная схема и описание прибора

Функционально таймер состоит из 5 компонентов. Выводов у схемы больше, чем внутренних блоков, что и говорит о возможной гибкости включения в различные схемные решения с участием данной микросхемы.

Входной внутренний делитель напряжения задает опорные напряжения для двух компараторов — верхнего и нижнего. RS-триггер принимает их сигналы и формирует выходной сигнал, который отправляет на усилитель мощности. Еще имеется дополнительный транзистор с выведенным наружу коллектором, который используется для подключения внешней времязадающей цепочки.

Выводы схемы расположены одинаково, независимо от исполнения микросхемы

Описание выводов схемы

Приведенный ниже даташит содержит выводы и подаваемые на них сигналы, откуда становится немного понятной работа микросхемы. Хотя очень многое зависит от ее подключения.

  1. Земля –

Минусовой общий вывод питания

Плюсовой вывод питания – 8

  1. Запуск

Вход компаратора №2 (нижнего).

Сигнал низкого уровня – аналоговый или импульсный.

Таймер срабатывает на сигнал (аналоговый или импульсный) низкого уровня (порог – 1/3 Vпит)

На 3 выводе появляется выходной сигнал высокого уровня

  1. Выход

Выходной сигнал (высокий уровень) зависит от питания: Vпит – 1,7 В

Низкий уровень (нет сигнала) – примерно 0,25 В

Временная характеристика выходного сигнала определяется внешней времязадающей цепочкой, состоящей из резистора (или резисторов) и емкости.

  1. Сброс

Срабатывает по сигналу низкого уровня (≤ 0,7 В)

Немедленный сброс выходного сигнала

Входной сигнал не зависит от напряжения питания

  1. Контроль

Управление опорным напряжением компаратора №1

Величина напряжения управляет длительностью выходных импульсов (одновибратор) или их частотой (мультивибратор).

  1. Останов

Сбрасывающий сигнал высокого уровня – аналоговый или импульсный

  1. Разряд

Цепь разряда времязадающего конденсатора С

  1. Питание +

Плюсовой провод питания

Vпит = от 4,5 В до 18 В

Минусовой – 1

Применение: варианты подключения NE555 (или NE555 аналогов)

Одновибратор

Емкость С и резистор R задают длительность импульса t, выдаваемого схемой в ответ на сигнал по входу Input (вывод 2). Напряжение питания влияет не на длительность, а на амплитуду выходного сигнала. При выдаче импульса изменение входного сигнала схемой не воспринимается. Через время t схема выдает задний фронт выходного сигнала и возвращается в исходное состояние, после чего готова снова реагировать на входной сигнал. Таким образом, она может выделять информативные всплески (низкого уровня) на фоне помех, так как сигнал на входе в общем случае аналоговый. Может работать как антидребезговая схема.

Генератор импульсов (мультивибратор)

Мультивибратору не нужно подавать на вход никаких сигналов, он начинает работать сразу после включения питания.

Разряженный в начале конденсатор С задает на вход низкий уровень, отчего таймер срабатывает, выдавая на выход высокий потенциал. Его длительность определяется зарядкой конденсатора C через резисторы R1 и R2. Далее происходит разрядка C через R2 и вход 7, что и определяет длительность паузы на таймере. После этого все повторяется, и на выходе получаются импульсы заданной напряжением питания амплитуды и длительностями t 1 и t 2 , то есть частотой f

и скважностью S = T/t 1 . Скважность в данном простейшем подключении более 2 быть не может, так как время импульса t 1 всегда > времени паузы t 2 .

Продолжаем обзор таймера 555 . В данной статье рассмотрим примеры практического применения данной микросхемы. Теоретический обзор можно прочитать .

Пример №1 — Сигнализатор темноты.

Схема издает звуковой сигнал при наступлении темноты. Пока фоторезистор освещен, на выводе №4 установлен низкий уровень, а значит, NE555 находится в режиме сброса. Но как только освещение падает, сопротивление фоторезистора возрастает и на выводе №4 появляется высокий уровень и как следствие таймер запускается, издавая звуковой сигнал.

Пример №2 — Модуль сигнализации.

Схема представляет один из модулей автосигнализации, который подает сигнал при изменении угла наклона автомобиля. В качестве датчика применен ртутный выключатель. В исходном состоянии датчик не замкнут и на выходе NE555 установлен низкий уровень. При изменении угла наклона автомобиля ртутная капля замыкает контакты, и низкий уровень на выводе №2 запускает таймер.

В результате чего на выходе появляется высокий уровень, который управляет каким-либо исполнительным устройством. Даже после размыкания контактов датчика таймер все равно останется в активном состоянии. Отключить его можно, если остановить работу таймера, подав на вывод №4 низкий уровень. C1 — керамический конденсатор емкостью 0.1мкФ ().

Пример №3 — Метроном.

Метроном — устройство, используемое музыкантами. Он отсчитывает необходимый ритм, который может быть отрегулирован переменным резистором. Схема построена по схеме генератора прямоугольных импульсов. Частота метронома определяется RC-цепочкой.

Пример №4 — Таймер.


Таймер на 10 минут. Таймер включается путем нажатия на кнопку «Пуск», при этом загорается светодиод HL1. По прошествии выбранного временного интервала загорается светодиод HL2. Переменным резистором можно подстроить временной интервал.

Пример №5 — Триггер Шмитта на 555 таймере.


Это очень простая, но эффективная схема . Схема позволяет, подавая на вход зашумленный аналоговый сигнал, получить чистый прямоугольный сигнал на выходе

Каждый радиолюбитель не раз встречался с микросхемой NE555. Этот маленький восьминогий таймер завоевал колоссальную популярность за функциональность, практичность и простоту использования. На 555 таймере можно собрать схемы самого различного уровня сложности: от простого триггера Шмитта, с обвеской всего в пару элементов, до многоступенчатого кодового замка с применением большого количества дополнительных компонентов.

В данной статье детально ознакомимся с микросхемой NE555, которая, несмотря на свой солидный возраст, по-прежнему остается востребована. Стоит отметить, что в первую очередь данная востребованность обусловлена применением ИМС в схемотехнике с использованием светодиодов.

Описание и область применения

NE555 является разработкой американской компании Signetics, специалисты которой в условиях экономического кризиса не сдались и смогли воплотить в жизнь труды Ганса Камензинда. Именно он в 1970 году сумел доказать важность своего изобретения, которое на тот момент не имело аналогов. ИМС NE555 имела высокую плотность монтажа при низкой себестоимости, чем заслужила особый статус.

Впоследствии её стали копировать конкурирующие производители из разных стран мира. Так появилась отечественная КР1006ВИ1, которая так и осталась уникальной в данном семействе. Дело в том, что в КР1006ВИ1 вход останова (6) имеет приоритет над входом запуска (2). В импортных аналогах других фирм такая особенность отсутствует. Данный факт следует учитывать при разработке схем с активным использованием двух входов.

Однако в большинстве случаев приоритеты не влияют на работу устройства. С целью снижения мощности потребления, ещё в 70-х годах прошлого века был налажен выпуск таймера КМОП-серии. В России микросхема на полевых транзисторах получила название КР1441ВИ1.

Наибольшее применение 555 таймер нашёл в построении схем генераторов и реле времени с возможностью задержки от микросекунд до нескольких часов. В более сложных устройствах он выполняет функции по исключению дребезга контактов, ШИМ, восстановлению цифрового сигнала и так далее.

Особенности и недостатки

Особенностью таймера является внутренний делитель напряжения, который задаёт фиксированный верхний и нижний порог срабатывания для двух компараторов. Ввиду того что делитель напряжения нельзя исключить, а пороговым напряжением нельзя управлять, область применения NE555 сужается.

Таймеры, собранные на КМОП-транзисторах, лишены перечисленных недостатков и не нуждаются в монтаже внешних конденсаторов.

Основные параметры ИМС серии 555

Внутреннее устройство NE555 включает в себя пять функциональных узлов, которые можно видеть на логической диаграмме. На входе расположен резистивный делитель напряжения, который формирует два опорных напряжения для прецизионных компараторов. Выходные контакты компараторов поступают на следующий блок – RS-триггер с внешним выводом для сброса, а затем на усилитель мощности. Последним узлом является транзистор с открытым коллектором, который может выполнять несколько функций, в зависимости от поставленной задачи.

Рекомендуемое напряжение питания для ИМС типа NA, NE, SA лежит в интервале от 4,5 до 16 вольт, а для SE может достигать 18В. При этом ток потребления при минимальном Uпит равен 2–5 мА, при максимальном Uпит – 10–15 мА. Некоторые ИМС 555 КМОП-серии потребляют не более 1 мА. Наибольший выходной ток импортной микросхемы может достигать значения в 200 мА. Для КР1006ВИ1 он не выше 100 мА.

Качество сборки и производитель сильно влияют на условия эксплуатации таймера. Например, диапазон рабочих температур NE555 составляет от 0 до 70°C, а SE555 от -55 до +125°C, что важно знать при конструировании устройств для работы в открытой окружающей среде. Более детально ознакомиться с электрическими параметрами, узнать типовые значения напряжения и тока на входах CONT, RESET, THRES, и TRIG можно в datasheet на ИМС серии XX555.

Расположение и назначение выводов

NE555 и её аналоги преимущественно выпускаются в восьмивыводном корпусе типа PDIP8, TSSOP или SOIC. Расположение выводов независимо от корпуса – стандартное. Условное графическое обозначение таймера представляет собой прямоугольник с надписью G1 (для генератора одиночных импульсов) и GN (для мультивибраторов).

  1. Общий (GND). Первый вывод относительно ключа. Подключается к минусу питания устройства.
  2. Запуск (TRIG). Подача импульса низкого уровня на вход второго компаратора приводит к запуску и появлению на выходе сигнала высокого уровня, длительность которого зависит от номинала внешних элементов R и С. О возможных вариациях входного сигнала написано в разделе «Одновибратор».
  3. Выход (OUT). Высокий уровень выходного сигнала равен (Uпит-1,5В), а низкий – около 0,25В. Переключение занимает около 0,1 мкс.
  4. Сброс (RESET). Данный вход имеет наивысший приоритет и способен управлять работой таймера независимо от напряжения на остальных выводах. Для разрешения запуска необходимо, чтобы на нём присутствовал потенциал более 0,7 вольт. По этой причине его через резистор соединяют с питанием схемы. Появление импульса менее 0,7 вольт запрещает работу NE555.
  5. Контроль (CTRL). Как видно из внутреннего устройства ИМС он напрямую соединен с делителем напряжения и в отсутствие внешнего воздействия выдаёт 2/3 Uпит. Подавая на CTRL управляющий сигнал, можно получить на выходе модулированный сигнал. В простых схемах он подключается к внешнему конденсатору.
  6. Останов (THR). Является входом первого компаратора, появление на котором напряжения более 2/3Uпит останавливает работу триггера и переводит выход таймера в низкий уровень. При этом на выводе 2 должен отсутствовать запускающий сигнал, так как TRIG имеет приоритет перед THR (кроме КР1006ВИ1).
  7. Разряд (DIS). Соединен напрямую с внутренним транзистором, который включен по схеме с общим коллектором. Обычно к переходу коллектор-эмиттер подключают времязадающий конденсатор, который разряжается, пока транзистор находится в открытом состоянии. Реже используется для наращивания нагрузочной способности таймера.
  8. Питание (VCC). Подключается к плюсу источника питания 4,5–16В.

Режимы работы NE555

Таймер 555 серии работает в одном из трёх режимов, рассмотрим их более детально на примере микросхемы NE555.

Одновибратор

Принципиальная электрическая схема одновибратора приведена на рисунке. Для формирования одиночных импульсов, кроме микросхемы NE555, понадобится сопротивление и полярный конденсатор. Схема работает следующим образом. На вход таймера (2) подают одиночный импульс низкого уровня, который приводит к переключению микросхемы и появлению на выходе (3) высокого уровня сигнала. Продолжительность сигнала рассчитывается в секундах по формуле:

По истечении заданного времени (t) на выходе формируется сигнал низкого уровня (исходное состояние). По умолчанию вывод 4 объединен с выводом 8, то есть имеет высокий потенциал.

Во время разработки схем нужно учесть 2 нюанса:

  1. Напряжение источника питания не влияет на длительность импульсов. Чем больше напряжение питания, тем выше скорость заряда времязадающего конденсатора и тем больше амплитуда выходного сигнала.
  2. Дополнительный импульс, который можно подать на вход после основного, не повлияет на работу таймера, пока не истечет время t.

На работу генератора одиночных импульсов можно влиять извне двумя способами:

  • подать на Reset сигнал низкого уровня, который переведёт таймер в исходное состояние;
  • пока на вход 2 поступает сигнал низкого уровня, на выходе будет оставаться высокий потенциал.

Таким образом, с помощью одиночных сигналов на входе и параметров времязадающей цепочки можно получать на выходе импульсы прямоугольной формы с чётко заданной длительностью.

Мультивибратор

Мультивибратор представляет собой генератор периодических импульсов прямоугольной формы с заданной амплитудой, длительностью или частотой, в зависимости от поставленной задачи. Его отличие от одновибратора состоит в отсутствии внешнего возмущающего воздействия для нормального функционирования устройства. Принципиальная схема мультивибратора на базе NE555 показана на рисунке.

В формировании повторяющихся импульсов участвуют резисторы R 1 , R 2 и конденсатор С 1 . Время импульса (t 1), время паузы(t 2), период (T) и частоту (f) рассчитывают по нижеприведенным формулам: Из данных формул несложно заметить, что время паузы не сможет превысить время импульса, то есть достичь скважности (S=T/t 1) более 2 единиц не удастся. Для решения проблемы в схему добавляют диод, катод которого соединяют с выводом 6, а анод с выводом 7.

В datasheet на микросхемы часто оперируют величиной, обратной скважности — Duty cycle (D=1/S), которую отображают в процентах.

Схема работает следующим образом. В момент подачи питания конденсатор С 1 разряжен, что переводит выход таймера в состояние высокого уровня. Затем С 1 начинает заряжаться, набирая ёмкость до верхнего порогового значения 2/3 U ПИТ. Достигнув порога ИМС переключается, и на выходе появляется низкий уровень сигнала. Начинается процесс разряда конденсатора (t 1), который продолжается до нижнего порогового значения 1/3 U ПИТ. По его достижении происходит обратное переключение, и на выходе таймера устанавливается высокий уровень сигнала. В результате схема переходит в автоколебательный режим.

Прецизионный триггер Шмитта с RS-триггером

Внутри таймера NE555 встроен двухпопроговый компаратор и RS-триггер, что позволяет реализовывать прецизионный триггер Шмитта с RS-триггером на аппаратном уровне. Входное напряжение делится компаратором на три части, при достижении каждой из которых происходит очередное переключение. При этом величина гистерезиса (обратного переключения) равна 1/3 U ПИТ. Возможность применения NE555 в качестве прецизионного триггера востребована в построении систем автоматического регулирования.

3 наиболее популярные схемы на основе NE555

Одновибратор

Практический вариант схемы одновибратора на TTL NE555 приведен на рисунке. Схема питается однополярным напряжением от 5 до 15В. Времязадающими элементами здесь являются: резистор R 1 – 200кОм-0,125Вт и электролитический конденсатор С 1 – 4,7мкФ-16В. R 2 поддерживает на входе высокий потенциал, пока некоторое внешнее устройство не сбросит его до низкого уровня (например, транзисторный ключ). Конденсатор С 2 защищает схему от сквозных токов в моменты переключения.

Активизация одновибратора происходит в момент кратковременного замыкания на землю входного контакта. При этом на выходе формируется высокий уровень длительностью:

t=1,1*R 1 *C 1 =1,1*200000*0,0000047=1,03 c.

Таким образом, данная схема формирует задержку выходного сигнала относительно входного на 1 секунду.

Мигание светодиодом на мультивибраторе

Отталкиваясь от рассмотренной выше схемы мультивибратора можно собрать простую светодиодную мигалку. Для этого к выходу таймера последовательно с резистором подключают светодиод. Номинал резистора находят по формуле:

R=(U ВЫХ -U LED)/I LED ,

U ВЫХ – амплитудное значение напряжения на выводе 3 таймера.

Количество подключаемых светодиодов зависит от типа применяемой микросхемы NE555, её нагрузочной способности (КМОП или ТТЛ). Если необходимо мигать светодиодом мощностью более 0,5 Вт, то схему дополняют транзистором, нагрузкой которого станет светодиод.

Реле времени

Схема регулируемого таймера (электронное реле времени) показана на рисунке.
С её помощью можно вручную задавать длительность выходного сигнала от 1 до 25 секунд. Для этого последовательно с постоянным резистором в 10 кОм устанавливают переменный номиналом в 250 кОм. Ёмкость времязадающего конденсатора увеличивают до 100 мкФ.

Схема работает следующим образом. В исходном состоянии на выводе 2 присутствует высокий уровень (от источника питания), а на выводе 3 низкий уровень. Транзисторы VT1, VT2 закрыты. В момент подачи на базу VT1 положительного импульса по цепи (Vcc-R2-коллектор-эмиттер-общий провод) протекает ток. VT1 открывается и переводит NE555 в режим отсчета времени. Одновременно на выходе ИМС появляется положительный импульс, который открывает VT2. В результате ток эмиттера VT2 приводит к срабатыванию реле. Пользователь может в любой момент прервать выполнение задачи, кратковременно закоротив RESET на землю.

Транзисторы SS8050, приведенные на схеме, можно заменить на КТ3102.

Рассмотреть все популярные схемы на основе NE555 в одной статье невозможно. Для этого существуют целые сборники, в которых собраны практические наработки за всё время существования таймера. Надеемся, что приведенная информация послужит ориентиром во время сборки схем, в том числе нагрузкой которых служат светодиоды.

Читайте так же

Микросхема NE555 представляет собой аналоговую интегральную схему, являющуюся универсальным таймером, то есть устройством, предназначенным для формирования (генерирования) одиночных или повторяющихся импульсов со стабильными характеристиками во времени. Микросхема NE555 широко применима в технологиях построения реле времени, генераторов, модуляторов, пороговых устройств и других функциональных узлов электронной техники. На основании данной микросхемы были построены устройства широтно-импульсного регулирования, приборы восстановления искаженного цифрового сигнала, импульсные преобразователи напряжения и др.
Микросхема впервые была выпущена в 1971 году компанией Signetics. Сдвоенная версия NE555 производится с обозначением 556, а счетверенная — 558.

Топология микросхемы NE555 состоит из 2 диодов, 23 транзисторов и 16 резисторов. Выходной ток микросхемы равен 200 мА , в то время как ток ее потребления всего на 3 мА больше. Питается микросхема напряжением в диапазоне от 4,5 до 18 вольт . Однако, на точность таймера NE555, изменение напряжения питания не влияет. Погрешность составляет всего около 1% от расчетного значения.

Блок-схема микросхемы NE555

Назначение выводов микросхемы NE555

№ вывода

Обозначение

Альтер-
нативное
обозначение

Назначение

Описание

Общий провод, минус питания

В том случае, если напряжение на этом выходе достигает уровня ниже 1/2 от CTRL, на выходе микросхемы (вывод 3) появляется напряжение высокого уровня и начинается отсчёт времени.

Q или без
обозначения

На этом выводе формируется одно из двух напряжений, примерно соответствующих низкому уровню — 0.25В и высокому уровню V CC — 1,7В, в зависимости от состояния таймера. Время переключения с одного уровня на другой происходит примерно за 100 нс.

Сброс (разрешение запуска)

При подаче на этот вход напряжения менее 0,7 В выход микросхемы принудительно переходит в состояние низкого уровня (переключается на GND). Это происходит независимо от состояния других входов, то есть данный вход имеет наивысший приоритет. Другими словами, высокий уровень напряжения на данном входе (более 0,7 В) разрешает запуск таймера, в противном случае запуск запрещён.

Управление (контроль делителя)

Подключен напрямую к внутреннему делителю напряжения. При отсутствии внешнего сигнала имеет напряжение 2/3 от V CC. Определяет пороги останова и запуска.

Когда напряжение на этом выводе превышает напряжение на выводе CTRL, на выходе устанавливается напряжение низкого уровня, интервал заканчивается. Останов возможен, если на вход TRIG не поступает сигнал запуска, так как вход TRIG имеет приоритет над THR (исключение — микросхема КР1006ВИ1).

? или ¤

Выход типа «открытый коллектор», обычно используется для разрядки времязадающего конденсатора между интервалами. Состояния этого выхода повторяют состояния основного выхода OUT, поэтому возможно их параллельное соединение для увеличения нагрузочной способности таймера по втекающему току.

Плюс питания.

Режимы работы микросхемы NE555

Моностабильный генератор


Входной сигнал низкого уровня на входе INPUT (вывод 2) производит переключение таймера микросхемы в режим отсчёта времени, при этом на выходе микросхемы (OUTPUT – вывод 3) наблюдается высокий уровень сигнала. Данное положение таймера длится заданный промежуток времени, который равен t=1,1*R*C . Далее таймер возвращается в стабильное состояние, определяющее низкий уровень сигнала на выходе микросхемы (OUTPUT – вывод 3).

Астабильный генератор

Напряжение на выходе микросхемы (OUTPUT – вывод 3) периодически изменяется. Таким образом, на выходе микросхемы наблюдается сигнал в виде меандра, который может быть описан следующими уравнениями:
Длительность высокого уровня: t1 = ln2*(R1+R2)*C = 0,693*(R1+R2)*C
Длительность низкого уровня: t2=ln2*R2*C2 = 0,693*R2*C2
Период: T=ln2*(R1+2*R2)*C = 0,693*(R1+2*R2)*C
Частота: f=1/(ln2*(R1+2*R2)*C)

Эта статья посвящена микросхеме, сохраняющей популярность уже более 30 лет и имеющей множество клонов. Встречайте — таймер NE555 (он же — LM555, LC555, SE555, HA555, а также
множество других, есть даже советский аналог — КР1006ВИ1). Такую популярность этой микросхеме обеспечили простота, дешивизна, широкий диапазон напряжений питания (4,5-18В), высокая точность и стабильность (температурный дрейф 0,005% / o С, дрейф от напряжения питания — менее 0,1% / Вольт), ну и конечно же, самое главное, — широчайшие возможности применения.

Но, обо всём по порядку. Начнём мы с того, как эта микросхема устроена.

Итак, функциональная схема таймера показана на рисунке 1.

Ноги :

1. GND — земля/общий провод.

2. Trigger — инвертирующий вход компаратора, ответственного за установку триггера. Когда напряжение на этой ноге становится меньше 1/3 Vcc (то есть меньше, чем напряжение на неинвертирующем входе компаратора) — на вход SET триггера поступает логическая 1. Если при этом отсутствуют сигналы сброса на входах Reset, то триггер установится (на его выходе появится логический 0, так как выход инвертированный).

3. Output — выход таймера. На этом выводе присутствует инвертированный сигнал с выхода триггера, то есть когда триггер взведён (на его выходе ноль) — на выводе Output высокий уровень, когда триггер сброшен — на этом выводе низкий уровень.

4. Reset — сброс. Если этот вход подтянуть к низкому уровню, триггер сбрасывается (на его выходе устанавливается 1, а на выходе таймера низкий уровень).

5. Control — контроль/управление. Этот вывод позволяет изменять порог срабатывания компаратора, управляющего сбросом триггера. Если вывод 5 не задействован, то этот порог определяется внутренним делителем напряжения на резисторах и равен 2/3 Vcc. Вывод Control можно использовать, например, для организации обратной связи по току или напряжению (об этом я позднее расскажу).

6. Threshold — порог. Когда напряжение на этом выводе становится выше порогового (которое при незадействованном выводе 5, как вы помните, равно 2/3 Vcc) — происходит сброс триггера и на выходе таймера устанавливается низкий уровень.

7. Discharge — разряд. На этом выходе 555-й таймер имеет транзистор с открытым коллектором. Когда триггер сброшен — этот транзистор открыт и на выходе 7 присутствует низкий уровень, когда триггер установлен — транзистор закрыт и вывод 7 находится в Z-состоянии. (Почему эта нога называется «разряд» вы скоро поймёте.)

8. Vcc — напряжение питания.

Далее, давайте рассмотрим, в чём же основная идея использования этого таймера. Для этого добавим к нашей схеме пару элементов внешней обвязки (смотрим рисунок 2). 4-ю и 5-ю ноги мы пока не будем использовать, поэтому будем считать, что 4-я нога у нас гвоздём прибита к напряжению питания, а 5-я просто болтается в воздухе (с ней и так ничего не будет).

Итак, пусть изначально у нас на второй ноге присутствует высокий уровень. После включения наш триггер сброшен, на выходе триггера высокий уровень, на выходе таймера низкий уровень, на 7-й ноге тоже низкий уровень (транзистор внутри микрухи открыт).

Чтобы произошло переключение триггера — необходимо подать на вторую ногу уровень ниже 1/3 Vcc (тогда переключится компаратор и сформирует высокий уровень на входе Set нашего триггера). Пока уровень на 2-й ноге остаётся выше 1/3 Vcc — наш таймер находится в стабильном состоянии и никаких переключений не происходит.

Ну что ж, — давайте кратковременно подадим на 2-ю ногу низкий уровень (на землю её коротнём, да и всё) и посмотрим что будет происходить.

Как только уровень на 2-й ноге упадёт ниже 1/3 Vcc — у нас сработает компаратор, подключенный к устанавливающему входу триггера (S), что, соответственно, вызовет установку триггера.

На выходе триггера появится ноль (поскольку выход триггера инвертирован), при этом на выходе таймера (3-я нога) установится высокий уровень. Кроме этого транзистор на 7-й ноге закроется и 7-я нога перейдёт в Z-состояние.

При этом через резистор Rt начнёт заряжаться конденсатор Ct (поскольку он больше не замкнут на землю через 7-ю ногу микрухи).

Как только уровень на 6-й ноге поднимется выше 2/3 Vcc — сработает компаратор, подключенный ко входу R2 нашего триггера, что приведёт к сбросу триггера и возврату схемы в первоначальное состояние.

Вот мы и рассмотрели работу схемы, называемой одновибратором или моностабильным мультивибратором, короче говоря, устройства, формирующего единичный импульс.

Как нам теперь узнать длительность этого импульса? Очень просто, — для этого достаточно посчитать, за какое время конденсатор Ct зарядится от 0 до 2/3 Vcc через резистор Rt от постоянного напряжения Vcc.

Сначала решим эту задачку в общем виде. Пусть у нас конденсатор заряжается через резистор R напряжением Vп от начального уровня U 0 .

Ir2130 datasheet на русском – ПК портал

На чтение 8 мин Просмотров 68 Опубликовано

Драйвер 3-фазного моста

Отличительные особенности:

  • Выходные каналы разработаны для нагруженного функционирования
    Работает в приложениях с выходным напряжением до +600В
    Допускает отрицательное переходное напряжение
    Стойкость к скорости изменения напряжения (dV/dt)
  • Управляющее напряжение на затворах от 10 до 20 В
  • Блокировка всех каналов при снижении напряжения
  • Выключение всех 6 драйверов при токовой перегрузке
  • Раздельные полумостовые драйверы
  • Согласованное время распространения сигналов по всем каналам
  • Выходы работают в противофазе с входами
  • Защита от сквозных токов
  • Краткая характеристика:
  • Макс. напряжение смещения VOFFSET 600В
  • Выходной ток к.з IO± 200 мА / 420 мА
  • Напряжение питания VOUT 10 – 20В
  • Время вкл./откл. 675/425 нс
  • Длительность паузы
    2.5 мкс (IR2130)
    0.8 мкс (IR2132)

Типовая схема включения IR2130/IR2132:

Расположение выводов IR2130/IR2132:

HIN1,2,3 Логические входы для задания в противофазе выходов драйверов верхнего уровня (HO1,2,3)
LIN1,2,3 Логические входы для задания в противофазе выходов драйверов нижнего уровня (LO1,2,3)
FAULT Индицирует о блокировки при перегрузке по току или снижении напряжения (нижний уровень)
VCC Питание логики и драйвера нижнего уровня
ITRIP Вход для выключения по токовой перегрузке
CAO Выход усилителя токового сигнала
CA- Инвертирующий вход усилителя токового сигнала
VSS Общий
VB1,2,3 Питание верхнего уровня
HO1,2,3 Выходы драйверов верхнего уровня
VS1,2,3 Возврат питания верхнего уровня
LO1,2,3 Выходы драйверов нижнего уровня
VS0 Возврат питания нижнего уровня и неинвертирующий усилителя токового сигнала

IR2130/IR2132 – высоковольтный, высокоскоростной драйвер МОП-транзисторов и IGBT-транзисторов с раздельными выходными каналами управления ключами верхнего и нижнего уровней. Собственная HVIC-технология позволяет укрепить монолитную конструкцию.

Логические входы совместимы с 5В КМОП или LSTTL выходами. Связанный с общим проводом операционный усилитель обеспечивает обратную связь по току моста через внешний измерительный резистор. Функция прерывания тока, действующая на все 6 выходов также использует сигнал с этого резистора с последующим делением напряжения. Сигнал с открытым стоком FAULT индицирует о выключении из-за перегрузки по току или снижения напряжения.

Выходные драйверы отличаются большим импульсным током буферного каскада, что сделано для минимизации поперечной проводимости драйверов. Времена распространения сигналов согласованы для упрощения использования при высоких частотах. Выходные каналы могут быть использованы для управления N-канальными МОП-транзисторами или IGBT-транзисторами, в т.ч. используемых как ключи верхнего уровня с рабочим напряжением до 600В.

В области силовых приборов “законодателями» являются фирмы INTERNATIONAL RECTIFIER – сокращенно IR и MITSUBISHI Electric – сокращенно ME, а также INFENION Technologies – IT.

Я привожу наименование фирм-изготовителей для того, чтобы пользователи могли ориентироваться при выборе элементов. Так как, в основном, только эти фирмы занимаются разработкой элементной базы для силовых приводов.

Данная статья поможет многим радиолюбителям применить современные силовые электронные приборы для управления 3-х фазными электродвигателями в однофазной сети.

Схема

На рис. 1 приведена схема электрическая принципиальная электронного привода электродвигателя. Устройство работает следующим образом.

Рис. 1. Схема управления трехфазными двигателями с помощью силовой электроники в однофазной сети.

Задающий генератор DD1 серии NE555 вырабатывает импульсы частотой 360 Гц, поступающие на вывод 9 DD2 (счетный вход) 55БТМ8 (аналог 74175N – четыре D-триггера). В микросхеме используются три D-тригг*ра в качестве схемы, сдвига.

То есть, с их прямых и инверсных выходов выходит трехфазное напряжение управления частотой 60 Гц, которое подается на соответствующие входы микросхемы DA3 IR2130S.

Чтобы электронный привод работал на различных частотах, нужно резистор R2 номиналом 100 кОм заменить на цепочку из постоянного 62 кОм и переменного 56 кОм резисторов.

Микросхема DA3 IR2130S представляет собой шестиканальный высоковольтный драйвер (схема управления) управления выходными ключами фирмы IR. При нажатии на кнопку S1 “Пуск» драйвер управляет как верхними ключами, так и нижними.

Транзисторы VТ1, VТ2, VТ3 – верхние ключи, соответственно VТ4, VТ5, VТ6 – нижние ключи. Питание схемы осуществляется таким образом.

Трансформатор Т1 понижает напряжение сети до 18 В, которое выпрямляется мостом VDS2 и фильтруется конденсаторами С3, С6. Выпрямленное напряжение поступает на стабилизатор DA2 7815.

С выхода DA2 напряжение +15 В служит для питания микросхемы DA3 IR2130. Напряжение +15 В понижается стабилизатором DA1 7805 (КРЕН5) до 5 В, необходимого для питания микросхем DD1, DD2.

Рис. 2. Схема генератора на микросхеме.

Рис. 3. Установка дополнительного резистора.

Рис. 4. Схема драйвера.

Внимание! Минусовой провод на схеме показан как “общЕго ни в коем случае нельзя соединять с корпусом прибора. Он должен быть надежно изолирован от корпуса. Сам корпус привода и электродвигатель должны быть надежно заземлены.

При работе с устройством надо соблюдать осторожность, чтобы избежать поражения электрическим током!

Детали

Мост VDS1 должен быть рассчитан на прямой ток 20. 25 А и обратное напряжение 400 В. Данные параметры зависят от мощности используемого двигателя. Я рассчитывал на мощность 1.5. 2 кВт.

Подходящим является мост КВРС2504 – Іпр. = 25 А и LJo6p. = 400 В. Примененный мост можно, конечно, заменить отечественными мощными диодами, установив их на радиатор, но опять же габариты схемы увеличатся.

Мост VDS2 рассчитан на Uo6p. = 400 В и Іпр.=1 А, например, КЦ405. Диоды VD1, VD2, VD3 должны быть быстродействующими, с ІІобр. не менее 400 В, например, 11DF4 или 10DF6.

Резисторы R6, R8, R10, R12, R13, R14 номиналом 100 Ом, R7, R9. R11 – номиналом 47 Ом. Защитные диоды VD4. VD9 – быстродействующие, с ІІобр. не менее 400 В и выдерживающие прямой импульсный ток более 30 А, например, MUR680.

Но можно обойтись и без защитных диодов – для этого нужно применить выходные ключи VТ1 . VТб с защитными диодами, встроенными в корпуса транзисторов.

Особое внимание следует обратить на выходные ключи VТ1 . VТ6 – это транзисторы технологии IGBT – по входу полевой транзистор, т.е. затвор, а по выходу коллектор и эмиттер – это в первом приближении.

То есть IGBT – это смесь полевой и биполярной технологии. Такие транзисторы производят фирмы Infineon: BUP311D, BUP313D, Harris: HGTh30N40C1D, IR: IRG8C30D, IRGBC2GD с защитными (обратны* ми) диодами.

Рис, 5. Схема силового привода с использованием модуля фирмы MITSUBISHI SEMICONDUCTOR PS11036.

Все резисторы на схеме мощностью 0,25 Вт, кроме R15 – проволочный (падение напряжения на кем должно быть не более 0,5 В). Суммарная емкость конденсаторов после выпрямления сетевого напряжения должна быть около 1000 мкФ при нагрузке 2 кВт и более.

На схеме указаны номиналы С7 и С8 по 330 мкФ для случая нагрузки 1,5 кВт. Конденсаторы СЮ, С11, С12 номиналом 0,1 мкФ обязательно должны быть с малыми диэлектрическими потерями и термостабильными, рассчитанными на напряжение 50 В.

Трансформатор Т1 – мощностью не более 10 Вт. Если возникли трудности с приобретением DD1 NE555, ее можно заменить мультивибратором, собрав на отечественной 555-й серии.

Схема такого генератора показана на рис. 2. Тактовая частота будет определяться формулой:

Такой генератор будет работать в диапазоне 45 Гц . 25 кГц. Если такой широкий диапазон генерирования не нужен, то вместо переменного резистора R1 номиналом в 510 Ом нужно установить цепочку из резистора номиналом 100 Ом и 470 Ом (рис.

3). Выходные ключи VТ1. VТ6 обязательно надо установить на теплоотвод через электроизоляционные теплопроводные прокладки (подойдет слюда от больших конденсаторов), иначе у конструктора возникнут трудности с теплоотводом и электроизоляцией.

Фирма JR об этом позаботилась и разработала силовые модули в широком ассортименте. В частности для однофазной сети были разработаны модули типов IRPT2060A на мощность нагрузки 2,2 кВт и IRPT2064A на мощность нагрузки 1,5 кВт (рис. 4).

В модуле, кроме силовых ключей, еще установлены силовой мост, токоизмерительные шунты (выводы IS1, IS2 и IS3, IS4) для IRPT2060A номиналом по 25 мОм (для IRPT2064A – номиналом по 45 мОм), терморезистор (выводы RT1 и RT2), имеющий значение 50 кОм ±5% при температуре модуля 25°С и 3,1 кОм при температуре 100°С для обоих модулей. В модуле еще установлен ключ (выводы BR и N). Он такой же мощный, как и шесть ключей, и предназначен для аварийного отключения модуля.

Я не стал с ним экспериментировать. Все ключи изолированы от корпуса модуля так, что отпадает проблема надежной теплоизоляции, хотя и в этом случае она не помешает при длительной работе модуля.

На рис. 5 приведена схема силового привода с использованием модуля фирмы MITSUBISHI SEMICONDUCTOR PS11036 мощностью 2,2 кВт. Эта схема самая простая в управлении.

Правда, модули такого типа для однофазной сети я не смог найти. Но ведь можно включит и таким образом, как показано на схеме. Вывод FO – выход сигнала об аварии.

Вывод Vamp – напряжение, усиленное в 10 раз с токового резистора нагрузки. Диапазон изменения напряжения на выходе Vamp составляет 0. 5 В.

К нему можно подключить, например, вольтметр и измерять косвенно ток в нагрузке. Еще хочу напомнить, что на схеме минусовый провод показан как общий, но его ни в коем случае нельзя соединять с корпусом устройства.

В. Хрипченко. пос. Октябрьский Белгородской обл. РМ-07-17.

Даташит поиск по электронным компонентам в формате pdf на русском языке. Бесплатная база содержит более 1 000 000 файлов доступных для скачивания. Воспользуйтесь приведенной ниже формой или ссылками для быстрого поиска (datasheet) по алфавиту.Если вы не нашли нужного Вам элемента, обратитесь к администрации проекта .

NE555 Технический паспорт (PDF) — Wing Shing Computer Components

Деталь № Описание Html View Производитель
SC1437 Точность Напряжение Детектор С Программируемый Триггер Напряжение & Таймер Задерживать 1 2 3 4 5 Более Корпорация Семтех
CAT24C321 надзорный Схемы с I2C Серийный КМОП Э2ПРОМ Точность Перезагрузить Контроллер и Сторожевая собака Таймер 1 2 3 4 5 Более Катализатор Полупроводник
CAT24C323 надзорный Схемы с I2C Серийный КМОП Э2ПРОМ Точность Перезагрузить Контроллер и Сторожевая собака Таймер 1 2 3 4 5 Более Катализатор Полупроводник
S93WD662 Точность Напряжение питания Монитор и Перезагрузить Контроллер С а Сторожевая собака Таймер и 4k-бит Микропровод объем памяти 1 2 3 4 5 Более Саммит Микроэлектроникс, Инк.
CAT25CXXX надзорный Схемы с СПИ Серийный Э2ПРОМ Точность Перезагрузить Контроллер и Сторожевая собака Таймер 1 2 3 4 5 Более Катализатор Полупроводник
HA17555 Точность Таймер 1 2 3 4 5 Более Хитачи Полупроводник
ALD4501 КВАДРО ТОЧНОСТЬ ВЫСОКО СКОРОСТЬ МИКРОЭНЕРГИЯ ТАЙМЕР 1 2 3 4 Расширенные линейные устройства
CAT93CXXXX надзорный Схемы с Микропровод Серийный КМОП Э2ПРОМ Точность Перезагрузить Контроллер и Сторожевая собака Таймер 1 2 3 4 5 Более Катализатор Полупроводник
S93WD462 Точность Напряжение питания Монитор и Перезагрузить Контроллер С а Сторожевая собака Таймер и 1кбит Микропровод объем памяти 1 2 3 4 5 Более Саммит Микроэлектроникс, Инк.
CAT1163 надзорный Схема с I2C Серийный КМОП ЭСППЗУ Точность Перезагрузить Контроллер и Сторожевая собака Таймер 1 2 3 4 5 Более Катализатор Полупроводник

NE555 Datenblatt(PDF) — Harris Corporation

Teilenummer Bauteilbeschribung Html View Hersteller
CA555 Таймеры за Сроки Задержки и Осциллятор Приложения в Коммерческий промышленный и Военный Оборудование 1 2 3 4 5 Более Корпорация Интерсил
CA2904 ДВОЙНОЙ 1 МГц ЭКСПЛУАТАЦИОННЫЙ УСИЛИТЕЛИ ЗА КОММЕРЧЕСКИЙ ПРОМЫШЛЕННЫЙ И ВОЕННЫЙ ЗАЯВЛЕНИЕ 1 2 3 4 5 Более Корпорация Харрис
CA3020 8 МГц Власть Ампер За Военный промышленный и Коммерческий Оборудование 1 2 3 4 5 Более Корпорация Интерсил
CA3141 Высокое напряжение Диод Множество За Коммерческий промышленный и Военный Приложения 1 2 3 4 Корпорация Интерсил
CA741 0.9МГц Одинокий и Двойной Высоко Прирост Оперативный Усилители за Военный промышленный и Коммерческий Приложения 1 2 3 4 5 Более Корпорация Интерсил
CA124 Четырехместный 1 МГц Оперативный Усилители за Коммерческий промышленный и Военный Приложения 1 2 3 4 5 Более Корпорация Интерсил
CA139 Четырехместный Напряжение Компараторы за промышленный Коммерческий и Военный Приложения 1 2 3 4 5 Более Корпорация Интерсил
CA158 Двойной 1 МГц Оперативный Усилители за Коммерческий промышленный и Военный Приложения 1 2 3 4 5 Более Корпорация Интерсил
CA3028A Дифференциал/Каскод Усилитель за Коммерческий и промышленный Оборудование от ОКРУГ КОЛУМБИЯ к 120 МГц 1 2 3 4 5 Более Корпорация Интерсил
ACS8520 Синхронный Оборудование Сроки Источник за Слой 3/4Е/4 и СМС Системы 1 2 3 4 5 Более Корпорация Семтех Интегральная схема

— Замена NE555 на 74HC123D

Таблица данных 74HC123 / 74HCT123 здесь потребляет максимум 8 мкА при Vcc = 5.5В при 25С. Это для самой ИС — к этому добавляется ток в времязадающем резисторе.

Вариант с меньшим током состоит в том, чтобы построить генератор на одном триггерном вентиле Шмитта. Ток питания обычно составляет 0,02 мкА, а временные компоненты добавляют, возможно, ~= 0,5. uA — меньше, если соблюдать осторожность.

При 5 В a CD40106 (шестнадцатеричный инвертор Schmiit потребляет 0,02 мкА тип., 1 мкА макс. при 25°C.
См. спецификацию для других условий.

При использовании резистора обратной связи 10 МОм и конденсатора емкостью около 2 нФ генератор с одним затвором будет потреблять дополнительный 0.5 мкА или менее для управления конденсатором. Заземлите другие входы затвора и оставьте выходы открытыми.

Icap равен i = V/R = (Vhigh — Vschmitt low)/10M, когда конденсатор начинает заряжаться, и падает до ((Vhigh — Vschmitt high)/10M непосредственно перед переключением затвора. Поскольку нижний и верхний пороги находятся в порядка Vcc/3 и 2.Vcc/3 зарядный ток резистора 10 МОм должен варьироваться примерно от 2/3 x Vcc/10 МОм до 1/3 x Vcc/10 МОм при зарядке или разрядке конденсатора.

Можно использовать резистор номиналом больше 10 МОм, если уделено должное внимание путям утечки и чистоте окружающей среды.

Внутренние токи затвора могут изменяться при экспоненциальном переходе Vin = Vcap между низким и высоким состояниями, и это не полностью отражено в технических характеристиках. Для подтверждения потребляемого тока потребуются эксперименты (или моделирование), но они могут оказаться низкими.

имитация этой схемы — схема создана с помощью CircuitLab

____________________________________________________________

насколько он стабилен при изменении температуры при использовании на улице?

При температуре ровно 25 градусов по Цельсию абсолютно устойчив к температуре.

Если у вас есть более подробная информация о том, чего вы хотите достичь, укажите ее в своем вопросе. Иначе мы будем ходить по кругу и… по кругу и терять ваше и наше время.

Какие параметры стабильности вам нужны?
Каков ожидаемый диапазон температур?

Дальше вы спросите «а как же колебания напряжения», и влажности, и…. ? Изменение резистора и конденсатора в зависимости от температуры может иметь значение.
Изменение порога устройства в зависимости от температуры МОЖЕТ быть указано в спецификации — вы проверяли?
Мы можем попытаться помочь, но очень важно знать, чего вы хотите.

NE555: все об этом многофункциональном чипе

Интегральная схема 555 — одна из самых известных микросхем, которые вы найдете среди электронных компонентов. Он может поставляться в различных формах, таких как NE555 , NE555C, LMC555, TLC555, uA555, MC1455, LM555 и т. д. Причина того, что он является одним из самых популярных, заключается в его универсальности и количестве приложений, для которых он может использоваться. использоваться, как вы можете видеть здесь.

В этом руководстве вы узнаете все, что вам нужно об этой микросхеме , а также как ее использовать в ваших будущих проектах, рекомендации по дешевой покупке и т.д.

Что такое NE555?

NE555, или просто 555, представляет собой ИС, используемую для генерации импульсов, колебаний или в качестве таймера . Поэтому его можно использовать в качестве генератора, для генерации задержек и т.д. Обычно его можно найти в различных корпусах, хотя наиболее распространенным является 8-контактный DIP (есть 14-контактные варианты), хотя он может быть и в в круглом металлическом корпусе и даже в SMD для поверхностного монтажа.

Также можно найти версии NE555 с малым потреблением, и даже двойные версии .В этих двойных версиях внутри включены 2 идентичные схемы с вдвое большим количеством контактов, которые обычно обозначаются как 556.

С технической точки зрения, эта схема должна постоянно питаться напряжением Vcc, а выходной ток может иметь достаточно высокую силу тока, чтобы быть интегральной схемой. Фактически, эта микросхема может даже напрямую управлять реле и другими цепями с высоким потреблением энергии без необходимости использования дополнительных компонентов. Но для работы (управления) требуется минимальное количество внешних компонентов.

Многие зададутся вопросом, что такое , что внутри этой интегральной схемы . Внутри NE555, как видно на предыдущем изображении, есть блок-схема с двумя операционными усилителями, установленными в качестве компараторов, бистабильной схемой типа RS, использующей его отрицательный выход, инвертирующим выходным буфером для поддержки этого выходного тока и транзистор, используемый для разрядки внешнего конденсатора для синхронизации.

С другой стороны есть еще 3 внутренних резистора, отвечающих за установку опорных уровней входа инвертора первого рабочего, а в неинвертирующего второго, на 2/3 и 1/3 напряжения Vcc соответственно.Ссылаясь на пороговое напряжение клеммы 6, когда оно превышает 2/3 напряжения питания или Vcc, то выход переходит на высокий логический уровень (1) и подается на вход R бистабильного, поэтому инвертируется выход переходит в 1, насыщая транзистор и запуская разрядку внешнего конденсатора. Одновременно выход 555 станет низким (0).

En другой операционный усилитель , если напряжение, подаваемое на инвертирующий вход, упадет ниже 1/3 от Vcc, выход усилителя перейдет на высокий уровень (1), таким образом питая бистабильный вход S, передавая его выход на низкий уровень уровень (0), отключив транзистор и заставив выход NE555 перейти в состояние высокого логического уровня (1).

Наконец, имеется также клемма сброса на контакте 4, подключенная к входу R1 бистабильного триггера. Когда на этом выводе активируется низкий логический уровень (0), он может возвращать выход NE555 на низкий уровень (0) в любое время, когда требуется сброс.

NE555 Технические характеристики

Технические характеристики NE555 , хотя они могут различаться в зависимости от версии и производителя, чаще всего вы найдете:

  • Vcc или входное напряжение: 4.от 5 до 15В (есть версии до 2В). Те, что на 5 В, совместимы с семейством логики TTL.
  • Входной ток (Vcc +5 В): 3–6 мА
  • Входной ток (Vcc 5 В): 10–15 мА
  • Максимальный выходной ток: 500 мА
  • Максимальная рассеиваемая мощность: 600 мА
  • Минимальная потребляемая мощность: 30 мВт при 5 В и 225 мВт при 15 В
  • Диапазон рабочих температур: от 0°C до 70°C. Стабильность частоты составляет 0,005% на ºC.

Распиновка NE555

NE555 в наиболее распространенном корпусе имеет 8 контактов. распиновка :

  • GND(1) : это отрицательный полюс источника питания, который обычно заземляется.
  • Выстрел или триггер (2) : Этот контакт устанавливает начало времени задержки, если он сконфигурирован как моностабильный. Когда на этот вывод подается менее 1/3 напряжения питания, произойдет срабатывание триггера.
  • Выход или выход (3) : место получения результата таймера, будь то в стабильном режиме, моностабильном и т. д.
  • Перезагрузка или сброс (4) : Если оно опустится ниже 0,7 В, на выходном контакте будет низкий уровень. Если этот вывод не используется, его следует подключить к источнику питания, чтобы предотвратить сброс таймера.
  • Контроль или управление напряжением (5) : Когда NE555 находится в режиме регулятора напряжения, напряжение на этом выводе будет варьироваться от Vcc до почти 0 В. Таким образом, можно изменить время, или его также можно сконфигурировать для генерации линейных импульсов.
  • Порог или порог (6) : входной контакт для внутреннего компаратора, используемый для понижения выходного сигнала.
  • Загрузка или разрядка (7) : Используется для эффективной разрядки внешнего конденсатора, используемого для синхронизации.
  • В постоянного тока (8) : это напряжение питания, клемма, на которую микросхема подается с напряжением в диапазоне от 4,5 В до 16 В.

Всегда помните, что читайте спецификацию производителя , так как между различными продуктами 555 могут быть различия. Кроме того, убедитесь, что вы используете чип правильно, отметив, что выемка на передней панели обращена вверх, чтобы соответствовать этой распиновке.

История 555

Схема 555 или NE555 была разработана Гансом Р. Камензиндом в 1971 году . Я тогда работал в Signetics (в настоящее время принадлежит NXP Semiconductors). У Ганса уже был опыт в проектах такого типа, ранее он проектировал усилители с широтно-импульсной модуляцией (ШИМ) для аудиоаппаратуры, его также интересовали PLL и т. д.

Камензинд предложил Signetics разработать мировую схему на основе PLL и попросил руководство компании разработать ее самостоятельно, используя ресурсы компании в обмен на сокращение его зарплаты вдвое.Менеджер по маркетингу компании принял предложение, несмотря на то, что другие коллеги по компании утверждали, что функциональность будущего 555 может быть заменена другими существующими чипами.

Проект примет нумерацию 5xx, присвоенную аналоговым микросхемам . И, наконец, будет выбран номер 555. Первая конструкция была пересмотрена в 1971 году, и, хотя ошибок не было, она имела 9 контактов. Камензинду пришла в голову идея использовать прямой резистор вместо источника постоянного тока и уменьшить количество выводов до 8.

Функциональный дизайн с 8 контактами должен был пройти второй обзор дизайна , и прототип был наконец представлен в октябре 1971 года. Один из инженеров Signetics, присутствовавший на первом обзоре, основал другую компанию и сделал свою собственную 9-контактную версию. . Тем временем Signetics начала производство и продажу NE555, как только смогла. В 1972 году она производилась 12 компаниями и стала одной из самых продаваемых схем.

NE555 Применение

Между приложениями NE555 и есть таймеры или точные таймеры.Хотя изначально он был представлен как прецизионная схема задержки, вскоре он нашел бесчисленное множество применений, например, в качестве нестабильного генератора, линейного генератора, последовательного таймера и т. д. Таким образом, он стал одним из наиболее часто используемых чипов даже сегодня.

555 конфигураций

Конфигурации NE555 состоят из ряда конденсаторов и резисторов, подключенных к их контактам. Таким образом, вы можете изменить время или режимы работы этой микросхемы. Вот некоторые из наиболее распространенных настроек:

  • Моностабильная конфигурация : в этом случае на выходе NE555 изначально будет 0 (низкий уровень), а транзистор будет насыщаться, препятствуя зарядке конденсатора C1.Если кнопка нажата, на триггерную клемму подается низкое напряжение, что приводит к изменению состояния триггера и переходу выхода в 1 (высокий уровень). В этом случае внутренний транзистор перестает проводить ток, и конденсатор С1 заряжается через внешний резистор R1. Когда напряжение конденсатора превышает 2/3 напряжения питания (Vcc), бистабильный меняет свое состояние и выход возвращается к 0,

  • Нестабильный : в этой другой конфигурации, когда он подключен к источнику питания, конденсатор разряжается, а на выходе NE555 появляется высокий уровень (1), пока конденсатор не достигнет 2/3 Vcc при нагрузке.В этот момент триггер RS меняет уровень, и выход 555 становится равным 0 или низкому уровню. В этот момент конденсатор С1 (или С на изображении) начинает разряжаться через резистор R2 и, когда он достигает 1/3 напряжения питания, снова начинает заряжаться и так далее, пока поддерживается питание.

В случае использования конденсатора, для зарядки которого требуется то же время, что и для разряда, может быть получена нестабильная симметричная волновая конфигурация.

  • Конфигурация для сброса : если вы хотите сбросить цепь, вы можете подключить клемму сброса непосредственно к положительному полюсу или поддерживать высокий уровень с помощью резистора.Когда кнопка, показанная на следующей диаграмме, нажата, NE555 будет иметь выходной сигнал, равный 0, когда это необходимо. Это похоже на перезапуск таймера или перевод его в спящий режим.

  • Широтно-импульсная модуляция (ШИМ) : сигнал переменного уровня может быть подан на управляющий вход NE555, вызывая увеличение ширины выходного импульса по мере увеличения уровня этого напряжения. Импульс также может поступать с большей или меньшей задержкой по мере увеличения или уменьшения напряжения, подаваемого на управляющий вход.

 

Где недорого купить NE555

Вы можете найти его во многих специализированных магазинах электроники, хотя его также легко найти на Amazon по хорошим ценам. Некоторые примеров рекомендуемых продуктов :


Utsource является дистрибьютором NE555 Texas Instruments, 12+, купить Дарлингтон, Конденсатор, найти микросхемы, электронные компоненты, диоды, транзисторы, датчики, IGBT, микросхемы.

Введите этот модуль:

ИС таймера 555 была представлена ​​в 1970 году компанией Signetic Corporation и получила название таймер NE 555.Он находится в одном 8-контактном разъеме. Помимо применения в качестве моностабильного мультивибратора и стабильного мультивибратора, преобразователей постоянного тока в постоянный, цифровых логических пробников, генераторов сигналов, измерения аналоговых частотомеров, контроля температуры, регуляторов напряжения и т. д. Из модуля:

Особенности : :

● Возможности высокого тока (200 мА)

● Регулируемый рабочий цикл

● Устойчивость температуры 0.005% / ℃

● Сроки от μSEC в часы

● Отключить время меньше, чем 2 мксек

Как он использует на работе:

Внутренняя блок-диаграмма:

Схема контактов NE555 Соединения:

●   Контакт 1 – Заземление (GND) Этот контакт подключается к заземлению цепи.

●   Контакт 2 – Триггер (TRI) Активный низкий триггерный вход, который запускает таймер.

●   Контакт 3 — Выход (O/P) Выходной контакт таймера.

●   Контакт 4 – Сброс (RES) Низкое напряжение (менее 0,7 В) на контакте сброса приведет к тому, что выходной контакт станет низким. Этот вход должен оставаться подключенным к источнику питания, когда он не используется.

●   Контакт 5 – Управляющее напряжение (CON):     При необходимости используется для регулировки порогового напряжения. Его следует оставить отключенным, если функция не требуется. Конденсатор 0,01 мкФ на землю можно использовать в цепях с электрическими шумами.

●   Контакт 6 —  Порог (TRE) Как в стабильном, так и в моностабильном режиме напряжение на времязадающем конденсаторе контролируется через вход Threshold. Когда напряжение на этом входе превысит пороговое значение, выход изменится с 1 на 0.

●   Контакт 7  – Разрядка (DIS) Выходной контакт, который используется для разрядки времязадающего конденсатора.

●   Контакт 8  – Напряжение питания (VCC) Положительная клемма напряжения питания. Диапазон напряжения питания обычно составляет от +5В до +15В.

русский %20ic спецификация и примечания по применению

русский

Реферат: антенна eutelsat ku 507 ku 490
Текст: нет доступного текста файла


OCR-сканирование
PDF
2007 — 72 х 135

Резюме: нет абстрактного текста
Текст: ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ ВРЕМЯ ДО ОТКЛЮЧЕНИЯ АМПЕР ПРИ 20°C УДЕРЖАНИЕ 1,35 АМПЕР ПРИ 20°C УДЕРЖАНИЕ ОТКЛЮЧЕНИЕ 1,35 2,70 ОМ ПРИ 20°C МИН МАКС 0.12 0,19 СЕКУНД ПРИ 20°C, 6,75A МАКС. 9,6 Распознавание, OHMS ПРИ 20°C МАКС. 0,30 В СОСТОЯНИИ СРАБАТЫВАНИЯ ПОТРЕБЛЯЕМАЯ МОЩНОСТЬ ВТ ПРИ 20°C НОМИНАЛЬНАЯ 1,7 ВАТТ ПРИ 20°C МАКС. 2,51 UL, CSA V Эта спецификация имеет приоритет над документами


Оригинал
PDF RXEF135-1 SCD26864 ПС300 900 частей на миллион, 1500 частей на миллион. 72 х 135
2005 г. — недоступно

Резюме: нет абстрактного текста
Текст: ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ ВРЕМЯ ДО ОТКЛЮЧЕНИЯ АМПЕР ПРИ 20°C ВЫДЕРЖАНИЕ 1.10 АМПЕР ПРИ 20°C HOLD TRIP 1.10 2.20 ОМ ПРИ 20°C МИН. МАКС. 0.15 0.25 СЕКУНД ПРИ 20°C, 5.5A МАКС. ПРИ 20°C НОМИНАЛЬНАЯ 1,5 ВАТТ ПРИ 20°C МАКС. 2,50 UL, CSA, TUV PS300 Эта спецификация имеет приоритет


Оригинал
PDF RXEF110 SCD25223 ПС300 900 частей на миллион, 1500 частей на миллион.
2005 г. — недоступно

Резюме: нет абстрактного текста
Текст: ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ ВРЕМЯ ДО ОТКЛЮЧЕНИЯ, АМПЕРЫ ПРИ Удержании 20°C 3.0 AMPER ПРИ 20°C HOLD TRIP 3.0 6.0 ОМ ПРИ 20°C МИН. MAX 0.04 0.06 СЕКУНД ПРИ 20°C, 15.0A МАКС. ПРИ 20°C НОМИНАЛЬНАЯ 2,8 ВАТТ ПРИ 20°C МАКС. 3,49 UL, CSA, TUV PS300 Эта спецификация имеет приоритет


Оригинал
PDF RXEF300 SCD25228 ПС300 900 частей на миллион, 1500 частей на миллион.
2005 г. — недоступно

Резюме: нет абстрактного текста
Текст: ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ ВРЕМЯ ДО ОТКЛЮЧЕНИЯ АМПЕР ПРИ 20°C УДЕРЖАНИЕ 0.10 АМПЕР ПРИ 20°C HOLD TRIP 0.10 0.20 ОМ ПРИ 20°C МИН. МАКС. 2.50 4.50 СЕКУНД ПРИ 20°C, 0.5A МАКС. ПРИ 20°C НОМИНАЛЬНАЯ 0,38 ВАТТ ПРИ 20°C МАКС. 0,53 UL, CSA, TUV PS300 Эта спецификация имеет приоритет


Оригинал
PDF RXEF010S SCD26387 ПС300 900 частей на миллион, 1500 частей на миллион.
2008 — к185

Резюме: нет абстрактного текста
Текст: ОТКЛЮЧЕНИЕ АМПЕР ПРИ 20°C УДЕРЖАНИЕ 1.85 АМПЕР ПРИ 20°C HOLD TRIP 1,85 3,70 ОМ ПРИ 20°C МИН. МАКС. 0,06 0,152 СЕКУНД ПРИ 20°C, 9,25A МАКС. °C НОМИНАЛЬНЫЙ 2,6 UL, TUV, CSA


Оригинал
PDF РКЭФ185 SCD26920 ПС300 900 частей на миллион, 1500 частей на миллион. к185
2004 — Недоступно

Резюме: нет абстрактного текста
Текст: ЗНАЧЕНИЯ В АМПЕРАХ ПРИ 20°C УДЕРЖАНИЕ 1.10 АМПЕР ПРИ 20°C HOLD TRIP 1.10 2.20 ОМ ПРИ 20°C, 0.05 МАКС. 0.095 СОПРОТИВЛЕНИЕ ПОСЛЕ ОТКЛЮЧЕНИЯ ЗА ОДИН ЧАС СТАНДАРТНОЕ ОТКЛЮЧЕНИЕ ОМ ПРИ 20°C МАКС. ‚°C ВАТТ ПРИ 20°C


Оригинал
PDF РУСБФ110 SCD25243 16 В постоянного тока ПС300 900 частей на миллион, 1500 частей на миллион.
2008 г. — недоступно

Резюме: нет абстрактного текста
Текст: ОТКЛЮЧЕНИЕ АМП ПРИ 20°C УДЕРЖАНИЕ 0.50 АМПЕР ПРИ 20°C HOLD TRIP 0,50 1,0 ОМ ПРИ 20°C МИН. МАКС. 0,32 0,529 СЕКУНД ПРИ 20°C, 8 A МАКС. 0,8 °C НОМИНАЛЬНЫЙ 1,0 UL, TUV, CSA


Оригинал
PDF РКЭФ050 SCD26918 ПС300 900 частей на миллион, 1500 частей на миллион.
2005 г. — недоступно

Резюме: нет абстрактного текста
Текст: НАЧАЛЬНЫЕ ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ ВРЕМЯ ДО ОТКЛЮЧЕНИЯ AMPS ПРИ ВЫДЕРЖКЕ 20°C 1.2 AMPS ПРИ 20°C HOLD TRIP 1,2 2,3 ОМ ПРИ 20°C МИН. МАКС. 0,074 0,120 СЕКУНД ПРИ 20°C, 6,0A МАКС. 3,5 R1 МАКС. 1 ЧАС. СОПРОТИВЛЕНИЕ ПОСЛЕ ОТКЛЮЧЕНИЯ СТАНДАРТНОЕ ВРЕМЯ ОТКЛЮЧЕНИЯ ПРИ 20°C МАКС. 0,180 ПОТРЕБЛЯЕМАЯ МОЩНОСТЬ В СОСТОЯНИИ ПРИ 20°C МАКС. 0,78 * Указанные значения были определены с использованием печатных плат 0,050 x 1 унция


Оригинал
PDF РТЭФ120 SCD25188 D04822 ТФ120 ПС300
2008 г. — недоступно

Резюме: нет абстрактного текста
Текст: ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ ВРЕМЯ ДО ОТКЛЮЧЕНИЯ АМПЕР ПРИ 20°C ВЫДЕРЖАНИЕ 1.60 АМПЕР ПРИ 20°C HOLD TRIP 1.60 3.20 ОМ ПРИ 20°C МИН. МАКС. 0.09 0.14 СЕКУНД ПРИ 20°C, 8.0A МАКС. ПРИ 20°C НОМИНАЛЬНАЯ 1,9 ВАТТ ПРИ 20°C МАКС. 2,85 UL, CSA, TUV PS300 Эта спецификация имеет приоритет


Оригинал
PDF RXEF160K SCD27291 ПС300 900 частей на миллион, 1500 частей на миллион.
2005 г. — недоступно

Резюме: нет абстрактного текста
Текст: ПАРАМЕТРЫ НАЧАЛЬНЫЕ ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ ВРЕМЯ ДО ОТКЛЮЧЕНИЯ АМПЕР ПРИ 20°C ВЫДЕРЖАНИЕ 0.25 АМПЕР ПРИ 20°C HOLD TRIP 0,25 0,50 ОМ ПРИ 20°C МИН. МАКС. 1,25 1,95 СЕКУНД ПРИ 20°C, 1,25A, ЧАС РАССЕЯННАЯ МОЩНОСТЬ ПРИ 20°C НОМИНАЛЬНАЯ 0,45 ВАТТ ПРИ 20°C МАКС. 0,62 UL, CSA, TUV PS300 Это


Оригинал
PDF RXEF025 SCD25216 ПС300 900 частей на миллион, 1500 частей на миллион.
2005 г. — недоступно

Резюме: нет абстрактного текста
Текст: ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ ВРЕМЯ ДО ОТКЛЮЧЕНИЯ, АМПЕРЫ ПРИ Удержании 20°C 3.0 AMPER ПРИ 20°C HOLD TRIP 3.0 6.0 ОМ ПРИ 20°C МИН. MAX 0.04 0.06 СЕКУНД ПРИ 20°C, 15.0A МАКС. ПРИ 20°C НОМИНАЛЬНАЯ 2,8 ВАТТ ПРИ 20°C МАКС. 3,49 UL, CSA, TUV PS300 Эта спецификация имеет приоритет


Оригинал
PDF RXEF300K SCD26451 ПС300 900 частей на миллион, 1500 частей на миллион.
2005 г. — недоступно

Резюме: нет абстрактного текста
Текст: ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ ВРЕМЯ ДО ОТКЛЮЧЕНИЯ АМПЕР ПРИ 20°C УДЕРЖАНИЕ 0.30 АМПЕР ПРИ 20°C HOLD TRIP 0.30 0.60 ОМ ПРИ 20°C МИН. МАКС. 0.88 1.33 СЕКУНД ПРИ 20°C, 1.5A МАКС. ПРИ 20°C НОМИНАЛЬНАЯ 0,49 ВАТТ ПРИ 20°C МАКС. 0,77 UL, CSA, TUV PS300 Эта спецификация имеет приоритет


Оригинал
PDF RXEF030S SCD26114 ПС300 900 частей на миллион, 1500 частей на миллион.
2006 — Недоступно

Резюме: нет абстрактного текста
Текст: НАЧАЛЬНЫЕ ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ ВРЕМЯ ДО ОТКЛЮЧЕНИЯ АМПЕР ПРИ 20°C ВЫДЕРЖАНИЕ 0.50 АМПЕР ПРИ 20°C УДЕРЖАНИЕ ОТКЛЮЧЕНИЕ 0,50 1,00 ОМ ПРИ 20°C МИН. МАКС. 0,50 0,77 СЕКУНД ПРИ 20°C, 2,5A МАКС. 4,0, СОПРОТИВЛЕНИЕ СТАНДАРТНОЕ ОТКЛ. ПРИ 20°C, Соответствует ROHS WATTS ПРИ 20°C МАКС. 1,29 ELV Соответствует Без свинца Без галогенов* HF


Оригинал
PDF RXEF050S SCD26367 ПС300 900 частей на миллион, 1500 частей на миллион.
2005 г. — недоступно

Резюме: нет абстрактного текста
Текст: ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ ВРЕМЯ ДО ОТКЛЮЧЕНИЯ АМПЕР ПРИ 20°C ВЫДЕРЖАНИЕ 1.85 АМПЕР ПРИ 20°C HOLD TRIP 1.85 3.70 ОМ ПРИ 20°C МИН. МАКС. 0.08 0.12 СЕКУНД ПРИ 20°C, 9.25A МАКС. ПРИ 20°C НОМИНАЛЬНАЯ 2,1 ВАТТ ПРИ 20°C МАКС. 3,04 UL, CSA, TUV PS300 Эта спецификация имеет приоритет


Оригинал
PDF RXEF185 ПС300 900 частей на миллион, 1500 частей на миллион.
2008 г. — недоступно

Резюме: нет абстрактного текста
Текст: ВРЕМЯ ОТКЛЮЧЕНИЯ АМПЕР ПРИ 20°C УДЕРЖАНИЕ 0.65 АМПЕР ПРИ 20°C HOLD TRIP 0,65 1,30 ОМ ПРИ 20°C МИН. МАКС. 0,25 0,35 СЕКУНД ПРИ 20°C, 8 A МАКС. 1,0 °C НОМИНАЛЬНЫЙ 1,25 UL, TUV, CSA


Оригинал
PDF РКЭФ065 SCD26925 ПС300 900 частей на миллион, 1500 частей на миллион
2006 — Недоступно

Резюме: нет абстрактного текста
Текст: ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ ВРЕМЯ ДО ОТКЛЮЧЕНИЯ, АМПЕРЫ ПРИ Удержании 20°C 3.75 АМПЕР ПРИ 20°C HOLD TRIP 3.75 7.50 ОМ ПРИ 20°C МИН. МАКС. 0.03 0.05 СЕКУНД ПРИ 20°C, 18.75A МАКС. ‚°C НОМИНАЛЬНАЯ 3,2 ВАТТ ПРИ 20°C МАКС. 4,5 UL, CSA, TUV PS300 Эта спецификация имеет приоритет над документами


Оригинал
PDF RXEF375K SCD26757 ПС300 900 частей на миллион, 1500 частей на миллион.
2005 г. — недоступно

Резюме: нет абстрактного текста
Текст: ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ ВРЕМЯ ДО ОТКЛЮЧЕНИЯ АМПЕР ПРИ 20°C ВЫДЕРЖАНИЕ 1.35 АМПЕР ПРИ 20°C HOLD TRIP 1.35 2.70 ОМ ПРИ 20°C МИН. МАКС. 0.12 0.19 СЕКУНД ПРИ 20°C, 6.75A МАКС. ПРИ 20°C НОМИНАЛЬНАЯ 1,7 ВАТТ ПРИ 20°C МАКС. 2,51 UL, CSA, TUV PS300 Эта спецификация имеет приоритет


Оригинал
PDF RXEF135K SCD25699 ПС300 900 частей на миллион, 1500 частей на миллион.
2006 — Недоступно

Резюме: нет абстрактного текста
Текст: НАЧАЛЬНЫЕ ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ ВРЕМЯ ДО ОТКЛЮЧЕНИЯ АМПЕР ПРИ 20°C ВЫДЕРЖАНИЕ 0.50 АМПЕР ПРИ 20°C УДЕРЖАНИЕ ОТКЛЮЧЕНИЕ 0,50 1,00 ОМ ПРИ 20°C МИН. МАКС. 0,50 0,77 СЕКУНД ПРИ 20°C, 2,5A МАКС. 4,0, СОПРОТИВЛЕНИЕ СТАНДАРТНОЕ ОТКЛ. ПРИ 20°C, Соответствует ROHS WATTS ПРИ 20°C МАКС. 1,29 ELV Соответствует Без свинца Без галогенов* HF


Оригинал
PDF RXEF050-1 SCD26552 ПС300 900 частей на миллион, 1500 частей на миллион.
2008 г. — недоступно

Резюме: нет абстрактного текста
Текст: ОТКЛЮЧЕНИЕ АМП ПРИ 20°C УДЕРЖАНИЕ 0.75 АМПЕР ПРИ 20°C HOLD TRIP 0,75 1,50 ОМ ПРИ 20°C МИН. МАКС. 0,20 0,39 СЕКУНД ПРИ 20°C, 8 A МАКС. 1,5 СТАНДАРТНОЕ ОТКЛЮЧЕНИЕ, ОМ ПРИ 20°C МАКС. 0,64 СОСТОЯНИЕ В РАБОТЕ ПОТРЕБЛЯЕМАЯ МОЩНОСТЬ, ВАТТ ПРИ 20°C, НОМИНАЛЬНАЯ 1,4 UL, TUV, CSA PS300 Это


Оригинал
PDF РКЭФ075 SCD26926 ПС300 900 частей на миллион, 1500 частей на миллион.
2008 г. — недоступно

Резюме: нет абстрактного текста
Текст: АМПЕРЫ ПРИ 20°C УДЕРЖАНИЕ 2.50 АМПЕР ПРИ 20°C HOLD TRIP 2,50 5,00 ОМ ПРИ 20°C МИН. МАКС. 0,04 0,085 СЕКУНД ПРИ 20°C, 12,5A МАКС. СТАНДАРТНОЕ ОТКЛЮЧЕНИЕ, ОМ ПРИ 20°C МАКС. 0,14 В СОСТОЯНИИ РАБОТЫ ПОТРЕБЛЯЕМАЯ МОЩНОСТЬ, ВАТТ ПРИ 20°C, НОМИНАЛЬНАЯ 2,8 UL, TUV, CSA PS300 Это


Оригинал
PDF РКЭФ250 SCD26929 ПС300 900 частей на миллион, 1500 частей на миллион.
2000 — Недоступно

Резюме: нет абстрактного текста
Текст: напряжение катушки Напряжение срабатывания (при 20°C 68°F) Напряжение отпускания (при 20°C 68°F) Номинальный рабочий ток [±10%] (при 20°F) C 68°F) Сопротивление катушки [±10%] (при 20°C 68°F) Номинальная рабочая мощность Макс.приложенное напряжение (при 20°C 68°F) 140 мВт 150% В от номинального напряжения 1,5 В, Номинальный рабочий ток [мк±10%] (при 20°C 68°F) Сопротивление катушки [мк± 10%] (при 20°C 68°F) Номинальная рабочая мощность Макс. приложенное напряжение (при 20°С 68°F) 1.5В DC 66.7мА 22.5Ом — 3В


Оригинал
PDF 100 мВт 100 мВт) 500gf} 060213J
2005 г. — недоступно

Резюме: нет абстрактного текста
Текст: НАЧАЛЬНЫЕ ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ ВРЕМЯ ДО ОТКЛЮЧЕНИЯ АМПЕР ПРИ 20°C ВЫДЕРЖКА 1.85 АМПЕР ПРИ 20°C HOLD TRIP 1.85 3.70 ОМ ПРИ 20°C МИН. МАКС. 0.08 0.12 СЕКУНД ПРИ 20°C, 9.25A МАКС. ПРИ 20°C НОМИНАЛЬНАЯ 2,1 ВАТТ ПРИ 20°C МАКС. 3,04 UL, CSA, TUV PS300 Эта спецификация имеет приоритет


Оригинал
PDF RXEF185K SCD26468 ПС300 900 частей на миллион, 1500 частей на миллион.
2005 г. — недоступно

Резюме: нет абстрактного текста
Текст: ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ ВРЕМЯ ДО ОТКЛЮЧЕНИЯ, АМПЕРЫ ПРИ Удержании 20°C 3.75 АМПЕР ПРИ 20°C HOLD TRIP 3,75 7,50 ОМ ПРИ 20°C МИН. МАКС. 0,03 0,05 СЕКУНД ПРИ 20°C, 18,75A МАКС. ПРИ 20°C НОМИНАЛЬНАЯ 3,2 ВАТТ ПРИ 20°C МАКС. 4,5 UL, CSA, TUV PS300 Эта спецификация имеет приоритет


Оригинал
PDF RXEF375 SCD25229 ПС300 900 частей на миллион, 1500 частей на миллион.
2005 г. — недоступно

Резюме: нет абстрактного текста
Текст: ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ ВРЕМЯ ДО ОТКЛЮЧЕНИЯ АМПЕР ПРИ 20°C УДЕРЖАНИЕ 0.17 АМПЕР ПРИ 20°C HOLD TRIP 0.17 0.34 ОМ ПРИ 20°C МИН. МАКС. 3.30 5.21 СЕКУНД ПРИ 20°C, 0.85A МАКС. ПРИ 20°C НОМИНАЛЬНАЯ 0,48 ВАТТ ПРИ 20°C МАКС. 0,67 UL, CSA, TUV PS300 Эта спецификация имеет приоритет


Оригинал
PDF RXEF017S SCD26087 ПС300 900 частей на миллион, 1500 частей на миллион.

ИС таймера NE555 и LM555: в чем разница [FAQ]

Компании-производители разные, а модели одинаковые.

Каталог

 

 

Введение

Алфавитные префиксы перед номерами деталей ИС часто воспринимаются как нечто само собой разумеющееся, поскольку все, что они делают, это представляет производителя ИС (хотя и не всегда), но это не всегда так. Хотя некоторые микросхемы имеют много вторичных источников с одинаковыми номерами деталей и/или префиксами, между каждой из этих частей часто существуют тонкие различия из-за оптимизации и изменений, внесенных каждым производителем. Хорошими примерами этого являются таймер NE555 IC , изначально произведенный компанией Signetics, и LM555 , который изначально был получен от National Semiconductor.

 

NE555 против LM555

 

Функция NE555 и LM555

Функции NE555 и LM555 идентичны, за исключением того, что первый производился компанией NEC в Японии в первые дни, а второй — компанией National Semiconductor в США.

 

 

Что лучше, LM555 или NE555?

Оба счетчика LM555 и NE555 являются счетчиками; точность у них одинаковая, скорость у них одинаковая, да и остальные показатели у них аналогичные.

Лучше TLC555 , который намного быстрее, чем LM555 и NE555, но потребляет гораздо меньше энергии.

TCL555

Характеристика

  • Прямая замена SE555 /NE555.
  • Время синхронизации варьируется от микросекунд до часов.
  • Может работать в двух режимах: нестабильном и моностабильном.
  • Рабочий цикл можно регулировать.
  • Выходной терминал может принимать и отдавать ток 200 мА.
  • Выходное напряжение совместимо с уровнем ТТЛ.
  • Температурная стабильность лучше 0,005%/℃.
  • Пороговый контакт имеет более высокий приоритет

 

Таблица основных различий между NE555 и LM555

NE555 ЛМ555
Время вывода зависит от температуры и напряжения питания Время вывода относительно не зависит от температуры и напряжения питания
Триггерный штифт имеет более высокий приоритет Пороговый контакт имеет более высокий приоритет

 

Поведенческие изменения

 

Цепь NE555 VS LM555

 

Одним из наиболее заметных различий между двумя ИС является использование токовых зеркальных активных нагрузок в LM555.Несмотря на совместимость по выводам, изменения в LM555 приводят к тому, что схема ведет себя значительно иначе, чем NE555. Как видно из внутренней схемы, активные нагрузки заменяют постоянные резисторы в LM55. Одно из основных преимуществ переключения с резисторов на активные нагрузки заключается в том, что при этом уменьшается зависимость времени выходного сигнала от температуры и напряжения питания.

 

Поведенческие изменения NE555 по сравнению с LM555

 

Еще одно отличие заключается в том, что сигнал запуска имеет приоритет в исходном NE555, тогда как пороговый сигнал имеет приоритет в LM555.

Обычно выходной сигнал таймера 555   имеет высокий уровень, когда напряжение на выводе 2 (триггер) меньше 1/3 В пост. тока, и низкий уровень, когда напряжение на выводе 6 (порог) превышает 2/3 В пост. тока. Если триггерный контакт в NE555 становится низким, а пороговый контакт имеет высокий уровень, выход становится низким.

Еще одно отличие состоит в том, что исходный NE555 отдает приоритет сигналу запуска, тогда как LM555 отдает приоритет пороговому сигналу . Выходной сигнал таймера модели 555 обычно имеет высокий уровень, когда напряжение на выводе 2 (триггер) меньше 1/3 В пост. тока, и низкий уровень, когда напряжение на выводе 6 (порог) превышает 2/3 В пост. тока.Если на триггерном выводе NE555 низкий уровень, а на пороговом выводе высокий уровень, выходной сигнал низкий.

 

Схема NE555 и LM555

 

Во-первых, вот схема NE555

 

NE555 схема

 

А вот схема LM555. Чтобы упростить сравнение, я сохранил нумерацию компонентов в соответствии с таблицей данных NE555, а не с таблицей данных National.

 

LM555 схема

 

LM555 изменяет конструкцию таймера тремя способами:

  • Вместо резистивной нагрузки R6 триггерный компаратор теперь имеет активную нагрузку токового зеркала (Q26 и Q27).
  • На пороговый компаратор подается активная нагрузка токового зеркала (Q28 и Q29) и буфер эмиттерного повторителя Q30.
  • R10 теперь 7.5K вместо 15K, но я думаю, что это из-за опечатки. Рассмотрим несколько поколений фотокопий. 1 начинает напоминать 7, и появляется десятичная точка.

     

Первые два изменения самые интригующие. Как эти модификации меняют относительную важность двух входов компаратора? Поскольку транзистор Q15 всегда может перекрыть ток от Q19A и Q6, оригинальный NE555 отдает приоритет сигналу запуска.

Когда триггерный сигнал активен, Q15 включен, Q16 выключен, а Q17 включен жестко, потому что его основание подключено к VCC через Q18, R10 и текущее зеркало Q19.

Если и триггерный, и пороговый входы активны, Q15 и Q30 включены. Это создает интригующую ситуацию, в которой коллектор Q18 замыкается на землю через Q15 и Q30. В этой точке нет ничего, что могло бы подавать ток на базу Q17, и любой остаточный заряд, скорее всего, будет стекать через обратный ток утечки Q18.Затем Q17 выключается, и выход инвертирует NE555! То, что ворота Q17 так висят, кажется странным, поэтому я предполагаю, что это было непреднамеренное поведение.

 

Моделирование NE555 VS LM555

Я провел несколько симуляций в LTSpice, чтобы вы могли видеть, что происходит. Сначала идет NE555:

.

Моделирование NE555

 

А вот и LM555:

 

Моделирование LM555

Если вы внимательно посмотрите на кривую V(comp) непосредственно перед 12 мс, вы заметите, что она на самом деле становится отрицательной из-за того, что Q18 действует как диодный ограничитель.

Такое поведение не мешает нормальной работе, но разработчику схем следует это учитывать. Вот почему дизайнеры и покупатели должны с осторожностью относиться к заменителям, особенно когда производитель заявляет об «улучшенной производительности»!

555 Таймер PDF

Технический паспорт NE555

Техническое описание LM555Всегда лучше тестировать чипы перед их использованием в конкретном приложении.

 

Часто задаваемые вопросы

Является ли NE555 таким же, как lm555?

Это одно и то же. Просто «555» относится к общей концепции микросхемы таймера 555. NE555 был исходным номером детали, присвоенным Signetics варианту коммерческого температурного диапазона (SE555 был военным типом температурного диапазона).

 

Является ли NE555 КМОП?

Устройство LMC555 представляет собой КМОП-версию стандартных таймеров общего назначения серии 555.В дополнение к стандартному корпусу (SOIC, VSSSOP и PDIP) LMC555 также доступен в корпусе размером с кристалл (8-bump DSBGA) с использованием технологии упаковки TI DSBGA.

 

Какая микросхема таймера изначально была от Signetics?

НЕ555

 

Что лучше, чем LM555 и NE555?

ТЛК555

 

Что имеет приоритет в оригинальном NE555?

Триггерный сигнал

 

Что произойдет, если триггерный вывод в NE555 станет низким, а пороговый вывод будет высоким?

Выход становится низким

 

Что имеет приоритет в сигнале триггера?

НЕ555

 

Сколько контактов у lm555?

восемь контактов

Вот расположение восьми контактов в стандартной микросхеме 555.

Добавить комментарий

Ваш адрес email не будет опубликован.