Обратное включение диода: Страница не найдена — Slark Energy

Содержание

Обратное включение — диод — Большая Энциклопедия Нефти и Газа, статья, страница 1

Обратное включение — диод

Cтраница 1

Обратное включение диода характеризуется практически полным отсутствием тока при достаточно большом обратном напряжении; иными словами, диод при обратном включении имеет очень большое сопротивление.  [1]

Обратное включение диода связи происходит медленнее, так как после запирания управляющего диода необходимо время, пока вследствие зарядки паразитных емкостей разрядным током напряжение на диоде связи достигнет отпирающего уровня. Это запаздывание особенно заметно в цепях младших разрядов.  [3]

При обратном включении диода на границе p — n — перехода образуется изоляционный слой. Этот обедненный свободными носителями зарядов пограничный слой играет роль изолятора между проводящими р — и n — зонами кристалла. Фактически диод в этом случае представляет конденсатор, причем ширина изоляционного слоя такого конденсатора зависит от приложенного к диоду напряжения. Чем больше приложенное обратное напряжение, тем большей становится толщина изоляционного слоя конденсатора, а следовательно, уменьшается его емкость.  [5]

При обратном включении диода емкость р-п перехода шунтирует большое обратное сопротивление перехода, что приводит к ухудшению его частотной характеристики.  [7]

Давно известны однотактные преобразователи с обратным включением диода.  [8]

Анализ переходных процессов в схеме с обратным включением диода проводится аналогично.  [9]

Аналогично работает последовательная схема диодного ограничителя с обратным включением диода

.  [11]

Емкость р-п перехода существует при прямом и при обратном включении диода.  [12]

Определить напряжение на диоде и резисторе нагрузки сопротивлением гн 100 кОм при обратном включении диода ( рис. 96, а), если ток диода ЮмкА, а ( Упит 80 В.  [13]

Для воспроизведения линейно-ломаных зависимостей в I и II квадрантах используется аналогичная схема с обратным включением диода и опорным напряжением.  [14]

Элемент И для отрицательных входных сигналов ( рис. П-19, t отличается от предыдущего обратным включением диодов.  [15]

Страницы:      1    2    3

Какой способ подключения диода называют прямым. Понятия и обозначения характеристик. Включение диода в прямом направлении

Существует три вида диодов:

Газонаполненные;

Электровакуумные;

Полупроводниковые диоды, про которые и будет идти речь дальше.

В чистом полупроводнике отсутствуют свободные электроны, поэтому его электропроводность, как и у диэлектрика крайне мала. Если добавить в полупроводник примесь, то проводимость увеличится. Для того чтоб заметить изменение электропроводимости, достаточно в чистый полупроводник добавить очень малое количество примеси – 1 атом примеси на 10 6 атомов полупроводника. Электрическая проводимость любого вещества зависит от наличия в атоме свободных, слабо связанных электронов на внешней орбите.

Если электрон освободился от соседнего атома, то на месте оборванного электрона появилась новая дырка. Электроны двигаются от отрицательного к положительному потенциалу, а дырки можно рассматривать как такие, что двигаются в обратном направлении. Также дырки можно рассматривать как элемент положительного заряда. Примеси, которые образовывают свободные электроны в полупроводнике, называются донорными, а которые делают дырки – акцепторными. Процесс заполнения неполных валентных связей называется рекомбинация.

Рисунок 1 – Проводимость полупроводникового диода

p — n переход – это переходной слой, полученный на границе полупроводников разной проводимости.

Различают два типа перехода:

Плоскостной;

Точечный.

Принцип работы полупроводникового диода основан на особенности p — n перехода — ярко выраженная проводимость, которая зависит от полярности приложенного напряжения (рисунок 1).

На основании представленных характеристик материалов создан полупроводниковый прибор – диод.

Рисунок 2 – Обозначение диода

в электрических схемах – VD .

Основные электрические параметры диода:

1. І ном – максимальное значение действующего тока через диод, которое его не перегревает.

2. Максимальный импульсный ток – І і. max .

3. Обратное максимальное напряжение U обр.


Все полупроводниковые приборы очень чувствительны к примесям в воздухе, поэтому их размещают в герметичном корпусе из стекла или керамики.

Работа диода при прямом приложенном напряжении имеет следующий вид (ток — черная кривая, напряжение — красная):


Рисунок 3 – Ток и напряжение на диоде

С рисунка видно, что при положительном напряжении диод VD открывается и напряжение имеет малое значение, при отрицательном напряжении диод закрывает мгновенно, переставая пропускать через себя ток.

Широко применяются при необходимости преобразования переменного напряжения в постоянное. Выпрямленное напряжение будет иметь пульсирующий вид, как изображено на рисунке 3 – однополупериодное выпрямление, если же применять диодный мост , то будет осуществлено двухполупериодное выпрямление. В полученном пульсирующем напряжении для электрических приборов будет важно действующее значение напряжения . Для трехфазных сетей применяют выпрямитель Ларионова.

Специальные диоды

– разновидность диода, которому характерна вертикально спадающая ВАХ, на которой стабилитрон предназначен продолжительно работать.

Рисунок 4 – Вольт-амперная характеристика (ВАХ) стабилитрона

Предназначается для работы в источниках питания для стабилизации напряжения.

Основные характеристики: U стабилизации , І min , I max – граничные значения тока через стабилитрон.

Туннельный диод – это диод, которому характерно наличие в прямой ветке вольт-амперной характеристики участок с обратным сопротивлением. При увеличении прямого напряжения монотонно увеличивается выходное значение тока. Напряжение пробоя такого полупроводника практически равно нулю.


Рисунок 5 – ВАХ туннельного диода

Используются в схемах переключения и генераторах электрических колебаний.

Динистор – специальный диод, который сохраняет высокое сопротивление до определенного значения прямого напряжения, после чего сопротивление резко спадает и равно величине сопротивления открытого диода.


Рисунок 6 – Вольт-амперная характеристика динистора

Используют в схемах автоматики и генераторах переменно-линейного напряжения.

Варикап – диод, у которого изменяется емкость в зависимости от значения приложенного обратного напряжения.

Рисунок 7 – ВАХ варикапа

Применяются в электрических схемах, где необходима настройка частоты контура колебания, деление или умножение частоты.

Характерные для варикапа параметры:

Общая емкость – измеренная емкость при определенном обратном напряжении;

Коэффициент перекрытия по емкости – при двух некоторых значениях напряжения отношения емкостей варикапа.

Температурный коэффициент емкости – относительное изменение емкости, вызванное сменой температуры.

Предельная частота – та, на которой реактивная составляющая варикапа становится равна активной.

– спец диод, обратная проводимость которого изменяется от величины светового потока Ф.


Рисунок 8 – ВАХ фотодиода

Используются в измерителях светового потока и приборах автоматики.

Светодиод излучает свет при прохождении через него в прямом направлении электрического тока, цвет свечения определяется химическим составом кристалла.

Отличительной особенностью светодиода является экономичность – очень малое потребление тока (2-5мА).

Полупроводниковый диод — самый простой полупроводниковый прибор, состоящий из одного PN перехода. Основная его функция — это проводить электрический ток в одном направлении, и не пропускать его в обратном. Состоит диод из двух слоев полупроводника типов N и P.

На стыке соединения P и N образуется PN-переход (PN-junction). Электрод, подключенный к P, называется анод. Электрод, подключенный к N , называется катод. Диод проводит ток в направлении от анода к катоду, и не проводит обратно.

Диод в состоянии покоя

Посмотрим, что происходит внутри PN-перехода, когда полупроводниковый диод находится в состоянии покоя. То есть тогда, когда ни к аноду, ни к катоду не подключено напряжения.

Итак, в части N имеются в наличии свободные электроны – отрицательно заряженные частицы. В части P находятся положительно заряженные ионы – дырки . В результате, в том месте, где есть частицы с зарядами разных знаков, возникает электрическое поле, притягивающее их друг к другу.

Под действием этого поля свободные электроны из части N дрейфуют через PN переход в часть P и заполняют некоторые дырки. В итоге получается очень слабый электрический ток, измеряемый в наноамперах. В результате, плотность вещества в P части повышается и возникает диффузия (стремление вещества к равномерной концентрации), толкающая частицы обратно на сторону N.

Обратное включение диода

Теперь посмотрим, как у полупроводникового диода получается выполнять свою основную функцию – проводить ток только в одном направлении. Подключим источник питания — плюс к катоду, минус к аноду.

В соответствии с силой притяжения, возникшей между зарядами разной полярности, электроны из N начнут движение к плюсу и отдалятся от PN перехода. Аналогично, дырки из P будут притягиваться к минусу, и также отдалятся от PN перехода. В результате, плотность вещества у электродов повышается. В действие приходит диффузия и начинает толкать частицы обратно, стремясь к равномерной плотности вещества.

Как мы видим, в этом состоянии диод не проводит ток. При повышении напряжения, в PN переходе будет все меньше и меньше заряженных частиц.

Прямое включение диода

Меняем полярность источника питания — плюс к аноду, минус к катоду. В таком положении, между зарядами одинаковой полярности возникает сила отталкивания. Отрицательно заряженные электроны отдаляются от минуса и двигаются сторону pn перехода. В свою очередь, положительно заряженные дырки отталкиваются от плюса и направляются навстречу электорнам. PN переход обогащается заряженными частицами с разной полярностью, между которыми возникает электрическое поле –

внутреннее электрическое поле PN перехода . Под его действием электроны начинают дрейфовать на сторону P. Часть из них рекомбинируют с дырками (заполняют место в атомах, где не хватает электрона). Остальные электроны устремляются к плюсу батарейки. Через диод пошел ток I D .

Чтобы не возникло путаницы, напомню, что направление тока на электрических схемах обратно направлению потока электронов.

Недостатки реального полупроводникового диода

На практике, в реальном диоде, при обратном подключении напряжения, возникает очень маленький ток, измеряемый в микро, или наноамперах (в зависимости от модели прибора). В следствии слишком высокого напряжения, может разрушиться кристаллическая структура полупроводника в диоде. В этом случае, прибор начнет хорошо проводить ток также и при обратном смещении. Такое напряжение называется напряжение пробоя . Процесс разрушения структуры полупроводника невосстановим, и прибор приходит в негодность.

При прямом подключении, напряжение между анодом и катодом должно достигнуть определенного значения V ϒ , для того чтобы диод начал хорошо проводить ток. Для кремниевых приборов V ϒ — это примерно 0.7V, а для германиевых — около 0.3V. Более подробно об этом, и других характеристиках полупроводникового выпрямительного диода пойдет речь в статье ВАХ полупроводникового диода .

ССЫЛКИ ПО ТЕМЕ:

Вольт-амперная характеристика (ВАХ) диода

Применение диодов

Полупроводники. Часть III. Влияние примесей на проводимость

КОММЕНТАРИИ:

Есть другой способ снижения напряжения на нагрузке, но только для цепей постоянного тока. Про смотри здесь.

Вместо дополнительного резистора используют цепочку из последовательно включенных, в прямом направлении, диодов.

Весь смысл состоит в том, что при протекании тока через диод на нем падает «прямое напряжение» равное, в зависимости от типа диода, мощности и тока протекающего через него — от 0,5 до 1,2 Волта.

На германиевом диоде падает напряжение 0,5 — 0,7 В, на кремниевом от 0,6 до 1,2 Вольта. Исходя из того, на сколько вольт нужно понизить напряжение на нагрузке, включают соответствующее количество диодов.

Чтобы понизить напряжение на 6 В необходимо приблизительно включить: 6 В: 1,0 = 6 штук кремниевых диодов, 6 В: 0,6 = 10 штук германиевых диодов. Наиболее популярны и доступны кремниевые диоды.

Выше приведенная схема с диодами, более громоздка в исполнении, чем с простым резистором. Но, выходное напряжение, в схеме с диодами, более стабильно и слабо зависит от нагрузки. В чем разница между этими двумя способами снижения выходного напряжения?

На Рис 1 — добавочное сопротивление — резистор (проволочное сопротивление), Рис 2 — добавочное сопротивление — диод.

У резистора (проволочного сопротивления) линейная зависимость между током, проходящем через него и падением напряжения на нем. Во сколько раз увеличится ток, во столько же раз увеличится и падение напряжения на резисторе.

Из примера 1: если мы к лампочке подключим параллельно еще одну, то ток в цепи увеличится, с учетом общего сопротивления двух лампочек до 0,66 А. Падение напряжения на добавочном резисторе будет: 12 Ом *0,66 А = 7,92 В. На лампочках останется: 12 В — 7,92 В = 4,08 В. Они будут гореть в пол накала.


Совсем другая картина будет если вместо резистора будет цепочка диодов.

Зависимость между током протекающем через диод и падающем на нем напряжении нелинейная. Ток может увеличиться в несколько раз, падение напряжения на диоде увеличится всего на несколько десятых вольта.

Т.е. чем больше ток диода, тем (сравнительно с резистором) меньше увеличивается его сопротивление. Падение напряжения на диодах мало зависит от тока в цепи.

Диоды в такой цепи выполняют роль стабилизатора напряжения. Диоды необходимо подбирать по максимальному току в цепи. Максимально допустимый ток диодов должен быть больше, чем ток в рассчитываемой цепи.

Падения напряжения на некоторых диодах при токе 0,5 А даны в таблице.

В цепях переменного тока, в качестве добавочного сопротивления можно использовать конденсатор, индуктивность, динистор или тиристор (с добавлением схемы управления).

П олупроводниками являются вещества, занимающие промежуточное положение между проводниками и изоляторами, по своим электропроводящим свойствам.
В полупроводниках, как и в металлах ток представляет из себя упорядоченное движение заряженных частиц.
Однако, вместе с перемещением отрицательных зарядов(электронов) в полупроводниках имеет место упорядоченное перемещение положительных зарядов, т. н. — дырок .

Дырки получаются при участии ионов вещества полупроводника — атомов с сбежавшими электронами. В реальности, ионизированные атомы не покидают своего места, в кристаллической решетке. На самом деле, имеет место поэтапное изменение состояния атомов вещества, когда электроны перескакивают с одного атома, на другой. Возникает процесс, внешне выглядящий, как упорядоченное движение неких условных положительно заряженных частиц — дырок .

В обычном, чистом полупроводнике соотношение дырок и свободных электродов 50%:50%.
Но стоит добавить в полупроводник небольшое количество вещества — примеси, как это соотношение претерпевает значительные изменения. В зависимости от особенностей добавленного вещества полупроводник приобретает либо ярко выраженную электронную проводимость(n-тип), либо его основными носителями становятся дырки(p-тип).

Полупроводниковый переход(p-n) формируется на стыке двух фрагментов полупроводникового материала, имеющих разную проводимость. Он представляет из себя крайне тонкую область, обедненную носителями обоих типов. p-n переход имеет незначительное сопротивление, когда направление тока — прямое, и очень большое, когда направление тока — обратное.

Обычный полупроводниковый диод состоит из одного полупроводникового перехода, снабженного двумя выводами — анодом (положительным электродом) и катодом — отрицательным электродом. Соответственно, диод обладает свойством односторонней проводимости — он хорошо проводит ток в прямом направлении и плохо в обратном.

Что это означает на практике?
Представим себе электрическую цепь, состоящую из батарейки и лампочки накаливания, подключенной последовательно через полупроводниковый диод. Лампочка будет гореть только в том случае, если анод (положительный электрод) подключен к плюсу источника питания (батарейки) а катод (отрицательный электрод) к минусу — через накальную нить лампочки.

Это и является прямым включением полупроводникового диода. Если поменять полярность источника питания, включение диода окажется обратным — лампочка гореть не будет. Обратите внимание как выглядит обозначение полупроводникового диода на схеме — треугольная стрелочка, указывающая прямое включение, совпадает с общепринятым в электротехнике направлением тока — от плюса источника питания, к минусу. Вертикальная черточка примыкающая к ней символизирует преграду для движения тока в обратном направлении.

Существует одно обязательное условие для нормальной работы любого полупроводникового диода. Напряжение источника питания должно превышать некоторый порог (величину потенциала внутреннего смещения p-n перехода). Для выпрямительных диодов он как правило — меньше 1 вольта, для германиевых высокочастотных диодов порядка 0,1 вольта, для светодиодов может превышать 3 вольта. Это свойство полупроводниковых диодов можно использовать при создании низковольтных стабилизированных источников питания.

Если диод подключить обратно и постепенно повышать напряжение источника питания, в некоторый момент обязательно наступит обратный электрический пробой p-n перехода. Диод начнет пропускать ток и в обратном направлении, а переход окажется испорченным. Величина максимального допустимого обратного напряжения (Uобр.и.) широко разнится у различных типов полупроводниковых диодов и является очень важным параметром.

Вторым, не менее важным параметром можно назвать предельное значение прямого тока-Uпр. Этот параметр напрямую зависит от величины падения напряжения на переходе полупроводникового диода, материала полупроводника и теплообменных характеристик корпуса.

Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт

Диоды часто именуются «прямыми» и «обратными». С чем это связано? Чем отличается «прямой» диод от «обратного» диода?

Что представляет собой «прямой» диод?

Диод — это полупроводник, имеющий 2 вывода, а именно — анод и катод. Используется он для обработки различными способами электрических сигналов. Например, в целях их выпрямления, стабилизации, преобразования.

Особенность диода в том, что он пропускает ток только в одну сторону. В обратном направлении — нет. Это возможно благодаря тому, что в структуре диода присутствует 2 типа полупроводниковых областей, различающихся по проводимости. Первая условно соответствует аноду, имеющему положительный заряд, носителями которого являются так называемые дырки. Вторая — это катод, имеющий отрицательный заряд, его носители — электроны.

Диод может функционировать в двух режимах:

  • открытом;
  • закрытом.

В первом случае через диод хорошо проходит ток. Во втором режиме — с трудом.

Открыть диод можно посредством прямого включения. Для этого нужно подключить к аноду положительный провод от источника тока, а к катоду — отрицательный.

Прямым также может именоваться напряжение диода. Неофициально — и сам полупроводниковый прибор. Таким образом, «прямым» является не он, а подключение к нему или же напряжение. Но для простоты понимания в электрике «прямым» часто именуется и сам диод.

Что представляет собой «обратный» диод?

Закрывается полупроводник посредством, в свою очередь, обратной подачи напряжения. Для этого нужно поменять полярность проводов от источника тока. Как и в случае с прямым диодом, формируется обратное напряжение. «Обратным» же — по аналогии с предыдущим сценарием — именуется и сам диод.

Сравнение

Главное отличие «прямого» диода от «обратного» диода — в способе подачи тока на полупроводник. Если он подается в целях открытия диода, то полупроводник становится «прямым». Если полярность проводов от источника тока меняется — то полупроводник закрывается и становится «обратным».

Рассмотрев, в чем разница между «прямым» диодом и «обратным» диодом, отразим основные выводы в таблице.

Обратное включение полупроводникового диода.

Т. к. исследуемый нами полупроводниковый диод – стабилитрон работает при обратном включении, то более подробнее рассмотрим эту область. При включении p-n перехода в обратном направлении (рис. 2) внешнее обратное напряжение Uобр создает электрическое поле, совпадающее по направлению с собственным, что приводит к росту потенциального барьера на величину Uобр и увеличению относительного смеще­ния энергетических диаграмм на q(Uk + Uобр). Это сопро­вождается увеличением ширины запирающего слоя, кото­рая может быть найдена из соотношения (1.7) подстанов­кой вместо Uk величины Uk + Uобр.

. (1.8)

Для кремниевых диодов величина контактной разности потенциалов составляетUk≈0,7 В. Толщина электронно-дырочных переходов δ имеет порядок (0,1-10)мкм.

Возрастание потенциального барьера уменьшает диф­фузионные токи основных носителей (т. е. меньшее их количество преодолеет возросший потенциальный барьер).

У

Рис. 3. Схематическое изображение стабилитрона

меньшение диффузионного тока приведет к наруше­нию условия равновесия. Через переход будет проходить результирующий ток, определяемый в основном током дрейфа неосновных носителей.

Концентрация неосновных носителей у границ p-n перехода вследствие уменьшения диффузионного перемеще­ния основных носителей уменьшится до некоторых значе­ний и. По мере удаления отp-n перехода концен­трация неосновных носителей будет возрастать до равно­весной.

Опорные диоды (кремниевые стабилитроны). Механизмы пробоя p-n перехода.

С

Рис. 4. ВАХ кремниевого стабилитрона

табилитронами или Опорными диодами называются полупроводниковые диоды, вольтамперная характеристика которых имеет участок со слабой зависимостью напряжения от тока (Рис. 4). Название «опорных» они получили за счет способности фиксировать (стабилизировать) уровни напряжений в схемах. В основу работы опорных диодов положено явление холодной эмиссии и управляемый пробой в p-n-переходе. Концентрация примесных атомов в стабилитроне гораздо выше, чем в обычных диодах, поэтому стабилитрон находится как бы в предпробойном состоянии.

Назначение стабилитронов  стабилизация напряжения; у современных стабилитронов напряжение стабилизации доходит до нескольких сотен вольт, а ток  до десятков ампер, при этом дрейф напряжения может быть не более 0,1 В.

Конструкция стабилитронов та же, что и у выпрямительных диодов; у тех и у других выбор корпуса связан с мощностью рассеяния.

Участок «аб»  для стабилизации напряжения: большим изменениям тока (от Iст.мин. до Iст.мах) соответствуют незначительные изменения напряжения (Uст).

Максимальный ток Iст.махограничивается допустимой мощностью рассеяния, а минимальный (Iст.мин) соответствует началу устойчивого электрического пробоя. При меньших значениях тока стабилитрона он может служить источником шумов (используется в генераторах шумов).

В пределах «аб» сопротивление стабилитрона изменяется при изменении тока через него, а напряжение при этом остается почти постоянным. После точки «б» стабилитрон переходит в режим теплового пробоя, при этом в нем идут необратимые процессы и структура диода разрушается. В режиме теплового пробоя стабилитрон имеет участок на ВАХ с отрицательным динамическим сопротивлением.

Что значит обратное напряжение диода. Основные параметры выпрямительных диодов. Основные неисправности диодов

ПОЛУПРОВОДНИКОВЫЙ ДИОД — полупроводниковый прибор с двумя электродами, обладающий односторонней проводимостью. К полупроводниковым диодам относят обширную группу приборов с p-n-переходом, контактом металл — полупроводник и др. Наиболее распространены электропреобразовательные полупроводниковые диоды. Служат для преобразования и генерирования электрических колебаний. Один из основных современных электронных приборов. Принцип действия полупроводникового диода : В основе принципа действия полупроводникового диода — свойства электронно-дырочного перехода, в частности, сильная асимметрия вольт-амперной характеристики относительно нуля. Таким образом различают прямое и обратное включение. В прямом включении диод обладает малым электросопротивлением и хорошо проводит электрический ток. В обратном — при напряжении меньше напряжения пробоя сопротивление очень велико и ток перекрыт. Характеристики:

2.Полупроводниковые диоды, прямое и обратное включение, вах:

Прямое и обратное включение:

При прямом включении p-n-перехода внешнее напряжение создает в переходе поле, которое противоположно по направлению внутреннему диффузионному полю. Напряженность результирующего поля падает, что сопровождается сужением запирающего слоя. В результате этого большое количество основных носителей зарядов получает возможность диффузионно переходить в соседнюю область (ток дрейфа при этом не изменяется, поскольку он зависит от количества неосновных носителей, появляющихся на границах перехода), т.е. через переход будет протекать результирующий ток, определяемый в основном диффузионной составляющей. Диффузионный ток зависит от высоты потенциального барьера и по мере его снижения увеличивается экспоненциально.

Повышенная диффузия носителей зарядов через переход привод к повышению концентрации дырок в области n-типа и электронов в области p-типа. Такое повышение концентрации неосновных носителей вследствие влияния внешнего напряжения, приложенного к переходу, называется инжекцией неосновных носителей. Неравновесные неосновные носители диффундируют вглубь полупроводника и нарушают его электронейтральность. Восстановление нейтрального состояния полупроводника происходит за счет поступления носителей зарядов от внешнего источника. Это является причиной возникновения тока во внешней цепи, называемого прямым.

При включении p-n-перехода в обратном направлении внешнее обратное напряжение создает электрическое поле, совпадающее по направлению с диффузионным, что приводит к росту потенциального барьера и увеличению ширины запирающего слоя. Все это уменьшает диффузионные токи основных носителей. Для неосновных носителе поле в p-n-переходе остается ускоряющим, и поэтому дрейфовый ток не изменяется.

Таким образом, через переход будет протекать результирующий ток, определяемый в основном током дрейфа неосновных носителей. Поскольку количество дрейфующих неосновных носителей не зависит от приложенного напряжения (оно влияет только на их скорость), то при увеличении обратного напряжения ток через переход стремиться к предельному значению IS , которое называется током насыщения. Чем больше концентрация примесей доноров и акцепторов, тем меньше ток насыщения, а с увеличением температуры ток насыщения растет по экспоненциальному закону.

На графике изображены ВАХ для прямого и обратного включения диода. Ещё говорят, прямая и обратная ветвь вольт-амперной характеристики. Прямая ветвь (Iпр и Uпр) отображает характеристики диода при прямом включении (то есть когда на анод подаётся «плюс»). Обратная ветвь (Iобр и Uобр) отображает характеристики диода при обратном включении (то есть когда на анод подаётся «минус»).

Синяя толстая линия – это характеристика германиевого диода (Ge), а чёрная тонкая линия – характеристика кремниевого (Si) диода. На рисунке не указаны единицы измерения для осей тока и напряжения, так как они зависят от конкретной марки диода.

Для начала определим, как и для любой плоской системы координат, четыре координатных угла (квадранта). Напомню, что первым считается квадрант, который находится справа вверху (то есть там, где у нас буквы Ge и Si). Далее квадранты отсчитываются против часовой стрелки.

Итак, II-й и IV-й квадранты у нас пустые. Это потому, что мы можем включить диод только двумя способами – в прямом или в обратном направлении. Невозможна ситуация, когда, например, через диод протекает обратный ток и одновременно он включен в прямом направлении, или, иными словами, невозможно на один вывод одновременно подать и «плюс» и «минус». Точнее, это возможно, но тогда это будет короткое замыкание. Остаётся рассмотреть только два случая – прямое включение диода иобратное включение диода .

График прямого включения нарисован в первом квадранте. Отсюда видно, что чем больше напряжение, тем больше ток. Причём до какого-то момента напряжение растёт быстрее, чем ток. Но затем наступает перелом, и напряжение почти не меняется, а ток начинает расти. Для большинства диодов этот перелом наступает в диапазоне 0,5…1 В. Именно это напряжение, как говорят, «падает» на диоде. Эти 0,5…1 В и есть падение напряжения на диоде. Медленный рост тока до напряжения 0,5…1В означает, что на этом участке ток через диод практически не идёт даже в прямом направлении.

График обратного включения нарисован в третьем квадранте. Отсюда видно, что на значительном участке ток почти не изменяется, а затем увеличивается лавинообразно. Если увеличить, напряжение, например, до нескольких сотен вольт, то это высокое напряжение «пробьёт» диод, и ток через диод будет течь. Вот только «пробой» — это процесс необратимый (для диодов). То есть такой «пробой» приведет к выгоранию диода и он либо вообще перестанет пропускать ток в любом направлении, либо наоборот – будет пропускать ток во всех направлениях.

В характеристиках конкретных диодов всегда указывается максимальное обратное напряжение – то есть напряжение, которое может выдержать диод без «пробоя» при включении в обратном направлении. Это нужно обязательно учитывать при разработке устройств, где применяются диоды.

Сравнивая характеристики кремниевого и германиевого диодов, можно сделать вывод, что в p-n-переходах кремниевого диода прямой и обратный токи меньше, чем в германиевом диоде (при одинаковых значениях напряжения на выводах). Это связано с тем, что у кремния больше ширина запрещённой зоны и для перехода электронов из валентной зоны в зону проводимости им необходимо сообщить большую дополнительную энергию.

Основные параметры диодов — это прямой ток диода (I пр) и максимальное обратное напряжение диода (U обр). Именно их надо знать, если стоит задача разработать новый выпрямитель для источника питания.

Прямой ток диода

Прямой ток диода можно легко вычислить, если известен общий ток , который будет потреблять нагрузка нового блока питания. Затем, для обеспечения надёжности, необходимо несколько увеличить это значение и получится ток, на который надо подобрать диод для выпрямителя. К примеру, блок питания должен выдерживать ток в 800 мА. Поэтому мы выбираем диод, у которого прямой ток диода равен 1А.

Обратное напряжение диода

Максимальное обратное напряжение диода — это параметр, который зависит не только от значения переменного напряжения на входе, но и от типа выпрямителя. Для объяснения этого утверждения, рассмотрим следующие рисунки. На них показаны все основные схемы выпрямителей.

Рис. 1


Рис. 2

На рисунке 2 изображён двухполупериодный выпрямитель с выводом средней точки. В нём также, как и в предыдущем, диоды надо подбирать с обратным напряжением в 3 раза превышающем действующее значение входного.

Что такое прямое и обратное напряжение? Пытаюсь понять принцип действия полевого транзистора. и получил лучший ответ

Ответ от Вовик[активный]
Прямое — к плюсу прикладывается плюс, к минусу — минус. Обратное — к плюсу — минус, к минусу — плюс.
Применительно к полевому транзистору — между истоком и затвором.
База и эмиттер есть у биполярного транзистора, не у полевого.
Биполярный транзистор представляет собой два встречно включенных р-п перехода с одним общим выходом — эмиттер — база (типа общий) — коллектор, как два диода, только общая «прослойка» тонкая и проводит ток, если подать прямое напряжение, которое называется открывающим, между эмиттером и базой.
Чем больше прямое напряжение между базой и эмиттером, тем больше открыт транзистор и меньше его сопротивление эмиттер-коллектор, т. е. между напряжением эмиттер-база и сопротивлением биполярного транзистора обратная зависимость.
Если между базой и эмиттером подать обратное напряжение, транзистор закроется совсем и не будет проводить ток.
Если подать напряжение только на базу и эмиттер или базу и коллектор, получится обычный диод.
Полевой транзистор устроен несколько по-иному. Там тоже три вывода, но называются сток, исток и затвор. Там только один р-п переход, затвор -> сток-исток или затвор

Ответ от ALEX R [гуру]
На 1 вопр прям и обр напр бывает у полупроводника (диода) т. е. диод в ппрямом нпр ток пропускает, а ежели ток течёт обратно, всё закрыт. Для ясности нипель велосипедной шины туда дуй, обратно нет. Полевой тр-р, вот чисто для понимания нет злектронной связи между затвором и сток исток, а ток пропускает за счёт зл поля созд на затворе. Вот как то так.

Ответ от Александр Егоров [гуру]
прямое — минус к области с n-проводимостью, плюс к области к с р-проводимостью
обратное наоборот
подавая только на эмитер и коллектор ток проходить не будет, т. к. ионизированные атомы базы будут отталкивать от pn перехода свободные заряды эмитера (которым итак непросто перескочить pn переход, тк это диэлектрик) . А если подать напряжение на базу, то оно «высосет» из базы свободные заряды и они уже не будут отталкивать заряды эмитера, мешая им пересекать pn переход. Транзистор откроется.
Кстати эмитер, коллектор и базу имеет не полевой, а биполярный транзистор.
Если подать напряжение только на базу и эмитер или базу и коллектор, то это будет простой диод (каждый pn переход это диод).

Ответ от User user [гуру]
полевой транзистор имеет канал р или n типа управляемый полем. выводы транзистора затвор сток исток

Д иод — самый простейший по устройству в славном семействе полупроводниковых приборов. Если взять пластинку полупроводника, например германия, и в его левую половину ввести акцепторную примесь, а в правую донорную, то с одной стороны получится полупроводник типа P, соответственно с другой типа N. В середине кристалла получится, так называемый P-N переход , как показано на рисунке 1.

На этом же рисунке показано условное графическое обозначение диода на схемах: вывод катода (отрицательный электрод) очень похож на знак «-». Так проще запомнить.

Всего в таком кристалле две зоны с различной проводимостью, от которых выходят два вывода, поэтому полученный прибор получил название диод , поскольку приставка «ди» означает два.

В данном случае диод получился полупроводниковый, но подобные устройства были известны и раньше: например в эпоху электронных ламп был ламповый диод, называвшийся кенотрон. Сейчас такие диоды ушли в историю, хотя приверженцы «лампового» звука считают, что в ламповом усилителе даже выпрямитель анодного напряжения должен быть ламповым!

Рисунок 1. Строение диода и обозначение диода на схеме

На стыке полупроводников с P и N проводимостями получается P-N переход (P-N junction) , который является основой всех полупроводниковых приборов. Но в отличии от диода, у которого этот переход лишь один, имеют два P-N перехода, а, например, состоят сразу из четырех переходов.

P-N переход в состоянии покоя

Даже если P-N переход, в данном случае диод, никуда не подключен, все равно внутри него происходят интересные физические процессы, которые показаны на рисунке 2.

Рисунок 2. Диод в состоянии покоя

В области N имеется избыток электронов, она несет в себе отрицательный заряд, а в области P заряд положительный. Вместе эти заряды образуют электрическое поле. Поскольку разноименные заряды имеют свойство притягиваться, электроны из зоны N проникают в положительно заряженную зону P, заполняя собой некоторые дырки. В результате такого движения внутри полупроводника возникает, хоть и очень маленький (единицы наноампер), но все-таки ток.

В результате такого движения возрастает плотность вещества на стороне P, но до определенного предела. Частицы обычно стремятся распространяться равномерно по всему объему вещества, подобно тому, как запах духов распространяется на всю комнату (диффузия), поэтому, рано или поздно, электроны возвращаются обратно в зону N.

Если для большинства потребителей электроэнергии направление тока роли не играет, — лампочка светится, плитка греется, то для диода направление тока играет огромную роль. Основная функция диода проводить ток в одном направлении. Именно это свойство и обеспечивается P-N переходом.

Включение диода в обратном направлении

Если к полупроводниковому диоду подключить источник питания, как показано на рисунке 3, то ток через P-N переход не пройдет.

Рисунок 3. Обратное включение диода

Как видно на рисунке, к области N подключен положительный полюс источника питания, а к области P — отрицательный. В результате электроны из области N устремляются к положительному полюсу источника. В свою очередь положительные заряды (дырки) в области P притягиваются отрицательным полюсом источника питания. Поэтому в области P-N перехода, как видно на рисунке, образуется пустота, ток проводить просто нечем, нет носителей заряда.

При увеличении напряжения источника питания электроны и дырки все сильней притягиваются электрическим полем батарейки, в области же P-N перехода носителей заряда остается все меньше. Поэтому в обратном включении ток через диод не идет. В таких случаях принято говорить, что полупроводниковый диод заперт обратным напряжением.

Увеличение плотности вещества около полюсов батареи приводит к возникновению диффузии , — стремлению к равномерному распределению вещества по всему объему. Что и происходит при отключении элемента питания.

Обратный ток полупроводникового диода

Вот здесь как раз и настало время вспомнить о неосновных носителях, которые были условно забыты. Дело в том, что даже в закрытом состоянии через диод проходит незначительный ток, называемый обратным. Этот обратный ток и создается неосновными носителями, которые могут двигаться точно так же, как основные, только в обратном направлении. Естественно, что такое движение происходит при обратном напряжении. Обратный ток, как правило, невелик, что обусловлено незначительным количеством неосновных носителей.

С повышением температуры кристалла количество неосновных носителей увеличивается, что приводит к возрастанию обратного тока, что может привести к разрушению P-N перехода. Поэтому рабочие температуры для полупроводниковых приборов, — диодов, транзисторов, микросхем ограничены. Чтобы не допускать перегрева мощные диоды и транзисторы устанавливаются на теплоотводы — радиаторы .

Включение диода в прямом направлении

Показано на рисунке 4.

Рисунок 4. Прямое включение диода

Теперь изменим полярность включения источника: минус подключим к области N (катоду), а плюс к области P (аноду). При таком включении в области N электроны будут отталкиваться от минуса батареи, и двигаться в сторону P-N перехода. В области P произойдет отталкивание положительно заряженных дырок от плюсового вывода батареи. Электроны и дырки устремляются навстречу друг другу.

Заряженные частицы с разной полярностью собираются около P-N перехода, между ними возникает электрическое поле. Поэтому электроны преодолевают P-N переход и продолжают движение через зону P. При этом часть из них рекомбинирует с дырками, но большая часть устремляется к плюсу батарейки, через диод пошел ток Id.

Этот ток называется прямым током . Он ограничивается техническими данными диода, некоторым максимальным значением. Если это значение будет превышено, то возникает опасность выхода диода из строя. Следует, однако, заметить, что направление прямого тока на рисунке совпадает с общепринятым, обратным движению электронов.

Можно также сказать, что при прямом направлении включения электрическое сопротивление диода сравнительно небольшое. При обратном включении это сопротивление будет во много раз больше, ток через полупроводниковый диод не идет (незначительный обратный ток здесь в расчет не принимается). Из всего вышесказанного можно сделать вывод, что диод ведет себя подобно обычному механическому вентилю: повернул в одну сторону — вода течет, повернул в другую — поток прекратился . За это свойство диод получил название полупроводникового вентиля .

Чтобы детально разобраться во всех способностях и свойствах полупроводникового диода, следует познакомиться с его вольт — амперной характеристикой . Также неплохо узнать о различных конструкциях диодов и частотных свойствах, о достоинствах и недостатках. Об этом будет рассказано в следующей статье.

Здравствуйте уважаемые читатели сайта sesaga.ru. В первой части статьи мы с Вами разобрались, что такое полупроводник и как возникает в нем ток. Сегодня мы продолжим начатую тему и поговорим о принципе работы полупроводниковых диодов.

Диод – это полупроводниковый прибор с одним p-n переходом, имеющий два вывода (анод и катод), и предназначенный для выпрямления, детектирования, стабилизации, модуляции, ограничения и преобразования электрических сигналов.

По своему функциональному назначению диоды подразделяются на выпрямительные, универсальные, импульсные, СВЧ-диоды, стабилитроны, варикапы, переключающие, туннельные диоды и т.д.

Теоретически мы знаем, что диод в одну сторону пропускает ток, а в другую нет. Но как, и каким образом он это делает, знают и понимают не многие.

Схематично диод можно представить в виде кристалла состоящего из двух полупроводников (областей). Одна область кристалла обладает проводимостью p-типа, а другая — проводимостью n-типа.

На рисунке дырки, преобладающие в области p-типа, условно изображены красными кружками, а электроны, преобладающие в области n-типа — синими. Эти две области являются электродами диода анодом и катодом:

Анод – положительный электрод диода, в котором основными носителями заряда являются дырки.

Катод – отрицательный электрод диода, в котором основными носителями заряда являются электроны.

На внешние поверхности областей нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода. Такой прибор может находиться только в одном из двух состояний:

1. Открытое – когда он хорошо проводит ток;2. Закрытое – когда он плохо проводит ток.

Прямое включение диода. Прямой ток.

Если к электродам диода подключить источник постоянного напряжения: на вывод анода «плюс» а на вывод катода «минус», то диод окажется в открытом состоянии и через него потечет ток, величина которого будет зависеть от приложенного напряжения и свойств диода.

При такой полярности подключения электроны из области n-типа устремятся навстречу дыркам в область p-типа, а дырки из области p-типа двинутся навстречу электронам в область n-типа. На границе раздела областей, называемой электронно-дырочным или p-n переходом, они встретятся, где происходит их взаимное поглощение или рекомбинация.

Например. Oсновные носители заряда в области n-типа электроны, преодолевая p-n переход попадают в дырочную область p-типа, в которой они становятся неосновными. Ставшие неосновными, электроны будут поглощаться основными носителями в дырочной области – дырками. Таким же образом дырки, попадая в электронную область n-типа становятся неосновными носителями заряда в этой области, и будут также поглощаться основными носителями – электронами.

Контакт диода, соединенный с отрицательным полюсом источника постоянного напряжения будет отдавать области n-типа практически неограниченное количество электронов, пополняя убывание электронов в этой области. А контакт, соединенный с положительным полюсом источника напряжения, способен принять из области p-типа такое же количество электронов, благодаря чему восстанавливается концентрация дырок в области p-типа. Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через диод будет течь ток, называемый прямым током диода Iпр.

Обратное включение диода. Обратный ток.

Поменяем полярность источника постоянного напряжения – диод окажется в закрытом состоянии.

В этом случае электроны в области n-типа станут перемещаться к положительному полюсу источника питания, отдаляясь от p-n перехода, и дырки, в области p-типа, также будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В результате граница областей как бы расширится, отчего образуется зона обедненная дырками и электронами, которая будет оказывать току большое сопротивление.

Но, так как в каждой из областей диода присутствуют неосновные носители заряда, то небольшой обмен электронами и дырками между областями происходить все же будет. Поэтому через диод будет протекать ток во много раз меньший, чем прямой, и такой ток называют обратным током диода (Iобр). Как правило, на практике, обратным током p-n перехода пренебрегают, и отсюда получается вывод, что p-n переход обладает только односторонней проводимостью.

Прямое и обратное напряжение диода.

Напряжение, при котором диод открывается и через него идет прямой ток называют прямым (Uпр), а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток называют обратным (Uобр).

При прямом напряжении (Uпр) сопротивление диода не превышает и нескольких десятков Ом, зато при обратном напряжении (Uобр) сопротивление возрастает до нескольких десятков, сотен и даже тысяч килоом. В этом не трудно убедиться, если измерить обратное сопротивление диода омметром.

Сопротивление p-n перехода диода величина не постоянная и зависит от прямого напряжения (Uпр), которое подается на диод. Чем больше это напряжение, тем меньшее сопротивление оказывает p-n переход, тем больший прямой ток Iпр течет через диод. В закрытом состоянии на диоде падает практически все напряжение, следовательно, обратный ток, проходящий через него мал, а сопротивление p-n перехода велико.

Например. Если включить диод в цепь переменного тока, то он будет открываться при положительных полупериодах на аноде, свободно пропуская прямой ток (Iпр), и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления – обратный ток (Iобр). Эти свойства диодов используют для преобразования переменного тока в постоянный, и такие диоды называют выпрямительными.

Вольт-амперная характеристика полупроводникового диода.

Зависимость тока, проходящего через p-n переход, от величины и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода.

На графике ниже изображена такая кривая. По вертикальной оси в верхней части обозначены значения прямого тока (Iпр), а в нижней части — обратного тока (Iобр).По горизонтальной оси в правой части обозначены значения прямого напряжения Uпр, а в левой части – обратного напряжения (Uобр).

Вольт-амперная характеристика состоит как бы из двух ветвей: прямая ветвь, в правой верхней части, соответствует прямому (пропускному) току через диод, и обратная ветвь, в левой нижней части, соответствующая обратному (закрытому) току через диод.

Прямая ветвь идет круто вверх, прижимаясь к вертикальной оси, и характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения.Обратная ветвь идет почти параллельно горизонтальной оси и характеризует медленный рост обратного тока. Чем круче к вертикальной оси прямая ветвь и чем ближе к горизонтальной обратная ветвь, тем лучше выпрямительные свойства диода. Наличие небольшого обратного тока является недостатком диодов. Из кривой вольт-амперной характеристики видно, что прямой ток диода (Iпр) в сотни раз больше обратного тока (Iобр).

При увеличении прямого напряжения через p-n переход ток вначале возрастает медленно, а затем начинается участок быстрого нарастания тока. Это объясняется тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1 – 0,2В, а кремниевый при 0,5 – 0,6В.

Например. При прямом напряжении Uпр = 0,5В прямой ток Iпр равен 50mA (точка «а» на графике), а уже при напряжении Uпр = 1В ток возрастает до 150mA (точка «б» на графике).

Но такое увеличение тока приводит к нагреванию молекулы полупроводника. И если количество выделяемого тепла будет больше отводимого от кристалла естественным путем, либо с помощью специальных устройств охлаждения (радиаторы), то в молекуле проводника могут произойти необратимые изменения вплоть до разрушения кристаллической решетки. Поэтому прямой ток p-n перехода ограничивают на уровне, исключающем перегрев полупроводниковой структуры. Для этого используют ограничительный резистор, включенный последовательно с диодом.

У полупроводниковых диодов величина прямого напряжения Uпр при всех значениях рабочих токов не превышает:для германиевых — 1В;для кремниевых — 1,5В.

При увеличении обратного напряжения (Uобр), приложенного к p-n переходу, ток увеличивается незначительно, о чем говорит обратная ветвь вольтамперной характеристики.Например. Возьмем диод с параметрами: Uобр max = 100В, Iобр max = 0,5 mA, где:

Uобр max – максимальное постоянное обратное напряжение, В;Iобр max – максимальный обратный ток, мкА.

При постепенном увеличении обратного напряжения до значения 100В видно, как незначительно растет обратный ток (точка «в» на графике). Но при дальнейшем увеличении напряжения, свыше максимального, на которое рассчитан p-n переход диода, происходит резкое увеличение обратного тока (пунктирная линия), нагрев кристалла полупроводника и, как следствие, наступает пробой p-n перехода.

Пробои p-n перехода.

Пробоем p-n перехода называется явление резкого увеличения обратного тока при достижении обратным напряжением определенного критического значения. Различают электрический и тепловой пробои p-n перехода. В свою очередь, электрический пробой разделяется на туннельный и лавинный пробои.

Электрический пробой.

Электрический пробой возникает в результате воздействия сильного электрического поля в p-n переходе. Такой пробой является обратимый, то есть он не приводит к повреждению перехода, и при снижении обратного напряжения свойства диода сохраняются. Например. В таком режиме работают стабилитроны – диоды, предназначенные для стабилизации напряжения.

Туннельный пробой.

Туннельный пробой происходит в результате явления туннельного эффекта, который проявляется в том, что при сильной напряженности электрического поля, действующего в p-n переходе малой толщины, некоторые электроны проникают (просачиваются) через переход из области p-типа в область n-типа без изменения своей энергии. Тонкие p-n переходы возможны только при высокой концентрации примесей в молекуле полупроводника.

В зависимости от мощности и назначения диода толщина электронно-дырочного перехода может находиться в пределах от 100 нм (нанометров) до 1 мкм (микрометр).

Для туннельного пробоя характерен резкий рост обратного тока при незначительном обратном напряжении – обычно несколько вольт. На основе этого эффекта работают туннельные диоды.

Благодаря своим свойствам туннельные диоды используются в усилителях, генераторах синусоидальных релаксационных колебаний и переключающих устройствах на частотах до сотен и тысяч мегагерц.

Лавинный пробой.

Лавинный пробой заключается в том, что под действием сильного электрического поля неосновные носители зарядов под действием тепла в p-n переходе ускоряются на столько, что способны выбить из атома один из его валентных электронов и перебросить его в зону проводимости, образовав при этом пару электрон — дырка. Образовавшиеся носители зарядов тоже начнут разгоняться и сталкиваться с другими атомами, образуя следующие пары электрон – дырка. Процесс приобретает лавинообразный характер, что приводит к резкому увеличению обратного тока при практически неизменном напряжении.

Диоды, в которых используется эффект лавинного пробоя используются в мощных выпрямительных агрегатах, применяемых в металлургической и химической промышленности, железнодорожном транспорте и в других электротехнических изделиях, в которых может возникнуть обратное напряжение выше допустимого.

Тепловой пробой.

Тепловой пробой возникает в результате перегрева p-n перехода в момент протекания через него тока большого значения и при недостаточном теплоотводе, не обеспечивающем устойчивость теплового режима перехода.

При увеличении приложенного к p-n переходу обратного напряжения (Uобр) рассеиваемая мощность на переходе растет. Это приводит к увеличению температуры перехода и соседних с ним областей полупроводника, усиливаются колебания атомов кристалла, и ослабевает связь валентных электронов с ними. Возникает вероятность перехода электронов в зону проводимости и образования дополнительных пар электрон — дырка. При плохих условиях теплоотдачи от p-n перехода происходит лавинообразное нарастание температуры, что приводит к разрушению перехода.

На этом давайте закончим, а в следующей части рассмотрим устройство и работу выпрямительных диодов, диодного моста.Удачи!

Источник:

1. Борисов В.Г — Юный радиолюбитель. 1985г.2. Горюнов Н.Н. Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.

sesaga.ru

Основные параметры диодов, прямой ток диода, обратное напряжение диода

Основные параметры диодов — это прямой ток диода (Iпр) и максимальное обратное напряжение диода (Uобр). Именно их надо знать, если стоит задача разработать новый выпрямитель для источника питания.

Прямой ток диода

Прямой ток диода можно легко вычислить, если известен общий ток, который будет потреблять нагрузка нового блока питания. Затем, для обеспечения надёжности, необходимо несколько увеличить это значение и получится ток, на который надо подобрать диод для выпрямителя. К примеру, блок питания должен выдерживать ток в 800 мА. Поэтому мы выбираем диод, у которого прямой ток диода равен 1А.

Обратное напряжение диода

Максимальное обратное напряжение диода — это параметр, который зависит не только от значения переменного напряжения на входе, но и от типа выпрямителя. Для объяснения этого утверждения, рассмотрим следующие рисунки. На них показаны все основные схемы выпрямителей.

Рис. 1

Как мы говорили ранее, напряжение на выходе выпрямителя (на конденсаторе) равно действующему напряжению вторичной обмотки трансформатора, умноженному на √2. В однополупериодном выпрямителе (рис. 1), когда напряжение на аноде диода имеет положительный потенциал относительно земли, конденсатор фильтра заряжается до напряжения, превышающего действующее напряжение на входе выпрямителя в 1.4 раза. Во время следующего полупериода напряжение на аноде диода отрицательно относительно земли и достигает амплитудное значения, а на катоде — положительно относительно земли и имеет такое же значение. В этот полупериод к диоду приложено обратное напряжение, которое получается благодаря последовательному соединению обмотки трансформатора и заряженного конденсатора фильтра. Т.е. обратное напряжение диода должно быть не меньше двойного амплитудного напряжения вторички трансформатора или в 2.8 раза выше его действующего значения. При расчёте таких выпрямителей надо выбирать диоды с максимальным обратным напряжением в 3 раза превышающим действующее значение переменного напряжения.


Рис. 2

На рисунке 2 изображён двухполупериодный выпрямитель с выводом средней точки. В нём также, как и в предыдущем, диоды надо подбирать с обратным напряжением в 3 раза превышающем действующее значение входного.


Рис. 3

По другому обстоит дело в случае мостового двухполупериодного выпрямителя. Как можно видеть на рис. 3, в каждый из полупериодов удвоенное напряжение прикладывается к двум непроводящим, последовательно соединённым диодам.

katod-anod.ru

Принцип работы и назначение диодов

Диод является одной из разновидностей приборов, сконструированных на полупроводниковой основе. Обладает одним p-n переходом, а также анодным и катодным выводом. В большинстве случаев он предназначен для модуляции, выпрямления, преобразования и иных действий с поступающими электрическими сигналами.

Принцип работы:

  1. Электрический ток воздействует на катод, подогреватель начинает накаливаться, а электрод испускать электроны.
  2. Между двумя электродами происходит образование электрического поля.
  3. Если анод обладает положительным потенциалом, то он начинает притягивать электроны к себе, а возникшее поле является катализатором данного процесса. При этом, происходит образование эмиссионного тока.
  4. Между электродами происходит образование пространственного отрицательного заряда, способного помешать движению электронов. Это происходит, если потенциал анода оказывается слишком слабым. В таком случае, частям электронов не удается преодолеть воздействие отрицательного заряда, и они начинают двигаться в обратном направлении, снова возвращаясь к катоду.
  5. Все электроны, которые достигли анода и не вернулись к катоду, определяют параметры катодного тока. Поэтому данный показатель напрямую зависит от положительного анодного потенциала.
  6. Поток всех электронов, которые смогли попасть на анод, имеет название анодный ток, показатели которого в диоде всегда соответствуют параметрам катодного тока. Иногда оба показателя могут быть нулевыми, это происходит в ситуациях, когда анод обладает отрицательным зарядом. В таком случае, возникшее между электродами поле не ускоряет частицы, а, наоборот, тормозит их и возвращает на катод. Диод в таком случае остается в запертом состоянии, что приводит к размыканию цепи.

Устройство

Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

  1. Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
  2. Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
  3. Внутри катода косвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
  4. Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
  5. Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
  6. Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

Назначение

Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:

  1. Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
  2. Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
  3. Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
  4. Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
  5. Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.

Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.

Прямое включение диода

На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.

Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:

  1. Под воздействием напряжения от внешнего источника, в p-n-переходе сформируется электрическое поле, при этом его направление будет противоположным относительно внутреннего диффузионного поля.
  2. Напряжение поля значительно снизится, что вызовет резкое сужение запирающего слоя.
  3. Под воздействием этих процессов значительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
  4. Показатели тока дрейфа во время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
  5. Электроны обладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
  6. Отсутствие равновесия и повышенное число неосновных носителей заставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
  7. Полупроводник при этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.

Обратное включение диода

Теперь будет рассмотрен другой способ включения, во время которого изменяется полярность внешнего источника, от которого происходит передача напряжения:

  1. Главное отличие от прямого включения заключается в том, что создаваемое электрическое поле будет обладать направлением, полностью совпадающим с направлением внутреннего диффузионного поля. Соответственно, запирающий слой будет уже не сужаться, а, наоборот, расширяться.
  2. Поле, находящееся в p-n-переходе, будет оказывать ускоряющий эффект на целый ряд неосновных носителей заряда, по этой причине, показатели дрейфового тока останутся без изменений. Он будет определять параметры результирующего тока, который проходит через p-n-переход.
  3. По мере роста обратного напряжения, электрический ток, протекающий через переход, будет стремиться достичь максимальных показателей. Он имеет специальное название – ток насыщения.
  4. В соответствии с экспоненциальным законом, с постепенным увеличением температуры будут увеличиваться и показатели тока насыщения.

Прямое и обратное напряжение

Напряжение, которое оказывает воздействие на диод, разделяют по двум критериям:

  1. Прямое напряжение – это то, при котором происходит открытие диода и начинается прохождение через него прямого тока, при этом показатели сопротивления прибора являются крайне низкими.
  2. Обратное напряжение – это то, которое обладает обратной полярностью и обеспечивает закрытие диода с прохождением через него обратного тока. Показатели сопротивления прибора при этом начинают резко и значительно расти.

Сопротивление p-n-перехода является постоянно меняющимся показателем, в первую очередь на него оказывает влияние прямое напряжение, подающееся непосредственно на диод. Если напряжение увеличивается, то показатели сопротивления перехода будут пропорционально уменьшаться.

Это приводит к росту параметров прямого тока, проходящего через диод. Когда данный прибор закрыт, то на него воздействует фактически все напряжение, по этой причине показатели проходящего через диод обратного тока являются незначительными, а сопротивление перехода при этом достигает пиковых параметров.

Работа диода и его вольт-амперная характеристика

Под вольт-амперной характеристикой данных приборов понимается кривая линия, которая показывает то, в какой зависимости находится электрический ток, протекающий через p-n-переход, от объемов и полярности напряжения, воздействующего на него.

Подобный график можно описать следующим образом:

  1. Ось, расположенная по вертикали: верхняя область соответствует значениям прямого тока, нижняя область параметрам обратного тока.
  2. Ось, расположенная по горизонтали: область, находящаяся справа, предназначена для значений прямого напряжения; область слева для параметров обратного напряжения.
  3. Прямая ветвь вольт-амперной характеристики отражает пропускной электрический ток через диод. Она направлена вверх и проходит в непосредственной близости от вертикальной оси, поскольку отображает увеличение прямого электрического тока, которое происходит при увеличении соответствующего напряжения.
  4. Вторая (обратная) ветвь соответствует и отображает состояние закрытого электрического тока, который также проходит через прибор. Положение у нее такое, что она проходит фактически параллельно относительно горизонтальной оси. Чем круче эта ветвь подходит к вертикали, тем выше выпрямительные возможности конкретного диода.
  5. По графику можно наблюдать, что после роста прямого напряжения, протекающего через p-n-переход, происходит медленное увеличение показателей электрического тока. Однако постепенно, кривая достигает области, в которой заметен скачок, после которого происходит ускоренное нарастание его показателей. Это объясняется открытием диода и проведением тока при прямом напряжении. Для приборов, изготовленных из германия, это происходит при напряжении равном от 0,1В до 0,2В (максимальное значение 1В), а для кремниевых элементов требуется более высокий показатель от 0,5В до 0,6В (максимальное значение 1,5В).
  6. Показанное увеличение показателей тока может привести к перегреву полупроводниковых молекул. Если отведение тепла, происходящее благодаря естественным процессам и работе радиаторов, будет меньше уровня его выделения, то структура молекул может быть разрушена, и этот процесс будет иметь уже необратимый характер. По этой причине, необходимо ограничивать параметры прямого тока, чтобы не допустить перегрева полупроводникового материала. Для этого, в схему добавляются специальные резисторы, имеющие последовательное подключение с диодами.
  7. Исследуя обратную ветвь можно заметить, что если начинает увеличиваться обратное напряжение, которое приложено к p-n-переходу, то фактически незаметен рост параметров тока. Однако в случаях, когда напряжение достигает параметров, превосходящих допустимые нормы, может произойти внезапный скачок показателей обратного тока, что перегреет полупроводник и будет способствовать последующему пробою p-n-перехода.

Основные неисправности диодов

Иногда приборы подобного типа выходят из строя, это может происходить из-за естественной амортизации и старения данных элементов или по иным причинам.

Всего выделяют 3 основных типа распространенных неисправностей:

  1. Пробой перехода приводит к тому, что диод вместо полупроводникового прибора становится по своей сути самым обычным проводником. В таком состоянии он лишается своих основных свойств и начинает пропускать электрический ток в абсолютно любом направлении. Подобная поломка легко выявляется при помощи стандартного мультиметра, который начинает подавать звуковой сигнал и показывать низкий уровень сопротивления в диоде.
  2. При обрыве происходит обратный процесс – прибор вообще перестает пропускать электрический ток в каком-либо направлении, то есть он становится по своей сути изолятором. Для точности определения обрыва, необходимо использовать тестеры с качественными и исправными щупами, в противном случае, они могут иногда ложно диагностировать данную неисправность. У сплавных полупроводниковых разновидностей такая поломка встречается крайне редко.
  3. Утечка, во время которой нарушается герметичность корпуса прибора, вследствие чего он не может исправно функционировать.
Пробой p-n-перехода

Подобные пробои происходят в ситуациях, когда показатели обратного электрического тока начинают внезапно и резко расти, происходит это из-за того, что напряжение соответствующего типа достигает недопустимых высоких значений.

Обычно различается несколько видов:

  1. Тепловые пробои, которые вызваны резким повышением температуры и последующим перегревом.
  2. Электрические пробои, возникающие под воздействием тока на переход.

График вольт-амперной характеристики позволяет наглядно изучать эти процессы и разницу между ними.

Электрический пробой

Последствия, вызываемые электрическими пробоями, не носят необратимого характера, поскольку при них не происходит разрушение самого кристалла. Поэтому при постепенном понижении напряжения можно восстановить всей свойства и рабочие параметры диода.

При этом, пробои такого типа делятся на две разновидности:

  1. Туннельные пробои происходят при прохождении высокого напряжения через узкие переходы, что дает возможность отдельно взятым электронам проскочить через него. Обычно они возникают, если в полупроводниковых молекулах имеется большое количество разных примесей. Во время такого пробоя, обратный ток начинает резко и стремительно расти, а соответствующее напряжение находится на низком уровне.
  2. Лавинные разновидности пробоев возможны благодаря воздействию сильных полей, способных разогнать носителей заряда до предельного уровня из-за чего они вышибают из атомов ряд валентных электронов, которые после этого вылетают в проводимую область. Это явление носит лавинообразный характер, благодаря чему данный вид пробоев и получил такое название.
Тепловой пробой

Возникновение такого пробоя может произойти по двум основным причинам: недостаточный теплоотвод и перегрев p-n-перехода, который происходит из-за протекания через него электрического тока со слишком высокими показателями.

Повышение температурного режима в переходе и соседних областях вызывает следующие последствия:

  1. Рост колебания атомов, входящих в состав кристалла.
  2. Попадание электронов в проводимую зону.
  3. Резкое повышение температуры.
  4. Разрушение и деформация структуры кристалла.
  5. Полный выход из строя и поломка всего радиокомпонента.

slarkenergy.ru

Выпрямительный диод | Volt-info

Рисунок 1. Вольтамперная характеристика выпрямительного диода.

Вольтамперная характеристика выпрямительного диода

На рисунке в первом квадранте расположена прямая, в третьем – обратная ветвь характеристики диода. Прямая ветвь характеристики снимается при действии прямого напряжения, обратная соответственно – обратного напряжения на диод. Прямым напряжением на диоде называется такое напряжение, при котором на катоде образуется более высокий электрический потенциал по отношению к аноду, а если говорить языком знаков — на катоде минус (-), на аноде плюс (+), как показано на рисунке 2.

Рисунок 2. Схема для изучения ВАХ диода при прямом включении.

На рисунке 1 приведены следующие условные обозначения:

Iр – рабочий ток диода;

Uд – падение напряжения на диоде;

Uо – обратное напряжение диода;

Uпр – напряжение пробоя;

Iу – ток утечки, или обратный ток диода.

Понятия и обозначения характеристик

Рабочий ток диода (Iр), это прямой электрический ток, длительное время проходящий через диод, при котором прибор не подвергается необратимому температурному разрушению, и его характеристики не претерпевают значительных качественных изменений. В справочниках может указываться как прямой максимальный ток. Падение напряжения на диоде (Uд) – напряжение на выводах диода, возникающее при прохождении через него прямого рабочего тока. В справочниках может быть обозначено как прямое напряжение на диоде.

Прямой ток течёт при прямом включении диода.

Обратное напряжение диода (Uо) – допустимое обратное напряжение на диоде, приложенное к нему длительное время, при котором не происходит необратимое разрушение его p-n перехода. В справочной литературе может называться максимальным обратным напряжением.

Напряжение пробоя (Uпр) – обратное напряжение на диоде, при котором происходит необратимый электрический пробой p-n перехода, и, как следствие, выход прибора из строя.

Обратный ток диода, или ток утечки (Iу) – обратный ток, длительное время не вызывающий необратимого разрушения (пробоя) p-n перехода диода.

При выборе выпрямительных диодов обычно руководствуются указанными выше его характеристиками.

Работа диода

Тонкости работы p-n перехода, тема отдельной статьи. Упростим задачу, и рассмотрим работу диода с позиции односторонней проводимости. И так, диод работает как проводник при прямом, и как диэлектрик (изолятор) при обратном включении. Рассмотрим две схемы на рисунке 3.

Рисунок 3. Обратное (а) и прямое (б) включение диода.

На рисунке изображены два варианта одной схемы. На рисунке 3 (а) положение переключателей S1 и S2 обеспечивают электрический контакт анода диода с минусом источника питания, а катода через лампочку HL1 с плюсом. Как мы уже определились, это обратное включение диода. В этом режиме диод будет вести себя как электрически изолирующий элемент, электрическая цепь будет практически разомкнута, лампа гореть не будет.

При изменении положения контактов S1 и S2, рисунок 3 (б), обеспечивается электрический контакт анода диода VD1 с плюсом источника питания, а катода через лампочку – с минусом. При этом выполняется условие прямого включения диода, он «открывается» и через него, как через проводник, течёт ток нагрузки (лампы).

Если Вы только начали изучать электронику, Вас может немного смутить сложность с переключателями на рисунке 3. Проведите аналогию по приведённому описанию, опираясь на упрощённые схемы рисунка 4. Это упражнение позволит Вам немного понять и сориентироваться относительно принципа построения и чтения электрических схем.

Рисунок 4. Схема обратного и прямого включения диода (упрощённая).

На рисунке 4 изменение полярности на выводах диода обеспечивается изменением положения диода (переворачиванием).

Однонаправленная проводимость диода

Рисунок 5. Диаграммы напряжений до и после выпрямительного диода.

Примем условно, что электрический потенциал переключателя S2 всегда равен 0. Тогда на анод диода будет подаваться разность напряжений –US1-S2 и +US1-S2 в зависимости от положения переключателей S1 и S2. Диаграмма такого переменного напряжения прямоугольной формы изображена на рисунке 5 (верхняя диаграмма). При отрицательной разности напряжений на аноде диода он заперт (работает как изолирующий элемент), при этом через лампу HL1 ток не течёт и она не горит, а напряжение на лампе практически равно нулю. При положительной разности напряжений диод отпирается (действует как электрический проводник) и по последовательной цепочке диод-лампа течёт ток. Напряжение на лампе возрастает до UHL1. Это напряжение немного меньше напряжения источника питания, поскольку часть напряжения падает на диоде. По этой причине, разность напряжений в электронике и электротехнике иногда называют «падением напряжения». Т.е. в данном случае, если лампу рассматривать как нагрузку, то на ней будет напряжение нагрузки, а на диоде — падение напряжения.

Таким образом, периоды отрицательной разности напряжения как бы игнорируются диодом, обрезаются, и через нагрузку течёт ток только в периоды положительной разности напряжений. Такое преобразование переменного напряжения в однополярное (пульсирующее или постоянное) назвали выпрямлением.

volt-info.ru

1.Полупроводниковые диоды, принцип действия, характеристики:

ПОЛУПРОВОДНИКОВЫЙ ДИОД — полупроводниковый прибор с двумя электродами, обладающий односторонней проводимостью. К полупроводниковым диодам относят обширную группу приборов с p-n-переходом, контактом металл — полупроводник и др. Наиболее распространены электропреобразовательные полупроводниковые диоды. Служат для преобразования и генерирования электрических колебаний. Один из основных современных электронных приборов. Принцип действия полупроводникового диода: В основе принципа действия полупроводникового диода — свойства электронно-дырочного перехода, в частности, сильная асимметрия вольт-амперной характеристики относительно нуля. Таким образом различают прямое и обратное включение. В прямом включении диод обладает малым электросопротивлением и хорошо проводит электрический ток. В обратном — при напряжении меньше напряжения пробоя сопротивление очень велико и ток перекрыт. Характеристики:

2.Полупроводниковые диоды, прямое и обратное включение, вах:

Прямое и обратное включение:

При прямом включении p-n-перехода внешнее напряжение создает в переходе поле, которое противоположно по направлению внутреннему диффузионному полю. Напряженность результирующего поля падает, что сопровождается сужением запирающего слоя. В результате этого большое количество основных носителей зарядов получает возможность диффузионно переходить в соседнюю область (ток дрейфа при этом не изменяется, поскольку он зависит от количества неосновных носителей, появляющихся на границах перехода), т.е. через переход будет протекать результирующий ток, определяемый в основном диффузионной составляющей. Диффузионный ток зависит от высоты потенциального барьера и по мере его снижения увеличивается экспоненциально.

Повышенная диффузия носителей зарядов через переход привод к повышению концентрации дырок в области n-типа и электронов в области p-типа. Такое повышение концентрации неосновных носителей вследствие влияния внешнего напряжения, приложенного к переходу, называется инжекцией неосновных носителей. Неравновесные неосновные носители диффундируют вглубь полупроводника и нарушают его электронейтральность. Восстановление нейтрального состояния полупроводника происходит за счет поступления носителей зарядов от внешнего источника. Это является причиной возникновения тока во внешней цепи, называемого прямым.

При включении p-n-перехода в обратном направлении внешнее обратное напряжение создает электрическое поле, совпадающее по направлению с диффузионным, что приводит к росту потенциального барьера и увеличению ширины запирающего слоя. Все это уменьшает диффузионные токи основных носителей. Для неосновных носителе поле в p-n-переходе остается ускоряющим, и поэтому дрейфовый ток не изменяется.

Таким образом, через переход будет протекать результирующий ток, определяемый в основном током дрейфа неосновных носителей. Поскольку количество дрейфующих неосновных носителей не зависит от приложенного напряжения (оно влияет только на их скорость), то при увеличении обратного напряжения ток через переход стремиться к предельному значению IS , которое называется током насыщения. Чем больше концентрация примесей доноров и акцепторов, тем меньше ток насыщения, а с увеличением температуры ток насыщения растет по экспоненциальному закону.

На графике изображены ВАХ для прямого и обратного включения диода. Ещё говорят, прямая и обратная ветвь вольт-амперной характеристики. Прямая ветвь (Iпр и Uпр) отображает характеристики диода при прямом включении (то есть когда на анод подаётся «плюс»). Обратная ветвь (Iобр и Uобр) отображает характеристики диода при обратном включении (то есть когда на анод подаётся «минус»).

Синяя толстая линия – это характеристика германиевого диода (Ge), а чёрная тонкая линия – характеристика кремниевого (Si) диода. На рисунке не указаны единицы измерения для осей тока и напряжения, так как они зависят от конкретной марки диода.

Для начала определим, как и для любой плоской системы координат, четыре координатных угла (квадранта). Напомню, что первым считается квадрант, который находится справа вверху (то есть там, где у нас буквы Ge и Si). Далее квадранты отсчитываются против часовой стрелки.

Итак, II-й и IV-й квадранты у нас пустые. Это потому, что мы можем включить диод только двумя способами – в прямом или в обратном направлении. Невозможна ситуация, когда, например, через диод протекает обратный ток и одновременно он включен в прямом направлении, или, иными словами, невозможно на один вывод одновременно подать и «плюс» и «минус». Точнее, это возможно, но тогда это будет короткое замыкание. Остаётся рассмотреть только два случая – прямое включение диодаиобратное включение диода.

График прямого включения нарисован в первом квадранте. Отсюда видно, что чем больше напряжение, тем больше ток. Причём до какого-то момента напряжение растёт быстрее, чем ток. Но затем наступает перелом, и напряжение почти не меняется, а ток начинает расти. Для большинства диодов этот перелом наступает в диапазоне 0,5…1 В. Именно это напряжение, как говорят, «падает» на диоде. Эти 0,5…1 В и есть падение напряжения на диоде. Медленный рост тока до напряжения 0,5…1В означает, что на этом участке ток через диод практически не идёт даже в прямом направлении.

График обратного включения нарисован в третьем квадранте. Отсюда видно, что на значительном участке ток почти не изменяется, а затем увеличивается лавинообразно. Если увеличить, напряжение, например, до нескольких сотен вольт, то это высокое напряжение «пробьёт» диод, и ток через диод будет течь. Вот только «пробой» — это процесс необратимый (для диодов). То есть такой «пробой» приведет к выгоранию диода и он либо вообще перестанет пропускать ток в любом направлении, либо наоборот – будет пропускать ток во всех направлениях.

В характеристиках конкретных диодов всегда указывается максимальное обратное напряжение – то есть напряжение, которое может выдержать диод без «пробоя» при включении в обратном направлении. Это нужно обязательно учитывать при разработке устройств, где применяются диоды.

Сравнивая характеристики кремниевого и германиевого диодов, можно сделать вывод, что в p-n-переходах кремниевого диода прямой и обратный токи меньше, чем в германиевом диоде (при одинаковых значениях напряжения на выводах). Это связано с тем, что у кремния больше ширина запрещённой зоны и для перехода электронов из валентной зоны в зону проводимости им необходимо сообщить большую дополнительную энергию.

studfiles.net

Максимальное обратное напряжение на диодах определяется формулой

Uобр. mах = 1,045Uср.

В ряде практических приложений для выпрямления переменного тока и плавного регулирования мощности передаваемой в нагрузку используют тиристорные преобразователи. При этом, малые токи управления позволяют управлять большими токами нагрузки.

Пример простейшего управляемого по мощности тиристорного выпрямителя показан на рис. 7.10.

Рис. 7.10. Тиристорная схема выпрямителя

На рис. 7.11 приведены временные диаграммы, поясняющие принцип регулирования среднего значения выпрямленного напряжения.

Рис. 7.11. Временные диаграммы работы тиристорного выпрямителя

В этой схеме предполагается, что входное напряжение Uвх для регулируемого тиристорного формируется, например, двухполупериодным выпрямителем. Если управляющие импульсы Uу достаточной амплитуды подаются в начале каждого полупериода (участок о-а на диаграмме Uвых), выходное напряжение будет повторять напряжение двухполупериодного выпрямителя. Если сместить управляющие импульсы к середине каждого полупериода, то импульсы на выходе будут иметь длительность, равную четверти полупериода (участок b-с). Дальнейшее смещение управляющим импульсов приведет к дальнейшему уменьшению средней амплитуды выходных импульсов (участок d – e).

Таким образом, подавая на тиристор управляющие импульсы, сдвигающиеся по фазе относительно входного напряжения, можно превратить синусоидальное напряжение (ток) в последовательность импульсов любой длительности, амплитуды и полярности, то есть можно изменять действующее значение напряжения (тока) в широких пределах.

7.3 Сглаживающие фильтры

Рассмотренные схемы выпрямления позволяют получать однополярное пульсирующее напряжение, которое не всегда применимо для питания сложных электронных приборов, поскольку, из-за больших пульсаций, приводят к неустойчивости их работы.

Для значительного уменьшения пульсации применяют сглаживающие фильтры. Важнейшим параметром сглаживающего фильтра является коэффициент сглаживания S, определяемый по формуле S=1/2, где 1 и 2 – коэффициенты пульсаций на входе и выходе фильтра соответственно. Коэффициент пульсации показывает во сколько раз фильтр уменьшает пульсации. В практических схемах коэффициент пульсаций на выходе фильтра может достигать значений 0,00003.

Основными элементами фильтров являются реактивные элементы – емкости и индуктивности (дроссели). Рассмотрим вначале принцип работы простейшего сглаживающего фильтра, схема которого приведена на рис. 7.12.

Рис. 7.12. Схема простейшего сглаживающего фильтра с однополупериодным выпрямителем

В этой схеме сглаживание напряжения на нагрузке после однополупериодного диодного выпрямителя VD осуществляется с помощью конденсатора С, подключенного параллельно нагрузке Rн.

Временные диаграммы, поясняющие работу такого фильтра, приведены на рис. 7.13. На участке t1 – t2 входным напряжением диод открывается, а конденсатор заряжается. Когда входное напряжение начнет уменьшаться, диод закрывается напряжением, накопленным на конденсаторе Uс (участок t1 – t2). На этом интервале источник входного напряжения отключается от конденсатора и нагрузки, и конденсатор разряжается через сопротивления нагрузки Rн.

Рис. 7.13. Временные диаграммы работы фильтра с однополупериодным выпрямителем

Если ёмкость достаточно велика, по разряд емкости через Rн будет происходить с большой постоянной времени =RнС, и следовательно, уменьшение напряжение на конденсаторе будет небольшим, а эффект сглаживания – значительным. С другой стороны, чем больше емкость тем короче отрезок t1 – t2 в течении которого диод открыт и через него течет ток i возрастающий (при заданном среднем токе нагрузки) при уменьшении разности t2 – t1. Такой режим работы может привести к выходу из строя выпрямительного диода, и, кроме того, является достаточно тяжелым и для трансформатора.

При использовании двухполупериодных выпрямителей величина пульсаций на выходе емкостного фильтра уменьшается, поскольку конденсатор за время между появлением импульсов на меньшую величину, что хорошо иллюстрируется рис. 7.14.

Рис. 7.14. Сглаживание пульсаций двухполупериодного выпрямителя

Для расчета величины пульсаций на выходе емкостного фильтра произведем аппроксимацию пульсаций выходного напряжения пилообразной кривой ток, как это показано на рис. 7.15.

Рис. 7.15. Аппроксимация напряжения пульсаций

Изменение заряда на конденсаторе определяется выражением

∆Q=∆UC=I нТ1,

где Т1 – период пульсаций, Iн – среднее значение тока нагрузки. С учетом того, что Iн = Иср/ Rн, получаем

Из рис. 7.15 следует, что

при этом двойная амплитуда пульсаций определяется выражением

Сглаживающими свойствами обладают и индуктивные фильтры, причем лучшими сглаживающими свойствами обладают фильтры, содержащие индуктивность и емкость, соединенные так, как показано на рис. 7.16.

Рис. 7.16. Сглаживающий фильтр с индуктивностью и емкостью

В этой схеме емкость конденсатора выбирается таким образом, чтобы его реактивное сопротивление было значительно меньшим сопротивления нагрузки. Достоинством такого фильтра является то, что он уменьшает величину входной пульсации ∆U до величины, гдеω — частота пульсаций.

На практике широкое распространение получили различные типы F — образных и П – образных фильтров, варианты построения которых представлены на рис. 7.17.

При небольших токах нагрузки хорошо работает F — образный выпрямитель, представленный на рис. 7.16.

Рис. 7.17. Варианты построения фильтра

В наиболее ответственных схемах используют многозвенные схемы фильтрации (рис. 7.17 г).

Часто дроссель заменяют резисторами, что несколько снижает качество фильтрации, но значительно удешевляет фильтры (рис. 7.17 б, в).

Основной внешней характеристикой выпрямителей с фильтром является зависимость среднего значения выходного напряжения Uср (напряжения на нагрузке) от среднего значения выходного тока.

В рассмотренных схемах увеличение выходного тока приводит к уменьшению Uср из-за увеличения падения напряжения на обмотках трансформатора, диодах, подводящих проводах, элементах фильтра.

Наклон внешней характеристики при заданном среднем токе определяют через выходное сопротивление Rвых, определяемое по формуле:

Icр – задано. Чем меньше величина Rвых, тем меньше выходное напряжение зависит от выходного тока, тем лучше схема выпрямителя с фильтром. На рис. 7.18 приведены типовые зависимости Uср от Iср для различных вариантов фильтрации.

Рис. 7.18. Типовые зависимости Uср от Iср для различных схем фильтрации

studfiles.net

Что такое обратное напряжение? — Ремонт интерьер строительство

Обратное напряжение

Обратное напряжение — это тип сигнала энергии, создаваемого при изменении полярности электрического тока. Такое напряжение часто возникает, когда обратная полярность подается на диод, заставляя диод реагировать, работая в обратном направлении. Эта обратная функция может также создавать напряжение пробоя внутри диода, так как это часто приводит к поломке схемы, к которой применяется напряжение.

Обратное напряжение возникает, когда источник подключения энергетического сигнала к цепи применяется инвертированным образом. Это означает, что положительный источник свинца подключен к заземленному или отрицательному проводнику цепи и наоборот. Эта передача напряжения часто не предназначена, так как большинство электрических схем не способны обрабатывать напряжения.

Когда минимальное напряжение подается на схему или на диод, это может привести к тому, что схема или диод будут работать в обратном порядке. Это может вызвать реакцию, такую ​​как двигатель вентилятора коробки, вращаясь неправильно. Элемент будет продолжать функционировать в таких случаях.

Когда величина напряжения, приложенного к цепи, слишком велика, сигнал для принимаемой схемы, однако, это называется пробивным напряжением. Если входной сигнал, который был обратный, превышает допустимое напряжение для цепи для поддержания, схема может быть повреждена за пределами остальной используемой. Точка, в которой цепь повреждена, относится к значению напряжения пробоя. Это напряжение пробоя имеет пару других имен, пиковое обратное напряжение или обратное пробивное напряжение.

Обратное напряжение может вызвать напряжение пробоя, которое также влияет на работу других компонентов схемы. За пределами повреждающих диодов и функций цепи обратного напряжения он также может стать пиковым обратным напряжением. В таких случаях схема не может содержать количество входной мощности от сигнала, который был обращен вспять, и может создавать напряжение пробоя между изоляторами.

Это напряжение пробоя, которое может возникать через компоненты схемы, может вызвать пробой компонентов или проволочных изоляторов. Это может превратить их в сигнальные проводники и повредить цепь, проводя напряжение на разные части схемы, которые не должны принимать его, что приводит к нестабильности по всей цепи. Это может вызвать дуги напряжения от компонента к компоненту, что также может быть достаточно мощным, чтобы зажечь различные компоненты схемы и привести к пожару.

  • Система тт в электроустановках напряжением до 1000в

  • 1. Общие сведения и принцип работы полупроводникового диода

      Если вкратце, полупроводниковый диод — устройство, пропускающее ток в одном направлении. Это определение достаточно поверхностное, однако на первых порах этого будет достаточно. Как и у всех электронных компонентов, у диода есть свое графическое изображение, которое показано ниже:

      Диод имеет два вывода: анод (А) и катод (К). Он будет пропускать ток, если напряжение на аноде выше, чем на катоде на определенную величину. Назовем эту величину «потенциалом отпирания». Давайте рассмотрим вольт-амперную характеристику диода:

      Для удобства будем рассматривать только правую часть графика, из которой видно, что при достижении напряжения некой величины,ток через диод начнет лавинообразно нарастать. Это и есть тот самый потенциал отпирания диода. Величина его зависит от многих параметров, таких как степень легирования полупроводника, температуры, материала, и т. д. На практике, для кремния, величина отпирания примерно равна 0,65 Вольт. Давайте рассмотрим, откуда берется этот потенциал.

     В момент соединения двух полупроводников разных типов проводимости, в о дном из которых основными носителями заряда являются электроны (проводимость n-типа), а в другом — дырки (проводимость p-типа), на стыках соединения формируется область пространственного заряда (ОПЗ). Ниже, условно изображен процесс, протекающий при этом:

      Поскольку заряды разноименные (изображены кружками со стрелочками), они стремятся друг к другу, а на их месте остаются ионы, имеющие заряд противоположный заряду, который его занимал, то есть, если электрон устремился в область p-типа, на его месте остался ион с положительным зарядом. Та же самая ситуация касается и  дырок, причем, первыми начнут свое движение частицы, которые находятся ближе к стыку соединения, поскольку там расстояние между противоположными зарядами меньше. Так вот, устремившись друг к другу, эти заряды «оставляют за собой» неподвижные ионы, которые формируют электрическое поле на границе стыка. Чем больше количество электронов и дырок покинут свое место, тем больше будет потенциал поля, сформированного ионами. Электроны и дырки перестанут двигаться друг к другу тогда, когда величина поля сформированного ионами станет достаточной для того, чтобы препятствовать движению противоположных зарядов друг к другу. В этом случае, наступает равновесие. Рассмотрим, что будет происходить при подключении внешнего источника.

    Прямое включение диода

      При прямом включении, к аноду подключается положительный потенциал, а к катоду отрицательный потенциал внешнего источника, как показано ниже:
     В этом случае, потенциал отпирания диода компенсируется внешним источником, если величина электрического поля внешнего источника больше.Также, внешний источник устремляет электроны и дырки друг к другу. Через диод практически беспрепятственно начинает протекать ток.

    Обратное включение диода

     Обратным включением диода называется такое соединение, при котором положительный потенциал внешнего источника подключен к катоду диода, а отрицательный — к аноду. Рассмотрим, что происходит в таком случае:

      В такой ситуации, электроны и дырки будут устремляться друг от друга, поскольку электроны будут притягиваться к положительному потенциалу, а дырки —  к отрицательному потенциалу внешнего источника. К тому же, величина внутреннего электрического поля диода будет расти, поскольку на тех местах, откуда устремились электроны и дырки к потенциалам внешнего источника, остаются неподвижные ионы, которых стало больше,чем было изначально. По идее, в этом случае электрический ток не должен идти. Однако это не совсем так. Ток в такой цепи течет, но он очень, очень маленький (десятки наноампер на практике). Связано это вот с чем. Выше я упоминал, что при соединении двух полупроводников противоположных типов проводимостей, их свободные заряды устремляются друг к другу. При таком контакте, электрон, попав в полупроводник p-типа остается там, он никуда не исчезает. Тоже самое касается и дырок. Такие заряды называют неосновными. Из-за этих зарядов и протекает ток в обратном включении. Но их очень мало, по сравнению с основными. Соответственно, величина этого тока (обратного) будет намного меньше по сравнению с прямым током.
     Итак, резюмируя: полупроводниковый диод — устройство, величина  тока которого при прямом включении намного больше, чем в обратном.
      На этом пока все). В следующий раз перейдем к  практической части.

    Полупроводниковый диод

    Проводники и изоляторы

    Все вещества состоят из одного или более химических элементов, таких, как кислород, сера и т. д. Мельчайшей составной частью вещества явля­ется атом. Атомы различных элементов могут, соединяясь, образовывать молекулы вещества: например, молекула воды включает в себя два атома водорода и один атом кислорода. Таким образом, получаются различные вещества.

    Атом, в свою очередь, состоит из более мелких частиц, электронов, вращающихся вокруг ядра, которое находится в центре атома и содержит один или более протонов (рис. 20.1). Отрицательно заряженные электро­ны притягиваются положительно заряженными протонами и непрерывно вращаются по орбитам, или оболочкам, вокруг ядра. Количество элек­тронов в точности равно количеству протонов.

    Атомы различных элементов отличаются друг от друга количеством электронов: например, у атома водорода один электрон, тогда как атом углерода имеет шесть электронов. Под действием электрического потен­циала электроны, слабо связанные с ядром (так называемые свободные электроны), покидают свои орбиты и начинают упорядоченное движение, образуя поток электронов, или электрический ток. Возникает электри­ческая проводимость.

     

    Рис. 20.1. Атомы состоят из отрицательно заряженных электронов, вращаю­щихся вокруг положительного ядра.

     

    Рис. 20.2. Проводники, полупроводники и изоляторы. 

    Хороший проводник имеет большое число «несвязанных», или свобод­ных, электронов, которые способствуют возникновению электрического тока. Хороший проводник обладает столь малым сопротивлением, что им можно пренебречь. Примерами могут служить серебро, медь или алюми­ний (рис. 20.2).

    Изолятор — это материал, имеющий очень малое количество свобод­ных электронов. Изоляторы препятствуют протеканию электрического тока и, следовательно, обладают очень большим сопротивлением, при­ближающимся к сопротивлению разомкнутой цепи. Примерами могут служить стекло, сухое дерево, резина, поливинилхлорид, слюда и полистирол.  

    Полупроводники

    Атомы полупроводников сгруппированы в правильную структуру, назы­ваемую «кристаллической решеткой». Они не являются хорошими про­водниками (откуда и их название), поскольку содержат очень мало сво­бодных электронов. Количество свободных электронов возрастает при повышении температуры, что приводит к увеличению проводимости. Эти свободные электроны называют неосновными носителями.

    Проводимость также может быть улучшена посредством добавления определенного количества примесей. Такие примеси, как атомы мы­шьяка, вносят в решетку дополнительные электроны, в результате че­го получается полупроводник n-типа. Эти атомы называются атомами-донорами. Добавление атомов, называемых атомами-акцепторами (например, атомов алюминия) приводит к недостатку электронов, или к образованию так называемых дырок, при этом получается полупровод­ник p-типа (рис. 20.3). Электроны и дырки, полученные при внедрении примесей, называют основными носителями.

                      

                                   

    Рис. 20.3. Полупроводники n— и p-типа     Рис. 20.4. Плоскостной диод с рп-переходом.

     

    Плоскостной диод

    Если полупроводник р-типа соединить с полупроводником n-типа (рис. 20.4), то под действием диффузии электроны из области с прово­димостью n-типа начнут перетекать в область с проводимостью р-типа, чтобы заполнить дырки в этой области. Перетекание электронов продол­жается до тех пор, пока по обе стороны рта-перехода не образуется ней­тральная зона, или так называемый обедненный слой. Этот обедненный слой приводит к возникновению потенциального барьера, препятствую­щего дальнейшему движению электронов через границу раздела.

    Чтобы пересечь границу раздела, электроны должны теперь обладать энергией, достаточной для преодоления потенциального барьера. Ис­точником этой энергии может служить внешняя электродвижущая сила (ЭДС). Высота потенциального барьера зависит от типа применяемого полупроводника. Например, для германия (Ge) она составляет 0,3В, адля кремния (Si) – 0,6 В.

     

    Характеристики диода

    При обратном включении диода (рис. 20.5) электроны области с проводи­мостью n-типа (n-области) притягиваются положительным полюсом ис­точника напряжения смещения, а дырки р-области притягиваются отри­цательным полюсом. В результате обедненный слой расширяется, и уве­личившийся потенциальный барьер еще сильнее препятствует проникно­вению электронов через границу раздела.

    При прямом включении диода (рис. 20.6) обедненный слой исчезает, и электроны получают возможность перетекать через границу раздела, т. е. ток, создаваемый основными носителями, свободно протекает через диод

    .

    Рис. 20.5. Обратное включение диода. На рис. (а) видно, что обедненный слой расширился.

    Рис. 20.6. Прямое включение диода. На рис, (а) показано исчезновение обед­ненного слоя.

     

    Но следует отметить, что на диоде существует постоянное падение напряжения, называемое падением напряжения при прямом включении или прямым напряжением диода (0,3 В для диодов из германия и 0,6 В для кремниевых диодов).

    Характеристики плоскостного диода в случае прямого включения по­казаны на рис. 20.7. Заметим, что, как только напряжение смещения превысит потенциальный барьер диода, через него начинает протекать большой ток. При этом очень малое увеличение напряжения смещения приводит к сильному увеличению тока, протекающего через диод. При напряжениях ниже прямого напряжения через диод протекает малый ток утечки (несколько микроампер), которым обычно пренебрегают.

     Характеристики диода в случае обратного включения показаны на рис. 20.8. При обратном включении через диод протекает очень малый ток, вызванный неосновными носителями. Величина этого обратного тока практически постоянна вплоть до достижения максимального напряже­ния, называемого напряжением пробоя рта-перехода или обратным пико­вым напряжением. Если приложить еще большее напряжение, то насту­пает пробой и обратный ток резко возрастает, что приводит к разрушению диода. Поэтому при включении диода в схему следует убедиться, что обратное напряжение на нем не превысит напряжение пробоя, ука­занное изготовителем. Германиевые диоды имеют больший ток утечки и, следовательно, более низкое сопротивление при обратном включении, чем кремниевые диоды.

    Рис. 20.7. Характеристики герма­ниевого

    и кремниевого диодов при прямом включении.        Рис. 20.8. Характеристики плос­костного диода в случае обратного включения.

    В этом видео рассказывается о принципах работы диода:

    ВАХ полупроводникового диода

    Вах-вах-вах… Обычно эти слова употребляют, рассказывая анекдоты про кавказцев))) Кавказцев прошу не обижаться – я уважаю Кавказ. Но, как говорится, из песни слов не выкинешь. Да и в нашем случае это слово имеет другой смысл. Да и не слово это даже, а аббревиатура.

    ВАХ – это вольт амперная характеристика. Ну а нас в этом разделе интересует вольт амперная характеристика полупроводникового диода.

    График ВАХ диода показан на рис. 6.

    Рис. 6. ВАХ полупроводникового диода.

    На графике изображены ВАХ для прямого и обратного включения диода. Ещё говорят, прямая и обратная ветвь вольт-амперной характеристики. Прямая ветвь (Iпр и Uпр) отображает характеристики диода при прямом включении (то есть когда на анод подаётся «плюс»). Обратная ветвь (Iобр и Uобр) отображает характеристики диода при обратном включении (то есть когда на анод подаётся «минус»).

    На рис. 6 синяя толстая линия – это характеристика германиевого диода (Ge), а чёрная тонкая линия – характеристика кремниевого (Si) диода. На рисунке не указаны единицы измерения для осей тока и напряжения, так как они зависят от конкретной марки диода.

    Что же мы видим на графике? Ну для начала определим, как и для любой плоской системы координат, четыре координатных угла (квадранта). Напомню, что первым считается квадрант, который находится справа вверху (то есть там, где у нас буквы Ge и Si). Далее квадранты отсчитываются против часовой стрелки.

    Итак, II-й и IV-й квадранты у нас пустые. Это потому, что мы можем включить диод только двумя способами – в прямом или в обратном направлении. Невозможна ситуация, когда, например, через диод протекает обратный ток и одновременно он включен в прямом направлении, или, иными словами, невозможно на один вывод одновременно подать и «плюс» и «минус». Точнее, это возможно, но тогда это будет короткое замыкание))). Остаётся рассмотреть только два случая – прямое включение диода и обратное включение диода.

    График прямого включения нарисован в первом квадранте. Отсюда видно, что чем больше напряжение, тем больше ток. Причём до какого-то момента напряжение растёт быстрее, чем ток. Но затем наступает перелом, и напряжение почти не меняется, а ток начинает расти. Для большинства диодов этот перелом наступает в диапазоне 0,5…1 В. Именно это напряжение, как говорят, «падает» на диоде. То есть если вы подключите лампочку по первой схеме на рис. 3, а напряжение батареи питания у вас будет 9 В, то на лампочку попадёт уже не 9 В, а 8,5 или даже 8 (зависит от типа диода). Эти 0,5…1 В и есть падение напряжения на диоде. Медленный рост тока до напряжения 0,5…1В означает, что на этом участке ток через диод практически не идёт даже в прямом направлении.

    График обратного включения нарисован в третьем квадранте. Отсюда видно, что на значительном участке ток почти не изменяется, а затем увеличивается лавинообразно. Что это значит? Если вы включите лампочку по второй схеме на рис. 3, то светиться она не будет, потому что диод в обратном направлении ток не пропускает (точнее, пропускает, как видно на графике, но этот ток настолько мал, что лампа светиться не будет). Но диод не может сдерживать напряжение бесконечно. Если увеличить, напряжение, например, до нескольких сотен вольт, то это высокое напряжение «пробьёт» диод (см. перегиб на обратной ветви графика) и ток через диод будет течь. Вот только «пробой» — это процесс необратимый (для диодов). То есть такой «пробой» приведет к выгоранию диода и он либо вообще перестанет пропускать ток в любом направлении, либо наоборот – будет пропускать ток во всех направлениях.

    В характеристиках конкретных диодов всегда указывается максимальное обратное напряжение – то есть напряжение, которое может выдержать диод без «пробоя» при включении в обратном направлении. Это нужно обязательно учитывать при разработке устройств, где применяются диоды.

    Сравнивая характеристики кремниевого и германиевого диодов, можно сделать вывод, что в p-n-переходах кремниевого диода прямой и обратный токи меньше, чем в германиевом диоде (при одинаковых значениях напряжения на выводах). Это связано с тем, что у кремния больше ширина запрещённой зоны и для перехода электронов из валентной зоны в зону проводимости им необходимо сообщить большую дополнительную энергию.


    Какое время обратного восстановления в диоде?

    Объемный заряд внутри PN-перехода должен быть установлен до того, как сможет протекать прямой ток. (Если первое предложение заставляет вас спросить почему, это отдельный вопрос — возможно, это поможет. Давайте просто посмотрим на динамику создания и нейтрализации этого пространственного заряда.)

    Начиная с нуля, этот объемный заряд может быть установлен довольно быстро, потому что приложенное извне прямое напряжение смещения может направлять электроны вовне.Электроны диффундируют из материала n-типа в край материала p-типа, дырки в материале p-типа диффундируют в край материала n-типа, а на границах раздела металлов новые электроны инжектируются в n-материал. конец типа, а дырки генерируются на конце p-типа для производства свободных электронов, которые могут течь во внешней цепи. Все эти потоки представляют собой потоки большинства носителей в их соответствующих материалах, поэтому диффузия происходит быстро, обусловленная гораздо большими градиентами концентрации.Объемный заряд развивается быстро, потому что для включения диода текут основные носители — электроны в материале n-типа и дырки в материале p-типа.

    Однако, если внешнее напряжение затем инвертируется в обратное смещение, пространственный заряд притягивается к себе для рекомбинации. Но эта рекомбинация происходит только через диффузию неосновных носителей. Эта диффузия неосновных носителей имеет гораздо меньшие градиенты концентрации и, следовательно, диффундирует на порядки медленнее.Внешняя схема, обеспечивающая обратное смещение, может помочь ускорить эту рекомбинацию, поскольку она может обеспечить более быструю нейтрализацию избыточных дырок, которые мигрировали обратно в материал p-типа, и удаление избыточных электронов, которые мигрировали обратно в материал n-типа. Предполагается, что эта рекомбинация дырочных электронов или нейтрализация заряда происходит практически мгновенно на границах раздела полупроводник-металл, поэтому, если внешний ток может поставлять и удалять электроны при обратном смещении, это будет происходить намного быстрее, чем «нормальная» рекомбинация дырка-электрон. скорость в объеме полупроводника.Вот почему могут быть огромные обратные токи во время обратного восстановления.

    Я собрал небольшую симуляцию времени обратного восстановления диода 1N4007 по сравнению с диодом 1N4148:

    Демонстрация показывает, как диоды переключаются прямоугольным импульсом, и показывает, что 1N4007 полностью выключается за несколько микросекунд!

    (См. также PDF-файл под названием «Время рекомбинации в полупроводниковых диодах».)

    Защита от обратного тока | Maxim Integrated

    Перепутывание батарей может быть фатальным для портативного оборудования.Однако многочисленные схемы могут защитить от обратной установки батарей и других условий, вызывающих перегрузку по току.

    Оборудование, работающее от аккумуляторов, подвержено последствиям неправильной установки аккумуляторов, случайных коротких замыканий и других видов небрежного обращения. Последствия перевернутой батареи имеют решающее значение. К сожалению, защититься от такой ситуации сложно.

    Чтобы сделать оборудование устойчивым к батареям, установленным в обратном направлении, необходимо спроектировать либо механический блок для обратной установки, либо электрическую защиту, предотвращающую вредные последствия при обратной установке.Механическая защита может быть односторонним разъемом, который принимает батарею только при правильной полярности.

    Например, 9-вольтовые аккумуляторы для радиоприемников имеют механически разные клеммы, хотя пользователь, возившийся с механическим соединением, все же может на мгновение выполнить обратное электрическое соединение. С другой стороны, вы можете настроить разъемы для аккумуляторных батарей так, чтобы мгновенное обратное подключение было невозможным, пока пользователь не изменит разъем.

    Однако самая большая проблема связана с приложениями, работающими от одной или нескольких одноэлементных батарей, таких как AA-щелочные, NiCd и никель-металлогидридные батареи.Как правило, эти батареи не имеют механических средств для предотвращения реверсирования одного или нескольких элементов. Для этих систем разработчик должен убедиться, что любой поток обратного тока достаточно низок, чтобы избежать повреждения цепи или батареи. Эту гарантию могут обеспечить различные схемы.

    Диоды обеспечивают простейшую защиту

    Простейшей формой защиты от переполюсовки батареи является диод, включенный последовательно с положительной линией питания (, рис. 1a, ). Диод пропускает ток от правильно установленной батареи к нагрузке и блокирует ток от установленной сзади батареи.У этого решения есть два основных недостатка: диод должен выдерживать полный ток нагрузки, а его прямое падение напряжения сокращает время работы оборудования. (Выходное напряжение регулятора на один диод ниже напряжения батареи, поэтому регулятор отключается преждевременно.)

    Если приложение требует щелочных батарей или батарей другого типа с относительно высоким выходным импедансом, вы можете защититься от обратной установки, используя параллельную ( шунт) диод. Схема Рис. 1b проста, но далека от идеала.Такой подход защищает нагрузку, но потребляет большой ток от закороченной батареи. Как и прежде, диод должен выдерживать большой ток.


    Рис. 1. Простейшей защитой от обратного тока батареи является последовательный (а) или шунтирующий (б) диод.

    В качестве улучшенной меры реверсирования батареи можно добавить pnp-транзистор в качестве переключателя верхнего плеча между батареей и нагрузкой (, рис. 2a, ). При правильной установке батареи токоограничивающий резистор в выводе базы смещает переход база-эмиттер в прямом направлении.Установленная сзади батарея смещает транзистор в обратном направлении, и ток не может течь. Эта компоновка лучше, чем последовательный диод, потому что насыщенный pnp-транзистор обеспечивает более низкое падение напряжения, чем большинство диодов, и, таким образом, повышает эффективность работы за счет снижения рассеиваемой мощности.

    Проверка на недостатки

    Меньшее падение напряжения p-n-p-транзисторов также увеличивает время работы, потому что это позволяет напряжению батареи разряжаться до более низкого уровня. Эти транзисторы имеют низкую стоимость и низкое напряжение насыщения, но имеют и недостатки.Например, базовый ток рассеивает часть полезной энергии батареи как V IN × I B , а бета (максимум примерно 50) большинства мощных pnp-транзисторов требует значительного базового тока для заданного тока нагрузки.

    Вы должны спроектировать базовый ток, достаточный для комбинации максимальной нагрузки и минимального напряжения V IN . Это фиксирует значение базового тока, а затем приводит к снижению эффективности при более легких нагрузках, если только вы не предусмотрели сложную схему для модуляции базового тока в зависимости от тока нагрузки.Эти критерии также применимы к использованию npn-переключателя между нагрузкой и возвратом батареи (, рис. 2b, ), но с одним существенным отличием: гораздо более высокие коэффициенты бета мощных npn-транзисторов снижают потери тока базы при заданном токе нагрузки.


    Рис. 2. Поскольку прямое падение меньше, pnp-транзистор верхнего плеча (a) обеспечивает лучшую защиту от обратного тока, чем диод. Еще лучше использовать npn-транзистор нижнего плеча (b), чье более высокое бета означает меньший ток базы и меньшие потери мощности.

    Замена биполярных транзисторов на МОП-транзисторы

    При заданном токе нагрузки низкое сопротивление полностью улучшенного полевого МОП-транзистора падает намного меньше напряжения, чем у эквивалентного биполярного транзистора. Результатом является меньшее рассеивание мощности, что позволяет МОП-транзистору выдерживать гораздо более высокие токи нагрузки, чем это возможно с биполярным транзистором того же размера. Это преимущество привело к производству n- и p-канальных полевых МОП-транзисторов с логическим уровнем для работы при 5 В и 3 В и даже более низких напряжениях питания.NMOS FET включают Motorola MTP-3055EL, Harris RFD14N05L и Siliconix Si9410DY. Примерами полевых транзисторов PMOS являются Siliconix Si9433DY и Si9434DY, а также National Semiconductor NDS9435.

    Обратите особое внимание на ориентацию полевого МОП-транзистора в цепи. МОП-транзисторы имеют встроенный в корпус диод, который проводит ток в условиях прямого смещения. Этот ток течет от стока к истоку для PMOS FET и от истока к стоку для NMOS FET. Независимо от того, используете ли вы NMOS или PMOS FET в качестве переключателя нижнего или верхнего плеча, ориентируйте диод в корпусе устройства в направлении нормального протекания тока.Затем перевернутая батарея смещает диод в обратном направлении и блокирует протекание тока.

    Полевые МОП-транзисторы NMOS более привлекательны для сильноточных приложений, чем полевые МОП-транзисторы PMOS, поскольку полевые МОП-транзисторы NMOS обеспечивают более низкое сопротивление во включенном состоянии, чем аналоги PMOS того же размера. Поскольку для полного улучшения необходимо поднять напряжение затвора полевого МОП-транзистора NMOS выше истока, полевой МОП-транзистор NMOS относится к цепи возврата батареи (, рис. 3, ). Таким образом, если вы правильно установите батарею, напряжение батареи выше 10 В (5 В для полевых МОП-транзисторов логического уровня) полностью откроет МОП-транзистор.Переворачивание батареи приводит к низкому уровню клеммы затвора и отключению МОП-транзистора.


    Рис. 3. Полевой МОП-транзистор с логическим уровнем нижнего плеча для защиты от обратного тока выдерживает больший ток, чем эквивалентный биполярный транзистор.

    Переключатель нижнего плеча имеет один недостаток: токи возврата на землю, протекающие через переключатель, создают небольшие перепады напряжения, которые могут мешать работе цепи. Альтернативой является переключатель верхнего плеча. Однако использование полевого МОП-транзистора NMOS в качестве переключателя верхнего плеча по-прежнему требует, чтобы привод затвора превышал напряжение источника, то есть привод затвора был выше, чем напряжение батареи. На рис. 4 показано одно решение, в котором устройство подкачки заряда (IC 1 ) повышает напряжение затвора намного выше напряжения истока. Эта схема полностью улучшает МОП-транзистор при правильной установке батареи.


    Рис. 4. Чтобы обеспечить защиту от обратного тока без нарушения токов возврата на землю, добавьте NMOS FET на стороне высокого напряжения, управляемую ИС зарядового насоса.

    На рис. 4 IC 1 принимает напряжение батареи от 3,5 В до 16,5 В и регулирует выходное напряжение батареи до (V BATT +10 В).Эта схема позволяет стандартным полевым МОП-транзисторам NMOS в расширенном режиме работать от напряжения батареи до 3,5 В. Поскольку зарядный насос работает от напряжения батареи и, следовательно, также нуждается в защите от переполюсовки батареи, схема подключает диод между положительной клеммой батареи и клеммой V CC микросхемы.

    PMOS FET работают на стороне высокого напряжения и не требуют дополнительных схем для управления затвором. Однако переключатель PMOS, как правило, в два раза дороже и имеет почти в три раза большее сопротивление во включенном состоянии, чем устройство NMOS с сопоставимой мощностью, работающей с аналогичным напряжением сток-исток.Вы можете улучшить имеющиеся в настоящее время PMOS-транзисторы с напряжением затвора 5 В или даже 3 В.

    Если напряжение батареи вашей схемы составляет не менее 10 В, вы можете подключить затвор PMOS FET непосредственно к возврату батареи ( рис. 5 ). Как и прежде, вы должны подключить транзистор в обратном направлении (относительно обычной практики), чтобы сориентировать его корпус диода в направлении нормального протекания тока. Это соединение подает напряжение батареи между затвором и стоком, но напряжение между затвором и истоком управляет сопротивлением канала.Однако внутренний диод создает напряжение истока на одно падение ниже напряжения стока, когда вы впервые применяете V BATT . В результате получается жесткое напряжение затвор-исток, равное -(V BATT -V DIODE ), которое быстро увеличивает полевой транзистор, сводя падение VDS к желаемому минимуму.


    Рис. 5. Этот переключатель верхнего плеча на полевых МОП-транзисторах предлагает простую защиту от обратного тока в обмен на более высокое сопротивление в открытом состоянии и более высокую стоимость.

    Проблема низкого заряда батареи

    Для напряжения батареи ниже 10 В, но выше 2.7 В можно использовать низковольтный полевой МОП-транзистор, такой как Siliconix Si9433DY или Si9435DY. С другой стороны, обеспечение защиты от переполюсовки батареи при напряжении ниже 2,7 В может быть проблемой. Одним из решений является использование биполярного транзистора, что влечет за собой потери тока базы. Другим вариантом является использование низкопорогового полевого транзистора на основе PMOS с зарядовым насосом для управления напряжением затвора под землей (, рис. 6, ). Эта схема может работать с выходным напряжением 5 В или 3,3 В. Несмотря на то, что схема предназначена для работы с двумя ячейками, обычно она начинается с входного напряжения всего 1.5В.


    Рис. 6. Использование переключателя PMOS FET верхнего плеча с низким напряжением батареи требует зарядного насоса (D 1 , D 2 и C 1 ) для управления напряжением затвора ниже уровня земли.

    Один или два элемента батареи не обязательно обеспечивают достаточное напряжение затвор-исток для полного включения полевого транзистора. Тем не менее, коммутационный узел повышающего DC/DC-преобразователя IC1 приводит в действие простой подкачивающий насос, состоящий из C 1 , D 1 и D 2 , который генерирует более чем достаточно для этой цели.Для V IN = 2 В, привод затвора примерно равен -(V IN +V OUT ) = -7 В.

    Перестановка батареи делает КМОП-преобразователь постоянного тока похожим на диод с прямым смещением; преобразователь отключает ключ, подтягивая напряжение затвора как минимум на одно падение диода выше истока. Подтягивающий резистор на 100 кОм разряжает емкость затвора в течение 140 мс, но слегка нагружает зарядовый насос и не создает помех для усиления МОП-транзистора. Опять же, схема подключает МОП-транзистор в обратном направлении, чтобы предотвратить прямое смещение внутреннего диода полевого транзистора во время реверсирования батареи.

    Вы также можете использовать переключатель нижнего плеча NMOS для защиты, используя выход DC/DC преобразователя для повышения напряжения затвора ( Рисунок 7 ). При нормальном регулировании преобразователь (IC1) притягивает затвор MOSFET выше его истока. Если вы установите батарею задом наперед, сопротивление нагрузки разряжает конденсатор выходного фильтра, который отключает полевой МОП-транзистор, удерживая затвор и исток при одном и том же потенциале.


    Рис. 7. Выход повышающего преобразователя IC1 управляет этим переключателем NMOS FET нижнего плеча.

    С другой стороны, если нагрузка невелика, и вы сначала правильно установите батарею, а затем быстро перевернете ее, заряд выходного конденсатора удержит МОП-транзистор во включенном состоянии и позволит обратному току течь через регулятор. Для показанных компонентов это состояние сохраняется в течение примерно 100 мс, пока конденсатор разряжается через стабилизатор. Затем МОП-транзистор отключается и после этого блокирует ток.

    Аналогичная версия этой статьи появилась в выпуске EDN от 1 марта 1996 года.

    Отказы импульсных регуляторов, вызванные временем включения диода

    Большинство проектировщиков схем знакомы с динамическими диодами. такие характеристики, как накопление заряда, зависимость от напряжения емкость и время обратного восстановления. Реже подтверждено, и производитель указал, что диод вперед время включения. Этот параметр описывает время требуется для того, чтобы диод включился и зафиксировался в его прямом направлении. падение напряжения. Исторически за это крайне короткое время, ед. наносекунд, был настолько мал, что пользователь и поставщик одинаково по существу проигнорировали это.Это редко обсуждается и почти никогда не указывается. В последнее время переключение регулятора часов Скорость и время перехода стали быстрее, что делает диод время включения критическая проблема. Повышенная тактовая частота обязан добиться меньшего размера магнитов; уменьшился время перехода несколько помогает общей эффективности, но в основном необходимо для минимизации нагрева ИС. На тактовых частотах за пределами 1 МГц потери времени перехода являются первичными источник нагрева штампа.

    Потенциальная проблема из-за времени включения диода заключается в том, что результирующее переходное «перерегулирование» напряжения на диод, даже ограниченный наносекундами, может индуцировать стресс от перенапряжения, вызывающий отказ IC регулятора переключения.Таким образом, для квалификации данного диода требуется тщательное тестирование. для конкретного приложения, чтобы обеспечить надежность. Это тестирование, который предполагает низкие потери окружающих компонентов и компоновка в конечном приложении, измеряет перерегулирование при включении напряжение только из-за паразитных диодов. Неправильно связанный выбор компонентов и компоновка будут способствовать Условия перенапряжения.

    На рис. 1 показаны типичные повышающие и понижающие напряжения. преобразователи. В обоих случаях предполагается, что диод клещи переключают колебания напряжения на контактах в безопасные пределы.в В случае повышения этот предел определяется максимальным значением контактов переключателя. допустимое прямое напряжение. Устанавливается лимит понижающих дел на контактах переключателя максимально допустимое обратное напряжение.

    Рис. 1. Типовые повышающие/понижающие преобразователи напряжения. Предполагается, что диодные зажимы переключают напряжение на выводах до безопасных пределов.

    Рисунок 2 показывает, что диоду требуется конечный отрезок времени. для фиксации при прямом напряжении. Это прямое время включения допускает переходные отклонения выше номинального диода фиксирующее напряжение, потенциально превышающее пробой ИС предел.Время включения обычно измеряется в наносекундах. затрудняет наблюдение. Еще одно осложнение заключается в том, что перерегулирование при включении происходит при амплитуде крайняя форма импульса, исключающая высокое разрешение измерение амплитуды. Эти факторы необходимо учитывать при разработке метода проверки включения диода.

    Рис. 2. Время включения диода в прямом направлении допускает кратковременное превышение номинального напряжения фиксации диода, потенциально превышающее предел пробоя ИС.

    На рис. 3 показан концептуальный метод проверки диодов. время включения.Здесь тест выполняется при 1А, хотя можно использовать другие токи. Импульс шагает 1A в тестируемый диод через резистор 5 Ом. Напряжение времени включения отклонение измеряется непосредственно на тестируемом диоде. То Фигура обманчиво проста на вид. В частности, текущий шаг должен иметь исключительно быстрое, высококачественное качество переход и точное определение времени включения требует значительная ширина полосы измерения.

    Рис. 3. Концептуальный метод тестирования времени включения диода при токе 1 А.Входной шаг должен иметь исключительно быстрый переход с высокой точностью.

    Более подробная схема измерения представлена ​​на рисунке 4. Необходимые параметры производительности для различных элементов вызываются. Генератор импульсов с субнаносекундным временем нарастания, 1А, усилитель времени нарастания 2нс и осциллограф 1ГГц. обязательный. Эти характеристики представляют собой реалистичные эксплуатационные характеристики. условия; можно выбрать другие токи и время нарастания путем изменения соответствующих параметров.

    Рис. 4. Подробная схема измерений с указанием необходимых рабочих параметров для различных элементов.Требуются генератор импульсов с временем нарастания менее наносекунды, усилитель времени нарастания 1 А, 2 нс и осциллограф с частотой 1 ГГц.

    Импульсный усилитель требует особого внимания к цепи конфигурация и планировка. На рис. 5 показан усилитель включает параллельный ВЧ-транзистор, управляемый Дарлингтоном выходной каскад. Регулировка напряжения коллектора («время нарастания отделка») пики Q4 до Q6 F T ; входная RC сеть оптимизирует чистота выходного импульса за счет небольшого замедления нарастания входного импульса время в пределах полосы пропускания усилителя.Распараллеливание позволяет Q4 Q6 для работы при благоприятных индивидуальных токах, поддерживая пропускная способность. Когда (слегка интерактивная) чистота края и настройки времени нарастания оптимизированы, на Рисунке 6 показано усилитель выдает трансцендентно чистое время нарастания 2 нс выходной импульс без звона, посторонних составляющих или постпереходов экскурсии. Такое исполнение делает диод практическое тестирование времени включения. 1

    Рис. 5. Импульсный усилитель включает в себя параллельный ВЧ-транзисторный выходной каскад, управляемый Дарлингтоном.Регулировка напряжения коллектора («регулировка времени нарастания») пиков с Q4 по Q6 F T , входная RC-цепочка оптимизирует чистоту выходного импульса. Схема с низкой индуктивностью обязательна.

    Рис. 6. Выход импульсного усилителя на 5 Ом. Время нарастания составляет 2 нс с минимальными аберрациями на вершине импульса.

    На рис. 7 показано полное время прямого включения диода. организация измерения. Импульсный усилитель, управляемый генератором субнаносекундных импульсов, управляет диодом под тестом. Зонд Z0 контролирует точку измерения и питает осциллограф с частотой 1 ГГц. 2 , 3 , 4

    Рис. 7. Полная схема измерения времени включения диода в прямом направлении Включает в себя генератор импульсов с субнаносекундным временем нарастания, импульсный усилитель, пробник Z0 и осциллограф с частотой 1 ГГц.

    Измерительное испытательное приспособление, надлежащим образом оборудованное и конструкция позволяет проводить тестирование времени включения диода с превосходным временное и амплитудное разрешение. 5 Фигуры с 8 по 12 показать результаты для пяти разных диодов от разных производителей.Рис. 8 (диод номер 1) постоянно перескакивает прямое напряжение состояния в течение 3,6 нс с пиковым значением 200 мВ. Это лучшее исполнение пятерки. Рисунки с 9 по 12 показывают увеличение амплитуды включения и времени, которые подробно описано в подписях к рисункам. В худшем случае включите амплитуды превышают номинальное напряжение фиксатора более чем 1 В, а время включения составляет десятки наносекунд. Рисунок 12 завершает этот неудачный парад огромными погрешности времени и амплитуды. Такие ошибочные экскурсии могут и приведет к поломке и выходу из строя регулятора IC.Урок тут понятно. Время включения диода должно быть охарактеризовано и измеряется в любом заданном приложении для обеспечения надежности.

    Рис. 8. «Диод номер 1» превышает установившееся прямое напряжение в течение ≈3,6 нс с пиковым значением 200 мВ.

    Рис. 9. «Диод номер 2»: пики ≈750 мВ до установления в течение 6 нс… > 2-кратное прямое напряжение установившегося состояния.

    Рисунок 10. «Диод номер 3» имеет пики на 1 В выше номинальных 400 мВ VFWD, ошибка 2,5x.

    Рисунок 11. «Диод номер 4» пики ≈750 мВ с длинными (обратите внимание на горизонтальную 2.5-кратное изменение масштаба) приближается к значению VFWD.

    Рис. 12. Пиковые значения «диода номер 5» выходят за пределы шкалы с расширенным хвостом (обратите внимание на более медленный горизонтальный масштаб по сравнению с рисунками с 8 по 10).

    Примечания

    1 Альтернативный подход к генерации импульсов появляется в Linear Technology Указания по применению 122 , Приложение F, «Еще один способ сделать это».

    2 Датчики Z0 описаны в Linear Technology Application Примечание 122 Приложение C, «О датчиках Z0.” См. также ссылки с 27 по 34.

    3 Требование к генератору субнаносекундных импульсов не тривиально. См. Приложение Linear Technology Примечание 122 Приложение B, «Время нарастания субнаносекунды Генераторы импульсов для богатых и бедных».

    4 См. Linear Linear Technology Указания по применению 122 Приложение E, «Соединения, кабели, адаптеры, Аттенюаторы, пробники и пикосекунды» для соответствующих комментарий.

    5 См. Linear Technology Указания по применению 122 Приложение A, «Сколько пропускной способности достаточно?» за обсуждение определения необходимого измерения пропускная способность.

    (PDF) Устранение коммутационных потерь транзистора за счет обратного восстановления диода в специальном приложении , I .: Тестер и приложение для мягкого переключения. EPE2003, 10-я

    Европейская конференция по силовой электронике и приложениям, 2–4

    , сентябрь 2003 г., Тулуза, Франция,

    [3] Spanik,P., Добруцкий Б., Фривальдский М., Дргона П.: Экспериментальный

    анализ процесса коммутации силовых полупроводниковых транзисторов

    структур, Acta Technica. CSAV 52 (2007), 399-413

    [4] Frivaldsky, M., Drgoňa, P., Spanik, P.: Измерение коммутационных потерь

    полупроводниковых структур для различных процессов коммутации, 16th Int.

    Конференция по электроприводам и силовой электронике, Словакия

    24 – 26 сентября 2007 г.

    [5] Feno,I.: Анализ и синтез методов переключения для транзисторов IGBT

    и его проверка в последовательном частично резонансном преобразователе, диссертация кандидата наук

    , Жилинский университет, Жилина, сентябрь 2003 г.

    [6] Мариан К. Казимерчук, Д. Чарковски, Резонансный

    Преобразователи мощности

    , A Wiley – Interscience Publication

    [7] Ковач, Д. — Ковачова, И.: Имитационные модели силовых IGBT и их

    , 1999, с.67-70

    [8] Чименто Ф., Добруцкий Б.: Преобразователь постоянного тока в постоянный для возобновляемых источников энергии

    с операцией отслеживания точки максимальной мощности.

    Отчет о деятельности Марии Кюри ECON2, май 2006 г.

    [9] Бернинг, Д., В. — Хефнер, А., Р., младший.: Проверка модели IGBT для программного обеспечения —

    Коммутационные приложения, транзакции IEEE на Промышленное применение,

    , том 37, № 2, 2001, с. 650 – 660.

    [10] Добруцкий Б., Рачек В., Шпаник П., Gubric, R.: Power

    Semiconductors Structures (на словацком языке), EDIS Editor Жилина (SK), 1995

    [11] B Locatelli, ML, Gamal, SH, Chante, JP: Semiconductor Material

    для высокотемпературной мощности Устройства. EPE Journal (4) 1994, № 1, стр.

    43-46

    [12] Греки, М., Напиральски, А.: Транзистор статической индукции – новое высокоскоростное силовое устройство

    . В: Учеб. PEMC’94, Варшава, сентябрь 1994 г., Vol. 2,

    стр. 836-841

    [13] Янушевский, С.: Силовые полупроводниковые устройства — современное состояние и

    Последние тенденции. В. > Проц. PEMC’94, Варшава, сентябрь 1994 г., Vol. 2, стр.

    861-866

    [14] Хьюманн, К.: Тенденции в полупроводниковых устройствах и влияние на силовую электронику

    . В проц. PEMC’94, Варшава, сентябрь 1994 г., том 2, стр.

    1288 -1299

    [15] Бенда, В.: Силовые полупроводники и интегрированные структуры. ČVUT

    Editor, Praha (CZ), 1994

    [16] Neudeck, P.G.: SiC Technology, NASA Lewis Research Center,

    Cleveland USA, 1998,

    [17] Tolbert, LM, Ozpineci, B., Islam, SK, Peng, FZ: Impact of SiC

    Power Electronic Devices for Hybrid Electric Vehicles , SAE 2002

    Transactions, Journal of Passenger Cars: Electronic and Electrical

    Systems, 2003, стр. 765-771

    Лекция, прочитанная на семинаре по устройствам Future Electron

    (FED), Йокогама (Япония), март 2003 г.

    [19] Stephani, D.: Сегодняшнее и завтрашнее промышленное использование кремниевых полупроводниковых карбидных силовых устройств

    , Revue de l’Electricité et de

    l’Electronique, февраль 2004 г., стр. 23-24

    [20] Domes, D., Hofmann, W. ., Лутц, Дж.: Оценка первых потерь с использованием вертикального SiC-JFET

    и обычного Si-IGBT в топологии двунаправленного матричного преобразователя

    , конференции EPE’05, Дрезден (Германия),

    , сентябрь 2005, (CD-ROM)

    Снижение номинальных характеристик диодов Шоттки

    Снижение номинальных характеристик диодов Шоттки

    Герд Фишер

    В диодах Шоттки

    используется переход металл-полупроводник, в отличие от переходов полупроводник-полупроводник, используемых в стандартных диодах.Эта конфигурация обеспечивает меньшее падение напряжения прямого смещения (0,15–0,45 В по сравнению с 0,5–0,7 В) и меньшее время переключения, что делает их идеальными для операций переключения источников питания. Недостатки диодов Шоттки включают гораздо более высокие номинальные токи утечки обратного смещения. Поскольку рекомбинация p-n не влияет на время задержки переключения, на время обратного переключения влияет только емкость.

    Эти диоды обычно используются для выпрямления напряжения на выходе источника питания. Их быстрое время отклика и низкое потребление напряжения делают их идеальными для этой цели, и предполагается, что они выполняют эту функцию.Таким образом, мы в первую очередь рассмотрим влияние температуры на падение напряжения прямого смещения, емкость и утечку обратного тока.

    Чтобы провести исследование снижения номинальных характеристик диодов Шоттки, в качестве примеров были выбраны три детали

    • 40L15CT Международный выпрямитель
    • MBR4015CTL НА Полупроводник
    • STPS40L15CT ST Микроэлектроника

    Температура и прямое смещение

    Повышенная температура уменьшает прямое падение напряжения на выпрямителях Шоттки при токах ниже примерно 50 А.Выше этой точки повышенные температуры увеличивают величину напряжения, используемого устройством.

    Поскольку номинальный максимальный рабочий ток для всех выбранных выпрямителей составляет 40 А, повышение температуры будет рассматриваться только как уменьшение прямого падения напряжения во всем рабочем диапазоне выпрямителей. Использование выпрямителей Шоттки с более низким напряжением, как правило, желательно и поэтому не вызывает беспокойства при работе при повышенных температурах. Снижение номинальных характеристик для прямого тока не требуется до тех пор, пока температура корпуса не достигнет 85°C, что выходит за рамки условий окружающей среды.

    Температура и обратное смещение

    Повышение температуры при сохранении обратного смещения диодов выпрямителя приводит к увеличению обратного тока через диод. Каждому увеличению температуры перехода на 25°C соответствует увеличение обратного тока на порядок. Диоды Шоттки обычно устанавливаются на радиаторах, чтобы смягчить эти эффекты. Однако рассеивание тепла может стать фактором, когда температура окружающей среды повышается, что приводит к еще большему обратному току и большему выделению тепла.

    Тепловыделение будет иметь решающее значение и зависит от условий окружающей среды, расположенных рядом с диодами, на которые в основном влияют общие условия окружающей среды и близость устройства к другим устройствам, выделяющим тепло.

    Функциональные параметры (не указаны в спецификации)

    Емкость перехода указана только для температуры окружающей среды 25°C и не показана, так как она зависит от температуры. Однако емкость перехода может увеличиваться при повышении температуры. Это может увеличить время переключения выпрямителей, хотя и не критично, поскольку рекомбинация p-n практически отсутствует, чтобы еще больше замедлить время.Таким образом, когда время восстановления увеличивается из-за увеличения электрической емкости, оно все равно будет достаточно коротким, чтобы предотвратить тепловой разгон.3 Если схема сконструирована с небольшим допуском в отношении времени переключения, это может стать проблемой. , позволяя протекать обратному току, в то время как диоды меняют направление смещения, что приводит к повреждению чувствительных устройств ниже по потоку.

    Электрическое перенапряжение (надежность)

    Отказ диодов Шоттки в условиях перенапряжения обычно является результатом электростатического разряда (ЭСР).Накопления всего 1000–1500 В и последующего разряда достаточно, чтобы повредить эти детали. Обратное смещение является наиболее распространенным условием, при котором происходит электростатический разряд. Результатом чего является сдвиг кривой IE-E, меняющийся по степени от незначительного до полного короткого замыкания. Поскольку ожидается, что емкость не увеличится более чем на 5% при 85°C, повышенный риск накопления заряда и электростатического разряда считается незначительным.

    Характеристики износа

    Диод Шоттки редко выходит из строя из-за износа механизмов.Это особенно относится к диодам Шоттки, используемым на выходе источников питания, выход из строя которых обычно происходит из-за одиночного воздействия обратного тока. Опубликованные исследования надежности SiC Шоттки показывают срок службы > 50 лет4. Известно, что из-за большинства отказов из-за электрических перенапряжений долгосрочные механизмы отказа диодов Шоттки не имели исторического значения.

    Заключение

    Отказ диода Шоттки в результате повышенной температуры почти полностью зависит от правильного рассеивания тепла диодом через его радиатор и может быть смягчен путем размещения диодов вдали от других устройств, выделяющих тепло.Выход из строя сборки из-за измененных рабочих характеристик диода (т.е. большего обратного тока) более вероятен, чем прямой выход из строя самих диодов.

    Приложение
    Международный выпрямитель, 40L15CT

    Перечисленное устройство рассчитано на работу в диапазоне температур перехода от -55°C до +125°C. Следствие: Некоторые параметрические характеристики определяются температурой корпуса (макс. 100ºC)

    Проблемы с производительностью: У диодов есть несколько важных параметров, включая обратный ток, прямой ток, импульсный ток, характер падения напряжения, емкость перехода и потери мощности.Основное внимание, как правило, уделяется максимально допустимому прямому току и току утечки в обратном направлении смещения. Прямой ток не представляет опасности, так как снижение номинальных характеристик не требуется до тех пор, пока температура корпуса не достигнет 85ºC, что соответствует техническим условиям окружающей среды. Обратный ток увеличивается на несколько порядков с повышением температуры, и его необходимо учитывать.

    Проблемы с надежностью: Ожидается, что долгосрочная деградация на уровне кристалла не будет проблемой.Повышенная температура в сочетании с повторяющимися циклами включения и выключения питания может вызвать усталость в месте крепления штампа.

    ПО полу, MBR4015CTL

    Перечисленное устройство рассчитано на работу в диапазоне температур перехода от -65°C до +125°C. Следствие: Некоторые параметрические характеристики определяются температурой корпуса (макс. 125ºC)

    Проблемы с производительностью: У диодов есть несколько важных параметров, включая обратный ток, прямой ток, импульсный ток, характер падения напряжения, емкость перехода и потери мощности.Основное внимание, как правило, уделяется максимально допустимому прямому току и току утечки в обратном направлении смещения. Прямой ток не представляет опасности, так как снижение номинальных характеристик не требуется до тех пор, пока температура корпуса не достигнет 90ºC, что соответствует техническим условиям окружающей среды. Обратный ток увеличивается на несколько порядков с повышением температуры, и его необходимо учитывать.

    Проблемы с надежностью: Ожидается, что долгосрочная деградация на уровне кристалла не будет проблемой.Повышенная температура в сочетании с повторяющимися циклами включения и выключения питания может вызвать усталость в месте крепления штампа.

    СТ микро, STP40L15CT

    В указанном устройстве не указан температурный диапазон. Перечислены несколько максимальных температур Максимальная температура перехода +125°C на первой странице спецификации Максимальная температура перехода +150°C на некоторых параметрических диаграммах Максимальная температура окружающей среды +150°C для прямого тока

    Проблемы с производительностью: У диодов есть несколько важных параметров, включая обратный ток, прямой ток, импульсный ток, характер падения напряжения, емкость перехода и потери мощности.Основное внимание, как правило, уделяется максимально допустимому прямому току и току утечки в обратном направлении смещения. Прямой ток может быть проблемой, так как может потребоваться снижение номинальных характеристик при температуре окружающей среды до 50ºC. Обратный ток увеличивается на несколько порядков с повышением температуры, и его необходимо учитывать.

    Проблемы с надежностью: Ожидается, что долгосрочная деградация на уровне кристалла не будет проблемой. Повышенная температура в сочетании с повторяющимися циклами включения и выключения питания может вызвать усталость в месте крепления штампа.

    ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ

    DfR означает, что были предприняты разумные усилия для обеспечения точности и надежности информации в этом отчете. Тем не менее, DfR Solutions не дает никаких явных или подразумеваемых гарантий в отношении содержания этого отчета, включая, помимо прочего, наличие любых скрытых или явных дефектов, пригодность для продажи и/или пригодность для конкретного использования. DfR не несет ответственности за потерю возможности использования, дохода, прибыли или любой особый, случайный или косвенный ущерб, возникающий в результате, в связи с информацией, представленной в этом отчете.

    Время обратного восстановления диода Демонстрация

    Вдохновленный http://electronics.stackexchange.com/questions/13912/what-is-the-reverse-recovery-time-in-diode — загляните на эту страницу, чтобы найти отличные пояснения.

    Я хотел продемонстрировать, как выглядит время обратного восстановления в диодах.

    V1 обеспечивает прямоугольную волну 10 кГц, чередующуюся между +5 В и -5 В. Таким образом, диоды включаются снова и снова. Но эта демонстрация показывает, что они не переключаются из состояния в состояние мгновенно. Запустите моделирование во временной области и посмотрите, как ток диода для D2, «медленного» диода, на самом деле становится значительно отрицательным в течение нескольких микросекунд после переключения напряжения с прямого на обратное смещение.

    Поскольку у CircuitLab есть подробные модели моделирования диодов, которые включают эти эффекты, время обратного восстановления примерно 2 мкс для моделируемого 1N4007 примерно соответствует техническому описанию 1N4007!

    Вы также можете попробовать построить графики V(A) и V(B).

    Мое лучшее объяснение того, «почему» существует обратное время восстановления:

    Объемный заряд внутри PN-перехода должен быть установлен до того, как сможет протекать прямой ток. С нуля этот объемный заряд может быть установлен довольно быстро, потому что приложенное извне прямое напряжение смещения может направлять электроны наружу. Электроны диффундируют из материала n-типа в край материала p-типа, дырки в материале p-типа диффундируют в край материала n-типа, а на границах раздела металлов новые электроны инжектируются в n-материал. конец типа, а дырки генерируются на конце p-типа для производства свободных электронов, которые могут течь во внешней цепи.Все эти потоки представляют собой потоки большинства носителей в их соответствующих материалах, поэтому диффузия происходит быстро, обусловленная гораздо большим градиентом концентрации. Объемный заряд развивается быстро, потому что для включения диода текут основные носители — электроны в материале n-типа и дырки в материале p-типа.

    Однако, если внешнее напряжение затем инвертируется в обратное смещение, пространственный заряд притягивается к себе для рекомбинации. Однако эта рекомбинация происходит только за счет диффузии неосновных носителей .Эта диффузия неосновных носителей имеет гораздо меньшие градиенты концентрации и, следовательно, диффундирует на порядки медленнее. Внешняя схема, обеспечивающая обратное смещение, может помочь ускорить эту рекомбинацию, поскольку она может обеспечить более быструю нейтрализацию избыточных дырок, которые мигрировали обратно в материал p-типа, и удаление избыточных электронов, которые мигрировали обратно в материал n-типа. Вот почему могут быть огромные обратные токи во время обратного восстановления.

    (см. также PDF-файл под названием «Время рекомбинации в полупроводниковых диодах».)

    Что еще можно попробовать в CircuitLab

    Моделирование постоянного тока показывает значения постоянного тока для токов и напряжений диодов.

    DC Sweep показывает кривые характеристик диода (при последовательном соединении с резисторами 50 Ом, как показано).

    Моделирование в частотной области показывает, как слабый сигнал переменного напряжения на входе будет отражаться на выходе V(A) или V(B), отфильтрованный комбинацией добавочного сопротивления слабого сигнала диода при прямом смещении ( параллельно резистору 50 Ом) и добавочной емкости диода.1N4007 имеет гораздо больший накопленный заряд и добавочную емкость, и, следовательно, полюс на гораздо более низкой частоте!

    Защита от обратного тока / полярности батареи • Цепи

    В устройствах с батарейным питанием, которые имеют съемные батареи, обычно необходимо предотвратить неправильное подключение батарей, чтобы предотвратить повреждение электроники, случайное короткое замыкание или другие ненадлежащие действия. Если это невозможно физическими средствами, вам необходимо включить некоторую электронную защиту от обратного тока.Физическая защита может означать просто поляризованный разъем или аккумулятор со смещенными контактами (как в большинстве литиевых аккумуляторов для мобильных телефонов) в сочетании с символами инструкций и изображениями. Для батареек размера AAA или AA предусмотрены держатели, которые сконструированы таким образом, что если батарейку вставить неправильно, один конец не соприкоснется. Все еще существуют обстоятельства, когда физические средства невозможны, например, с большинством монетных ячеек или если пользователь может подключить питание по проводам к винтовым клеммным колодкам.Следовательно, это может относиться и к устройствам, не работающим от батарей, и, вероятно, относится к автомобильной электронике.
    Следовательно, разработчики и производители электронных продуктов должны обеспечить, чтобы обратный токb обратный ток и обратное напряжение смещения были достаточно низкими, чтобы предотвратить повреждение как самой батареи, так и внутренней электроники продукта.

    Почему бы не использовать простой диод?

    Использование диода в качестве защиты от обратной полярности питания, как показано в Цепь 1 , является очень простым и надежным решением, если вы можете позволить себе лишнюю трату энергии.Скорее всего, с устройством, работающим от батареи, вы не хотите тратить энергию впустую, особенно если ваше напряжение питания уже довольно низкое, и поэтому падение напряжения на 0,3 В или 0,4 В на диоде Шоттки будет значительным и неприемлемым. Для более высоких напряжений питания в диапазоне 9–48 В и автомобильных приложений небольшое падение напряжения может не иметь значения, особенно при малом токе. При больших токах, выше 5 А, может возникнуть проблема повышения температуры из-за больших потерь мощности. Вы не хотите, чтобы диод сильно нагревался, поэтому, скорее всего, потребуется добавить радиатор.

    Цена диода Шоттки выше, чем обычного диода, но потери значительно ниже. Имейте в виду, что многие диоды Шоттки имеют довольно большую утечку обратного тока, поэтому убедитесь, что вы выбрали диод с низким обратным током (около 100 мкА) в схеме защиты аккумулятора.
    При токе 5 ампер потери мощности в диоде Шоттки обычно составляют: 5 x 0,4 В = 2 Вт по сравнению с обычным диодом: 5 x 0,7 В = 3,5 Вт.

    Хорошим диодом-кандидатом для использования в приложениях защиты от обратного тока является новый тип диода под названием Super Barrier Rectifier (SBR), являющийся собственностью и запатентованный компанией Diodes Inc.Технология, в которой используется производственный процесс МОП (традиционный процесс Шоттки использует биполярный процесс) для создания превосходного двухконтактного устройства, которое имеет более низкое прямое напряжение (VF), чем сопоставимые диоды Шоттки, обладая при этом термической стабильностью и высокими характеристиками надежности эпитаксиальных диодов PN. Диод
    Super Barrier Rectifier (SBR) предназначен для приложений с высокой мощностью, малыми потерями и быстрым переключением. Наличие МОП-канала в его структуре образует низкий потенциальный барьер для основных носителей, поэтому работа SBR в прямом направлении при низком напряжении аналогична диоду Шоттки.Однако ток утечки ниже, чем у диода Шоттки при обратном смещении, из-за перекрытия обедненных P-N слоев и отсутствия снижения потенциального барьера из-за заряда изображения.
    ТРАНШЕЙНЫЕ СУПЕРБАРЬЕРНЫЕ ВЫПРЯМИТЕЛИ (SBRT).
    Trench SBR — это следующая эволюция, которая дает нам высокопроизводительный элемент в семействе SBR. Используя передовую траншейную технологию, SBRT предлагает еще меньший VF для приложений, где важны сверхнизкие прямые напряжения. В то время как дальнейшие технологические усовершенствования постоянно применяются к SBRT, эти усилия приводят к созданию еще более продвинутого и экономичного члена — SBRTF.Для получения дополнительной информации посетите веб-сайт Diodes Inc.

    Защита от обратного хода с помощью N-канального полевого МОП-транзистора

    Самые последние N-MOSFET ОЧЕНЬ обладают низким сопротивлением, намного меньшим, чем у P-канальных транзисторов, и поэтому идеально подходят для обеспечения защиты от обратного тока с минимальными потерями. Цепь 3 показывает полевой МОП-транзистор нижнего плеча на пути возврата через землю. Диод в корпусе полевого транзистора ориентирован в направлении нормального протекания тока. Когда батарея установлена ​​неправильно, напряжение затвора NMOS FET падает, что не позволяет ему включиться.

    Если аккумулятор установлен правильно и на портативное оборудование подается питание, напряжение затвора NMOS FET становится высоким, и его канал закорачивает диод. Падение напряжения RdsOn × ILOAD наблюдается на пути возврата через землю при использовании NMOS FET. Некоторые из последних пороговых напряжений N-FET и RdsOn, используемые для защиты от обратного тока, перечислены в таблице 1 , а типы с более высоким током в таблице 3 далее на этой странице.

    Производитель Тип Пакет РдсОн
    IRF (ОнСеми) ILRML2502 СОТ–23 80 мОм @2.Пороговое напряжение 7 В
    Вишай Si2312 СОТ–23 51 мОм при пороговом напряжении 1,8 В

    Таблица 1.
    Недостаток:
    Установка N-MOSFET в цепь заземления приведет к сдвигу заземления, который может быть неприемлем во всех приложениях. Это может вызвать проблемы для чувствительных приложений (например, автомобильных систем) с одним или несколькими соединениями с возможными датчиками, коммуникационными шинами и приводами, внешними по отношению к цепи.

    Чтобы иметь возможность использовать N-MOSFET в качестве защиты от обратного тока в цепи высокого напряжения, требуется, чтобы напряжение затвора превышало напряжение батареи для включения MOSFET. Для этого требуется схема подкачки заряда, что увеличивает сложность схемы и стоимость компонентов, а также может вызвать проблемы с электромагнитными помехами. P-канальный МОП-транзистор сравнимого размера будет иметь более высокое RdsOn и, следовательно, более высокие потери мощности, но может быть реализован с более простой схемой управления, состоящей из стабилитрона и резистора.

    Защита от обратного хода с помощью полевого МОП-транзистора с P-каналом

    Самые современные МОП-транзисторы имеют очень низкое сопротивление и поэтому идеально подходят для обеспечения защиты от обратного тока с минимальными потерями. Цепь 2 показывает полевой МОП-транзистор верхнего плеча в цепи питания. Диод в корпусе полевого транзистора ориентирован в направлении нормального протекания тока. Если батарея установлена ​​неправильно, напряжение затвора полевого транзистора на основе PMOS оказывается высоким, что препятствует его включению.

    Стабилитрон защищает от превышения рекомендуемого напряжения затвор-исток и может не потребоваться в зависимости от диапазона входного напряжения и используемого полевого МОП-транзистора.Для защиты от возможных всплесков напряжения и переходных процессов от разрушения MOSFET на входе можно добавить пару транзорбирующих диодов, как показано на рис. 3. Конденсатор между затвором и истоком добавлен, чтобы обеспечить хорошую работу схемы при быстром изменении в полярности входного напряжения.
    Если аккумулятор установлен правильно и на портативное оборудование подается питание, напряжение затвора PMOS FET становится низким, и его канал закорачивает диод.
    В цепи питания наблюдается падение напряжения RdsOn × ILOAD.В прошлом основным недостатком этих схем была высокая стоимость полевых транзисторов с низким RdsOn и низким пороговым напряжением. Однако достижения в области обработки полупроводников привели к созданию полевых транзисторов с минимальным падением напряжения в небольших корпусах. Некоторые из последних пороговых напряжений P-FET и RdsOn показаны в таблице 2.

    Производитель Тип Пакет РдсОн
    IRF (ОнСеми) ILRML6401 СОТ–23 85 мОм @2.Пороговое напряжение 7В
    Вишай Si2323 СОТ–23 68 мОм при пороговом напряжении 1,8 В

    Таблица 2.

    Защита от обратного тока батареи с помощью интегральной схемы LM74610

    LM74610-Q1 — это контроллер, который можно использовать с N-канальным МОП-транзистором в схеме защиты от обратной полярности.Он предназначен для управления внешним полевым МОП-транзистором для имитации идеального диодного выпрямителя при последовательном подключении к источнику питания. Уникальным преимуществом этой схемы является то, что она не привязана к земле и, таким образом, имеет нулевой Iq. Контроллер LM74610-Q1 обеспечивает управление затвором для внешнего N-канального МОП-транзистора и быстродействующий внутренний компаратор для разрядки затвора МОП-транзистора в случае обратной полярности. Эта функция быстрого снижения ограничивает количество и продолжительность обратного тока, если обнаружена противоположная полярность.Конструкция устройства также соответствует спецификациям электромагнитных помех CISPR25 класса 5 и автомобильным требованиям к переходным процессам ISO7637 с подходящим TVS-диодом.

    LM74610 представляет собой контроллер с нулевым Iq, который в сочетании с внешним N-канальным MOSFET заменяет диод или P-MOSFET решение с обратной полярностью в энергосистемах. Напряжение на истоке и стоке MOSFET постоянно контролируется выводами ANODE и CATHODE LM74610-Q1. Внутренний насос заряда используется для обеспечения привода GATE для внешнего MOSFET.. Эта накопленная энергия используется для управления затвором MOSFET. Падение напряжения зависит от RDSON конкретного используемого MOSFET, который значительно меньше, чем у PFET. LM74610-Q1 не имеет заземления, что делает его идентичным диоду. TZ1 и TZ2 не требуются для LM74610-Q1. Однако они обычно используются для фиксации положительных и отрицательных скачков напряжения соответственно. Выходной конденсатор Cout рекомендуется для защиты от мгновенного падения выходного напряжения в результате помехи в линии.C1 и C2 подавляют высокочастотный шум, а также выполняют функцию защиты от электростатических разрядов.

    Выбор МОП-транзистора:

    LM74610-Q1 может обеспечить до 5 В напряжения затвор-исток (VGS). Важными электрическими параметрами полевого МОП-транзистора являются максимальный непрерывный ток стока ID, максимальное напряжение сток-исток VDS(MAX) и сопротивление сток-исток в открытом состоянии RDSON. Максимальный непрерывный ток стока, ID, номинал должен превышать максимальный непрерывный ток нагрузки. Номинальный максимальный ток через внутренний диод, IS, обычно равен или немного превышает ток стока, но ток внутреннего диода протекает только в течение короткого периода времени, когда заряжается конденсатор подкачки заряда.Напряжение на корпусном диоде полевого МОП-транзистора должно быть выше 0,48 В при малом токе. Напряжение внутреннего диода для МОП-транзистора обычно уменьшается с повышением температуры окружающей среды. Это повысит требования к току истока для достижения минимального напряжения сток-исток внутреннего диода для запуска зарядового насоса. Максимальное напряжение сток-исток, VDS(MAX), должно быть достаточно высоким, чтобы выдерживать самые высокие дифференциальные напряжения, наблюдаемые в приложении. Это будет включать любые ожидаемые неисправности.LM74610-Q1 не имеет положительного ограничения напряжения, однако рекомендуется использовать полевые МОП-транзисторы с номинальным напряжением около 45 В для автомобильных приложений.

    В таблице 3 приведены примеры рекомендуемых МОП-транзисторов для использования с LM74610:

    Деталь № Напряжение
    (В)
    Ток стока
    при 25*C
    Rdson мОм
    @4,5 В
    Порог Vgs
    (В)
    Напряжение диода
    при 2 А при
    125*C/175*C
    Упаковка,
    Основание
    Качество
    CSD17313Q2 30 5 26 1.8 0,65 СОН, 2 x 2 мм Авто
    SQJ886EP 40 60 5,5 2,5 0,5 PowerPAK SO-8L, 5 x 6 мм Авто
    SQ4184EY 40 29 5,6 2,5 0,5 SO-8, 5 x 6 мм Авто
    Si4122DY 40 23,5 6 2.5 0,5 SO-8, 5 x 6 мм Авто
    РС1Г120МН 40 12 20,7 2,5 0,6 HSOP8, 5 x 6 мм Авто
    РС1Г300ГН 40 30 2,5 2,5 0,5 HSOP8, 5 x 6 мм Авто
    КСД18501К5А 40 22 3.3 2,3 0,53 СОН, 5 x 6 мм Промышленный
    СКД40Н06-14Л 60 40 17 2,5 0,5 ТО-252, 6 х 10 мм Авто
    SQ4850EY 60 12 31 2,5 0,55 SO8, 5 x 6 мм Авто
    КСД18532К5Б 60 23 3.3 2,2 0,53 СОН, 5 x 6 мм Промышленный
    ИПГ20Н04С4Л-07А 40 20 7,2 2,2 0,48 PG-TDSON-8-10, 5 x 6 мм Авто
    ИПБ057Н06Н 60 45 5,7 3,3 0,55 PG-TO263-3, 10 x 15 мм Авто
    ИПД50Н04С4Л 40 50 7.3 2,2 0,5 PG-TO252-3-313, 3 x 6 мм Авто
    БУК9И3Р5-40Э 40 100 3,8 2,1 0,48 LFPAK56, Power-SO8 5×6 мм Авто
    IRF7478PBF-1 60 7 30 3 0,55 SO8, 5 x 6 мм Промышленный
    SQJ422EP 40 75 4.3 2,5 0,5 PowerPAK SO-8L, 5 x 6 мм Авто
    ИРЛ1004 40 130 6,5 1 0,6 ТО-220АБ Авто
    АУИРЛ7736 40 112 2,2 3 0,65 DirectFET, 5 x 6 мм Авто

    ТАБЛИЦА 3

    Защита от обратного тока батареи с использованием интегральной схемы LTC4359

    LTC®4359 — это положительный высоковольтный, идеальный диодный контроллер, который управляет внешним N-канальным МОП-транзистором вместо диода Шоттки.Он контролирует прямое падение напряжения на МОП-транзисторе, чтобы обеспечить плавную подачу тока без колебаний даже при малых нагрузках. В случае отказа или короткого замыкания источника питания быстрое отключение сводит к минимуму переходные процессы обратного тока. Доступен режим отключения для снижения тока покоя до 9 мкА для переключателя нагрузки и до 14 мкА для идеальных диодных применений. При использовании в сильноточных диодных приложениях LTC4359 снижает энергопотребление, тепловыделение, потери напряжения и площадь печатной платы. Благодаря широкому диапазону рабочего напряжения, способности выдерживать обратное входное напряжение и высокой температуре, LTC4359 удовлетворяет жестким требованиям как автомобильных, так и телекоммуникационных приложений.LTC4359 также легко переключает источники питания в системах с резервными источниками питания.
    Операция:
    LTC4359 управляет внешним N-канальным МОП-транзистором, образуя идеальный диод. Усилитель GATE (см. блок-схему) воспринимает сигналы IN и OUT и управляет затвором полевого МОП-транзистора, регулируя прямое напряжение до 30 мВ. По мере увеличения тока нагрузки затвор открывается выше, пока не будет достигнута точка, в которой полевой МОП-транзистор полностью открыт. Дальнейшее увеличение тока нагрузки приводит к прямому падению RdsOn x ILOAD.Если ток нагрузки уменьшается, усилитель GATE переводит затвор MOSFET ниже, чтобы поддерживать падение напряжения на уровне 30 мВ. Если входное напряжение снижается до точки, при которой прямое падение 30 мВ невозможно, усилитель GATE отключает полевой МОП-транзистор.
    В случае быстрого падения входного напряжения, такого как короткое замыкание на входе или скачок отрицательного напряжения, через полевой МОП-транзистор временно протекает обратный ток. Этот ток обеспечивается любой емкостью нагрузки и другими источниками питания или батареями, которые питают выход в диодных приложениях ИЛИ.Компаратор FPD COMP (Fast Pull-Down Comparator) быстро реагирует на это состояние, отключая полевой МОП-транзистор за 300 нс, тем самым сводя к минимуму помехи на выходной шине. Выводы IN, SOURCE, GATE и SHDN защищены от обратных входных сигналов до –40 В. Внутренний компаратор обнаруживает отрицательные входные потенциалы на выводе SOURCE и быстро переключает GATE на SOURCE, отключая МОП-транзистор и изолируя нагрузку от отрицательного входа. При низком уровне вывод SHDN отключает большую часть внутренних цепей, уменьшая ток покоя до 9 мкА и удерживая МОП-транзистор в выключенном состоянии.Вывод SHDN может быть либо переведен в высокий уровень, либо оставлен открытым, чтобы включить LTC4359. Если оставить его открытым, внутренний источник тока 2,6 мкА поставит SHDN на высокий уровень.
    Информация по применению:
    Блокировочные диоды обычно подключаются последовательно с входами питания с целью замыкания на ИЛИ резервных источников питания и защиты от переполюсовки питания. LTC4359 заменяет диоды в этих приложениях на MOSFET, чтобы уменьшить как падение напряжения, так и потери мощности, связанные с пассивным решением. Кривая, показанная на странице 1, иллюстрирует резкое снижение потерь мощности, достигнутое в практическом применении.Это обеспечивает значительную экономию площади платы за счет значительного снижения рассеиваемой мощности в проходном устройстве. При низком входном напряжении уменьшение потерь в прямом направлении легко оценить при ограниченном запасе мощности, как показано на рис. 2.
    LTC4359 работает в диапазоне от 4 до 80 В и без повреждений выдерживает абсолютный максимальный диапазон от –40 до 100 В. В автомобильных приложениях LTC4359 работает в режимах сброса нагрузки, холодного пуска и переключения двух аккумуляторов, а также выдерживает обратное подключение аккумуляторов, а также защищает нагрузку.
    Идеальное применение диода 12 В/20 А показано в схеме 5 .

    В дополнение к MOSFET Q1 включены несколько внешних компонентов. Идеальные диоды, как и их неидеальные аналоги, демонстрируют поведение, известное как обратное восстановление. В сочетании с паразитными или преднамеренно введенными индуктивностями обратные пики восстановления могут генерироваться идеальным диодом во время коммутации.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *