Отличие пускателя от контактора: Простое отличие пускателя от контактора по ГОСТ и правилам.

Содержание

Простое отличие пускателя от контактора по ГОСТ и правилам.

Даже среди профессиональных электриков нередко возникают жаркие споры, какой коммутационный аппарат считать пускателем, а какой контактором.

Не особо разбирающиеся, и то и другое попросту называют пускачами. Что уж говорить о рядовых потребителях, которые с этими устройствами могут столкнуться всего пару раз за всю жизнь.

Давайте рассмотрим отличия пускателя от контактора, согласно действующей нормативной документации и поставим точку в этом споре раз и навсегда.

Ошибки при выборе

Некоторые ошибочно в первую очередь смотрят на дугогасительные камеры, считая, что если они есть, тогда перед ними контактор.

Якобы они нужны для гашения токов, начиная с 5-й величины. Пятая величина – ток равный I=100А.

При этом думая, что пускатель рассчитан только на малые токи (до 100А).

Сторонники данной классификации даже придумали собственную градацию:

  • реле – это устройства для малых токов
  • пускатели – для средних
  • контакторы – для больших токов

Все это конечно не соответствует действительности. В таких заблуждениях, скорее всего, виновата одна довольно популярная марка, а именно ПМЛ.

У этих моделей пускатели рассчитаны на токи от 10 до 100А, а контакторы от 10 до 800А. Отсюда и пошла неразбериха.

Якобы, если устройство более 100А, значит оно относится к контакторам. На некоторых упаковках даже указываются, казалось бы, прямо противоположные надписи. С одной стороны пишется:

  • ПМ – пускатель магнитный

И тут же с другой:

Чему верить и что говорят об этом правила и документация? Чтобы это понять, в первую очередь найдем определения этих устройств и посмотрим в чем заключаются отличия.

Что такое контактор

Вот что говорит об этом действующий на данный момент ГОСТ 17703-72 “Аппараты электрические коммутационные. Основные понятия.”

Здесь в качестве самовозврата используется пружина. Возможность частых коммутаций токов обеспечивается самой конструкцией.



Некоторые вопросы возникают относительно последней формулировки – “приводимый в действие двигательным приводом”. Какой элемент считать двигательным приводом?

Чтобы разобраться, опять обратимся к ГОСТу и найдем соответствующее определение.



Можно ли считать, что в контакторе установлен эл.магнитный привод? Что об этом говорит другой ГОСТ 24856-2014 “Арматура трубопроводная. Термины и определения.”



Как видите, это именно то, что нужно. В нашем случае, подвижные контакты как раз таки и приводятся в действие эл.магнитным полем катушки.



Принцип действия в контакторах тянущий – при подаче напряжения часть сердечника втягивается и неподвижные контакты замыкаются с подвижными.

Однако помимо вышеприведенных определений контактора, есть еще несколько. Например, в СТО 173330282.27.010.001-2008 “Электроэнергетика. Термины и определения.” приведена более упрощенная формулировка:

А вот что говорится в ГОСТ 60309-4-2013 “Вилки, розетки и соединители промышленного назначения”.

Смысл во всех этих расшифровках названий один и тот же, и глобальных разночтений не наблюдается.

Теперь давайте рассмотрим определение пускателя.

Что такое пускатель

Разобраться в этом нам поможет ГОСТ Р 500030.4.4-2012 “Аппаратура распределения и управления низковольтная”.

Самое главное, что вы должны понять из этого определения:

Пускатель – это не одиночное устройство, это комбинация нескольких устройств, необходимых для пуска и остановки двигателя.

Например, в нем в качестве защиты от перегрузки может выступать тепловое реле.

Вытащите его, и ваш пускатель превратится в контактор. А еще в пускателях могут быть встроены защиты от обрыва фазы, от падения напряжения и др.

Все это и превращает обычный контактор в пускатель.

Исходя из этого и выводится главное правило, как отличить контактор от пускателя:

  • контактор – это ОДИНОЧНЫЙ двухпозиционный коммутационный аппарат
  • пускатель – это комбинация коммутационных устройств

Выходит, что контактор это всего лишь одна из частей комбинации или иными словами – часть пускателя.

Кстати, определение пускателя далеко не одно, их великое множество. И везде сказано про комбинацию устройств.

Таким образом, назначение устройства вытекает из самого названия “пускатель” – от слова “пуск” двигателя. Контактор от слова “контакт”, то есть просто коммутировать, соединять и разъединять цепь (без ее защиты).

Никакие другие самовольные интерпретации не имеют под собой нормативного обоснования. Чем чаще вы будете обращаться именно к документам, а не к “электрикам с опытом”, тем проще будет докопаться до истины и самое главное, всегда можно будет убедительно доказать свои слова и правоту.

Источник — Фарадей

Статьи по теме

Контактор и магнитный пускатель: в чем отличия?

Автор Фома Бахтин На чтение 2 мин. Просмотров 24.7k. Опубликовано Обновлено

Этот спор во многом напоминает аналогичный о том, что появилось раньше: курица или яйцо. Так вот тема эта, как оказалось, не только вечна, но многогранна.

Казалось бы, существуют два разных электротехнических изделия, имеющие разные названия. Но функции выполняют схожие, да и малопонятны, собственно, критерии различия контактора от пускателя. Попробуем всё же разобраться.

Немалая заслуга в том, что сейчас грань между контактором и магнитным пускателем практически незаметна, лежит, прежде всего, на производителях.

Некоторые устройства в каталогах продукции и действительно бывает сложно идентифицировать. На практике магнитный пускатель 3-ей величины нередко, также называют контактором.

Характерная сила тока для пускателя, как правило, не превышает 40 А. Иначе говоря, область выше этого значения – это уже удел контакторов. Справочная литература (особенно, фундаментальная) даёт чёткую дифференциацию таких устройств.

Магнитный пускатель – это низковольтное устройство с тремя контактами для подключения к трёхфазной сети. Электромагнитный контактор, в свою очередь, предназначен для напряжения до 650 вольт и представляет собой магнитную катушку и силовую группу контактов.

Таким образом, магнитный пускатель можно считать своеобразным усовершенствованным контактором,  законченным устройством, совокупностью контактных групп и дополнительного оборудования. Как-то: тепловое реле, кнопки управления, автомат защиты. Однако, даже если мы возьмём за основу факт наличия в конструкции пускателя теплового реле и кнопок управления, то ясности точно не добавится.

Потому как сейчас некоторыми производителями выпускаются магнитные пускатели, не укомплектованные кнопками управления и тепловыми реле. Поэтому, устанавливать какую-то четкую грань, по большому счету, не имеет особого смысла.

На практике всё определяет стоимость и назначение устройства. Потребитель выбирает товар под свои нужды и потребности. А как его назвать, пускатель, контактор (иногда, даже «автомат запуска двигателя») – это уже прерогатива производителей и отличие устройств состоит лишь в их названии.

Подбор пускателей и контакторов


Схемы управления магнитным пускателем


Контактор и пускатель — большая разница! | СамЭлектрик.ру

Продолжают разгораться споры и холивары, чем отличается пускатель от контактора. 💥⚡

Я писал уже об этом в статье про выбор пускателя и контактора.

Хотя отличия простые — как автомобиль отличается от двигателя.

Контактор — это устройство, пускатель — это схема, совокупность различных деталей.

Электронный твердотельный пускатель

Электронный твердотельный пускатель

О применении современных контакторов читайте статью — Как можно применять модульные контакторы.

Официальное мнение

В СССР об этом было четкое мнение в ГОСТ 17703-72. Там сказано, что контактор — это «Двухпозиционный аппарат с самовозвратом, предназначенный для частых коммутаций токов, не превышающих токи перегрузки, и приводимый в действие двигательным приводом.».

А пускатель — это «Коммутационный электрический аппарат, предназначенный для пуска, остановки и защиты электродвигателей без выведения и введения в его цепь сопротивления резисторов»

А вот что говорится в ГОСТ 30011.4.1-96. Он более новый, 96 года.

2.1.2 Электромагнитный контактор

Контактор, в котором сила, необходимая для замыкания замыкающих главных контактов или размыкания размыкающих главных контактов, создается электромагнитом.

И о пускателях:

2.2.1 Пускатель 

Комбинация всех коммутационных устройств, необходимых для пуска и остановки двигателя, с защитой от перегрузок.

Википедия, например, говорит так: Пуска́тель электромагни́тный (магни́тный пускатель) — низковольтное электромагнитное (электромеханическое) комбинированное устройство распределения и управления, предназначенное для пуска электродвигателя, обеспечения его непрерывной работы, отключения питания, защиты электродвигателя и подключенных цепей, и иногда для реверсирования направления его вращения.

А вот ГОСТ, который действует сейчас:

ГОСТ Р 50030.4.1-2012 (МЭК 60947-4-1:2009) Аппаратура распределения и управления низковольтная. Часть 4. Контакторы и пускатели. Раздел 1. Электромеханические контакторы и пускатели

Там подробно рассказаны отличия.

В частности:

ГОСТ Р 50030.4.1-2012

ГОСТ Р 50030.4.1-2012

Ещё действующий ГОСТ 2491-82 со времен СССР также говорит о том, что пускатель может иметь тепловые реле, кнопки, оболочку, блокировки и может быть собран по разным схемам — «Звезда-Треугольник», с реверсом, и др.

Внимание! Скриншот может быть вырван из контекста! Читайте ГОСТ целиком!

Как обстоят дела реально

Чтобы понять, насколько сохраняется ещё путаница между понятиями, обратимся для примера на сайт отечественного производителя КЭАЗ. Там есть четкое разделение на контакторы и пускатели. Пускателями ПМЛ названы устройства, которые содержат в едином корпусе контактор, тепловое реле и кнопки управления. Однако, контакторы также имеют первые буквы названия «ПМЛ», что означает «Пускатель Магнитный Линейный» и немного сбивает с толку. Видимо, это осталось со времен СССР, когда пускателями часто называли маломощные контакторы. 

На сайте другого популярного бренда – ИЕК – путаницы еще больше. Там имеется позиция «контактор КМИ», и позиция «контактор КМИ в сборе». Второе устройство, как указано на сайте производителя, состоит из малогабаритного контактора КМИ, теплового реле РТИ, оболочки с сальниками и кнопок управления.

Контакторы ИЕК

Контакторы ИЕК

В то же время, слово «пускатель» встречается только в названии «Пускатели ручные кнопочные ПРК» — эти устройства служат для ручного включения и защиты двигателя от перегрузок. 

И наконец, у производителя Schneider Electric названия более конкретизированы. Есть контакторы TeSys различных модификаций, есть «пускатели в корпусе» с контактором, тепловым реле и кнопками, и есть «пускатели прямого включения» для ручного запуска двигателей. 

Моё мнение

Я же продолжаю утверждать, что пускатель – устройство, которое содержит контактор, как основной узел, и несколько вспомогательных устройств – тепловое реле, дополнительные контакты, кнопки управления, защитный автомат или мотор-автомат, клеммы, индикацию. Пускатель может быть электронным, реверсивным, плавным, и т.д.

ПМЕ

ПМЕ

На фото — электронный пускатель и контактор ПМЕ, который в 1964 называли пускателем.

Видео в тему:

А вы что думаете?

Статьи в тему производства:

Некоторые мои статьи на Дзене про электродвигатели и пром.оборудование:

Если интересны темы канала, заходите также на мой сайт — https://samelectric.ru/ и в группу ВК — https://vk.com/samelectric

#электрика #электроника

по назначению, конструкции, принципу действия и комплектации

При сборке схем электроснабжения, контроля и управления может возникнуть путаница в области силовых коммутационных устройств. Сложности вызывает выбор между контакторами и магнитными пускателями. Похожее назначение, принцип действия и конструкция привели к тому, что не каждый может сказать, чем отличается контактор от пускателя. Небольшие отличия в строении и характеристиках основных узлов определяют принадлежность устройств к той или иной группе приборов.

Сравнение контактора и магнитного пускателя

Удобнее всего определять различия этих устройств, рассматривая их вместе по определённым параметрам в разных категориях. Основные категории, в которых будет проводиться сравнение:

  • назначение;
  • конструкция;
  • принцип действия;
  • комплектация.

Описание назначения устройств

Контактор можно использовать для коммутации любых силовых цепей постоянного или переменного тока, при этом нет контакторов, которые были бы предназначены для переключения токов менее 100 ампер, и максимальный ток может достигать величины 4800 А. Номинальное напряжение главной цепи может составлять 2 тыс. вольт. Поэтому контакторы часто используют для подачи напряжения не к отдельным устройствам, а к группам электропотребителей.

Магнитные пускатели тоже могут работать в сетях постоянного тока, но прежде всего они предназначены для работы в сетях переменного тока. С их помощью осуществляют дистанционный пуск, остановку или реверс трехфазных асинхронных электродвигателей с короткозамкнутым ротором, реостатный запуск или регулирование оборотов машин с фазным ротором. В зависимости от величины устройства, ток силовой цепи находится в пределах от нуля до двухсот пятидесяти ампер при напряжении до 660 В.

Особенности конструкции аппаратов

По конструкции оба аппарата похожи друг на друга. Они состоят из следующих основных узлов:

  • электромагнитного привода;
  • главных контактов;
  • вспомогательных контактов.

Пускатель всегда имеет три силовых контакта, что связано с его назначением. Всё устройство помещено в защитный корпус из диэлектрического материала. Корпус обеспечивает защиту от случайного прикосновения к токоведущим частям, а также от неблагоприятных факторов окружающей среды. Поэтому этот аппарат можно устанавливать практически в любых помещениях, нужно только обеспечить его защиту от попадания влаги внутрь корпуса.

Отличие контактора от магнитного пускателя в том, что он может применяться в самых разнообразных электрических сетях, поэтому количество главных контактов, в зависимости от назначения, составляет от двух до четырёх штук. Для обеспечения высокой частоты переключений и гашения электрической дуги, каждый силовой контакт оснащён дугогасительной камерой, что значительно увеличивает износостойкость и коммутационную способность. Часто имеет открытое исполнение, то есть катушка управления и контакты не имеют защитного корпуса, поэтому монтируются такие устройства только в специальных щитах управления.

Оба вида устройств не являются самостоятельными элементами. Для удобства их использования в схемах управления контакторы и пускатели оснащаются вспомогательными контактами, которые переключаются одновременно с главными. Вспомогательные контакты могут быть нормально замкнутыми или нормально разомкнутыми. Их количество колеблется от одного до пяти штук.

Принцип действия механизмов

Исполнительным механизмом пускателя всегда является электромагнит, поэтому он и называется магнитным. При таком типе привода якорь (подвижная часть) электромагнита соединён с главными и вспомогательными контактами. При подаче напряжения на катушку управления, по ней начинает течь ток, возникает магнитное поле, которое притягивает якорь и приводит к переключению контактов. После отключения катушки, возврат устройства в исходное состояние происходит под действием сжатой, при срабатывании, пружины.

Работа магнитного контактора, происходит по тому же принципу, что и у пускателя. Для мощных контакторов, кроме электромагнитного, может применяться электропневматический привод. В этом случае главные и вспомогательные контакты переключаются за счёт энергии сжатого воздуха, подача которого осуществляется через электроклапан.

По напряжению питания катушек, при электромагнитном управлении, устройства не отличаются. Величина этого напряжения для сети постоянного тока может составлять от 12 до 440 вольт, а для переменного тока — от 24 до 660 вольт.

Комплектация устройств

Пускатели могут устанавливаться в достаточно сложных схемах управления электродвигателями. Например, они применяются для переключения ступеней сопротивления при реостатном пуске. Наличие большого числа цепей контроля, управления, защиты и сигнализации приводит к тому, что расположенных на устройстве вспомогательных контактов недостаточно для построения схемы. Для того чтобы не устанавливать дополнительные реле, в верхней части некоторых типов пускателей расположены специальные защёлки, с помощью них можно присоединить дополнительные контактные группы, число которых может доходить до восьми. Таким же способом, вместо контактов, могут присоединяться механические реле времени.

Для защиты электродвигателей от перегрузки используют тепловые реле, многие из которых подключаются и крепятся непосредственно к магнитному пускателю. Такое конструктивное решение повышает надёжность схемы, так как уменьшается количество соединительных проводов. Кроме того, это позволяет облегчить монтаж и сделать расположение элементов более компактным.

Возможность комплектации контакторов дополнительными устройствами не предусмотрена, поэтому их лучше применять в простых схемах.

Отличия пускателя от контактора

Проведя сравнение двух этих устройств, становится очевидным, что все отличия пускателя обусловлены его применением для запуска электродвигателей. Проще говоря, магнитный пускатель — это контактор, предназначенный для управления электродвигателями.

Из-за такого условного отличия, многие современные производители электронных устройств магнитные пускатели в своих каталогах определяют как «малогабаритные контакторы переменного тока».

На современном этапе развития постоянное усовершенствование контакторов привело к тому, что они стали универсальными и могут выполнять любые функции. Поэтому можно смело утверждать, что понятие «магнитный пускатель» становится неактуальным.

Чем отличается контактор от пускателя? | Публикации

Не только специалисты с высшим профильным образованием, но и наладчики оборудования с внушительным опытом практической работы довольно редко понимают, чем в принципе контактор переменного тока отличается от электромагнитного пускателя. Разобраться в этом вопросе можно и самостоятельно.

Что между пускателем и контактором общего? Они оба используются для коммутации силовых цепей, с их помощью запускаются электрические двигатели переменного тока, а для реостатного пуска — вводятся/выводятся ступени сопротивления.

Помимо силовых контактов у пускателя и у контактора в составе есть как минимум 1 пара управляющих контактов – нормально замкнутая или нормально разомкнутая. Это делай данные устройства похожими. Но имеются и серьезные отличия.

Электромагнитные пускатели в прайсах многих торгующих компаний значатся под названием «контакторы переменного тока малогабаритные». Возможно, в этом и состоит главное отличие этих устройств — пускатель компактный? В самом деле, при идентичной номинальной токовой нагрузке габаритные размеры пускателя и контактора отличаются с первого взгляда.

Контактор 3-полюсной на 100 ампер обладает вполне внушительными размерами, а габариты 100-амперного пускателя на порядок меньше. При этом контакторы для слабых токов (порядка 10 ампер) даже не производят. Цепи со слабым током коммутируются только при помощи пускателей, и размеры у них минимальные. Так что одним из важных отличий пускателей от контакторов действительно являются их габариты.

Но они отличаются и по своим конструктивным особенностям. У контакторов не предусмотрено наличия собственного корпуса, поэтому их устанавливают непременно в специально оборудованных и почти герметично запираемых помещениях, где полностью исключено воздействие влаги из атмосферы (или любых других источников) и доступ посторонних людей. В состав контактора входят оборудованные камерами для гашения электрической дуги специальные пары силовых контактов повышенной мощности.

Пластиковый корпус пускателей защищает их силовые контакты, но они не имеют особых объемных камер, предназначенных для гашения электрической дуги. Поэтому пускатели в электроцепи с высокой мощностью и частыми коммутациями устанавливать не рекомендуется, поскольку их контакты практически ничем не защищены от электродуги, которая возникает во многих случаях.

Но если пускатель дополнительно оборудовать герметичным металлическим кожухом, он становится способным обеспечить надежную защиту оборудования гораздо большей степени. И монтировать его можно даже вне помещения, на открытом воздухе, а с контактором такого делать нельзя ни в коем случае.

Назначение — еще одно отличие между пускателем и контактором переменного тока. Пускатели предназначены, в первую очередь, для запуска 3-фазных асинхронных двигателей переменного тока. Хотя используют их для контроля подачи питания на мощные светильники разных конструкций, электромагнитные катушки, обогреватели и остальные электроприборы.

Каждый из пускателей обладает 3 парами силовых контактов, а управляющие контакты в нем служат для удержания его во включенном состоянии, а также для монтажа сложных управляющих цепей, в которых необходим, к примеру, реверсивный пуск.

Предназначение контактора — коммутация практически любых цепей переменного тока, вследствие чего в них устанавливается разное количество пар силовых контактов — обычно от 2 до 4 полюсов.

Таким образом, коммутационные электромагнитные силовые устройства переменного тока на пускатели и контакторы подразделяются по 3 вышеперечисленным различиям.

Контакторы и пускатели в большом ассортименте в интернет-магазине электротоваров «СИ Электро».

Подготовлено компанией «СИ Электро»

Контакторы и магнитные пускатели: Чем отличаются?

Важным элементом электрических цепей считаются различные виды коммутирующих устройств. Среди них наиболее широкое распространение получили контакторы и магнитные пускатели, подключаемые не только к силовым линиям, но и к цепям управления. Эти приборы очень похожи, поэтому нередко возникает вопрос, как отличить их один от другого, то есть, пускатель от контактора. Большинство выполняемых функций совершенно одинаковые, тем не менее, определенная разница между обоими устройствами все же существует.

Чем отличается контактор от пускателя

Сходство между этими приборами заключается в их предназначении. Они выполняют коммутацию в самых различных местах, преимущественно в силовых цепях. Большинство конструктивных элементов также совпадают. В тех и других аппаратах основными деталями являются электромагнитный привод, главные и вспомогательные контакты. У каждого устройства имеется как минимум одна пара контактов, используемых в цепях управления. Они могут быть замкнутыми или разомкнутыми.

Однако, магнитный пускатель и контактор имеют и отличия. Прежде всего, они отличаются своими габаритными размерами. Если взять два устройства с одинаковой токовой нагрузкой, то размеры и вес контактора будут заметно выше, чем у магнитного пускателя. По этой причине пускатели нередко именуются малогабаритными контакторами.

Существует разница и в области применения. Контакторы подходят для любых электрических сетей, а пускатель имеет ограничения в использовании. Этот фактор определяет и различия в конструкциях. Например, высокая частота включений-выключений контакторов возможна благодаря дугогасительным камерам, предусмотренным для каждого силового контакта. За счет этого увеличивается коммутационная способность и устойчивость к износу. Многие контакторы выпускаются в открытом исполнении, без корпуса, и устанавливаются в места, недоступные для попадания влаги и посторонних лиц. Для них предусмотрены специальные щиты управления.

В отличие от контактора, магнитный пускатель надежно защищен пластиковым корпусом, особенно его силовые контакты. В этих устройствах отсутствуют дугогасительные камеры, поэтому их нельзя использовать в мощных силовых цепях при большом количестве коммутаций. Частые дуговые разряды вызовут преждевременный износ контактов. Однако, пускатель считается более надежным прибором за счет усиленного корпуса, позволяющего устанавливать его практически в любых местах.

Магнитные коммутационные устройства больше подходят для работы с асинхронными трехфазными электродвигателями переменного тока. Для этого в конструкции предусмотрено три пары силовых проводов. Кроме того, управляющие контакты выполняют поддержку установки во включенном состоянии, в том числе и в сложных цепях с реверсивными пусками. Контактор же используется со всеми цепями переменного тока и выполняет более простые действия по переключениям. В связи с этим приборы оборудованы дополнительными полюсами и контактными группами.

Устройство и принцип работы

Каждый пускатель и контактор являются важными элементами электрических сетей. Именно они выступают в качестве связующего звена между цепями и электроустановками. Несмотря на некоторое различие, оба прибора действуют по одному и тому же электромагнитному принципу.

Общими деталями обоих устройств являются проводные катушки с сердечниками, соединенными с контактами. Именно эти контакты участвуют в замыкании и размыкании цепи, по которой проходит электрический ток. Благодаря стальному или медному каркасу, катушка становится более прочной и быстрее охлаждается в процессе работы.

Работа устройства осуществляется следующим образом:

  • Напряжение поступает на катушку и дает толчок к созданию магнитного импульса.
  • Под его воздействием начинается движение подвижной части сердечника в направлении неподвижной части.
  • В результате, происходит замыкание контактов и всей цепи, в которой появляется электрический ток, включающий в работу коммутируемое электрооборудование.
  • После прекращения подачи электроэнергии магнитное поле пропадает и перестает удерживать сердечник.
  • Специальная пружинная система возвращает его в исходное положение, после чего контакты и цепь размыкаются, а оборудование отключается.

Включение и отключение устройств выполняется при помощи кнопок ПУСК и СТОП, расположенных на отдельной панели. Кнопка ПУСК приводит в действие описанные процессы, силовые контакты замыкаются и остаются в этом положении, удерживаемые вспомогательными блок-контактами.

Существуют отличия между управляющими и силовыми цепями. В первом случае питание поступает на катушку из управляющей цепи и не превышает 230 вольт. Цепь участвующая в замыкании контактов, считается силовой, поскольку ее ток существенно превышает значение силы тока в цепи управления.

Назначение и различие средств коммутации

Назначение коммутирующих устройств может быть разным, этим они и отличаются. Например, контакторы (рис.1) применяются во всех силовых цепях с постоянным или переменным током. Минимальный ток, подлежащий переключению, составляет 100 А, а максимальный показатель достигает 4800 А. Напряжение в главной силовой цепи может достигать 2000 В, поэтому в большинстве случаев контакторы соединяются не с отдельными устройствами, а с целыми группами потребителей.

Магнитный пускатель (рис. 2) в первую очередь предназначен для работы с переменным током, но может работать и с сетями постоянного тока. Их основная функция заключается в дистанционном пуске, остановке или реверсе асинхронных электродвигателей с короткозамкнутым ротором, а также предотвращение их непроизвольного пуска. Кроме того, они используются для реостатного пуска или регулировки оборотов электроустановок с фазным ротором. Магнитные пускатели используются достаточно ограниченно, в сетях с максимальным напряжением до 380 В.

При ответе на вопрос, чем отличается контактор от магнитного пускателя, следует учесть, что коммутация при помощи контактора охватывает практически все электрические цепи, в том числе и сложные схемы. Этим обусловлено широкое применение контакторов и их универсальность. Они идеально подходят для управления мощными двигателями, участками с большими нагрузками и частыми запусками, с напряжением в пределах 660 вольт.

В сложных схемах предпочтительнее использовать пускатель, особенно при наличии множества контрольных, защитных, управляющих и сигнальных цепей. В таких случаях невозможно обойтись лишь вспомогательными контактами, и решить проблему может только магнитный коммутационный прибор. С помощью защелок к пускателю можно подключить дополнительные группы контактов – до 8 единиц. В случае необходимости вместо контактов устанавливается реле времени механического типа. Подобные мероприятия позволяют избавиться от дополнительных реле и обойтись только контактными группами.

Нередко электромагнитные пускатели используются совместно с тепловыми реле, защищающими электродвигатели от перегрузок. Они закрепляются на коммутационной аппаратуре, повышая тем самым надежность всей схемы, за счет уменьшения кабельно-проводниковых соединений. Монтаж готовой системы существенно облегчается, а все элементы располагаются более компактно.

В отличие от пускателей, не во всех моделях контакторов предусмотрена установка дополнительных устройств. Поэтому такие приборы рекомендуется использовать в наиболее упрощенных схемах.

Особенности эксплуатации

Надежная работа коммутирующих устройств во многом зависит от соблюдения правил эксплуатации. Поэтому, используя контакторы и магнитные пускатели, следует их внимательно изучить и соблюдать во время работы.

Наиболее важными требованиями являются следующие:

  • Перед тем как устанавливать контактор, необходимо очистить рабочие поверхности от смазки. Проверить правильность регулировок, состояние электрических соединений.
  • В процессе работы необходимо проводить регулярные проверки технического состояния контактных групп. Эта процедура должна выполняться через каждые 50 тысяч срабатываний или одного аварийного отключения тока.
  • При зачистке поверхностей контактов обязательно должна сохраняться их первоначальная форма.
  • Разрывные контакты располагаются правильно относительно друг друга. Проверка расположения осуществляется с помощью копировальной бумаги.
  • При наличии у контакторов нескольких полюсов, проверяется состояние контактов при их одновременном замыкании.
  • Обязательно проверяется механическая блокировка, которая должна всегда быть в исправном состоянии.
  • Во время работы следует постоянно следить за размерами зазора между контактами. Они подлежат обязательной замене при уменьшении начальной толщины на 50%, а при наличии накладок – на 80%.

Основные причины неисправностей

В течение срока эксплуатации отдельные контакторы и пускатели периодически выходят из строя по причине различных неисправностей.

Чаще всего этому подвержены управляющие катушки по следующим причинам:

  • Напряжение, подаваемое из сети, не соответствует техническим условиям эксплуатации. Например, номинал катушки составляет 220 В, а подаваемое напряжение было в 380 В.
  • Ток был подан на катушку с замкнутыми контактами.
  • Изношенная изоляция медного провода обмотки, которая стала причиной межвиткового замыкания.
  • Превышение рабочей температуры.

Другая неисправность сгорание главных контактов. Причины могут быть следующие:

  • Неправильно рассчитанная нагрузка на магнитный пускатель.
  • Подключение к трехфазной нагрузке через два силовых и один дополнительный контакт, не рассчитанный на высокую силу тока.
  • Недостаточная мощность для нормального сцепления контактов из-за разной жесткости возвратных пружин.

Контакторы и магнитные пускатели | Электрические аппараты

Страница 8 из 18

11 ЭЛЕКТРОМЕХАНИЧЕСКИЕ КОММУТАЦИОННЫЕ АППАРАТЫ

КОНТАКТОРЫ И МАГНИТНЫЕ ПУСКАТЕЛИ

Контактор – это двухпозиционный аппарат с самовозвратом, предназначенный для частых коммутаций токов, не превышающих токи перегрузки, и приводимый в действие приводом. Этот аппарат имеет два коммутационных положения, соответствующие включенному и отключенному его состояниям. В контакторах наиболее широко применяется электромагнитный привод. Возврат контактора в отключенное состояние (самовозврат) происходит под действием возвратной пружины, массы подвижной системы или при совместном действии этих факторов.

Пускатель – это коммутационный аппарат, предназначенный для пуска, остановки и защиты электродвигателей без выведения и введения в их цепи сопротивлений резисторов. Пускатели осуществляют защиту электродвигателей от токов перегрузки. Распространенным элементом такой защиты является тепловое реле, встраиваемое в пускатель.
Токи перегрузки для контакторов и пускателей не превышают (8-20)-кратных перегрузок по отношению к номинальному току. Для режима пуска двигателей с фазовым ротором и торможения противотоком характерны (2.5-4)-кратные токи перегрузки. Пусковые токи электродвигателей с короткозамкнутым ротором достигают (6-10)-кратных перегрузок по сравнению с номинальным током.
Электромагнитный привод контакторов и пускателей при соответствующем выборе параметров может осуществлять функции защиты электрооборудования от понижения напряжения. Если электромагнитная сила, развиваемая приводом, при снижении напряжения в сети окажется недостаточной для удержания аппарата во включенном состоянии, то он самопроизвольно отключится и осуществит таким образом защиту от понижения напряжения. Как известно, понижение напряжения в питающей сети вызывает протекание токов перегрузки по обмоткам электродвигателей, если механическая нагрузка на них будет оставаться неизменной.
Контакторы предназначены для коммутации силовых цепей электродвигателей и других мощных потребителей. В зависимости от рода коммутируемого тока главной цепи различают контакторы постоянного и переменного тока. Они имеют главные контакты, снабженные системой дугогашения, электромагнитный привод и вспомогательные контакты.Как правило, род тока в цепи управления, которая питает электромагнитный привод, совпадает с родом тока главной цепи. Однако известны случаи, когда катушки контакторов переменного тока получают питание от цепи постоянного тока.

Рисунок 1 — Конструктивная схема контактора
На рис. 1 изображена конструктивная схема контактора, отключающего цепь двигателя. В этом случае напряжение на катушке 12 отсутствует и его подвижная система под действием возвратной пружины 10, создающей силу Fв, придет в нормальное состояние.Возникающая при расхождении главных контактов дуга Д гасится в дугогасительной камере 5.
Быстрое перемещение дуги с контактов в камеру обеспечивается системой магнитного дутья. В цепь главного тока включена последовательная катушка 1, которая размещена на стальном сердечнике 2. Стальные пластины – полюса 3, расположенные по бокам сердечника 2, подводят создаваемое катушкой 1 магнитное поле к зоне горения дуги в камере. Взаимодействие этого поля с током дуги приводит к появлению сил, которые перемещают дугу в камеру.
Контактор включит цепь с током I0, если подать напряжение U на катушку 12 приводного электромагнита. Поток Ф, созданный током, протекающим через катушку электромагнита, разовьет тяговую силу и притянет якорь 9 электромагнита к сердечнику, преодолев силы противодействия возвратной 10 и Fk контактной 8 пружин.
Сердечник электромагнита оканчивается полюсным наконечником 11, поперечное сечение которого больше поперечного сечения самого сердечника. Установкой полюсного наконечника достигается некоторое увеличение силы, создаваемой электромагнитом, а также видоизменение тяговой характеристики электромагнита (зависимости электромагнитной силы от величины воздушного зазора).
Соприкосновение контактов 4 и 6 друг с другом и замыкание цепи при включении контактора произойдет раньше, чем якорь электромагнита полностью притянется к полюсу. По мере движения якоря подвижный контакт 6 будет как бы «проваливаться», упираясь своей верхней частью в неподвижный контакт 4. Он повернется на некоторый угол вокруг точки А и вызовет дополнительное сжатие контактной пружины 8. Появится провал контактов, под которым подразумевается величина смещения подвижного контакта на уровне точки его касания с неподвижным контактом в случае, если неподвижный будет удален.
Провал контактов обеспечивает надежное замыкание цепи, когда толщина контактов уменьшается вследствие выгорания их материала под. действием электрической дуги. Величина провала определяет запас материала контактов на износ в процессе работы контактора.
После соприкосновения, контактов происходит перекатывание подвижного контакта по неподвижному. Контактная пружина создает определенное нажатие в контактах, поэтому при перекатывании происходит разрушение окисных пленок и других химических соединений, которые могут появиться на поверхности контактов. Точки касания контактов при перекатывании переходят на новые места контактной поверхности, не подвергавшиеся воздействию дуги и являющиеся поэтому более «чистыми». Все это уменьшает переходное сопротивление контактов и улучшает условия их работы. В то же время перекатывание повышает механический износ контактов (контакты изнашиваются).
В момент соприкосновения подвижный контакт 6 сразу же оказывает на неподвижный контакт 4 давление, обусловленное предварительным натяжением контактной пружины 8. Вследствие этого переходное сопротивление контактов в момент их касания будет небольшим и контактная площадка не разогреется при включении до значительной температуры. Кроме того, предварительное контактное нажатие, созданное пружиной 8, позволяет снизить вибрацию (отскоки) подвижного контакта при ударе его о неподвижный контакт. Все это предохраняет контакты от приваривания при включении электрической .цепи. На контактах имеются контактные накладки, выполненные из специального материала, например серебра, чтобы улучшить условия длительного прохождения тока через замкнутые контакты во включенном состоянии. Иногда применяются накладки из дугостойкого материала для уменьшения износа контактов под воздействием электрической дуги (металлокерамика «серебро-окись кадмия» и др.). Гибкая связь 7 (для подвода тока к подвижному контакту) изготовляется из медной фольги (ленты) или тонкой проволоки.
Раствором контактов называется расстояние между подвижным и неподвижным контактами в отключенном состоянии контактора. Раствор контактов обычно лежит в пределах от 1 до 20 мм. Чем ниже раствор контактов, тем меньше ход якоря приводного электромагнита. Это приводит к уменьшению в электромагните рабочего воздушного зазора, магнитного сопротивления, намагничивающей силы, мощности катушки электромагнита и его габаритов. Минимальная величина раствора контактов определяется: технологическими и эксплуатационными условиями, возможностью образования металлического мостика между контактами при разрыве цепи тока, условиями устранения возможности смыкания контактов при отскоке подвижной системы от упора при отключении аппарата. Раствор контактов также должен быть достаточным для обеспечения условий надежного гашения дуги при малых токах.


Рисунок 2 — Прямоходовой пускатель
Изображенная на рис. 1 схема контактора поворотного типа довольно типичная. Обычно такие контакторы предназначаются для тяжелого режима работы (большая частота циклов коммутационных операций, индуктивные цепи) при относительно высоких значениях номинального тока (десятки и сотни ампер). Другой распространенный тип контакторов и пускателей — прямоходовой; он рассчитывается преимущественно на меньшие номинальные токи (десятки ампер) и более легкие условия работы. Прямоходовой пускатель (рис. 2) имеет мостиковые контакты 2 и 3, с которых дуга выдувается в дугогасительные камеры 1. Сила Fk контактной пружины создает нажатие в замкнутых контактах, возвратная пружина Fп возвращает подвижную систему аппарата в отключенное состояние, когда будет снято напряжение с катушки. Аппарат включается электромагнитом при подаче напряжения на его катушку 5. На полюсах электромагнита переменного тока устанавливаются короткозамкнутые витки 4, устраняющие вибрацию якоря во включенном положении аппарата.
В отличие от контактора постоянного тока в контакторе переменного тока для уменьшения потерь на вихревые токи применяют шихтованные магнитопроводы и короткозамкнутые витки на полюсах для устранения вибрации якоря. Контакторы переменного тока чаще изготовляют трехполюсными, постоянного тока — однополюсными и двухполюсными. В качестве дугогасительного устройства в контакторах на постоянном токе чаще применяются щелевые камеры, на переменном — чаще дугогасительная решетка.
Для гашения дуги применяют также камеры с дугогасительной решеткой. Дугогасительная решетка представляет собой пакет тонких металлических пластин 5 (рис. 1). Под действием электродинамических сил, создаваемых системой магнитного дутья, электрическая дуга попадает на решетку и рвется на ряд коротких дуг. Пластины интенсивно отводят тепло от дуги и гасят ее, но пластины дугогасительной решетки обладают значительной термической инерционностью — при большой частоте включений они перегреваются и эффективность дугогашения падает.
Мощные контакторы переменного тока имеют главные контакты, снабженные системой дугогашения — магнитным дутьем и дугогасительной камерой с узкой щелью или дугогасительной решеткой, как и контакторы постоянного тока. Конструктивное отличие заключается в том, что контакторы переменного тока выполняют многополюсными; обычно они имеют три главных замыкающих контакта. Все три контактных узла работают от общего электромагнитного привода клапанного типа, который поворачивает вал контактора с установленными на нем подвижными контактами. На том же валу устанавливают вспомогательные контакты мостикового типа. Контакторы имеют достаточно большие габаритные размеры. Их применяют для управления электродвигателями значительной мощности.
Для увеличения срока службы конструкция контакторов допускает смену контактов.
Существуют комбинированные контакторы переменного тока, в которых параллельно главным замыкающим контактам включают два тиристора. Во включенном положении ток проходит через главные контакты, поскольку тиристоры находятся в закрытом состоянии и ток не проводят. При размыкании контактов схема управления открывает тиристоры, которые шунтируют цепь главных контактов и разгружают их от тока отключения, препятствуя возникновению электрической дуги. Поскольку тиристоры работают в кратковременном режиме, их номинальная мощность невелика и они не нуждаются в радиаторах охлаждения.
Наша промышленность выпускает комбинированные контакторы типа КТ64 и КТ65 на номинальные токи, превышающие 100 А, выполненные на базе широко распространенных контакторов КТ6000 и снабженные дополнительным полупроводниковым блоком.
Коммутационная износостойкость комбинированных контакторов в режиме нормальных коммутаций составляет не менее 5 млн. циклов, а коммутационная износостойкость полупроводниковых блоков примерно в 6 раз выше. Это позволяет многократно использовать их в системах управления.
Для управления электродвигателями переменного тока небольшой мощности применяют прямоходовые контакторы с мостиковыми контактными узлами. Двукратный разрыв цепи и облегченные условия гашения дуги переменного тока позволяют обойтись без специальных дугогасительных камер, что существенно уменьшает габаритные размеры контакторов.
Прямоходовые контакторы обычно выпускаются промышленностью в трехполюсном исполнении. При этом главные замыкающие контакты разделяются пластмассовыми перемычками 1.
Наряду со слаботочными герконами, созданы герметичные силовые магнитоуправляемые контакты (герсиконы), способные коммутировать токи в несколько десятков ампер. На этой основе были разработаны контакторы для управления асинхронными электродвигателями мощностью до 1.1 кВт. Герсиконы отличаются увеличенным раствором контактов (до 1.5 мм) и повышенным контактным нажатием. Для создания значительной силы электромагнитного притяжения используют специальный магнитопровод.
Область применения электромагнитных контакторов достаточно широка. В машиностроении контакторы переменного тока применяют чаще всего для управления асинхронными электродвигателями. В этом случае их называют магнитными пускателями. Магнитный пускатель представляет собой простейший комплект аппаратов для дистанционного управления электродвигателями и кроме самого контактора часто имеет кнопочную станцию и аппараты защиты.
На рисунке 1 (а, б) показаны соответственно монтажная и принципиальная схемы соединений нереверсивного магнитного пускателя. На монтажной схеме границы одного аппарата обводят штриховой линией. Она удобна для монтажа аппаратуры и поиска неисправностей. Читать эти схемы трудно, так как они содержат много пересекающихся линий.

а)                                        б)
Рисунок 1 — Схемы нереверсивного пускателя
На принципиальной схеме все элементы одного аппарата имеют одинаковые буквенно-цифровые обозначения. Это позволяет не связывать вместе условные изображения катушки контактора и контактов, добиваясь наибольшей простоты и наглядности схемы.
Нереверсивный магнитный пускатель имеет контактор KM с тремя главными замыкающими контактами (Л1-С1, Л2-С2, Л3-С3) и одним вспомогательным замыкающим контактом (3-5).
Главные цепи, по которым протекает ток электродвигателя, принято изображать жирными линиями, а цепи питания катушки контактора (или цепи управления) с наибольшим током – тонкими линиями.
Для включения электродвигателя М необходимо кратковременно нажать кнопку SB2 «Пуск». При этом по цепи катушки контактора потечет ток, якорь притянется к сердечнику. Это приведет к замыканию главных контактов в цепи питания электродвигателя. Одновременно замкнется вспомогательный контакт 3 – 5,
что создаст параллельную цепь питания катушки контактора. Если теперь кнопку «Пуск» отпустить, то катушка контактора будет включена через собственный вспомогательный контакт. Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя. Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то контактор отключается и его вспомогательный контакт размыкается. После восстановления напряжения для включения электродвигателя необходимо повторно нажать кнопку «Пуск». Нулевая защита превращает непредвиденный, самопроизвольный пуск электродвигателя, который может привести к аварии.
Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют контакторное управление.
Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки контактора.
В том случае, когда необходимо использовать два направления вращения электродвигателя, применяют реверсивный магнитный пускатель, принципиальная схема которого изображена на рисунке 2, а. Для изменения направления вращения асинхронного электродвигателя необходимо изменить порядок чередования фаз статорной обмотки. В реверсивном магнитном пускателе используют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи главного тока произойдет короткое замыкание. Для исключения этого схема снабжена блокировкой. Если после нажатия кнопки SВ3 «Вперед» и включения контактора КМ1 нажать кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.

 


Рисунок 2 — Схемы реверсивного пускателя
Аналогичная схема цепи управления реверсивного пускателя с блокировкой на вспомогательных размыкающих контактах изображена на рисунке 2, б. В этой схеме включение одного из контакторов, например КМ1, приводит к размыканию цепи питания катушки другого контактора КМ2. Для реверса необходимо предварительно нажать кнопку SB1 «Стоп» и отключить контактор КМ1. Для надежной работы схемы необходимо, чтобы главные контакты контактора КМ1 разомкнулись раньше, чем произойдет замыкание размыкающих вспомогательных контактов в цепи контактора КМ2. Это достигается соответствующей регулировкой положения вспомогательных контактов по ходу якоря.
В серийных магнитных пускателях часто применяют двойную блокировку по приведенным выше принципам. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному срабатыванию электромагнитов контакторов. В этом случае оба контактора должны быть установлены на общем основании.
Магнитные пускатели открытого исполнения монтируют в шкафах электрооборудования. Пускатели пылезащищенного и пылебрызгонепроницаемого исполнения снабжают кожухом и монтируют на стене или стойке в виде отдельного аппарата.
Электромагнитные контакторы выбирают по номинальному току электродвигателя с учетом условий эксплуатации. ГОСТ 11206-77 устанавливает несколько категорий контакторов переменного и постоянного тока. Контакторы переменного тока категории АС-2, АС-3 и АС-4 предназначены для коммутации цепей питания асинхронных электродвигателей. Контакторы категории АС-2 используют для пуска и отключения электродвигателей с фазным ротором. Они работают в наиболее легком режиме, поскольку эти двигатели обычно пускаются при помощи роторного реостата. Категории АС-3 и АС-4 обеспечивают прямой пуск электродвигателей с короткозамкнутым ротором и должны быть рассчитаны на шестикратный толчок пускового тока. Категория АС-3 предусматривает отключение вращающего асинхронного электродвигателя. Контакторы категории АС-4 предназначены для торможения противотоком электродвигателей с короткозамкнутым ротором или отключения неподвижных электродвигателей и работают в наиболее тяжелом режиме.
Контакторы, предназначенные для работы в режиме АС-3, могут быть использованы в условиях, соответствующих категории АС-4, но номинальный ток контактора при этом снижается в 1.5-3 раза. Аналогичные категории применения предусмотрены для контакторов постоянного тока.
Контакторы категории ДС-1 применяют для коммутации малоиндуктивной нагрузки. Категории ДС-2 и ДС-3 предназначены для управления электродвигателями постоянного тока с параллельным возбуждением и позволяют коммутировать ток, равный . Категории ДС-4 и ДС-5 применяют для управления электродвигателями постоянного тока с последовательным возбуждением.
Указанные категории определяют режим нормальных коммутаций, в котором контактор может непрерывно работать длительное время. Кроме того, различают режим редких (случайных) коммутаций, когда коммутационная способность контактора может быть увеличена примерно в 1.5 раза.
Если асинхронный электродвигатель работает в повторно-кратковременном режиме, то выбор контактора осуществляется по величине среднеквадратичного тока. На выбор контактора влияет степень защиты контактора. Контакторы защищенного исполненияимеют худшие условия охлаждения, и их номинальный ток снижается примерно на 10% по сравнению с контакторами открытого исполнения.

КОНТАКТНО – ДУГОГАСИТЕЛЬНЫЕ СИСТЕМЫ КОНТАКТОРОВ

В контакторах обычно используются рычажные (рис. 1, а) и мостиковые (рис. 1, б) контакты. В рычажных контактах образуется при отключении один разрыв (одна дуга), в мостиковых – два (две дуги). Поэтому при прочих равных условиях возможности для отключения электрических цепей у аппаратов с мостиковыми контактами выше, чем у аппаратов с рычажными (пальцевыми) контактами.

Рисунок 1 – Рычажные и мостиковые контакты
Мостиковые контакты по сравнению с рычажными имеют тот недостаток, что в замкнутом состоянии в них создается два контактных перехода тока, в каждом из которых должно быть создано надежное касание. Поэтому сила контактной пружины  должна быть удвоенной (по сравнению с рычажными контактами), что в конечном итоге увеличивает мощность электромагнитного привода контактора.
В контакторах переменного тока на отключаемые токи до 100 А при напряжении сети до 100-200 В можно не применять дугогасительные камеры, так как дуга гасится за счет растяжения ее в атмосферном воздухе (открытый разрыв). Для предотвращения перекрытия электрических дуг на соседних полюсах применяются изоляционные перегородки. Контакторы с открытым разрывом дуги существуют также и на постоянном токе, но отключаемые токи для них существенно меньше.
При высоких значениях отключаемых токов и напряжений аппараты снабжаются дугогасительными камерами, из которых наиболее распространены щелевые камеры и дугогасительные решетки. Щелевая камера (рис. 2, а) образует внутри узкий просвет (щель) между стенками из дугостойкого изоляционного материала (асбестоцемент и др.). В него загоняется электрическая дуга 1 и там она гасится за счет усиленного отвода тепла при тесном соприкосновении со стенками.
Дугогасительная решетка (рис. 2, б) представляетсобой пакет из тонких (мм) металлических пластин 2, на которые выдувается дуга. Пластины выполняют роль радиаторов, интенсивно отводящих тепло от столба дуги и способствующих ее гашению.
Наиболее важной характеристикой дугогасительной камеры является вольт – амперная характеристика. Используя ее, можно рассчитать процессы гашения дуги при отключении цепи.

 


Рисунок 2 – Дугогасительные камеры
Как показал опыт эксплуатации, дугогасительная решетка непригодна для частых отключений цепи при сравнительно больших токах. При большой частоте отключений ее пластины разогреваются до высоких температур и не успевают остыть. Они оказываются неспособными охлаждать столб дуги, и решетка отказывает в работе. Для режима частых отключений цепи более пригодны щелевые дугогасительные камеры.
Система магнитного дутья предназначена для того, чтобы создать дополнительные силы для схода дуги с контактов и вхождения ее в дугогасительную камеру (рис. 3, а). Катушка 1 магнитного дутья включена последовательно в цепь отключаемого тока. Созданный ею магнитный поток Ф с помощью деталей 2 и 3 магнитопровода подводится к зоне горения дуги у входа в дугогасительную камеру 4.
Рисунок 3 – Система магнитного дутья
Взаимодействие тока дуги (А) с магнитным полем напряженностью (А/м) приводит к появлению действующей на дугу электродинамической силы (Н), которая загоняет дугу длиной  (м) в камеру:
,                                          (*)где Гн/м.
В зоне горения дуги (в воздушном зазоре , м, между пластинами 3 на рис. 3, а) в соответствии с законом полного тока для однородного поля (HL=Iw) напряженность поля (А/м)
.
Подставив это значение в (*), получим:
,
где  – число витков катушки.
Так как в системе с катушкой последовательного магнитного дутья сила пропорциональна квадрату тока, то целесообразно использовать этот вид дутья в контакторах, рассчитанных на сравнительно большие номинальные токи. Для сокращения расхода меди на изготовление катушки, сечение которой должно выбираться по номинальному току контактора, желательно иметь возможно меньшее число витков катушки. Однако это число витков должно обеспечивать такую напряженность магнитного поля в зоне его взаимодействия с током дуги, которая создаст условия для надежного гашения дуги в заданном диапазоне отключаемых токов. Обычно оноизмеряется единицами при номинальных токах в сотни ампер, а при токах в десятки ампер достигает десяти и выше.
Преимущество систем с катушкой последовательного магнитного дутья заключается в том, что направление силы  не зависит от направления тока . Это позволяет применять указанную систему не только на постоянном, но и на переменном токе. Однако на переменном токе вследствие появления вихревых токов в магнитопроводе может возникнуть сдвиг по фазе между током дуги и результирующей напряженностью магнитного поля в зоне горения дуги, что может вызвать обратное «забрасывание» дуги в камеру.
Недостаток системы с катушкой последовательного магнитного дутья – малая напряженность магнитного поля, создаваемая ею при небольших отключаемых токах. Поэтому параметры этой системы надо выбирать так, чтобы в области этих токов обеспечить максимально возможную напряженность магнитного поля в зоне горения дуги, не прибегая к значительному увеличению числа витков катушки магнитного дутья, чтобы не вызывать излишнего расхода меди на её изготовление. При небольших токах магнитопровод этой системы не должен насыщаться. Тогда почти вся намагничивающая сила катушки компенсируется падением магнитного потенциала в воздушном зазоре и напряженность магнитного поля в нем окажется максимально возможной. При больших токах магнитопровод, наоборот, целесообразно вводить в насыщение, когда его магнитное сопротивление становится большим. Это снизит напряженность магнитного поля в зоне расположения дуги, уменьшит силу  и интенсивность гашения дуги, снизит перенапряжения при её гашении.
Существует система с катушкой параллельного магнитного дутья, когда катушка 1 (см. рис. 3), содержащая сотни витков из тонкого провода и рассчитываемая на полное напряжение источника питания, создает в зоне горения дуги напряженность магнитного поля (А/м)
.
Действующая на дугу электродинамическая сила (Н) (см. рис. 3, б)
,
где
В этой системе сила, действующая на дугу, пропорциональна току в первой степени. Поэтому она оказывается более целесообразной для контакторов на небольшие токи (примерно до 50 А).
Контактор с параллельной катушкой магнитного дутья реагирует на направление тока. Если направление магнитного поля сохраняется неизменным, а ток изменит свое направление, то сила  будет направлена в противоположную сторону. Дуга будет перемещаться не в дугогасительную камеру, а в противоположную сторону – на катушку магнитного дутья, что может привести к аварии в контакторе. Это – недостаток рассматриваемой системы. Недостатком этой системы является также необходимость повышения уровня изоляции катушки в расчете на полное напряжение сети. Понижение напряжения сети приводит к уменьшению намагничивающей силы катушки и ослаблению интенсивности магнитного дутья, что снижает надежность дугогашения.
В системе магнитного дутья вместо катушки напряжения можно применять постоянный магнит. По свойствам такая система аналогична системе с параллельной катушкой магнитного дутья. Замена катушки напряжения постоянным магнитом исключит расход меди и изоляционных материалов, которые потребовались бы на создание катушки. При этом в системе не должны нарушаться свойства постоянного магнита в процессе эксплуатации.
Системы с катушкой параллельного магнитного дутья и постоянными магнитами на переменном токе не применяются, так как практически невозможно согласовать направление магнитного потока с направлением тока дуги, чтобы получить одно и то же направление силы  в любой момент времени.
С увеличением напряженности поля магнитного дутья улучшаются условия схода дуги с контактов на дугогасительные рога и облегчается её вхождение в камеру. Поэтому с ростом  уменьшается также износ контактов от термического воздействия дуги, но до определенного предела.
Большие напряженности поля создают значительные силы, воздействующие на дугу и выбрасывающие расплавленные металлические мостики из межконтактного промежутка в атмосферу. Это повышает износ контактов . При оптимальной напряженности поля  износ контактов минимален.
Износ контактов – важный технический фактор. Поэтому принимаются серьезные меры, например уменьшение вибрации контактов при включении аппарата, чтобы уменьшить износ и увеличить срок службы контактов.
Важной характеристикой дугогасительного устройства переменного тока является закономерность роста восстанавливающейся прочности межконтактного промежутка за переходом тока через нуль.

ECSTUFF4U для инженера-электронщика

Что такое контактор?

Контакторы представляют собой коммутационные устройства с электрическим приводом, которые используются для выполнения электрических соединений. Основная работа аналогична работе реле, за исключением того, что подрядчики могут подать на реле широкий ток до 12500 А. Они не могут защитить от коротких замыканий или перегрузок, но могут разорвать контакт, если катушка возбуждена.

Что такое стартер?

Стартер — это механизм, который вращает двигатель внутреннего сгорания, чтобы он мог начать работать от собственной мощности.Доступны электронные или гидравлические стартеры.

Разница между контактором и пускателем:
  • Контактор — это электрический выключатель, который работает аналогично реле, а пускатель — это контактор с реле перегрузки.
  • У подрядчика нет связанной с ним перегрузки, а у пускателя есть несколько вариантов перегрузки.
  • В отличие от пускателя, который обычно оценивается по нагрузочной способности по току и мощности двигателя, с которым он совместим, контактор обычно классифицируется по напряжению.
  • Контактор замыкает контакты, подает и прерывает питание цепи, подавая напряжение на катушку контактора. Реле перегрузки используется пускателем для защиты двигателя от скачков нагрузки, отключая его во избежание перегрева.

Дополнительная информация:

Что такое контактор?

Контакторы представляют собой коммутационные устройства с электрическим приводом, которые используются для выполнения электрических соединений. Основная работа аналогична работе реле, за исключением того, что подрядчики могут подать на реле широкий ток до 12500 А.Они не могут защитить от коротких замыканий или перегрузок, но могут разорвать контакт, если катушка возбуждена.

Что такое стартер?

Стартер — это механизм, который вращает двигатель внутреннего сгорания, чтобы он мог начать работать от собственной мощности. Доступны электронные или гидравлические стартеры.

Разница между контактором и пускателем:
  • Контактор — это электрический выключатель, который работает аналогично реле, а пускатель — это контактор с реле перегрузки.
  • У подрядчика нет связанной с ним перегрузки, а у пускателя есть несколько вариантов перегрузки.
  • В отличие от пускателя, который обычно оценивается по нагрузочной способности по току и мощности двигателя, с которым он совместим, контактор обычно классифицируется по напряжению.
  • Контактор замыкает контакты, подает и прерывает питание цепи, подавая напряжение на катушку контактора. Реле перегрузки используется пускателем для защиты двигателя от скачков нагрузки, отключая его во избежание перегрева.

Дополнительная информация:

чем отличается контактор от магнитного пускателя

Пускатель двигателя представляет собой контактор с дополнительным реле перегрузки, которое отключает напряжение катушки в случае перегрузки двигателя. Контактор представляет собой переключатель электрического управления, аналогичный реле. Он используется для переключения тока на ВКЛ и ВЫКЛ цепи.

  1. Что делает магнитный пускатель?
  2. Для чего нужен контактор?
  3. Что такое магнитный контактор?
  4. В чем основное различие между контактором и реле?
  5. Можно ли управлять магнитным пускателем автоматически?
  6. Нужен ли мне пускатель двигателя?
  7. Что такое НО и НЗ в контакторе?
  8. Что вызывает отказ контактора?
  9. Как узнать, неисправен ли контактор?
  10. Как проверить магнитный контактор?
  11. Сколько существует типов контакторов?
  12. Какие три номинала тока встречаются у контактора?

Что делает магнитный пускатель?

Магнитный пускатель двигателя представляет собой электромагнитное устройство, которое запускает и останавливает подключенную двигательную нагрузку.Магнитные пускатели состоят из электрического контактора и устройства перегрузки, обеспечивающего защиту в случае внезапного отключения питания.

Для чего нужен контактор?

Контактор — это специальный тип реле, используемый для включения или выключения электрической цепи. Они чаще всего используются с электродвигателями и осветительными приборами.

Что такое магнитный контактор?

Магнитные контакторы используются в электродвигателях для балансировки изменения частоты двигателя или состояния двигателя, которое можно назвать переключением двигателя из состояния ВКЛ и ВЫКЛ…. Магнитные контакторы обеспечивают защиту источника питания и двигателя.

В чем основное различие между контактором и реле?

Контактор соединяет 2 полюса вместе без общей цепи между ними, а реле имеет общий контакт, который подключается к нейтральному положению. Кроме того, контакторы обычно рассчитаны на напряжение до 1000 В, а реле обычно рассчитаны только на 250 В.

Можно ли автоматически управлять магнитным пускателем?

В магнитных пускателях используются вспомогательные устройства мгновенного действия (такие как переключатели и реле), которые требуют перезапуска после потери питания или в случае отключения контактора из-за низкого напряжения.Их также можно подключить для автоматического перезапуска двигателей, если этого требует приложение.

Нужен ли мне пускатель двигателя?

Вообще говоря, маломощные двигатели не требуют стартеров, хотя вопрос о том, что считать малой мощностью, может быть спорным. … Таким образом, если напряжение питания двигателя высокое, а сопротивление низкое, величина пускового тока может составлять сотни ампер, что может привести к повреждению двигателя и его выходу из строя.

Что такое NO и NC в контакторе?

NO (нормально разомкнутый) означает, что когда на магнитный контактор не подается электрическое напряжение (нормальное состояние), этот полюс не подключен (разомкнут), затем, когда на катушку магнитного контактора подается напряжение, этот полюс будет быть подключенным (закрытым).NC (нормально замкнутый)

Что вызывает отказ контактора?

Контакторы выходят из строя по целому ряду причин. Некоторыми из распространенных причин являются избыточный ток, протекающий через контакты. Высокий ток может быть как из-за перегрузки, так и из-за короткого замыкания. … Электродинамические силы при коротком замыкании могут механически повредить контактор.

Как узнать, неисправен ли контактор?

Признаки отказа контактора переменного тока

  1. Вибрация – плунжер имеет тенденцию вибрировать, когда контакты загрязнены или когда катушка стала слабой….
  2. Гудение – при включении кондиционера вы слышите гудение; однако он не включается. …
  3. Плавление – В очень крайних случаях вы можете увидеть, что пластиковая накладка или пластиковый корпус контактора расплавились.

Как проверить магнитный контактор?

Это руководство поможет вам проверить магнитный контактор.

  1. Шаг 1. Определите сторону L и сторону T. Во-первых, выключите автоматический выключатель или отсоедините линию питания, которая ведет к тестируемому оборудованию, содержащему магнитный контактор….
  2. Шаг 2. Подсоедините провода к вольтомметру. …
  3. Шаг 3. Наблюдайте за тестом.

Сколько типов контакторов существует?

Следовательно, это очень важный компонент контактора. Контакты подразделяются на силовые, вспомогательные и пружинные. Есть два типа силового контакта; неподвижный контакт и подвижный контакт. Материал, используемый для контактов, имеет стабильную дугостойкость и высокую стойкость к сварке.

Какие три номинала тока встречаются у контактора?

Контакторы оцениваются по расчетному току нагрузки на контакт (полюс), максимальному выдерживаемому току короткого замыкания, рабочему циклу, ожидаемому расчетному сроку службы, напряжению и напряжению катушки.

%PDF-1.6 % 439 0 объект > эндообъект внешняя ссылка 439 141 0000000016 00000 н 0000003921 00000 н 0000004113 00000 н 0000004140 00000 н 0000004190 00000 н 0000004248 00000 н 0000004754 00000 н 0000004925 00000 н 0000005137 00000 н 0000005266 00000 н 0000005477 00000 н 0000005584 00000 н 0000005693 00000 н 0000005802 00000 н 0000005910 00000 н 0000006016 00000 н 0000006123 00000 н 0000006232 00000 н 0000006339 00000 н 0000006446 00000 н 0000006552 00000 н 0000006659 00000 н 0000006768 00000 н 0000006875 00000 н 0000006980 00000 н 0000007088 00000 н 0000007197 00000 н 0000007305 00000 н 0000007414 00000 н 0000007519 00000 н 0000007626 00000 н 0000007735 00000 н 0000007843 00000 н 0000007951 00000 н 0000008060 00000 н 0000008167 00000 н 0000008272 00000 н 0000008380 00000 н 0000008489 00000 н 0000008598 00000 н 0000008705 00000 н 0000008812 00000 н 0000008920 00000 н 0000009028 00000 н 0000009107 00000 н 0000009184 00000 н 0000009264 00000 н 0000009343 00000 н 0000009422 00000 н 0000009501 00000 н 0000009579 00000 н 0000009657 00000 н 0000009735 00000 н 0000009813 00000 н 0000009891 00000 н 0000009969 00000 н 0000010047 00000 н 0000010125 00000 н 0000010203 00000 н 0000010281 00000 н 0000010359 00000 н 0000010436 00000 н 0000010658 00000 н 0000011528 00000 н 0000017337 00000 н 0000017870 00000 н 0000018273 00000 н 0000018329 00000 н 0000018406 00000 н 0000018484 00000 н 0000018895 00000 н 0000020784 00000 н 0000022966 00000 н 0000024962 00000 н 0000027193 00000 н 0000029412 00000 н 0000030110 00000 н 0000030733 00000 н 0000031110 00000 н 0000031579 00000 н 0000031926 00000 н 0000037121 00000 н 0000037609 00000 н 0000037996 00000 н 0000038405 00000 н 0000038755 00000 н 0000050491 00000 н 0000052001 00000 н 0000054498 00000 н 0000056806 00000 н 0000057387 00000 н 0000057463 00000 н 0000057566 00000 н 0000059023 00000 н 0000059265 00000 н 0000059609 00000 н 0000099355 00000 н 0000099394 00000 н 0000113715 00000 н 0000113754 00000 н 0000140114 00000 н 0000140153 00000 н 0000140211 00000 н 0000140404 00000 н 0000140689 00000 н 0000141023 00000 н 0000141175 00000 н 0000141509 00000 н 0000141635 00000 н 0000141969 00000 н 0000142121 00000 н 0000142453 00000 н 0000142579 00000 н 0000142911 00000 н 0000143053 00000 н 0000143303 00000 н 0000143437 00000 н 0000143785 00000 н 0000144045 00000 н 0000144253 00000 н 0000144471 00000 н 0000144721 00000 н 0000144981 00000 н 0000145191 00000 н 0000145409 00000 н 0000145701 00000 н 0000145843 00000 н 0000146245 00000 н 0000146545 00000 н 0000146713 00000 н 0000146824 00000 н 0000146963 00000 н 0000147074 00000 н 0000147181 00000 н 0000147309 00000 н 0000147517 00000 н 0000147629 00000 н 0000147757 00000 н 0000147871 00000 н 0000147983 00000 н 0000003116 00000 н трейлер ]/предыдущая 2261633>> startxref 0 %%EOF 579 0 объект >поток hb«`f`yA؀,XX8&-ERfY;rzKRgƯr^rK \6 {>8K{sZ,[/gU-3jn^vg’\fd9e_]»{VA+w*8us}\wD$+J~ et;[9|rBSRskQtl y8usZ+V65z ̷@-,jt+Փ6CfXj(8CA !

Зачем нужен стартер двигателя?

Для получения дополнительной информации позвоните в PSI Power & Controls по телефону (704) 594-4107!

При запуске двигателя вырабатывается значительное количество электроэнергии.Имея дело с такой большой мощностью, важно иметь резервное решение, чтобы предотвратить повреждение и обеспечить постоянную безопасность.

Контакторная часть пускателя двигателя очень быстро замыкает контакты на всех фазах электрического тока, сводя к минимуму потенциально опасные эффекты в случае перегрузки. Пускатели двигателей имеют размеры, соответствующие двигателю и напряжению вашего конкретного приложения.

Как работают стартеры двигателей?

Пускатели двигателей

состоят из двух устройств: контактора, замыкающего цепь двигателя, и реле перегрузки, которое контролирует ток, потребляемый двигателем.Это устройство защиты от перегрузки настроено на заранее определенную максимальную нагрузку, с которой двигатель может безопасно работать. Когда возникает условие, при котором двигатель превышает максимальную нагрузку, устройство размыкает цепь управления пускателем двигателя, и двигатель выключается.

Узнайте, как правильно выбрать пускатель двигателя сегодня!

Типы пускателей двигателей

Компания PSI Power & Controls работает с несколькими типами пускателей двигателей:

  • Открытая трансмиссия звезда-треугольник. Это несколько стандартная система электромагнитного пуска, предназначенная для безопасного снижения напряжения при работе крупного коммерческого оборудования. Система подходит и часто применяется в работе насосов и воздушных компрессоров.
  • Плавный пуск твердотельный. Часто используемый в большинстве крупного коммерческого оборудования двигатель плавного пуска представляет собой RVS (пускатель с пониженным напряжением), который выполняет свою функцию за счет использования жидкости, магнитных сил или стальной дроби для снижения пускового тока и управляющего крутящего момента.Пускатели двигателей с плавным пуском часто используются в конвейерных системах, генераторах и других функциях общего назначения. Устройства плавного пуска PSI включают в себя SCR, реле перегрузки и обходной контактор.
  • Пускатель звезда-треугольник OEM. Система пуска по схеме «звезда-треугольник» с монтажом под панель, катушками на 120 В и системой таймера пуска по схеме «звезда-треугольник» для систем управления, которые изначально не включают функции таймера.

Закажите пускатель электродвигателя с PSI Power & Controls

Наша полная линейка продуктов предназначена для удовлетворения любых потребностей вашей организации.Все наши продукты сертифицированы и проверены на максимальную производительность. Выбирая PSI Power & Controls, вы получаете:

  • Компоновочные чертежи AutoCAD
  • Электрические схемы AutoCAD
  • SOLIDWORKS 3D-моделирование и проектирование
  • Программирование и разработка ПЛК
  • Оборудование, изготовленное в соответствии со стандартами UL508A и cUL508A
  • И многое другое!

Уже более 25 лет наша компания из Шарлотты предлагает надежные электрические решения.Если вы готовы инвестировать в пускатель двигателя, свяжитесь с PSI Power & Controls уже сегодня! Мы ответим на все ваши вопросы и поможем выбрать идеальный стартер для вашего конкретного применения.

Не знаете, какое оборудование вам нужно? Позвоните нам — 704-594-4107!

Узнайте больше о ручных переключателях резерва с PSI Power & Controls

Какой диапазон силы тока покрывают ваши переключатели? Переключатели действительно помогают? Чтобы получить ответы на эти и другие вопросы, ознакомьтесь с часто задаваемыми вопросами о ручном безобрывном переключателе для получения дополнительной информации! Также можем порекомендовать следующие ресурсы:

Узнайте больше о ручных переключателях, позвонив в PSI Power & Controls по телефону (704) 594-4107.

 

Разница между реле и автоматическими выключателями

Читатель задал вопрос через форму «Спроси Криса». Я расширил первоначальный вопрос из «Каковы различия между реле, контакторами и пускателями двигателей?» на «В чем разница между контакторами, пускателями, реле и автоматическими выключателями?»

В этом посте мы рассмотрим историю электрической защиты, чтобы увидеть, как развивалась разница между реле и автоматическими выключателями.

Переключатели

Переключатели

позволяют системным операторам замыкать электрические цепи, чтобы электричество могло поступать в электрическую систему. Они варьируются от простых рубильников, которые вы видите в фильмах о Франкенштейне, до выключателей света в вашем доме и сложных механизмов, предназначенных для размыкания и замыкания в высоковольтных системах. Выключатели имеют следующие ограничения в электрической системе:

  • Обычно они управляются вручную, а это означает, что кто-то должен присутствовать, чтобы включить или изолировать систему.
  • Как правило, они очень медленные. Это означает, что при высоких нагрузках или напряжениях при размыкании или замыкании выключателя может образоваться опасная дуга.
  • Обычно они не предназначены для открытия большого тока. Это означает, что переключатели могут взорваться, если они разомкнутся, когда ток, протекающий через переключатель, превышает его номинал.

Предохранители

Первые разработчики электрических систем быстро поняли, что вы можете получить впечатляющие взрывы и повреждения , когда что-то пойдет не так с электричеством.Первое защитное устройство, вероятно, было непреднамеренным, поскольку какая-то часть системы просто расплавилась и изолировала остальную часть системы. Этот принцип используется в простых предохранителях. Предохранитель имеет два проводящих конца и какой-то материал между ними, который преднамеренно предназначен для плавления, когда ток через предохранитель превышает его номинал. Предохранители могут варьироваться от простых бытовых предохранителей до сложных токоограничивающих предохранителей, предназначенных для ограничения величины тока короткого замыкания, который может протекать через него.

Автоматические выключатели

Кто менял предохранитель в доме или машине, тот понимает, насколько это неудобно:

  • Узнайте, где предохранитель
  • Проверьте, есть ли у вас подходящий предохранитель для замены
  • Снимите и замените его

Теперь представьте, что вы обходчик, который должен:

  • Найдите этот предохранитель вдоль линий электропередач
  • Носите с собой широкий выбор предохранителей для всех возможных применений
  • Маневрируйте палкой достаточной длины, чтобы дотянуться до предохранителя наверху опоры электропередач
  • Замените предохранитель и повторно включите силовую цепь, которая гарантированно даст хорошую искру и громкий хлопок

Автоматические выключатели сочетают в себе преимущества выключателей и предохранителей.Автоматические выключатели могут активировать или обесточивать систему, как выключатель, но они имеют специальные механизмы для более быстрого размыкания и замыкания (<60-90 мс). У них также есть технология гашения дуги, чтобы предотвратить образование дуги, потому что дуги являются началом электрических взрывов. Большинство автоматических выключателей имеют управляющие реле, которые сообщают выключателю, когда нужно размыкать и замыкать.

Некоторые низковольтные автоматические выключатели также могут изолировать части системы, когда что-то пойдет не так, используя собственные детекторы неисправностей.Автоматические выключатели в вашем доме обычно используют тепло и металлургию для обнаружения неисправностей. Когда ток протекает через автоматический выключатель, он проходит через два разных металла, которые деформируются с разной скоростью. Когда ток слишком высок в течение слишком долгого времени, различные металлы раздвигаются и приводят в действие механизм отключения автоматического выключателя, который изолирует проблему от источника питания, чтобы свести к минимуму ущерб.

Однако большинство автоматических выключателей среднего и высокого напряжения имеют защитное реле, сообщающее автомату об отключении при возникновении проблемы в системе.

Реле защиты

Существует два разных класса реле; реле защиты и реле управления. Защитные реле контролируют электрическую систему и ищут неисправности. Некоторые типы реле защиты включают:

  • Электромеханические реле, использующие магнетизм и механизмы для обнаружения неисправности и отправки сигнала на размыкание автоматического выключателя. Электромеханические реле обычно являются однофункциональными однофазными устройствами, а это означает, что вам нужно много реле для защиты одного фидера или источника.
  • Твердотельные реле используют электронные компоненты для обнаружения неисправности, которые затем приводят в действие управляющие реле для размыкания автоматического выключателя. Твердотельные реле, как правило, являются однофункциональными многофазными реле, что означает, что вам все еще нужно несколько реле для защиты системы от различных проблем, но вы можете использовать меньше твердотельных реле, чем электромеханических.
  • Гибридные реле
  • сочетают в себе различные функции электромеханических и твердотельных реле и имеют преимущества и недостатки обоих.
  • Цифровые реле используют аналого-цифровые преобразователи, микропроцессоры и алгоритмы для обнаружения проблем. Микропроцессор управляет управляющими реле, которые сообщают автомату о срабатывании выключателя. Цифровые реле являются многофункциональными и многофазными, что означает, что вы можете использовать одно реле для защиты любого фидера или источника.

Защитное реле, которое могло бы контролировать тысячи ампер и сотни тысяч вольт, было бы ОГРОМНЫМ и дорогим. Большинство защитных реле контролируют чрезвычайно высокие токи и напряжения в трехфазной электрической системе через измерительные трансформаторы:

  • Трансформаторы тока (ТТ) преобразуют тысячи ампер, протекающих через электрическую систему, в максимум пять ампер в Северной Америке при нормальных условиях нагрузки и один ампер для большей части остального мира.Однако сбои в энергосистеме могут подавать более 100 А на защитные реле, поэтому они должны быть точными в очень широком диапазоне тока. (<5 А в нормальных условиях и более 100 А в условиях неисправности.)
  • Трансформаторы напряжения (PT или VT) преобразуют чрезвычайно высокое напряжение (от 480 до > 500 000 В) электрической системы в допустимое напряжение (от 66 до 208 В), которое вы можете найти в своем доме. Защитные реле могут помещаться в небольшие панели благодаря трансформаторам напряжения (потенциала).

Защитные реле принимают управляемые напряжения и токи, подаваемые измерительными трансформаторами, и создают модель тока и напряжения, питающих систему. Если реле обнаруживает проблему, оно посылает сигнал отключения на автоматический выключатель. Определение того, является ли система нормальной или ненормальной, часто является самой сложной частью тестирования и проектирования реле защиты. Защитные реле и автоматические выключатели должны работать вместе, чтобы обнаруживать неисправности и изолировать эти неисправности от остальной части системы.

Реле управления

Реле управления используются для передачи сообщений (понятно?) из одного места в другое. Их можно использовать для преобразования одного сигнала во множество сигналов с несколькими контактами, для преобразования сигнала низкого напряжения в сигнал высокого напряжения или наоборот. Реле управления бывают разных видов и могут быть найдены практически в любом электрическом устройстве, более сложном, чем тостер.

Контакторы

Контактор устанавливается для выполнения той же функции, что и выключатель или автоматический выключатель, но имеет совершенно другой принцип действия.Когда вы переводите выключатель или автоматический выключатель во включенное положение, а затем останавливаетесь, выключатель или автоматический выключатель остается в этом положении. Если человек, который перемещает выключатель, отсутствует или система, которая посылает сигнал отключения на выключатель, перестает работать, выключатель и автоматический выключатель останутся замкнутыми до тех пор, пока они либо не расплавятся, либо не будут разомкнуты каким-либо другим способом. Контактор удерживается в замкнутом состоянии катушкой, находящейся под напряжением. Если что-то случится с источником питания, управляющим контактором, контактор немедленно разомкнется.Это называется отказоустойчивой системой, потому что, если что-то неожиданное пойдет не так в цепи управления, контактор разомкнется, и система станет «безопасной». Если что-то случится с цепью управления автоматического выключателя, он останется в том положении, в котором он был до возникновения проблемы, что может быть небезопасным. Контакторы обычно используются в двигателях для защиты двигателя или процесса, в котором используется двигатель, когда что-то происходит с системой управления.

Стартер двигателя

Пускатель двигателя — это система, которая включает и выключает двигатель.Пускатель двигателя может иметь:

  • Один контактор или автоматический выключатель
  • Система пускателей и автотрансформаторов для пуска двигателей пониженного напряжения
  • Какое-то полупроводниковое устройство, такое как частотно-регулируемый привод (VFD), которое будет управлять формой волны, посылаемой на двигатель, для обеспечения контролируемого запуска двигателя

Краткий обзор различий между контакторами, пускателями, реле и автоматическими выключателями.

Выключатели , автоматические выключатели и контакторы используются для управления тем, какие части электрической системы находятся под напряжением или обесточены.

Предохранители используются для защиты электрической системы, когда что-то пойдет не так, и могут изолировать неисправные части от нормальных частей.

Автоматические выключатели могут контролировать и защищать электрическую систему, но большинству из них требуется защитное реле , чтобы определить, существует ли проблема, и подать команду на размыкание автоматического выключателя. Реле управления сообщают выключателю, что он должен размыкаться и замыкаться в нормальных условиях.

Защитное реле  защищает электрическую систему, пытаясь определить, что является нормальным, а что ненормальным, и дает команду автоматическому выключателю размыкаться при обнаружении проблемы.Реле защиты и автоматические выключатели должны работать вместе, чтобы локализовать неисправность.

Контактор включает и выключает двигатель на основе информации от системы управления пускателя двигателя .

Пускатель двигателя включает и выключает двигатель с помощью контактора, системы контакторов или других средств.

 

Надеюсь, я ответил на вопрос! Поставьте лайк, поделитесь и/или добавьте комментарий или вопрос.Это помогает нам быть замеченными, а значит, у нас есть больше времени, чтобы ответить на ваши вопросы и создать бесплатный контент, подобный этому.

Кредиты изображений:

  • http://www.electronicrepairguide.com/
  • http://www.openelectrical.org/
  • https://www.flickr.com/photos/ddebold/5113676687/in/photostream/
  • http://mssbllc.ecrater.com/
  • http://en.wikipedia.org/wiki/Circuit_breaker
  • http://simple.wikipedia.org/wiki/Реле
  • http://www.ctiautomation.net/
  • http://www.tecowestinghouse.com/

Что такое комбинированный пускатель двигателя?

Комбинированные пускатели двигателей

могут эффективно использоваться для размещения пускателя двигателя и устройств электрической защиты в одном корпусе.

Пускатели двигателей

предназначены для обеспечения безопасности пользователей при запуске или остановке двигателя с помощью электромеханического переключателя. Это похоже на работу реле, но также обеспечивает защиту двигателя от перегрузки.Комбинированные пускатели двигателей могут быть полезны для обеспечения пользователей еще одним уровнем защиты. Они объединяют:

  • Устройство управления, также известное как контрагент
  • Обеспечение защиты двигателя от перегрузки, что помогает предотвратить его перегрев
  • Защита от короткого замыкания

Добавлена ​​защита от короткого замыкания, которая позволяет пуску реагировать на определенные неисправности для защиты двигателя. Неисправность может быть фатальной для вашего двигателя или может привести к его необратимому повреждению.Таким образом, эта защита помогает предотвратить необратимое повреждение двигателя и избежать дорогостоящего ремонта. Защита от короткого замыкания может быть обеспечена с помощью:

Все эти элементы объединены в одном корпусе, что обеспечивает простоту установки и доступ для соответствующих рабочих при выполнении операций в аварийных или обычных условиях.

Как работает комбинированный пускатель двигателя?

Комбинированный пускатель электродвигателя обычно работает аналогично стандартным пускателям электродвигателей.Тем не менее, они могут безопасно переключать требуемую величину тока на двигатель и помогают предотвратить потребление двигателем тока, превышающего параметры безопасности.

С помощью защиты от короткого замыкания, доступной в комбинированном пускателе двигателя, цепь получает все необходимое для работы с адекватными мерами отказоустойчивости. При использовании комбинации пускателя двигателя и разъединителя или автоматического выключателя можно разомкнуть все линии в случае неисправности любой фазы.Это может быть полезно для предотвращения однофазности, которая может привести к дисбалансу напряжения и перегоранию двигателя.

Стартер может управляться вручную или электронным способом с помощью магнитных компонентов, и это полностью зависит от ваших эксплуатационных потребностей.

Комбинированные ручные пускатели двигателей

Ручные комбинированные пускатели двигателей

просты в эксплуатации. Пользователю просто нужно нажать кнопку или повернуть поворотную ручку питания, чтобы включить или выключить подключенный двигатель. Затем он управляет механическими связями, открывая или закрывая их, чтобы запустить или остановить двигатель.

Ручные пускатели

могут быть идеальным выбором, поскольку они предлагают:

  • Безопасная и эффективная работа
  • Меньший размер делает их пригодными для различных применений
  • Первоначальная стоимость ручного стартера сравнительно невелика
  • Автоматический выключатель/переключатель с предохранителем для обеспечения дополнительной отказоустойчивости

Комбинированные магнитные пускатели двигателей

Комбинированные магнитные пускатели двигателей

обеспечивают электромагнитное управление, что позволяет управлять ими дистанционно.Поэтому он идеально подходит для крупномасштабных операций. Однако нагрузка двигателя, подключенная к пуску двигателя, может быть включена/выключена с использованием более безопасного напряжения, обычно 120 В для ваших устройств управления.

Существуют различные типы комбинированных магнитных пускателей двигателей, имеющих определенные конфигурации в цепи. Различные типы магнитных комбинированных пускателей двигателей:

  • Пускатели прямого пуска (DOL) или пускатели прямого пуска от сети, нереверсивные (FVNR)
    • Это универсальный пускатель, который поставляется с магнитным контактором для подключения полного напряжения источника питания к двигателю.Их можно использовать для двигателей, которые просто должны работать с фиксированной скоростью в одном направлении.
  • Реверсивные пускатели прямого пуска (DOL) или пускатели прямого пуска через сеть Реверсивное полное напряжение (FVR)
    • Он также поставляется с той же утилитой, что и стандартные пускатели DOL, но также имеет возможность запуска вперед и назад. Таким образом, это особенно полезно для конвейерного оборудования, где требуется управление направлением.
  • Пускатели звезда-треугольник
    • Это двигатель с пониженным напряжением, который подходит для более длительных циклов разгона и работы в больших масштабах.Он предназначен для работы с трехфазными асинхронными двигателями и может переключать обмотки между соединениями треугольника и пуска для запуска двигателя.
  • Устройства плавного пуска
    • Обычно используются для управления электродвигателями переменного тока. Они помогают уменьшить крутящий момент и нагрузку во время фазы запуска и скачков электрического тока.

Зачем нужен комбинированный пускатель двигателя?

Использование комбинированного пускателя двигателя может обеспечить вам дополнительную уверенность в безопасности цепи двигателя.Однако стандартные пускатели двигателей способны выполнять тот же процесс. Тем не менее, преимущества комбинированного пускателя двигателя могут быть полезными для создания усовершенствованных устройств защиты цепей, объединенных в одном корпусе.

Комбинированный пускатель двигателя поставляется либо с автоматическим выключателем, либо с разъединителем с предохранителем и имеет встроенную функцию защиты двигателя от короткого замыкания. Таким образом, он не только защищает ваш двигатель от перегорания из-за любого сбоя в токе, но также обеспечивает все, что требуется для цепи в соответствии со статьей 430 Национального электрического кодекса.

С помощью сбрасываемой защиты цепи вы сможете быстро перезагрузить двигатель и запустить его после устранения неисправности. Это означает, что вы сможете свести к минимуму время простоя двигателя и быстрее восстановить его работу.

Существуют различные варианты использования комбинированного пускателя двигателя:

  • Вентиляторы
  • Тепловые насосы
  • Водяные насосы
  • Компрессоры
  • Вентиляторы
  • Конвейерные ленты
  • Воздуходувки

Зачем покупать комбинированные пускатели электродвигателей от Spike Electric?

Мы являемся одним из крупнейших производителей чулков в Северной Америке, когда речь идет о компонентах комбинированных пускателей двигателей.Мы предлагаем безопасные, надежные и эффективные энергетические решения.

Не стесняйтесь обращаться к нам, если у вас есть какие-либо вопросы.

 

Типы пускателей электродвигателей. Руководство для покупателей Thomas

Пускатели электродвигателей представляют собой электромеханические устройства, обеспечивающие пуск и останов электродвигателей с помощью ручных или автоматических переключателей и обеспечивающие защиту цепей двигателя от перегрузки. Ключевые характеристики включают предполагаемое применение, тип пускателя, электрические характеристики, включая количество фаз, ток, напряжение и номинальную мощность, а также характеристики.Пускатели двигателей используются везде, где работают электродвигатели мощностью более определенной лошадиной силы. Существует несколько типов пускателей, в том числе ручные, магнитные, с плавным пуском, многоскоростные и с полным напряжением. Некоторые пускатели двигателей также имеют функцию реверса, а также функции управления крутящим моментом и толчкового режима. Большинство из них также имеют стандартные монтажные конфигурации, обозначенные в размерах NEMA.

Пример нескольких пускателей двигателей на монтажной панели.

Изображение предоставлено: AndyPositive/Shutterstock.ком

 

Модели и типы пускателей двигателей

Руководство

Ручные пускатели двигателей используются в так называемых приложениях полного напряжения, подключенных к сети, для однофазных и трехфазных двигателей малых и средних размеров. Состоящий из выключателя включения/выключения и реле перегрузки, ручной пускатель двигателя обычно не обеспечивает отключение питания двигателя в случае прерывания питания, что может быть полезно для небольших насосов, вентиляторов и т. д., поскольку они возобновляют работу после восстановление власти.Ручные пускатели двигателей с защитой от пониженного напряжения обеспечивают средства обесточивания цепи пускателя после отключения питания и, следовательно, используются для конвейеров и т. д., где существует опасность автоматического перезапуска как для оборудования, так и для персонала. Ручные пускатели двигателей с защитой от пониженного напряжения используются на станках, деревообрабатывающем оборудовании и т. д., где требования безопасности требуют отключения двигателя после сбоя питания. Ручные пускатели двигателей доступны в конфигурациях NEMA и IEC, а также в стандартных размерах.

Магнитный

Магнитные пускатели электродвигателей полагаются на электромагниты для замыкания и удержания контакторов, а не на механическую фиксацию выключателей включения/выключения, как в ручных пускателях. Они используются в сетевых приложениях и в качестве пускателей пониженного напряжения для однофазных и трехфазных двигателей. Магнитные пускатели электродвигателей, в которых используются управляющие устройства мгновенного действия (переключатели, реле и т. д.), требуют перезапуска после отключения питания или низкого напряжения, вызвавшего отключение контактора.Магнитные пускатели двигателей также могут быть подключены для автоматического перезапуска двигателей, если этого требует приложение, например, удаленный насос. Магнитные пускатели двигателей доступны в конфигурациях NEMA и IEC и стандартных размеров.

Реверс

Реверсивные пускатели содержат два набора контакторов, которые обеспечивают реверсивные выводы двигателей, позволяя им вращаться в любом направлении. Реверсивные пускатели обычно обеспечивают как электрическую, так и механическую блокировки, которые предотвращают одновременное замыкание обоих наборов контактов.Они доступны в стандартных размерах NEMA.

Мягкий

Устройства плавного пуска вводят цифровое управление в электромеханические пускатели и позволяют последовательно доводить двигатели до скорости, чтобы предотвратить повреждение трансмиссии, продуктов и т. д., а также избежать чрезмерной нагрузки на службу распределения электроэнергии, вызванной высоким пусковым током среды и большие двигатели, запускаемые при полном напряжении.

Комбинация

Комбинированные пускатели, как правило, представляют собой устройства в корпусе, которые включают в себя разъединители и защиту от короткого замыкания (в виде плавких предохранителей или автоматических выключателей) вместе с компонентами пускателя двигателя

Приложения и отрасли

Пускатели электродвигателей представляют собой электрические устройства специального назначения, предназначенные для управления высоким электрическим током, который потребляют двигатели на мгновение, когда они запускаются из состояния покоя, при этом защищая двигатели от чрезмерного нагрева при перегрузках во время нормальной работы.Пусковой ток может быть в несколько раз больше, чем потребляет двигатель при его рабочей скорости. Если бы использовался только предохранитель или автоматический выключатель, это устройство перегорало бы или срабатывало при каждом запуске.

Вместо этого в двигателях используются тепловые или магнитные реле перегрузки для введения временной задержки во время запуска, когда двигатель подвергается воздействию высокого «пускового» тока. Если бы двигатель заклинил — так называемый сценарий с заблокированным ротором — он бы непрерывно потреблял такой же пусковой ток. В этом случае реле перегрузки будут нагреваться за время, отведенное для нормальных мгновенных уровней пуска, и отключат выключатель или контактор и, следовательно, двигатель.

Пускатели двигателей

доступны в открытой конфигурации, которые устанавливаются в панели управления, или они могут быть автономными блоками с собственными корпусами, сертифицированными NEMA или IEC. Стандартные размеры NEMA варьируются от 00 до 9, чтобы охватить диапазон размеров двигателей, начиная с 1,5 л.с. и заканчивая 900 л.с.

Соображения

Ручные пускатели двигателей ограничены размером двигателя, который они могут запускать, начиная с дробных уровней л.с. и обычно увеличивая до максимума 10-15 л.с., в зависимости от напряжения.Они, как правило, используются с оборудованием, которое запускается нечасто или работает непрерывно с небольшим количеством остановок. Помимо этого, спецификаторы должны рассмотреть возможность использования магнитных пускателей или даже устройств плавного пуска. Особые случаи, такие как реверсивное или многоскоростное обслуживание, решаются с помощью стилей для конкретных приложений. Другие факторы, помимо размера двигателя и напряжения, включают взрывозащиту, класс защиты корпуса, защиту предохранителем или прерывателем и т. д.

Большинство производителей стартеров предлагают продукты, соответствующие рейтингам NEMA и IEC.Стартеры NEMA, как правило, больше и дороже, чем стартеры IEC, но могут быть указаны только на основе мощности и напряжения, тогда как спецификации стартеров IEC более точно настроены. См. ссылку ниже для обсуждения. Как правило, североамериканские инженеры-конструкторы указывают применимость NEMA или IEC, а для новых закупок спецификаторы могут выбирать из соответствующих предложений поставщиков в этих двух диапазонах. Машиностроители в Северной Америке часто используют пускатели IEC в своих панелях управления из-за их способности более точно настраивать пускатели в зависимости от применения, что обусловлено более сложными критериями выбора IEC.

При выборе комбинированного пускателя разработчики, как правило, выбирают конфигурацию корпуса, реле пускателя и перегрузки соответствующего размера, управляющие напряжения, варианты связи и соответствующие контрольные устройства (лампы, аварийные остановы, переключатели ручного/выключения/автоматического выбора, нажимные выключатели, так далее.). Спецификаторы также могут выбирать между защитой от короткого замыкания с предохранителем и автоматическим выключателем. Многие производители имеют в наличии стандартные устройства, которые можно быстро доставить.

Устройства плавного пуска больше похожи на приводы двигателей переменного тока, чем на традиционные пускатели, поскольку в них используется твердотельная электроника для управления пусковыми токами.Часто их можно запрограммировать на управление разгоном двигателя. Их можно заказать в виде открытых или закрытых блоков.

Важные атрибуты

Промышленные стандарты/сертификация

Выбор NEMA или IEC сузит выбор среди этих двух организаций по стандартизации.

Типы пускателей

Выбор среди этих различных вариантов, как описано выше, сузит поле до конкретных типов пускателей, т. е. полного напряжения, ручного и т. д.

Начальный размер NEMA

Пускатели

NEMA упорядочены по размеру в зависимости от напряжения и мощности двигателя.Процесс выбора пускателей IEC более сложен, поэтому простого подхода «размер по количеству» не существует.

Особенности

Особенности пускателей включают корпуса, вспомогательные контакты, взрывозащищенные корпуса и т. д.  

Связанные категории товаров

  • Двигатели см. в нашем Руководстве по покупке двигателей.
  • Контроллеры двигателей и приводы см. в нашем Руководстве по покупке контроллеров двигателей и приводов.
  • Автоматические выключатели представляют собой электромеханические устройства, обычно устанавливаемые в электрических шкафах и используемые для защиты электрических цепей от перегрузок.
  • Реле защиты — это электромеханические переключатели, используемые для защиты различных устройств от перегрузок по напряжению, току или тепловым перегрузкам.
  • Электрические предохранители — это устройства, которые ограничивают протекание тока по электрическим цепям путем «размыкания» при заданных уровнях тока, тем самым прерывая поток электричества .
  • Электрические контакторы представляют собой электронные или электромеханические устройства, используемые для переключения электрических нагрузок.
  • Реле защиты — это электромеханические переключатели, используемые для защиты различных устройств от перегрузок по напряжению, току или тепловым перегрузкам.

Ресурсы

Техническое обсуждение методов запуска двигателя

http://www05.abb.com/global/scot/scot234.nsf/veritydisplay/18cb6349632fe21583257861003d9507/$file/technical%20note%20tm008%20low.pdf

Загружаемое руководство по выбору пускателя двигателя от одного поставщика

http://www.schneider-electric.com/products/ww/en/5100-software/5110-electrical-design-software/61210-lv-motor-starter-solution-guide-v34/

Обсуждение различий между пускателями NEMA и IEC

http://www.ussg.com.sa/pdf1.pdf

http://ecmweb.com/content/differiating-between-nema-and-iec-style-products

Прочие пускатели двигателей Артикул

Прочие «Типы» изделий

Другие товары от Машины, инструменты и расходные материалы

.

Добавить комментарий

Ваш адрес email не будет опубликован.