Параллельное соединение конденсаторов расчет: Калькулятор последовательного и параллельного соединения конденсаторов

Содержание

способы, правила, формулы. Особенности замены конденсаторов

Конденсаторы, как и резисторы, можно соединять последовательно и параллельно. Рассмотрим соединение конденсаторов: для чего применяются каждая из схем, и их итоговые характеристики.

Эта схема – самая распространенная. В ней обкладки конденсаторов соединяются между собой, образуя эквивалентную емкость, равную сумме соединяемых емкостей.

При параллельном соединении электролитических конденсаторов необходимо, чтобы между собой соединялись выводы одной полярности.

Особенность такого соединения – одинаковое напряжение на всех соединяемых конденсаторах . Номинальное напряжение группы параллельно соединенных конденсаторов равно рабочему напряжению конденсатора группы, у которого оно минимально.

Токи через конденсаторы группы протекают разные: через конденсатор с большей емкостью потечет больший ток.

На практике параллельное соединение применяется для получения емкости нужной величины, когда она выходит за границы диапазона, выпускаемого промышленностью, или не укладываются в стандартный ряд емкостей. В системах регулирования коэффициента мощности (cos ϕ) изменение емкости происходит за счет автоматического подключения или отключения конденсаторов в параллель.

При последовательном соединении обкладки конденсатором соединяются друг к другу, образуя цепочку. Крайние обкладки подключаются к источнику, а ток по всем конденсаторам группы потечет одинаковый.

Эквивалентная емкость последовательно соединенных конденсаторов ограничена самой маленькой емкостью в группе. Объясняется это тем, что как только она полностью зарядится, ток прекратится. Подсчитать общую емкость двух последовательно соединенных конденсаторов можно по формуле

Но применение последовательного соединения для получения нестандартных номиналов емкостей не так распространено, как параллельного.

При последовательном соединении напряжение источника питания распределяется между конденсаторами группы. Это позволяет получить

батарею конденсаторов, рассчитанную на большее напряжение , чем номинальное напряжение входящих в нее компонентов. Так из дешевых и небольших по размерам конденсаторов изготавливаются блоки, выдерживающие высокие напряжения.

Еще одна область применения последовательного соединения конденсаторов связана с перераспределением напряжений между ними. Если емкости одинаковы, напряжение делится пополам, если нет – на конденсаторе большей емкости напряжение получается большим. Устройство, работающее на этом принципе, называют емкостным делителем напряжения .

Смешанное соединение конденсаторов


Такие схемы существуют, но в устройствах специального назначения, требующие высокой точности получения величины емкости, а также для их точной настройки.

Содержание:

Схемы в электротехнике состоят из электрических элементов, в которых способы соединения конденсаторов могут быть разными. Надо понимать, как правильно подключить конденсатор. Отдельные участки цепи с подключенными конденсаторами можно заменить одним эквивалентным элементом. Он заменит ряд конденсаторов, но должно выполняться обязательное условие: когда напряжение, подводимое к обкладкам эквивалентного конденсатора, равняется напряжению на входе и выходе группы заменяющихся конденсаторов, тогда заряд емкости будет такой же, как и на группе емкостей. Для понимания вопроса, как подключить конденсатор в любой схеме, рассмотрим виды его включения.

Параллельное включение конденсаторов в цепь

Параллельное соединение конденсаторов — это когда все пластины подключаются к точкам включения цепи, образовывая батарею емкостей.

Разность потенциалов на пластинах накопителей емкости будет одинаковая, так как они все заряжаются от одного источника тока. В этом случае каждый заряжающийся конденсатор имеет собственный заряд при одинаковой величине, подводимой к ним энергии.

Параллельные конденсаторы, общий параметр количества заряда полученной батареи накопителей, рассчитывается, как сумма всех зарядов, помещающихся на каждой емкости, потому что каждый заряд емкости не зависит от заряда другой емкости, входящей в группу конденсаторов, параллельно включенных в схему.

При параллельном соединении конденсаторов емкость равняется:

Из представленной формулы можно сделать вывод, что всю группу накопителей можно рассматривать как один равноценный им конденсатор.

Конденсаторы, соединенные параллельно, имеют напряжение:

Последовательное включение конденсаторов в цепь

Когда в схеме выполнено последовательное соединение конденсаторов, оно выглядит как цепочка емкостных накопителей, где пластина первого и последнего накопителя емкости (конденсатора) подключены к источнику тока.

Последовательное соединение конденсатора:

При последовательном соединении конденсаторов все устройства этого участка берут одинаковое количество электроэнергии, потому что в процессе участвует первая и последняя пластинка накопителей, а пластины 2, 3 и другие до N проходят зарядку посредством влияния. По этой причине заряд пластины 2 накопителя емкости равняется по значению заряду 1 пластины, но имеет обратный знак. Заряд пластины накопителя 3 равняется значению заряда пластины 2, но так же с обратным знаком, все последующие накопители имеет аналогичную систему заряда.

Формула нахождения заряда на конденсаторе, схема подключения конденсатора:

Когда выполняется последовательное соединение конденсаторов, напряжение на каждом накопители емкости будет различное, так как в зарядке одинаковым количеством электрической энергии участвуют разные емкости. Зависимость емкости от напряжения такова: чем она меньше, тем большее напряжение необходимо подать на пластины накопителя для его зарядки. И обратная величина: чем выше емкость накопителя, тем меньше требуется напряжения для его зарядки. Можно сделать вывод, что емкость последовательно соединенных накопителей имеет значение для величины напряжения на пластинах — чем она меньше, тем больше напряжения требуется, а также накопители большой емкости требуют меньшего напряжения.

Основное отличие схемы последовательного соединения накопителей емкости в том, что электроэнергия протекает только в одном направлении, а это означает, что в каждом накопителе емкости составленной батареи ток будет одинаковым. В этом виде соединений конденсаторов обеспечивается равномерное накопление энергии независимо от емкости накопителей.

Группу накопителей емкости можно также на схеме рассматривать как эквивалентный накопитель, на пластины которого подается напряжение, определяемое формулой:

Заряд общего (эквивалентного) накопителя группы емкостных накопителей последовательного соединения равен:

Общему значению емкости последовательно соединенных конденсаторов соответствует выражение:

Смешанное включение емкостных накопителей в схему

Параллельное и последовательное соединение конденсаторов на одном из участков цепи схемы называется специалистами смешанным соединением.

Участок цепи подсоединенных смешанным включением накопителей емкости:

Смешанное соединение конденсаторов в схеме рассчитывается в определенном порядке, который можно представить следующим образом:

  • разбивается схема на простые для вычисления участки, это последовательное и параллельное соединение конденсаторов;
  • вычисляем эквивалентную емкость для группы конденсаторов, последовательно включенных на участке параллельного соединения;
  • проводим нахождение эквивалентной емкости на параллельном участке;
  • когда эквивалентные емкости накопителей определены, схему рекомендуется перерисовать;
  • рассчитывается емкость получившейся после последовательного включения эквивалентных накопителей электрической энергии.

Накопители емкостей (двухполюсники) включены разными способами в цепь, это дает несколько преимуществ в решении электротехнических задач по сравнению с традиционными способами включения конденсаторов:

  1. Использование для подключения электрических двигателей и другого оборудования в цехах, в радиотехнических устройствах.
  2. Упрощение вычисления величин электросхемы. Монтаж выполняется отдельными участками.
  3. Технические свойства всех элементов не меняются, когда изменяется сила тока и магнитное поле, это применяется для включения разных накопителей. Характеризуется постоянной величиной емкости и напряжения, а заряд пропорционален потенциалу.

Вывод

Разного вида включения конденсаторов в цепь применяются для решения электротехнических задач, в частности, для получения полярных накопителей из нескольких неполярных двухполюсников. В этом случае решением будет соединение группы однополюсных накопителей емкости по встречно-параллельному способу (треугольником). В этой схеме минус соединяется с минусом, а плюс — с плюсом. Происходит увеличение емкости накопителя, и меняется работа двухполюсника.

Не отображаются имеющиеся вхождения: последовательное параллельное и смешанное соединение конденсаторов, последовательное и параллельное соединение конденсаторов, при параллельном соединении конденсаторов емкость.

Практически на любой электронной плате применяются конденсаторы, устанавливаются они и в силовых схемах. Для того чтобы компонент мог выполнять свои функции, он должен обладать определёнными характеристиками. Иногда возникает ситуация, когда необходимого элемента нет в продаже или его цена неоправданно завышена.

Выйти из сложившегося положения можно, используя несколько элементов, а необходимые характеристики получают, применяя параллельное и последовательное соединения конденсаторов между собой.

Немного теории

Конденсатор — пассивный электронный компонент, с переменной или постоянной величиной ёмкости, которое предназначено для накопления заряда и энергии электрического поля.

При выборе этих электронных компонентов руководствуются двумя основными характеристиками:

Условное обозначение неполярного постоянного конденсатора на схеме, показано на рис. 1, а. Для полярного электронного компонента дополнительно отмечают положительный вывод — рис. 1, б.

Способы соединения конденсаторов

Составление батарей конденсаторов позволяет изменить суммарную ёмкость или рабочее напряжение. Для этого могут применяться такие способы соединения:

  • последовательное;
  • параллельное;
  • смешанное.

Последовательное соединение

Последовательное подключение конденсаторов показано на рис. 1, в. Применяют такое соединение в основном для увеличения рабочего напряжения. Дело в том, что диэлектрики каждого из элементов расположены друг за другом, поэтому при таком соединении напряжения складываются.

Суммарная ёмкость последовательно соединённых элементов можно рассчитать по формуле, которая для трёх компонентов будет иметь вид, показанный на рис. 1, е.

После преобразования в более привычную для нас форму, формула примет вид рис. 1, ж.

Если, соединённые последовательно, компоненты имеют одинаковые ёмкости, то расчёт значительно упрощается. В этом случае суммарную величину можно определить, разделив номинал одного элемента на их количество. Например, если требуется определить, какова ёмкость при последовательном соединении двух конденсаторов по 100 мкФ, то эту величину можно рассчитать, разделив 100 мкФ на два, то есть суммарная ёмкость равна 50 мкФ.

Максимально упростить расчёты последовательно соединённых компонентов , позволяет использование онлайн-калькуляторов, которые без проблем можно найти в сети.

Параллельное подключение

Параллельное подключение конденсаторов показано на рис. 1, г. При таком соединении рабочее напряжение не изменяется, а ёмкости складываются. Поэтому для получения батарей большой ёмкости, используют параллельное соединение конденсаторов. Калькулятор для расчёта суммарной ёмкости не понадобится, так как формула имеет простейший вид:

С сум = С 1 + С 2 + С 3.

Собирая батарею для запуска трёхфазных асинхронных электродвигателей, часто применяют параллельное соединение электролитических конденсаторов. Обусловлено это большой ёмкостью этого типа элементов и небольшим временем запуска электродвигателя. Такой режим работы электролитических компонентов допустим, но следует выбирать те элементы, у которых номинальное напряжение минимум в два раза превышает напряжение сети.

Смешанное включение

Смешанное подключение конденсаторов — это сочетание параллельного и последовательного соединений .

Схематически такая цепочка может выглядеть по-разному. В качестве примера рассмотрим схему, изображённую на рис. 1, д. Батарея состоит из шести элементов, из которых С1, С2, С3, соединены параллельно, а С4, С5, С6 — последовательно.

Рабочее напряжение можно определить сложением номинальных напряжений С4, С5, С6 и напряжения одного из параллельно подключённых конденсаторов. Если параллельно соединённые элементы имеют разные номинальные напряжения, то для расчёта берут меньшее из трёх.

Для определения суммарной ёмкости, схему разбивают на участки с одинаковым соединением элементов, производят расчёт для этих участков, после чего определяют общую величину.

Для нашей схемы последовательность вычислений следующая:

  1. Определяем ёмкость параллельно соединённых элементов и обозначаем её С 1-3.
  2. Рассчитываем ёмкость последовательно соединённых элементов С 4-6.
  3. На этом этапе можно начертить упрощённую эквивалентную схему, в которой вместо шести элементов изображаются два — С 1-3 и С 4-6. Эти элементы схемы соединены последовательно. Остаётся произвести расчёт такого соединения и мы получим искомую.

В жизни подробные знания о смешанном соединении могут только пригодится радиолюбителям.

Рис.2 U=U 1 =U 2 =U 3

    Общий заряд Q всех конденсаторов

    Общая емкость С, или емкость батареи, параллельно включенных конденсаторов равна сумме емкостей этих конденсаторов.

Параллельное подключение конденсатора к группе других включенных конденсаторов увеличивает общую емкость батареи этих конденсаторов. Следовательно, параллельное соединение конденсаторов при­меняется для увеличения емкости.

4)Если параллельно включены т одинаковых конденсаторов ем­костью С´ каждый, то общая (эквивалентная) емкость батареи этих конденсаторов может быть определена выражением

Последовательное соединение конденсаторов

Рис.3

    На обкладках последовательно соединенных конденсаторов, подключенных к источнику постоянного тока с напряжением U , появятся заряды одинаковые по величине с противоположными знаками.

    Напряжение на конденсаторах распределяется обратно пропорционально емкостям конденса­торов:

    Обратная величина общей емкости последовательно соединенных конденсаторов равна сумме обратных величин емкостей этих кон­денсаторов.

При последовательном включении двух конденсаторов их об­щая емкость определяется следующим выражением:

Если в цепь включены последовательно п одинаковых конден­саторов емкостью С каждый, то общая емкость этих конденса­торов:

Из (14) видно, что, чем больше конденсаторов п соединено последовательно, тем меньше будет их общая емкость С, т. е. по­следовательное включение конденсаторов приводит к уменьше­нию общей емкости батареи конденсаторов.

На практике может оказаться, что допустимое ра­бочее напряжение U p конденсатора меньше напряжения, на кото­рое необходимо подключить конденсатор. Если этот конденсатор подключить на такое напряжение, то он выйдет из строя, так как будет пробит диэлектрик. Если же последовательно включить не­сколько конденсаторов, то напряжение распределится между ними и на каждом конденсаторе напряжение окажется мень­ше его допустимого рабочего U p . Следовательно, последовательное соединение конденсаторов применяют для того, чтобы напряжение на каждом конденсаторе не превышало его рабочего напряжения U p .

Смешанное соединение конденсаторов

Смешанное соединение (последовательно-параллельное) кон­денсаторов применяют тогда, когда необходимо увеличить ем­кость и рабочее напряжение батареи конденсаторов.

Рассмотрим смешанное соединение конденсаторов на ниже­приведенных примерах.

Энергия конденсаторов


где Q — заряд конденсатора или конденсаторов, к которым при­ложено напряжение U ; С — электрическая емкость конденсатора или батареи соединенных конденсаторов, к которой приложено напряжение U .

Таким образом, конденсаторы служат для накопления и сохра­нения электрического поля и его энергии.

15. Дайте определение понятиям трех лучевая звезда и треугольник сопротивлений. Запишите формулы для преобразования трех лучевой звезды сопротивлений в треугольник сопротивлений и наоборот. Преобразуйте схему к двум узлам (Рисунок 5)

Рисунок 5- Схема электрическая

6.СХЕМЫ ЗАМЕЩЕНИЯ

Для облегчения расчета составляется схема замещения электрической цепи, т. е. схема, отображающая свойства цепи при определенных условиях.

На схеме замещения изображают все элементы, влиянием которых на результат расчета нельзя пренебречь, и указывают также электрические соединения между ними, которые имеются в цепи.

1.Схемы замещения элементов электрических цепей

На расчетных схемах источник энергии можно представить ЭДС без внутреннего сопротивления, если это сопротивление мало по сравнению с сопротивлением приемника (рис. 3.13,6).

Приr= 0 внутреннее падение напряженияUо = 0, поэтому

напряжение на зажимах источника при любом токе равно

ЭДС: U = E = const.

В некоторых случаях источник электрической энергии на расчетной схеме заменяют другой (эквивалентной) схемой (рис. 3.14, а), где вместо ЭДСЕ источник характеризуется его током короткого замыканияI K , а вместо внутреннего со­противления в расчет вводится внутренняя проводимостьg =1/ r .

Возможность такой замены можно доказать, разделив равенство (3.1) на r:

U / r = E / r I ,

где U / r = Io -некоторый ток, равный отношению напряжения на зажимах источника к внутреннему сопротивлению;E / r = I K — ток короткого замыкания источника;

Вводя новые обозначения, получим равенство I K = Io + I , которому удовлетворяет эквивалентная схема рис. 3.14,а.

В этом случае при любой величине напряжения на зажимах; источника его ток остается равным току короткого замыкания (рис. 3.14,6):

Источник с неизменным током, не зависящим от внешнего сопротивления, называют источником тока.

Один и тот же источник электрической энергии может быть заменен в расчетной схеме источником ЭДС или источником тока.

Параллельное и последовательное соединение конденсаторов: способы, правила, формулы

Любая электроника в доме может выйти из строя. Однако сразу бежать в сервис не стоит – простейшие приборы может продиагностировать и починить даже начинающий радиолюбитель. К примеру, сгоревший конденсатор виден невооружённым глазом. Но как быть, если под рукой нет детали подходящего номинала? Конечно, соединить 2 и более в цепь. Сегодня поговорим о таких понятиях, как параллельное и последовательное соединение конденсаторов, разберемся, как его выполнить, узнаем о способах соединения, правилах его выполнения.

Не всегда удаётся подобрать конденсатор нужного номинала

Читайте в статье:

Нет конденсатора нужного номинала: что делать

Очень часто начинающие домашние мастера, обнаружив поломку прибора, стараются самостоятельно обнаружить причину. Увидев сгоревшую деталь, они стараются найти подобную, а если это не удаётся, несут прибор в ремонт. На самом деле, не обязательно, чтобы показатели совпадали. Можно использовать конденсаторы меньшего номинала, соединив их в цепь. Главное – сделать это правильно. При этом достигается сразу 3 цели – поломка устранена, приобретён опыт, сэкономлены средства семейного бюджета.

Попробуем разобраться, какие способы соединения существуют и на какие задачи рассчитаны последовательное и параллельное соединение конденсаторов.

Часто без соединения конденсаторов в батарею не обойтись. Главное – сделать это правильно

Соединение конденсаторов в батарею: способы выполнения

Существует 3 способа соединения, каждый из которых преследует свою определённую цель:

  1. Параллельное – выполняется в случае необходимости увеличить ёмкость, оставив напряжение на прежнем уровне.
  2. Последовательное – обратный эффект. Напряжение увеличивается, ёмкость уменьшается.
  3. Смешанное – увеличивается как ёмкость, так и напряжение.

Теперь рассмотрим каждый из способов более подробно.

Параллельное соединение: схемы, правила

На самом деле всё довольно просто. При параллельном соединении расчёт общей ёмкости можно вычислить путём простейшего сложения всех конденсаторов. Итоговая формула будет выглядеть следующим образом: Собщ= С₁ + С₂ + С₃ + … + Сn. При этом напряжение на каждом их элементов будет оставаться неизменным: Vобщ= V₁ = V₂ = V₃ = … = Vn.

Соединение при таком подключении будет иметь следующий вид:

Получается, что подобный монтаж подразумевает подключение всех пластин конденсаторов к точкам питания. Такой способ встречается наиболее часто. Но может произойти ситуация, когда важно увеличить напряжение. Разберёмся, каким образом это сделать.

Последовательное соединение: способ, используемый реже

При использовании способа последовательного подключения конденсаторов напряжение в цепи возрастает. Оно складывается из напряжения всех элементов и выглядит так: Vобщ= V₁ + V₂ + V₃ +…+ Vn. При этом ёмкость изменяется в обратной пропорции: 1/Собщ= 1/С₁ + 1/С₂ + 1/С₃ + … + 1/Сn. Рассмотрим изменения ёмкости и напряжения при последовательном включении на примере.

Дано: 3 конденсатора с напряжением 150 В и ёмкостью 300 мкф. Подключив их последовательно, получим:

  • напряжение: 150 + 150 + 150 = 450 В;
  • ёмкость: 1/300 + 1/300 + 1/300 = 1/С = 299 мкф.

Внешне подобное подключение обкладок (пластин) будет выглядеть так:

Выполняют такое соединение в том случае, если есть опасность пробоя диэлектрика конденсатора при подаче напряжения в цепь. Но ведь существует и ещё один способ монтажа.

Полезно знать! Применяют также последовательное и параллельное соединение резисторов и конденсаторов. Это делается с целью снижения подаваемого на конденсатор напряжения и исключения его пробоя. Однако следует учитывать, что напряжения должно быть достаточно для работы самого прибора.

Смешанное соединение конденсаторов: схема, причины необходимости применения

Такое подключение (его ещё называют последовательно-параллельным) применяют в случае необходимости увеличения, как ёмкости, так и напряжения. Здесь вычисление общих параметров немного сложнее, но не настолько, чтобы нельзя было разобраться начинающему радиолюбителю. Для начала посмотрим, как выглядит такая схема.

Составим алгоритм вычислений.

  • всю схему нужно разбить на отдельные части, высчитать параметры которых просто;
  • высчитываем номиналы;
  • вычисляем общие показатели, как при последовательном включении.

Выглядит подобный алгоритм следующим образом:

Преимущество смешанного включения конденсаторов в цепь по сравнению с последовательным или параллельным

Смешанное соединение конденсаторов решает задачи, которые не под силу параллельным и последовательным схемам. Его можно использовать при подключении электродвигателей либо иного оборудования, его монтаж возможен отдельными участками. Монтаж его намного проще за счёт возможности выполнения отдельными частями.

Интересно знать! Многие радиолюбители считают этот способ более простым и приемлемым, чем два предыдущих. На самом деле, так и есть, если полностью понять алгоритм действий и научиться пользоваться им правильно.

Смешанное, параллельное и последовательное соединение конденсаторов: на что обратить внимание при его выполнении

Соединяя конденсаторы, в особенности электролитические, обратите внимание на строгое соблюдение полярности. Параллельное присоединение подразумевает подключение «минус/минус», а последовательное – «плюс/минус». Все элементы должны быть однотипны –плёночные, керамические, слюдяные либо металлобумажные.

А вот что умеют делать всем известные китайские «изобретатели» – такой конденсатор явно долго не протянет

Полезно знать! Выход из строя конденсаторов часто происходит по вине производителя, экономящего на деталях (чаще это приборы китайского производства). Поэтому правильно рассчитанные и собранные в схему элементы будут работать намного дольше. Конечно, при условии отсутствия замыкания в цепи, при котором работа конденсаторов невозможна в принципе.

Калькулятор расчёта ёмкости при последовательном соединении конденсаторов

А что делать, если необходимая ёмкость неизвестна? Не каждому хочется самостоятельно рассчитывать необходимую ёмкость конденсаторов вручную, а у кого-то на это просто нет времени. Для удобства производства подобных действий редакция Seti.guru предлагает нашему уважаемому читателю воспользоваться онлайн-калькулятором расчёта конденсаторов при последовательном соединении или вычисления ёмкости. В работе он необычайно прост. Пользователю необходимо лишь ввести в поля необходимые данные, после чего нажать кнопку «Рассчитать». Программы, в которые заложены все алгоритмы и формулы последовательного соединения конденсаторов, а также вычислений необходимой ёмкости, моментально выдаст необходимый результат.

Как рассчитать энергию заряженного конденсатора: выводим окончательную формулу

Первое, что для этого необходимо сделать – рассчитать, с какой силой притягиваются обкладки друг к другу. Это можно сделать по формуле F = q₀ × E, где q₀ является показателем величины заряда, а E – напряжённостью обкладок. Далее нам необходим показатель напряжённости обкладок, который можно вычислить по формуле E = q / (2ε₀S), где q – заряд, ε₀ – постоянная величина, S – площадь обкладок. В этом случае получим общую формулу для расчёта силы притяжения двух обкладок: F = q₂ / (2ε₀S).

Итогом наших умозаключений станет вывод выражения энергии заряженного конденсатора, как W = A = Fd. Однако это не окончательная формула, которая нам необходима. Следуем далее: учитывая предыдущую информацию, мы имеем: W = dq₂ / (2ε₀S). При ёмкости конденсатора, выражаемой как C = d / (ε₀S) получаем результат W = q₂ / (2С). Применив формулу q = СU, получим итог: W = CU² /2.

Редакция Seti.guru советует сохранить эту памятку

Конечно, для начинающего радиолюбителя все эти расчёты могут показаться сложными и непонятными, но при желании и некоторой усидчивости с ними можно разобраться. Вникнув в смысл, он поразится, насколько просто производятся все эти расчёты.

Для чего нужно знать показатель энергии конденсатора

По сути, расчёт энергии применяется редко, однако есть области, в которых это знать необходимо. К примеру, фотовспышка камеры – здесь вычисление показателя энергии очень важно. Она накапливается за определённое время (несколько секунд), а вот выдаётся мгновенно. Получается, что конденсатор сравним с аккумулятором – разница лишь в ёмкости.

Ни одна фотовспышка не сможет работать без накопителя энергии, такого, как конденсатор

Подводя итог

Порой без соединения конденсаторов не обойтись, ведь не всегда можно подобрать подходящие по номиналам. Поэтому знание того как это сделать может выручить при поломке бытовой техники или электроники, что позволит значительно сэкономить на оплате труда специалиста по ремонту. Как наверняка уже понял Уважаемый читатель, сделать это несложно и под силу даже начинающим домашним мастерам. А значит стоит потратить немного своего драгоценного времени и разобраться в алгоритме действий и правилах их выполнения.

Правильность соединения конденсаторов гарантирует их долгую бесперебойную работу

Надеемся, что информация, изложенная в сегодняшней статье, была полезна нашим читателям. Возможно, у Вас остались какие-либо вопросы? В этом случае их можно изложить в обсуждении ниже. Редакция Seti.guru с удовольствием на них ответит в максимально короткие сроки. Если же Вы имеете опыт самостоятельного соединения конденсаторов (неважно, положительный он или отрицательный), убедительная просьба поделиться им с другими читателями. Это поможет начинающим мастерам более полно понять алгоритм действий и избежать ошибок. Пишите, делитесь, спрашивайте. А напоследок мы предлагаем посмотреть короткий, но довольно информативный видеоролик по сегодняшней теме.

Соединения конденсаторов. Энергия электрического поля конденсатора.

Соединения конденсаторов .

Параллельное соединение конденсаторов

 

Обкладки конденсаторов соединяют попарно, т.е. в системе остается два изолированных проводника, которые и представляют собой обкладки нового конденсатора

 

Вывод: При параллельном соединении конденсаторов

  • заряды складываются,
  • напряжения одинаковые,
  • емкости складываются.

Т.о.,  общая емкость больше емкости любого из параллельно соединенных конденсаторов

Последовательное соединение конденсаторов

 

Производят только одно соединение, а две оставшиеся обкладки — одна от конденсатора С1 другая от конденсатора С2 — играют роль обкладок нового конденсатора.

 

Вывод: При последовательном соединении конденсаторов

  • напряжения складываются,
  • заряды одинаковы,
  • складываются величины, обратные емкости.

   Т.о.,  общая емкость меньше емкости любого из последовательно соединенных конденсаторов.

Энергия электрического поля конденсатора.

Под  энергией электрического поля конденсатора будем понимать энергию одной его обкладки, находящейся в поле, созданном другой  обкладкой. Тогда: 

 Формулы справедливы для любого конденсатора.

Пример: С=2мкФ; U=1000В.

t=10-6c.W=1 Дж  — опасно для жизни!

Плотность энергии.

  — плотность энергии (энергия единицы объема).

Формула справедлива для полей любых конденсаторов и, кроме того, для полей, меняющихся со временем (неэлектростатических).

Последовательное подключение конденсаторов калькулятор

Любая электроника в доме может выйти из строя. Однако сразу бежать в сервис не стоит — простейшие приборы может продиагностировать и починить даже начинающий радиолюбитель. К примеру, сгоревший конденсатор виден невооружённым глазом. Но как быть, если под рукой нет детали подходящего номинала? Конечно, соединить 2 и более в цепь.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам. ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Урок 239. Соединение конденсаторов в батареи

Последовательное и параллельное соединение конденсаторов


Схемы в электротехнике состоят из электрических элементов, в которых способы соединения конденсаторов могут быть разными. Надо понимать, как правильно подключить конденсатор. Отдельные участки цепи с подключенными конденсаторами можно заменить одним эквивалентным элементом. Он заменит ряд конденсаторов, но должно выполняться обязательное условие: когда напряжение, подводимое к обкладкам эквивалентного конденсатора, равняется напряжению на входе и выходе группы заменяющихся конденсаторов, тогда заряд емкости будет такой же, как и на группе емкостей.

Для понимания вопроса, как подключить конденсатор в любой схеме, рассмотрим виды его включения. Параллельное соединение конденсаторов — это когда все пластины подключаются к точкам включения цепи, образовывая батарею емкостей. Разность потенциалов на пластинах накопителей емкости будет одинаковая, так как они все заряжаются от одного источника тока. В этом случае каждый заряжающийся конденсатор имеет собственный заряд при одинаковой величине, подводимой к ним энергии. Параллельные конденсаторы, общий параметр количества заряда полученной батареи накопителей, рассчитывается, как сумма всех зарядов, помещающихся на каждой емкости, потому что каждый заряд емкости не зависит от заряда другой емкости, входящей в группу конденсаторов, параллельно включенных в схему.

Из представленной формулы можно сделать вывод, что всю группу накопителей можно рассматривать как один равноценный им конденсатор.

Когда в схеме выполнено последовательное соединение конденсаторов, оно выглядит как цепочка емкостных накопителей, где пластина первого и последнего накопителя емкости конденсатора подключены к источнику тока. При последовательном соединении конденсаторов все устройства этого участка берут одинаковое количество электроэнергии, потому что в процессе участвует первая и последняя пластинка накопителей, а пластины 2, 3 и другие до N проходят зарядку посредством влияния.

По этой причине заряд пластины 2 накопителя емкости равняется по значению заряду 1 пластины, но имеет обратный знак. Заряд пластины накопителя 3 равняется значению заряда пластины 2, но так же с обратным знаком, все последующие накопители имеет аналогичную систему заряда.

Когда выполняется последовательное соединение конденсаторов, напряжение на каждом накопители емкости будет различное, так как в зарядке одинаковым количеством электрической энергии участвуют разные емкости. Зависимость емкости от напряжения такова: чем она меньше, тем большее напряжение необходимо подать на пластины накопителя для его зарядки.

И обратная величина: чем выше емкость накопителя, тем меньше требуется напряжения для его зарядки. Можно сделать вывод, что емкость последовательно соединенных накопителей имеет значение для величины напряжения на пластинах — чем она меньше, тем больше напряжения требуется, а также накопители большой емкости требуют меньшего напряжения.

Основное отличие схемы последовательного соединения накопителей емкости в том, что электроэнергия протекает только в одном направлении, а это означает, что в каждом накопителе емкости составленной батареи ток будет одинаковым. В этом виде соединений конденсаторов обеспечивается равномерное накопление энергии независимо от емкости накопителей. Группу накопителей емкости можно также на схеме рассматривать как эквивалентный накопитель, на пластины которого подается напряжение, определяемое формулой:.

Заряд общего эквивалентного накопителя группы емкостных накопителей последовательного соединения равен:. Параллельное и последовательное соединение конденсаторов на одном из участков цепи схемы называется специалистами смешанным соединением. Смешанное соединение конденсаторов в схеме рассчитывается в определенном порядке, который можно представить следующим образом:.

Накопители емкостей двухполюсники включены разными способами в цепь, это дает несколько преимуществ в решении электротехнических задач по сравнению с традиционными способами включения конденсаторов:. Разного вида включения конденсаторов в цепь применяются для решения электротехнических задач, в частности, для получения полярных накопителей из нескольких неполярных двухполюсников.

В этом случае решением будет соединение группы однополюсных накопителей емкости по встречно-параллельному способу треугольником. В этой схеме минус соединяется с минусом, а плюс — с плюсом. Происходит увеличение емкости накопителя, и меняется работа двухполюсника. Не отображаются имеющиеся вхождения: последовательное параллельное и смешанное соединение конденсаторов, последовательное и параллельное соединение конденсаторов, при параллельном соединении конденсаторов емкость.

Перейти к основному содержанию. Войти на сайт. Запомнить меня. Войдите через социальные сети нажав на соответствующий значок:. Главная База знаний Электронные компоненты Способы подключения конденсаторов в электрическую цепь. Похожие статьи: Что такое паяльный флюс? Электротехнический инвертор Транзистор: описание электронного компонента.

Кибкало Евгений Дмитриевич Инженер-электрик. Сколько денег вы тратите на ремонтные работы в год?


Калькулятор расчета последовательного соединения конденсаторов

На нашем сайте собрано более бесплатных онлайн калькуляторов по математике, геометрии и физике. Не можете решить контрольную?! Мы поможем! Более 20 авторов выполнят вашу работу от руб! На практике часто используются тела, обладающие малыми и очень малыми размерами, которые могут накопить большой заряд, при этом имея небольшой потенциал. Такие объекты называют конденсаторами.

Соединение конденсаторов в электрической цепи может быть последовательным, параллельным и последовательно-пареллельным ( смешанным).

Последовательное и параллельное соединение конденсаторов

Соединение конденсаторов в электрической цепи может быть последовательным, параллельным и последовательно-пареллельным смешанным. Если провести аналогию между соединением конденсаторов и соединением резисторов , то стоит отметить, что формулы расчета общей емкости и общего сопротивления идентичны, только между разными типами соединений:. Параллельное соединение конденсаторов — это соединение при котором конденсаторы соединяются собой обоими контактами. В результате к одной точке может быть присоединено несколько конденсаторов. При параллельном соединении формируется один большой конденсатор с площадью обкладок, равной сумме площадей обкладок всех отдельных компонентов. Поскольку емкость конденсаторов прямо пропорциональна площади обкладок , общая емкость С общ при параллельном соединении равняется сумме емкостей всех конденсаторов в цепи. На все параллельно соединенные конденсаторы падает одинаковое напряжение. Так происходит, потому что существует всего лишь две точки, между которыми может быть разность потенциалов напряжение. Другими словами, можно сказать что при параллельном соединении все конденсаторы подключены к одному источнику напряжения. Ток конденсатора во время переходного периода зависит от его емкости и изменения напряжения:.

Последовательное соединение конденсаторов

Общая емкость любого количества последовательно соединенных конденсаторов определяется по формуле. Величина, обратная эквивалентной общей емкости последовательно соединенных конденсаторов, равна сумме величин, обратных емкостям этих конденсаторов. Если последовательно соединены только два конденсатора, то их общую емкость можно быстро определить по формуле. Если последовательно соединено любое количество конденсаторов одинаковых емкостей , то их общую емкость можно быстро вычислить, разделив емкость одного конденсатора на их количество. Напряжения между последовательно соединенными конденсаторами распределяются обратно пропорционально емкостям этих конденсаторов.

Соединения конденсаторов.

Соединение конденсаторов

В электрических цепях применяются различные способы соединения конденсаторов. Соединение конденсаторов может производиться: последовательно , параллельно и последовательно-параллельно последнее иногда называют смешанное соединение конденсаторов. Существующие виды соединения конденсаторов показаны на рисунке 1. Тогда общая емкость конденсаторов при параллельном соединении равна сумме емкостей всех соединенных конденсаторов. Тогда для параллельного соединения конденсаторов будет справедлива следующая формула:.

Параллельное и последовательное соединение конденсаторов: способы, правила, формулы

С помощью калькулятора можно без особых усилий произвести расчет емкости конденсаторов в электрической цепи, которые имеют последовательное соединения. В данном случае необходимо внести только данные относительно количества конденсаторов. Данное соединение осуществляется, когда все элементы выстаиваются друг за другом и не имеется разветвлений. В данном случае заряды пластин имеют одинаковую величину, а напряжение поделено между конденсаторами пропорционально их же емкости. Законы данного соединения Формула для 2-ух последовательно соединенных конденсаторов:. Формула для 2-ух последовательно соединенных одинаковых конденсаторов : Для того чтобы узнать емкость конденсатора следует воспользоваться следующей формулой.

C помощью данного калькулятора вы можете рассчитать емкость двух последовательно соединенных конденсаторов. Это наиболее.

Калькулятор расчета параллельного соединения конденсаторов

Как раз для таких случаев нам необходимы знания о правилах соединения конденсаторов. Способов соединения конденсаторов существуют всего два. Это последовательное и параллельное соединение. Сейчас более детально рассмотрим оба способа.

Параллельное и последовательное соединение конденсаторов: способы, правила, формулы

Казалось бы, зачем это надо, ведь если на принципиальной схеме указано, что в данном месте схемы должен быть установлен конденсатор на 47 микрофарад, значит, берём и ставим. Но, согласитесь, что в мастерской даже заядлого электронщика может не оказаться конденсатора с необходимым номиналом! Похожая ситуация может возникнуть и при ремонте какого-либо прибора. Например, необходим электролитический конденсатор ёмкостью микрофарад, а под рукой лишь два-три на микрофарад.

Последовательное и параллельное соединение конденсаторов применяют в зависимости от поставленной цели. При последовательном соединении конденсаторов уменьшается общая емкость и увеличивается общее напряжение конденсаторов.

Переменный ток

Код для вставки без рекламы с прямой ссылкой на сайт. Код для вставки с рекламой без прямой ссылки на сайт. Скопируйте и вставьте этот код на свою страничку в то место, где хотите, чтобы отобразился калькулятор. Калькулятор справочный портал. Избранные сервисы. Кликните, чтобы добавить в избранные сервисы. Последовательное соединение конденсаторов, онлайн расчет.

У многих радиолюбителей, особенно приступающих впервые к конструированию электросхем, возникает вопрос, как надо подключить конденсатор требуемой ёмкости? Когда, к примеру, в каком-то месте схемы нужен конденсатор ёмкостью мкФ, и такой элемент есть в наличии, то проблемы не возникнет. Но когда требуется поставить конденсатор на мкФ, а присутствуют только элементы неподходящей емкости, на помощь приходят схемы из нескольких конденсаторов, соединённых вместе.


Формула расчета последовательного соединения конденсатора

Схемы в электротехнике состоят из электрических элементов, в которых способы соединения конденсаторов могут быть разными. Надо понимать, как правильно подключить конденсатор. Отдельные участки цепи с подключенными конденсаторами можно заменить одним эквивалентным элементом.

Он заменит ряд конденсаторов, но должно выполняться обязательное условие: когда напряжение, подводимое к обкладкам эквивалентного конденсатора, равняется напряжению на входе и выходе группы заменяющихся конденсаторов, тогда заряд емкости будет такой же, как и на группе емкостей.

Для понимания вопроса, как подключить конденсатор в любой схеме, рассмотрим виды его включения.

Параллельное включение конденсаторов в цепь

Параллельное соединение конденсаторов — это когда все пластины подключаются к точкам включения цепи, образовывая батарею емкостей.

Параллельное соединение конденсаторов:


Параллельное соединение конденсаторов

Разность потенциалов на пластинах накопителей емкости будет одинаковая, так как они все заряжаются от одного источника тока. В этом случае каждый заряжающийся конденсатор имеет собственный заряд при одинаковой величине, подводимой к ним энергии.

Параллельные конденсаторы, общий параметр количества заряда полученной батареи накопителей, рассчитывается, как сумма всех зарядов, помещающихся на каждой емкости, потому что каждый заряд емкости не зависит от заряда другой емкости, входящей в группу конденсаторов, параллельно включенных в схему.

При параллельном соединении конденсаторов емкость равняется:


Формула и расшифровка

Из представленной формулы можно сделать вывод, что всю группу накопителей можно рассматривать как один равноценный им конденсатор.

Конденсаторы, соединенные параллельно, имеют напряжение:


Формула

Последовательное включение конденсаторов в цепь

Когда в схеме выполнено последовательное соединение конденсаторов, оно выглядит как цепочка емкостных накопителей, где пластина первого и последнего накопителя емкости (конденсатора) подключены к источнику тока.

Последовательное соединение конденсатора:


Формула

При последовательном соединении конденсаторов все устройства этого участка берут одинаковое количество электроэнергии, потому что в процессе участвует первая и последняя пластинка накопителей, а пластины 2, 3 и другие до N проходят зарядку посредством влияния.

По этой причине заряд пластины 2 накопителя емкости равняется по значению заряду 1 пластины, но имеет обратный знак.

Заряд пластины накопителя 3 равняется значению заряда пластины 2, но так же с обратным знаком, все последующие накопители имеет аналогичную систему заряда.

Формула нахождения заряда на конденсаторе, схема подключения конденсатора:


Последовательное соединение конденсаторов

Когда выполняется последовательное соединение конденсаторов, напряжение на каждом накопители емкости будет различное, так как в зарядке одинаковым количеством электрической энергии участвуют разные емкости.

Зависимость емкости от напряжения такова: чем она меньше, тем большее напряжение необходимо подать на пластины накопителя для его зарядки. И обратная величина: чем выше емкость накопителя, тем меньше требуется напряжения для его зарядки.

Можно сделать вывод, что емкость последовательно соединенных накопителей имеет значение для величины напряжения на пластинах — чем она меньше, тем больше напряжения требуется, а также накопители большой емкости требуют меньшего напряжения.

Основное отличие схемы последовательного соединения накопителей емкости в том, что электроэнергия протекает только в одном направлении, а это означает, что в каждом накопителе емкости составленной батареи ток будет одинаковым. В этом виде соединений конденсаторов обеспечивается равномерное накопление энергии независимо от емкости накопителей.

Группу накопителей емкости можно также на схеме рассматривать как эквивалентный накопитель, на пластины которого подается напряжение, определяемое формулой:


Основные моменты

Заряд общего (эквивалентного) накопителя группы емкостных накопителей последовательного соединения равен:


Формула

Общему значению емкости последовательно соединенных конденсаторов соответствует выражение:


Формула

Смешанное включение емкостных накопителей в схему

Параллельное и последовательное соединение конденсаторов на одном из участков цепи схемы называется специалистами смешанным соединением.

Участок цепи подсоединенных смешанным включением накопителей емкости:


Схема подключения конденсаторов

Смешанное соединение конденсаторов в схеме рассчитывается в определенном порядке, который можно представить следующим образом:

  • разбивается схема на простые для вычисления участки, это последовательное и параллельное соединение конденсаторов;
  • вычисляем эквивалентную емкость для группы конденсаторов, последовательно включенных на участке параллельного соединения;
  • проводим нахождение эквивалентной емкости на параллельном участке;
  • когда эквивалентные емкости накопителей определены, схему рекомендуется перерисовать;
  • рассчитывается емкость получившейся после последовательного включения эквивалентных накопителей электрической энергии.


Последовательное, параллельное и смешанное соединение конденсаторов

Накопители емкостей (двухполюсники) включены разными способами в цепь, это дает несколько преимуществ в решении электротехнических задач по сравнению с традиционными способами включения конденсаторов:

  1. Использование для подключения электрических двигателей и другого оборудования в цехах, в радиотехнических устройствах.
  2. Упрощение вычисления величин электросхемы. Монтаж выполняется отдельными участками.
  3. Технические свойства всех элементов не меняются, когда изменяется сила тока и магнитное поле, это применяется для включения разных накопителей. Характеризуется постоянной величиной емкости и напряжения, а заряд пропорционален потенциалу.

Вывод

Разного вида включения конденсаторов в цепь применяются для решения электротехнических задач, в частности, для получения полярных накопителей из нескольких неполярных двухполюсников.

В этом случае решением будет соединение группы однополюсных накопителей емкости по встречно-параллельному способу (треугольником). В этой схеме минус соединяется с минусом, а плюс — с плюсом.

Происходит увеличение емкости накопителя, и меняется работа двухполюсника.

Не отображаются имеющиеся вхождения: последовательное параллельное и смешанное соединение конденсаторов, последовательное и параллельное соединение конденсаторов, при параллельном соединении конденсаторов емкость.

Источник: https://domelectrik.ru/baza/komponenty/soedinenie-kondensatorov

Соединения конденсаторов. Энергия электрического поля конденсатора

Соединения конденсаторов .
Параллельное соединение конденсаторов
Обкладки конденсаторов соединяют попарно, т.е. в системе остается два изолированных проводника, которые и представляют собой обкладки нового конденсатора
Вывод: При параллельном соединении конденсаторов
  • заряды складываются,
  • напряжения одинаковые,
  • емкости складываются.

Т.о.,  общая емкость больше емкости любого из параллельно соединенных конденсаторов

Последовательное соединение конденсаторов
Производят только одно соединение, а две оставшиеся обкладки — одна от конденсатора С1 другая от конденсатора С2 — играют роль обкладок нового конденсатора.

Вывод: При последовательном соединении конденсаторов
  • напряжения складываются,
  • заряды одинаковы,
  • складываются величины, обратные емкости.

   Т.о.,  общая емкость меньше емкости любого из последовательно соединенных конденсаторов.

Энергия электрического поля конденсатора.

 Формулы справедливы для любого конденсатора.
Пример: С=2мкФ; U=1000В.
t=10-6c.W=1 Дж  — опасно для жизни!
Плотность энергии.

Формула справедлива для полей любых конденсаторов и, кроме того, для полей, меняющихся со временем (неэлектростатических).

Источник: https://www.eduspb.com/node/1763

Соединение конденсаторов — Основы электроники

В электрических цепях применяются различные способы соединения конденсаторов. Соединение конденсаторов может производиться: последовательно, параллельно и последовательно-параллельно (последнее иногда называют смешанное соединение конденсаторов). Существующие виды соединения конденсаторов показаны на рисунке 1.

Рисунок 1. Способы соединения конденсаторов.

Параллельное соединение конденсаторов

Если группа конденсаторов включена в цепь таким обра­зом, что к точкам включения непосредственно присоединены пластины всех конденсаторов, то такое соединение называется параллельным соединением конденсаторов (рисунок 2.).

Рисунок 2. Параллельное соединение конденсаторов.

При заряде группы конденсаторов, соединенных параллель­но, между пластинами всех конденсаторов будет одна и та же разность потенциалов, так как все они заряжаются от одного и того же источника тока.

Общее же количе­ство электричества на всех конденсаторах будет равно сумме количеств электричества, помещающихся на каждом из кон­денсаторов, так как заряд каждого их конденсаторов проис­ходит независимо от заряда других конденсаторов данной группы.

Исходя из этого, всю систему параллельно соединен­ных конденсаторов можно рассматривать как один эквива­лентный (равноценный) конденсатор. Тогда общая емкость конденсаторов при параллельном соединении равна сумме емкостей всех соединенных конденсаторов.

Обозначим суммарную емкость соединенных в батарею конденсаторов бук­вой Собщ, емкость первого конденсатора С1 емкость второго С2 и емкость третьего С3. Тогда для параллельного соединения конденсаторов будет справедлива следующая формула:

Последний знак + и многоточие указывают на то, что этой формулой можно пользоваться при четырех, пяти и во­обще при любом числе конденсаторов.

Последовательное соединение конденсаторов

Если же соединение конденсаторов в батарею производится в виде цепочки и к точкам включения в цепь непосредственно присоединены пластины только первого и последнего конденсаторов, то такое соединение конденсаторов называется последо­вательным (рисунок 3).

Рисунок 2. Последовательное соединение конденсаторов.

При последовательном соединении все конденса­торы заряжаются одинаковым количеством электричества, так как непосредственно от источника тока заряжаются только крайние пластины (1 и 6), а остальные пластины (2, 3, 4 и 5) заря­жаются через влияние. При этом заряд пла­стины 2 будет равен по величине и противо­положен по знаку за­ряду пластины 1, заряд пластины 3 будет равен по величине и противоположен по знаку заряду пла­стины 2 и т. д.

Напряжения на различных конденсаторах будут, вообще говоря, различными, так как для заряда одним и тем же количеством электричества конденсаторов различной емкости всегда требуются различные напряжения. Чем меньше емкость конденсатора, тем большее напряжение необходимо для того, чтобы зарядить этот конденсатор требуемым количеством электричества, и наоборот.

Таким образом, при заряде группы конденсаторов, соединенных последовательно, на конденсаторах малой емкости напряжения будут больше, а на конденсаторах большой емкости — меньше.

Аналогично предыдущему случаю можно рассматривать всю группу конденсаторов, соединенных последовательно, как один эквивалентный конденсатор, между пластинами которого существует напряжение, равное сумме напряжений на всех конденсаторах группы, а заряд которого равен заряду любого из конденсаторов группы.

Возьмем самый маленький конденсатор в группе. На нем должно быть самое большое напряжение. Но напряжение на этом конденсаторе составляет только часть общего напряже­ния, существующего на всей группе конденсаторов.

Напря­жение на всей группе больше напряжения на конденсаторе, имеющем самую малую емкость.

А отсюда непосредственно следует, что общая емкость группы конденсаторов, соединен­ных последовательно, меньше емкости самого малого конден­сатора в группе.

Для вычисления общей емкости при последовательном со­единении конденсаторов удобнее всего пользоваться следую­щей формулой:

Для частного случая двух последовательно соединенных конденсаторов формула для вычисления их общей емкости будет иметь вид:

Последовательно-параллельное (смешанное) соединение конденсаторов

Последовательно-параллельным соединением конденсаторов называется цепь имеющая в своем составе участки, как с параллельным, так и с последовательным соединением конденсаторов.

На рисунке 4 приведен пример участка цепи со смешанным соединением конденсаторов.

Рисунок 4. Последовательно-параллельное соединение конденсаторов.

При расчете общей емкости такого участка цепи с последовательно-параллельным соединением конденсаторов этот участок разбивают на простейшие участки, состоящие только из групп с последовательным или параллельным соединением конденсаторов. Дальше алгоритм расчета имеет вид:

1. Определяют эквивалентную емкость участков с последовательным соединением конденсаторов.

2. Если эти участки содержат последовательно соединенные конденсаторы, то сначала вычисляют их емкость.

3. После расчета эквивалентных емкостей конденсаторов перерисовывают схему. Обычно получается цепь из последовательно соединенных эквивалентных конденсаторов.

4. Рассчитывают емкость полученной схемы.

Один из примеров расчета емкости при смешанном соединении конденсаторов приведен на рисунке 5.

Рисунок 5. Пример расчета последовательно-параллельного соединения конденсаторов.

  • Подробнее о расчетах соединения конденсаторов можно узнать в мультимедийном учебнике по основам электротехники и электроники:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник: http://www.sxemotehnika.ru/soedinenie-kondensatorov.html

Параллельное и последовательное соединение конденсаторов, схемы, расчет

Радиоэлементы можно соединить между собой тремя способами. Существует   параллельное и последовательное соединение конденсаторов, а также смешанный тип. Всегда можно точно определить емкость равноценного конденсатора по этому показателю.

Его можно поменять на ряд соединенных в цепь других, более мелких по емкости конденсаторов.

Для равнозначного конденсаторы должно быть выполнено некоторое условие, а именно подключенное напряжение к конденсатору равно напряжению на зажимах этой группы этих.

Таким же образом подключается все радиоэлементы, существующие на данный момент. Главным образом используются параллельное и последовательное соединение конденсаторов.   В данной статьи рассмотрены все типы соединений конденсаторов. В качестве бонуса. в статье есть видеоролик и статья, посвященные этой теме.

Виды соединения конденсаторов в обмотке.

Последовательное и параллельное соединение конденсаторов

Соединение конденсаторов в электрической цепи может быть последовательным, параллельным и последовательно-пареллельным (смешанным).

 Если провести аналогию между соединением конденсаторов и соединением резисторов, то стоит отметить, что формулы расчета общей емкости и общего сопротивления идентичны, только между разными типами соединений: Формула Cобщ при параллельном соединении конденсаторов = формула Rобщ при последовательном соединении резисторов.

  • Cобщ — общая емкость.
  • Rобщ — общее сопротивление.

При последовательном соединении конденсаторов (рис. 3) на обкладках отдельных конденсаторов электрические заряды по величине равны:  Q1 = Q2 = Q3 = Q.

 Действительно, от источника питания заряды поступают лишь на внешние обкладки цепи конденсаторов, а на соединенных между собой внутренних обкладках смежных конденсаторов происходит лишь перенос такого же по величине заряда с одной обкладки на другую (наблюдается электростатическая индукция), поэтому и на них по- являются равные и разноименые электрические заряды.

Соединения конденсаторов.

Напряжения между обкладками отдельных конденсаторов при их последовательном соединении зависят от емкостей отдельных конденсаторов: U1 = Q/C1, U1 = Q/C2, U1 = Q/C3, а общее напряжение U = U1 + U2 + U3.

 Общая емкость равнозначного (эквивалентного) конденсатора C = Q / U = Q / (U1 + U2 + U3), т. е. при последовательном соединении конденсаторов величина, обратная общей емкости, равна сумме обратных величин емкостей отдельных конденсаторов.

 Формулы эквивалентных емкостей аналогичны формулам эквивалентных проводимостей.

Материал в тему: все о переменном конденсаторе.

Параллельное соединение конденсаторов

Параллельное соединение конденсаторов — это соединение при котором конденсаторы соединяются собой обоими контактами. В результате к одной точке может быть присоединено несколько конденсаторов.

При параллельном соединении формируется один большой конденсатор с площадью обкладок, равной сумме площадей обкладок всех отдельных компонентов.

Поскольку емкость конденсаторов прямо пропорциональна площади обкладок, общая емкость Собщ при параллельном соединении равняется сумме емкостей всех конденсаторов в цепи.

Напряжение при параллельном соединении

На все параллельно соединенные конденсаторы падает одинаковое напряжение. Так происходит, потому что существует всего лишь две точки, между которыми может быть разность потенциалов (напряжение). Другими словами, можно сказать что при параллельном соединении все конденсаторы подключены к одному источнику напряжения. Ток конденсатора во время переходного периода зависит от его емкости и изменения напряжения:

  • ic — ток конденсатора
  • C — Емкость конденсатора
  • ΔVC/Δt – Скорость изменения напряжения

Будет интересно➡  Несколько фактов об электролитических конденсаторах

При параллельном соединении через каждый конденсатор потечет одельный ток, в зависимости от емкости конденсатора:

Последовательное соединение конденсаторов

Если же соединение конденсаторов в батарею производится в виде цепочки и к точкам включения в цепь непосредственно присоединены пластины только первого и последнего конденсаторов, то такое соединение конденсаторов называется последо­вательным.

 При последовательном соединении все конденса­торы заряжаются одинаковым количеством электричества, так как непосредственно от источника тока заряжаются только крайние пластины, а остальные пластины заря­жаются через влияние.

При этом заряд пла­стины будет равен по величине и противо­положен по знаку за­ряду пластины 1, заряд пластины 3 будет равен по величине и противоположен по знаку заряду пла­стины 2 и т. д.

Напряжения на различных конденсаторах будут, вообще говоря, различными, так как для заряда одним и тем же количеством электричества конденсаторов различной емкости всегда требуются различные напряжения.

Типы соединений конденсаторов.

Таким образом, при заряде группы конденсаторов, соединенных последовательно, на конденсаторах малой емкости напряжения будут больше, а на конденсаторах большой емкости — меньше.

Аналогично предыдущему случаю можно рассматривать всю группу конденсаторов, соединенных последовательно, как один эквивалентный конденсатор, между пластинами которого существует напряжение, равное сумме напряжений на всех конденсаторах группы, а заряд которого равен заряду любого из конденсаторов группы. Возьмем самый маленький конденсатор в группе. На нем должно быть самое большое напряжение. Но напряжение на этом конденсаторе составляет только часть общего напряже­ния, существующего на всей группе конденсаторов. Напря­жение на всей группе больше напряжения на конденсаторе, имеющем самую малую емкость. А отсюда непосредственно следует, что общая емкость группы конденсаторов, соединен­ных последовательно, меньше емкости самого малого конден­сатора в группе.

Последовательное соединение конденсаторов – это соединение двух или более конденсаторов в форме цепи, в которой каждый отдельный конденсатор соединяется с другим отдельным конденсатором только в одной точке. Ток (iC), заряжающий последовательную цепь конденсаторов, будет одинаковым для всех конденсаторов, поскольку у него есть только один возможный путь прохождения.

Вследствие того что через все последовательно соединенные конденсаторы течет одинаковый ток, количество накопленого электрического заряда для каждого конденсатора будет одинаковым, независимо от его емкости.

Так происходит, потому что электрический заряд, накапливаемый на обкладке любого конденсатора, должен прийти с обкладки примыкающего конденсатора.

Таким образом, последовательно соединенные конденсаторы имеют одинаковый электрический заряд.

Стоит почитать: все об электолитических конденсаторах.

Правая обкладка первого конденсатора С1 соединяется с левой второго конденсатора С2, у которого правая обкладка соединяется с левой третьего конденсатора С3. Это означает, что в режиме постоянного тока конденсатор С2 электрически изолирован от общей цепи. В итогое эффективная площадь обкладок уменьшается до площади обкладок самого маленького конденсатора. Это объясняется тем, что как только обкладки наименшей площади заполнятся электрическим зарядом, данный конденсатор перестанет пропускать ток. В результате ток прекратиться во всей цепи, и процесс зарядки остальных конденсаторов также прекратится. При последовательном соединении общее расстояние между обкладками увеличивается до суммы расстояний между обкладками всех конденсаторов.

Будет интересно➡  Формула расчёта сопротивления конденсатора

Таким образом, последовательная цепь формирует один большой конденсатор с площадью обкладок элемента с наименьшей емкостью, и расстоянием между обкладками, равному сумме всех расстояний в цепи.

 На каждый отдельный конденсатор в последовательной цепи падает разное напряжение. Поскольку емкость обратно пропрциональна напряжению (С = Q/V), то чем меньше емкость конденсатора, тем большее напряжение на него упадет.

Применим закон Кирхгофа для напряжения в последовательной цепи из трех конденсаторов.

Емкость конденсатора прямо пропорциональна его заряду и обратно пропорциональна его напряжению — C = Q/V. Как уже упоминалось выше, последовательно соединенные конденсаторы имеют одинаковый электрический заряд — Qобщ = Q1 = Q2 = Q3. Из данного уравнения можно легко вывести формулу общей емкости для любого частного случая последовательного соединения.

Источник: https://ElectroInfo.net/kondensatory/chem-otlichajutsja-parallelnoe-i-posledovatelnoe-soedinenie-kondensatorov.html

Последовательное соединение конденсаторов

Последовательное соединение конденсаторов – батарея, образованная цепочкой конденсаторов. Отсутствует ветвление, выход одного элемента подключается к входу следующего.

Физические процессы при последовательном соединении

При последовательном соединении конденсаторов заряд каждого равноценен. Обусловлено природным принципом равновесия. С источником соединены только крайние обкладки, другие заряжаются путем перераспределения меж ними зарядов. Используя равенство, находим:

q = q1 = q2 = U1 C1 = U2 C2, откуда запишем:

U1/U2 = C2/C1.

Напряжения меж конденсаторами распределяются обратно пропорционально номинальным емкостям. В сумме оба составляют вольтаж питающей сети. При разряде конструкция способна отдать заряд q вне зависимости от того, сколько конденсаторов включено последовательно. Емкость батареи найдем из формулы:

C = q/u = q/(U1 + U2), подставляя выражения, приведенные выше, приводя к общему знаменателю:

1/С = 1/С1 + 1/С2.

Вычисление общей емкости батареи

При последовательном соединении конденсаторов в батарею складываются величины, обратные номинальным емкостям. Приводя последнее выражение к общему знаменателю, переворачивая дроби, получаем:

С = C1C2/(C1 + C2).

Выражение используется для нахождения емкости батареи. Если конденсаторов более двух, формула усложняется. Для нахождения ответа номиналы перемножаются меж собой, выходит числитель дроби. В знаменатель ставят попарные произведения двух номиналов, перебирая комбинации. Практически иногда удобнее вести вычисление через обратные величины. Полученным результатом разделить единицу.

Соединение последовательное конденсаторов

Формула сильно упрощается, если номиналы батареи одинаковы. Требуется просто цифру поделить общим числом элементов, получая результирующее значение. Напряжение распределится равномерно, следовательно, достаточно номинал питающей сети разбить поровну на общее число. При питании аккумулятором 12 вольт, 4-х емкостях, на каждой упадет 3 вольта.

Одно упрощение сделаем для случая, когда номиналы равны, одна емкость включена переменная, чтобы подстраивать результат.

Тогда максимальное напряжение каждого элемента удастся приближенно найти, разделив вольтаж источника уменьшенным на единицу количеством. Получится результат с заведомым запасом.

Что касается переменной емкости, требования намного жёстче. В идеале рабочее значение перекрывает вольтаж источника.

Необходимость в последовательном соединении

На первый взгляд идея соединения конденсаторов батареей последовательным образом покажется лишенной смысла. Первое преимущество очевидно: падают требования к максимальному напряжению обкладок. Больше рабочий вольтаж, дороже изделие. Подобным образом мир видит радиолюбитель, владеющий рядом низковольтных конденсаторов, желающий применить железо составной частью высоковольтной цепи.

Рассчитывая по приведенным выше формулам действующие напряжения элементом, можно легко решить поставленную задачу. Рассмотрим для пущей наглядности пример:

Пусть установлены аккумулятор напряжением 12 вольт, три емкости номиналами 1, 2 и 4 нФ. Найдем напряжение при последовательном соединении элементов батареей.

Решение:

Для нахождения трех неизвестных потрудитесь составить равное количество уравнения. Известно из курса высшей математики. Результат будет выглядеть следующим образом:

  1. U1 + U2 + U3 = 12;
  2. U1/U2 = 2/1 = 2, откуда запишем: U1 = 2U2;
  3. U2/U3 = 4/2 = 2, откуда видно: U2 = 2U

Не сложно заметить, последние два выражения подставим первому, выразив 12 вольт через вольтаж третьего конденсатора. Получится следующее:

4U3 + 2U3 + U3 = 12, откуда находим, напряжение третьего конденсатора составляет 12/7 = 1,714 вольта, U2 – 3,43 вольта, U1 – 6,86 вольта. Сумма чисел дает 12, каждое меньше напряжения питающего аккумулятора.

Причем тем больше разница, чем меньший номинал у соседей. Из этого правила следует: в последовательном соединении конденсаторы низкой емкости показывают большее рабочее напряжение.

Найдем для определенности номинал составленной батареи, заодно проиллюстрируем формулу, поскольку выше описана чисто словесно:

С = С1С2С3/(С1С2 + С2С3 + С1С3) = 8/(2 + 8 + 4) = 8/14 = 571 пФ.

Результирующий номинал меньше каждого конденсатора, составляющего последовательное соединение. Из правила видно: максимальное влияние на суммарную емкость оказывает меньший. Следовательно, при необходимости подстройки полного номинала батареи должен быть переменный конденсатор. В противном случае поворот винта не окажет большого влияния на конечный результат.

Видим очередной подводный камень: после подстройки распределение напряжений по конденсаторам изменится. Просчитайте крайние случаи, дабы вольтаж не превысил рабочее значение для составляющих батарею элементов.

Программные пакеты исследования электрических цепей

Помимо онлайн- калькуляторов расчета последовательного соединения конденсаторов присутствуют и инструменты помощнее.

Большой минус общедоступных средств объясняется нежеланием сайтов проверять программный код, значит, содержат ошибки. Плохо, если одна емкость выйдет из строя, сломленная процессом испытаний неправильно собранной схемы.

Не единственный недостаток. Иногда схемы гораздо сложнее, разобраться комплексно невозможно.

В отдельных приборах встречаются фильтры высокой частоты, использующие конденсатор, включенные каскадами. Тогда на схеме помимо замыкания через резистор на землю образуется последовательное соединение емкостей.

Обычно не применяют формулу, показанную выше. Принято считать, каждый каскад фильтра существует отдельно, результат прохождения сигнала описывается амплитудно-частотной характеристикой.

Графиком, показывающим, как сильно обрежет на выходе спектральную составляющую сигнала.

Желающим провести ориентировочные расчеты рекомендуется ознакомиться с программным пакетом персонального компьютера Electronics Workbench.

Конструктив выполнен по английским стандартам, потрудитесь учитывать нюанс: обозначение резисторов на электрической схеме изломанным зигзагом. Номиналы, названия элементов будут изложены на иностранный манер.

Не мешает пользоваться оболочкой, предоставляющей оператору гору источников питания различного толка.

И главное – Electronics Workbench позволит задать контрольные точки на каждой, в режиме реального времени посмотреть напряжение, ток, спектр, форму сигнала. Полагается дополнить проект амперметром, вольтметром, прочими аналогичного толка приборами.

При помощи такого программного пакета смоделируете ситуацию, посмотрите, сколько падает напряжения на элементе батареи. Уберегает от громоздких расчетов, намного ускоряя процесс проектирования схемы. Одновременно исключаются ошибки. Легко и просто становится добавлять, удалять конденсаторы с немедленной оценкой результата.

Рабочий пример

Скрин показывает рабочий стол Electronics Workbench 5.12 с собранной электрической схемой последовательного соединения конденсаторов. Каждый емкостью 1 мкФ, одинаковые элементы взяты для целей демонстрации. Чтобы каждый мог без труда проверить правильность.

Последовательная батарея конденсаторов

Обратим вначале внимание на источник. Переменное напряжение частотой 60 Гц. В стране разработчика действует иной стандарт, нежели российские. Рекомендуется правой кнопкой мыши щелкнуть источник, посетить свойства, выставить:

  1. Частоту (frequency) 50 Гц вместо 60 Гц.
  2. Действующее значение напряжения (voltage) 220 вольт вместо 120.
  3. Фазу (phase – имитация реактивности) взять согласно своим нуждам.

Для буквоедов будет полезно полистать свойства элементов цепи. У источника вольны задать допустимое отклонение напряжения (voltage tolerance) в процентах.

Достаточно добавить один резистор размером 1 кОм, цепь становится фильтром верхних частот. Рекомендуется не упрощать действия. Поставить правильно знак заземления, убедиться: схема полностью тривиальна.

В противном случае результаты заставят надолго поломать голову.

Построение графиков

Проиллюстрированный скрином фильтр верхних частот обнаруживает подъем амплитудно-частотной характеристики в районе 1 кГц.

При нахождении полосы пропускания необходимо учесть: вертикальная шкала логарифмическая. Посему срез на уровне 70% максимума не соответствует семи десятым высоты пологой части пика.

Заядлым любителям будет интересна фазочастотная характеристика, в окне расположенная снизу.

Тот и другой график строятся из меню Analysis раздел AC Frequency. А еще тут… Fourier. Доступно посмотреть спектр выходного сигнала. В нашем случае не будет ничего интересного, поскольку собрали унылый пассивный фильтр, колебание на входе гармоническое. Гораздо интереснее наблюдать спектр импульсного сигнала.

График отклика

Раздел Transient показывает отклик на подачу фронта питающего напряжения. На графике фактически представлен процесс заряда батареи, откуда найдем постоянную времени по уровню 0,7 максимума. Тонкости понятны желающим собрать сглаживающий фильтр амплитудного детектора. Как видно из графика, значение составляет 250 мкс. Параметр определяется из окна следующим образом:

  1. Считается, за три постоянные времени цепи заряд конденсаторов, разряд производится приблизительно на 95%.
  2. Легко заметить, точка находится в районе 800 мкс.
  3. Следует разделить значение на три, получится постоянная времени батареи последовательно соединенных конденсаторов.

По-другому постоянная времени вычисляется произведением сопротивления на общую емкость батареи. Пользуясь приведенными выше формулами, вычислим: С = 1 мкФ / 4 = 250 нФ. Осталось умножить значение на 1000 Ом, получится 250 мкс. Программный пакет Electronics Workbench 5.12 при умелом использовании высвобождает уйму свободного времени.

Версия ПО

Раздобыть программный пакет расчета электрики

В интернете бытует мнение: автором Electronics Workbench выступает дочерняя компания корпорации National Instruments, разрабатывающая программное обеспечение. Неправда. Из окна авторских прав упомянутого приложения видно: разработка выполнена отделом Interactive Image Technologies.

Вышеозначенное подразделение обрело самостоятельность в 1995 году. Отдел направленно занимался рекламными и обучающими материалами. Electronics Workbench разработан для целей обучения студентов Канады. Потом программный продукт распространился всемирно, с некоторых пор именуется Multisim.

Обновленный программный продукт продают официальные дилеры, перечень представлен официальным сайтом компании National Instruments: russia.ni.com/contact. На момент исследования счастливчиками, получившими право купить ПО не выезжая за город, назовем жителей Москвы, Санкт-Петербурга. Удачи решившимся связаться с официальными представителями, в Multisim добавлены новые фишки:

  1. Более 36000 схемных элементов.
  2. Возможность разработки печатных плат на основе собранной электрической схемы.
  3. Продвинутые опции анализа вместо убогости, демонстрируемой скринам, версии 20-летней давности.

Источник: https://VashTehnik.ru/enciklopediya/posledovatelnoe-soedinenie-kondensatorov.html

Как правильно соединять конденсаторы? Параллельное и последовательное соединение конденсаторов

КатегорииСправочная Статьи для новичков

Всем привет. Этот маленький пост посвящу теме соединения конденсаторов.

На практике,  часто бывает так, что в наличии нет конденсатора нужного номинала для установки, а технику нужно срочно отремонтировать.  Как раз для таких случаев нам необходимы знания о правилах соединения конденсаторов.

Способов соединения конденсаторов существуют всего два. Это последовательное и параллельное соединение. Сейчас более детально рассмотрим оба способа.

Параллельное  соединение конденсаторов.

Это наиболее частый вид соединения конденсаторов.  При подключении параллельно, емкость конденсатора увеличивается, а напряжение остается прежним.

Формула параллельного соединения конденсаторов: С= С1+С2+С3…

Рассмотрим на примере. Предположим, что необходим конденсатор 100 мкф 50в, а у Вас в наличии только 47мкф на 50в.

Если соединить эти конденсаторы параллельно (плюс к плюсу а  минус к минусу) то общая емкость  получившегося конденсатора будет ровняться  около 94 мкф на 50в.

Это допустимое отклонение, так что можно свободно устанавливать  в технику.

Параллельное соединение конденсаторов

Последовательное  соединение конденсаторов.

При подключении, таким образом, общая емкость уменьшается, а напряжение работы конденсатора растёт.

Рассчитывается последовательное  подключение конденсаторов по такой формуле:

Формула расчета последовательного соединения конденсаторов

Для примера подключим  3 конденсатора номиналом  100мкф на 100в последовательно. Согласно формуле, делим единицу, на емкость конденсаторов. Потом суммируем . Далее единицу делим на результат.

(1:100)+(1:100)+(1:100) = 0,01 + 0,01 + 0,01 = 0,03  далее 1 : 0,03 = 33 мкф на 300вольт (напряжение суммируем  100+100+100 = 300в). Итого 33мкф на 300в.

  • В работе, последовательное соединение использую редко, но иногда бывает.
  • Рекомендую ознакомиться со статей  о ESR конденсаторов.
  • Всем спасибо за просмотр.


Весь инструмент и расходники, которые я использую в ремонтах находится здесь.
Если у Вас возникли вопросы по ремонту телевизионной техники, вы можете задать их на нашем новом форуме . (9

Источник: https://my-chip.info/kak-pravilno-soedinyat-kondensatory-parallelnoe-i-posledovatelnoe-soedinenie-kondensatorov/

Последовательное и параллельное соединение проводников, резисторов, конденсаторов и катушек индуктивности. Онлайн расчёты

В«- РЇ тебе как электрику РѕР±СЉСЏСЃРЅСЏСЋ: Надя СЃРїРёС‚ СЃ мужиками последовательно, Р° Света параллельно. Кто РёР· РЅРёС… шмара вавилонская? — РќСѓ, Света наверное.

— Р’РѕС‚! Рђ РјРЅРµ, как кладовщику, видится немного РґСЂСѓРіРѕРµ: «РїРѕР±Р»СЏРґСѓС€РєР° обыкновенная» — 2 штуки! В» В«- Рђ теперь скажи РјРЅРµ отрок, как течёт электричество РїРѕ проводам электрическим, Рё цепям рукотворным, последовательным РґР° параллельным, РѕС‚ плюса Рє РјРёРЅСѓСЃСѓ СЃРѕ скоростью света РІ вакууме? — РЎ Божьей помощью, батюшка! РЎ Божьей помощью…В» РќСѓ РґР° ладно, достаточно! Шутки — штуками, Р° РїРѕСЂР° Р±С‹ уже дело делать. Так что «Копайте РїРѕРєР° здесь! Рђ СЏ тем временем схожу узнаю — РіРґРµ надо…В», Р° заодно набросаю пару-тройку калькуляторов РЅР° заданную тему. Р�так.

При последовательном соединении проводников сила тока во всех проводниках одинакова, при этом общее напряжение в цепи равно сумме напряжений на концах каждого из проводников.

РџСЂРё параллельном соединении падение напряжения между РґРІСѓРјСЏ узлами, объединяющими элементы цепи, одинаково для всех элементов, Р° сила тока РІ цепи равна СЃСѓРјРјРµ СЃРёР» токов РІ отдельных параллельно соединённых проводниках. РџРѕСЏСЃРЅРёРј СЂРёСЃСѓРЅРєРѕРј СЃ распределением напряжений, токов Рё формулами. Р РёСЃ.1 Расчёт проведём для 4 резисторов (РїСЂРѕРІРѕРґРЅРёРєРѕРІ), соединённых последовательно или параллельно. Если элементов РІ цепи меньше, то оставляем лишние поля РІ таблице РЅРµ заполненными. Заодно, РїСЂРё желании узнать распределение значений токов Рё напряжений РЅР° каждом РёР· элементов РїСЂРё последовательном Рё параллельном соединениях, есть возможность ввести величину общего напряжения РІ цепи U. Рђ есть возможность РЅРµ вводить… Короче, РІСЃРµ вводные, помеченные * — Рє заполнению РЅРµ обязательны.

РАСЧЁТ СОПРОТ�ВЛЕН�Й ПР� ПАРАЛЛЕЛЬНОМ � ПОСЛЕДОВАТЕЛЬНОМ СОЕД�НЕН�� проводников

Теперь, что касается последовательных и параллельных соединений конденсаторов и катушек индуктивности.

Схема, приведённая РЅР° Р РёСЃ.1 для РїСЂРѕРІРѕРґРЅРёРєРѕРІ Рё резисторов, остаётся РІ полной силе Рё для катушек СЃ конденсаторами, распределение напряжений Рё токов тоже РЅРёРєСѓРґР° РЅРµ девается, трансформируется лишь осмысление того, что токи эти Рё напряжения обязаны быть переменными. Почему переменными? Рђ потому, что для постоянных значений этих величин — сопротивление конденсаторов составляет РІ первом приближении бесконечность, Р° катушек — ноль, соответственно Рё токи Р±СѓРґСѓС‚ равны либо нулю, либо бесконечности, Р° для переменных значений иметь СЏСЂРєРѕ выраженную зависимость РѕС‚ частоты.

Поэтому, для желающих рассчитать величины напряжений Рё токов РІ последовательных или параллельных цепях, состоящих РёР· конденсаторов Рё катушек индуктивности, имеет полный смысл выяснить РЅР° странице ссылка РЅР° страницу значения реактивных сопротивлений данных элементов РїСЂРё интересующей Вас частоте Рё подставить эти значения РІ таблицу для расчёта РїСЂРѕРІРѕРґРЅРёРєРѕРІ Рё резисторов. Рђ РІ качестве общего напряжения РІ цепи — подставлять действующее значение амплитуды переменного тока.

Ну а теперь приведём таблицы для расчёта значений ёмкостей и индуктивностей при условии последовательного и параллельного соединений конденсаторов и катушек в количестве от 2 до 4 штук.

Расчёт поведём на основании хрестоматийных формул:

РЎ = РЎ1+ РЎ2+….+ РЎn   Рё   1/L = 1/L1+ 1/L2 +…+ 1/Ln    для параллельных цепей Рё

L = L1 + L2 +….+ Ln   Рё   1/РЎ = 1/РЎ1+ 1/РЎ2+…+ 1/РЎn    для последовательных. Как Рё РІ предыдущей таблице вводные, помеченные * — Рє заполнению РЅРµ обязательны.

  • РАСЧЁТ РЃРњРљРћРЎРўР� РџР Р� ПАРАЛЛЕЛЬНОМ Р� ПОСЛЕДОВАТЕЛЬНОМ СОЕДР�НЕНР�Р� конденсаторов
  • РАСЧЁТ Р�НДУКТР�Р’РќРћРЎРўР� РџР Р� ПАРАЛЛЕЛЬНОМ Р� ПОСЛЕДОВАТЕЛЬНОМ СОЕДР�НЕНР�Р� катушек

Ну и в завершении ещё одна таблица. Тут важно заметить, что приведённые в последней таблице расчёты верны только для индуктивно не связанных катушек, то есть для катушек, намотанных на разных каркасах и расположенных на значительных расстояниях друг от друга, во избежание, пересечения взаимных магнитных полей.

Источник: https://vpayaem.ru/information12.html

способы, правила, формулы. Вычисление падений напряжения на конденсаторах

Конденсаторы, как и резисторы, можно соединять последовательно и параллельно. Рассмотрим соединение конденсаторов: для чего применяются каждая из схем, и их итоговые характеристики.

Эта схема – самая распространенная. В ней обкладки конденсаторов соединяются между собой, образуя эквивалентную емкость, равную сумме соединяемых емкостей.

При параллельном соединении электролитических конденсаторов необходимо, чтобы между собой соединялись выводы одной полярности.

Особенность такого соединения – одинаковое напряжение на всех соединяемых конденсаторах . Номинальное напряжение группы параллельно соединенных конденсаторов равно рабочему напряжению конденсатора группы, у которого оно минимально.

Токи через конденсаторы группы протекают разные: через конденсатор с большей емкостью потечет больший ток.

На практике параллельное соединение применяется для получения емкости нужной величины, когда она выходит за границы диапазона, выпускаемого промышленностью, или не укладываются в стандартный ряд емкостей. В системах регулирования коэффициента мощности (cos ϕ) изменение емкости происходит за счет автоматического подключения или отключения конденсаторов в параллель.

При последовательном соединении обкладки конденсатором соединяются друг к другу, образуя цепочку. Крайние обкладки подключаются к источнику, а ток по всем конденсаторам группы потечет одинаковый.

Эквивалентная емкость последовательно соединенных конденсаторов ограничена самой маленькой емкостью в группе. Объясняется это тем, что как только она полностью зарядится, ток прекратится. Подсчитать общую емкость двух последовательно соединенных конденсаторов можно по формуле

Но применение последовательного соединения для получения нестандартных номиналов емкостей не так распространено, как параллельного.

При последовательном соединении напряжение источника питания распределяется между конденсаторами группы. Это позволяет получить батарею конденсаторов, рассчитанную на большее напряжение , чем номинальное напряжение входящих в нее компонентов. Так из дешевых и небольших по размерам конденсаторов изготавливаются блоки, выдерживающие высокие напряжения.

Еще одна область применения последовательного соединения конденсаторов связана с перераспределением напряжений между ними. Если емкости одинаковы, напряжение делится пополам, если нет – на конденсаторе большей емкости напряжение получается большим. Устройство, работающее на этом принципе, называют емкостным делителем напряжения .

Смешанное соединение конденсаторов


Такие схемы существуют, но в устройствах специального назначения, требующие высокой точности получения величины емкости, а также для их точной настройки.

1 мФ = 0,001 Ф. 1 мкФ = 0,000001 = 10⁻⁶ Ф. 1 нФ = 0,000000001 = 10⁻⁹ Ф. 1 пФ = 0,000000000001 = 10⁻¹² Ф.

В соответствии со вторым правилом Кирхгофа, падения напряжения V₁ , V₂ and V₃ на каждом из конденсаторов в группе из трех соединенных последовательно конденсаторов в общем случае различные и общая разность потенциалов V равна их сумме:

По определению емкости и с учетом того, что заряд Q группы последовательно соединенных конденсаторов является общим для всех конденсаторов, эквивалентная емкость C eq всех трех конденсаторов, соединенных последовательно, определяется как

Для группы из n соединенных последовательно конденсаторов эквивалентная емкость C eq равна величине, обратной сумме величин, обратных емкостям отдельных конденсаторов:

Эта формула для C eq и используется для расчетов в этом калькуляторе. Например, общая емкость соединенных последовательно трех конденсаторов емкостью 10, 15 and 20 мкФ будет равна 4,62 мкФ:

Если конденсаторов только два, то их общая емкость определяется по формуле

Если имеется n соединенных последовательно конденсаторов с емкостью C , их эквивалентная емкость равна

Отметим, что для расчета общей емкости нескольких соединенных последовательно конденсаторов используется та же формула, что и для расчета общего сопротивления параллельно соединенных резисторов .

Отметим также, что общая емкость группы из любого количества последовательно соединенных конденсаторов всегда будет меньше, чем емкость самого маленького конденсатора, а добавление конденсаторов в группу всегда приводит к уменьшению емкости.

Отдельного упоминания заслуживает падение напряжения на каждом конденсаторе в группе последовательно соединенных конденсаторов. Если все конденсаторы в группе имеют одинаковую номинальную емкость, падение напряжения на них скорее всего будет разным, так как конденсаторы в реальности будут иметь разную емкость и разный ток утечки. На конденсаторе с наименьшей емкостью будет наибольшее падение напряжения и, таким образом, он будет самым слабым звеном этой цепи.

Для получения более равномерного распределения напряжений параллельно конденсаторам включают выравнивающие резисторы. Эти резисторы работают как делители напряжения, уменьшающие разброс напряжений на отдельных конденсаторах. Но даже с этими резисторами все равно для последовательного включения следует выбирать конденсаторы с большим запасом по рабочему напряжению.

Если несколько конденсаторов соединены параллельно , разность потенциалов V на группе конденсаторов равна разности потенциалов соединительных проводов группы. Общий заряд Q разделяется между конденсаторами и если их емкости различны, то заряды на отдельных конденсаторах Q₁ , Q₂ and Q₃ тоже будут различными. Общий заряд определяется как

У многих начинающих любителей электроники в процессе сборки самодельного устройства возникает вопрос: “Как правильно соединять конденсаторы?”

Казалось бы, зачем это надо, ведь если на принципиальной схеме указано, что в данном месте схемы должен быть установлен конденсатор на 47 микрофарад, значит, берём и ставим. Но, согласитесь, что в мастерской даже заядлого электронщика может не оказаться конденсатора с необходимым номиналом!

Похожая ситуация может возникнуть и при ремонте какого-либо прибора. Например, необходим электролитический конденсатор ёмкостью 1000 микрофарад, а под рукой лишь два-три на 470 микрофарад. Ставить 470 микрофарад, вместо положенных 1000? Нет, это допустимо не всегда. Так как же быть? Ехать на радиорынок за несколько десятков километров и покупать недостающую деталь?

Как выйти из сложившейся ситуации? Можно соединить несколько конденсаторов и в результате получить необходимую нам ёмкость. В электронике существует два способа соединения конденсаторов: параллельное и последовательное .

В реальности это выглядит так:


Параллельное соединение


Принципиальная схема параллельного соединения


Последовательное соединение

Принципиальная схема последовательного соединения

Также можно комбинировать параллельное и последовательное соединение. Но на практике вам вряд ли это пригодиться.

Как рассчитать общую ёмкость соединённых конденсаторов?

Помогут нам в этом несколько простых формул. Не сомневайтесь, если вы будете заниматься электроникой, то эти простые формулы рано или поздно вас выручат.

Общая ёмкость параллельно соединённых конденсаторов:

С 1 – ёмкость первого;

С 2 – ёмкость второго;

С 3 – ёмкость третьего;

С N – ёмкость N -ого конденсатора;

C общ – суммарная ёмкость составного конденсатора.

Как видим, при параллельном соединении ёмкости нужно всего-навсего сложить!

Внимание! Все расчёты необходимо производить в одних единицах. Если выполняем расчёты в микрофарадах, то нужно указывать ёмкость C 1 , C 2 в микрофарадах. Результат также получим в микрофарадах. Это правило стоит соблюдать, иначе ошибки не избежать!

Чтобы не допустить ошибку при переводе микрофарад в пикофарады, а нанофарад в микрофарады, необходимо знать сокращённую запись численных величин. Также в этом вам поможет таблица. В ней указаны приставки, используемые для краткой записи и множители, с помощью которых можно производить пересчёт. Подробнее об этом читайте .

Ёмкость двух последовательно соединённых конденсаторов можно рассчитать по другой формуле. Она будет чуть сложнее:

Внимание! Данная формула справедлива только для двух конденсаторов! Если их больше, то потребуется другая формула. Она более запутанная, да и на деле не всегда пригождается .

Или то же самое, но более понятно:

Если вы проведёте несколько расчётов, то увидите, что при последовательном соединении результирующая ёмкость будет всегда меньше наименьшей, включённой в данную цепочку. Что это значить? А это значит, что если соединить последовательно конденсаторы ёмкостью 5, 100 и 35 пикофарад, то общая ёмкость будет меньше 5.

В том случае, если для последовательного соединения применены конденсаторы одинаковой ёмкости, эта громоздкая формула волшебным образом упрощается и принимает вид:

Здесь, вместо буквы M ставиться количество конденсаторов, а C 1 – его ёмкость.

Стоит также запомнить простое правило:

При последовательном соединении двух конденсаторов с одинаковой ёмкостью результирующая ёмкость будет в два раза меньше ёмкости каждого из них.

Таким образом, если вы последовательно соедините два конденсатора, ёмкость каждого из которых 10 нанофарад, то в результате она составит 5 нанофарад.

Не будем пускать слов по ветру, а проверим конденсатор , замерив ёмкость, и на практике подтвердим правильность показанных здесь формул.

Возьмём два плёночных конденсатора. Один на 15 нанофарад (0,015 мкф.),а другой на 10 нанофарад (0,01 мкф.) Соединим их последовательно. Теперь возьмём мультиметр Victor VC9805+ и замерим суммарную ёмкость двух конденсаторов. Вот что мы получим (см. фото).


Замер ёмкости при последовательном соединении

Ёмкость составного конденсатора составила 6 нанофарад (0,006 мкф.)

А теперь проделаем то же самое, но для параллельного соединения. Проверим результат с помощью того же тестера (см. фото).


Измерение ёмкости при параллельном соединении

Как видим, при параллельном соединении ёмкость двух конденсаторов сложилась и составляет 25 нанофарад (0,025 мкф.).

Что ещё необходимо знать, чтобы правильно соединять конденсаторы?

Во-первых, не стоит забывать, что есть ещё один немаловажный параметр, как номинальное напряжение.

При последовательном соединении конденсаторов напряжение между ними распределяется обратно пропорционально их ёмкостям. Поэтому, есть смысл при последовательном соединении применять конденсаторы с номинальным напряжением равным тому, которое имеет конденсатор, взамен которого мы ставим составной.

Если же используются конденсаторы с одинаковой ёмкостью, то напряжение между ними разделится поровну.

Для электролитических конденсаторов.


Последовательное соединение электролитов

Схема последовательного соединения

Также не забывайте про номинальное напряжение. При параллельном соединении каждый из задействованных конденсаторов должен иметь то номинальное напряжение, как если бы мы ставили в схему один конденсатор. То есть если в схему нужно установить конденсатор с номинальным напряжением на 35 вольт и ёмкостью, например, 200 микрофарад, то взамен его можно параллельно соединить два конденсатора на 100 микрофарад и 35 вольт. Если хоть один из них будет иметь меньшее номинальное напряжение (например, 25 вольт), то он вскоре выйдет из строя.

Желательно, чтобы для составного конденсатора подбирались конденсаторы одного типа (плёночные, керамические, слюдяные, металлобумажные). Лучше всего будет, если они взяты из одной партии, так как в таком случае разброс параметров у них будет небольшой.

Конечно, возможно и смешанное (комбинированное) соединение, но в практике оно не применяется (я не видел ). Расчёт ёмкости при смешанном соединении обычно достаётся тем, кто решает задачи по физике или сдаёт экзамены:)

Тем же, кто не на шутку увлёкся электроникой непременно надо знать, как правильно соединять резисторы и рассчитывать их общее сопротивление!

Для достижения нужной емкости или при напряжении, превышающем номинальное напряжение, конденсаторы , могут соединяться последовательно или параллельно. Любое же сложное соединение состоит из нескольких комбинаций последовательного и параллельного соединений.

При последовательном соединении, конденсаторы подключены таким образом, что только первый и последний конденсатор подключены к источнику ЭДС/тока одной из своих пластин. Заряд одинаков на всех пластинах, но внешние заряжаются от источника, а внутренние образуются только за счет разделения зарядов ранее нейтрализовавших друг друга. При этом заряд конденсаторов в батарее меньше, чем, если бы каждый конденсатор подключался бы отдельно. Следовательно, и общая емкость батареи конденсаторов меньше.

Напряжение на данном участке цепи соотносятся следующим образом:

Зная, что напряжение конденсатора можно представить через заряд и емкость, запишем:

Сократив выражение на Q, получим знакомую формулу:

Откуда эквивалентная емкость батареи конденсаторов соединенных последовательно:

При параллельном соединении конденсаторов напряжение на обкладках одинаковое, а заряды разные.

Величина общего заряда полученного конденсаторами, равна сумме зарядов всех параллельно подключенных конденсаторов. В случае батареи из двух конденсаторов:

Так как заряд конденсатора

А напряжения на каждом из конденсаторов равны, получаем следующее выражение для эквивалентной емкости двух параллельно соединенных конденсаторов

Пример 1

Какова результирующая емкость 4 конденсаторов включенных последовательно и параллельно, если известно что С 1 = 10 мкФ, C 2 = 2 мкФ, C 3 = 5 мкФ, а C 4 = 1 мкФ?

При последовательном соединении общая емкость равна:

При параллельном соединении общая емкость равна:

Пример 2

Определить результирующую емкость группы конденсаторов подключенных последовательно-параллельно, если известно, что С 1 = 7 мкФ, С 2 = 2 мкФ, С 3 = 1 мкФ.

Рис.2 U=U 1 =U 2 =U 3

    Общий заряд Q всех конденсаторов

    Общая емкость С, или емкость батареи, параллельно включенных конденсаторов равна сумме емкостей этих конденсаторов.

Параллельное подключение конденсатора к группе других включенных конденсаторов увеличивает общую емкость батареи этих конденсаторов. Следовательно, параллельное соединение конденсаторов при­меняется для увеличения емкости.

4)Если параллельно включены т одинаковых конденсаторов ем­костью С´ каждый, то общая (эквивалентная) емкость батареи этих конденсаторов может быть определена выражением

Последовательное соединение конденсаторов

Рис.3

    На обкладках последовательно соединенных конденсаторов, подключенных к источнику постоянного тока с напряжением U , появятся заряды одинаковые по величине с противоположными знаками.

    Напряжение на конденсаторах распределяется обратно пропорционально емкостям конденса­торов:

    Обратная величина общей емкости последовательно соединенных конденсаторов равна сумме обратных величин емкостей этих кон­денсаторов.

При последовательном включении двух конденсаторов их об­щая емкость определяется следующим выражением:

Если в цепь включены последовательно п одинаковых конден­саторов емкостью С каждый, то общая емкость этих конденса­торов:

Из (14) видно, что, чем больше конденсаторов п соединено последовательно, тем меньше будет их общая емкость С, т. е. по­следовательное включение конденсаторов приводит к уменьше­нию общей емкости батареи конденсаторов.

На практике может оказаться, что допустимое ра­бочее напряжение U p конденсатора меньше напряжения, на кото­рое необходимо подключить конденсатор. Если этот конденсатор подключить на такое напряжение, то он выйдет из строя, так как будет пробит диэлектрик. Если же последовательно включить не­сколько конденсаторов, то напряжение распределится между ними и на каждом конденсаторе напряжение окажется мень­ше его допустимого рабочего U p . Следовательно, последовательное соединение конденсаторов применяют для того, чтобы напряжение на каждом конденсаторе не превышало его рабочего напряжения U p .

Смешанное соединение конденсаторов

Смешанное соединение (последовательно-параллельное) кон­денсаторов применяют тогда, когда необходимо увеличить ем­кость и рабочее напряжение батареи конденсаторов.

Рассмотрим смешанное соединение конденсаторов на ниже­приведенных примерах.

Энергия конденсаторов


где Q — заряд конденсатора или конденсаторов, к которым при­ложено напряжение U ; С — электрическая емкость конденсатора или батареи соединенных конденсаторов, к которой приложено напряжение U .

Таким образом, конденсаторы служат для накопления и сохра­нения электрического поля и его энергии.

15. Дайте определение понятиям трех лучевая звезда и треугольник сопротивлений. Запишите формулы для преобразования трех лучевой звезды сопротивлений в треугольник сопротивлений и наоборот. Преобразуйте схему к двум узлам (Рисунок 5)

Рисунок 5- Схема электрическая

6.СХЕМЫ ЗАМЕЩЕНИЯ

Для облегчения расчета составляется схема замещения электрической цепи, т. е. схема, отображающая свойства цепи при определенных условиях.

На схеме замещения изображают все элементы, влиянием которых на результат расчета нельзя пренебречь, и указывают также электрические соединения между ними, которые имеются в цепи.

1.Схемы замещения элементов электрических цепей

На расчетных схемах источник энергии можно представить ЭДС без внутреннего сопротивления, если это сопротивление мало по сравнению с сопротивлением приемника (рис. 3.13,6).

Приr= 0 внутреннее падение напряженияUо = 0, поэтому

напряжение на зажимах источника при любом токе равно

ЭДС: U = E = const.

В некоторых случаях источник электрической энергии на расчетной схеме заменяют другой (эквивалентной) схемой (рис. 3.14, а), где вместо ЭДСЕ источник характеризуется его током короткого замыканияI K , а вместо внутреннего со­противления в расчет вводится внутренняя проводимостьg =1/ r .

Возможность такой замены можно доказать, разделив равенство (3.1) на r:

U / r = E / r I ,

где U / r = Io -некоторый ток, равный отношению напряжения на зажимах источника к внутреннему сопротивлению;E / r = I K — ток короткого замыкания источника;

Вводя новые обозначения, получим равенство I K = Io + I , которому удовлетворяет эквивалентная схема рис. 3.14,а.

В этом случае при любой величине напряжения на зажимах; источника его ток остается равным току короткого замыкания (рис. 3.14,6):

Источник с неизменным током, не зависящим от внешнего сопротивления, называют источником тока.

Один и тот же источник электрической энергии может быть заменен в расчетной схеме источником ЭДС или источником тока.

Параллельное и последовательное соединение конденсаторов.

Всем привет. Этот маленький пост посвящу теме соединения конденсаторов.

На практике,  часто бывает так, что в наличии нет конденсатора нужного номинала для установки, а технику нужно срочно отремонтировать.  Как раз для таких случаев нам необходимы знания о правилах соединения конденсаторов.

Способов соединения конденсаторов существуют всего два. Это последовательное и параллельное соединение. Сейчас более детально рассмотрим оба способа.

Параллельное  соединение конденсаторов.

Это наиболее частый вид соединения конденсаторов.  При подключении параллельно, емкость конденсатора увеличивается, а напряжение остается прежним.

Формула параллельного соединения конденсаторов: С= С1+С2+С3…

Рассмотрим на примере. Предположим, что необходим конденсатор 100 мкф 50в, а у Вас в наличии только 47мкф на 50в. Если соединить эти конденсаторы параллельно (плюс к плюсу а  минус к минусу) то общая емкость  получившегося конденсатора будет ровняться  около 94 мкф на 50в. Это допустимое отклонение, так что можно свободно устанавливать  в технику.

Параллельное соединение конденсаторов

 

Последовательное  соединение конденсаторов.

При подключении, таким образом, общая емкость уменьшается, а напряжение работы конденсатора растёт.

Рассчитывается последовательное  подключение конденсаторов по такой формуле:

Формула расчета последовательного соединения конденсаторов

Для примера подключим  3 конденсатора номиналом  100мкф на 100в последовательно. Согласно формуле, делим единицу, на емкость конденсаторов. Потом суммируем . Далее единицу делим на результат.

(1:100)+(1:100)+(1:100) = 0,01 + 0,01 + 0,01 = 0,03  далее 1 : 0,03 = 33 мкф на 300вольт (напряжение суммируем  100+100+100 = 300в). Итого 33мкф на 300в.

В работе, последовательное соединение использую редко, но иногда бывает.

Рекомендую ознакомиться со статей  о ESR конденсаторов.

Всем спасибо за просмотр.



Весь инструмент и расходники, которые я использую в ремонтах находится здесь.
Если у Вас возникли вопросы по ремонту телевизионной техники, вы можете задать их на нашем новом форуме .

Загрузка…

Как рассчитать последовательно и параллельно конденсаторы – Kitronik Ltd

Параллельные конденсаторы

Когда конденсаторы соединены друг с другом (бок о бок), это называется параллельным соединением. Это показано ниже. Чтобы рассчитать общую общую емкость ряда конденсаторов, соединенных таким образом, необходимо сложить отдельные емкости по следующей формуле: CTotal = C1 + C2 + C3 и т. д. Пример: Рассчитать общую емкость для этих трех конденсаторов, соединенных параллельно.CTotal = C1 + C2 + C3 = 10F + 22F + 47F = 79F

Задача 1:

Рассчитайте общую емкость следующих конденсаторов, включенных параллельно.

Конденсаторы серии

Когда конденсаторы соединены один за другим, это называется последовательным соединением. Это показано ниже. Чтобы рассчитать общую общую емкость двух конденсаторов, соединенных таким образом, вы можете использовать следующую формулу:
Cобщ =  C1 x C2  и так далее
 С1 + С2
Пример: Чтобы рассчитать общую емкость для этих двух последовательно соединенных конденсаторов.

Задача 2:

Рассчитайте общую емкость следующих последовательно соединенных конденсаторов.

Три или более последовательно соединенных конденсатора

Для расчета общей общей емкости трех и более конденсаторов, соединенных таким образом, можно воспользоваться следующей формулой: и так далее. Пример: Чтобы рассчитать общую емкость для этих трех последовательно соединенных конденсаторов.

Задача 3:

Рассчитайте общую емкость следующих последовательно соединенных конденсаторов.

Ответы

Задача 1

1 = 232.2F 2 = 169,0F 3 = 7,0F

Задача 2

1 = 2,48F 2 = 14,99F 3 = 4,11F

Задача 3

1 = 3,33F 2 = 1,167F 3 = 0,35F Примечание Значения конденсаторов в этой таблице сохранены высокими (близкими к единице или выше). Это делается для упрощения процесса обучения. В действительности типичные номиналы конденсаторов намного меньше единицы. Загрузите pdf-версию этой страницы здесь. Узнайте больше об авторе читать далее » Если вы нашли эту статью полезной и хотите получать от нас обновления продуктов и бесплатные электронные ресурсы, зарегистрируйтесь здесь.Мы также ненавидим спам и обещаем никогда не продавать и не передавать ваш адрес электронной почты, и вы можете отказаться от подписки в любое время.

©Kitronik Ltd. Вы можете распечатать эту страницу и дать на нее ссылку, но не должны копировать страницу или ее часть без предварительного письменного согласия компании Kitronik.

Конденсаторы в параллельном соединении

В предыдущем разделе мы подробно рассмотрели введение конденсаторов, сегодня мы обсудим параллельные конденсаторы. Вы поймете пример, формулу, расчет и применение параллельных конденсаторов.Помните, мы говорили, что конденсаторы — это компоненты, которые хранят электрическую энергию в электрическом поле. Мы также узнали, что разные конденсаторы имеют свое номинальное напряжение, то есть способность накапливать заряд. так что давайте углубимся в то, что привело нас сюда.

Электрические устройства могут быть спроектированы с максимально возможным количеством конденсаторов. Несколько соединений конденсаторов действуют как один эквивалентный конденсатор с общей емкостью. Что ж, величина требуемой емкости будет определять количество конденсаторов и способ их подключения.Два простых и распространенных типа соединений называются последовательными и параллельными соединениями. С помощью этих соединений мы можем легко рассчитать общую емкость. Хотя более сложные соединения могут включать комбинации последовательного и параллельного.

Подробнее: Номинальное напряжение конденсатора

Конденсаторы в параллельном соединении

Конденсаторы называются параллельными соединениями, когда обе их клеммы соединены с каждой клеммой другого конденсатора.Напряжение Vc, подключенное ко всем параллельно соединенным конденсаторам, одинаково. Таким образом, конденсаторы, включенные параллельно, имеют общую подачу напряжения на них. например,

В C1  = В C2  = В C3  = В AB  = 12 В

Все конденсаторы с параллельным соединением имеют одинаковое напряжение на них, например В 1 = В 2 = … В n . где от V 1 до V n представляют собой напряжение на каждом соответствующем конденсаторе.Это напряжение равно напряжению, приложенному к параллельному соединению конденсатора через входные провода. Хотя количество заряда, хранящегося в каждом конденсаторе, неодинаково. Кроме того, это зависит от емкости каждого конденсатора в соответствии с приведенной ниже формулой:

Q n = C n . В Н

Где Q n — количество заряда, накопленного в конденсаторе, C n — емкость конденсатора, а V n — напряжение, подаваемое на весь блок параллельного соединения.Блок конденсатора хранит общий заряд конденсатора, который представлен Q и делится между всеми конденсаторами в цепи. Это может быть показано как:

Q = Q 1 + Q 2 + … + Q n

Подробнее: Типы конденсаторов

Приведенное выше уравнение параллельного конденсатора используется для определения эквивалентной емкости при параллельном соединении нескольких конденсаторов:

C экв. =  =  =    +    + … +

Где C eq — эквивалентная емкость параллельного соединения конденсаторов, V — напряжение, подаваемое на конденсаторы через входные провода, а Q 1 — Q n — заряды, хранящиеся в каждом соответствующем конденсаторе.Вот почему у нас есть следующее уравнение:

С экв = С 1 + С 2 + …. + С п

Приведенное выше уравнение означает, что эквивалентная емкость параллельного соединения конденсаторов равна сумме емкостей отдельных конденсаторов. Что ж, конденсаторы, включенные параллельно, можно рассматривать как один конденсатор, а его пластины равны сумме площадей пластин отдельных конденсаторов.

Подробнее: Что такое заряд конденсатора

Расчет параллельного конденсатора

С объяснением приведенного выше уравнения параллельного соединения конденсаторов.В этом разделе вы узнаете, как рассчитать емкость конденсаторов при параллельном соединении. Имейте в виду, что значения отличаются от значений уравнения. Следующая схема показывает, что конденсаторы C1, C2 и C3 подключены в параллельную ветвь между точками A и B, как показано на рисунке ниже:

Помните, что общая или эквивалентная емкость C eq в цепи равна сумме всех отдельных конденсаторов, сложенных вместе, когда конденсаторы соединены параллельно.Это связано с тем, что верхняя пластина конденсатора C 1 подключена к верхней пластине C 2 , которая подключена к пластине C 3, и так далее.

Это также относится к нижним пластинам конденсаторов, в результате чего три набора пластин соприкасаются друг с другом. Они равны одной большой отдельной пластине, что увеличивает эффективную площадь пластины в м 2 .

Поскольку емкость C связана с площадью пластины (C = E(A/d), значение емкости комбинации также будет увеличиваться.Суммарная емкость конденсатора, соединенного параллельно, рассчитывается путем сложения площадей пластин. Другими словами, общая емкость равна сумме всех отдельных емкостей, включенных параллельно. Таким же образом мы получаем общее сопротивление последовательных резисторов.

Подробнее: диэлектрик конденсатора

Примеры параллельного подключения конденсаторов

Возьмем значения трех конденсаторов, чтобы мы могли вычислить общую эквивалентную емкость цепи C T .Тогда мы можем сказать:

C1 = C1 + C2 + C3 = 0,1 мкФ + 0,2 мкФ + 0,3 мкФ = 0,6 мкФ

Вы должны знать, что общая емкость (C T ) любых двух или более конденсаторов, соединенных параллельно, будет БОЛЬШЕ, чем емкость самого большого конденсатора в цепи. Это потому, что все значения суммируются. Итак, в приведенном выше примере C T = 0,6 мкФ, тогда как емкость конденсатора большей емкости в цепи составляет 0,3 мкФ.

 Пример 2 конденсаторов, включенных параллельно

Рассчитайте емкость в микрофарадах (мкФ) следующих конденсаторов при параллельном соединении:

  • Два конденсатора емкостью 47 нФ каждый
  • Один конденсатор 470 нФ, подключенный параллельно конденсатору 1 мкФ

Подробнее: Понимание емкости в цепях переменного тока

Решение

  1. Суммарная емкость,

C T = C 1 + C 2 = 47 нФ + 47 нФ = 94 нФ или 0.094 мкФ

  1. Суммарная емкость,

C T = C 1 + C 2 = 470 нФ + 1 мкФ

Итак, С Т = 470 нФ + 1000 нФ = 1470 нФ или 1,47 мкФ

Таким образом, общая или эквивалентная емкость CT электрической цепи, содержащей два или более конденсаторов, включенных параллельно, представляет собой сумму всех отдельных емкостей, сложенных вместе по мере увеличения эффективной площади пластин.

Посмотрите видео ниже, чтобы увидеть работу конденсаторов при параллельном соединении:

Приложения

При параллельном подключении нескольких конденсаторов цепь может накапливать больше энергии, поскольку общая или эквивалентная емкость представляет собой сумму индивидуальных емкостей всех конденсаторов.Ниже приведены области применения этого эффекта емкости:

Подробнее: Цветовой код конденсатора

Блоки питания постоянного тока:

Источники питания постоянного тока

часто используются для правильной фильтрации выходного сигнала и устранения пульсаций переменного тока. В этом методе есть возможность использовать конденсаторы меньшего размера, которые имеют лучшие характеристики пульсаций, получая при этом более высокие значения емкости.

Более высокие значения емкости:

В некоторых приложениях требуются значения емкости, которые намного выше, чем у имеющихся в продаже конденсаторов, в таких ситуациях используются конденсаторные батареи.Одним из хороших примеров является использование батареи конденсаторов для коррекции коэффициента мощности с индуктивными нагрузками. Кроме того, эти банки могут использоваться в приложениях по хранению энергии, таких как автомобильная промышленность, KERS (система рекуперации кинетической энергии), используемая для рекуперативного торможения в больших транспортных средствах, таких как трамваи и гибридные автомобили.

Импульсная нагрузка:

Конденсаторные батареи

предназначены для достижения очень высоких значений емкости. Так, соединив параллельно несколько суперконденсаторов, можно получить емкости в несколько десятков килофарад.Между тем, ультраконденсаторы способны достигать значений емкости более 2000 фарад.

Конструктивные ограничения:

При параллельном соединении конденсаторов следует знать, что максимальное номинальное напряжение при параллельном соединении конденсаторов равно наименьшему номинальному напряжению всех конденсаторов, используемых в системе. Таким образом, если несколько конденсаторов на 500 В подключены параллельно к конденсатору на 100 В, максимальное номинальное напряжение всей системы составляет всего 100 В, поскольку на все конденсаторы в параллельной цепи подается одинаковое напряжение.

Подробнее: Что такое заряд конденсатора

Безопасность:

Из-за большого запаса энергии батареи конденсаторов могут быть опасны. И тот факт, что конденсаторы могут высвобождать накопленную энергию за очень короткое время. Эта накопленная энергия может привести к серьезным травмам или повреждению электропроводки и устройств в случае случайного короткого замыкания.

Это все для этой статьи, где обсуждаются пример, формула, расчеты, работа и применение конденсаторов при параллельном соединении.Я надеюсь, что вы получили много от чтения, если это так, пожалуйста, поделитесь с другими студентами. Спасибо за чтение, увидимся в следующий раз!

Емкость при последовательном и параллельном подключении Калькулятор

[1]  2020/11/18 16:33   Младше 20 лет / Другие / Очень /

Цель использования
Выяснение того, какая комбинация конденсаторов у меня есть под рукой, может создать нужное мне значение в данной схеме
Комментарий/Запрос
Возможность добавления более двух конденсаторов

[2]  2020/08/12 18:32   30-летний уровень / Инженер / Полезное /

Цель используйте
Чтобы проверить мою собственную работу по созданию задач для решения младшими техниками

[3]  2019/11/15 08:26   20-летний уровень / Старшая школа/ Университет/ Аспирант / Полезно /

Цель использования
ДЛЯ ПОНИМАНИЯ
Комментарий/Запрос
ДЛЯ ПОЛУЧЕНИЯ ЗНАНИЙ

[4]  2019/04/10 06:25   30-летний уровень / Самозанятые люди 909 6 102595

5

5 Генератор Колпитца на УКВ, рассчитать общую емкость e через сдвоенные варикапы, используемые для настройки, а также общую емкость делителя обратной связи.

[5]  2019/03/07 22:04   60 лет и старше / Пенсионер / Очень /

Цель использования
Помимо того, что я радиолюбитель, я также собираю кристаллические радиоприемники.
Для многих конструкций требуется воздушный переменный конденсатор емкостью 500 пФ, но все, что я смог найти, это 630 пФ.
Таким образом, с помощью вашего калькулятора я смог рассчитать, какую емкость мне нужно добавить последовательно, чтобы уменьшить емкость конденсатора 630 пФ до 500 пФ.

Отлично сработало, искренне благодарю.

[6]  27.08.2018 12:07   40-летний уровень / Другие / Очень /

Назначение
Недостаточно правильных значений на двух крышках.Используется для расчета сменных колпачков для старой кассетной деки.
Комментарий/Запрос
Очень полезно

[7]  2018/08/17 04:15   40-летний уровень / Самозанятые люди / Очень /

Цель использования
рассчитать силовую шину для лампы

[8]  2018/08/11 16:16   60 лет и старше / Офисный работник / Государственный служащий / Полезный /

Назначение
Устранение неполадок в блоке питания. У меня был счетчик, который показывал максимум 10000 мкФ.Итак, мне пришлось последовательно соединить два одинаковых, чтобы проверить значение крышки фильтра.

[9]  06.08.2018 09:40   20-летний уровень / Инженер / Очень /

Назначение
расчет емкости для настройки антенны

[10] 0 6/20 :08   50-летний уровень / Средняя школа / Университет / Аспирант / Очень /

Назначение
Два последовательно соединенных диода с общей емкостью для планирования антенны.

Как рассчитать емкость в последовательных и параллельных цепях?

Существует две комбинации последовательной и параллельной цепей конденсаторов.В последовательных цепях общая емкость меньше наименьшего значения емкости, потому что эффективное расстояние между пластинами увеличивается. В параллельных цепях общая емкость представляет собой сумму отдельных емкостей.

, когда конденсаторы соединены последовательно, общая емкость меньше наименьшего значения емкости, потому что эффективное расстояние между пластинами увеличивается. Расчет общей последовательной емкости аналогичен расчету общего сопротивления параллельных резисторов.
Этот тип комбинации имеет следующие характеристики:

  1. Каждый конденсатор имеет одинаковый заряд. Если батарея подает заряд +Q на левую пластину конденсатора C1 из-за индукции, заряд -Q индуцируется на его правой пластине, а заряд +Q на левой пластине конденсатора C2 т.е.

Q= Q 1 +Q 2 +Q 3
2 :Разность потенциалов на каждом конденсаторе различна из-за разных значений емкости.
3 : Напряжение батареи было разделено между различными конденсаторами. Отсюда
V=V 1 +V 2 +V 3
= Q/C 1 +Q/C +Q/C 3
=Q[ 1/C 1 + 1/C 2 + 1/C 3 ]
V/Q=[ 1/C 1 + 1/C 90 2
+1 /C 3 ]

4: Эквивалентная емкость

можно заменить последовательное соединение конденсаторов одним эквивалентным конденсатором емкостью C eq i.e,
1/C eq = 1/C 1 + 1/C 2 + 1/C 3

Формула для полной емкости в параллельной цепи

 
Когда конденсаторы соединены параллельно, общая емкость представляет собой сумму отдельных емкостей, поскольку эффективная площадь пластины увеличивается. Расчет общей параллельной емкости аналогичен расчету общего последовательного сопротивления.
На приведенном выше рисунке левая пластина каждого конденсатора соединена с положительной клеммой батареи проводником.Точно так же правая пластина каждого конденсатора соединяется с отрицательной клеммой батареи. Этот тип комбинации имеет следующие характеристики.

  1. Каждый конденсатор, подключенный к батарее напряжением V, имеет такую ​​же разность потенциалов, как:

V= V 1 +V 2 + V 3
2. Развертка на пластинах каждого конденсатора будет разной из-за разного значения емкостей.
3. Общий заряд Q , подаваемый аккумулятором, распределяется между различными конденсаторами.Отсюда:
Q = Q 1 +Q 2 +Q 3
Или Q=C 1 В + C 2 В+C 3 В

Q=0V0 C 2 +C 3 )
Q/V=C 1 +C 2 +C 3
, так что
C eq =C 1 + C 2 +C 3
В случае n конденсаторов, соединенных параллельно, эквивалентная емкость определяется по формуле: +C 2 +C 3 +……+C n
5.Эквивалентная емкость параллельной комбинации конденсаторов больше любой из емкостей по отдельности.
Смотрите также видео

Electronics Components: Конденсаторы в параллельном и последовательном соединении

Вы можете комбинировать конденсаторы в последовательные или параллельные сети, чтобы создать любое значение емкости, которое вам нужно в электронной схеме. Например, если вы соедините три конденсатора по 100 мкФ параллельно, общая емкость цепи составит 300 мкФ.

Параллельное соединение конденсаторов

Рассчитать общую емкость двух или более конденсаторов, включенных параллельно, очень просто: просто сложите значения отдельных конденсаторов, чтобы получить общую емкость.

Это правило имеет смысл, если задуматься. Когда вы соединяете конденсаторы параллельно, вы, по сути, соединяете пластины отдельных конденсаторов. Таким образом, параллельное соединение двух одинаковых конденсаторов существенно удваивает размер пластин, что фактически удваивает емкость.

Здесь две цепи имеют одинаковые емкости. Первая схема выполняет работу с одним конденсатором, вторая — с тремя. Таким образом, схемы эквивалентны.

Всякий раз, когда вы видите два или более конденсатора, подключенных параллельно в цепи, вы можете заменить их одним конденсатором, емкость которого является суммой отдельных конденсаторов. Точно так же каждый раз, когда вы видите один конденсатор в цепи, вы можете заменить два или более конденсаторов параллельно, если их значения в сумме совпадают с исходным значением.

Суммарная емкость параллельно включенных конденсаторов всегда больше емкости любого из отдельных конденсаторов. Это потому, что каждый конденсатор добавляет к общей емкости свою емкость.

Соедините конденсаторы последовательно

Вы также можете объединить конденсаторы последовательно, чтобы получить эквивалентные емкости. Однако, когда вы это сделаете, математика немного усложнится. Получается, что расчеты, необходимые для конденсаторов, соединенных последовательно, такие же, как для расчета резисторов, соединенных параллельно.

Вот правила расчета емкостей последовательно:

  • Если конденсаторы имеют одинаковую стоимость, вам повезло. Все, что вам нужно сделать, это разделить емкость одного из отдельных конденсаторов на количество конденсаторов. Например, общая емкость двух конденсаторов по 100 мкФ составляет 50 мкФ.

  • Если используются только два конденсатора, используйте следующий расчет:

    В этой формуле C1 и C2 — номиналы двух конденсаторов.

    Вот пример на основе последовательно соединенных конденсаторов 220 мкФ и 470 мкФ:

  • Для трех или более последовательно соединенных конденсаторов формула следующая:

    Обратите внимание, что многоточие в конце выражения означает, что вы продолжаете складывать обратные величины емкостей для всех имеющихся у вас конденсаторов.

    Вот пример для трех конденсаторов емкостью 100 мкФ, 220 мкФ и 470 мкФ:

    Как видите, конечный результат равен 59,9768 мкФ. Если только вас не зовут Спок, вас, вероятно, не волнует точность ответа, так что вы можете смело округлить его до 60 мкФ.

Формулы для расчета общей емкости сети конденсаторов обратны правилам, которым вы следуете при расчете сетей резисторов. Другими словами, формула, которую вы используете для резисторов, соединенных последовательно, применима к конденсаторам, включенным параллельно, а формула, которую вы используете для резисторов, соединенных параллельно, применима к конденсаторам, соединенным последовательно.Разве не забавно, как наука иногда любит возиться с вашим разумом?

Конденсаторы в последовательном и параллельном соединении: что это такое, формула, напряжение (со схемами)

Когда вы изучаете физику электроники и хорошо разбираетесь в основах, например, в значении ключевых терминов такие как напряжение , ток и сопротивление , наряду с важными уравнениями, такими как закон Ома — изучение того, как работают различные компоненты схемы, является следующим шагом к освоению предмета.

Конденсатор является одним из наиболее важных компонентов для понимания, поскольку они широко используются практически во всех областях электроники. От конденсаторов связи и развязки до конденсаторов, обеспечивающих работу фотовспышки или играющих ключевую роль в выпрямителях, необходимых для преобразования переменного тока в постоянный, огромный диапазон применений конденсаторов трудно переоценить. Вот почему важно, чтобы вы знали, как рассчитать емкость и общую емкость конденсаторов при различных схемах.

Что такое конденсатор?

Конденсатор представляет собой простой электрический компонент, состоящий из двух или более проводящих пластин, расположенных параллельно друг другу и разделенных либо воздухом, либо изолирующим слоем. Две пластины способны накапливать электрический заряд, когда они подключены к источнику питания, при этом одна пластина накапливает положительный заряд, а другая накапливает отрицательный заряд.

По сути, конденсатор похож на небольшую батарею, создающую разность потенциалов (т.е., напряжение) между двумя пластинами, разделенными изолирующей перегородкой, называемой диэлектриком (который может быть из многих материалов, но часто из керамики, стекла, вощеной бумаги или слюды), который предотвращает протекание тока от одного пластины к другой, тем самым сохраняя накопленный заряд.

Для данного конденсатора, если он подключен к батарее (или другому источнику напряжения) с напряжением В , он будет накапливать электрический заряд Q . Эта способность более четко определяется «емкостью» конденсатора.

Что такое емкость?

Имея это в виду, значение емкости является мерой способности конденсатора накапливать энергию в виде заряда. В физике и электронике емкость обозначается символом C и определяется как: В ​ – разность потенциалов подключенного к ним источника напряжения. Короче говоря, емкость — это мера отношения заряда к напряжению, поэтому единицами измерения емкости являются кулоны заряда/вольты разности потенциалов.Конденсатор с более высокой емкостью хранит больше заряда при заданном напряжении.

Понятие емкости настолько важно, что физики присвоили ей уникальную единицу, названную фарад (в честь британского физика Майкла Фарадея), где 1 F = 1 C/V. Как и кулон для заряда, фарад представляет собой довольно большую величину емкости, при этом большинство значений конденсатора находятся в диапазоне от пикофарад (пФ = 10 -12 Ф) до микрофарад (мкФ = 10 -6 ). Ф).

Эквивалентная емкость последовательных конденсаторов

В последовательной цепи все компоненты расположены на одном пути вокруг контура, и таким же образом последовательные конденсаторы соединены один за другим на одном пути вокруг цепи . Общая емкость нескольких последовательно соединенных конденсаторов может быть выражена как емкость одного эквивалентного конденсатора.

Формула для этого может быть получена из основного выражения для емкости из предыдущего раздела, перестроенного следующим образом:

В = \frac{Q}{C}

падения по всему контуру цепи должны быть равны напряжению от источника питания, для ряда конденсаторов ​ n ​ напряжения должны складываться следующим образом:

V_{tot} = V_1 + V_2 + V_3 + … V_N

, где V Tot — это общее напряжение от источника питания, и V 1 , V 2 , V 3 так далее — падение напряжения на первом конденсаторе, втором конденсаторе, третьем конденсаторе и так далее.В сочетании с предыдущим уравнением это приводит к следующему результату:

\frac{Q_{tot}}{C_{tot}} = \frac{Q_1}{C_1} + \frac{Q_2}{C_2} + \frac{Q_3 }{C_3} +… \frac{Q_n}{C_n}

Где нижние индексы имеют то же значение, что и раньше. Однако заряд на каждой из пластин конденсатора (т. е. значения Q ) исходит от соседней пластины (т. е. положительный заряд на одной стороне пластины 1 должен совпадать с отрицательным зарядом на ближайшей стороне пластины 2). и так далее), поэтому вы можете написать:

Q_{tot} = Q_1 = Q_2 = Q_3 = Q_n

Таким образом, расходы сокращаются, остается:

\frac{1}{C_{tot}} = \frac {1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} +… \frac{1}{C_n}

Поскольку емкость комбинации равна эквивалентной емкости один конденсатор, это можно записать:

\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} +… \frac{1}{C_n}

для любого количества конденсаторов ​ n ​.{−6} \text{ F} \\ &= 1,41 \text{ мкФ} \end{aligned}

Эквивалентная емкость параллельных конденсаторов

Для параллельных конденсаторов аналогичный результат получается из Q = VC, тот факт, что падение напряжения на всех конденсаторах, соединенных параллельно (или любых компонентах в параллельной цепи), одинаково, и тот факт, что заряд одного эквивалентного конденсатора будет равен общему заряду всех отдельных конденсаторов в параллельной комбинации. . Результатом является более простое выражение для общей емкости или эквивалентной емкости:

C_{eq} = C_1 + C_2 + C_3 + … C_n

, где снова n — общее количество конденсаторов.{−5} \text{ F} \\ &= 15 \text{ мкФ} \end{aligned}

Комбинации конденсаторов. Задача первая

Нахождение эквивалентной емкости для комбинаций конденсаторов, расположенных последовательно и последовательно параллельное просто включает в себя применение этих двух формул по очереди. Например, представьте комбинацию конденсаторов с двумя конденсаторами, соединенными последовательно, с C 1 = 3 × 10 −3 F и C 2 = 1 × 10 −3 F. , и еще один конденсатор параллельно с ​ C 3 = 8 × 10 −3 Ф.{−3}\text{ F} \end{align}

Комбинации конденсаторов: задача вторая

Для другой комбинации конденсаторов, три с параллельным соединением (со значениями ​ C 1 = 3 мкФ, ​ C 2 = 8 мкФ и ​ C 3 = 12 мкФ) и один с последовательным соединением (с ​ C 4 90 44 = 20 мкФ): Подход в основном такой же, как и в последнем примере, за исключением того, что сначала вы обрабатываете параллельные конденсаторы.{−1}} \\ &= 10,7 \text{ мкФ} \end{aligned}

Обратите внимание, что, поскольку все отдельные емкости были в микрофарадах, весь расчет может быть выполнен в микрофарадах без преобразования — если вы помните при цитировании ваших окончательных ответов!

19.6 Конденсаторы, включенные последовательно и параллельно – College Physics

Резюме

  • Выведите выражения для полной емкости при последовательном и параллельном подключении.
  • Определите последовательное и параллельное соединение конденсаторов.
  • Рассчитайте эффективную емкость при последовательном и параллельном подключении, учитывая отдельные емкости.

Несколько конденсаторов могут быть соединены вместе в различных приложениях. Несколько соединений конденсаторов действуют как один эквивалентный конденсатор. Общая емкость этого эквивалентного одиночного конденсатора зависит как от отдельных конденсаторов, так и от того, как они соединены. Существует два простых и распространенных типа соединений, называемых последовательными и параллельными , для которых мы можем легко рассчитать общую емкость.Некоторые более сложные соединения также могут быть связаны с комбинациями последовательного и параллельного соединения.

На рис. 1(а) показано последовательное соединение трех конденсаторов с приложенным напряжением. Как и для любого конденсатора, емкость комбинации связана с зарядом и напряжением соотношением [latex]{C = \frac{Q}{V}}[/latex].

Обратите внимание на рис. 1, что противоположные заряды величиной [латекс]{Q}[/латекс] текут по обеим сторонам первоначально незаряженной комбинации конденсаторов при приложении напряжения [латекс]{В}[/латекс].Сохранение заряда требует, чтобы на обкладках отдельных конденсаторов создавались заряды равной величины, поскольку в этих изначально нейтральных устройствах происходит только разделение заряда. Конечным результатом является то, что комбинация напоминает один конденсатор с эффективным расстоянием между пластинами больше, чем у отдельных конденсаторов по отдельности. (См. рис. 1(b).) Большее расстояние между пластинами означает меньшую емкость. Общей особенностью последовательного соединения конденсаторов является то, что общая емкость меньше любой из отдельных емкостей.

Рисунок 1. (а) Конденсаторы, соединенные последовательно. Величина заряда на каждой пластине равна Å . (b) Эквивалентный конденсатор имеет большее расстояние между пластинами d . Последовательные соединения дают общую емкость меньше, чем у любого из отдельных конденсаторов.

Мы можем найти выражение для общей емкости, рассматривая напряжение на отдельных конденсаторах, показанных на рисунке 1. Решение [латекс]{С = \frac{Q}{V}}[/латекс] для [латекс]{В} [/latex] дает [latex]{V = \frac{Q}{C}}[/latex].Таким образом, напряжения на отдельных конденсаторах равны [латекс]{V_1 = \frac{Q}{C_1}}[/latex], [латекс]{V_2 = \frac{Q}{C_2}}[/latex] и [ латекс]{V_3 = \frac{Q}{C_3}}[/латекс]. Общее напряжение представляет собой сумму отдельных напряжений:

[латекс] {V = V_1 + V_2 + V_3}.[/латекс]

Теперь, называя общую емкость [латекс]{C_S}[/латекс] последовательной емкостью, считайте, что

[латекс] {V =} [/латекс] [латекс] {\ гидроразрыва {Q} {C_S}} [/ латекс] [латекс] { = V_1 + V_2 + V_3}. [/латекс]

Введя выражения для [латекс]{V_1}[/латекс], [латекс]{V_2}[/латекс] и [латекс]{V_3}[/латекс], мы получим

[латекс] {\ гидроразрыва {Q} {C_S} = \ гидроразрыва {Q} {C_1} + \ гидроразрыва {Q} {C_2} + \ гидроразрыва {Q} {C_3}}.[/латекс]

Отменяя [латекс]{Q}[/латекс], мы получаем уравнение для полной емкости в ряду [латекс]{C_S}[/латекс] равным

[латекс] {\ гидроразрыва {1} {C_S}} [/ латекс] [латекс] {=} [/латекс] [латекс] {\ гидроразрыва {1} {C_1}} [/ латекс] [латекс] {+ } [/латекс] [латекс] {\ гидроразрыва {1} {C_2}} [/ латекс] [латекс] {+} [/латекс] [латекс] {\ гидроразрыва {1} {C_3}} [/латекс] [ латекс]{+ \cdots},[/латекс]

, где «…» означает, что выражение справедливо для любого количества последовательно соединенных конденсаторов. Выражение этой формы всегда приводит к тому, что общая емкость [латекс]{C_S}[/латекс] меньше любой из отдельных емкостей [латекс]{С_1}[/латекс], [латекс]{С_2}[/латекс]. ], …, как показано в следующем примере.

Полная емкость в серии,

C с

Суммарная емкость последовательно: [латекс]{\ гидроразрыва {1} {C_S} = \ гидроразрыва {1} {C_1} + \ гидроразрыва {1} {C_2} + \ гидроразрыва {1} {C_3} + \ cdots} [ /латекс]

Пример 1: Что такое последовательная емкость?

Найдите общую емкость трех последовательно соединенных конденсаторов, если их индивидуальные емкости равны 1.000, 5.000 и 8.000 [латекс]\mu \text{F}[/latex].

Стратегия

При наличии данной информации общую емкость можно найти, используя уравнение для последовательной емкости.

Раствор

Ввод заданных емкостей в выражение для [латекс]{\ гидроразрыва {1} {C_S}} [/латекс] дает [латекс] {\ гидроразрыва {1} {C_S} = \ гидроразрыва {1} {C_1} + \ frac{1}{C_2} + \frac{1}{C_3}}[/latex].

[латекс] {\ гидроразрыва {1} {C_S}} [/ латекс] [латекс] {=} [/латекс] [латекс] {\ гидроразрыва {1} {1.000 \; \ мю \ текст {F}}} [/латекс] [латекс] {+}[/латекс] [латекс] {\ гидроразрыва {1} {5.000 \;\текст {F}}}[/латекс] [латекс] {+}[/латекс] [латекс ] {\ frac {1} {8.000 \; \ mu \ text {F}}} [/ латекс]  [латекс] {=} [/латекс] [латекс] {\ гидроразрыва {1.325}{\mu \text{F}}}[/латекс]

Инвертирование для нахождения [латекс]{C_S}[/латекс] дает [латекс]{C_S = \frac{\mu \text{F}}{1,325} = 0,755 \;\mu \text{F}}[/latex ].

Обсуждение

Суммарная последовательная емкость [латекс]{C_s}[/латекс] меньше наименьшей индивидуальной емкости, как и было обещано. При последовательном соединении конденсаторов сумма меньше частей. На самом деле, это меньше, чем любой человек. Обратите внимание, что иногда возможно и более удобно решить уравнение, подобное приведенному выше, путем нахождения наименьшего общего знаменателя, который в этом случае (показывая только расчеты целых чисел) равен 40.Таким образом,

[латекс] {\ гидроразрыва {1} {C_S}} [/ латекс] [латекс] {=} [/латекс] [латекс] {\ гидроразрыва {40} {40 \; \ мю \ текст {F}}} [/латекс] [латекс] {+}[/латекс] [латекс] {\ гидроразрыва {8} {40 \;\mu \ текст {F}}}[/латекс] [латекс] {+}[/латекс] [латекс] {\ гидроразрыва {5} {40 \; \ му \ текст {F}}} [/ латекс] [латекс] {=} [/ латекс] [латекс] {\ гидроразрыва {53} {40 \; \ мю \текст{F}}},[/латекс]

так что

[латекс] {C_S =} [/ латекс] [латекс] {\ гидроразрыва {40 \; \ mu \ текст {F}} {53}} [/ латекс] [латекс] {= 0,755 \; \mu \text{F}}.[/latex]

На рис. 2(а) показано параллельное соединение трех конденсаторов с приложенным напряжением.Здесь общую емкость найти проще, чем в последовательном случае. Чтобы найти эквивалентную общую емкость [латекс]{\текст{С}_{\текст{р}}}[/латекс], сначала отметим, что напряжение на каждом конденсаторе равно [латекс]{В}[/латекс], такие же, как и у источника, так как они подключены непосредственно к нему через проводник. (Проводники являются эквипотенциальными, поэтому напряжение на конденсаторах такое же, как и на источнике напряжения.) Таким образом, конденсаторы имеют на себе такие же заряды, как если бы они были подключены к источнику напряжения по отдельности.Общий заряд [латекс]{Q}[/латекс] представляет собой сумму отдельных сборов:

.

[латекс] {Q = Q_1 + Q_2 + Q_3}.[/латекс]

Рисунок 2. (a) Параллельное подключение конденсаторов. Каждый из них подключен непосредственно к источнику напряжения, как если бы он был один, и поэтому общая емкость при параллельном подключении представляет собой просто сумму отдельных емкостей. (b) Эквивалентный конденсатор имеет большую площадь пластины и, следовательно, может удерживать больше заряда, чем отдельные конденсаторы.

Используя соотношение [латекс]{Q = CV}[/латекс], мы видим, что общий заряд равен [латекс]{Q = C_{\text{p}}V}[/латекс], а отдельные заряды равны [латекс]{Q_1 = C_1 V}[/латекс] ,  [латекс]{Q_2 = C_2 V}[/латекс] , и [латекс]{Q_3 = C_3 V}[/латекс].Ввод их в предыдущее уравнение дает

[латекс] {C_{\text{p}} V = C_1 V + C_2 V + C_3 V} .[/latex]

Исключая [латекс]{V}[/латекс] из уравнения, мы получаем уравнение для полной емкости параллельно [латекс]{С_{\текст{р}}}[/латекс]:

[латекс] {C_{\text{p}} = C_1 + C_2 + C_3 \cdots}[/латекс].

Общая емкость при параллельном подключении представляет собой просто сумму отдельных емкостей. (Снова «» указывает, что выражение справедливо для любого количества конденсаторов, соединенных параллельно.) Так, например, если бы конденсаторы в примере выше были соединены параллельно, их емкость была бы

[латекс]{C_{\text{p}} = 1.000 \;\mu \text{F} + 5.000 \;\mu \text{F} + 8.000 \;\mu \text{F} = 14.000 \; \mu \text{F}}.[/latex]

Эквивалентный конденсатор для параллельного соединения имеет значительно большую площадь пластин и, следовательно, большую емкость, как показано на рис. 2(b).

Общая емкость параллельно,

C p [латекс] {C _ {\ text {p}}} [/latex]

Суммарная емкость при параллельном соединении [латекс] {C_{\text{p}} = C_1 + C_2 + C_3 + \cdots}[/latex]

Более сложные соединения конденсаторов иногда могут представлять собой комбинации последовательного и параллельного соединения.(См. рис. 3.) Чтобы найти общую емкость таких комбинаций, мы идентифицируем последовательные и параллельные части, вычисляем их емкости, а затем находим общую емкость.

Рисунок 3. (а) Эта схема содержит как последовательное, так и параллельное соединение конденсаторов. См. Пример 2 для расчета общей емкости цепи. (b) C 1 и C 2 расположены последовательно; их эквивалентная емкость C S меньше, чем у любого из них.(c) Обратите внимание, что C S параллельно с C 3 . Таким образом, общая емкость равна сумме Кл С и Кл 3 .

Смесь последовательной и параллельной емкости

Найдите общую емкость комбинации конденсаторов, показанной на рисунке 3. Предположим, что емкости на рисунке 3 известны с точностью до трех знаков после запятой ([latex]{C_1 = 1,000 \;\mu\text{F}}[/latex], [латекс]{C_2 = 5.000 \;\mu \text{F}}[/латекс] и [латекс]{C_3 = 8.000 \;\mu \text{F}}[/latex]) и округлить ответ до трех знаков после запятой.

Стратегия

Чтобы найти общую емкость, мы сначала определяем, какие конденсаторы соединены последовательно, а какие — параллельно. Конденсаторы [латекс]{C_1}[/латекс] и [латекс]{С_2}[/латекс] включены последовательно. Их комбинация, обозначенная на рисунке [латекс]{C_S}[/латекс], параллельна [латекс]{С_3}[/латекс].

Раствор

Поскольку [латекс]{C_1}[/латекс] и [латекс]{С_2}[/латекс] соединены последовательно, их общая емкость определяется выражением [латекс]{\ гидроразрыва {1} {C_S} = \ гидроразрыва {1 {C_1} + \frac{1}{C_2} + \frac{1}{C_3}}[/latex].Ввод их значений в уравнение дает

[латекс] {\ гидроразрыва {1} {C_1}} [/ латекс] [латекс] {+} [/ латекс] [латекс] {\ гидроразрыва {1} {C_2}} [/ латекс] [латекс] {= } [/латекс] [латекс] {\ гидроразрыва {1} {1,000 \; \ мю \ текст {F}}} [/ латекс] [латекс] {+} [/латекс] [латекс] {\ гидроразрыва {1} {5.000 \;\mu \text{F}}}[/latex] [латекс]{=}[/latex] [латекс]{\frac{1.200}{\mu \text{F}}}.[/latex ]

Инвертирование дает

[латекс] {C_{\text{S}} = 0,833 \;\mu \text{F}} .[/latex]

Эта эквивалентная последовательная емкость подключена параллельно третьему конденсатору; таким образом, общая сумма составляет

[латекс]\begin{array}{r @{{}={}} l} {C_{\text{tot}}}\;= & {C_S + C_S} \\[1em]= & {0.833 \;\mu \text{F} + 8.000 \;\mu \text{F}} \\[1em]= & {8.833 \;\mu \text{F}}. \end{массив}[/латекс]

Обсуждение

Этот метод анализа комбинаций конденсаторов по частям, пока не будет получена сумма, может быть применен к более крупным комбинациям конденсаторов.

 

  • Суммарная емкость последовательно [латекс] {\ frac {1} {C _ {\ text {S}}} = \ frac {1} {C_1} + \ frac {1} {C_2} + \ frac {1} C_3} + \cdots}[/латекс]
  • Общая емкость при параллельном соединении [латекс] {C_{\text{p}} = C_1 + C_2 + C_3 + \cdots}[/latex]
  • Если цепь содержит комбинацию конденсаторов, соединенных последовательно и параллельно, определите последовательные и параллельные части, вычислите их емкости, а затем найдите общую сумму.

Концептуальные вопросы

1: Если вы хотите хранить большое количество энергии в конденсаторной батарее, вы должны соединить конденсаторы последовательно или параллельно? Объяснять.

 

Задачи и упражнения

1: Найдите общую емкость комбинации конденсаторов на рисунке 4.

Рисунок 4. Комбинация последовательного и параллельного соединения конденсаторов.

2: Предположим, вам нужна батарея конденсаторов с общей емкостью 0.750 F, и у вас есть множество конденсаторов по 1,50 мФ. Какое наименьшее число вы могли бы соединить вместе, чтобы достичь своей цели, и как бы вы их соединили?

3: Какую общую емкость можно получить, соединив [латекс]{5,00 \;\mu \text{F}}[/латекс] и [латекс]{8,00 \;\mu\text{F}} [/latex] конденсатор вместе?

4: Найдите общую емкость комбинации конденсаторов, показанной на рисунке 5.

Рисунок 5. Комбинация последовательного и параллельного соединения конденсаторов.

5: Найдите общую емкость комбинации конденсаторов, показанной на рисунке 6.

Рисунок 6. Комбинация последовательного и параллельного соединения конденсаторов.

6: необоснованные результаты

(a) Конденсатор [латекс]{8,00 \;\mu \text{F}}[/latex] подключен параллельно другому конденсатору, что дает общую емкость [латекс]{5,00 \;\mu \text{ F}}[/латекс]. Какова емкость второго конденсатора? б) Что неразумного в этом результате? (c) Какие предположения являются необоснованными или непоследовательными?

Решения

Задачи и упражнения

1: [латекс]{0.293 \;\mu \text{F}}[/латекс]

3: [латекс]{3.08 \;\mu \text{F}}[/латекс] в последовательном соединении, [латекс]{13.0 \;\mu \text{F}}[/латекс] в параллельном соединении

4: [латекс] {2,79 \;\mu \text{F}}[/латекс]

6: (a) [латекс]{-3.00 \;\mu \text{F}}[/латекс]

(b) У вас не может быть отрицательного значения емкости.

(c) Предположение, что конденсаторы были подключены параллельно, а не последовательно, было неверным.Параллельное соединение всегда дает большую емкость, а здесь предполагалась меньшая емкость. Это могло произойти только при последовательном соединении конденсаторов.

 

.

Добавить комментарий

Ваш адрес email не будет опубликован.