Подключение транзистора: Эта страница ещё не существует

Содержание

Подключение входа и выхода (биполярные транзисторы)

Добавлено 1 января 2018 в 19:25

Сохранить или поделиться

Чтобы решить проблему создания необходимого постоянного напряжения смещения для входного сигнала усилителя, не прибегая к установке батареи последовательно с источником сигнала переменного напряжения, мы использовали делитель напряжения, подключенный к источнику питания постоянного напряжения. Чтобы заставить его работать в сочетании с входным сигналом переменного напряжения, мы «подключили» источник сигнала к делителю через конденсатор, который действовал как фильтр верхних частот. При такой фильтрации низкий импеданс источника сигнала переменного напряжения не может «закоротить» на корпус напряжение, падающее на нижнем резисторе делителя напряжения. Решение простое, но не без недостатков.

Наиболее очевидным является тот факт, что использование конденсатора фильтра для подключения источника сигнала к усилителю означает, что усилитель может усиливать сигналы только переменного напряжения. Постоянное напряжение, подаваемое на вход, будет блокироваться конденсатором связи так же сильно, как напряжение смещения с делителя блокируется от источника входного сигнала. Кроме того, поскольку емкостное реактивное сопротивление зависит от частоты, низкочастотные сигналы переменного тока будут усиливаться не так сильно, как высокочастотные сигналы. Несинусоидальные сигналы будут искажаться, поскольку конденсатор реагирует по-разному на каждую из составляющих гармоник сигнала. Самым заметным примером этого может служить низкочастотный прямоугольный сигнал на рисунке ниже.

Емкостная связь вызывает искажение низкочастотного прямоугольного сигнала

Кстати, эта же проблема возникает, когда входы осциллографа устанавливаются в режим «AC» (закрытый вход), как показано на рисунке ниже. В этом режиме конденсатор связи последовательно соединен с измеряемым сигналом, чтобы исключить любое смещение отображаемой формы сигнала по вертикали из-за постоянного напряжения в этом сигнале. Это отлично работает, когда составляющая переменного напряжения в измеряемом сигнале имеет довольно высокую частоту, и конденсатор не оказывает большого сопротивления сигналу. Однако если сигнал имеет низкую частоту или содержит значительные уровни гармоник в широком диапазоне частот, отображение формы сигнала на осциллографе будет неточным (рисунок ниже). Низкочастотные сигналы можно просмотреть, установив осциллограф в режим «DC» (открытый вход).

Со связью по постоянному току осциллограф правильно показывает форму прямоугольного сигнала, поступающего от генератора сигналовНизкие частоты: при использовании связи по переменному току фильтрация верхних частот конденсатором связи искажает форму прямоугольного сигнала, поэтому осциллограмма не является точным представлением реального сигнала

В приложениях, где ограничения емкостной связи (рисунок выше) недопустимы, можно использовать другое решение: прямое соединение. Прямое соединение позволяет избежать использования конденсаторов или любых других частотно-зависимых компонентов связи в пользу резисторов. Схема усилителя с прямым подключением показана на рисунке ниже.

Непосредственное подключение усилителя: прямое соединение к громкоговорителю

Этот вид связи, без конденсатора для фильтрации входного сигнала, не зависит от частоты. Сигналы постоянного и переменного напряжения будут усиливаться транзистором с одним и тем же коэффициентом усиления (сам транзистор может иметь тенденцию усиливать некоторые частоты лучше других, но это совсем другая тема!).

Если прямая связь работает как с постоянным, так и переменным напряжениями, то зачем использовать емкостную связь? Одна из причин может заключаться в том, чтобы избежать нежелательного постоянного напряжения смещения в усиливаемом сигнале. Некоторые сигналы переменного тока могут быть наложены на неконтролируемое постоянное напряжение прямо в источнике, а неконтролируемое постоянное напряжение сделает невозможным надежное смещение транзистора. Фильтрация верхних частот, выполняемая конденсатором связи, в этом случае очень пригодится, чтобы избежать проблем со смещением.

Другой причиной использования емкостной связи, вместо прямой, является малая величина вносимого ею затухания сигнала. Прямое соединение через резистор обладает недостатком – уменьшением или ослаблением уровня входного сигнала, поэтому только часть сигнала достигает базы транзистора. Во многих приложениях необходимо вносить какую-то величину затухания, чтобы избежать «перегрузки» транзистора по уровню входного сигнала, что могло бы ввести транзистор в режимы отсечки и насыщения, поэтому любое ослабление в схеме связи в любом случае полезно. Однако в некоторых приложениях для максимального усиления по напряжению требуется отсутствие потерь сигнала во входной цепи базы транзистора, а прямое соединение с делителем напряжения смещения не удовлетворяет этому требованию.

До сих пор мы обсудили пару методов подключения входного сигнала к усилителю, но не решили проблему связи выхода усилителя с нагрузкой. Пример схемы, используемый для иллюстрации входной связи, хорошо послужит и для иллюстрации проблем, связанных с выходной связью.

В нашем примере схемы нагрузка – это громкоговоритель. Большинство динамиков являются электромагнитными устройствами: то есть они используют силу, создаваемую легкой электромагнитной катушкой, подвешенной в сильном поле постоянного магнита, для перемещения конуса из тонкой бумаги или пластика, создавая в воздухе колебания, которые наши уши интерпретируют как звук. Приложенное напряжение одной полярности перемещает конус наружу, а напряжение противоположной полярности будет перемещать конус внутрь. Чтобы использовать полную свободу движения конуса, на динамик должно поступать чистое (без смещения) переменное напряжение. Смещение постоянным напряжением приложенное к катушке динамика смещает конус от его естественного центрального положения, что ограничивает его движение назад и вперед, которое он мог бы выдержать от приложенного переменного напряжения без повреждений. Однако в нашем примере схемы (рисунок выше) к динамику прикладывается напряжение только одной полярности, поскольку динамик соединен последовательно с транзистором, который может проводить ток только в одном направлении. Это было бы неприемлемо для любого мощного аудиоусилителя.

Нам нужно как-то изолировать динамик от смещения постоянным напряжением от тока коллектора, чтобы он получал только переменное напряжение. Одним из способов достижения этой цели является соединение коллекторной схемы транзистора с динамиком через трансформатор (рисунок ниже).

Трансформаторная связь отделяет постоянное напряжение от нагрузки (динамика)

Напряжение, наводимое во вторичной (со стороны динамика) обмотке трансформатора, будет строго зависеть от изменений тока коллектора, поскольку взаимная индукция трансформатора работает только на изменениях тока обмотки. Другими словами, только переменная составляющая тока коллектора будет подключена к вторичной обмотке, питающей динамик. Динамик будет «видеть» на своих выводах истинный переменный ток без какого-либо постоянного смещения.

Выходная трансформаторная связь работает и обладает дополнительным преимуществом – возможностью обеспечить согласование импедансов транзисторной схемы и катушки динамика при заданных соотношениях обмоток. Однако трансформаторы могут быть большими и тяжелыми, особенно для мощных приложений. Кроме того, сложно спроектировать трансформатор для обработки сигналов в широком диапазоне частот, что почти всегда требуется в аудиоприложениях. Хуже того, постоянный ток через первичную обмотку добавляет намагничивания сердечника только с одной полярностью, что приводит к тому, что сердечник сильнее насыщается в одном полупериоде полярности переменного тока, чем в другом. Эта проблема напоминает ту, с которой мы столкнулись при непосредственном последовательном подключении динамика к транзистору: смещение постоянным током приводит к ограничению амплитуды выходного сигнала, которую система может выдавать без искажений. Как правило, трансформатор может быть сконструирован таким образом, чтобы обрабатывать без проблем большее значение постоянного тока смещения, чем громкоговоритель, поэтому в большинстве случаев трансформаторная связь по-прежнему является жизнеспособным решением. В качестве примера трансформаторной связи смотрите связь между Q4 и динамиком в схеме первого массового радиоприемника Regency TR1 (глава 9).

Другой способ изолировать динамик от смещения постоянным током в выходном сигнале состоит в том, чтобы немного изменить схему и использовать конденсатор связи аналогично подаче на усилитель входного сигнала (рисунок ниже).

Конденсатор связи не пропускает постоянный ток в нагрузку

Схема на рисунке выше напоминает более традиционную схему усилителя с общим эмиттером, причем коллектор транзистора подключен к аккумулятору через резистор. Конденсатор действует как фильтр верхних частот, передавая большую часть переменного напряжения на громкоговоритель, блокируя всё постоянное напряжение. Опять же, номинал этого конденсатора связи выбирается таким образом, чтобы его импеданс на частоте ожидаемого сигнала был минимален.

Блокировка постоянного напряжения от выхода усилителя, будь то через трансформатор или конденсатор, полезна не только при соединении усилителя с нагрузкой, но и при соединении одного усилителя с другим усилителем. «Каскадные» усилители часто используются для получения большей мощности, чем та, что была бы возможна при использовании одного транзистора (рисунок ниже).

Три каскада усилителей с общим эмиттером, связанных с помощью конденсаторов

Хотя каждый каскад можно связать с другим напрямую (через резистор, а не через конденсатор), это сделает весь усилитель очень чувствительным к изменениям напряжения смещения первого каскада, поскольку это постоянное напряжение будет усиливаться вместе с сигналом переменного тока до последнего каскада. Другими словами, смещение первого каскада повлияет на смещение второго каскада и так далее. Однако если каскады соединены с помощью емкостной связи (как показано на рисунке выше), смещение одного каскада не влияет на смещение следующего каскада, поскольку постоянное напряжение блокируется от перехода на следующий каскад.

Трансформаторная связь между каскадами также возможна, но используется реже из-за некоторых проблем, присущих трансформаторам и упомянутым ранее. Одним из примечательных исключений из этого правила являются радиочастотные усилители (рисунок ниже) с небольшими трансформаторами связи, имеющими воздушные сердечники (что делает их невосприимчивыми к эффектам насыщения), которые являются частью резонансной системы для блокировки частот нежелательных гармоник от перехода на следующие каскады. Использование резонансных схем предполагает, что частота сигнала остается постоянной, что характерно для радиосхем. Кроме того, эффект «маховика» LC-контуров позволяет работать для большей эффективности в классе C.

Пример трансформаторной связи в 3-х каскадном резонансном радиочастотном усилителе

Обратите внимание на трансформаторную связь между транзисторами Q1, Q2, Q3 и Q4 в схеме Regency TR1 в главе 9. Три трансформатора промежуточной частоты (ПЧ) в пунктирных прямоугольниках проводят сигнал ПЧ от коллектора к базе следующего транзистора усилителя ПЧ. Усилители промежуточной частоты представляют собой радиочастотные усилители, хотя и на частоте, отличающейся от той, что подается на антенный РЧ (RF) вход.

Сказав всё это, следует упомянуть, что в многокаскадной схеме транзисторного усилителя возможно использование прямого соединения. В тех случаях, когда усилитель, как ожидается, будет обрабатывать сигналы постоянного тока, это единственная альтернатива.

Тенденция электроники к более широкому использованию интегральных микросхем стимулировала использование прямого соединения, вместо емкостной и трансформаторной связи. Единственным легко производимым компонентом интегральной схемы является транзистор. Могут также производиться стабильные резисторы. Хотя транзисторы всё же предпочтительнее. Возможны и интегральные конденсаторы, но только на несколько десятков пикофарад. Большие конденсаторы «не интегрируемы». При необходимости они могут использоваться в качестве внешних компонентов. То же самое касается и трансформаторов. Поскольку интегральные транзисторы являются недорогими, то ими по максимуму заменяются проблемные конденсаторы и трансформаторы. В микросхемах, как можно больше, используются прямые соединения. Если это необходимо, то при конструировании микросхем учитываются внешние конденсаторы и трансформаторы. Результатом этого является то, что современный радиоприемник на микросхеме (смотрите главу 9) совсем не похож на первоначальный радиоприемник Regency TR1 (глава 9).

Даже дискретные транзисторы недороги по сравнению с трансформаторами. Громоздкие аудиотрансформаторы могут быть заменены транзисторами. Например, схема с общим коллектором (эмиттерный повторитель) может служить для согласования выходного импеданса с такой низкоомной нагрузкой, как динамик. Также большие конденсаторы связи возможно заменить на транзисторные схемы.

Мы по-прежнему хотели бы проиллюстрировать текст с помощью аудиоусилителей с трансформаторной связью. Эти схемы просты. В них небольшое количество компонентов. И эти схемы хорошо подходят для обучения – они просты для понимания.

Схема на рисунке ниже (a) представляет собой упрощенную схему двухтактного аудиоусилителя с трансформаторной связью. В двухтактных парах транзисторы поочередно усиливают положительную и отрицательную составляющие входного сигнала. При отсутствии сигнала на входе ни один из транзисторов не проводит электрический ток. Положительный входной сигнал даст положительный сигнал на верхнем конце вторичной обмотки входного трансформатора, что заставит верхний транзистор проводить электрический ток. Отрицательный сигнал на входе создаст положительный сигнал на нижнем конце вторичной обмотки входного трансформатора, который приведет нижний транзистор в режим проводимости. Таким образом, транзисторы усиливают чередующиеся полупериоды сигнала. Как показано на рисунке ниже (a), ни один из транзисторов не будет проводить ток при входном сигнале ниже 0,7 В(пик). Практическая схема соединяет среднюю точку на вторичной обмотке не с корпусом, а с резисторным делителем напряжения на 0,7 В (или выше), чтобы перевести оба транзистора с помощью смещения в класс B.

(a) Двухтактный усилитель с трансформаторной связью. (b) Усилитель на комплементарной паре с прямым соединением заменяет трансформаторы на транзисторы.

Схема на рисунке выше (b) – это современная версия, которая заменяет трансформаторы на транзисторы. Транзисторы Q1 и Q2 являются усилителями с общими эмиттерами, инвертирующими усиленный сигнал от базы к коллектору. Транзисторы Q3 и Q4 известны как комплементарная пара, потому что эти транзисторы NPN и PNP усиливают чередующиеся полуволны сигнала (положительную и отрицательную, соответственно). Параллельное соединение баз позволяет получить фазовое разделение без входного трансформатора (как на рисунке (a)). Громкоговоритель является эмиттерной нагрузкой Q3 и Q4. Параллельное соединение эмиттеров NPN и PNP транзисторов исключает необходимость в выходном трансформаторе со средней точкой (как на рисунке (a)). Низкий выходное сопротивление эмиттерного повторителя служит для согласования 8-омного сопротивления динамика с предыдущим каскадом с общим эмиттером. Таким образом, недорогие транзисторы заменяют собой трансформаторы. Полную схему смотрите схему аудио усилителя 3 Вт с комплементарной симметрией и прямой связью в главе 9.

Подведем итоги:

  • Емкостная связь на входе усилителя действует как фильтр верхних частот. Это приводит к тому, что на более низких частотах входного сигнала коэффициент усиления по напряжению усилителя уменьшается. Усилители с емкостной связью практически не реагируют на входные сигналы постоянного тока.
  • Прямое соединение с последовательным резистором вместо последовательного конденсатора устраняет проблему частотно-зависимого усиления, но имеет недостаток – уменьшение усиления для всех частот сигнала за счет ослабления входного сигнала.
  • Трансформаторы и конденсаторы могут использоваться для соединения выхода усилителя и нагрузки, чтобы исключить попадание на нагрузку постоянного напряжения. Многокаскадные усилители часто используют емкостную связь между каскадами, чтобы устранить проблемы влияния смещения одного каскада на смещение следующего.

Оригинал статьи:

Теги

Биполярный транзисторГальваническая развязкаДвухтактный усилительЕмкостная связьОбучениеРазвязкаТрансформаторная развязкаТрансформаторная связьУсилитель на комплементарной пареЭлектроника

Сохранить или поделиться

Схема подключения транзистора для чайников

Кремниевые транзисторы в свое время полностью вытеснили лампы. Когда же появились интегральные схемы, где транзисторов иногда насчитывалось до миллиарда штук, эти радиоэлементы стали незаменимы. В этом материале будет рассказано, как подключить биполярный транзистор и какие схемы включения транзисторов для чайников существуют.

Что это такое

Транзистор — это особый элемент электроцепи полупроводникового типа, который служит для изменения основных электрических параметров электротока и для регулирования этих параметров. В стандартном полупроводниковом триоде есть всего 3 вывода: коллектор, инжектор зарядов и базовый элемент, на который собственно и направляются электроны от управления. Также имеются комбинированные транзисторы с большой мощностью. Если обычные элементы, используемые в интегральных схемах, могут быть размером в несколько нанометров, то производственные транзисторы для промышленных предприятий имеют корпус и составляют до 1 сантиметра в ширину. Напряжение обратного типа производственных управляющих триодов достигает 1 тысячи Вольт.

2SD1710 для импульсных блоков питания

Конструкция триода сделана на основе слоев полупроводника, заключенных в корпусе элемента. В качестве полупроводников выступают материалы, в основу которых входит кремний, германий, галлий и некоторые другие химические элементы. В настоящее время проводится множество исследований, которые предлагают в качестве материалов различные виды полимеров и углеродных нанотрубок.

Важно! Когда-то кристаллы полупроводников располагали в металлических отсеках в виде шляп с тремя выводами. Такое строение было характерно для точечных элементов транзисторного типа.

Различные виды рассматриваемых радиоэлементов

На сегодняшний день строение практически всех плоских и кремниевых транзисторов основано на легированном монокристалле. Они находятся в пластмассовых, металлических или стеклянных корпусах. У многих из них есть выступающие выводы, позволяющие отвести тепло при сильном нагреве от электричества.

Кремниевый биполярный транзистор 2SA1286

Выводы современных транзисторов расположены, как правило, в один ряд. Это удобно, так как плату собирают роботы, и это экономит ресурсы. Выводные контакты также не маркируются на корпусе элемента. Вид вывода определяют по инструкции эксплуатации или после тестовых замеров.

Важно! Для транзисторов применяют сплавы полупроводникового типа с разным строением: PNP или NPN. Их различие заключается в разных знаках напряженности на выводах.

Если брать схематически, то описать этот радиоэлемент можно так: два полупроводника, разделенные дополнительным слоем, который управляет проводимостью триода.

Схема устройства полевых радиоэлементов

Область применения и основной принципы функционирования

В состоянии покоя между коллекторами транзистора нет электрического тока. Его прохождению мешает сопротивляемость переходника, которая возникает из-за одновременной работы двух слоев транзистора. Включить элемент просто: необходимо подать любое напряжение на него. Управление базой и ее токами будет напрямую переключать режимы работы транзистора с «включенного» на «выключенный».

Если же направить сигнал от аналогового источника, то он будет взаимодействовать с выходными токами путем передачи им своей амплитуды. Иначе говоря, электрический сигнал, который поступил на выходы, будет усилен. Полупроводниковые управляющие триоды вполне могут активно работать как электронные ключи или усилители электронных сигналов входа.

Простейшие схемы подключения транзисторов

Обозначение на электросхемах

У транзистора есть принятое обозначение: «ВТ» или «Q». После букв нужно указать индекс позиции. Например, ВТ 2. На старых чертежах можно найти условные обозначения: «Т», «ПП» или «ПТ», которые более не используются. Транзистор рисуют в виде неких отрезков, обозначающих контакты электродов. Иногда их обводят кругом. Направление электротока в области эмиттера указывает специальная стрелка.

Схема работы простейшего радиоэлемента

По принципу действия и строению различают следующие полупроводниковые триоды:

  • Полевого типа;
  • Биполярного;
  • Комбинированного.

Все они обладают схожим функционалом и отличаются по технологии работы.

Полевые

Такие триоды ещё называют униполярными, из-за их электрических свойств — у них происходит течение тока только одной полярности. Такой тип также подразделяется на некоторые виды по своему строению и типу регулировки:

  • Транзисторы с PN переходом управления;
  • Элементы с затвором изолированного типа;
  • Такие же транзисторы другой структуры (металл-диэлектрик-проводник).

Важно! Изолированный затвор обладает одной отличительной особенностью — наличием диэлектрического слоя между ним и каналом.

Схема элемента с затвором изолированного типа

Еще одна особенность полевых транзисторов — низкое потребление электроэнергии. Например, такой элемент может функционировать больше одного года на одной батарейке. Полевые радиоэлементы довольно независимы: они потребляют крайне мало электроэнергии. Такой прибор может годами работать на пальчиковой батарейке или небольшом аккумуляторе. Именно это и обусловило их широкое применение в электросхемах и приборах.

Электронно-дырочный переход

Биполярные

Свое название эти элементы получили за то, что они способны пропускать электрические заряды плюса и минуса через один проходной канал. Также они обладают низким входным сопротивлением. Такие приспособления работают как усилители сигнала и коммутаторы. Благодаря им в электроцепь можно подключить довольно сильную нагрузку и понизить действие ее сопротивления. Биполярники являются наиболее популярными полупроводниковыми приборами активного типа.

Принцип работы биполярного транзистора в схеме

Комбинированные

Комбинированные элементы изобретаются для того, чтобы по применению одного дискретного состояния достичь требуемых электрических параметров. Они бывают:

  • Биполярными с внедрёнными в их схему резисторами;
  • Двумя триодами одной или нескольких структур строения в единой детали;
  • Лямбда-диодами — сочетанием двух полевых управляющих триодов, создающих сопротивляемость со знаком «минус»;
  • Элементы, в которых полевые составляющие управляют биполярными.
Комбинированный транзистор

Схема подключения транзистора для чайников

Наиболее популярны следующие схемы подсоединения транзисторов в цепь: с общей базовой установкой, общими выводами инжекторного эмиттера и с общим коллекторным преобразователем для подачи напряженности.

Для усилителей с базой общего типа характерно следующее:

  • Низкие параметры входного сопротивления, которое не достигает даже 100 Ом;
  • Неплохая температура и частота триода;
  • Допустимое напряжение весьма большое;
  • Требуют два различных источника питания.

Схемы второго типа обладают:

  • Высокими показателями усиления электротока и напряжения;
  • Низкими показателями усиления мощностных характеристик;
  • Инверсионной разницей между входным и выходным напряжением.

Важно! Схема транзистора с электродами общего коллекторного типа требует одного источника питания.

Подключение по типу общего коллектора может обеспечить:

  • Низкие показатели электронапряжения по усилению;
  • Большая и меньшая сопротивляемость входа и выхода соответственно.
Подключение транзистора для светодиода

Таким образом, транзистор — один из самых распространенных радиоэлементов в электронике. Он позволяет изменять параметры электрического тока и регулировать его для корректной работы электроприборов. Существует несколько видов транзисторов, как и способов их соединения. Различаются они строением и целями использования.

распиновка, схемы, аналоги и как подключить

Полевой МОП-транзистор irfz44n — мощное устройство с кремниевой основой. Он имеет индуцированный нормально закрытый канал, изолированный с помощью затвора. Устройство было специально создано для включения в высокоскоростные низковольтные системы коммутации, источники питания, преобразователи, схемы управления двигателями.

Схема подключения

В кремниевой структуре транзистора есть 2 p-n перехода. Если отпирающее напряжение не подается, нет проходящего тока, транзистор закрыт. При подаче положительного отпирающего напряжения: на затвор «+»и исток «—», электрическое поле приводит к возникновению n-проводимого канала.

Если подать питание на нагрузку, в индуцированном канале начнется движение стокового тока ID.

От уровня напряжения, подаваемого на затвор, зависит число электронов, притягивающихся в область стока-истока, которая расширяется для движения тока. Это может происходить до того, как график линейной и отсечки переключатся между областями. Далее, в области насыщения увеличение показателя тока прекращается.

Рабочий режим (область насыщения) используется для схем усиления. В irfz44n datasheet процедура перехода в данный режим для различных значений V GS может быть показана с помощью графиков стандартных выходных параметров. Увидеть границы области насыщения для mosfet можно на почти горизонтально расположенной к оси напряжения стока-истока линии.

В каких режимах функционирует полевой транзистор

Режим отсечки

Как уже упоминалось, расстояние между стоком и истоком, регулируется затвором. Алгоритм работы транзистора виден в простейшей схеме, управляющей качеством освещения от лампы накаливания. Когда на затворе отсутствует напряжение, он закрыт, и электрический ток через лампу накаливания не течет.

Для управления светом лампы нужна смена напряжения на затворе по отношению к истоку. У нас n-канальный транзистор, поэтому на затвор подается напряжение со знаком “+”. В окончательном виде irfz44n схема выглядит так:

Так каким же должно быть напряжение на затворе, чтобы ток внутри цепи стока-истока был максимальным?

Возьмем стрелочный блок питания irfz44n для регуляции напряжения. Соберем его по схеме и подадим на затвор 1 В. Лампа не загорится. Если же увеличить напряжение до 3,5 В, амперметр покажет появление тока в лампе накаливания. Но она все равно не загорится, так как такой силы тока не хватает для накала вольфрамовой нити.

Читайте в отдельной статье про полевой транзистор.

Режим активной работы irfz44n

Напряжение в районе 3,5 В частично приоткрывает транзистор. Этот показатель отличается у разных видов полевиков и находится в пределах 0,5-5 В. В даташит этот показатель именуют Gate threshold voltage (предельное напряжение затвора).

Если плавно регулировать величину канала устройства, повышая напряжение, поданное на затвор, становится видно постепенное накаливание нити лампы. Корректируя уровень напряжения, можно создать необходимый уровень освещения. Это и объясняет название данного режима — активный. При нем сопротивление индуцируемого канала транзистора меняется, согласно напряжению на затворе.

В результате активной работы устройство может перегреться. Поэтому необходимо пользоваться охлаждающим радиатором, рассеивающим тепло в окружающую среду.

Режим насыщения irfz44n

Для полного открытия полевого транзистора требуется подача напряжения до того момента, пока лампа не станет гореть на уровне всего канала. В данном режиме сопротивление канала стока-истока находится в минимуме и почти не сопротивляется течению электрического тока.

Примечательно, что само устройство в данном случае не нагревается. Это можно объяснить формулой: P= I2C R. При сопротивлении, равном каким-то сотым долям ома транзистору просто не с чего нагреваться.

Так что, самые мягкие режимы для полевика — это полное открытие или закрытие канала. Если он закрыт, сопротивление канала стремится к бесконечности, а ток, проходящих через него, минимален по закону Ома. Если подставить эти значения в формулу выше, будет понятно, что рассеянная мощность приближается к нулю.

Главные характеристики irfz44n

Полный список параметров транзистора не приведен в даташит, поскольку он может потребоваться лишь специалистам по разработке. Большинству даже опытных пользователей нужно знать лишь часть характеристик для включения irfz44n устройства в различные электронные схемы.

При температуре не более 25 градусов транзистор имеет следующие ключевые параметры:

  1. Наибольшее напряжение стока-истока — 55 Вольт.
  2. Наибольший ток стока — 49 Ампер.
  3. Сопротивление проводного канала стока-истока — 5 микроОм.
  4. Рассеивающаяся мощность — 94 Ватт.

В ряде технических описаний наименование mosfet irfz44n транзистора с изоляцией затвора начинается с аббревиатуры МДП, что обозначает:

  1. Металл.
  2. Диэлектрик.
  3. Полупроводник.

У этих устройств может быть 2 вида каналов:

  • встроенный;
  • индуцированный.

Эти полупроводниковые приборы обладают затвором, разделенным с кремниевой подложкой тончайшей прослойкой диэлектрического материала. Его толщина около 0,1 мкм.

Распиновка irfz44n

Больше всего rfz44n распространен в корпусе ТО220 из пластика с отверстием для винта, который входит в дискретные полевые транзисторы с высокой мощностью. Вид цоколевки irfz44n с «фасада» таков:

  1. С левой стороны — затвор.
  2. С правой — исток.
  3. Центральный канал — это сток, который электрически соединен с вмонтированным в корпус радиатором.

Под брендом IR выпускаются варианты с корпусами D2PAK и ТО-262, с таким же назначением выводов, как у ТО-220.

Маркировка irfz44n

Приставка irf свидетельствует о том, что устройства производят на предприятиях, относящихся к компании International Rectifier (США). 14 лет назад году ее сотрудники продали технологии изготовления Vishay Intertechnology, а еще через 8 лет IR присоединилась к Infineon Technologies. Сегодня детали с такой же приставкой в названии выпускает ряд ещё нескольких независимых предприятий.

Некоторые технические описания устройства содержат в конце маркировки символы PbF, что в расшифровке означает plumbum free — бессвинцовый метод производства транзисторов. Он становится популярен во многих странах, так как многие химические соединения, вредные для экологии и для здоровья людей, на сегодняшний день запрещены к применению.

В даташит оригинала упоминается фирменная HEXFET-технология производства, созданная International Rectifier Corporation. Благодаря ей серьезно уменьшается сопротивление электронных деталей и температура нагрева во время их работы. Она же делает необязательным использование радиатора-охладителя.

IRFZ44N от производителя IR, имеющие структуру HEXFET, обладают самым низким сопротивлением стока-истока в 17,5 мОм. В техническом описании к этим устройствам есть отметка Power MOSFET. Она означает, что данные транзисторы — это мощные полупроводниковые приборы.

Аналоги

Стопроцентной замены irfz44n нет, но есть несколько транзисторов, схожих с ними в описании и параметрах. Среди них:

  • IRFZ44E.
  • IRFZ46N.
  • IRFZ45.
  • IRFZ40.
  • BUZ102.
  • IRLZ44Z.
  • STP45NF06.
  • HUF75329P3.
  • IRF3205.

Среди российских аналогов — КП723 и КП812А1. Они работают при чуть меньшей температуре, ниже 150 градусов.

Изготовители

Можно найти русскоязычный перевод DataSheet irfz44n, но более точная информация дана в англоязычной версии изготовителя. Основными производителями радиоэлектронных элементов являются:

  1. Infineon Technologies (брэнд International Rectifier).
  2. Philips Semiconductors.
  3. INCHANGE Semiconductor.
  4. Leshan Radio Company.

Способы проверки irfz44n

Простая проверка полевого транзистора заключается в действиях по схеме.

Полевые транзисторы широко используются в современной технике, например, блоках питания, контроллерах напряжения компьютеров и других электронных девайсов, а также бытовой техники. Это и стиральные машины, и кофемолки, и осветители. Приборы часто выходят из строя, и в этих случаях нужно выявить, а затем устранить конкретную неполадку. Поэтому знать способы проверки транзисторов — обязательно.

Подключите черный щуп к стоку, а красный — к истоку. На дисплее высветится показатель перехода вмонтированного встречно расположенного диода. Запишите его. Отстраните красный щуп от истока и дотроньтесь им до затвора. Это способ частичного открытия полевика.

Верните красный щуп в прежнюю позицию (к истоку). Посмотрите на уровень перехода, он чуть снизился при открытии транзистора. Перенесите черный щуп со стока к затвору, и тем самым закройте транзистор. Верните его обратно и понаблюдайте за изменениями показателя перехода при полном закрытии irfz44n.

У затвора рабочего полевого транзистора должно быть сопротивление, приближенное к бесконечности.

По такой схеме проверяются n-канальные устройства, p-канальные тоже, но с щупами другой полярности.

Проверять мосфет-транзисторы можно и по небольшим схемам, к которым их подключают. Это быстрый и точный метод. Но если проверки устройства требуются нечасто, или у вас нет возможности собирать схемы, то способ с мультиметром — идеальное решение.

irfz44n — это относительно современная группа транзисторов, которые управляются не с помощью электричества, как в случае с биполярными устройствами, а посредством напряжения — то есть поля. Этим и объясняется аббревиатура MOSFET. Проверка транзистора указанным способом помогает понять, какая именно деталь вышла из строя.

Схемы включения

Полевики подключаются 3 основными способами, где есть общий:

  1. Сток — ОС.
  2. Исток — ОИ.
  3. Затвор — ОЗ.

Практика показывает, что усилительные каскады обычно включают вторую схему, по аналогии с биполярными транзисторами. ОИ серьезно усиливает мощность, но каскад с такой схемой имеет низкие частоты. Причина этому — существенная входная емкость затвора-истока.

Проверка полевого транзистора с помощью транзистометра

Это недорогое и довольно примитивное китайское устройство есть почти у всех, кто разбирается в электронике. Проверка с его помощью очень проста.

Вставьте проверяемое устройство в «кроватку» и нажмите объемную кнопку зеленого цвета. Прибор тут же выдаст результат, что перед вами n-канальный полевик типа МОП. Он же установит, как расположены выводы устройства, какова емкость затвора, каково максимальное напряжение при открытии. Иными словами, транзистометр — это просто чудо-прибор.

Безопасность при эксплуатации полевых транзисторов

Все варианты полевиков, не важно, имеют они p-n переходы, или это МОП-варианты, сильно подвержены влиянию перегрузок электричеством на затворах. Прежде всего, это относится к электростатике, которая накапливается в организме людей и устройствах для измерения разных величин.

Недопустимые значения электростатики для irfz44n — это 50-100 В. При управляющем p-n переходе — это 250 В. Работая с таким транзистором, необходимо заземлиться с помощью антистатического браслета, либо взять руками открытую батарею до прикосновения к устройству.

В ряде экземпляров полевиков есть встроенные для защиты частицы. Они называются стабилитронами. Их встраивают между затвором и истоком. Они должны защищать от электростатического заряда, но она не дает гарантии на 100%, и перестраховка необходима.

Желательно провести заземление измерительной и паяльной аппаратуры. Сегодня это происходит в автоматическом режиме с помощью розеток европейского типа, так как они оснащены заземляющими проводниками.

Преимущества полевых транзисторов

Первый плюс устройства — управление посредством электрополя, а не тока. Это делает схему проще и уменьшает мощность, которая затрачивается на управление.

Второй — в присутствии не только основных, но и второстепенных носителей электрического тока. Это дает прибору время рассасывания, и оно задерживает выключение устройства.

Третий — повышенная температурная устойчивость. Когда на транзистор подается напряжение, его температура возрастает, по закону Ома увеличивается и сопротивление. А значит, уменьшается и сила тока.

С биполярными транзисторами все сложнее, там при возрастании температуры увеличивается и число ампер. А значит, такие транзисторы не термоустойчивы. Есть вероятность опасного разогрева внутри них, который приводит к поломке. А термоустойчивость полевиков увеличивает нагрузочную способность при параллельной схеме соединения устройств.

Где приобрести irfz44n

Транзистор irfz44n купить можно в любом магазине радиоэлектронике, либо с доставкой из интернет-магазина АлиЭкспресс по ссылке.

Инверсное включение — транзистор — Большая Энциклопедия Нефти и Газа, статья, страница 1

Инверсное включение — транзистор

Cтраница 1


Инверсное включение транзисторов применяется сравнительно редко, поэтому в справочниках не приводятся вольт-амперные характеристики транзистора при работе в инверсной области.  [2]

При инверсном включении транзистора начальная область аналогичных характеристик имеет такой же вид и отличается лишь масштабом по осям.  [3]

При инверсном включении транзистора прямое смещение подается на коллекторный переход, а эмиттер закорачивается с базой, таким образом производится их разбраковка ( с помощью т /) по качеству поверхности коллекторного перехода.  [4]

Что понимается под инверсным включением транзистора.  [5]

Если же в инверсном включении транзистора, т.е. при взаимной замене выводов коллектора и эмиттера, установить выходной ток равным нулю, то ток базы транзистора будет равен току коллектора. Возникающее напряжение смещения будет приблизительно в 10 раз меньше, чем при прямом включении транзистора; знак же его, как и при прямом включении, будет положительным, так как в схеме на рис. 17.7 Ua — UCE. Поэтому при использовании биполярных транзисторов в качестве коммутаторов их целесообразно включать, поменяв местами выводы коллектора и эмиттера. Если при этом поддерживать эмит-терный ток достаточно малым, то транзистор будет работать только в инверсном режиме.  [7]

В данном случае применено инверсное включение транзисторов, когда ток управления проходит по цепи база — коллектор. За счет этого при открытом переключателе остаточное напряжение каждого из транзисторов составляет единицы милливольт, что гораздо меньше того же напряжения при прямом включении транзисторов. Остаточное сопротивление открытого переключателя составляет несколько десятков Ом. В закрытом состоянии переключатель характеризуется током утечки между эмиттерами / зак.  [8]

Рассматриваемый режим называют режимом инверсного включения транзистора.  [9]

Такой режим называют режимом инверсного включения транзистора.  [10]

Уменьшению остаточного напряжения при инверсном включении транзисторов способствуют увеличение а, уменьшение обратного тока эмиттерного перехода Igg, уменьшение сопротивления базы / g, уменьшение емкости переходов, уменьшение тока базы в открытом состоянии транзистора, уменьшение сопротивлений источника сигнала и входной цепи усилителя. Наиболее пригодны для ключевых модуляторов высокочастотные маломощные транзисторы с большими значениями коэффициента усиления по току.  [11]

Большое распространение в прерывателях имеет инверсное включение транзистора ( рис. 14 — 8, б), которое по сравнению с нормальным включением обеспечивает меньшие ток / с и напряжение Ос.  [12]

Аналогичным образом определяются параметры для инверсного включения транзистора. Легко видеть, что определение параметров даже такой сравнительно несложной модели — процесс достаточно трудоемкий.  [13]

Следует указать что сопротивление базы при инверсном включении транзистора отличается от величины, определяемой при нормальном включении. Причина заключается в асимметрии структуры транзистора.  [14]

Зг — коэффициенты усиления тока при прямом и инверсном включении транзистора; ( т ЬТ / д — температурный потенциал; k — постоянная Больцмана; Т — абсолютная температура; q — заряд электрона.  [15]

Страницы:      1    2    3    4

Как подключить npn транзистор

PNP-транзистор является электронным прибором, в определенном смысле обратном NPN-транзистору. В этом типе конструкции транзистора его PN-переходы открываются напряжениями обратной полярности по отношению к NPN-типу. В условном обозначении прибора стрелка, которая также определяет вывод эмиттера, на этот раз указывает внутрь символа транзистора.

Конструкция прибора

Конструктивная схема транзистора PNP-типа состоит из двух областей полупроводникового материала p-типа по обе стороны от области материала n-типа, как показано на рисунке ниже.

Стрелка определяет эмиттер и общепринятое направление его тока («внутрь» для транзистора PNP).

PNP-транзистор имеет очень схожие характеристики со своим NPN-биполярным собратом, за исключением того, что направления токов и полярности напряжений в нем обратные для любой из возможных трех схем включения: с общей базой, с общим эмиттером и с общим коллектором.

Основные отличия двух типов биполярных транзисторов

Главным различием между ними считается то, что дырки являются основными носителями тока для транзисторов PNP, NPN-транзисторы имеют в этом качестве электроны. Поэтому полярности напряжений, питающих транзистор, меняются на обратные, а его входной ток вытекает из базы. В отличие от этого, у NPN-транзистора ток базы втекает в нее, как показано ниже на схеме включения приборов обоих типов с общей базой и общим эмиттером.

Принцип работы транзистора PNP-типа основан на использовании небольшого (как и у NPN-типа) базового тока и отрицательного (в отличие от NPN-типа) базового напряжения смещения для управления гораздо большим эмиттерно-коллекторным током. Другими словами, для транзистора PNP эмиттер является более положительным по отношению к базе, а также по отношению к коллектору.

Рассмотрим отличия PNP-типа на схеме включения с общей базой

Действительно, из нее можно увидеть, что ток коллектора IC (в случае транзистора NPN) вытекает из положительного полюса батареи B2, проходит по выводу коллектора, проникает внутрь него и должен далее выйти через вывод базы, чтобы вернуться к отрицательному полюсу батареи. Таким же образом, рассматривая цепь эмиттера, можно увидеть, как его ток от положительного полюса батареи B1 входит в транзистор по выводу базы и далее проникает в эмиттер.

По выводу базы, таким образом, проходит как ток коллектора IC, так и ток эмиттера IE. Поскольку они циркулируют по своим контурам в противоположных направлениях, то результирующий ток базы равен их разности и очень мал, так как IC немного меньше, чем IE. Но так как последний все же больше, то направление протекания разностного тока (тока базы) совпадает с IE, и поэтому биполярный транзистор PNP-типа имеет вытекающий из базы ток, а NPN-типа – втекающий.

Отличия PNP-типа на примере схемы включения с общим эмиттером

В этой новой схеме PN-переход база-эмиттер открыт напряжением батареи B1, а переход коллектор-база смещен в обратном направлении посредством напряжения батареи В2. Вывод эмиттера, таким образом, является общим для цепей базы и коллектора.

Полный ток эмиттера задается суммой двух токов IC и IB; проходящих по выводу эмиттера в одном направлении. Таким образом, имеем IE = IC + IB.

В этой схеме ток базы IB просто «ответвляется» от тока эмиттера IE, также совпадая с ним по направлению. При этом транзистор PNP-типа по-прежнему имеет вытекающий из базы ток IB, а NPN-типа – втекающий.

В третьей из известных схем включения транзисторов, с общим коллектором, ситуация точно такая же. Поэтому мы ее не приводим в целях экономии места и времени читателей.

PNP-транзистор: подключение источников напряжения

Источник напряжения между базой и эмиттером (VBE) подключается отрицательным полюсом к базе и положительным к эмиттеру, потому что работа PNP-транзистора происходит при отрицательном смещении базы по отношению к эмиттеру.

Напряжение питания эмиттера также положительно по отношению к коллектору (VCE). Таким образом, у транзистора PNP-типа вывод эмиттера всегда более положителен по отношению как к базе, так и к коллектору.

Источники напряжения подключаются к PNP-транзистору, как показано на рисунке ниже.

Работа PNP-транзисторного каскада

Итак, чтобы вызвать протекание базового тока в PNP-транзисторе, база должна быть более отрицательной, чем эмиттер (ток должен покинуть базу) примерно на 0,7 вольт для кремниевого прибора или на 0,3 вольта для германиевого. Формулы, используемые для расчета базового резистора, базового тока или тока коллектора такие же, как те, которые используются для эквивалентного NPN-транзистора и представлены ниже.

Мы видим, что фундаментальным различием между NPN и PNP-транзистором является правильное смещение pn-переходов, поскольку направления токов и полярности напряжений в них всегда противоположны. Таким образом, для приведенной выше схеме: IC = IE – IB, так как ток должен вытекать из базы.

Как правило, PNP-транзистор можно заменить на NPN в большинстве электронных схем, разница лишь в полярности напряжения и направлении тока. Такие транзисторы также могут быть использованы в качестве переключающих устройств, и пример ключа на PNP-транзисторе показан ниже.

Характеристики транзистора

Выходные характеристики транзистора PNP-типа очень похожи на соответствующие кривые эквивалентного NPN-транзистора, за исключением того, что они повернуты на 180° с учетом реверса полярности напряжений и токов (токи базы и коллектора, PNP-транзистора отрицательны). Точно также, чтобы найти рабочие точки транзистора PNP-типа, его динамическая линия нагрузки может быть изображена в III-й четверти декартовой системы координат.

Типовые характеристики PNP-транзистора 2N3906 показаны на рисунке ниже.

Транзисторные пары в усилительных каскадах

Вы можете задаться вопросом, что за причина использовать PNP-транзисторы, когда есть много доступных NPN-транзисторов, которые могут быть использованы в качестве усилителей или твердотельных коммутаторов? Однако наличие двух различных типов транзисторов — NPN и PNP — дает большие преимущества при проектировании схем усилителей мощности. Такие усилители используют «комплементарные», или «согласованные” пары транзисторов (представляющие собой один PNP-транзистор и один NPN, соединенные вместе, как показано на рис. ниже) в выходном каскаде.

Два соответствующих NPN и PNP-транзистора с близкими характеристиками, идентичными друг другу, называются комплементарными. Например, TIP3055 (NPN-тип) и TIP2955 (PNP-тип) являются хорошим примером комплементарных кремниевых силовых транзисторов. Они оба имеют коэффициент усиления постоянного тока β=IC/IB согласованный в пределах 10% и большой ток коллектора около 15А, что делает их идеальными для устройств управления двигателями или роботизированных приложений.

Кроме того, усилители класса B используют согласованные пары транзисторов и в своих выходной мощных каскадах. В них NPN-транзистор проводит только положительную полуволну сигнала, а PNP-транзистор – только его отрицательную половину.

Это позволяет усилителю проводить требуемую мощность через громкоговоритель в обоих направлениях при заданной номинальной мощности и импедансе. В результате выходной ток, который обычно бывает порядка нескольких ампер, равномерно распределяется между двумя комплементарными транзисторами.

Транзисторные пары в схемах управления электродвигателями

Их применяют также в H-мостовых цепях управления реверсивными двигателями постоянного тока, позволяющих регулировать ток через двигатель равномерно в обоих направлениях его вращения.

H-мостовая цепь выше называется так потому, что базовая конфигурация ее четырех переключателей на транзисторах напоминает букву «H» с двигателем, расположенным на поперечной линии. Транзисторный H-мост, вероятно, является одним из наиболее часто используемых типов схемы управления реверсивным двигателем постоянного тока. Он использует «взаимодополняющие» пары транзисторов NPN- и PNP-типов в каждой ветви, работающих в качестве ключей при управлении двигателем.

Вход управления A обеспечивает работу мотора в одном направлении, в то время как вход B используется для обратного вращения.

Например, когда транзистор TR1 включен, а TR2 выключен, вход A подключен к напряжению питания (+ Vcc), и если транзистор TR3 выключен, а TR4 включен, то вход B подключен к 0 вольт (GND). Поэтому двигатель будет вращаться в одном направлении, соответствующем положительному потенциалу входа A и отрицательному входа B.

Если состояния ключей изменить так, чтобы TR1 был выключен, TR2 включен, TR3 включен, а TR4 выключен, ток двигателя будет протекать в противоположном направлении, что повлечет его реверсирование.

Используя противоположные уровни логической «1» или «0» на входах A и B, можно управлять направлением вращения мотора.

Определение типа транзисторов

Любые биполярные транзисторы можно представить состоящими в основном из двух диодов, соединенных вместе спина к спине.

Мы можем использовать эту аналогию, чтобы определить, относится ли транзистор к типу PNP или NPN путем тестирования его сопротивления между его тремя выводами. Тестируя каждую их пару в обоих направлениях с помощью мультиметра, после шести измерений получим следующий результат:

1. Эмиттер — База. Эти выводы должны действовать как обычный диод и проводить ток только в одном направлении.

2. Коллектор — База. Эти выводы также должны действовать как обычный диод и проводить ток только в одном направлении.

3. Эмиттер — Коллектор. Эти выводы не должен проводить в любом направлении.

Значения сопротивлений переходов транзисторов обоих типов

Пара выводов транзистора PNP NPN
Коллектор Эмиттер RВЫСОКОЕ RВЫСОКОЕ
Коллектор База RНИЗКОЕ RВЫСОКОЕ
Эмиттер Коллектор RВЫСОКОЕ RВЫСОКОЕ
Эмиттер База RНИЗКОЕ RВЫСОКОЕ
База Коллектор RВЫСОКОЕ RНИЗКОЕ
База Эмиттер RВЫСОКОЕ RНИЗКОЕ

Тогда мы можем определить PNP-транзистор как исправный и закрытый. Небольшой выходной ток и отрицательное напряжение на его базе (B) по отношению к его эмиттеру (E) будет его открывать и позволит протекать значительно большему эмиттер-коллекторному току. Транзисторы PNP проводят при положительном потенциале эмиттера. Иными словами, биполярный PNP-транзистор будет проводить только в том случае, если выводы базы и коллектором являются отрицательным по отношению к эмиттеру.

Биполярный транзистор является одним из старейших, но самым известным типом транзисторов, и до сих пор находит применение в современной электронике. Транзистор незаменим, когда требуется управлять достаточно мощной нагрузкой, для которой устройство управления не может обеспечить достаточный ток. Они бывают разного типа и мощности, в зависимости от исполняемых задач. Базовые знания и формулы о транзисторах вы можете найти в этой статье.

Введение

Прежде чем начать урок, давайте договоримся, что мы обсуждаем только один тип способ включения транзистора. Транзистор может быть использован в усилителе или приемнике, и, как правило, каждая модель транзисторов производится с определенными характеристиками, чтобы сделать его более узкоспециализированым для лучшей работы в определённом включении.

Транзистор имеет 3 вывода: база, коллектор и эмиттер. Нельзя однозначно сказать какой из них вход, а какой выход, так как все они связаны и влияют друг на друга так или иначе. При включении транзистора в режиме коммутатора (управление нагрузкой) он действует так: ток базы контролирует ток от коллектора к эмиттеру или наоборот, в зависимости от типа транзистора.

Есть два основных типа транзисторов: NPN и PNP. Чтобы это понять, можно сказать, что основное различие между этими двумя типами это направления электрического тока. Это можно видеть на рисунке 1.А, где указано направление тока. В транзисторе NPN, один ток течет от основания внутрь транзистора, а другой ток течет от коллектора к эмиттеру, а в PNP транзисторе всё наоборот. С функциональной точки зрения, разница между этими двумя типами транзисторов это напряжение на нагрузке. Как вы можете видеть на рисунке, транзистор NPN обеспечивает 0В когда он открыт, а PNP обеспечивает 12В. Вы позже поймете, почему это влияет на выбор транзистора.

Для простоты мы будем изучать только NPN транзисторы, но всё это применимо к PNP, принимая во внимание, что все токи меняются на противоположные.

Рисунок ниже показывает аналогию между переключателем (S1) и транзисторным ключом, где видно, что ток базы закрывает или открывает путь для тока от коллектора к эмиттеру:

Точно зная характеристики транзистора, от него можно получить максимальную отдачу. Основным параметром является коэффициент усиления транзистора по постоянному току, который обычно обозначается Hfe или β. Также важно знать максимальный ток, мощность и напряжение транзистора. Эти параметры можно найти в документации на транзистор, и они помогут нам определить значение резистора на базе, о чем рассказано дальше.

Использование NPN транзистора как коммутатора

На рисунке показано включение NPN транзистора в качестве коммутатора. Вы встретите это включение очень часто при анализе различных электронных схем. Мы будем изучать, как запустить транзистор в выбранном режиме, рассчитать резистор базы, коэффициент усиления транзистора по току и сопротивление нагрузки. Я предлагаю самый простой и самый точный способ для этого.

1. Предположим, что транзистор находится в режиме насыщения: При этом математическая модель транзистора становится очень простой, и нам известно напряжение на точке Vc. Мы найдем значение резистора базы, при котором всё будет правильно.

2. Определение тока насыщения коллектора: Напряжение между коллектором и эмиттером (Vce) взято из документации транзистора. Эмиттер подключен к GND, соответственно Vce= Vc — 0 = Vc. Когда мы узнали эту величину, мы можем рассчитать ток насыщения коллектора по формуле:

Иногда, сопротивления нагрузки RL неизвестно или не может быть точным, как сопротивление обмотки реле; В таком случае, достаточно знать, необходимый для запуска реле ток.
Убедитесь, что ток нагрузки не превышает максимальный ток коллектора транзистора.

3. Расчет необходимого тока базы: Зная ток коллектора, можно вычислить минимально необходимый ток базы для достижения этого тока коллектора, используя следующую формулу:

Из неё следует что:

4. Превышение допустимых значений: После того как вы рассчитали ток базы, и если он оказался ниже указанного в документации, то можно перегрузить транзистор, путем умножения расчетного тока базы например в 10 раз. Таким образом, транзисторный ключ будет намного более устойчивым. Другими словами, производительность транзистора уменьшится, если нагрузка увеличится. Будьте осторожны, старайтесь не превышать максимальный ток базы, указанный в документации.

5. Расчёт необходимого значения Rb: Учитывая перегрузку в 10 раз, сопротивление Rb может быть рассчитано по следующей формуле:

где V1 является напряжением управления транзистором (см. рис 2.а)

Но если эмиттер подключен к земле, и напряжение база-эмиттер известно (около 0,7В у большинстве транзисторов), а также предполагая, что V1 = 5V, формула может быть упрощена до следующего вида:

Видно, что ток базы умножается на 10 с учётом перегрузки.
Когда значение Rb известно, транзистор «настроен» на работу в качестве переключателя, что также называется «режим насыщения и отсечки «, где «насыщение» — когда транзистор полностью открыт и проводит ток, а «отсечение» – когда закрыт и ток не проводит.

Примечание: Когда мы говорим , мы не говорим, что ток коллектора должен быть равным . Это просто означает, что ток коллектора транзистора может подниматься до этого уровня. Ток будет следовать законам Ома, как и любой электрический ток.

Расчет нагрузки

Когда мы считали, что транзистор находится в режиме насыщения, мы предполагали что некоторые его параметры не менялись. Это не совсем так. На самом деле эти параметры менялись в основном за счет увеличения тока коллектора, и поэтому он является более безопасным для перегрузки. В документации указано изменение параметров транзистора при перегрузке. Например, в таблице на рисунке 2.В показано два параметра которые значительно меняются:

HFE (β) меняется в зависимости от тока коллектора и напряжения VCEsat. Но VCEsat само меняется в зависимости от тока коллектора и базы, что показано в таблице дальше.

Расчет может быть очень сложным, так как все параметры тесно и сложно взаимосвязаны, поэтому лучше взять худшие значения. Т.е. наименьший HFE, крупнейший VCEsat и VCEsat.

Типичное применение транзисторного ключа

1. Управление реле

В современной электронике транзисторный ключ используется для контроля электромагнитных реле, которое потребляют до 200 мА. Если вы хотите управлять реле логической микросхемой или микроконтроллером то транзистор незаменим. На рисунке 3.A, сопротивления резистора базы рассчитывается в зависимости от необходимого для реле тока. Диод D1 защищает транзистор от импульсов, которые катушка генерирует при выключении.

2. Подключение транзистора с открытым коллектором:

Многие устройства, такие как семейство микроконтроллеров 8051 имеют порты с открытым коллектором. Сопротивление резистора базы внешнего транзистора рассчитывается, как описано в этой статье. Заметим, что порты могут быть более сложными, и часто используют полевые транзисторы вместо биполярных и называются выходами с открытым стоком, но всё остаётся точно таким же как на рисунке 3.B

3. Создание логического элемента ИЛИ-НЕ (NOR):

Иногда в схеме необходимо использовать один логический элемент, и вы не хотите использовать 14-контактную микросхему с 4 элементами либо из-за стоимости или местом на плате. Её можно заменить парой транзисторов. Отметим, что частотные характеристики таких элементов зависят от характеристик и типа транзисторов, но обычно ниже 100 кГц. Уменьшение выходного сопротивления (Ro) приведет к увеличению потребления энергии, но увеличит выходной ток.
Вам надо найти компромисс между этими параметрами.

На рисунке выше показан логический элемент ИЛИ-НЕ построенный с использованием 2х транзисторов 2N2222. Это может быть сделано на транзисторах PNP 2N2907, с незначительными изменениями. Вы просто должны учитывать, что все электрические токи тогда текут в противоположном направлении.

Поиск ошибок в транзисторных схемах

При возникновении проблемы в цепях, содержащих много транзисторов, может быть весьма проблематично узнать, какой из них неисправен, особенно когда они все впаяны. Я даю вам несколько советов, которые помогут вам найти проблему в такой схеме достаточно быстро:

1. Температура: Если транзистор сильно греется, вероятно, где-то есть проблема. Необязательно что проблема в горячем транзисторе. Обычно дефектный транзистор даже не нагревается. Это повышение температуры может быть вызвано другим транзистором, подключенным к нему.

2. Измерение VCE транзисторов: Если они все одного типа и все работают, то они должны иметь приблизительно одинаковое VCE. Поиск транзисторов, имеющих различные VCE это быстрый способ обнаружения дефектных транзисторов.

3. Измерение напряжения на резисторе базы: Напряжение на резисторе базы достаточно важно (если транзистор включен). Для 5 В устройства управления транзистором NPN, падения напряжения на резисторе должно быть более 3В. Если нет падения напряжения на резисторе, то либо транзистор, либо устройство управления транзистора имеют дефект. В обоих случаях ток базы равен 0.

Arduino, DIY и немного этих ваших линуксов.

Транзистор — полупроводниковый прибор позволяющий с помощью слабого сигнала управлять более сильным сигналом. Из-за такого свойства часто говорят о способности транзистора усиливать сигнал. Хотя фактически, он ничего не усиливает, а просто позволяет включать и выключать большой ток гораздо более слабыми токами. Транзисторы весьма распространены в электронике, ведь вывод любого контроллера редко может выдавать ток более 40 мА, поэтому, даже 2-3 маломощных светодиода уже не получится питать напрямую от микроконтроллера. Тут на помощь и приходят транзисторы. В статье рассматриваются основные типы транзисторов, отличия P-N-P от N-P-N биполярных транзисторов, P-channel от N-channel полевых транзисторов, рассматриваются основные тонкости подключения транзисторов и раскрываются сферы их применения.

Не стоит путать транзистор с реле. Реле — простой выключатель. Суть его работы в замыкании и размыкании металлических контактов. Транзистор устроен сложнее и в основе его работы лежит электронно-дырочный переход. Если вам интересно узнать об этом больше, вы можете посмотреть прекрасное видео, которое описывает работу транзистора от простого к сложному. Пусть вас не смущает год производства ролика — законы физики с тех пор не изменились, а более нового видео, в котором так качественно преподносится материал, найти не удалось:

Биполярный транзистор

Биполярный транзисто предназначен для управления слабыми нагрузками (например, маломощные моторы и сервоприводы). У него всегда есть три вывода:

Биполярный транзистор управляется током. Чем больший ток подаётся на базу, тем больший ток потечёт от коллектора к эмиттеру. Отношение тока, проходящего от эмиттера к коллектору к току на базе транзистора называется коэффициент усиления. Обозначается как hfe (в английской литературе называется gain).

Например, если hfe = 150, и через базу проходит 0.2 мА, то транзистор пропустит через себя максимум 30 мА. Если подключен компонент, который потребляет 25 мА (например, светодиод), ему будет предоставлено 25 мА. Если же подключен компонент, который потребляет 150 мА, ему будут предоставлены только максимальные 30 мА. В документации к контакту указываются предельно допустимые значени токов и напряжений база->эмиттер и коллектор->эмиттер. Превышение этих значений ведёт к перегреву и выходу из строя транзистора.

Работа биполярного транзистора

NPN и PNP биполярные транзисторы

Различают 2 типа полярных транзисторов: NPN и PNP. Отличаются они чередованием слоёв. N (от negative — отрицательный) — это слой с избытком отрицательных переносчиков заряда (электронов), P (от positive — положительный) — слой с избытком положительных переносчиков заряда (дырок). Подробнее о электронах и дырках рассказано в видео, приведённом выше.

От чередования слоёв зависит поведение транзисторов. На анимации выше представлен NPN транзистор. В PNP управление транзистором устроено наоборот — ток через транзистор течёт, когда база заземлена и блокируется, когда через базу пропускают ток. В отображении на схеме PNP и NPN отличаются направлением стрелки. Стрелка всегда указывает на переход от N к P:

Обозначение NPN (слева) и PNP (справа) транзисторов на схеме

NPN транзисторы более распространены в электронике, потому что являются более эффективными.

Полевый транзистор

Полевые транзисторы отличаются от биполярных внутренним устройством. Наиболее распространены в любительской электронике МОП транзисторы. МОП — это аббревиатура от металл-оксид-проводник. То-же самое по английски: Metal-Oxide-Semiconductor Field Effect Transistor сокращённо MOSFET. МОП транзисторы позволяют управлять большими мощностями при сравнительно небольших размерах самого транзистора. Управление транзистором обеспечивается напряжением, а не током. Поскольку транзистором управляет электрическое поле, транзистор и получил своё название — полевой.

Полевые транзисторы имеют как минимум 3 вывода:

Здесь должна быть анимация с полевым транзистором, но она ничем не будет отличаться от биполярного за исключением схематического отображения самих транзисторов, поэтому анимации не будет.

N канальные и P канальные полевые транзисторы

Полевые транзисторы тоже делятся на 2 типа в зависимости от устройства и поведения. N канальный (N channel) открывается, когда на затвор подаётся напряжение и закрывается. когда напряжения нет. P канальный (P channel) работает наоборот: пока напряжения на затворе нет, через транзистор протекает ток. При подаче напряжения на затвор, ток прекращается. На схеме полевые транзисторы изображаются несколько иначе:

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

Обозначение N канальных (слева) и P канальных (справа) транзисторов на схеме

Существует заблуждение, согласно которому полевой транзистор может управлять переменным током. Это не так. Для управления переменным током, используйте реле.

Транзистор Дарлингтона

Транзистора Дарлингтона не совсем корректно относить к отдельному типу транзисторов. Однако, не упомянуть из в этой статье нельзя. Транзистор Дарлингтона чаще всего встречается в виде микросхемы, включающей в себя несколько транзисторов. Например, ULN2003. Транзистора Дарлингтона характеризуется возможность быстро открываться и закрывать (а значит, позволяет работать с ШИМ) и при этом выдерживает большие токи. Он является разновидностью составного транзистора и представляет собой каскадное соединение двух или, редко, более транзисторов, включённых таким образом, что нагрузкой в эмиттере предыдущего каскада является переход база-эмиттер транзистора следующего каскада, то есть транзисторы соединяются коллекторами, а эмиттер входного транзистора соединяется с базой выходного. Кроме того, в составе схемы для ускорения закрывания может использоваться резистивная нагрузка эмиттера предыдущего транзистора. Такое соединение в целом рассматривают как один транзистор, коэффициент усиления по току которого, при работе транзисторов в активном режиме, приблизительно равен произведению коэффициентов усиления всех транзисторов.

Схема составного транзистора дарлингтона

Не секрет, что плата Ардуино способна подать на вывод напряжение 5 В с максимальным током до 40 мА. Этого тока не хватит для подключения мощной нагрузки. Например, при попытке подключить к выводу напрямую светодиодную ленту или моторчик, вы гарантированно повредите вывод Ардуино. Не исключено, что выйдет из строя всё плата. Кроме того, некоторые подключаемые компоненты могут требовать напряжения более 5 В для работы. Обе эти проблемы решает транзистор. Он поможет с помощью небольшого тока с вывода Ардуино управлять мощным током от отдельного блока питания или с помощью напряжения в 5 В управлять бОльшим напряжением (даже самые слабые транзисторы редко имеют предельное напряжение ниже 50 В). В качестве примера рассмотрим подключение мотора:

Подключение мощного мотора с помощью транзистора

На приведённой схеме мотор подключается к отдельному источнику питания. Между контактом мотора и источником питания для мотора мы поместили транзистора, который будет управляться с помощью любого цифрового пина Arduino. При подаче на вывод контроллера сигнала HIGH с вывода контроллера мы возьмём совсем небольшой ток для открытия транзистора, а большой ток потечёт через транзистор и не повредит контроллер. Обратите внимание на резистор, установленный между выводом Ардуино и базой транзистора. Он нужен для ограничения тока, протекающего по маршруту микроконтроллер — транзистор — земля и предотвращения короткого замыкания. Как упоминалось ранее, максимальный ток, который можно взять с вывода Arduino — 40 мА. Поэтому, нам понадобится резистор не менее 125 Ом (5В/0,04А=125Ом). Можно без опаски использовать резистор на 220 Ом. На самом деле, резистор стоит подбирать с учётом тока, который необходимо подать на базу для получения необходимого тока через транзистор. Для правильного подбора резистора нужно учитывать коэффициент усиления (hfe).

ВАЖНО!! Если вы подключаете мощную нагрузку от отдельного блока питания, то необходимо физически соединить между собой землю («минус») блока питания нагрузки и землю (пин «GND») Ардуино. Иначе управлять транзистором не получится.

При использовании полевого транзистора, токоограничительный резистор на затворе не нужен. Транзистор управляется исключительно напряжением и ток через затвор не течёт.

Подключение мощных Мосфетов к микроконтроллеру

В этой статье мы рассмотрим возможность подключения мощных Mosfet транзисторов для коммутации нагрузки с большим током сигналом с микроконтроллера. Это позволит подключать к микроконтроллеру цепи управления двигателями, светодиодами или любым устройством питания, которое работает с низким постоянным напряжением (DC).

Силовые мосфеты — это электронные компоненты, которые позволяют нам контролировать очень высокие токи. Как и в случае с обычными МОП-транзисторами, у них есть три вывода, которые называются: Сток (D), Исток (S) и Затвор (G). Основной ток проходит между истоком и стоком (I SD), в то время как управление этим током достигается путем подачи напряжения на клемму затвора (относительно клеммы источника), известной как V GS.

 

Принцип работы Мосфетов

В исходном состоянии ток затвора практически равен нулю, поскольку внутри компонента клемма затвора подключена к своего рода конденсатору. Поэтому ток затвора протекает только в тот момент, когда мы меняем уровень входного напряжения (изменение логического состояния), и это является причиной, почему потребление Mosfet (как в случае всех логических схем MOS) увеличивается пропорционально частоте переключения.

Существуют «силовые мостики» двух типов: те, что в канале N, и в канале P. Разница между ними заключается в полярности соединения исток-сток и в том, что напряжение затвора P-канала отрицательное (те же различия, которые существуют между NPN и PNP транзисторами).

Мощный мосфет может работать в «линейном режиме» или в «насыщенности». В аналоговых системах, например на выходных каскадах усилителей звука, мосфеты работают в линейном режиме, тогда как в цифровых системах, в которых они используются в качестве цифровых выключателей питания, они работают в режиме отключения (ВЫКЛ) или насыщения (НА).

В этой статье мы проанализируем только тот мосфет, который используется в качестве цифровых коммутаторов. Когда mosfet находится в состоянии насыщения, значение внутреннего сопротивления между истоком и стоком (Rsd) очень низкое, следовательно рассеиваемая мощность в нем будет незначительной, однако ток через него может проходить очень высокий.

Чтобы довести Mosfet до насыщения, необходимо, чтобы управляющее напряжение на клемме затвора было достаточно высоким, и это может быть проблемой, если мы напрямую используем низкое выходное напряжение микроконтроллера.

Я лучше объясню на примере

Для насыщения биполярного транзистора (типа BC548) необходимо превысить пороговое напряжение базы, которое составляет всего 0,6 В. Управляющее напряжение 0,6 В может быть получено с любой цифровой схемы, работающей от 5 В, 3,3 В и до 1,8 В.

И наоборот, напряжение, необходимое для приведения в действие Mosfet (называемое «пороговым напряжением» или V th), намного выше (несколько вольт) и зависит от модели Mosfet.

Более того, даже если бы мы достигли этого значения, этого было бы недостаточно, потому что мы должны превысить значение линейной области работы, чтобы привести ее к насыщению. Если нет, проводимость не будет полной, и, следовательно, часть мощности будет рассеиваться в mosfet в виде тепла, потому что мощность, рассеиваемая mosfet, является результатом умножения между падением напряжения и током, проходящим по нему (Pmosfet = Vsd * Isd).

На графике мы видим кривые движения типичного N-канального мосфета с разными напряжениями на затворе в двух рабочих областях (линейная область слева от графика и насыщенность справа).

Как мы видим, если мы хотим получить максимальный выходной ток, напряжение на затворе (VGS) должно быть 7,5 В. Это значение варьируется в зависимости от используемой модели mosfet.

Для решения этой проблемы есть две возможности: использовать адаптер, который увеличивает выходные уровни микроконтроллера, или использовать mosfet, который работает с более низкими напряжениями на затворе. МОП-транзисторы с низким уровнем управления затвором известны как «силовые МОП-транзисторы логического уровня».

На графике мы видим кривую движения мосфета «логический уровень» IRL530 (зеленого цвета) по сравнению с классическим мосфетом IRF530 (синим цветом).

Вертикальная полосатая линия указывает на логический уровень 4,75 В (типичный выходной уровень микроконтроллера, питаемого от 5 В). Как мы видим, максимальный выходной ток IRF530 не превышает 2,6 А, хотя эта модель способна выдавать гораздо больший ток, в то время как IRL530 превышает 20 А (полная проводимость).

Если бы наш микроконтроллер работал с напряжением 3,3 В, IRF530 даже не начал бы запускаться.

 


Поэтому выбор типа «логический уровень» Mosfet является лучшим выбором при работе с цифровыми цепями.

На рисунке мы видим соединение «логического уровня» mosfet с микроконтроллером для включения светодиодной ленты. Как объяснялось в начале этой статьи, когда логический уровень управления изменяется, на мгновение mosfet поглощает определенный ток, который заряжает внутренний конденсатор терминала Gate.

Импульсное регулирование мощности (ШИМ) с применением мосфетов

 

Резистор 4,7К служит для ограничения этого начального тока. Мы могли бы использовать любое значение сопротивления, но низкое значение позволяет получить быструю зарядку этого конденсатора и, следовательно, более быстрое переключение mosfet. Быстрая коммутация мосфета полезна если мы хотим использовать импульсное регулирование мощности (ШИМ).

В этом типе регулирования, если бы переключение mosfet было «медленным», оно было бы длиннее в линейной зоне и, следовательно, увеличивало бы рассеивание мощности в нем, особенно если мы работаем с высокими частотами. Как только Мосфет переключился, затвор больше не поглощает ток. Поэтому, если мы планируем использовать наш mosfet для простого включения и выключения, значение этого R может быть и 10K.

Напротив, если мы хотим модулировать выходную мощность с помощью ШИМ-модуляции, для нас удобно использовать значение сопротивления 4,7 К, 3,3 К или 1,2 К включительно. Лучший выбор зависит в основном от частоты ШИМ.

Сопротивление 100 К замкнутое на землю, служит для определения точного логического состояния в том случае, если микроконтроллер не сделал этого, как например в фазе инициализации того же самого.

Если у нас возникла необходимость подключить Mosfet без «логического уровня» к цифровой цепи, мы можем добавить транзистор, который позволит нам увеличить управляющее напряжение, как мы видим на следующем рисунке.

 

Принцип работы очень прост. Когда выход микроконтроллера имеет низкий логический уровень (0 вольт), транзистор не работает, и, следовательно, его коллектор, который подключен к затвору mosfet, будет иметь положительный потенциал 12 В через положительное сопротивление.

Когда выходной сигнал микроконтроллера становится высоким (1,8 В, 3,3 В или 5 В), транзистор приводит в действие и доводит затвор мосфета до 0 В, поэтому он прекращает движение. Как видите, эта схема имеет дефект, который работает наоборот, то есть активируется, когда уровень выходного сигнала микрофона низкий.

Несмотря на это, преимущество в том, что напряжение затвора достигает максимального напряжения питания, что гарантирует полное насыщение любого типа мосфета, который мы подключаем. Значение сопротивления затвора, связанного с положительным, изменяет скорость переключения полевого двигателя, как объяснено в предыдущем случае. (высокие значения для медленного переключения и низкие значения для быстрого переключения (ШИМ-модуляция).

Если мы хотим использовать общий mosfet (не «логический уровень») с неинвертированной логикой управления, мы можем изменить его на P-канал, как показано на рисунке. Обратите внимание, что выходная мощность (в примере, светодиодная лента) подключена к земле (отрицательной) вместо положительной.

Единственная проблема, представленная этим последним решением, состоит в том, что его нельзя использовать, если мы хотим управлять светодиодной полосой RGB с 3 каналами, потому что эти полосы обычно имеют общий анод (уникальный положительный), в то время как мы использовали бы полосу RGB с общим катодом (общий негатив). В любом случае, это решение очень полезно во многих случаях и сможет пригодлится в ваших проектах.

Схемы включения транзистора – для новичков в радиоделе

Рассматривая схемы разных электронных устройств, можно увидеть, что транзисторы далеко не всегда включены так, как нарисовано выше Действительно, мы использовали для входного сигнала выводы транзистора база и эмиттер А для выходного  сигнала использовали выводы коллектор и эмиттер Такое включение транзистора называется включением с общим эмиттером Эмиттер служит общим выводом и для входного, и для выходного сигнала

Уберём из схемы эксперимента приборы и источник питания Полученная схема выглядит так:

У транзистора три вывода Их назначение определяется конструкцией транзистора Но мы не обязаны использовать общим выводом для входного и выходного сигнала только эмиттер

Посмотрим, нельзя ли использовать в качестве общего  вывода, скажем, коллектор

С этой целью перенесём резистор R2 из цепи коллектора в цепь эмиттера

Рис 57 Основная схема включения транзистора

Мы уже говорили, что транзистор работает как усилитель тока Мы видели, что он усиливает и напряжение То есть, в конечном счёте, он усиливает мощность входного сигнала У схемы включения с общим эмиттером то преимущество, что сигнал усиливается и по току, и по напряжению Запомним это

На многих схемах источник сигнала включён между базой и общим проводом (землёй)

В этом случае может создаться впечатление, что коллектор не является общим для входного и выходного сигнала

Но это не так Батарейка в цепи питания (между общим проводом и коллектором) имеет такое маленькое внутреннее сопротивление, что можно считать, что общий провод и коллектор (в данной схеме) – это один и то же провод

Рис 58 Схема включения транзистора с общим коллектором

Рассмотрим в этой схеме включения напряжения на выходе и входе Мы прикладываем входное напряжение между базой и общим проводом, а снимаем выходное напряжение с эмиттера и общего провода Таки образом для входного напряжения (пусть это будет источник ЭДС) можно записать: Uвх = Uб-э + UR2 (которое будет Uвых)

Рис 59 Распределение входного напряжения в схеме с общим коллектором

Из распределения напряжений следует, что входное напряжение всегда будет оставаться больше выходного А из этого можно сделать вывод, что в схеме с общим коллектором нет усиления по напряжению, но только усиление по току Зачем тогда нужна такая схема включения, если мы проигрываем в усилении по мощности

Кроме усиления любой усилитель характеризуется рядом других параметров, которые могут быть важнее, чем усиление по напряжению Благодаря резистору R2 входное сопротивление (сопротивление схемы для входного сигнала) становится гораздо больше, чем для схемы с общим эмиттером Иногда большое входное сопротивление столь важно, что можно мириться с худшими усилительными свойствами каскада Благо мы можем добавить ещё один каскад, который включим по схеме с общим эмиттером, получив максимальное усиление по мощности

Мы использовали выводы эмиттер и коллектор в качестве общих выводов Осталась база Этот вывод транзистора тоже может дать включение транзистора, которое называется включением с общей базой Аналогично рассмотрению распределения  напряжения для  схемы с общим коллектором,  рассмотрим  распределение  токов  для схемы  с  общей  базой  Для  неё  входным

током будет ток эмиттера, а выходным ток коллектора Но мы знаем, что Iэ = Iк + Iб То есть, ток эмиттера всегда больше, чем ток коллектора, а, значит, усиления по току мы при таком включении транзистора не получим Что же мы выиграем

Вы помните верхнюю частоту среза для схемы с общим эмиттером Проделаем этот же опыт для схемы с общей базой

Рис 510 Амплитудно-частотная характеристика каскада с общей базой

Обычно схему с общей базой рисуют несколько иначе, но сейчас нас интересуют её частотные свойства Вы видите, что верхняя граничная частота для транзистора 2N2222 стала близка к 14 МГц (против 370 кГц) Такое включение, с общей базой, используют, например, при создании антенного усилителя для телевизора

Рис 511 Схема антенного усилителя для телевизора

Источник: Гололобов ВН,- Самоучитель игры на паяльнике (Об электронике для школьников и не только), – Москва 2012

Соединения биполярного транзистора

| Electrical4U

Биполярный переходной транзистор представляет собой трехполюсное устройство. Каким бы ни было использование транзистора в качестве усилителя или переключателя, он должен иметь одну входную цепь и одну выходную цепь. Для упрощения схемы ввода и вывода транзистор должен иметь четыре вывода — два для входа и два для выходной цепи. Чтобы удовлетворить потребности в четырех выводах только из трех выводов транзистора, один вывод в транзисторе используется как общий для входной и выходной цепи.Какой вывод будет выбран в качестве общего в транзисторе, определяется назначением транзистора. В зависимости от возможностей схемотехнических схем транзисторные соединения бывают трех типов.

Здесь следует помнить одну вещь: каким бы ни было соединение транзистора, переход база-эмиттер должен оставаться смещенным в прямом направлении, а переход база-коллектор должен оставаться смещенным в обратном направлении.

Подключение общей базы BJT

Здесь клемма базы является общей как для входной, так и для выходной цепи.Общие базовые конфигурации или режимы показаны на рисунке ниже. Здесь режим общей базы npn-транзистора и pnp-транзистора показан отдельно. Здесь схема эмиттер-база принята в качестве входной цепи, а цепь коллектор-база — в качестве выходной цепи.

Коэффициент усиления по току

Здесь входной ток — это ток эмиттера I E , а выходной ток — ток коллектора I C . Коэффициент усиления по току считается таким, как если бы мы учитывали только напряжения смещения постоянного тока в цепи, а переменный сигнал на входе не подавался.Теперь, если мы рассмотрим переменный сигнал, подаваемый на вход, то коэффициент усиления тока (α) при постоянном напряжении коллектор-база будет равен
. Здесь видно, что ни коэффициент усиления по току, ни коэффициент усиления по току не имеют значения больше единицы, так как коллектор ток ни в коем случае не может быть больше, чем ток эмиттера. Но поскольку мы знаем, что ток эмиттера и ток коллектора в биполярном переходном транзисторе почти равны, эти отношения были бы очень близки к единице. Значение обычно колеблется от 0.9 до 0,99.

Выражение тока коллектора

Если цепь эмиттера разомкнута, ток эмиттера не будет (I C = 0). Но в этом состоянии через область коллектора будет протекать крошечный ток. Это происходит из-за потока неосновных носителей заряда, а это обратный ток утечки. Поскольку этот ток протекает через коллектор и базу, при этом вывод эмиттера остается открытым, ток обозначается как I CBO . В транзисторах с малой мощностью ток обратной утечки I CBO довольно мал, и, как правило, мы пренебрегаем им при расчетах, но в транзисторах с высокой номинальной мощностью этим током утечки нельзя пренебрегать.Этот ток сильно зависит от температуры, поэтому при высоких температурах током обратной утечки I CBO нельзя пренебрегать при расчетах. Это выражение доказывает, что ток коллектора также зависит от тока базы.

Характеристика соединения с общей базой

Входная характеристика

Она определяется между входным током и входным напряжением самого транзистора. Входной ток — это ток эмиттера (I E ), а входное напряжение — это напряжение эмиттер-база (V EB ).После пересечения перехода эмиттер-база с прямым барьером потенциальный ток эмиттера (I E ) начинает быстро расти с увеличением напряжения эмиттер-база (V EB ).
Inpur сопротивление цепи — это отношение изменения напряжения эмиттер-база (ΔV EB ) к току эмиттера (ΔI E ) при постоянном напряжении коллектор-база (V CB = Постоянное). Поскольку изменение тока эмиттера довольно велико по сравнению с изменением напряжения эмиттер-база (ΔI E >> ΔV EB ), входное сопротивление транзистора с общей базой довольно мало.

Выходная характеристика

Коллекторный ток получает постоянное значение только тогда, когда между базой и коллекторной областью установлено достаточное обратное смещение. Вот почему возрастает ток коллектора с увеличением напряжения коллектор-база, когда это напряжение имеет очень низкое значение. Но после определенного напряжения коллектор-база переход коллектор-база получает достаточное обратное смещение, и, следовательно, ток коллектора становится постоянным для определенного тока эмиттера и полностью зависит от тока эмиттера.В этой ситуации весь ток эмиттера, за исключением тока базы, вносит вклад в ток коллектора. Поскольку ток коллектора становится почти постоянным для указанного тока эмиттера в этой области характеристики, увеличение тока коллектора очень и очень мало по сравнению с увеличением напряжения коллектор-база.
Отношение изменения напряжения коллектор-база к изменению тока коллектора определяется как выходное сопротивление режима общей базы транзистора. Естественно, что значение выходного сопротивления в режиме общей базы транзистора очень велико.

Соединение с общим эмиттером BJT

Транзистор с общим эмиттером является наиболее часто используемым транзисторным соединением. Здесь вывод эмиттера общий как для входной, так и для выходной цепи. Цепь, подключенная между базой и эмиттером, является входной цепью, а цепь, подключенная между коллектором и эмиттером, является выходной цепью. Режим общего эмиттера npn-транзистора и pnp-транзистора показан отдельно на рисунке ниже.

Коэффициент усиления по току

В конфигурации с общим эмиттером входной ток — это базовый ток (I B ), а выходной ток — ток коллектора (I C ).В биполярном переходном транзисторе ток базы управляет током коллектора. Отношение изменения тока коллектора (ΔI C ) к изменению тока базы (ΔI B ) определяется как коэффициент усиления по току транзистора с общим эмиттером. В биполярном переходном транзисторе ток эмиттера (I E ) является суммой тока базы (I B ) и тока коллектора (I C ). Если базовый ток изменяется, ток коллектора также изменяется, и в результате ток эмиттера также изменяется соответствующим образом.
И снова отношение изменения тока коллектора к соответствующему изменению тока эмиттера обозначено α.
Поскольку значение тока базы довольно мало по сравнению с током коллектора (IB << IC), коэффициент усиления по току в транзисторе с общим эмиттером довольно высока и составляет от 20 до 500.

Характеристика транзистора с общим эмиттером

В режиме общего эмиттера транзистора имеется две цепи — входная цепь и выходная цепь. Во входной цепи параметрами являются ток базы и напряжение база-эмиттер.Характеристическая кривая, построенная в зависимости от изменений тока базы и напряжения база-эмиттер, является входной характеристикой транзистора с общим эмиттером. Р-n переход между базой и эмиттером смещен в прямом направлении, поэтому характеристики будут аналогичны характеристикам диода с прямым смещением. Здесь также базовый ток не принимает никакого значения до того, как напряжение база-эмиттер пересекает прямой барьерный потенциал перехода, но после этого базовый ток значительно возрастает с увеличением напряжения база-эмиттер.Скорость нарастания тока базы по отношению к напряжению база-эмиттер здесь высока, но не так высока, как в случае режима с общей базой.

Следовательно, входное сопротивление схемы выше, чем сопротивление в режиме общей базы транзистора.

Выходная характеристика транзистора с общим эмиттером

Выходная характеристика построена в зависимости от изменений выходного тока и выходного напряжения транзистора. Ток коллектора — это выходной ток, а напряжение коллектор-эмиттер — это выходное напряжение транзистора.Здесь изменение тока коллектора для различных значений напряжения коллектор-база отображается в зависимости от фиксированного значения тока базы. Обнаружено, что вначале ток коллектора пропорционально увеличивается с увеличением напряжения коллектор-эмиттер, но после определенного уровня напряжения ток коллектора становится почти постоянным. Это связано с тем, что вначале переход база-коллектор не получает достаточного обратного смещения, но после определенного напряжения он становится достаточно смещенным в обратном направлении, и затем основная часть носителей заряда, поступающих из области эмиттера в область базы, будет мигрировать в область коллектора, чтобы внести вклад в коллектор. Текущий.Количество основных носителей, поступающих из области эмиттера, зависит от тока базы в BJT, поэтому для определенного тока базы ток коллектора постоянен.

Выходное сопротивление будет

Подключение общего коллектора BJT

В конфигурации с общим коллектором входная цепь находится между базой и клеммой коллектора, а выходная цепь — между эмиттером и клеммой коллектора.

Отношение изменения тока эмиттера к изменению тока базы определяется как коэффициент усиления по току конфигурации с общим коллектором.Это обозначается как,

Коэффициент усиления тока схемы — это отношение изменения тока эмиттера к изменению тока базы, когда на вход подается изменяющийся во времени сигнал.

Входная характеристика транзистора с общим коллектором

Входной ток — это базовый ток, а входное напряжение транзистора — это напряжение база-коллектор. Переход база-коллектор имеет обратное смещение, и, следовательно, с увеличением напряжения база-коллектор увеличивается обратное смещение перехода.Это приводит к небольшому уменьшению тока базы с увеличением напряжения база-коллектор. Поскольку в этих условиях больше неосновных носителей базовой области будет распространяться в область коллектора, и, следовательно, скорость электронно-дырочной рекомбинации будет уменьшаться в базовой области, вызывая уменьшение тока базы.

Выходная характеристика транзистора с общим коллектором

Выходная характеристика транзистора с общим коллектором почти такая же, как выходная характеристика транзистора с общим эмиттером.Единственная разница в том, что здесь, в случае конфигурации с общим коллектором, выходной ток — это ток эмиттера, а не ток коллектора, как в случае конфигурации с общим эмиттером. Здесь также при фиксированном базовом токе ток эмиттера линейно увеличивается с увеличением напряжения коллектор-эмиттер до определенного уровня этого напряжения, а затем ток эмиттера становится почти постоянным независимо от напряжения коллектор-эмиттер. Хотя при изменении напряжения коллектор-эмиттер будет очень медленное увеличение тока эмиттера, как показано на характеристической кривой ниже.

Конфигурации транзисторных схем »Электроника

В схемах транзисторов

используется одна из трех конфигураций транзисторов: общая база, общий коллектор (эмиттерный повторитель) и общий эмиттер — одна выбирается в процессе проектирования электронной схемы.


Руководство по проектированию схем транзисторов Включает:
Проектирование схем транзисторов Конфигурации схемы Общий эмиттер Общая схема эмиттера Эмиттер-повторитель Общая база

См. Также: Типы транзисторных схем


При рассмотрении конструкции электронной схемы для транзисторной схемы можно использовать три различные основные конфигурации схемы.

Три различных конфигурации схемы транзистора: общий эмиттер, общая база и общий коллектор (эмиттерный повторитель), эти три конфигурации схемы имеют разные характеристики, и в зависимости от требований будет выбран один тип схемы.

Каждый из них имеет разные свойства с точки зрения усиления, входного и выходного сопротивления и т. Д., И в результате в процессе проектирования электронной схемы будет выбрана конкретная конфигурация.

Каждая из различных топологий транзисторов имеет входы и выходы, подключенные к разным точкам, причем одна клемма является общей для входа и выхода.

В дополнение к выбору правильной конфигурации схемы или топологии на этапе проектирования электронной схемы для обеспечения требуемых основных характеристик вокруг транзистора размещаются дополнительные электронные компоненты: обычно резисторы и конденсаторы, и значения рассчитываются для получения точных необходимых характеристик. .

Выбор топологии и расчет значений электронных компонентов являются ключевыми элементами процесса проектирования электронных схем.

Конфигурации транзисторных цепей

Названия трех основных конфигураций транзисторов указывают на вывод транзистора, который является общим как для входных, так и для выходных цепей. Это дает начало трем терминам: общая база, общий коллектор и общий эмиттер.

2N3553 Транзистор в металлической банке TO39

Термин «заземленный», т.е. заземленная база, заземленный коллектор и заземленный эмиттер, также может использоваться в некоторых случаях, потому что сигнал общего элемента обычно заземлен.

Существуют конфигурации эквивалентных схем для полевых транзисторов, а также термоэмиссионных клапанов / вакуумных ламп. Эти конфигурации имеют одинаковые типы свойств, хотя и немного изменены в зависимости от типа используемого электронного устройства.

Для полевых транзисторов используются такие термины, как общий сток, общий исток и общий затвор, а для клапанов / трубок терминология включает общий катод, общий анод и общую сетку.

Конфигурация транзистора с общей базой

По алфавиту это первая конфигурация транзистора, но, вероятно, она будет использоваться с наименьшей вероятностью.

Эта конфигурация транзистора обеспечивает низкий входной импеданс при высоком выходном сопротивлении. Несмотря на высокое напряжение, коэффициент усиления по току невелик, а общий коэффициент усиления по мощности также невелик по сравнению с другими доступными конфигурациями транзисторов. Другой важной особенностью этой конфигурации является то, что вход и выход находятся в фазе.

Эта конфигурация транзистора, вероятно, используется меньше всего, но она дает преимущества, заключающиеся в том, что база, общая для входа и выхода, заземлена, и это дает преимущества в уменьшении нежелательной обратной связи между выходом и входом для различных приложений проектирования радиочастотных схем.Это происходит потому, что база, которая физически является электродом между эмиттером и коллектором, заземлена, тем самым обеспечивая барьер между ними.

В результате общая базовая конфигурация имеет тенденцию использоваться для усилителей RF, где повышенная изоляция между входом и выходом дает больший уровень стабильности и снижает вероятность нежелательных колебаний. Как подтвердит любой, кто занимается проектированием радиочастот, это очень полезный атрибут.

Кроме того, низкий входной импеданс часто может обеспечить хорошее согласование с сопротивлением 50 Ом, что является полезным атрибутом для многих сценариев проектирования ВЧ.

Конфигурация схемы общей базы транзистора

Общий коллектор (эмиттерный повторитель)

Конфигурация схемы общего коллектора, возможно, более широко известна как эмиттерный повторитель, потому что напряжение эмиттера следует за напряжением базы, хотя и ниже по напряжению на величину, равную напряжению включения базового эмиттерного перехода.

Общий коллектор, эмиттерный повторитель обеспечивает высокое входное сопротивление и низкое выходное сопротивление. Коэффициент усиления по напряжению равен единице, хотя коэффициент усиления по току велик.Входной и выходной сигналы синфазны.

Принимая во внимание эти характеристики, конфигурация эмиттерного повторителя широко используется в качестве буферной схемы, обеспечивающей высокий входной импеданс для предотвращения нагрузки предыдущего каскада и низкий выходной импеданс для управления следующими каскадами.

Конфигурация схемы общего коллектора транзистора

Как видно из схемы, в этой конфигурации транзистора коллекторный электрод является общим как для входных, так и для выходных цепей. Несколько дополнительных электронных компонентов используются с резистором для эмиттера, возможно, конденсаторами на входе и выходе и резисторами смещения на базе, если это необходимо.В некоторых случаях эмиттерный повторитель может быть напрямую соединен с предыдущим каскадом, поскольку выходное напряжение постоянного тока может быть подходящим для размещения цепью повторителя. Это означает, что требуется очень мало дополнительных электронных компонентов.


Конфигурация транзистора с общим эмиттером

Эта конфигурация транзисторов, вероятно, является наиболее широко используемой. Схема обеспечивает средний уровень входного и выходного сопротивления. Прирост как по току, так и по напряжению можно описать как средний, но выход является обратным входу, т.е.е. Изменение фазы на 180 °. Это обеспечивает хорошую общую производительность и поэтому часто является наиболее широко используемой конфигурацией.

Конфигурация схемы общего эмиттера транзистора

Как видно из схемы, в этой конфигурации транзистора эмиттерный электрод является общим как для входных, так и для выходных цепей.


Сводная таблица конфигурации схемы транзистора

В таблице ниже приведены основные характеристики различных конфигураций транзисторов.При разработке транзисторной схемы важным аспектом является не только усиление, но и такие параметры, как входное и выходное сопротивление.


Сводная таблица конфигурации транзисторов
Конфигурация транзистора Общая база Общий коллектор
(эмиттерный повторитель)
Общий эмиттер
Коэффициент усиления напряжения Высокая Низкая Средний
Коэффициент усиления по току Низкая Высокая Средний
Прирост мощности Низкая Средний Высокая
Соотношение фаз вход / выход 0 и град. 0 ° 180 °
Входное сопротивление Низкая Высокая Средний
Выходное сопротивление Высокая Низкая Средний

Дополнительные электронные компоненты

Какая бы форма подтверждения транзистора ни была выбрана на этапе проектирования электронной схемы, вокруг транзистора потребуются дополнительные компоненты: резисторы для установки точек смещения и конденсаторы для обеспечения связи и развязки.

Схема транзистора с общим эмиттером, показывающая дополнительные компоненты, необходимые для обеспечения смещения, связи и развязки и т. Д.

В этой схеме усилителя с общим эмиттером базовая конфигурация устанавливает основные условия схемы: среднее входное сопротивление, среднее выходное сопротивление, приемлемое напряжение усиление и тому подобное. Затем рассчитываются дополнительные электронные компоненты, чтобы обеспечить требуемые рабочие условия сверх указанных.

Каждый из электронных компонентов должен быть рассчитан на этапе проектирования электронной схемы, чтобы обеспечить требуемые характеристики.

Хотя общий эмиттер, вероятно, будет чаще всего встречаться с электронными компонентами, такими как резисторы и конденсаторы, при использовании для проектирования ВЧ-схемы в схему также могут быть включены такие компоненты, как индукторы и трансформаторы. То же самое верно и для других конфигураций транзисторных схем.

Наиболее часто используемая конфигурация схемы — это общий эмиттер — он используется для многих каскадов усилителя, обеспечивающих усиление по напряжению. Эмиттерный повторитель или общий коллектор также широко используется.Обеспечивая высокий входной импеданс и низкий выходной импеданс, он действует как буфер и обеспечивает только усиление по току — его усиление по напряжению равно единице. Общая база используется в более специализированных приложениях и заметно меньше.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы».. .

Как работает транзисторная схема

Хотя транзистор — очень старое устройство. И в настоящее время мы часто предпочитаем использовать вместо этого IC.

Но транзистор по-прежнему играет важную роль в общих электронных схемах. Почему? Потому что транзистор большой, прочный и может пропускать большие токи.

И для многих людей, привыкших к использованию транзисторов в общих схемах, я тоже.

Есть ли у вас повод. Позвольте мне просто объяснить вам, как работает транзисторная схема.Кроме того, я узнаю это вместе с вами.

Вы готовы?

Транзистор является активным устройством. Он усиливается. Есть много типов транзисторов, более 20000 различных типов от сотен для производителей.

Тип транзистора

Мы можем поместить их в два типа стандартных транзисторов, NPN и PNP. Которые у них разные символы.

Знак показывает класс полупроводниковых материалов, из которых изготовлен транзистор.

В настоящее время в основном используются транзисторы NPN-типа.

Так как это легко делается из кремниевых материалов.

Итак, в большей части этой статьи упоминается транзистор типа NPN.

А если мы новичок в электронике. Хорошо начинать с обучения. Сначала об использовании транзисторов.

Вывод транзистора состоит из базы (B), коллектора (C) и эмиттера (E).

Слово, которое называет эту ногу. Представляет функцию внутри транзистора. Но это не помогает понять, как использовать транзисторы. Следовательно, он знает только, что это вывод транзистора.

Помимо стандартных транзисторов (биполярных), есть полевой транзистор. Часто они представлены аббревиатурой FET. Символы и свойства разные. Но пока не обсуждали подробности в этой статье.

Рекомендуется: Транзисторы — сделайте усилитель или схему переключения

Изучите основной ток транзистора

Тип, который мы будем изучать, также называется малосигнальным транзистором. Мы можем называть их именно моделью ТО-92. Посмотрите на рисунок.Мы часто используем транзисторы группы 3.

Какие ножки используются по-разному. Следует соблюдать осторожность при использовании.

  • BC547: Для NPN вы можете использовать BC546, BC547, BC549, BC550 и т. Д. Если вам нужен более высокий ток Ic, используйте BC337 (Ic = 0,8 А). Для типов PNP используйте BC556, BC557, BC558, BC559, BC560 и т. Д. И более высокий ток — BC327 (Ic = 0,8 A)
  • C9013 : Для NPN вы можете использовать 2N3904. Если вам нужен более высокий ток коллектора (Ic), используйте C9013 (Ic = 0.8A) Для типов PNP используйте 2N3906 и C9012 (более высокий ток)
  • C1815: Для NPN — 2SC1815, эквиваленты: C945, C829. Для PNP это A561

. Посмотрите на часто используемые силовые транзисторы ниже. Узнаем следующее.

Читать дальше: Символы транзисторов

Что еще? мы будем ток в базовой транзисторной схеме.

Посмотрите на рисунок. Транзистор NPN имеет простую схему.

Когда мы подаем небольшой ток на базу транзистора.Затем через нагрузку к выводам коллектор-эмиттер протекает большой ток.

Нагрузку на коллекторе мы часто называем нагрузочным резистором. Иногда в нагрузку выступает динамик.

Меня беспокоит, как вы понимаете простые транзисторы. Раньше мне было трудно это понять. Прочитал текст много раз, но ничего не понял.

Эквивалентный транзистор

Аналогичный список для MPS9682 — BC557. Но распиновка другая. Так что будьте осторожны. Сначала проверьте это!

Транзистор работает как водяной клапан

Сравниваем транзисторы как водяные клапаны.Мы можем контролировать большую мощность подачи воды на выход при низком уровне воды.

  • Начало водопровода (Вход) похоже на Коллектор.
  • Конец водопровода (Вход) похож на Эмиттер.
  • Контрольная (малая) труба похожа на Основание.

Сначала паводок поступает на клапан входной стороны. Затем низкий уровень воды достигает контрольного значения. Получается главное значение. Далее паводок может течь по трубе к выходу.

Во-вторых, напротив, нет низкого уровня воды в регулирующем клапане.Он не поворачивает клапан для контроля паводка. Значит, воды на выходе нет.

Основные принципы

В общем, мы можем разделить рабочий диапазон транзистора на 3 диапазона:

1. Cut off (останов транзистора).

Отсутствует ток, как базовый (IB), так и коллекторный (IC), протекающий через транзистор. Но будут некоторые токи утечки, очень низкие.

2. Насыщенный диапазон.

Электричество проходит через транзистор полностью, пока не станет насыщенным.И ток больше этого не увеличится. Что мы можем ограничить этот ток подключением резисторов.

3. Активный диапазон

Это период, в течение которого транзистор работает или проводит ток. Управляя током коллектора (IC), пропорциональным току базы (IB).

Итак, при использовании транзисторного усилителя звука схема работает в активной фазе.

Вы поняли?

Экспериментируйте с транзистором тока

Кроме того, я систематически разбираюсь в транзисторах посредством экспериментов.Может, я тебе нравлюсь. Приступим к эксперименту.

Посмотрите:

Схема на простом транзисторе тока

Это простая схема. Который мы используем для проверки тока, протекающего через транзистор. В этой схеме мы используем красные светодиоды размером 0,5 мм. И NPN-транзистор с низким энергопотреблением (например, BC108, BC182 или BC548).

Вот пошаговый процесс работы транзисторной схемы.

Малый базовый ток контролирует высокий ток коллектора.

S1 замкнут.Ток протекает через R1, LED1 на базу транзистора.

Это базовый ток. Пока LED1 тоже тускнеет.

Затем транзистор будет усиливать слабый ток, так что ток течет через коллектор (C) к эмиттеру (E).

Коллекторный ток достаточно велик, чтобы сделать светодиод C очень ярким.

Когда выключатель S1 разомкнут. Нет базовых текущих потоков. Таким образом, транзистор отключит ток коллектора. Оба светодиода погаснут.

Часто мы используем транзистор для усиления тока и переключаемся.

Схема с эмиттером (E) в токе базы и токе коллектора. Мы назвали эмиттер синфазным режимом. Схема транзистора работает так, как это широко используется. Итак, мы должны сначала изучить это.

Рабочая модель и структура транзистора NPN

Я расстроен, потому что не могу легко объяснить вам внутреннюю структуру транзистора NPN.

Впрочем, попробую сравнить с диодом и переменным резистором. Это может помочь вам легче понять.

Посмотрите на ниже.

Вот пошаговый процесс.

  • Соединение база-эмиттер похоже на диод.
  • Базовый ток IB протекает только тогда, когда напряжение VBE между базой-эмиттером составляет 0,7 В или более.
  • Крошечный базовый ток (IB) контролирует высокие токи коллектора.
  • IC = hFE × IB (если транзистор полностью не активен и не насыщен)
  • hFE — это коэффициент усиления по току (при усилении по постоянному току). Нормальное значение hFE — 100 (единицы измерения нет, потому что это соотношение).
  • Сопротивление между коллектором-эмиттером (RCE) регулируется током базы (IB):
    • IB = 0 RCE = бесконечное значение. Транзистор (выключен)
    • Меньше IB, меньше RCE, транзистор включается только частично
    • IB добавлен. RCE = 0. Транзистор работает (включен) полностью (насыщен)

Дополнительные примечания:

  • Необходимо подключить последовательный резистор к базе. Для ограничения тока базы IB и предотвращения повреждения транзистора.
  • Транзистор имеет самый высокий ток коллектора IC.
  • Коэффициент усиления по току hFE может иметь разные значения. Хоть он и однотипный.
  • Транзистор, который полностью включен (включен) (когда RCE = 0), называется насыщенным.
  • Когда транзистор насыщен Напряжение эмиттер-коллектор VCE снижается до 0В.
  • И транзистор насыщен, ток коллектора IC определяется напряжением, питанием и внешним сопротивлением в цепи коллектора.

    Не связано с усилением транзистора по току.

    По этой причине отношение IC / IB для насыщенных транзисторов меньше, чем коэффициент усиления по току hFE.

  • Ток эмиттера IE = IC + IB, но IC намного больше, чем IB.

Пара транзисторов Дарлингтона

Два транзистора подключены, как показано.

Он заставляет ток, усиленный первым, усиливаться вторым транзистором.

Текущее усиление равно усилению каждого из них, умноженному вместе:

Текущее усиление пары Дарлингтона hFE = hFE1 × hFE2
(hFE1 и hFE2 — усиление каждого транзистора).

По этой причине пара Дарлингтона имеет очень высокий коэффициент усиления по току, например 10000. Поэтому мы используем только небольшой базовый ток, чтобы позволить паре Дарлингтона переключаться.

Пара Дарлингтона вместо одного транзистора с очень высоким коэффициентом усиления по току. Также имеет три ножки (B, C и E), что эквивалентно ножкам одного транзистора.

Мы можем использовать пару Дарлингтона, работает хорошо.

Путем подачи напряжения 0,7 В между базой-эмиттером (VBE) обоих последовательно соединенных транзисторов.Поэтому для включения им требуется напряжение 1,4 В.

Эксперимент со схемой сенсорного переключателя

Схема транзистора работает, поскольку пара Дарлингтона весьма чувствительна к небольшим токам, протекающим через нашу кожу. Таким образом, можно использовать для создания схемы сенсорного переключателя, как показано на схеме.

В этой схеме используются два маломощных транзистора общего назначения.

Когда мы касаемся его, загорается светодиод.

Резистор 100 кОм используется для ограничения тока базы.

Также ознакомьтесь с этими статьями (используя Дарлингтона):

Использование транзистора в качестве переключателя

Когда мы используем транзистор в качестве переключателя. Он выключится (ВЫКЛ) или включится (ВКЛ).

При напряжении (ВКЛ) VCE на транзисторе почти равен нулю. и мы называем это насыщенным транзистором. Потому что у него не может быть большего тока коллектора (IC).

Посмотрите на простую схему работы транзистора переключения ниже.

Устройство вывода, которое переключается этим транзистором. Вызывается нагрузка

Мощность, генерируемая переключающим транзистором, очень мала:

  • В состоянии ВЫКЛ .: мощность = IC × VCE, но IC = 0, поэтому мощность равна нулю.
  • В состоянии ON: мощность = IC × VCE, но VCE = 0 (большая часть), поэтому мощность очень мала.

Это означает, что используемый транзистор не нагревается. Итак, не учитывайте максимальную мощность.

Но важным показателем в схеме переключения является максимальный ток коллектора IC (макс.). И, минимальный коэффициент усиления по току hFE (мин).

Напряжение транзистора не учитывается. За исключением случаев, когда используется источник питания выше 15 В.

Читайте также: Схема переключения транзисторов в цифровых схемах

Защищенный диод

Если нагрузкой является двигатель, реле или соленоид (или другие устройства, представляющие собой катушку).Подключим диод к нагрузке. Для защиты транзисторной схемы работает (и ИМС), поврежденная при отключении нагрузки.

Посмотрите на электрическую схему.

На схеме показано подключение диода с обратным смещением. Которая обычно не проводит токи.

Он будет проводить ток только при отключении нагрузки.

В это время ток, который собирает энергию в катушке, будет пытаться протекать через катушку.

А, потому что транзистор в отключенном состоянии.Таким образом, ток протекает через диод.

Если в нем нет диода, ток не будет течь. Эта катушка будет производить выбросы высокого напряжения. Это опасно и пытается течь.

Когда следует использовать реле

Транзистор нельзя использовать для переключения переменного напряжения или высокого напряжения (например, сети переменного тока). И не подходит для переключения слишком большого тока (> 5А). ใน กรณี นี้ нам нужно использовать реле.

Но нам также необходимо использовать транзистор малой мощности для подачи тока на катушку реле.

Спасибо: Фото реле от Electrical Buddy

Преимущества реле:

  • Реле может переключать питание постоянного и переменного тока, транзистор может переключать только питание постоянного тока.
  • Может включать высоковольтную мощность, транзистор — нет.
  • Реле — лучший вариант для переключения на сильноточные (> 5А).
  • Реле может переключать несколько контактов одновременно.

Недостатки реле:

  • Реле слишком велико по сравнению с транзистором в малотоковом переключателе.
  • Реле не может переключаться со скоростью, транзистор может переключаться много раз в секунду.
  • Реле требует большей мощности Посмотрите на ток, протекающий через катушку.
  • Реле требует больше тока, чем может управлять ИС. Поэтому нам нужно использовать маломощный транзистор для переключения тока катушки реле.

Cr: Фото DC 12V Катушка 5 контактов Mini SPST Power Relay PCB

Кредит: https://electronicsclub.info Большое спасибо. Этот контент помогает мне понять.

Соединение транзистора с выходом микросхемы

Большинство выходов микросхемы не могут передавать большие токи. Значит, необходимо использовать транзистор. Для переключения токов, достаточно высоких для выходных устройств. Например, лампочки, двигатели, реле и т. Д.

За исключением таймера 555 IC, он обычно может обеспечивать ток до 200 мА.

Этого достаточно для устройств вывода, которым требуется небольшой ток. Как фонарик, зуммер или реле. Без помощи транзистора.

Посмотрите на принципиальную схему. Подключите транзистор к выходу микросхемы.

Резистор R1 предназначен для ограничения тока, протекающего через базу транзистора. И предотвратить повреждение.

Однако R1 должен быть достаточно низким, чтобы обеспечить насыщение транзистора, предотвращая перегрев.

Это важно, если переключаются транзисторы с большим током (> 100 мА). Самый безопасный способ — ток базы (IB) должен быть в 5 раз выше, чем ток, насыщающий транзистор.

Вы поняли? Прочитав больше, вы почувствуете себя более ясным.

Выбор подходящего NPN-транзистора

На принципиальной схеме показано подключение NPN-транзистора. Эта схема переключится на нагрузку, когда на выходе IC будет высокий уровень (+ V).

С другой стороны, если вы хотите продолжить загрузку, когда выход IC низкий (0 В), посмотрите на схему транзистора PNP ниже.

Следующие шаги объясняют, как выбрать подходящий переключающий транзистор.

  • Максимальный ток коллектора (IC max) транзистора должен превышать ток нагрузки.

    Мы можем найти ток нагрузки (LC) = напряжение питания (VS) / сопротивление нагрузки. или

    Например, мы используем лампочку 12В 3Вт. Он использует ток
    = 1 Вт / 12 В = 0,083 А. Таким образом, мы используем IC макс более 0,1 А или 100 мА.

  • Минимальный ток усиления, hFE (min) транзистора, должен как минимум в 5 раз превышать ток нагрузки IC, деленный на максимальный выходной ток IC (микросхемы).
  • Рассчитайте приблизительное значение для резистора базы:
    R1 = 0.2 × RL × hFE или
    R1 = (Vs × hFE) (5 × IC)

Выбор правильного транзистора PNP

Посмотрите на принципиальную схему, показывающую подключение транзистора PNP.

Эта схема будет переключаться в сторону нагрузки, когда выход IC низкий (0 В).

Загрузить это

Все полноразмерные изображения этого сообщения в формате PDF находятся в электронной книге. Спасибо, поддержка. 🙂

Процедура выбора подходящего транзистора PNP аналогична выбору транзистора NPN, описанному выше.

Кроме того, мы можем использовать транзисторы разными способами. Узнать больше:

Вот несколько связанных сообщений, которые вы, возможно, захотите прочитать:

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Параллельное соединение двух или более транзисторов

Параллельное соединение транзисторов — это процесс, в котором идентичные выводы двух или более транзисторов соединяются вместе в схему для увеличения допустимой мощности комбинированного набора параллельных транзисторов.

В этом посте мы узнаем, как безопасно подключить несколько транзисторов параллельно, это могут быть биполярные транзисторы или МОП-транзисторы, мы обсудим и то, и другое.

Зачем нужен параллельный транзистор

При создании силовых электронных схем правильная конфигурация силового выходного каскада становится очень важной. Это включает в себя создание силового каскада, который может обрабатывать большую мощность с наименьшими усилиями. Обычно это невозможно при использовании отдельных транзисторов, и требуется, чтобы многие из них были подключены параллельно.

Эти каскады в основном могут состоять из силовых устройств, таких как силовые транзисторы BJT или MOSFET. Обычно одинарных BJT становится достаточно для получения умеренного выходного тока, однако, когда требуется более высокий выходной ток, возникает необходимость добавить большее количество этих устройств вместе. Поэтому возникает необходимость в параллельном подключении этих устройств. Хотя использование одинарных BJT относительно проще, их параллельное соединение требует некоторого внимания из-за одного существенного недостатка, связанного с характеристиками транзисторов.

Что такое «тепловой разгон» в BJT

Согласно их спецификациям, транзисторы (BJT) должны работать в достаточно более холодных условиях, чтобы их рассеиваемая мощность не превышала максимальное указанное значение. И поэтому мы устанавливаем на них радиаторы, чтобы соблюсти вышеуказанный критерий.

Более того, BJT имеют характеристику отрицательного температурного коэффициента, которая заставляет их увеличивать скорость проводимости пропорционально увеличению температуры их корпуса.

Поскольку температура корпуса имеет тенденцию к увеличению, ток через транзистор также увеличивается, что приводит к дальнейшему нагреву устройства.

Процесс превращается в своего рода цепную реакцию, быстро нагревая устройство до тех пор, пока оно не станет слишком горячим, чтобы поддерживать его работу, и не повредит. В транзисторах такая ситуация называется тепловым разгоном.

Когда два или более транзистора соединены параллельно, из-за их немного разных индивидуальных характеристик (hFE) транзисторы в группе могут рассеиваться с разной скоростью, некоторые немного быстрее, а другие немного медленнее.

Следовательно, транзистор, который может пропускать через него немного больший ток, может начать нагреваться быстрее, чем соседние устройства, и вскоре мы можем обнаружить, что устройство, входящее в ситуацию теплового разгона, повреждает себя и впоследствии передает явление на остальные устройства. а также в процессе.

Ситуация может быть эффективно решена путем добавления резистора небольшого номинала последовательно с эмиттером каждого транзистора, подключенного параллельно.Резистор подавляет и контролирует величину тока, проходящего через транзисторы, и никогда не позволяет ему достигать опасного уровня.

Значение должно быть соответствующим образом рассчитано в соответствии с величиной тока, проходящего через них.

Как подключается? См. Рисунок ниже.

Как рассчитать резистор, ограничивающий ток эмиттера в параллельных BJT

На самом деле это очень просто и может быть рассчитано с использованием закона Ома:

R = V / I,

Где V — напряжение питания, используемое в цепи, а «I» может составлять 70% максимальной пропускной способности транзистора по току.

Например, предположим, что если вы использовали 2N3055 для BJT, поскольку максимальная пропускная способность устройства по току составляет около 15 ампер, 70% от этого будет около 10,5 А.

Следовательно, если V = 12 В, тогда

R = 12 / 10,5 = 1,14 Ом

Расчет базового резистора

Это можно сделать по следующей формуле

Rb = (12 — 0,7) hFE / ток коллектора (Ic)

Предположим, что hFE = 50 , Ток нагрузки = 3 ампера, вышеприведенная формула может быть решена следующим образом:

Rb = 11.3 x 50/3 = 188 Ом

Как избежать использования эмиттерных резисторов в параллельных BJT

Хотя использование ограничителей тока эмиттера выглядит хорошо и технически правильно, более простым и разумным подходом может быть установка BJT на обычный радиатор с большим количеством радиаторной пасты, нанесенной на их контактные поверхности.

Эта идея позволит вам избавиться от грязных эмиттерных резисторов с проволочной обмоткой.

Установка поверх общего радиатора обеспечит быстрое и равномерное распределение тепла и устранит опасную ситуацию теплового разгона.

Более того, поскольку предполагается, что коллекторы транзисторов должны быть параллельны и соединены друг с другом, использование слюдяных изоляторов больше не становится необходимым и делает вещи намного удобнее, поскольку корпус транзисторов подключается параллельно через сам металлический радиатор. .

Это как беспроигрышная ситуация … транзисторы легко соединяются параллельно через металлический радиатор, избавляются от громоздких эмиттерных резисторов, а также исключают ситуацию теплового разгона.

Параллельное подключение полевых транзисторов MOSFET

В предыдущем разделе мы узнали, как безопасно подключать транзисторы BJT параллельно. Когда дело доходит до полевых транзисторов, условия становятся полностью противоположными и в значительной степени в пользу этих устройств.

В отличие от BJT, МОП-транзисторы не имеют проблем с отрицательным температурным коэффициентом и, следовательно, не имеют ситуаций теплового разгона из-за перегрева.

Напротив, эти устройства демонстрируют характеристики с положительным температурным коэффициентом, что означает, что устройства начинают проводить менее эффективно и начинают блокировать ток по мере того, как он начинает нагреваться.

Таким образом, при параллельном подключении МОП-транзисторов нам не нужно ни о чем беспокоиться, и вы можете просто подключить их параллельно, независимо от каких-либо токоограничивающих резисторов, как показано ниже. Однако следует рассмотреть возможность использования отдельных резисторов затвора для каждого из МОП-транзисторов …. хотя это не слишком критично ..

Robots For Fun

Транзисторы

используются для увеличения мощности для управления мощными устройствами, такими как реле или двигатель.Транзисторы бывают разных форм, размеров и упаковок, как показано справа.

Независимо от того, как они выглядят, у всех транзисторов есть три соединения: эмиттер (E), база (B) и коллектор (C), как показано справа для упаковочного ящика T092B.

Однако идентификация трех соединений иногда сбивает с толку, потому что они различаются в зависимости от корпуса транзистора с идентификационными номерами, такими как TO18, TO92A, TO92B, TO3 и т. Д.как показано справа.

Независимо от их формы, размера или упаковки, все транзисторы делятся на категории NPN или PNP, где N означает отрицательный, а P — положительный.

Транзистор общего назначения NPN — это 3904 или 2N2222. Далее показан символ транзистора NPN. Типичное подключение NPN-транзистора показано справа.

Положительный сигнал на базу от управляющего контакта включит NPN-транзистор, позволяя отрицательным электронам течь от эмиттера к коллектору, тем самым включая светодиод.

Транзистор общего назначения PNP — это транзистор 3906. Далее показан символ транзистора PNP. Типичное подключение транзистора PNP показано справа.

Отрицательный сигнал на базу от управляющего контакта включает транзистор PNP, позволяя положительным протонам течь от эмиттера к коллектору, тем самым включая светодиод.

Может быть, вам понадобится еще более мощный транзистор. Транзисторы Дарлингтона являются универсальными и могут обрабатывать до:

  • 60 В, 80 В или даже 100 В постоянного тока
  • 5 ампер
  • 65 Вт мощности

Их соответствующие номера по каталогу:

  • TIP120 NPN для 60 В
  • TIP121 NPN для 80 В
  • TIP122 NPN на 100 В
  • TIP125 PNP для 60 В
  • TIP126 PNP для 80 В
  • TIP127 PNP на 100 В

Типичное подключение NPN-транзистора Дарлингтона показано справа.

Для управления любыми мощными устройствами, такими как динамик, двигатель или реле, с помощью ESP8266 (который представляет собой устройство с напряжением 3,3 В) нам необходимо использовать два транзистора, как показано справа.

Первый транзистор PNP 3906 действует как переключатель. Он включается отрицательным низким сигналом от ESP8266 к базе. Когда этот транзистор включен, положительный выходной сигнал с коллектора этого транзистора включается и управляет вторым транзистором NPN 3904 или TIP120.Этот второй транзистор действует как усилитель для управления высоковольтным устройством, например динамиком или двигателем.

Штифты PNP 3906 или NPN 3904 Штыри NPN TIP120


Какая связь между транзисторами и диодами?

Разница между транзисторами и диодами подобна разнице между яблоками и апельсинами; за исключением нескольких поверхностных сходств, они совершенно разные.Транзисторы получают питание через один набор соединений. Эта мощность изменит способ получения энергии через второй набор соединений. Диоды принимают питание через один терминал и отправляют его через другой, предотвращая обратное движение энергии через систему. Хотя транзисторы и диоды часто находятся в одном устройстве, они выполняют совершенно разные функции.

Хотя транзисторы и диоды работают совершенно по-разному, они кажутся очень похожими.Оба они состоят из парных выводов, подключенных к полупроводящему материалу. Оба они получают мощность через одно соединение и выпускают ее через другое, и оба вызывают небольшие изменения в этой мощности. На этом сходство между транзисторами и диодами заканчивается. Их внутренние операции совершенно разные, как и методы, для которых они используются.

Диод имеет два разъема — один для подачи питания, а другой — для его выхода.Между этими двумя соединителями находится полупроводниковый материал, обычно кремний. Кремний обрабатывается для передачи энергии от одного конца к другому. Этот процесс в сочетании с металлами, используемыми для изготовления разъемов, превращает диод в односторонний канал. Власть течет в одну сторону, но не может течь в другую.

Транзистор состоит из парных наборов соединений, связанных с разными цепями.На транзисторе всегда есть как минимум три таких разъема, и обычно они располагаются группами по два. Когда в системе нечетное количество соединений, по крайней мере, одно из соединений используется совместно несколькими цепями. Между этими разъемами находится полупроводниковый материал, похожий на материал диода. Когда одна цепь получает питание, она изменяет способ прохождения энергии через одну или несколько других цепей.

Использование транзисторов и диодов также различно.Транзисторы часто используются как переключатели. Когда устройство включается, оно посылает слабый сигнал на одну из схем транзистора. Это приведет к включению связанной цепи и питанию устройства. Кроме того, транзистор может таким же образом усиливать сигналы. Небольшой ток изменяет поток энергии к связанной цепи, увеличивая вывод текущих сигналов.

Диоды, как правило, представляют собой комбинированное устройство безопасности и модификации.Во-первых, мощность течет только в одном направлении, защищая устройства от перегрузок по мощности и обратных потоков. В дополнение к этой функции внутренний полупроводник позволяет одному диоду изменять форму энергии, протекающей через него. Это позволяет использовать различные формы модуляции мощности и преобразования одной формы мощности в другую.

Сравнение конфигураций транзисторов — Inst Tools

Транзистор имеет три вывода, а именно ., эмиттерные, базовые и коллекторные клеммы. Однако, когда транзистор должен быть включен в цепь, нам потребуется четыре вывода; два для входа и два для выхода. Эту трудность можно преодолеть, сделав один вывод транзистора общим как для входных, так и для выходных клемм. Вход подается между этой общей клеммой и одной из двух других клемм. Выходной сигнал получается между общим выводом и оставшимся выводом. Соответственно; транзистор может быть включен в цепь тремя способами:

( i ) соединение с общей базой

( i i ) соединение с общим эмиттером

( ii i ) подключение общего коллектора

Каждая схема подключения имеет свои преимущества и недостатки.Здесь можно отметить, что независимо от схемы подключения эмиттер всегда смещен в прямом направлении, а коллектор всегда имеет обратное смещение.

Сравнение подключений транзисторов

Ниже приводится сравнение различных характеристик трех соединений.

Сравнение усилителей CB, CE и CC

( i ) Цепь выключателя

Входное сопротивление ( r i ) цепи CB низкое, потому что I E высокое.Выходное сопротивление ( r o ) высокое из-за обратного напряжения на коллекторе. Он не имеет коэффициента усиления по току (α <1), но коэффициент усиления по напряжению может быть высоким. Схема CB используется редко. Единственным преимуществом схемы CB является то, что она обеспечивает хорошую устойчивость к повышению температуры.

( i i ) Цепь CE

Входное сопротивление ( r i ) цепи CE высокое из-за малого I B .Следовательно, r i для схемы CE намного выше, чем для схемы CB . Выходное сопротивление ( r o ) цепи CE меньше, чем у цепи CB . Текущее усиление цепи CE велико, потому что I C намного больше, чем I B . Коэффициент усиления по напряжению цепи CE больше, чем у схемы CB . Схема CE обычно используется, потому что она имеет наилучшее сочетание усиления по напряжению и по току.Недостатком схемы CE является то, что в цепи усиливается ток утечки, но можно использовать методы стабилизации смещения.

( ii i ) Цепь CC

Входное сопротивление ( r i ) и выходное сопротивление ( r o ) схемы CC соответственно высокое и низкое по сравнению с другими схемами. Нет усиления напряжения ( A v <1) в цепи CC .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *