Реактивное сопротивление емкости: Страница не найдена — ELQUANTA.RU

Содержание

Калькулятор импеданса конденсатора • Электротехнические и радиотехнические калькуляторы • Онлайн-конвертеры единиц измерения

Отметим, что величина импеданса идеального конденсатора равна его реактивному сопротивлению. Однако это не идентичные величины, так как между током и напряжением в емкостной цепи существует фазовый сдвиг. Для расчетов используются указанная ниже формула:

Здесь

XC — реактивное сопротивление конденсатора в омах (Ом) ,

ZLC — импеданс конденсатора в омах (Ом),

ω = 2πf — угловая частота в рад/с,

j — мнимая единица.

f — частота в герцах (Гц),

С — емкость в фарадах (Ф), и

Для расчета выберите единицы измерения и введите емкость и частоту. Импеданс конденсатора будет показан в омах.

График зависимости реактивного сопротивления конденсатора XC и текущего через него тока I от частоты f для нескольких величин емкости показывает обратную пропорциональную зависимость от частоты реактивного сопротивления

Конденсатор представляет собой пассивный электрический элемент с двумя выводами, состоящий, в основном, из двух электрических проводников, часто в форме тонких металлических пластин, разделенных диэлектриком, например, пластмассовой пленкой, керамикой, бумагой или даже воздухом. Конденсаторы используются для хранения энергии в форме электрического заряда.

Если незаряженный конденсатор подключить к источнику постоянного напряжения, он заряжается до приложенного напряжения и его зарядный ток экспоненциально уменьшается от максимального значения в начальной точке заряда до нуля. В то же время, напряжение на конденсаторе увеличивается до напряжения источника постоянного тока.

Таким образом, когда напряжение на конденсаторе становится максимальным, ток через него достигает минимума. Скорость изменения тока определяется постоянной времени цепи, в которую включен конденсатор. Полностью заряженный конденсатор блокирует ток и действует как временный накопитель энергии.

Идеальный конденсатор поддерживает полный заряд в течение неограниченно долгого времени даже в том случае, если отключить источник постоянного напряжения. Однако в реальной жизни конденсаторы, особенно электролитические, не могут хранить энергию постоянно, так как у них имеется относительно низкое сопротивление утечки и, следовательно, большой ток утечки.

Если к конденсатору приложить синусоидальное напряжение, он заряжается сначала в одном направлении, а затем в противоположном. Полярность его заряда изменяется со скоростью изменения переменного напряжения. Как уже упоминалось выше, когда напряжение достигает максимума, ток становится минимальным и когда напряжение достигает минимума, ток достигает максимума. Ток через конденсатор пропорционален скорости изменения напряжения, причем ток максимален, когда напряжение изменяется быстрее всего, а это происходит, когда синусоида напряжения пересекает нулевую точку. На рисунке показан график напряжения на конденсаторе, заряда на нем и протекающего через него тока выглядит.

В чисто емкостной цепи величина тока зависит от скорости изменения напряжения. Ток заряжает конденсатор и когда ток медленно понижается до нуля, конденсатор полностью заряжен и напряжение на нем достигает максимума. VC — напряжение, QC — заряд, IC — ток, φ = –90° = –π/2 — фазовый сдвиг. 1 — конденсатор начинает заряжаться, ток достиг положительного максимума, скорость его изменения нулевая и напряжение на конденсаторе, а также его заряд — нулевые; 2 — конденсатор полностью заряжен, ток через него равен нулю, скорость его изменения в этот момент максимальна, а напряжение на конденсаторе и его заряд в этот момент максимальны и положительны; 3 — конденсатор заряжается в противоположном направлении, ток через него достиг отрицательного максимума, скорость его изменения нулевая, напряжение и заряд конденсатора также нулевые; 4 — конденсатор полностью заряжен, ток через него нулевой, скорость его изменения максимальна, а заряд и напряжение на конденсаторе достигли своих отрицательных максимумов

Как мы видим, напряжение на конденсаторе отстает от тока в нем по времени и фазе на 90°, так ток должен течь достаточно долго, чтобы на конденсаторе возник заряд и, соответственно, возросло напряжение. Можно также сказать, что ток опережает напряжение. Величина этого опережения зависит от соотношения величин реактивного сопротивления и активного сопротивления в цепи. Если сопротивления в цепи нет, то отставание (опережение) будет на 90° (ток нулевой, когда напряжение максимально). Этот угол называется фазовым сдвигом.

Аналогичное явление можно наблюдать и в природе. Сравните: Солнце светит сильнее всего в астрономический полдень (солнечный свет — напряжение), однако самая жаркая часть дня обычно бывает через несколько часов после полудня (температура — ток). Или другой пример. День зимнего солнцестояния в северном полушарии (самый короткий день) — в конце декабря, однако самые холодные месяцы еще впереди. В зависимости от того, где вы живете, это будет январь или февраль. Вспомните поговорку «Солнце — на лето, зима — на мороз». Это как раз о поведении емкости, только в природной аналогии. Такой сезонный «сдвиг фаз» или отставание вызван поглощением энергии Солнца огромными массами воды в океанах. Они отдадут эту запасенную энергию, но позже — точно так же, как это делают конденсаторы.

День зимнего солнцестояния

Рассчитанный этим калькулятором импеданс представляет собой меру сопротивления конденсатора пропускаемому через него сигналу на определенной частоте. Емкостное реактивное сопротивление обратно пропорционально частоте приложенного переменного напряжения. Приведенные выше формула и график показывают, что реактивное сопротивление конденсатора XС мало при высоких частотах и велико при низких частотах (катушки индуктивности ведут себя с точностью до наоборот). При нулевой частоте (при постоянном напряжении) емкостное реактивное сопротивление становится бесконечно большим и прерывает протекающий ток. С другой стороны, при очень высоких частотах конденсатор проводит очень хорошо — отсюда правило, которое мы выучили в школе: конденсаторы не пропускают постоянный ток и пропускают переменный. Если частота очень высокая, конденсаторы пропускают сигнал очень хорошо.

Импеданс измеряется в омах, так же, как и сопротивление. Импеданс мешает прохождению электрического тока так же, как и сопротивление, и показывает как сильно конденсатор противодействует прохождению тока через него. Но тогда возникает вопрос: в чем же разница между импедансом и сопротивлением? А разница заключается в зависимости импеданса от частоты приложенного сигнала. Сопротивление от частоты не зависит, а импеданс конденсаторов от частоты зависит. С увеличением частоты импеданс конденсатора уменьшается и наоборот.

Этот калькулятор предназначен для расчета импеданса идеальных конденсаторов. Реальные конденсаторы всегда имеют некоторую индуктивность и сопротивление. Для расчета импеданса реальных конденсаторов пользуйтесь калькулятором импеданса RLС-цепей.

Конденсаторы советского производства, выпущенные в конце 60-х гг. прошлого века

Автор статьи: Анатолий Золотков

Индуктивность и емкость в цепи переменного тока

Изменения силы тока, напряжения и э. д. с. в цепи переменного тока происходят с одинаковой частотой, но фазы этих изменений, вообще говоря, различны. Поэтому если начальную фазу силы тока условно принять за нуль, то начальные фазы напряжения и э. д. с. соответственно будут иметь некоторые значения ϕ и ψ. При таком условии мгновенные значения силы тока, напряжения и э. д. с. будут выражаться следующими формулами:

i = Iм sin ωt,    (26.8)

u = Uм sin (ϕ + ωt),    (26.9)

e = Ɛm sin (ψ + ωt).    (26.10)

Сопротивление цепи, которое обусловливает безвозвратные потери электрической энергии на тепловое действие тока, называют активным. Это сопротивление для тока низкой частоты можно считать равным сопротивлению R этого же проводника постоянному току и находить по формуле (16.18):

R=(p0l/S)(1 + at).

В цепи переменного тока, имеющей только активное сопротивление, например в лампах накаливания, нагревательных приборах и т. п., сдвиг фаз между напряжением и током равен нулю, т. е. ϕ=0. Это означает, что ток и напряжение в такой цепи изменяются в одинаковых фазах, а электрическая энергия полностью расходуется на тепловое действие тока.

Включение в цепь переменного тока катушки с индуктивностью L проявляется как увеличение сопротивления цепи. Объясняется это тем, что при переменном токе в катушке все время действует э. д. с. самоиндукции, ослабляющая ток. Сопротивление XL, которое обусловливается явлением самоиндукции, называют индуктивным сопротивлением. Так как э. д. с. самоиндукции тем больше, чем больше индуктивность цепи и чем быстрее изменяется ток, то индуктивное сопротивление прямо пропорционально индуктивности цепи L и круговой частоте переменного тока ω:

ХL = ωL.             (26.11)

Влияние индуктивного сопротивления на силу тока в цепи наглядно иллюстрируется опытом, изображенным на рис. 26.6. При опускании ферромагнитного сердечника в катушку лампа гаснет, а при его удалении вновь загорается. Это объясняется тем, что индуктивность катушки сильно возрастает при введении в нее сердечника. Следует отметить, что напряжение на индуктивном сопротивлении опережает по фазе ток.

Постоянный ток не проходит через конденсатор, так как между его обкладками находится диэлектрик. Если конденсатор включить в цепь постоянного тока, то после зарядки конденсатора ток в цепи прекратится.

Пусть конденсатор включен в цепь переменного тока. Заряд конденсатора (q=CU) вследствие изменения напряжения непрерывно изменяется, поэтому в цепи течет переменный ток. Сила тока будет тем больше, чем больше емкость конденсатора и чем чаще происходит его перезарядка, т. е. чем больше частота переменного тока.

Сопротивление, обусловленное наличием электроемкости в цепи переменного тока, называют емкостным сопротивлением Хс. Оно обратно пропорционально емкости С и круговой частоте ω;

Хс = 1/ωС.       (26.12)

Из сравнения формул (26.11) и (26.12) видно, что катушки индуктивности представляют собой очень большое сопротивление для тока высокой частоты и небольшое для тока низкой частоты, а конденсаторы — наоборот. Напряжение на емкостном сопротивлении Ха отстает по фазе от тока.

Индуктивное XL и емкостное Хс сопротивления называют реактивными. В теории переменного тока доказывается, что при последовательном включении индуктивного и емкостного сопротивлений общее реактивное сопротивление равно их разности:

X = XL—XC        (26.13)

и имеет индуктивный характер при XL > Хс и емкостный характер при XL < Xc.

В заключение заметим, что средняя активная мощность переменного тока, показывающая, сколько энергии за единицу времени передается электрическим током данному участку цепи, определяется формулой:

P = IU cos ϕ.   (26.14)

Мощность, затрачиваемая только на тепловое действие тока, выражается формулой:

Р = I2R.              (26.15)

Из (26. 14) видно, что для увеличения активной мощности переменного тока нужно повышать cos ϕ. (Объясните, почему наибольшее значение cos ϕ имеет при XL=XC.)

Реактивное сопротивление емкости — FINDOUT.SU

где C — емкость в Фарадах.       f — частота в Герцах. π(пи) = 3,14

Определив величину реактивного сопротивления можно определить емкость по формуле

           

Этот метод измерения, при котором измеряются величины входящие в формулу, а затем рассчитывается нужная величина называется косвенным методом измерения.

Цель работы: Закрепить навыки работы с приборами по измерению тока и напряжения, освоить метод амперметра-вольтметра для измерения емкости, попрактиковатся в соединении деталей методом пайки.

1.Записать тему и зарисовать схему в тетрадку.

2.Собрать схему 1 если сопротивление ожидается маленьким а ток большим, или схему 2 если сопротивление велико а ток мал. Чем меньше емкость тем выше должна быть частота.

3.Плавно поднять напряжение переменного тока с генератора или источника питания до четких показаний амперметра и вольтметра.

4.Записать показания амперметра и вольтметра в тетрадь.

                      U(v) = ………………….

                        I(a) = ………………….

                     f(герц)=…………………

5.Рассчитать значение сопротивления по формуле и записать в тетрадь

                              

6.Активное сопротивление R у емкости очень велико, его можно не измерять.

7.Вычислить емкость конденсатора по формуле

8.Записать частоту переменного тока, напряжение, ток, результаты вычисления, получившееся значение емкости в тетрадь. Сравнить значение емкости, нанесенное на конденсаторе с получившимся значением.

Примечание: При выборе приборов следует учитывать максимальную частоту на которых они работают.

 

Вопросы:

1. Что такое емкость конденсатора, зависит ли она от частоты проходящего тока?

1. Можно ли сказать, что реактивное сопротивление конденсатора изменяется при увеличении его емкости? Если изменяется то как, растет или уменьшается?

2. Можно ли сказать, что активное сопротивление конденсатора изменяется при изменении частоты переменного тока?

3. Какая схема предпочтительна при большой частоте первая или вторая, почему?

4. Можно ли сказать, что общее сопротивление последовательно соединенных конденсаторов меньше сопротивления емкости любого их них?

 

Используемое оборудование

 

1. Амперметр (Ампервольтомметр) переменного тока — один.

2. Вольтметр (Ампервольтомметр) переменного тока — один.

3. Генератор сигналов переменного тока.

4. Калькулятор.

5. Конденсатор постоянной емкости неполярный — 1 штук

6. Соединительные концы.

7. Макетная плата.

8. Паяльник, припой, флюс.

 

 

 

ЛАБОРАТОРНАЯ РАБОТА 44

 

Закон Ома, использование его для измерений индуктивности методом амперметра-вольтметра.

 

Сведения из теории. Закон Ома гласит, что ток на участке электрической цепи прямо пропорционален напряжению на этом участке цепи и обратно сопротивлению участка цепи. Только для переменного тока учитывается полное сопротивление, которое обозначается буквой Z. Эта связь выражена формулой I = V(вольт) / Z (Ом) значит

Z = V(Вольт) / I(Ампер). Измерив ток и падение напряжения в цепи переменного тока можно определить полное сопротивление цепи Z. Этот метод измерения сопротивления изложен в предыдущей лабораторной работе. Активное сопротивление (R) и реактивное (Х) соединены в индуктивности последовательно, поэтому:

где R — активное сопротивление

измеряемое омметром на постоянном токе.

Реактивное сопротивление катушки индуктивности растет с увеличением частоты и индуктивности и равно X = 2 x π x L х f  

где L — индуктивность в Генри. f — частота в Герцах. π(пи) = 3,14

 Определив величину реактивного сопротивления можно определить индуктивность по формуле L = X(Ом) / (2 x π x f(Гц))

Цель работы: Закрепить навыки работы с приборами по измерению тока и напряжения, освоить метод амперметра-вольтметра для измерения индуктивности, попрактиковаться в соединении деталей методом пайки.

1. Записать тему и зарисовать схему в тетрадку.

2. Собрать схему 1 если сопротивление ожидается маленьким а ток большим, или схему 2 если сопротивление велико а ток мал. Чем меньше индуктивность, тем выше должна быть частота.

3. Плавно поднять напряжение переменного тока с генератора или источника питания до четких показаний амперметра и вольтметра.

4. Записать показания амперметра и вольтметра в тетрадь.

         U(v) = ………………….

          I(a) = ………………….

          f(герц)=…………………

5. Рассчитать значение сопротивления по формуле и записать в тетрадь        

                       

6. Измерить активное сопротивление R омметром и записать в тетрадь.

 7. Вычислить реактивное сопротивление индуктивности Х по формуле

                      

   

 

8.Вычислить индуктивность катушки по формуле:

Записать полученный результат в тетрадку.

Примечание:

При выборе измерительных приборов следует учитывать максимальную частоту их работы.

Вопросы:

1. Что называется индуктивностью?

2. Какие сопротивления цепи составляют полное сопротивление?

3. Что делать если напряжение так мало, что вольтметр измерить его не может ?

4. Почему сопротивление индуктивности переменному току называется реактивным, а постоянному — активным?

5. Изменяется ли реактивное сопротивление при изменении частоты переменного тока и если изменяется то почему?

6. Изменяется ли величина активного сопротивления с изменением частоты тока?

7. Чем отличается закон Ома для постоянного тока от переменного тока.

 

Используемое оборудование

 

1. Амперметр (Ампервольтомметр) переменного тока — один.

2. Вольтметр (Ампервольтомметр) переменного тока — один.

3. Генератор сигналов переменного тока.

4. Калькулятор.

5. Индуктивность — 1 шт.

6. Соединительные концы.

7. Макетная плата.

8. Паяльник, припой, флюс.

 

 

 

 

ЛАБОРАТОРНАЯ РАБОТА 45

 

Свойства параллельного колебательного контура. Практическое определение резонансной частоты. Амплитудно-частотная характеристика контура. Определение добротности и полосы пропускания колебательного контура.

Сведения из теории. Колебательный контур состоящий из параллельно соединенных емкости (C) и индуктивности (L) имеет частоту () собственных электромагнитных колебаний зависящую от индуктивности и емкости контура.

где π(пи) = 3,14

 Если источник переменного тока (генератор) подключенный к контуру дает ток с частотой равной частоте контура, то сопротивление параллельного контура переменному току резко возрастает, ток проходящий через контур уменьшается, падение напряжения на контуре тоже возрастает. При собственной частоте контура ток через конденсатор равен величине току через индуктивность и противоположен по направлению. Это состояние называется

резонансом токов, а частота резонансной частотой. При резонансной частоте уменьшаются потери электрической энергии в контуре. Отношение полного сопротивления контура (Z) току с резонансной частотой к своему активному сопротивлению(R) называется добротностью (Q) контура. Чем больше индуктивное сопротивление катушки, тем выше добротность контура, тем меньше потерь энергии в нем. Можно исследовать зависимость напряжения на контуре от значения частоты тока подаваемого на контур. С генератора подают переменные токи разной частоты через балластный резистор на контур и измеряют напряжения на контуре, а полученную зависимость называют амплитудно-частотной характеристикой
контура или АЧХ. По АЧХ судят о качестве контура и его резонансной частоте. Чем лучше добротность контура тем «уже» АЧХ контура. Добротность контура можно определить (приблизительно) графически отношением резонансной частоты к разнице частот на 0.7U max АЧХ. Вольтметр включен параллельно балластному резистору для исключения влияния его внутреннего сопротивления на добротность контура, но АЧХ получится обратной. Разность частот на уровне 0.7Umax называется полосой пропускания колебательного контура

 fп = fmax.п- fmin.п

Цель работы: Закрепить навыки работы с мультиметром по измерению напряжений, частоты с помощью частотомера и освоить методику построения графиков АЧХ по практическим измерениям, научиться определять резонансную частоту контура, добротность и полосу пропускания с помощью вольтметра и генератора.

1. Собрать колебательный контур, установив балластное сопротивление исходя из максимального тока генератора (Iмах) и напряжения на выходе (Uмах). 

Rб = Umax / Imax.

2.Подключить вольтметр в соответствии со схемой.

3.Изменяя частоту генератора найти момент наименьшего показания вольтметра.

4.Снять отсчет с шкалы частотомера в момент наименьшего показания вольтметра, записать в тетрадь частоту и напряжение.

5.Изменяя частоту генератора найти момент наибольшего показания вольтметра.

6.Снять отсчет с шкалы частотомера в момент наибольшего показания вольтметра, записать в тетрадь частоту и напряжение.

7.Определить шаг задания частоты (fmax-fmin)/10.

8.Изменяя частоту генератора от fmin до fmax+(fmax-fmin) пошагово записать показания вольтметра. Отсчет можно снимать с шкалы частотомера или генератора.

9.Построить АЧХ по записанным в таблице данным.

 

Частота f              
Амплитуда А              

 

 

 

9. Построить АЧХ, приблизительно определить

Q = fрез/(fmax.п-fmin.п)

ВОПРОС:

1. Что делать, если нет вольтметра?

2. Для чего необходимо балластное сопротивление?

3. Почему вольтметр не включен параллельно контуру?

4. Можно ли включить вольтметр параллельно контуру, если можно то при каком условии?

5. Равна ли собственная частота контура резонансной частоте?

6. Что называется добротностью контура?

7. Что такое «полоса пропускания» контура?

8. Как приблизительно оценить добротность по АЧХ?

9. Что называется резонансом в токов?

Используемое оборудование

1. Вольтметр (Ампервольтомметр) — один.

2. Измерительный генератор переменного тока — 1 шт

3. Калькулятор.

4. Резистор постоянный — 1 шт.

5. Индуктивность — 1 шт.

6. Конденсатор постоянной емкости — 1 шт.

7. Соединительные концы.

8. Макетная плата.

9. Паяльник, припой, флюс.

 

ЛАБОРАТОРНАЯ РАБОТА 46

 

Ёмкостное сопротивление. Емкостное сопротивление в цепи переменного тока

Емкостное сопротивление это сопротивление переменному току, которое оказывает электрическая емкость. Ток в цепи с емкостью опережает напряжение по фазе на 90 градусов. Емкостное сопротивление является реактивным, то есть потерь энергии в нем не происходит как, например, в активном сопротивлении. Емкостное сопротивление обратно пропорционально частоте переменного тока.

Проведем эксперимент, для этого нам понадобится. Конденсатор лампа накаливания и два источника напряжения один постоянного тока другой переменного. Для начала построим цепь, состоящую из источника постоянного напряжения, лампы и конденсатора все это включено последовательно.

Рисунок 1 — конденсатор в цепи постоянного тока

При включении тока лампа вспыхнет на короткое время, а потом погаснет. Так как для постоянного тока конденсатор имеет большое электрическое сопротивление. Оно и понятно ведь между обкладками конденсатора находится диэлектрик, через который постоянный ток не способен пройти. А вспыхнет лампа по тому, что в момент включения источника постоянного напряжения идет кратковременный импульс тока, заряжающий конденсатор. А раз ток идет значит и лампа светится.

Теперь в этой цепи заменим источник постоянного напряжения на генератор переменного. При включении такой цепи мы обнаружим, что лампа буде светится непрерывно. Происходит это по тому, что конденсатор в цепи переменного тока заряжается за четверть периода. Когда напряжение на нем достигнет амплитудного значения, напряжение на нем начинает уменьшаться, и он будет, разряжается следующие четверть периода. В следующие пол периода процесс повторится снова, но напряжение в этот раз уже будет отрицательным.

Таким образом, в цепи непрерывно течет ток хотя он и меняет при этом свое направление дважды за период. Но через диэлектрик конденсатора заряды не проходят. Как же это происходит.

Представим себе конденсатор, подключаемый к источнику постоянного напряжения. При включении, источник убирает электроны с одной обкладки, тем самым создавая на ней положительный заряд. А на второй обкладке добавляет электронов, создавая тем самым равный по величине, но противоположный по знаку отрицательный заряд. В момент перераспределения зарядов в цепи протекает ток заряда конденсатора. Хотя электроны при этом не движутся через диэлектрик конденсатора.

Рисунок 2 — заряд конденсатора

Если теперь из цепи исключить конденсатор, то лампа будет светить ярче. Это говорит о том, что емкость создает сопротивление, току ограничивая его величину. Происходит это из-за того что при заданной частоте тока значение ёмкости мало и она не успевает накопить достаточно энергии в виде зарядов на своих обкладках. И при разряде будет протекать ток меньше чем способен развить источник тока.

Опыт показывает, что если последовательно с лампочкой соединить конденсатор и подключить их к генератору постоянного напряжения, то лампочка не горит. Это понятно, так как обкладки конденсатора разделены диэлектриком, и цепь оказывается разомкнутой. При подключении конденсатора к источнику постоянного тока возникает кратковременный импульс тока, который зарядит конденсатор до напряжения источника, а затем ток прекратится. Но если эту цепь подключить к источнику переменного напряжения, то лампочка горит. Переменный ток представляет собой вынужденные электромагнитные колебания, происходящие под действием переменного электромагнитного поля генератора. При включении конденсатора в цепь переменного тока процесс его зарядки длится четверть периода. После достижения амплитудного значения напряжение между обкладками конденсатора уменьшается, и конденсатор в течение четверти периода разряжается. В следующую четверть периода конденсатор снова заряжается, но знак заряда на его обкладках изменяется на противоположный и т.д. Через диэлектрик, разделяющий обкладки конденсатора, как и в цепи постоянного тока, электрические заряды не проходят. Но по проводам, соединяющим обкладки конденсатора с источником напряжения, течет переменный ток разрядки и зарядки конденсатора. Поэтому лампочка, включенная последовательно с конденсатором, будет гореть непрерывно. Если теперь конденсатор отсоединить, то лампочка горит ярче. Следовательно, конденсатор оказывает переменному току сопротивление, которое называется емкостным сопротивлением .

Рассмотрим цепь (рис. 1), состоящую из конденсатора и подводящих проводов, сопротивление которых пренебрежительно мало, и генератора переменного напряжения.

Пусть напряжение на конденсаторе изменяется по закону \(~U = U_0\sin wt.\) Как известно, заряд на обкладках конденсатора можно определить по формуле \(~q = CU = CU_0\sin wt.\) Сила тока \(~I = q».\) Следовательно,

\(~I = -wCU_0\cos wt = wCU_0\sin(wt+\frac {\pi}2).\)

Отсюда \(~I=I_0\sin (wt +\frac {\pi}2),\)

где \(~I_0=wCU_o\) — амплитудное значение силы тока:

\(~I_0=\frac {U_0}{\frac 1{wC}}; I_0 =\frac {U_0}{X_C},\)

где \(~X_C = \frac 1{wC}.\)

Выразив амплитудные значения через действующие \(~I_0 = \sqrt2 I \) и \(~U_0 = \sqrt2 U,\) получим \(~I= \frac U{X_C}, \) т.е. действующее значение силы тока связано с деиству-Хс ющим значением напряжения на конденсаторе точно так же, как связаны согласно закону Ома сила тока и напряжение на участке цепи постоянного тока. Это позволяет рассматривать величину Х с как сопротивление конденсатора переменному току:

\(~X_C = \frac 1{wC}\) — емкостное сопротивление.

В СИ единицей емкостного сопротивления является ом (Ом).

Как видно из полученной выше формулы, если в цепи включено только емкостное сопротивление, колебания силы тока в этой цепи опережают по фазе колебания напряжения на конденсаторе на \(~\frac {\pi}2,\) что изображено на графике и на векторной диаграмме (рис. 2).

Мгновенная мощность

\(~P=IU = I_0\sin (wt +\frac {\pi}2)U_0\sin wt = I_0U_0\sin wt \cos wt =\frac {I_0U_0}2 \sin 2wt,\)

т.е. мощность периодически изменяется с двойной частотой, а среднее значение мощности — за период \(\mathcal h P \mathcal i =0,\) так как \(~\mathcal h \sin 2wt \mathcal i = 0.\) Первую и третью четверти периода, когда конденсатор заряжается, он получает энергию от генератора, а вторую и четвертую четверти периода, когда конденсатор разряжается, он отдает энергию генератору.

Таким образом, так же, как активное сопротивление, емкостное сопротивление ограничивает силу тока в цепи, но в отличие от активного сопротивления на емкостном сопротивлении электрическая энергия не превращается необратимо в другие виды энергии.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 402-404.

Реактивное сопротивление – электрическое сопротивление переменному току, обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах.

Элементы, обладающие реактивным сопротивлением, называют реактивными.

Реактивное сопротивление катушки индуктивности.

При протекании переменного тока I в катушке, магнитное поле создаёт в её витках ЭДС, которая препятствует изменению тока.
При увеличении тока, ЭДС отрицательна и препятствует нарастанию тока, при уменьшении — положительна и препятствует его убыванию, оказывая таким образом сопротивление изменению тока на протяжении всего периода.

В результате созданного противодействия, на выводах катушки индуктивности в противофазе формируется напряжение U , подавляющее ЭДС, равное ей по амплитуде и противоположное по знаку.

При прохождении тока через нуль, амплитуда ЭДС достигает максимального значения, что образует расхождение во времени тока и напряжения в 1/4 периода.

Если приложить к выводам катушки индуктивности напряжение U , ток не может начаться мгновенно по причине противодействия ЭДС, равного -U , поэтому ток в индуктивности всегда будет отставать от напряжения на угол 90°. Сдвиг при отстающем токе называют положительным.

Запишем выражение мгновенного значения напряжения u исходя из ЭДС (ε ), которая пропорциональна индуктивности L и скорости изменения тока: u = -ε = L(di/dt) .
Отсюда выразим синусоидальный ток .

Интегралом функции sin(t) будет -соs(t) , либо равная ей функция sin(t-π/2) .
Дифференциал dt функции sin(ωt) выйдет из под знака интеграла множителем 1.
В результате получим выражение мгновенного значения тока со сдвигом от функции напряжения на угол π/2 (90°).
Для среднеквадратичных значений U и I в таком случае можно записать .

В итоге имеем зависимость синусоидального тока от напряжения согласно Закону Ома, где в знаменателе вместо R выражение ωL , которое и является реактивным сопротивлением:

Реактивное сопротивлениие индуктивностей называют индуктивным.

Реактивное сопротивление конденсатора.

Электрический ток в конденсаторе представляет собой часть или совокупность процессов его заряда и разряда – накопления и отдачи энергии электрическим полем между его обкладками.

В цепи переменного тока, конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное. Следовательно, в моменты амплитудного значения напряжения на конденсаторе, ток в нём будет равен нулю. Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.

В результате ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току, обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.

Если приложить к конденсатору напряжение U , мгновенно начнётся ток от максимального значения, далее уменьшаясь до нуля. В это время напряжение на его выводах будет расти от нуля до максимума. Следовательно, напряжение на обкладках конденсатора по фазе отстаёт от тока на угол 90 °. Такой сдвиг фаз называют отрицательным.

Ток в конденсаторе является производной функцией его заряда i = dQ/dt = C(du/dt) .
Производной от sin(t) будет cos(t) либо равная ей функция sin(t+π/2) .
Тогда для синусоидального напряжения u = U amp sin(ωt) запишем выражение мгновенного значения тока следующим образом:

i = U amp ωCsin(ωt+π/2) .

Отсюда выразим соотношение среднеквадратичных значений .

Закон Ома подсказывает, что 1/ωC есть не что иное, как реактивное сопротивление для синусоидального тока:

Реактивное сопротивление конденсатора в технической литературе часто называют ёмкостным. Может применяться, например, в организации ёмкостных делителей в цепях переменного тока.

Онлайн-калькулятор расчёта реактивного сопротивления

Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.

Реактивное сопротивление ёмкости
X C = 1 /(2πƒC)

Конденсатор используется в схемах для разделения переменной и постоянной составляющей напряжения, при этом он хорошо проводит высокочастотный сигнал, и плохо — низкочастотный. Находясь в цепи постоянного тока, его импеданс принимается бесконечно большим. Для переменного тока ёмкостное сопротивление конденсатора не имеет постоянной величиной. Поэтому расчёт этого значения крайне важен при проектировании различных радиоэлектронных приборов.

Общее описание

Физически электронное устройство — конденсатор — представляет собой две обкладки, выполненные из проводящего материала, между которыми находится диэлектрический слой. С поверхности пластин выводятся два электрода, предназначенные для подключения в электрическую цепь. Конструктивно прибор может быть различного размера и формы, но его структура остаётся неизменной, то есть всегда происходит чередование проводящего и диэлектрического слоев.

Слово «конденсатор» произошло от латинского «condensatio» — «накопление». Научное определение гласит, что накопительный электрический прибор — это двухполюсник, характеризующийся постоянным и переменным значениями ёмкости и большим сопротивлением. Предназначен он для накопления энергии и заряда. За единицу измерения ёмкости принят фарад (F).

На схемах конденсатор изображается в виде двух прямых, соответствующих проводящим пластинам прибора, и перпендикулярно к их серединам нарисованными отрезками — выводами устройства.

Принцип действия конденсатора заключается в следующем : при включении прибора в электрическую цепь напряжение в ней будет иметь нулевую величину. В этот момент устройство начинает получать и накапливать заряд. Электрический ток, подающийся в схему, будет максимально возможным. Через некоторое время на одном из электродов прибора начнут накапливаться заряды положительного знака, а на другом — отрицательного.

Длительность этого процесса зависит от ёмкости прибора и активного сопротивления. Расположенный между выводами диэлектрик мешает перемещению частиц между обкладками. Но это будет происходить лишь до того момента, пока разность потенциалов источника питания и напряжение на выводах конденсатора не сравняются. В этот момент ёмкость станет максимально возможной, а электроток — минимальным.

Если на элемент перестают подавать напряжение, то при подключении нагрузки конденсатор начинает отдавать свой накопленный заряд ей. Его ёмкость уменьшается, а в цепи снижаются уровни напряжения и тока. Иными словами, накопительный прибор сам превращается в источник питания. Поэтому если конденсатор подключить к переменному току, то он начнёт периодически перезаряжаться, то есть создавать определённое сопротивление в цепи.

Важнейшей характеристикой накопительного прибора является ёмкость. От неё зависит время заряда при подключении устройства к источнику тока. Время разряда напрямую связано со значением сопротивления нагрузки: чем оно выше, тем быстрее происходит процесс отдачи накопленной энергии. Определяется эта ёмкость следующим выражением:

C = E*Eo*S / d, где E — относительная диэлектрическая проницаемость среды (справочная величина), S — площадь пластин, d — расстояние между ними.

Общее сопротивление конденсатора (импеданс) переменному сигналу складывается из трёх составляющих: ёмкостного, резистивного и индуктивного сопротивления. Все эти величины при конструировании схем, содержащих накопительный элемент, необходимо учитывать. В ином случае в электрической цепи, при соответствующей обвязке, конденсатор может вести себя как дроссель и находится в резонансе. Из всех трёх величин наиболее значимой является ёмкостное сопротивление конденсатора, но при определённых обстоятельствах индуктивное тоже оказывает влияние.

Полное сопротивление элемента выражается в формуле Z = (R2 + (Xl-Xc) 2) ½ , где

  • Xl — индуктивность;
  • Xс — ёмкость;
  • R — активная составляющая.

Последняя возникает из-за появления электродвижущей силы (ЭДС) самоиндукции. Непостоянство тока приводит к изменению магнитного потока, поддерживающего ток ЭДС самоиндукции постоянным. Это значение определяется индуктивностью L и частотой протекающих зарядов W. Xl = wL = 2*p*f*L. Xc — ёмкостное сопротивление, зависящее от ёмкости накопителя C и частоты тока f. Xc = 1/wC = ½*p*f*C, где w — круговая частота.

Разница между ёмкостным и индуктивным значениями называется реактивным сопротивлением конденсатора: X = Xl-Xc. По формулам можно увидеть, что при увеличении частоты f сигнала начинает преобладать индуктивное значение, при уменьшении — ёмкостное. Поэтому если:

  • X > 0, в элементе проявляются индуктивные свойства;
  • X = 0, в ёмкости присутствует только активная величина;
  • X

Активное сопротивление R связывается с потерями мощности, превращением её электрической энергии в тепловую. Реактивное — с обменом энергии между переменным током и электромагнитным полем. Таким образом, полное сопротивление можно найти, используя формулу Z = R +j*X, где j — мнимая единица.

Ёмкостное сопротивление

Для понимания процесса следует представить конденсатор в электрической цепи, по которой течёт переменный ток. Причём в этой цепи нет других элементов. Значение тока, проходящего через конденсатор, и напряжения, приложенного к его обкладкам, изменяется по времени. Зная любое из этих значений, можно найти другое.

Пускай ток изменяется по синусоидальной зависимости I (t) = Im * sin (w*t+ f 0). Тогда напряжение можно описать как U (t) = (Im/C*w) *sin (w*t+ f 0 -p/2). При учёте в формуле сдвига фаз на 90 градусов, возникающего между сигналами, вводится комплексная величина j, называемая мнимой единицей. Поэтому формула для нахождения тока будет выглядеть как I = U /(1/j*w*C). Но учитывая, что комплексное число только обозначает смещение напряжения относительно тока, а на их амплитудные значения не влияет, его можно убрать из формулы, тем самым значительно её упростив.

Так как по закону Ома сопротивление прямо пропорционально напряжению на участке цепи и обратно пропорционально току, то преобразуя формулы, можно будет получить следующее выражение:

  • Xc = 1/w*C = ½*p*f*C. Единица измерения — ом.

Становится понятно, что ёмкостное сопротивление зависит не только от ёмкости, но и от частоты. При этом чем больше эта частота, тем меньшее сопротивление конденсатор будет оказывать проходимому через него току. По отношению к ёмкости это утверждение будет обратным. Вот поэтому для постоянного тока, частота которого равна нулю, сопротивление накопителя будет бесконечно большим.

Индуктивная составляющая

При прохождении переменного сигнала через накопитель, его можно представить в виде последовательно включённой с источником питания катушки индуктивности. Эта катушка характеризуется большим сопротивлением в цепи переменного сигнала, чем постоянного. Значение силы тока в определённой точке времени находится как I = I 0 * sinw .

Приняв во внимание, что мгновенная величина напряжения U 0 обратна по знаку мгновенному значению ЭДС самоиндукции E 0, а также используя правило Ленца, можно получить выражение E = L * I, где L — индуктивность.

Следовательно: U = L*w * I 0 *cosw*t = U 0 *sin (wt + p /2) , причём ток отстаёт от напряжения на p /2. Используя закон Ома и приняв, что сопротивление катушки равно w * L, получится формула для участка электрической цепи, имеющая только индуктивную составляющую: U 0 = I 0 / w * L.

Таким образом, индуктивное сопротивление будет равно Xl = w * L, измеряется оно также в омах. Из полученного выражения видно, что чем больше частота сигнала, тем сильнее будет сопротивление прохождению тока.

Пример расчёта

Ёмкостное и индуктивное сопротивления относятся к реактивным, то есть таким, которые не потребляют мощности. Поэтому закон Ома для участка схемы с ёмкостью имеет вид I = U/Xc, где ток и напряжение обозначают действующие значения. Именно из-за этого конденсаторы используются в цепях для разделения не только постоянных и переменных токов, но и низкой и высокой частот. При этом чем ёмкость будет ниже, тем более высокой частоты сможет пройти ток. Если же последовательно с конденсатором включено активное сопротивление, то общий импеданс цепи находится как Z = (R 2 +Xc 2) ½ .

Практическое применение формул можно рассмотреть при решении задачи. Пусть имеется RC цепочка, состоящая из ёмкости C = 1 мкФ и сопротивления R = 5 кОм. Необходимо найти импеданс этого участка и ток цепи, если частота сигнала равна f = 50 Гц, а амплитуда U = 50 В.

В первую очередь понадобится определить сопротивление конденсатора в цепи переменного тока для заданной частоты. Подставив данные в формулу, получим, что для частоты 50 Гц сопротивление будет

Xc = 1/ (2*p*F*C) = 1/ (2*3,14*50*1* 10 −6) = 3,2 кОм.

По закону Ома можно найти ток: I = U /Xc = 50 /3200 = 15,7 мА.

Напряжение берётся изменяемым по закону синуса, поэтому: U (t) = U * sin (2*p*f*t) = 50*sin (314*t). Соответственно, ток будет I (t) = 15,7* 10 −3 + sin (314*t+p/2). Используя полученные результаты, можно построить график тока и напряжения при этой частоте. Общее сопротивление участка цепи находим как Z = (5000 2 +3200 2)½ = 5 936 Ом =5,9 кОм.

Таким образом, подсчитать полное сопротивление на любом участке цепи несложно. При этом можно воспользоваться и так называемыми онлайн-калькуляторами, куда вводят начальные данные, такие как частота и ёмкость, а все расчёты выполняются автоматически. Это удобно, так как нет необходимости запоминать формулы и вероятность ошибки при этом стремится к нулю.

Конденсаторы, как и резисторы, относятся к наиболее многочисленным элементам радиотехнических устройств. Основное свойство конденсаторов, это способность накапливать электрический заряд . Основной параметр конденсатора это его емкость .

Емкость конденсатора будет тем значительнее, чем больше площадь его обкладок и чем тоньше слой диэлектрика между ними. Основной единицей электрической емкости является фарада (сокращенно Ф), названная так в честь английского физика М. Фарадея. Однако 1 Ф — это очень большая емкость. Земной шар, например, обладает емкостью меньше 1 Ф. В электро- и радиотехнике пользуются единицей емкости, равной миллионной доле фарады, которую называют микрофарадой (сокращенно мкФ) .

Емкостное сопротивление конденсатора переменному току зависит от его емкости и частоты тока: чем больше емкость конденсатора и частота тока, тем меньше его емкостное сопротивление.

Керамические конденсаторы обладают сравнительно небольшими емкостями — до нескольких тысяч пикофарад. Их ставят в те цепи, в которых течет ток высокой частоты (цепь антенны, колебательный контур), для связи между ними.


Простейший конденсатор представляет собой два проводника электрического тока, например: — две металлические пластины, называемые обкладками конденсатора, разделенные диэлектриком, например: — воздухом или бумагой. Чем больше площадь обкладок конденсатора и чем ближе они расположены друг к другу, тем больше электрическая емкость этого прибора. Если к обкладкам конденсатора подключить источник постоянного тока, то в образовавшейся цепи возникнет кратковременный ток и конденсатор зарядится до напряжения, равного напряжению источника тока. Вы можете спросить: почему в цепи, где есть диэлектрик, возникает ток? Когда мы присоединяем к конденсатору источник тока, электроны в проводниках образовавшейся цепи начинают двигаться в сторону положительного полюса источника тока, образуя кратковременный поток электронов во всей цепи. В результате обкладка конденсатора, которая соединена с положительным полюсом источника тока, обедняется свободными электронами и заряжается положительно, а другая обкладка обогащается свободными электронами и, следовательно, заряжается отрицательно. Как только конденсатор зарядится, кратковременный ток в цепи, называемый током зарядки конденсатора, прекратится.

Если источник тока отключить от конденсатора, то конденсатор окажется заряженным. Переходу избыточных электронов с одной обкладки на другую препятствует диэлектрик. Между обкладками конденсатора тока не будет, а накопленная им электрическая энергия будет сосредоточена в электрическом поле диэлектрика. Но стоит обкладки заряженного конденсатора соединить каким-либо проводником «лишние» электроны отрицательно заряженной обкладки перейдут по этому проводнику на другую обкладку, где их недостает, и конденсатор разрядится. В этом случае в образовавшейся цепи также возникает кратковременный ток, называемый током разрядки конденсатора. Если емкость конденсатора большая, и он заряжен до значительного напряжения, момент его разрядки сопровождается появлением значительной искры и треска. Свойство конденсатора накапливать электрические заряды и разряжаться через подключенные к нему проводники используется в колебательном контуре радиоприемника.

Конденса́тор (от лат. condensare — «уплотнять», «сгущать») — двухполюсник с определённым значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками ), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок (см. рис.). Практически применяемые конденсаторы имеют много слоёв диэлектрика и многослойные электроды, или ленты чередующихся диэлектрика и электродов, свёрнутые в цилиндр или параллелепипед со скруглёнными четырьмя рёбрами (из-за намотки). Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.

С точки зрения метода комплексных амплитуд конденсатор обладает комплексным импедансом

,

Где j — мнимая единица, ω — циклическая частота (рад/с ) протекающего синусоидального тока, f — частота в Гц , C — ёмкость конденсатора (фарад ). Отсюда также следует, что реактивное сопротивление конденсатора равно: . Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).

Резонансная частота конденсатора равна

При f > f p конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах f p , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2-3 раза ниже резонансной.

Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора:

где U — напряжение (разность потенциалов), до которого заряжен конденсатор.

Сопротивления в цепи переменного тока. Индуктивное сопротивление. Емкостное сопротивление. Суммарное сопротивление. Реактивное сопротивление XL и XC

Если в цепь постоянного тока включить конденсатор (идеальный — без потерь), то в течение короткого времени после включения по цепи потечет зарядный ток. После того как конденсатор зарядится до напряжения, соответствующего напряжению источника, кратковременный ток в цепи прекратится. Следовательно, для постоянного тока конденсатор представляет собой разрыв цепи или бесконечно большое сопротивление.

Если же конденсатор включить в цепь переменного тока, то он будет заряжаться попеременно то в одном, то в другом направлении.

При этом в цепи будет проходить переменный ток. Рассмотрим это явление подробнее.

В момент включения напряжение на конденсаторе равно нулю. Если включить конденсатор к переменному напряжению сети, то в течение первой четверти периода, когда напряжение сети будет возрастать (рисунок 1), конденсатор будет заряжаться.

Рисунок 1. Графики и векторная диаграмма для цепи переменного тока, содержащей емкость

По мере накопления зарядов на обкладках конденсатора напряжение конденсатора увеличивается. Когда напряжение сети к концу первой четверти периода достигнет максимума, заряд конденсатора прекращается и ток в цепи становится равным нулю.

Ток в цепи конденсатора можно определить по формуле:

где q — количество электричества, протекающее по цепи.

Из электростатики известно:

q = C × u C = C × u ,

где C — емкость конденсатора; u — напряжение сети; u C — напряжение на обкладках конденсатора.

Окончательно для тока имеем:

Из последнего выражения видно, что, когда максимально (положения а , в , д ), i также максимально. Когда (положения б , г на рисунке 1), то i также равно нулю.

Во вторую четверть периода напряжение сети будет уменьшаться, и конденсатор начнет разряжаться. Ток в цепи меняет свое направление на обратное. В следующую половину периода напряжение сети меняет свое направление и наступает перезаряд конденсатора и затем снова его разряд. Из рисунка 1 видно, что ток в цепи с емкостью в своих изменениях опережает по фазе на 90° напряжение на обкладках конденсатора.

Сравнивая векторные диаграммы цепей с индуктивностью и емкостью, мы видим, что индуктивность и емкость на фазу тока влияют прямо противоположно.

Поскольку мы отметили выше, что скорость изменения тока пропорциональна угловой частоте ω, из формулы

получаем аналогично, что скорость изменения напряжения также пропорциональна угловой частоте ω и для действующего значения тока имеем

I = 2 × π × f × C × U .

Обозначая , где x C называется емкостным сопротивлением , или реактивным сопротивлением емкости . Итак мы получили формулу емкостного сопротивления при включении емкости в цепи переменного тока. Отсюда, на основании выражения закона Ома, мы можем получить ток для цепи переменного тока, содержащей емкость:

Напряжение на обкладках конденсатора

U C = I C × x C .

Та часть напряжения сети, которая имеется на конденсаторе, называется емкостным падением напряжения , или реактивной слагающей напряжения , и обозначается U C .

Емкостное сопротивление x C , так же как индуктивное сопротивление x L , зависит от частоты переменного тока.

Но если с увеличением частоты индуктивное сопротивление увеличивается, то емкостное сопротивление, наоборот, будет уменьшаться.

Пример 1. Определить емкостное реактивное сопротивление конденсатора емкостью 5 мкФ при разных частотах сетевого напряжения. Расчет емкостного сопротивления произведем при частоте 50 и 40 Гц:

при частоте 50 Гц:

при частоте 400 Гц:

Применим формулу средней или активной мощности для рассматриваемой цепи:

P = U × I × cos φ .

Так как в цепи с емкостью ток опережает напряжение на 90°, то

φ = 90°; cos φ = 0 .

Поэтому активная мощность также равна нулю, то есть в такой цепи, как и в цепи с индуктивностью, расхода мощности нет.

На рисунке 2 показана кривая мгновенной мощности в цепи с емкостью. Из чертежа видно, что в первую четверть периода цепь с емкостью забирает из сети энергию, которая запасается в электрическом поле конденсатора.


Рисунок 2. Кривая мгновенной мощности в цепи с емкостью

Энергию, запасаемую конденсатором к моменту прохождения напряжения на нем через максимум, можно определить по формуле:

В следующую четверть периода конденсатор разряжается на сеть, отдавая ей ранее запасенную в нем энергию.

За вторую половину периода явление колебаний энергии повторяется. Таким образом, в цепи с емкостью происходит лишь обмен энергией между сетью и конденсатором без потерь.

Рассмотрим электрическую цепь, содержащую резистор с активным сопротивлением R и конденсатор емкости C , подключенную к источнику переменной ЭДС (рис. 653).

рис. 653
 Конденсатор, подключенный к источнику постоянной ЭДС, полностью препятствует прохождения тока − за некоторый промежуток времени конденсатор заряжается, напряжение между его обкладками становится равным ЭДС источника, после чего ток в цепи прекращается. Если же конденсатор включен в цепь переменного тока, то ток в цепи не прекращается − фактически конденсатор периодически перезаряжается, заряды на его обкладках периодически изменяются как по величине, так и по знаку. Конечно, никакие заряды не протекают между обкладками, электрического тока в строгом определении между ними нет. Но, часто не вдаваясь в детали и не слишком корректно, говорят о токе через конденсатор, подразумевая под этим ток в цепи, к которой подключен конденсатор. Такой же терминологией будем пользоваться и мы.
 По-прежнему, для мгновенных значений справедлив закон Ома для полной цепи: ЭДС источника равна сумме напряжений на всех участках цепи. Применение этого закона к рассматриваемой цепи приводит к уравнению

здесь U R = IR − напряжение на резисторе, U C = q/C − напряжение на конденсаторе, q − электрический заряд на его обкладках. Уравнение (1) содержит три изменяющихся во времени величины (известную ЭДС, и пока неизвестные силу тока и заряд конденсатора), учитывая, что сила тока равна производной по времени от заряда конденсатора I = q / , это уравнение может быть точно решено. Так как ЭДС источника изменяется по гармоническому закону, то и напряжение на конденсаторе и сила тока в цепи также будут изменяться по гармоническим законам с той же частотой − это утверждение непосредственно следует и уравнения (1).
 Сначала установим связь между силой тока в цепи напряжением на конденсаторе. Зависимость напряжения от времени представим в виде

 Подчеркнем, что в данном случае напряжение на конденсаторе отличается от ЭДС источника, как будет видно из дальнейшего изложения, между этими функциями существует также и разность фаз. Поэтому при записи выражения (2), мы выбираем произвольную начальную фазу нулевой, при таком определении фазы ЭДС, напряжения на резисторе и силы тока отсчитываются относительно фазы колебаний напряжения на резисторе.
 Используя связь между напряжением и зарядом конденсатора, запишем выражение для зависимости последнего от времени

которое позволяет найти временную зависимость силы тока 1

на последнем шаге использована тригонометрическая формула приведения, для того, чтобы в явном виде выделить сдвиг фаз между током и напряжением.
 Итак, мы получили, что амплитудное значение силы тока через конденсатор связано с напряжением на нем соотношением

а также между колебаниями силы тока и напряжения существует разность фаз, равна Δφ = π/2 . Эти результаты суммированы на рис. 654, где также представлена векторная диаграмма колебаний силы тока и напряжения.

рис. 654
 Для того, чтобы сохранить форму закона Ома для участка цепи, вводят понятие емкостного сопротивления , которое определяется по формуле

 В этом случае соотношение (5) становится традиционным для закона Ома

 При изучении закона Ома для цепей постоянного тока, мы указывали, что электрическое поле заставляет упорядоченно двигаться заряженные частицы внутри проводника, то есть создает электрический ток. Иными словами, «напряжение является причиной возникновения тока». В данном случае ситуация обратная − благодаря электрическому току на обкладках возникают электрические заряды, создающие электрическое поле, поэтому можно сказать, что в данном случае «сила тока является причиной возникновения напряжения». Хотя, к данным рассуждениям следует относиться несколько скептически, так движение зарядов (электрический ток) и электрическое поле «подстраиваются» друг к другу, пока между ними не устанавливается определенное соотношение, соответствующее установившемуся режиму. Так при постоянном токе условием стационарности является условие постоянства тока. В цепи переменного тока в установившемся режиме согласуются не только амплитудные значения токов и напряжений, но разность фаз между ними. Иными словами, обсуждаемый здесь причинно-следственный вопрос подобен вопросу о том, «что появилось раньше, курица или яйцо?»
 Так как между током и напряжением существует сдвиг фаз равный Δφ = π/2 , то средняя мощность тока через конденсатор равна нулю. Действительно,

 Иными словами, потерь энергии при протекании тока через конденсатор в среднем не происходит. Конечно, конденсатор влияет на протекание тока в цепи. В ходе зарядки конденсатора энергия электрического тока превращается в энергию электростатического поля между обкладками конденсатора, а при разрядке конденсатор отдает в цепь накопленную энергию, при этом, средняя энергия, потребляемая конденсатором, остается равной нулю. Поэтому емкостное сопротивление называют реактивным.
 Графики зависимости силы тока, напряжения и мгновенной мощности тока в рассматриваемой цепи показаны на рис. 655.


рис. 655
 Заливкой выделены промежутки времени, в течении которых конденсатор накапливает энергия − в этих промежутках сила тока и напряжение имеют один знак.
 Уменьшение емкостного сопротивления при возрастании частоты очевидна − чем выше частота тока, тем меньший заряд на конденсаторе успевает накопиться на обкладках конденсатора за половину периода (пока ток идет в одном направлении), тем меньше напряжение на нем, тем меньше он препятствует прохождению тока в цепи. Аналогичные рассуждения справедливы и для объяснения зависимости этого сопротивления от емкости конденсатора.
 Вернемся к рассмотрению цепи, показанной на рис. 653, которая описывается уравнением (1). Пренебрегая внутренним сопротивлением источника, запишем явное выражение для напряжения, создаваемого источником

Здесь U o − амплитудное значение напряжения, равное амплитудному значению ЭДС источника. Кроме того, теперь мы считаем начальную фазу ЭДС источника равной нулю (ранее за нуль мы принимали фазу колебаний напряжения на резисторе).
 Используя это уравнение и связь между силой тока и зарядом конденсатора, найдем явное выражение для зависимости силы тока в цепи от времени. Представим эту зависимость в виде

где I o и φ − подлежащие определению амплитудное значение силы тока и разности фаз между колебаниями тока и напряжения источника. Легко заметить, что в этом случае заряд конденсатора изменяется по закону

 Для проверки этого соотношения достаточно вычислить производную от приведенной функции и убедится, что она совпадает с функцией (9).
 Подставим эти выражения в уравнение (8)

и преобразуем тригонометрическую сумму


где через φ 1 обозначена величина, удовлетворяющая условию

 Теперь видно, что для того, чтобы функция (9) являлась решение уравнения (8), необходимо, чтобы ее параметры принимали значения:
 Амплитуда

искомая разность фаз связана с появившимся параметром φ 1 соотношением φ + φ 1 = 0 , то есть

 Таким образом, найдена явная зависимость силы тока от времени.
 В принципе таким методом, можно рассчитать любую цепь переменного тока. Но такой подход требует громоздких тригонометрических и алгебраических преобразований. К тем же результатам можно прийти гораздо проще, используя формализм векторных диаграмм. Покажем, как метод векторных диаграмм применяется к рассматриваемой цепи. Самое важное при использовании этого метода − построение векторной диаграммы, изображающей колебания токов и напряжений на различных участках цепи.
 Так как конденсатор и резистор соединены последовательно, то силы токов через них одинаковы в любой момент времени. Изобразим силу тока в виде произвольно направленного вектора (например, горизонтально 2 , как на рис. 656).

рис. 656
 Далее изобразим векторы колебаний напряжения на резисторе U R , который параллелен вектору колебаний тока (так как сдвиг фаз между этими колебаниями равен нулю) и напряжения на конденсаторе U C , который перпендикулярен вектору колебаний тока (так как сдвиг фаз меду ними равен π/2 − см. рис. 657).

рис. 657
 Сумма этих напряжений равна напряжению источника, поэтому вектор суммы векторов, изображающих колебания U R и U C , изображает колебания напряжения источника U(t) .
 Если же Вы настаиваете, что фаза суммарного напряжения равна нулю (то есть вектор, изображающий U должен быть расположен горизонтально), то поверните построенную диаграмму (рис. 657). Таким догматизмом далее мы заниматься не будем!
 Из построенной диаграммы следует, что амплитудные значения рассматриваемых напряжений связаны соотношением (следующим из теоремы Пифагора)

 Выражая амплитуды напряжений через амплитуду силы тока с помощью известных соотношений

и

получаем элементарное уравнение для определения амплитуды силы тока

из которого находим амплитуду силы тока в цепи

что, естественно, совпадает с выражением (11), полученным ранее громоздким алгебраическим методом. Векторная диаграмма также позволяет легко определить сдвиг фаз между колебаниями силы тока и напряжения источника

что также совпадает с полученным ранее.
 Как видно, метод векторных диаграмм позволяет полностью рассчитать характеристики цепей переменного тока, гораздо проще, чем рассмотренным выше методом аналитического решения соответствующего уравнения.
 Следует подчеркнуть, что физическая сущность обоих методов одна и та же, она выражается уравнением (10), различие только в математическом языке, на котором решается это уравнение.
 Рассчитаем, среднюю мощность, развиваемую источником. Мгновенное значение этой мощности равно произведению ЭДС на силу тока P = EI . Подставляя явные значения для этих величин и проводя усреднение, получим


 Обратите внимание, что полученное выражение для средней мощности является общим для переменного тока: средняя мощность переменного тока равна половине произведения амплитуд силы тока, напряжения и косинуса разности фаз между ними. Если использовать не амплитудные, а действующие значения силы тока и напряжения, то формула (16) приобретает вид

средняя мощность переменного электрического тока равна произведению действующих значений силы тока, напряжения и косинуса разности фаз между ними . Часто косинус сдвига фаз между силой тока и напряжением называют коэффициентом мощности .
 В тех случаях, когда по электрической линии требуется передать максимальную мощность, необходимо стремиться, чтобы сдвиг фаз между током и напряжением был минимальным (оптимально − нулевым), так как в этом случае передаваемая мощность будет максимальна.
 Применим полученную формулу для расчета мощности тока в рассматриваемой цепи, для чего выразим косинус сдвига фаз из выражения (12) и подставим в формулу (17), в результате чего получим


 При выводе этого соотношения использована формула (14) для амплитуды силы тока в цепи.  Полученный результат очевиден − средняя мощность, развиваемая источником, равна средней мощности теплоты, выделяющейся на резисторе. Этот вывод еще раз подтверждает, что на конденсаторе не происходит потерь энергии электрического тока.
 Расчет мощности тока также можно проводить с помощью построенной векторной диаграммы, из которой следует, что произведение амплитуды напряжения источника на косинус сдвига фаз равно амплитуде напряжения на резисторе

откуда сразу следует формула (18).
 Так как амплитудные и действующие значения сил токов и напряжений пропорциональны друг другу, то длины векторов векторных диаграмм можно считать пропорциональными действующим (а не амплитудным) значениям. При таком определении среднее произведение двух гармонических функций равно скалярному произведению векторов, изображающих эти функции.

1 Здесь мы используем математическую операцию вычисления производной функции. Если же вас она еще пугает − воспользуйтесь аналогией с механическими гармоническими колебаниями: аналогом заряда является координата, тогда аналогом силы тока служит мгновенная скорость.
2 Мы постоянно подчеркиваем, что начальная фаза отдельного колебания, ни в каких процессах не существенна, она может быть изменена простым переносом начала отсчета времени. Физический смысл имеют разности фаз между различными величинами, изменяющимися по гармоническим законам. Здесь мы как бы, очередной раз изменяем «точку отчета» фазы − при горизонтальном расположении вектора колебаний тока мы неявно принимаем начальную фазу колебаний силы тока равной нулю.

В цепи постоянного тока конденсатор представляет собой бесконечно большее сопротивление: постоянный ток не проходит через диэлектрик, разделяющий обкладки конденсатора. Цепи переменного тока конденсатор не разрывает: попеременно заряжаясь и разряжаясь, он обеспечивает движение электрических зарядов, т. е. поддерживает переменный ток во внешней цепи. Исходя из электромагнитной теории Максвелла (см. § 105), можно сказать, что переменный ток проводимости замыкается внутри конденсатора током смещения. Таким образом, для переменного тока конденсатор представляет собой конечное сопротивление, называемое емкостным сопротивлением.

Опыт и теория показывают, что сила переменного тока в проводе существенно зависит от формы, которая придана этому проводу. Сила тока будет, наибольшей в случае прямого провода. Если же провод свернут в виде катушки с большим числом витков, то сила тока в нем значительно уменьшится: особенно резкое снижение тока происходит при введении в эту катушку ферромагнитного сердечника. Это означает, что для переменного тока проводник помимо омического сопротивления имеет еще дополнительное сопротивление, зависящее от индуктивности проводника и потому называемое индуктивным сопротивлением. Физический смысл индуктивного сопротивления состоит в следующем. Под влиянием изменений тока в проводнике, обладающем индуктивностью, возникает электродвижущая сила самоиндукции, препятствующая этим изменениям, т. е. уменьшающая амплитуду тока а следовательно, и эффективный ток Уменьшение эффективного тока в проводнике равносильно увеличению сопротивления проводника, т. е. равносильно появлению дополнительного (индуктивного) сопротивления.

Получим теперь выражения для емкостного и индуктивного сопротивлений.

1. Емкостное сопротивление. Пусть к конденсатору емкостью С (рис. 258) приложено переменное синусоидальное напряжение

Пренебрегая падением напряжения на малом омическом сопротивлении подводящих проводов, будем считать, что напряжение на обкладках конденсатора равно приложенному напряжению:

В любой момент времени заряд конденсатора равен произведению емкости конденсатора С на напряжение (см. § 83):

Если за малый промежуток времени заряд конденсатора изменяется на величину то это означает, что в подводящих проводах идет ток равный

Так как амплитуда этого тока

то окончательно получим

Запишем формулу (37) в виде

Последнее соотношение выражает закон Ома; величина играющая роль сопротивления, представляет собой сопротивление конденсатора для переменного тока, т. е. емкостное сопротивление

Таким образом, емкостное сопротивление обратно пропорционально круговой частоте тока и величине емкости. Физический смысл этой зависимости нетрудно понять. Чем больше емкость конденсатора и чем чаще изменяется направление тока (т. е. чем больше круговая частота тем больший заряд проходит за единицу времени через поперечное сечение подводящих проводов. Следовательно, ). Но сила тока и сопротивление обратно пропорциональны друг другу.

Следовательно, сопротивление

Рассчитаем емкостное сопротивление конденсатора емкостью включенного в цепь переменного тока частотой Гц:

При частоте Гц емкостное сопротивление того же самого конденсатора снизится приблизительно до 3 Ом.

Из сопоставления формул (36) и (38) видно, что изменения тока и напряжения совершаются в различных фазах: фаза тока на больше фазы напряжения. Это означает, что максимум тока наступает на четверть периода раньше, чем максимум напряжения (рис. 259).

Итак, на емксстном сопротивлении ток опережает напряжение на четверть периода (по времени) или на 90° (по фазе).

Физический смысл этого важного явления можно пояснить следующим образом, В начальный момент времени конденсатор еще не заряжен Поэтому даже очень малое внешнее напряжение легко перемещает заряды к пластинам конденсатора, создавая ток (см. рис. 258). По мере зарядки конденсатора напряжение на его обкладках растет, препятствуя дальнейшему притоку зарядов. В связи с этим ток в цепи уменьшается, несмотря на продолжающееся увеличение внешнего напряжения

Следовательно, в начальный момент времени ток имел максимальное значение ( Когда а вместе с ним и достигнут максимума (что произойдет через четверть периода), конденсатор полностью зарядится и ток в цепи прекратится Итак, в начальный момент времени ток в цепи максимален, а напряжение минимально и только еще начинает нарастать; через четверть периода напряжение достигает максимума, а ток уже успевает уменьшиться до нуля. Таким образом, действительно ток опережает напряжение на четверть периода.

2. Индуктивное сопротивление. Пусть через катушку самоиндукции с индуктивностью идет переменный синусоидальный ток

обусловленный переменным напряжением приложенным к катушке

Пренебрегая падением напряжения на малом омическом сопротивлении подводящих проводов и самой катушки (что вполне допустимо, если катушка изготовлена, например, из толстой медной проволоки), сбудем считать, что приложенное напряжение уравновешивается электродвижущей силой самоиндукции (равно ей по величине и противоположно по направлению):

Тогда, учитывая формулы (40) и (41), можем написать:

Так как амплитуда приложенного напряжения

то окончательно получим

Запишем формулу (42) в виде

Последнее соотношение выражает закон Ома; величина играющая роль сопротивления, представляет собой индуктивное сопротивление катушки самоиндукции:

Таким образом, индуктивное сопротивление пропорционально круговой частоте тока и величине индуктивности. Такого рода зависимость объясняется тем, что, как уже отмечалось в предыдущем параграфе, индуктивное сопротивление обусловлено действием электродвижущей силы самоиндукции, уменьшающей эффективный ток и, следовательно, увеличивающей сопротивление.

Величина же этой электродвижущей силы (и, следовательно, сопротивления) пропорциональна индуктивности катушки и скорости изменения тока, т. е. круговой частоте

Рассчитаем индуктивное сопротивление катушки с индуктивностью включенной в цепь переменного тока с частотой Гц:

При частоте Гц индуктивное сопротивление той же самой катушки возрастает до 31 400 Ом.

Подчеркнем, что омическое сопротивление катушки (с железным сердечником), имеющей индуктивность составляет обычно лишь несколько Ом.

Из сопоставления формул (40) и (43) видно, что изменения тока и напряжения совершаются в различных фазах, причем фаза тока на меньше фазы напряжения. Это означает, что максимум тока наступает на четверть периода (774) позже, чем максимум напряжения (рис. 261).

Итак, на индуктивном сопротивлении ток отстает от напряжения на четверть периода (по времени), или на 90° (по фазе). Сдвиг фаз обусловлен тормозящим действием электродвижущей силы самоиндукции: она препятствует как нарастанию, так и убыванию тока в цепи, поэтому максимум тока наступает позднее, чем максимум напряжения.

Если в цепь переменного тока последовательно включены индуктивное и емкостное сопротивления, то напряжение на индуктивном сопротивлении будет, очевидно, опережать напряжение на емкостном сопротивлении на полпериода (по времени), или на 180° (по фазе).

Как уже упоминалось, и емкостное и индуктивное сопротивления носят общее название реактивного сопротивления. На реактивном сопротивлении электроэнергия не расходуется; этим оно существенно отличается от активного сопротивления. Дело в том, что энергия, периодически потребляемая на создание электрического поля в конденсаторе (во время его зарядки), в том же количестве и с той же периодичностью возвращается в цепь при ликвидации этого поля (во время разрядки конденсатора). Точно так же энергия, периодически потребляемая на создание магнитного поля катушки самоиндукции (во время возрастания тока), в том же количестве и с той же периодичностью возвращается в цепь при ликвидации этого поля (во время убывания тока).

В технике переменного тока вместо реостатов (омического сопротивления), которые всегда нагреваются и бесполезно расходуют энергию, часто применяются дроссели (индуктивное сопротивление). Дроссель представляет собой катушку самоиндукции с железным сердечником. Оказывая значительное сопротивление переменному току, дроссель практически не нагревается и не расходует электроэнергию.

В которой генератор переменного тока создает синусоидальное напряжение. Разберем последовательно, что произойдет в цепи, когда мы замкнем ключ. Начальным будем считать тот момент, когда напряжение генератора равно нулю.

В первую четверть периода напряжение на зажимах генератора будет возрастать, начиная от нуля, и конденсатор начнет заряжаться. В цепи появится ток, однако в первый момент заряда конденсатора, несмотря на то, что напряжение на его пластинах только что появилось и еще очень мало, ток в цепи (ток заряда) будет наибольшим. По мере же увеличения заряда конденсатора ток в цепи убывает и доходит до нуля в момент, когда конденсатор полностью зарядится. При этом напряжение на пластинах конденсатора, строго следуя за напряжением генератора, становится к этому моменту максимальным, но обратного знака, т. е. направлено навстречу напряжению генератора.


Рис. 1. Изменение тока и напряжения в цепи с емкостью

Таким образом, ток с наибольшей силой устремляется в свободный от заряда конденсатор, но тут же начинает убывать по мере заполнения зарядами пластин конденсатора и падает до нуля, полностью зарядив его.

Сравним это явление с тем, что происходит с потоком воды в трубе, соединяющей два сообщающихся сосуда (рис. 2),один из которых наполнен, а другой пустой. Стоит только выдвинуть заслонку, преграждающую путь воде, как вода сразу же из левого сосуда под большим напором устремится по трубе в пустой правый сосуд. Однако тотчас же напор воды в трубе начнет постепенно ослабевать, вследствие выравнивания уровней в сосудах, и упадет до нуля. Течение воды прекратится.

Рис. 2. Изменение напора воды в трубе, соединяющей сообщающиеся сосуды, сходно с изменением тока в цепи во время заряда конденсатора

Подобно этому и ток сначала устремляется в незаряженный конденсатор, а затем постепенно ослабевает по мере его заряда.

С началом второй четверти периода, когда напряжение генератора начнет сначала медленно, а затем все быстрее и быстрее убывать, заряженный конденсатор будет разряжаться на генератор, что вызовет в цепи ток разряда. По мере убывания напряжения генератора конденсатор все больше и больше разряжается и ток разряда в цепи возрастает. Направление тока разряда в этой четверти периода противоположно направлению тока заряда в первой четверти периода. Соответственно этому кривая тока, пройдя нулевое значение, располагается уже теперь ниже оси времени.

К концу первого полупериода напряжение на генераторе, а также и на конденсаторе быстро приближается к нулю, а ток в цепи медленно достигает своего максимального значения. Вспомнив, что величина тока в цепи тем больше, чем больше величина переносимого по цепи заряда, станет ясным, почему ток достигает максимума тогда, когда напряжение на пластинах конденсатора, а следовательно, и заряд конденсатора быстро убывают.

С началом третьей четверти периода конденсатор вновь начинает заряжаться, но полярность его пластин, так же как и полярность генератора, изменяется «а обратную, а ток, продолжая течь в том же направлении, начинает по мере заряда конденсатора убывать, В конце третьей четверти периода, когда напряжения на генераторе и конденсаторе достигают своего максимума, ток становится равным нулю.

В последнюю четверть периода напряжение, уменьшаясь, падает до нуля, а ток, изменив свое направление в цепи, достигает максимальной величины. На этом и заканчивается период, за которым начинается следующий, в точности повторяющий предыдущий, и т. д.

Итак, под действием переменного напряжения генератора дважды за период происходят заряд конденсатора (первая и третья четверти периода) и дважды его разряд (вторая и четвертая четверти периода). Но так как чередующиеся один за другим сопровождаются каждый раз прохождением по цепи зарядного и разрядного токов, то мы можем заключить, что по цепи с емкостью проходит .

Убедиться в этом можно на следующем простом опыте. Подключите к сети переменного тока через лампочку электрического освещения мощностью 25 Вт конденсатор емкостью 4-6 мкф. Лампочка загорится и не погаснет до тех пор, пока не будет разорвана цепь. Это говорит о том, что по цепи с емкостью проходил переменный ток. Однако проходил он, конечно, не сквозь диэлектрик конденсатора, а в каждый момент времени представлял собой или ток заряда или ток разряда конденсатора.

Диэлектрик же, как нам известно, поляризуется под действием электрического поля, возникающего в нем при заряде конденсатора, и поляризация его исчезает, когда конденсатор разряжается.

При этом диэлектрик с возникающим в нем током смещения служит для переменного тока своего рода продолжением цепи, а для постоянного разрывает цепь. Но ток смещения образуется только в пределах диэлектрика конденсатора, и поэтому сквозного переноса зарядов по цепи не происходит.

Сопротивление, оказываемое конденсатором переменному току, зависит от величины емкости конденсатора и от частоты тока.

Чем больше емкость конденсатора, тем больший заряд переносится по цепи за время заряда и разряда конденсатора, а следовательно, и тем больший будет ток в цепи. Увеличение же тока в цепи свидетельствует о том, что уменьшилось ее сопротивление.

Следовательно, с увеличением емкости уменьшается сопротивление цепи переменному току.

Увеличение увеличивает величину переносимого по цепи заряда, так как заряд (а равно и разряд) конденсатора должен произойти быстрее, чем при низкой частоте. В то же время увеличение величины переносимого в единицу времени заряда равносильно увеличению тока в цепи, а следовательно, уменьшению ее сопротивления.

Если же мы каким-либо способом будем постепенно уменьшать частоту переменного тока и сведем ток к постоянному, то сопротивление конденсатора, включенного в цепь, будет постепенно возрастать и станет бесконечно большим (разрыв цепи) к моменту появления в .

Следовательно, с увеличением частоты уменьшается сопротивление конденсатора переменному току.

Подобно тому как сопротивление катушки переменному току называют индуктивным, сопротивление конденсатора принято называть емкостным.

Таким образом, емкостное сопротивление тем больше, чем меньше емкость цепи и частота питающего ее тока.

Емкостное сопротивление обозначается через Хс и измеряется в омах.

Зависимость емкостного сопротивления от частоты тока и емкости цепи определяется формулой Хс = 1/ ωС, где ω — круговая частота, равная произведению 2 πf , С-емкость цепи в фарадах.

Емкостное сопротивление, как и индуктивное, является реактивным по своему характеру, так как конденсатор не потребляет энергии источника тока.

Формула для цепи с емкостью имеет вид I = U/Xc , где I и U — действующие значения тока и напряжения; Хс — емкостное сопротивление цепи.

Свойство конденсаторов оказывать большое сопротивление токам низкой частоты и легко пропускать токи высокой частоты широко используется в схемах аппаратуры связи.

С помощью конденсаторов, например, достигается необходимое для работы схем разделение постоянных токов и токов низкой частоты от токов высокой частоты.

Если нужно преградить путь току низкой частоты в высокочастотную часть схемы, последовательно включается конденсатор небольшой емкости. Он оказывает большое сопротивление низкочастотному току и в то же время легко пропускает ток высокой частоты.

Если же надо не допустить ток высокой частоты, например, в цепь питания радиостанции, то используется конденсатор большой емкости, включаемый параллельно источнику тока. Ток высокой частоты в этом случае проходит через конденсатор, минуя цепь питания радиостанции.

Активное сопротивление и конденсатор в цепи переменного тока

На практике часто встречаются случаи, когда в цепи последовательно с емкостью Общее сопротивление цепи в этом случае определяется по формуле

Следовательно, полное сопротивление цепи, состоящей из активного и емкостного сопротивлений, переменному току равно корню квадратному из суммы квадратов активного и емкостного сопротивлений этой цепи.

Закон Ома остается справедливым и для этой цепи I = U/Z .

На рис. 3 приведены кривые, характеризующие фазовые соотношения между током и напряжением в цепи, содержащей емкостное и активное сопротивления.

Рис. 3. Ток, напряжение и мощность в цепи с конденсатором и активным сопротивлением

Как видно из рисунка, ток в этом случае опережает напряжение уже не на четверть периода, а меньше, так как активное сопротивление нарушило чисто емкостный (реактивный) характер цепи, о чем свидетельствует уменьшенный сдвиг фаз. Теперь уже напряжение на зажимах цепи определится как сумма двух слагающих: реактивной слагающей напряжения u с, идущей на преодоление емкостного сопротивления цепи, и активной слагающей напряжения преодолевающей активное ее сопротивление.

Чем больше будет активное сопротивление цепи, тем меньший сдвиг фаз получится между током и напряжением.

Кривая изменения мощности в цепи (см. рис. 3) дважды за период приобрела отрицательный знак, что является, как нам уже известно, следствием реактивного характера цепи. Чем менее реактивная цепь, тем меньше сдвиг фаз между током и напряжением и тем большую мощность источника тока эта цепь потребляет.

Реактивные сопротивления индуктивности и емкости

Явление резонанса токов и напряжений наблюдается в цепях индуктивно-емкостного характера. Это явление нашло применение в радиоэлектронике, став основным способов настройки приемника на определенную волну. К сожалению, резонанс может нанести вред электрооборудованию и кабельным линиям. В физике резонансом является совпадение частот нескольких систем. Давайте рассмотрим, что такое резонанс напряжений и токов, какое значение он имеет и где используется в электротехнике.

Содержание:



  • Реактивные сопротивления индуктивности и емкости

  • Емкость и индуктивность в цепи переменного тока

  • Резонанс напряжений

  • Резонанс токов

  • Применение на практике

  • Заключение

Реактивные сопротивления индуктивности и емкости

Индуктивностью называется способность тела накапливать энергию в магнитном поле. Для нее характерно отставание тока от напряжения по фазе. Характерные индуктивные элементы — дросселя, катушки, трансформаторы, электродвигатели.

Емкостью называются элементы, которые накапливают энергию с помощью электрического поля. Для емкостных элементов характерно отставание по фазе напряжения от тока. Емкостные элементы: конденсаторы, варикапы.

Приведены их основные свойства, нюансы в пределах этой статьи во внимание не берутся.

Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине.

Емкость и индуктивность в цепи переменного тока

Если в цепях постоянного тока емкость в общем смысле представляет собой разорванный участок цепи, а индуктивность — проводник, то в переменном конденсаторы и катушки представляют собой реактивный аналог резистора.

Реактивное сопротивление катушки индуктивности определяется по формуле:

Векторная диаграмма:

 

Реактивное сопротивление конденсатора:

Здесь w — угловая частота, f — частота в цепи синусоидального тока, L — индуктивность, C — емкость.

Векторная диаграмма:

Стоит отметить, что при расчете соединенных последовательно реактивных элементов используют формулу:

Обратите внимание, что емкостная составляющая принимается со знаком минус. Если в цепи присутствует еще и активная составляющая (резистор), то складывают по формуле теоремы Пифагора (исходя из векторной диаграммы):

От чего зависит реактивное сопротивление? Реактивные характеристики зависят от величины емкости или индуктивности, а также от частоты переменного тока.

Если посмотреть на формулу реактивной составляющей, то можно заметить, что при определенных значениях емкостной или индуктивной составляющей их разность будет равна нулю, тогда в цепи останется только активное сопротивление. Но это не все особенности такой ситуации.

Резонанс напряжений

Если последовательно с генератором соединить конденсатор и катушку индуктивности, то, при условии равенства их реактивных сопротивлений, возникнет резонанс напряжений. При этом активная часть Z должно быть как можно меньшей.

Стоит отметить, что индуктивность и емкость обладает только реактивными качествами лишь в идеализированных примерах. В реальных же цепях и элементах всегда присутствует активное сопротивление проводников, хоть оно и крайне мало.

При резонансе происходит обмен энергией между дросселем и конденсатором. В идеальных примерах при первоначальном подключении источника энергии (генератора) энергия накапливается в конденсаторе (или дросселе) и после его отключения происходят незатухающие колебания за счет этого обмена.

Напряжения на индуктивности и емкости примерно одинаковы, согласно закону Ома:

U=I/X

Где X — это Xc емкостное или XL индуктивное сопротивление соответственно.

Цепь, состоящую из индуктивности и емкости, называют колебательным контуром. Его частота вычисляется по формуле:

Период колебаний определяется по формуле Томпсона:

Так как реактивное сопротивление зависит от частоты, то сопротивление индуктивности с ростом частоты увеличивается, а у ёмкости падает. Когда сопротивления равны, то общее сопротивление сильно снижается, что отражено на графике:

Основными характеристиками контура являются добротность (Q) и частота. Если рассмотреть контур в качестве четырехполюсника, то его коэффициент передачи после несложных вычислений сводится к добротности:

K=Q

А напряжение на выводах цепи увеличивается пропорционально коэффициенту передачи (добротности) контура.

Uк=Uвх*Q

При резонансе напряжений, чем выше добротность, тем больше напряжение на элементах контура будет превышать напряжение подключенного генератора. Напряжение может повышаться в десятки и сотни раз. Это отображено на графике:

Потери мощности в контуре обусловлены только наличием активного сопротивления. Энергия из источника питания берется только для поддержания колебаний.

Коэффициент мощности будет равен:

cosФ=1

Эта формула показывает, что потери происходят за счет активной мощности:

S=P/Cosф

Резонанс токов

Резонанс токов наблюдается в цепях, где индуктивность и емкость соединены параллельно.

Явление заключается в протекании токов большой величины между конденсатором и катушкой, при нулевом токе в неразветвленной части цепи. Это объясняется тем, что при достижении резонансной частоты общее сопротивление Z возрастает. Или простым языком звучит так – в точке резонанса достигается максимальное общее значение сопротивления Z, после чего одно из сопротивлений увеличивается, а другое снижается в зависимости от того растет или снижается частота. Это наглядно отображено на графике:

В общем, всё аналогично предыдущему явлению, условия возникновения резонанса токов следующие:



  1. Частота питания аналогична резонансной у контура.

  2. Проводимости у индуктивности и ёмкости по переменному току равны BL=Bc, B=1/X.

Применение на практике

Рассмотрим, какая польза и вред резонанса токов и напряжений. Наибольшую пользу явления резонанса принесли в радиопередающей аппаратуре. Простым


Достарыңызбен бөлісу:

Как определить емкость сопротивления. Формула емкостного сопротивления

Реактивное сопротивление – электрическое сопротивление переменному току, обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах.

Элементы, обладающие реактивным сопротивлением, называют реактивными.

Реактивное сопротивление катушки индуктивности.

При протекании переменного тока I в катушке, магнитное поле создаёт в её витках ЭДС, которая препятствует изменению тока.
При увеличении тока, ЭДС отрицательна и препятствует нарастанию тока, при уменьшении — положительна и препятствует его убыванию, оказывая таким образом сопротивление изменению тока на протяжении всего периода.

В результате созданного противодействия, на выводах катушки индуктивности в противофазе формируется напряжение U , подавляющее ЭДС, равное ей по амплитуде и противоположное по знаку.

При прохождении тока через нуль, амплитуда ЭДС достигает максимального значения, что образует расхождение во времени тока и напряжения в 1/4 периода.

Если приложить к выводам катушки индуктивности напряжение U , ток не может начаться мгновенно по причине противодействия ЭДС, равного -U , поэтому ток в индуктивности всегда будет отставать от напряжения на угол 90°. Сдвиг при отстающем токе называют положительным.

Запишем выражение мгновенного значения напряжения u исходя из ЭДС (ε ), которая пропорциональна индуктивности L и скорости изменения тока: u = -ε = L(di/dt) .
Отсюда выразим синусоидальный ток .

Интегралом функции sin(t) будет -соs(t) , либо равная ей функция sin(t-π/2) .
Дифференциал dt функции sin(ωt) выйдет из под знака интеграла множителем 1.
В результате получим выражение мгновенного значения тока со сдвигом от функции напряжения на угол π/2 (90°).
Для среднеквадратичных значений U и I в таком случае можно записать .

В итоге имеем зависимость синусоидального тока от напряжения согласно Закону Ома, где в знаменателе вместо R выражение ωL , которое и является реактивным сопротивлением:

Реактивное сопротивлениие индуктивностей называют индуктивным.

Реактивное сопротивление конденсатора.

Электрический ток в конденсаторе представляет собой часть или совокупность процессов его заряда и разряда – накопления и отдачи энергии электрическим полем между его обкладками.

В цепи переменного тока, конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное. Следовательно, в моменты амплитудного значения напряжения на конденсаторе, ток в нём будет равен нулю. Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.

В результате ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току, обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.

Если приложить к конденсатору напряжение U , мгновенно начнётся ток от максимального значения, далее уменьшаясь до нуля. В это время напряжение на его выводах будет расти от нуля до максимума. Следовательно, напряжение на обкладках конденсатора по фазе отстаёт от тока на угол 90 °. Такой сдвиг фаз называют отрицательным.

Ток в конденсаторе является производной функцией его заряда i = dQ/dt = C(du/dt) .
Производной от sin(t) будет cos(t) либо равная ей функция sin(t+π/2) .
Тогда для синусоидального напряжения u = U amp sin(ωt) запишем выражение мгновенного значения тока следующим образом:

i = U amp ωCsin(ωt+π/2) .

Отсюда выразим соотношение среднеквадратичных значений .

Закон Ома подсказывает, что 1/ωC есть не что иное, как реактивное сопротивление для синусоидального тока:

Реактивное сопротивление конденсатора в технической литературе часто называют ёмкостным. Может применяться, например, в организации ёмкостных делителей в цепях переменного тока.

Онлайн-калькулятор расчёта реактивного сопротивления

Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.

Реактивное сопротивление ёмкости
X C = 1 /(2πƒC)

В которой генератор переменного тока создает синусоидальное напряжение. Разберем последовательно, что произойдет в цепи, когда мы замкнем ключ. Начальным будем считать тот момент, когда напряжение генератора равно нулю.

В первую четверть периода напряжение на зажимах генератора будет возрастать, начиная от нуля, и конденсатор начнет заряжаться. В цепи появится ток, однако в первый момент заряда конденсатора, несмотря на то, что напряжение на его пластинах только что появилось и еще очень мало, ток в цепи (ток заряда) будет наибольшим. По мере же увеличения заряда конденсатора ток в цепи убывает и доходит до нуля в момент, когда конденсатор полностью зарядится. При этом напряжение на пластинах конденсатора, строго следуя за напряжением генератора, становится к этому моменту максимальным, но обратного знака, т. е. направлено навстречу напряжению генератора.


Рис. 1. Изменение тока и напряжения в цепи с емкостью

Таким образом, ток с наибольшей силой устремляется в свободный от заряда конденсатор, но тут же начинает убывать по мере заполнения зарядами пластин конденсатора и падает до нуля, полностью зарядив его.

Сравним это явление с тем, что происходит с потоком воды в трубе, соединяющей два сообщающихся сосуда (рис. 2),один из которых наполнен, а другой пустой. Стоит только выдвинуть заслонку, преграждающую путь воде, как вода сразу же из левого сосуда под большим напором устремится по трубе в пустой правый сосуд. Однако тотчас же напор воды в трубе начнет постепенно ослабевать, вследствие выравнивания уровней в сосудах, и упадет до нуля. Течение воды прекратится.

Рис. 2. Изменение напора воды в трубе, соединяющей сообщающиеся сосуды, сходно с изменением тока в цепи во время заряда конденсатора

Подобно этому и ток сначала устремляется в незаряженный конденсатор, а затем постепенно ослабевает по мере его заряда.

С началом второй четверти периода, когда напряжение генератора начнет сначала медленно, а затем все быстрее и быстрее убывать, заряженный конденсатор будет разряжаться на генератор, что вызовет в цепи ток разряда. По мере убывания напряжения генератора конденсатор все больше и больше разряжается и ток разряда в цепи возрастает. Направление тока разряда в этой четверти периода противоположно направлению тока заряда в первой четверти периода. Соответственно этому кривая тока, пройдя нулевое значение, располагается уже теперь ниже оси времени.

К концу первого полупериода напряжение на генераторе, а также и на конденсаторе быстро приближается к нулю, а ток в цепи медленно достигает своего максимального значения. Вспомнив, что величина тока в цепи тем больше, чем больше величина переносимого по цепи заряда, станет ясным, почему ток достигает максимума тогда, когда напряжение на пластинах конденсатора, а следовательно, и заряд конденсатора быстро убывают.

С началом третьей четверти периода конденсатор вновь начинает заряжаться, но полярность его пластин, так же как и полярность генератора, изменяется «а обратную, а ток, продолжая течь в том же направлении, начинает по мере заряда конденсатора убывать, В конце третьей четверти периода, когда напряжения на генераторе и конденсаторе достигают своего максимума, ток становится равным нулю.

В последнюю четверть периода напряжение, уменьшаясь, падает до нуля, а ток, изменив свое направление в цепи, достигает максимальной величины. На этом и заканчивается период, за которым начинается следующий, в точности повторяющий предыдущий, и т. д.

Итак, под действием переменного напряжения генератора дважды за период происходят заряд конденсатора (первая и третья четверти периода) и дважды его разряд (вторая и четвертая четверти периода). Но так как чередующиеся один за другим сопровождаются каждый раз прохождением по цепи зарядного и разрядного токов, то мы можем заключить, что по цепи с емкостью проходит .

Убедиться в этом можно на следующем простом опыте. Подключите к сети переменного тока через лампочку электрического освещения мощностью 25 Вт конденсатор емкостью 4-6 мкф. Лампочка загорится и не погаснет до тех пор, пока не будет разорвана цепь. Это говорит о том, что по цепи с емкостью проходил переменный ток. Однако проходил он, конечно, не сквозь диэлектрик конденсатора, а в каждый момент времени представлял собой или ток заряда или ток разряда конденсатора.

Диэлектрик же, как нам известно, поляризуется под действием электрического поля, возникающего в нем при заряде конденсатора, и поляризация его исчезает, когда конденсатор разряжается.

При этом диэлектрик с возникающим в нем током смещения служит для переменного тока своего рода продолжением цепи, а для постоянного разрывает цепь. Но ток смещения образуется только в пределах диэлектрика конденсатора, и поэтому сквозного переноса зарядов по цепи не происходит.

Сопротивление, оказываемое конденсатором переменному току, зависит от величины емкости конденсатора и от частоты тока.

Чем больше емкость конденсатора, тем больший заряд переносится по цепи за время заряда и разряда конденсатора, а следовательно, и тем больший будет ток в цепи. Увеличение же тока в цепи свидетельствует о том, что уменьшилось ее сопротивление.

Следовательно, с увеличением емкости уменьшается сопротивление цепи переменному току.

Увеличение увеличивает величину переносимого по цепи заряда, так как заряд (а равно и разряд) конденсатора должен произойти быстрее, чем при низкой частоте. В то же время увеличение величины переносимого в единицу времени заряда равносильно увеличению тока в цепи, а следовательно, уменьшению ее сопротивления.

Если же мы каким-либо способом будем постепенно уменьшать частоту переменного тока и сведем ток к постоянному, то сопротивление конденсатора, включенного в цепь, будет постепенно возрастать и станет бесконечно большим (разрыв цепи) к моменту появления в .

Следовательно, с увеличением частоты уменьшается сопротивление конденсатора переменному току.

Подобно тому как сопротивление катушки переменному току называют индуктивным, сопротивление конденсатора принято называть емкостным.

Таким образом, емкостное сопротивление тем больше, чем меньше емкость цепи и частота питающего ее тока.

Емкостное сопротивление обозначается через Хс и измеряется в омах.

Зависимость емкостного сопротивления от частоты тока и емкости цепи определяется формулой Хс = 1/ ωС, где ω — круговая частота, равная произведению 2 πf , С-емкость цепи в фарадах.

Емкостное сопротивление, как и индуктивное, является реактивным по своему характеру, так как конденсатор не потребляет энергии источника тока.

Формула для цепи с емкостью имеет вид I = U/Xc , где I и U — действующие значения тока и напряжения; Хс — емкостное сопротивление цепи.

Свойство конденсаторов оказывать большое сопротивление токам низкой частоты и легко пропускать токи высокой частоты широко используется в схемах аппаратуры связи.

С помощью конденсаторов, например, достигается необходимое для работы схем разделение постоянных токов и токов низкой частоты от токов высокой частоты.

Если нужно преградить путь току низкой частоты в высокочастотную часть схемы, последовательно включается конденсатор небольшой емкости. Он оказывает большое сопротивление низкочастотному току и в то же время легко пропускает ток высокой частоты.

Если же надо не допустить ток высокой частоты, например, в цепь питания радиостанции, то используется конденсатор большой емкости, включаемый параллельно источнику тока. Ток высокой частоты в этом случае проходит через конденсатор, минуя цепь питания радиостанции.

Активное сопротивление и конденсатор в цепи переменного тока

На практике часто встречаются случаи, когда в цепи последовательно с емкостью Общее сопротивление цепи в этом случае определяется по формуле

Следовательно, полное сопротивление цепи, состоящей из активного и емкостного сопротивлений, переменному току равно корню квадратному из суммы квадратов активного и емкостного сопротивлений этой цепи.

Закон Ома остается справедливым и для этой цепи I = U/Z .

На рис. 3 приведены кривые, характеризующие фазовые соотношения между током и напряжением в цепи, содержащей емкостное и активное сопротивления.

Рис. 3. Ток, напряжение и мощность в цепи с конденсатором и активным сопротивлением

Как видно из рисунка, ток в этом случае опережает напряжение уже не на четверть периода, а меньше, так как активное сопротивление нарушило чисто емкостный (реактивный) характер цепи, о чем свидетельствует уменьшенный сдвиг фаз. Теперь уже напряжение на зажимах цепи определится как сумма двух слагающих: реактивной слагающей напряжения u с, идущей на преодоление емкостного сопротивления цепи, и активной слагающей напряжения преодолевающей активное ее сопротивление.

Чем больше будет активное сопротивление цепи, тем меньший сдвиг фаз получится между током и напряжением.

Кривая изменения мощности в цепи (см. рис. 3) дважды за период приобрела отрицательный знак, что является, как нам уже известно, следствием реактивного характера цепи. Чем менее реактивная цепь, тем меньше сдвиг фаз между током и напряжением и тем большую мощность источника тока эта цепь потребляет.

Конденсатор используется в схемах для разделения переменной и постоянной составляющей напряжения, при этом он хорошо проводит высокочастотный сигнал, и плохо — низкочастотный. Находясь в цепи постоянного тока, его импеданс принимается бесконечно большим. Для переменного тока ёмкостное сопротивление конденсатора не имеет постоянной величиной. Поэтому расчёт этого значения крайне важен при проектировании различных радиоэлектронных приборов.

Общее описание

Физически электронное устройство — конденсатор — представляет собой две обкладки, выполненные из проводящего материала, между которыми находится диэлектрический слой. С поверхности пластин выводятся два электрода, предназначенные для подключения в электрическую цепь. Конструктивно прибор может быть различного размера и формы, но его структура остаётся неизменной, то есть всегда происходит чередование проводящего и диэлектрического слоев.

Слово «конденсатор» произошло от латинского «condensatio» — «накопление». Научное определение гласит, что накопительный электрический прибор — это двухполюсник, характеризующийся постоянным и переменным значениями ёмкости и большим сопротивлением. Предназначен он для накопления энергии и заряда. За единицу измерения ёмкости принят фарад (F).

На схемах конденсатор изображается в виде двух прямых, соответствующих проводящим пластинам прибора, и перпендикулярно к их серединам нарисованными отрезками — выводами устройства.

Принцип действия конденсатора заключается в следующем : при включении прибора в электрическую цепь напряжение в ней будет иметь нулевую величину. В этот момент устройство начинает получать и накапливать заряд. Электрический ток, подающийся в схему, будет максимально возможным. Через некоторое время на одном из электродов прибора начнут накапливаться заряды положительного знака, а на другом — отрицательного.

Длительность этого процесса зависит от ёмкости прибора и активного сопротивления. Расположенный между выводами диэлектрик мешает перемещению частиц между обкладками. Но это будет происходить лишь до того момента, пока разность потенциалов источника питания и напряжение на выводах конденсатора не сравняются. В этот момент ёмкость станет максимально возможной, а электроток — минимальным.

Если на элемент перестают подавать напряжение, то при подключении нагрузки конденсатор начинает отдавать свой накопленный заряд ей. Его ёмкость уменьшается, а в цепи снижаются уровни напряжения и тока. Иными словами, накопительный прибор сам превращается в источник питания. Поэтому если конденсатор подключить к переменному току, то он начнёт периодически перезаряжаться, то есть создавать определённое сопротивление в цепи.

Важнейшей характеристикой накопительного прибора является ёмкость. От неё зависит время заряда при подключении устройства к источнику тока. Время разряда напрямую связано со значением сопротивления нагрузки: чем оно выше, тем быстрее происходит процесс отдачи накопленной энергии. Определяется эта ёмкость следующим выражением:

C = E*Eo*S / d, где E — относительная диэлектрическая проницаемость среды (справочная величина), S — площадь пластин, d — расстояние между ними.

Общее сопротивление конденсатора (импеданс) переменному сигналу складывается из трёх составляющих: ёмкостного, резистивного и индуктивного сопротивления. Все эти величины при конструировании схем, содержащих накопительный элемент, необходимо учитывать. В ином случае в электрической цепи, при соответствующей обвязке, конденсатор может вести себя как дроссель и находится в резонансе. Из всех трёх величин наиболее значимой является ёмкостное сопротивление конденсатора, но при определённых обстоятельствах индуктивное тоже оказывает влияние.

Полное сопротивление элемента выражается в формуле Z = (R2 + (Xl-Xc) 2) ½ , где

  • Xl — индуктивность;
  • Xс — ёмкость;
  • R — активная составляющая.

Последняя возникает из-за появления электродвижущей силы (ЭДС) самоиндукции. Непостоянство тока приводит к изменению магнитного потока, поддерживающего ток ЭДС самоиндукции постоянным. Это значение определяется индуктивностью L и частотой протекающих зарядов W. Xl = wL = 2*p*f*L. Xc — ёмкостное сопротивление, зависящее от ёмкости накопителя C и частоты тока f. Xc = 1/wC = ½*p*f*C, где w — круговая частота.

Разница между ёмкостным и индуктивным значениями называется реактивным сопротивлением конденсатора: X = Xl-Xc. По формулам можно увидеть, что при увеличении частоты f сигнала начинает преобладать индуктивное значение, при уменьшении — ёмкостное. Поэтому если:

  • X > 0, в элементе проявляются индуктивные свойства;
  • X = 0, в ёмкости присутствует только активная величина;
  • X

Активное сопротивление R связывается с потерями мощности, превращением её электрической энергии в тепловую. Реактивное — с обменом энергии между переменным током и электромагнитным полем. Таким образом, полное сопротивление можно найти, используя формулу Z = R +j*X, где j — мнимая единица.

Ёмкостное сопротивление

Для понимания процесса следует представить конденсатор в электрической цепи, по которой течёт переменный ток. Причём в этой цепи нет других элементов. Значение тока, проходящего через конденсатор, и напряжения, приложенного к его обкладкам, изменяется по времени. Зная любое из этих значений, можно найти другое.

Пускай ток изменяется по синусоидальной зависимости I (t) = Im * sin (w*t+ f 0). Тогда напряжение можно описать как U (t) = (Im/C*w) *sin (w*t+ f 0 -p/2). При учёте в формуле сдвига фаз на 90 градусов, возникающего между сигналами, вводится комплексная величина j, называемая мнимой единицей. Поэтому формула для нахождения тока будет выглядеть как I = U /(1/j*w*C). Но учитывая, что комплексное число только обозначает смещение напряжения относительно тока, а на их амплитудные значения не влияет, его можно убрать из формулы, тем самым значительно её упростив.

Так как по закону Ома сопротивление прямо пропорционально напряжению на участке цепи и обратно пропорционально току, то преобразуя формулы, можно будет получить следующее выражение:

  • Xc = 1/w*C = ½*p*f*C. Единица измерения — ом.

Становится понятно, что ёмкостное сопротивление зависит не только от ёмкости, но и от частоты. При этом чем больше эта частота, тем меньшее сопротивление конденсатор будет оказывать проходимому через него току. По отношению к ёмкости это утверждение будет обратным. Вот поэтому для постоянного тока, частота которого равна нулю, сопротивление накопителя будет бесконечно большим.

Индуктивная составляющая

При прохождении переменного сигнала через накопитель, его можно представить в виде последовательно включённой с источником питания катушки индуктивности. Эта катушка характеризуется большим сопротивлением в цепи переменного сигнала, чем постоянного. Значение силы тока в определённой точке времени находится как I = I 0 * sinw .

Приняв во внимание, что мгновенная величина напряжения U 0 обратна по знаку мгновенному значению ЭДС самоиндукции E 0, а также используя правило Ленца, можно получить выражение E = L * I, где L — индуктивность.

Следовательно: U = L*w * I 0 *cosw*t = U 0 *sin (wt + p /2) , причём ток отстаёт от напряжения на p /2. Используя закон Ома и приняв, что сопротивление катушки равно w * L, получится формула для участка электрической цепи, имеющая только индуктивную составляющую: U 0 = I 0 / w * L.

Таким образом, индуктивное сопротивление будет равно Xl = w * L, измеряется оно также в омах. Из полученного выражения видно, что чем больше частота сигнала, тем сильнее будет сопротивление прохождению тока.

Пример расчёта

Ёмкостное и индуктивное сопротивления относятся к реактивным, то есть таким, которые не потребляют мощности. Поэтому закон Ома для участка схемы с ёмкостью имеет вид I = U/Xc, где ток и напряжение обозначают действующие значения. Именно из-за этого конденсаторы используются в цепях для разделения не только постоянных и переменных токов, но и низкой и высокой частот. При этом чем ёмкость будет ниже, тем более высокой частоты сможет пройти ток. Если же последовательно с конденсатором включено активное сопротивление, то общий импеданс цепи находится как Z = (R 2 +Xc 2) ½ .

Практическое применение формул можно рассмотреть при решении задачи. Пусть имеется RC цепочка, состоящая из ёмкости C = 1 мкФ и сопротивления R = 5 кОм. Необходимо найти импеданс этого участка и ток цепи, если частота сигнала равна f = 50 Гц, а амплитуда U = 50 В.

В первую очередь понадобится определить сопротивление конденсатора в цепи переменного тока для заданной частоты. Подставив данные в формулу, получим, что для частоты 50 Гц сопротивление будет

Xc = 1/ (2*p*F*C) = 1/ (2*3,14*50*1* 10 −6) = 3,2 кОм.

По закону Ома можно найти ток: I = U /Xc = 50 /3200 = 15,7 мА.

Напряжение берётся изменяемым по закону синуса, поэтому: U (t) = U * sin (2*p*f*t) = 50*sin (314*t). Соответственно, ток будет I (t) = 15,7* 10 −3 + sin (314*t+p/2). Используя полученные результаты, можно построить график тока и напряжения при этой частоте. Общее сопротивление участка цепи находим как Z = (5000 2 +3200 2)½ = 5 936 Ом =5,9 кОм.

Таким образом, подсчитать полное сопротивление на любом участке цепи несложно. При этом можно воспользоваться и так называемыми онлайн-калькуляторами, куда вводят начальные данные, такие как частота и ёмкость, а все расчёты выполняются автоматически. Это удобно, так как нет необходимости запоминать формулы и вероятность ошибки при этом стремится к нулю.

ОПРЕДЕЛЕНИЕ

Конденсатор , в простейшем случае состоит из двух металлических проводников (обкладок), которые разделяет слой диэлектрика. Каждая из обкладок конденсатора имеет свой вывод и может быть подключена к электрической цепи.

Конденсатор характеризуют при помощи ряда параметров (емкость, рабочее напряжение и т. д), одной из таких характеристик является сопротивление. Конденсатор практически не пропускает постоянный электрический ток. То есть сопротивление конденсатора является бесконечно большим для постоянного тока, но это идеальный случай. Через реальный диэлектрик очень малый ток протекать может. Этот ток называют током утечки. Ток утечки является показателем качества диэлектрика, который применяется при изготовлении конденсатора. У современных конденсаторов ток утечки составляет некоторые доли микроампера. Сопротивление конденсатора в таком случае можно вычислить, используя закон Ома для участка цепи, зная величину напряжения, до которой заряжен конденсатор и ток утечки. Но обычно при решении учебных задач сопротивление конденсатора постоянному току считают бесконечно большим.

Сопротивление конденсатора переменному напряжению

При включении конденсатора в цепь с переменным током, ток свободно проходит через конденсатор. Это объясняется очень просто: происходит процесс постоянной зарядки и разрядки конденсатора. При этом говорят, что в цепи присутствует емкостное сопротивление конденсатора, помимо активного сопротивления.

И так, конденсатор, который включен в цепь переменного тока, ведет себя как сопротивление, то есть оказывает влияние на силу тока, текущую в цепи. Величину емкостного сопротивления обозначим как , его величина связана с частотой тока и определена формулой:

где — частота переменного тока; — угловая частота тока; C — емкость конденсатора.

Если конденсатор включен в цепь переменного тока, то в нем не затрачивается мощность, потому что фаза тока сдвинута по отношению к напряжению на . Если рассмотреть один период колебания тока в цепи (T), то происходит следующее: при заряде конденсатора (это составляет ) энергия в поле конденсатора запасается; на следующем отрезке времени () конденсатор разряжается и отдает энергию в цепь. Поэтому ёмкостное сопротивление называют реактивным (безваттным).

Следует заметить, что в каждом реальном конденсаторе реальная мощность (мощность потерь) все же тратится, при течении через него переменного тока. Это вызвано тем, что происходят изменения в состоянии диэлектрика конденсатора. Помимо этого существует некоторая утечка в изоляции обкладок конденсатора, поэтому появляется небольшое активное сопротивление, которое как бы включено параллельно конденсатору.

Примеры решения задач

ПРИМЕР 1

Задание Колебательный контур имеет сопротивление (R), катушку индуктивности (L) и конденсатор емкости C (рис.1). К нему подключено внешнее напряжение, амплитуда которого равна , а частота составляет . Какова амплитуда силы тока в цепи?

Решение Сопротивление контура рис.1 складывается из активного сопротивления R, емкостного сопротивления конденсатора и сопротивления катушки индуктивности . Полное сопротивление цепи (Z), которая содержит названные выше элементы, находят как:

Закон Ома для нашего участка цепи можно записать как:

Выразим искомую амплитуду силы тока из (1.2), подставим вместо Z правую часть формулы (1.1), имеем:

Ответ

Конденсаторы, как и резисторы, относятся к наиболее многочисленным элементам радиотехнических устройств. Основное свойство конденсаторов, это способность накапливать электрический заряд . Основной параметр конденсатора это его емкость .

Емкость конденсатора будет тем значительнее, чем больше площадь его обкладок и чем тоньше слой диэлектрика между ними. Основной единицей электрической емкости является фарада (сокращенно Ф), названная так в честь английского физика М. Фарадея. Однако 1 Ф — это очень большая емкость. Земной шар, например, обладает емкостью меньше 1 Ф. В электро- и радиотехнике пользуются единицей емкости, равной миллионной доле фарады, которую называют микрофарадой (сокращенно мкФ) .

Емкостное сопротивление конденсатора переменному току зависит от его емкости и частоты тока: чем больше емкость конденсатора и частота тока, тем меньше его емкостное сопротивление.

Керамические конденсаторы обладают сравнительно небольшими емкостями — до нескольких тысяч пикофарад. Их ставят в те цепи, в которых течет ток высокой частоты (цепь антенны, колебательный контур), для связи между ними.


Простейший конденсатор представляет собой два проводника электрического тока, например: — две металлические пластины, называемые обкладками конденсатора, разделенные диэлектриком, например: — воздухом или бумагой. Чем больше площадь обкладок конденсатора и чем ближе они расположены друг к другу, тем больше электрическая емкость этого прибора. Если к обкладкам конденсатора подключить источник постоянного тока, то в образовавшейся цепи возникнет кратковременный ток и конденсатор зарядится до напряжения, равного напряжению источника тока. Вы можете спросить: почему в цепи, где есть диэлектрик, возникает ток? Когда мы присоединяем к конденсатору источник тока, электроны в проводниках образовавшейся цепи начинают двигаться в сторону положительного полюса источника тока, образуя кратковременный поток электронов во всей цепи. В результате обкладка конденсатора, которая соединена с положительным полюсом источника тока, обедняется свободными электронами и заряжается положительно, а другая обкладка обогащается свободными электронами и, следовательно, заряжается отрицательно. Как только конденсатор зарядится, кратковременный ток в цепи, называемый током зарядки конденсатора, прекратится.

Если источник тока отключить от конденсатора, то конденсатор окажется заряженным. Переходу избыточных электронов с одной обкладки на другую препятствует диэлектрик. Между обкладками конденсатора тока не будет, а накопленная им электрическая энергия будет сосредоточена в электрическом поле диэлектрика. Но стоит обкладки заряженного конденсатора соединить каким-либо проводником «лишние» электроны отрицательно заряженной обкладки перейдут по этому проводнику на другую обкладку, где их недостает, и конденсатор разрядится. В этом случае в образовавшейся цепи также возникает кратковременный ток, называемый током разрядки конденсатора. Если емкость конденсатора большая, и он заряжен до значительного напряжения, момент его разрядки сопровождается появлением значительной искры и треска. Свойство конденсатора накапливать электрические заряды и разряжаться через подключенные к нему проводники используется в колебательном контуре радиоприемника.

Конденса́тор (от лат. condensare — «уплотнять», «сгущать») — двухполюсник с определённым значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками ), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок (см. рис.). Практически применяемые конденсаторы имеют много слоёв диэлектрика и многослойные электроды, или ленты чередующихся диэлектрика и электродов, свёрнутые в цилиндр или параллелепипед со скруглёнными четырьмя рёбрами (из-за намотки). Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.

С точки зрения метода комплексных амплитуд конденсатор обладает комплексным импедансом

,

Где j — мнимая единица, ω — циклическая частота (рад/с ) протекающего синусоидального тока, f — частота в Гц , C — ёмкость конденсатора (фарад ). Отсюда также следует, что реактивное сопротивление конденсатора равно: . Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).

Резонансная частота конденсатора равна

При f > f p конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах f p , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2-3 раза ниже резонансной.

Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора:

где U — напряжение (разность потенциалов), до которого заряжен конденсатор.

Емкость и емкостное реактивное сопротивление — Inst Tools

Конденсаторы

Изменение переменного напряжения, приложенного к конденсатору, заряд конденсатора и ток, протекающий через конденсатор, представлены на рисунке 3.

Рисунок 3: Напряжение, заряд и ток в конденсаторе

Ток, протекающий в цепи, содержащей емкость, зависит от скорости изменения напряжения. Течение на рис. 3 максимально в точках a, c и e.В этих точках напряжение изменяется с максимальной скоростью (т. е. проходит через ноль).

Между точками a и b напряжение и заряд увеличиваются, а ток поступает в конденсатор, но его значение уменьшается. В точке b конденсатор полностью заряжен, а ток равен нулю. От точек b к c напряжение и заряд уменьшаются по мере разряда конденсатора, а его ток течет в направлении, противоположном напряжению. От точек с до d конденсатор начинает заряжаться в обратном направлении, а напряжение и ток снова в одном направлении.

В точке d конденсатор полностью заряжен, и ток снова равен нулю. От точек d до e конденсатор разряжается, и протекание тока противоположно напряжению. На рис. 3 ток опережает приложенное напряжение на 90°. В любой чисто емкостной цепи ток опережает приложенное напряжение на 90°.

Емкостное реактивное сопротивление

Емкостное реактивное сопротивление – это сопротивление конденсатора или емкостной цепи протеканию тока. Ток, протекающий в емкостной цепи, прямо пропорционален емкости и скорости изменения приложенного напряжения.Скорость изменения приложенного напряжения определяется частотой источника питания; поэтому, если частота емкости данной цепи увеличивается, ток увеличивается.

Можно также сказать, что если частота или емкость увеличиваются, сопротивление току уменьшается; следовательно, емкостное реактивное сопротивление, которое противодействует протеканию тока, обратно пропорционально частоте и емкости.

Емкостное реактивное сопротивление X C измеряется в омах, как и индуктивное реактивное сопротивление.

Приведенное ниже уравнение является математическим представлением емкостного реактивного сопротивления.

где

f = частота (Гц)
π = ~3,14
C = емкость (фарады)

Приведенное ниже уравнение представляет собой математическое представление емкостного реактивного сопротивления, когда емкость выражается в микрофарадах (мкФ).

Приведенное ниже уравнение представляет собой математическое представление тока, протекающего в цепи только с емкостным реактивным сопротивлением.

, где
I = эффективный ток (А)
E = эффективное напряжение на емкостном реактивном сопротивлении (В)
X C = емкостное реактивное сопротивление (Ом)

Пример:

Конденсатор емкостью 10 мкФ подключен к источнику питания 120 В, 60 Гц (см. рис. 4). Найти емкостное сопротивление и силу тока в цепи. Нарисуйте векторную диаграмму.

Рисунок 4: Цепь и векторная диаграмма

Решение:

1.Емкостное реактивное сопротивление

X C = 1 000 000 / [ (2)(3,14)(60)(10)]

X C = 1 000 000 / 3768 = 265,4 Ом

2. Ток, протекающий в цепи

I = 120/265,4 = 0,452 А

3. Векторная диаграмма, показывающая опережение тока по напряжению на 90°, представлена ​​на рисунке 4b.

Емкостное реактивное сопротивление | Руководство по базовому обучению электронике

Конденсатор по своей структуре состоит из двух проводников, разделенных изолятором, который часто называют диэлектриком.Он часто используется для фильтрации составляющей постоянного тока в электронных схемах, поскольку пропускает только составляющую постоянного тока. Это означает, что для очень низких частот (высокая составляющая постоянного тока и низкая составляющая переменного тока) конденсатор действует как разомкнутая цепь. И наоборот, для высоких частот (высокая составляющая переменного тока, низкая составляющая постоянного тока) он действует как замкнутая цепь. Это явление лучше емкостного реактивного сопротивления.

Расчет емкостного реактивного сопротивления

Чем ниже частота приложенного напряжения, тем больше времени требуется для полной зарядки конденсатора, прежде чем напряжение изменит полярность и снова начнет разряжать конденсатор.Таким образом, конденсатор проводит больше времени полностью заряженным и пропуская гораздо меньший ток, что приводит к меньшему току на низких частотах. Когда применяется более высокая частота, конденсатор переходит от зарядки к разрядке быстрее, позволяя протекать большему току. Противодействие протеканию тока в любом конденсаторе обратно пропорционально частоте и выражается формулой:

График емкостного реактивного сопротивления

Графическое представление емкостного реактивного сопротивления w.р.т. Частота

Емкостное сопротивление (обозначение X C ) является мерой сопротивления конденсатора переменному току. Как и сопротивление, оно измеряется в омах, но реактивное сопротивление является более сложным, чем сопротивление, поскольку его значение зависит от частоты (f) сигнала, проходящего через конденсатор. Реактивное сопротивление также обратно пропорционально величине емкости (С), т.е. значение X C при любой частоте будет меньше у больших конденсаторов, чем у меньших. Все конденсаторы имеют бесконечно высокие значения реактивного сопротивления при 0 Гц, но у больших конденсаторов реактивное сопротивление падает до низкого уровня на гораздо более низких частотах, чем у меньших конденсаторов.Следовательно, в низкочастотных приложениях предпочтительны конденсаторы большей емкости.


Заинтересованы? Ознакомьтесь с другими статьями по основам электроники в учебном уголке.

Эта статья была впервые опубликована 4 ноября 2017 г. и обновлена ​​27 марта 2019 г.
Предыдущая статьяКак сделать свой собственный блок питания для ноутбука?Следующая статьяДАТЧИКИ: как проверить фальсификацию пищевых продуктов

Рабочий лист емкостного реактивного сопротивления — электрические цепи переменного тока

Пусть сами электроны дадут вам ответы на ваши собственные «практические проблемы»!

Примечания:

По моему опыту, ученикам требуется много практики в анализе цепей, чтобы стать профессионалом.С этой целью преподаватели обычно дают своим ученикам множество практических задач для решения и дают ответы, чтобы студенты могли проверить свою работу. Хотя этот подход позволяет учащимся хорошо разбираться в теории цепей, он не дает им полного образования.

Студентам нужна не только математическая практика. Им также нужны настоящие практические занятия по построению схем и использованию тестового оборудования. Итак, я предлагаю следующий альтернативный подход: студенты должны построить свои собственные «практические задачи» с реальными компонентами и попытаться математически предсказать различные значения напряжения и тока.Таким образом, математическая теория «оживает», и учащиеся получают практические навыки, которые они не получили бы, просто решая уравнения.

Другая причина для следования этому методу практики состоит в том, чтобы научить студентов научному методу : процессу проверки гипотезы (в данном случае математических предсказаний) путем проведения реального эксперимента. Студенты также разовьют реальные навыки устранения неполадок, поскольку они время от времени допускают ошибки при построении схемы.

Потратьте несколько минут вместе со своим классом на изучение некоторых «правил» построения схем до того, как они начнутся.Обсудите эти вопросы со своими учениками в той же сократовской манере, в которой вы обычно обсуждаете вопросы из рабочего листа, а не просто говорите им, что они должны и не должны делать. Я не перестаю удивляться тому, как плохо студенты усваивают инструкции, представленные в формате типичной лекции (монолога инструктора)!

Отличный способ познакомить учащихся с математическим анализом реальных цепей — предложить им сначала определить значения компонентов (L и C) на основе измерений напряжения и тока переменного тока.Самая простая схема, конечно же, представляет собой один компонент, подключенный к источнику питания! Это не только научит студентов правильно и безопасно настраивать цепи переменного тока, но также научит их измерять емкость и индуктивность без специального контрольно-измерительного оборудования.

Примечание по реактивным компонентам: используйте качественные конденсаторы и катушки индуктивности, а для питания старайтесь использовать низкие частоты. Небольшие понижающие силовые трансформаторы хорошо работают с катушками индуктивности (не менее двух катушек индуктивности в одном корпусе!), если напряжение, подаваемое на любую обмотку трансформатора, меньше номинального напряжения этого трансформатора для этой обмотки (во избежание насыщения сердечника). ).

Примечание для тех инструкторов, которые могут жаловаться на «потерянное впустую» время, необходимое для того, чтобы студенты строили реальные схемы, а не просто математически анализировали теоретические схемы:

С какой целью студенты изучают ваш курс?

Если ваши ученики будут работать с реальными схемами, им следует по возможности учиться на реальных схемах. Если ваша цель — обучить физиков-теоретиков, то обязательно придерживайтесь абстрактного анализа! Но большинство из нас планирует, чтобы наши ученики делали что-то в реальном мире с образованием, которое мы им даем.«Потерянное» время, потраченное на построение реальных схем, окупится огромными дивидендами, когда им придет время применить свои знания для решения практических задач.

Кроме того, когда студенты создают свои собственные практические задачи, они узнают, как выполнять первичное исследование , что дает им возможность самостоятельно продолжить свое образование в области электротехники/электроники.

В большинстве наук реалистичные эксперименты гораздо сложнее и дороже поставить, чем электрические цепи. Профессора ядерной физики, биологии, геологии и химии хотели бы, чтобы их студенты применяли передовую математику в реальных экспериментах, не представляющих угрозы безопасности и стоящих меньше, чем учебник.Они не могут, а вы можете. Воспользуйтесь удобством, присущим вашей науке, и заставите ваших учеников попрактиковаться в математике на большом количестве реальных схем!

Схемы конденсаторов переменного тока | Реактивное сопротивление и импеданс — емкостный

Конденсаторы Против. Резисторы

Конденсаторы ведут себя не так, как резисторы. В то время как резисторы пропускают через себя поток электронов, прямо пропорциональный падению напряжения, конденсаторы противодействуют изменениям напряжения, потребляя или подавая ток, когда они заряжаются или разряжаются до нового уровня напряжения.

Поток электронов «через» конденсатор прямо пропорционален скорости изменения напряжения на конденсаторе. Это противодействие изменению напряжения представляет собой другую форму реактивного сопротивления , но прямо противоположную той, которую проявляют катушки индуктивности.

Характеристики цепи конденсатора

Выражаясь математически, отношение между током «через» конденсатор и скоростью изменения напряжения на конденсаторе выглядит следующим образом:

 

 

Выражение de/dt взято из исчисления и означает скорость изменения мгновенного напряжения (e) во времени, в вольтах в секунду.Емкость (C) в фарадах, а мгновенный ток (i), разумеется, в амперах.

Иногда скорость мгновенного изменения напряжения во времени выражается как dv/dt вместо de/dt: для обозначения напряжения используется строчная буква «v» или «e», но это означает то же самое. Чтобы показать, что происходит с переменным током, давайте проанализируем простую цепь конденсатора:

 

Чисто емкостная цепь: напряжение конденсатора отстает от тока конденсатора на 90°

 

Если бы мы построили график тока и напряжения для этой очень простой схемы, это выглядело бы примерно так:

Чисто емкостные сигналы цепи.

 

Помните, ток через конденсатор является реакцией на изменение напряжения на нем.

Следовательно, мгновенный ток равен нулю всякий раз, когда мгновенное напряжение имеет пиковое значение (нулевое изменение или наклон уровня на синусоиде напряжения), а мгновенный ток имеет пиковое значение всякий раз, когда мгновенное напряжение имеет максимальное изменение (точки наибольшего наклона волны напряжения, где она пересекает нулевую линию).

Это приводит к тому, что волна напряжения на -90° не совпадает по фазе с волной тока.Глядя на график, кажется, что волна тока опережает волну напряжения; ток «опережает» напряжение, а напряжение «отстает» от тока.

 

Напряжение отстает от тока на 90° в чисто емкостной цепи.

 

Как вы могли догадаться, такая же необычная волна мощности, которую мы видели в простой схеме с катушкой индуктивности, присутствует и в простой схеме с конденсатором:

 

В чисто емкостной цепи мгновенная мощность может быть положительной или отрицательной.

 

Как и в случае с простой индуктивной схемой, фазовый сдвиг на 90 градусов между напряжением и током приводит к волне мощности, которая одинаково чередуется между положительной и отрицательной. Это означает, что конденсатор не рассеивает мощность, реагируя на изменения напряжения; он просто поглощает и высвобождает энергию попеременно.

Реактивное сопротивление конденсатора

Противодействие конденсатора изменению напряжения переводится в противодействие переменному напряжению в целом, которое по определению всегда изменяется по мгновенной величине и направлению.

Для любой заданной величины переменного напряжения на заданной частоте конденсатор заданной емкости будет «проводить» переменный ток определенной величины.

Точно так же, как ток через резистор является функцией напряжения на резисторе и сопротивления, обеспечиваемого резистором, переменный ток через конденсатор является функцией переменного напряжения на нем, а реактивное сопротивление , обеспечиваемое конденсатором .

Как и в случае катушек индуктивности, реактивное сопротивление конденсатора выражается в омах и обозначается буквой X (или XC, если быть точным).

Поскольку конденсаторы «проводят» ток пропорционально скорости изменения напряжения, они будут пропускать больший ток при более быстро меняющемся напряжении (поскольку они заряжаются и разряжаются до одинаковых пиков напряжения за меньшее время) и меньший ток при более медленно меняющемся напряжении. .

Это означает, что реактивное сопротивление в омах для любого конденсатора равно обратно пропорционально частоте переменного тока.

 

 

Реактивное сопротивление конденсатора 100 мкФ:
Частота (Гц) Реактивное сопротивление (Ом)
60 26.5258
120 13.2629
2500 0,6366

 

Обратите внимание, что отношение емкостного сопротивления к частоте прямо противоположно отношению индуктивного сопротивления.

Емкостное реактивное сопротивление (в омах) уменьшается с увеличением частоты переменного тока. И наоборот, индуктивное сопротивление (в омах) увеличивается с увеличением частоты переменного тока. Катушки индуктивности препятствуют более быстрому изменению тока, вызывая большее падение напряжения; конденсаторы противодействуют более быстрому изменению падения напряжения, пропуская большие токи.

Как и в случае с катушками индуктивности, член уравнения реактивного сопротивления 2πf может быть заменен строчной греческой буквой Омега (ω), которая обозначается угловой скоростью цепи переменного тока. Таким образом, уравнение XC = 1/(2πfC) также может быть записано как XC = 1/(ωC), где ω выражено в единицах радиан в секунду .

Переменный ток в простой емкостной цепи равен напряжению (в вольтах), деленному на емкостное сопротивление (в омах), точно так же, как переменный или постоянный ток в простой резистивной цепи равен напряжению (в вольтах), деленному на сопротивление (в омах).Следующая схема иллюстрирует это математическое соотношение на примере:

 

 

Емкостное реактивное сопротивление.

 

 

Однако нужно помнить, что напряжение и ток здесь не совпадают по фазе. Как было показано ранее, ток имеет фазовый сдвиг +90° по отношению к напряжению. Если мы представим эти фазовые углы напряжения и тока математически, мы сможем вычислить фазовый угол реактивного сопротивления конденсатора току.

 

 

В конденсаторе напряжение отстает от тока на 90°.

 

Математически мы говорим, что фазовый угол сопротивления конденсатора току равен -90°, а это означает, что сопротивление конденсатора току является отрицательной мнимой величиной. (См. рисунок выше.) Этот фазовый угол реактивного противодействия току становится критически важным при анализе цепей, особенно для сложных цепей переменного тока, где взаимодействуют реактивное сопротивление и сопротивление.

Будет полезно представить сопротивление любого компонента току в терминах комплексных чисел, а не только скалярных величин сопротивления и реактивного сопротивления.

 

ОБЗОР:

  • Емкостное реактивное сопротивление — это сопротивление, которое конденсатор оказывает переменному току из-за сдвинутого по фазе накопления и высвобождения энергии в своем электрическом поле. Реактивное сопротивление обозначается заглавной буквой «X» и измеряется в омах так же, как сопротивление (R).
  • Емкостное реактивное сопротивление можно рассчитать по следующей формуле: XC = 1/(2πfC)
  • Емкостное сопротивление уменьшается с увеличением частоты. Другими словами, чем выше частота, тем меньше она противостоит (тем больше «проводит») переменному току.

СВЯЗАННЫЕ РАБОЧИЕ ТАБЛИЦЫ:

Емкостное реактивное сопротивление Xc — Engineer-Educators.com

Эффективность конденсатора в прохождении потока переменного тока зависит от емкости цепи и применяемой частоты.В какой степени конденсатор пропускает поток переменного тока, во многом зависит от значения емкости конденсатора, указанного в фарадах (f). Чем больше емкость конденсатора, тем большее число электронов, измеряемое в кулонах, необходимо для приведения конденсатора в полностью заряженное состояние. Как только конденсатор приближается или фактически достигает полностью заряженного состояния, полярность конденсатора будет противодействовать полярности приложенного напряжения, по существу действуя как разомкнутая цепь. Чтобы дополнительно проиллюстрировать эту характеристику и то, как она проявляется в цепи переменного тока, рассмотрим следующее.Если конденсатор имеет большое емкостное значение, что означает, что ему требуется относительно большое количество электронов, чтобы привести его в полностью заряженное состояние, то ток довольно высокой частоты может чередоваться через конденсатор, при этом конденсатор никогда не достигает полного заряда. В этом случае, если частота достаточно высока, а емкость настолько велика, что конденсатор никогда не успевает полностью зарядиться, вполне возможно, что конденсатор может оказывать очень малое сопротивление току или вообще не оказывать его.Однако, чем меньше емкость, тем меньше электронов требуется, чтобы довести его до полного заряда, и более вероятно, что конденсатор будет накапливать достаточно противоположного заряда, чтобы он мог оказывать большое сопротивление току, если не до такой степени, что ведет себя как разомкнутая цепь. Между этими двумя крайними состояниями лежит континуум возможностей токовой оппозиции в зависимости от комбинации применяемой частоты и выбранной емкости. Ток в цепи переменного тока можно контролировать, изменяя емкость цепи таким же образом, как сопротивление может управлять током.Фактическое реактивное сопротивление переменного тока Xc, как и сопротивление, измеряется в омах (Ом). Емкостное реактивное сопротивление Xc определяется следующим образом:

Пример задачи:
Предполагается последовательная цепь, в которой приложенное напряжение составляет 110 вольт при 60 имп/с, а емкость конденсатора составляет 80 Мф. Найти емкостное сопротивление и ток.

Решение:
Для нахождения емкостного реактивного сопротивления используется уравнение Xc = 1/(2 p f C). Сначала емкость, 80 Мф, переводят в фарады путем деления 80 на 1 000 000, так как 1 миллион микрофарад равен 1 фараду.Это частное равно 0,000080 фарад. Это подставляется в уравнение и

После определения реактивного сопротивления можно использовать закон Ома так же, как он используется в цепях постоянного тока для определения тока.

Реактивное, индуктивное и емкостное сопротивление | Физика II

Цели обучения

К концу этого раздела вы сможете:

  • Схема зависимости напряжения и тока от времени в простых индуктивных, емкостных и резистивных цепях.
  • Рассчитать индуктивное и емкостное сопротивление.
  • Расчет тока и/или напряжения в простых индуктивных, емкостных и резистивных цепях.

Многие схемы также содержат конденсаторы и катушки индуктивности в дополнение к резисторам и источнику переменного напряжения. Мы видели, как конденсаторы и катушки индуктивности реагируют на постоянное напряжение при его включении и выключении. Теперь мы рассмотрим, как катушки индуктивности и конденсаторы реагируют на синусоидальное переменное напряжение.

Катушки индуктивности и индуктивное сопротивление

Предположим, что катушка индуктивности подключена непосредственно к источнику переменного напряжения, как показано на рисунке 1.Разумно предположить пренебрежимо малое сопротивление, так как на практике мы можем сделать сопротивление катушки индуктивности настолько малым, что оно окажет незначительное влияние на цепь. Также показан график зависимости напряжения и тока от времени.

Рис. 1. (a) Источник переменного напряжения, включенный последовательно с катушкой индуктивности, имеющей незначительное сопротивление. (б) График тока и напряжения на катушке индуктивности в зависимости от времени.

График на рис. 1(b) начинается с максимального напряжения. Обратите внимание, что ток начинается с нуля и достигает своего пика 90 149 после 90 150 управляющего им напряжения, как это было в случае, когда в предыдущем разделе было включено постоянное напряжение.Когда напряжение в точке а становится отрицательным, ток начинает уменьшаться; он становится равным нулю в точке b, где напряжение является самым отрицательным. Затем ток становится отрицательным, снова следуя за напряжением. Напряжение становится положительным в точке с и начинает делать ток менее отрицательным. В точке d ток проходит через нуль как раз в тот момент, когда напряжение достигает своего положительного пика, чтобы начать новый цикл. Это поведение резюмируется следующим образом:

Напряжение переменного тока в дросселе

Когда на катушку индуктивности подается синусоидальное напряжение, напряжение опережает ток на одну четвертую периода или на фазовый угол 90º.

Ток отстает от напряжения, так как катушки индуктивности препятствуют изменению тока. Изменение тока индуцирует противо-ЭДС В = − L I / Δ t ). Это считается эффективным сопротивлением катушки индуктивности переменному току. Действующее значение тока I через катушку индуктивности L определяется вариантом закона Ома:

[латекс]I=\frac{V}{{X}_{L}}\\[/латекс],

, где В — среднеквадратичное напряжение на катушке индуктивности, а X L определяется как

[латекс]{X}_{L}=2\pi{fL}\\[/латекс],

с f частотой источника переменного напряжения в герцах (Анализ цепи с использованием правила контура Кирхгофа и исчисления фактически дает это выражение). X L называется индуктивным реактивным сопротивлением , потому что индуктор препятствует протеканию тока. X L измеряется в омах (1 Гн = 1 Ом ⋅ с, так что частота, умноженная на индуктивность, выражается в (циклах/с)(Ом ⋅ с)=Ом)), что согласуется с его ролью в качестве эффективное сопротивление. Имеет смысл, что X L пропорционально L , поскольку чем больше индукция, тем больше ее сопротивление изменению.Также разумно, что X L пропорционально частоте f , поскольку большая частота означает большее изменение тока. То есть Δ I / Δ t велико для больших частот (большие f , малые Δ t ). Чем больше изменение, тем больше сопротивление индуктора.

Пример 1. Расчет индуктивного сопротивления, а затем тока

(a) Рассчитайте индуктивное сопротивление 3.00 мГн при подаче переменного напряжения 60,0 Гц и 10,0 кГц. б) Чему равно среднеквадратичное значение тока на каждой частоте, если приложенное среднеквадратичное напряжение равно 120 В?

Стратегия

Индуктивное сопротивление находится непосредственно из выражения X L   = 2πf L . Как только X L найдено на каждой частоте, можно использовать закон Ома, как указано в уравнении I = В / X L , чтобы найти ток на каждой частоте.

Решение для (а)

Ввод частоты и индуктивности в уравнение

X L   = 2πf L = 6,28 (60,0/с) (3,00 мГн) = 1,13 Ом при 60 Гц.

Аналогично, на частоте 10 кГц

X L   = 2πf L = 6,28 (1,00 × 10 4 /с) (3,00 мГн) = 188 Ом при 10 кГц.

Раствор для (б)

Среднеквадратичное значение тока теперь находится с использованием версии закона Ома в уравнении В / X L , при условии, что приложенное среднеквадратичное напряжение составляет 120 В.Для первой частоты это дает

[латекс]I=\frac{V}{{X}_{L}}=\frac{120\text{ V}}{1.13\text{ }\Omega}=106\text{ A at } 60\ текст{Гц}\\[/латекс].

Аналогично, на частоте 10 кГц

[латекс]I=\frac{V}{{X}_{L}}=\frac{120\text{V}}{188\text{ }\Omega}=0,637\text {A at} 10\ текст{кГц}\\[/латекс].

Обсуждение

Катушка индуктивности очень по-разному реагирует на двух разных частотах. На более высокой частоте его реактивное сопротивление велико, а ток мал, что соответствует тому, как индуктор препятствует быстрому изменению.Таким образом, высокие частоты препятствуют больше всего. Индукторы можно использовать для фильтрации высоких частот; например, большой индуктор можно включить последовательно с системой воспроизведения звука или последовательно с вашим домашним компьютером, чтобы уменьшить высокочастотный звук, выходящий из ваших динамиков, или высокочастотные скачки мощности в вашем компьютере.

Обратите внимание, что, хотя сопротивление в рассматриваемой цепи незначительно, переменный ток не очень велик, поскольку индуктивное сопротивление препятствует его протеканию.При переменном токе нет времени для того, чтобы ток стал чрезвычайно большим.

Конденсаторы и емкостное реактивное сопротивление

Рассмотрим конденсатор, подключенный непосредственно к источнику переменного напряжения, как показано на рис. 2. Сопротивление такой цепи можно сделать настолько малым, что оно оказывает незначительное влияние по сравнению с конденсатором, поэтому мы можем предположить, что сопротивление пренебрежимо мало. Напряжение на конденсаторе и ток представлены на рисунке как функции времени.

Рис. 2.(a) Источник переменного напряжения, включенный последовательно с конденсатором C, имеющим пренебрежимо малое сопротивление. (б) График тока и напряжения на конденсаторе в зависимости от времени.

График на рис. 2 начинается с максимального напряжения на конденсаторе. В этот момент ток равен нулю, потому что конденсатор полностью заряжен и останавливает поток. Затем напряжение падает, а ток становится отрицательным по мере разряда конденсатора. В точке а конденсатор полностью разряжен (на нем Q = 0 ), и напряжение на нем равно нулю.Ток между точками a и b остается отрицательным, что приводит к изменению напряжения на конденсаторе. Это завершается в точке b, где ток равен нулю, а напряжение имеет самое отрицательное значение. Ток становится положительным после точки b, нейтрализуя заряд конденсатора и сводя напряжение к нулю в точке c, что позволяет току достигать своего максимума. Между точками c и d ток падает до нуля, когда напряжение достигает своего пика, и процесс начинает повторяться. На протяжении всего цикла напряжение следует за током на одну четвертую цикла:

Напряжение переменного тока в конденсаторе

Когда на конденсатор подается синусоидальное напряжение, напряжение следует за током на одну четвертую периода или на фазовый угол 90º.

Конденсатор влияет на ток, имея возможность полностью остановить его при полной зарядке. Поскольку применяется переменное напряжение, существует среднеквадратичное значение тока, но оно ограничено конденсатором. Это считается эффективным сопротивлением конденсатора переменному току, поэтому среднеквадратичное значение тока I в цепи, содержащей только конденсатор C , согласно другой версии закона Ома равно

.

[латекс]I=\frac{V}{{X}_{C}}\\[/латекс],

где V — RMS напряжение и x C определяется (как с x L , это выражение для x C результаты из анализа цепи используя правила Кирхгофа и исчисление), чтобы быть

[латекс]{X}_{C}=\frac{1}{2\pi fC}\\[/латекс],

, где X C называется емкостным реактивным сопротивлением , потому что конденсатор реагирует на сопротивление току. X C измеряется в омах (проверка оставлена ​​читателю в качестве упражнения). X C обратно пропорциональна емкости C ; чем больше конденсатор, тем больший заряд он может хранить и тем больший ток может протекать. Она также обратно пропорциональна частоте f ; чем больше частота, тем меньше времени остается для полной зарядки конденсатора, и поэтому он меньше препятствует току.

Пример 2. Расчет емкостного реактивного сопротивления, а затем тока

(a) Рассчитайте емкостное реактивное сопротивление конденсатора емкостью 5,00 мФ при подаче переменного напряжения частотой 60,0 Гц и 10,0 кГц. б) Чему равно среднеквадратичное значение тока, если приложенное среднеквадратичное напряжение равно 120 В?

Стратегия

Емкостное реактивное сопротивление находится непосредственно из выражения в [latex]{X}_{C}=\frac{1}{2\pi fC}\\[/latex]. Как только X C найдено на каждой частоте, можно использовать закон Ома, сформулированный как I = В / X C .

Решение для (а)

Ввод частоты и емкости в [latex]{X}_{C}=\frac{1}{2\pi fC}\\[/latex] дает

[латекс]\begin{array}{lll}{X}_{C}& =& \frac{1}{2\pi fC}\\ & =& \frac{1}{6.28\left(60.0/ \text{s}\right)\left(5.00\text{ }\mu\text{F}\right)}=531\text{ }\Omega\text{ при }60\text{ Гц}\end{массив }\\[/латекс].

Аналогично, на частоте 10 кГц

[латекс]\begin{array}{lll}{X}_{C}& =& \frac{1}{2\pi fC}=\frac{1}{6.{4}/\text{s}\right)\left(5.00\mu\text{F}\right)}\\ & =& 3.18\text{ }\Omega\text{ при }10 \text{ кГц} \end{массив}\\[/латекс].

Раствор для (б)

Среднеквадратичное значение тока теперь находится с использованием версии закона Ома в I = В / X C , учитывая приложенное среднеквадратичное напряжение 120 В. Для первой частоты это дает

[латекс]I=\frac{V}{{X}_{C}}=\frac{120 \text{ V}}{531\text{ }\Omega}=0,226 \text{ A at }60\ текст{Гц}\\[/латекс].

Аналогично, на частоте 10 кГц

[латекс]I=\frac{V}{{X}_{C}}=\frac{120 \text{ V}}{3,18\text{ }\Omega}=3,37 \text{ A at }10 \ текст{Гц}\\[/латекс].

Обсуждение

Конденсатор очень по-разному реагирует на двух разных частотах, и совершенно противоположным образом реагирует индуктор. На более высокой частоте его реактивное сопротивление мало, а ток велик. Конденсаторы способствуют изменениям, тогда как индукторы сопротивляются изменениям. Конденсаторы больше всего препятствуют низким частотам, поскольку низкая частота дает им время зарядиться и остановить ток.Конденсаторы можно использовать для фильтрации низких частот. Например, конденсатор, включенный последовательно со звуковоспроизводящей системой, избавляет ее от гула частотой 60 Гц.

Хотя конденсатор в основном представляет собой разомкнутую цепь, в цепи с переменным напряжением, приложенным к конденсатору, существует среднеквадратичное значение тока. Это связано с тем, что напряжение постоянно меняется, заряжая и разряжая конденсатор. Если частота стремится к нулю (постоянный ток), X C стремится к бесконечности, а ток равен нулю после зарядки конденсатора.На очень высоких частотах реактивное сопротивление конденсатора стремится к нулю — он имеет пренебрежимо малое реактивное сопротивление и не препятствует протеканию тока (он действует как простой провод). Конденсаторы оказывают противоположное воздействие на цепи переменного тока по сравнению с катушками индуктивности .

Резисторы в цепи переменного тока

Напомню, что на рис. 3 показано напряжение переменного тока, приложенное к резистору, и график зависимости напряжения и тока от времени. Напряжение и ток равны в фазе в резисторе.Поведение простого сопротивления в цепи не зависит от частоты:

Рис. 3. (a) Источник переменного напряжения последовательно с резистором. (b) График зависимости тока и напряжения на резисторе от времени, показывающий, что они точно совпадают по фазе.

Напряжение переменного тока в резисторе

Когда на резистор подается синусоидальное напряжение, напряжение точно совпадает по фазе с током — они имеют угол сдвига фаз 0º.

Резюме раздела

  • Для катушек индуктивности в цепях переменного тока мы обнаружили, что когда к катушке индуктивности прикладывается синусоидальное напряжение, напряжение опережает ток на одну четвертую периода или на фазовый угол 90º.
  • Противодействие катушки индуктивности изменению тока выражается как вид сопротивления переменному току.
  • Закон Ома для катушки индуктивности

    [латекс]I=\frac{V}{{X}_{L}}\\[/латекс],

    , где В — среднеквадратичное напряжение на катушке индуктивности.

  • X L определяется как индуктивное реактивное сопротивление, определяемое формулой

    [латекс]{X}_{L}=2\pi fL\\[/латекс],

    с f частота источника переменного напряжения в герцах.

  • Индуктивное сопротивление  X L выражается в омах и имеет наибольшее значение на высоких частотах.
  • Для конденсаторов мы обнаружили, что когда к конденсатору прикладывается синусоидальное напряжение, напряжение следует за током на одну четвертую периода или на фазовый угол 90º.
  • Поскольку конденсатор может останавливать ток при полной зарядке, он ограничивает ток и предлагает другую форму сопротивления переменному току; Закон Ома для конденсатора

    [латекс]I=\frac{V}{{X}_{C}}\\[/латекс],

    , где В — среднеквадратичное напряжение на конденсаторе.

  • X C  определяется как емкостное реактивное сопротивление, определяемое формулой

    [латекс]{X}_{C}=\frac{1}{2\pi fC}\\[/latex].

  • X C измеряется в омах и максимальна на низких частотах.

Концептуальные вопросы

1. Пресбиакузис — возрастная потеря слуха, которая постепенно влияет на более высокие частоты. Усилитель слухового аппарата предназначен для одинакового усиления всех частот. Чтобы настроить его выход на пресбиакузис, вы бы включили конденсатор последовательно или параллельно с динамиком слухового аппарата? Объяснять.

2. Будете ли вы использовать большую индуктивность или большую емкость последовательно с системой для фильтрации низких частот, таких как гул частотой 100 Гц в звуковой системе? Объяснять.

3. Высокочастотный шум в сети переменного тока может повредить компьютеры. Использует ли сменный блок, предназначенный для предотвращения этого повреждения, большую индуктивность или большую емкость (последовательно с компьютером) для фильтрации таких высоких частот? Объяснять.

4. Зависит ли индуктивность от тока, частоты или от того и другого? А индуктивное сопротивление?

5. Объясните, почему конденсатор на рис. 4(а) действует как фильтр низких частот между двумя цепями, а конденсатор на рис. 4(б) действует как фильтр высоких частот.

Рисунок 4. Конденсаторы и катушки индуктивности. Конденсатор с высокой частотой и низкой частотой.

6. Если конденсаторы на рисунке 4 заменить катушками индуктивности, что будет работать как фильтр низких частот, а что как фильтр высоких частот?

Задачи и упражнения

1. При какой частоте дроссель 30,0 мГн будет иметь реактивное сопротивление 100 Ом?

2. Какое значение индуктивности следует использовать, если требуется реактивное сопротивление 20,0 кОм на частоте 500 Гц?

3.Какую емкость следует использовать для получения реактивного сопротивления 2,00 МОм при частоте 60,0 Гц?

4. При какой частоте конденсатор емкостью 80,0 мФ будет иметь реактивное сопротивление 0,250 Ом?

5. (a) Найдите ток через катушку индуктивности 0,500 Гн, подключенную к источнику переменного тока с частотой 60,0 Гц и напряжением 480 В. б) Какой будет сила тока на частоте 100 кГц?

6. (a) Какой ток протекает, когда источник переменного тока с частотой 60,0 Гц, 480 В подключен к конденсатору 0,250 мкФ? б) Какой будет сила тока на частоте 25,0 кГц?

7. А 20.Источник 0 кГц, 16,0 В, подключенный к катушке индуктивности, создает ток силой 2,00 А. Индуктивность какая?

8. Источник 20,0 Гц, 16,0 В производит ток силой 2,00 мА при подключении к конденсатору. Какова емкость?

9. (a) Катушка индуктивности, предназначенная для фильтрации высокочастотных помех от источника питания, подаваемого на персональный компьютер, устанавливается последовательно с компьютером. Какая минимальная индуктивность должна быть у него, чтобы создать реактивное сопротивление 2,00 кОм для шума 15,0 кГц? б) Каково его реактивное сопротивление при 60°.0 Гц?

10. Конденсатор на рис. 4(а) предназначен для фильтрации низкочастотных сигналов, препятствуя их передаче между цепями. (а) Какая емкость необходима для создания реактивного сопротивления 100 кОм на частоте 120 Гц? б) Каким будет его реактивное сопротивление на частоте 1,00 МГц? (c) Обсудите последствия ваших ответов на вопросы (a) и (b).

11. Конденсатор на рис. 4(b) фильтрует высокочастотные сигналы, замыкая их на землю. (a) Какая емкость необходима для создания реактивного сопротивления [латекс]\текст{10.0 m\Omega }[/latex] для сигнала 5,00 кГц? б) Каким будет его реактивное сопротивление при частоте 3,00 Гц? (c) Обсудите последствия ваших ответов на вопросы (a) и (b).

12. Необоснованные результаты  При записи напряжений, вызванных мозговой активностью (ЭЭГ), сигнал 10,0 мВ с частотой 0,500 Гц подается на конденсатор, производящий ток 100 мА. Сопротивление незначительно. а) Чему равна емкость? б) Что неразумного в этом результате? (c) Какое предположение или предпосылка являются ответственными?

13. Создайте свою собственную задачу Рассмотрим использование катушки индуктивности последовательно с компьютером, работающим от электричества 60 Гц. Постройте задачу, в которой вы вычисляете относительное снижение напряжения входящего высокочастотного шума по сравнению с напряжением 60 Гц. Среди вещей, которые следует учитывать, — приемлемое последовательное реактивное сопротивление катушки индуктивности для мощности 60 Гц и вероятные частоты шума, проходящего через линии электропередач.

Глоссарий

индуктивное сопротивление:
сопротивление катушки индуктивности изменению тока; рассчитывается как X = 2π fL
емкостное реактивное сопротивление:
противодействие конденсатора изменению тока; рассчитано по формуле [латекс]{X}_{C}=\frac{1}{2\pi fC}\\[/latex]

Избранные решения задач и упражнений

1.531 Гц

3. 1,33 нФ

5. (а) 2,55 А (б) 1,53 мА

7,63,7 мкГн

9. (а) 21,2 мГн (б) 8,00 Ом

 

Емкостное реактивное сопротивление

  • После изучения этого раздела вы сможете описать:
  • •Емкостное реактивное сопротивление.
  • •Взаимосвязь между реактивным сопротивлением, частотой и емкостью.
  • •Графическое представление емкостного сопротивления.

В конденсаторе с постоянным напряжением модуль 4.2 показал, что ток падает до нуля после начального переходного периода. Однако при приложении переменного напряжения любой заметной частоты ток течет сначала в одном направлении, а затем в другом. Конденсатор сначала заряжается, а затем разряжается, поэтому при условии, что частота подаваемого переменного тока достаточно высока, конденсатор никогда не достигает своего полностью заряженного состояния с нулевым током ни при какой полярности, и ток продолжает течь все время.Величина протекающего тока будет зависеть от угловой скорости приложенного напряжения и от емкости конденсатора

Рис. 6.2.1 Емкостное реактивное сопротивление X

C

Чем ниже частота приложенного напряжения, тем больше времени конденсатор должен достичь полностью заряженного состояния с нулевым током, прежде чем напряжение изменит свою полярность и снова начнет разряжать конденсатор. Таким образом, конденсатор проводит больше времени полностью заряженным и пропуская гораздо меньший ток, поэтому среднее значение протекающего тока меньше на низких частотах.Когда применяется более высокая частота, конденсатор переходит от заряда к разряду раньше на своей кривой заряда и остается дальше от своего полностью заряженного состояния. Как следствие, больше тока течет. Таким образом, сопротивление протеканию тока в любом конденсаторе заданного размера уменьшается с увеличением частоты. Это зависящее от частоты сопротивление протеканию тока в конденсаторе называется ЕМКОСТНОЙ РЕАКТИВНОЙ АКТИВНОСТЬЮ (X C ). Формула емкостного сопротивления:

На рис. 6.2.1 показан график зависимости емкостного сопротивления от частоты для заданной емкости конденсатора, причем емкостное сопротивление (X C ) обратно пропорционально частоте (X C уменьшается по мере увеличения частоты).

Реактивное сопротивление также обратно пропорционально величине емкости, и значение X C на любой конкретной частоте будет меньше у больших конденсаторов, чем у меньших. Все конденсаторы будут иметь бесконечно высокие значения реактивного сопротивления на частоте 0 Гц (т. е. при постоянном токе ток не течет), но в больших конденсаторах реактивное сопротивление падает до низкого уровня на гораздо более низких частотах, чем в меньших конденсаторах. По этой причине конденсаторы большей емкости используются в низкочастотных устройствах.

 

.

Добавить комментарий

Ваш адрес email не будет опубликован.