Регуляторы громкости: ⚡️Электронный регулятор громкости | radiochipi.ru

Содержание

⚡️Электронный регулятор громкости | radiochipi.ru

С развитием стереотехники резко обострилась одна из проблем аналоговой аппаратуры — низкое качество и небольшой ресурс работы переменных резисторов, служащих регуляторами громкости. И если для моноаппаратуры еще можно подобрать переменный резистор на замену вышедшему из строя, то для стерео, особенно импортной, это практически нереально.

Найти “примерно такой же” резистор очень сложно даже в крупных городах. Причем чаще всего “ломаются” резисторы регуляторов громкости. Регуляторы тембра и баланса используются реже и служат гораздо дольше. К счастью, полный выход из строя сдвоенного (“стерео”) переменного резистора случается крайне редко. Обычно хотя бы один из резисторов полностью или частично исправен. И, “зацепившись” за эту часть регулятора. можно “вылечить” все устройство!

При этом даже не придется переводить систему в монофонический режим—достаточно просто добавить специальную микросхему электронного регулятора громкости. Такие микросхемы сравнительно дешевы, почти не искажают звук и практически не требуют подключения внешних элементов. С их помощью автор в свое время вернул жизнь не одному десятку различных магнитол, и ни один владелец не остался разочарованным.

Как правило, подобные микросхемы управляются напряжением. Изменяя напряжение на специальном входе микросхемы с помощью переменного резистора {или того, что от него осталось), мы изменяем громкость фазу в обоих каналах, причем линейность и синхронность ее изменения гораздо выше, чем при использовании сдвоенного переменного резистора.

Знать, как именно устроены подобные микросхемы — совершенно не обязательно (фактически, это операционный усилитель с электрически изменяемым коэффициентом усиления), нужно только помнить, что при уменьшении напряжения на регулирующем входе громкость обычно также уменьшается. И даже если переменный резистор “восстановлению не подлежит” — тоже не все потеряно. В таком случае можно использовать цифровой регулятор громкости, который управляется кнопками.

Такие регуляторы бывают двух типов: автономные и требующие использования дополнительного процессора. Первые (например, КА2250, ТС9153) регулируют только громкость. “Качество регулировки” — довольно скверное, но их стоимость сравнительно невелика. “Процессорные” регуляторы раза в два дороже автономных, но гораздо “круче”: и регулировка более линейная, и, помимо регулировки громкости, можно регулировать тембр, баланс, звуковые эффекты (псевдостерео — стерео из моносигнала, как у TDA8425 или псевдоквадра-стерео в микросхемах серии ТЕАбЗхх).

Есть также селектор каналов на входе и некоторые другие “примочки”. Но распространение таких регуляторов, даже несмотря на весьма выгодное соотношение цена- качество, ограничивает необходимость использования внешнего, заранее запрограммированного процессора. Специализированные запрограммированные процессоры для работы с подобными микросхемами автор в продаже не встречал.

Большинство микросхем с электронной регулировкой громкости предназначены для работы в кассетном магнитофоне. Они имеют пару чувствительных и малошумящих предварительных усилителей, пару усилителей мощности с электронной регулировкой громкости, и рассчитаны на низковольтное питание (1,8…6,0 В при потребляемом токе около 10 мА).

Схема регулятора громкости на микросхеме TA8119P

цифровой регулятор громкости на микросхеме

Таковы микросхемы ТА8119Р ф.TOSHIBA (рис.1) и ВАЗ520 ф.POHM(рис.2). Как видно из рисунков, отличаются они только количеством выводов, а электрические характеристики у них практически совпадают. Кстати, ИМС ТА8119 выпускается только в DIP-корпусе для монтажа в отверстия. а ВА3520 — в DIP- и SOIC-корпусах (соответственно, ВА3520 и BA3520F, последняя—для поверхностного монтажа). Расстояние между рядами выводов у ТА8119 и SOIC-версии BA3520F — 7,5 мм. у ВА3520 в DIP-корпусе —10 мм.

Цифровой регулятор громкости на BA3520

цифровые регуляторы громкости тембра

Операционные усилители (ОУ) внутри — обычные, с той лишь разницей, что некоторые резисторы обратной связи уже установлены в микросхеме. Выходной ток предварительных усилителей — несколько миллиампер, выходных — около сотни миллиампер. На рисунках указаны рекомендуемые схемы включения, но, в принципе, ОУ можно включать по любой стандартной схеме, за исключением, разве что, дифференциальной.

Если слишком большое усиление не требуется, предваритепьные уси- лители можно не использовать, подав входной сигнал непосредственно на выходные усилители (их коэффициент усиления при максимальной громкости — около 7). При этом входы предварительных усилителей желательно соединить с выходом REF микросхемы. Если использовать эти микросхемы для замены переменного резистора, сигнал на входы лучше подавать через резисторы сопротивлением около 100 кОм (для компенсации усиления выходных усилителей), как показано на рис.За.

И вообще, во всех схемах с использованием ВА3520 сигнал на входы оконечных усилителей лучше подавать через резисторы сопротивлением не менее 10 кОм. Это значительно уменьшает шумы на выходе (микросхема “не любит” слишком низкоомные источники сигнала), но выход предварительного усилителя микросхемы можно соединять со входом оконечного непосредственно. К ТА8119 это тоже относится, хотя выражено гораздо слабее.

Для более плавной регулировки громкости в микросхеме ТА8119Р и ВА3520, а также для устранения “шороха” при вращении движка переменного резистора, между движком и общим проводом рекомендуется включить конденсатор емкостью 1…10 мкФ (“+” к движку). При “частичной неисправности” переменного резистора (перегорела или истерлась дорожка возле одного из крайних выводов) можно “выкрутиться”, несколько усложнив схему.

Переменный регулятор громкости на резисторе, транзисторе, микросхеме

ba3520_mikroshemapredvaritelnyj_usilitel

Если перегорел контакт, к которому подводится движок резистора для установки минимальной громкости, используется схема на рис.36 или рис.Зв. Здесь резисторы R1 и R2 образуют делитель напряжения. Но следует отметить, что напряжение в средней точке такого делителя никогда не уменьшится до нуля: при указанных номиналах резисторов оно превышает 0,3 В. т.е. “нулевая” громкость недостижима.

Для устранения этого недостатка в схему добавлен повторитель на транзисторе VT1. При таком напряжении он все еще закрыт (порог открывания — около 0.6 В). В схеме на рис.3б достичь максимальной громкости также невозможно из-за упомянутого выше падения напряжения на транзисторе (около 0,6 В). Поэтому лучше использовать схему, изображенную на рис.3в.

Источник питания (+5 В) должен быть стабилизированным — иначе громкость будет “плавать”. При настройке этой схемы, возможно, понадобится подобрать сопротивления R3 и R4 для получения максимальной громкости. Если же перегорел “верхний” вывод переменного резистора, схема для его “лечения” становится еще проще (рис.Зг). Источник питания тоже должен быть стабилизированным.

Но если переменный резистор “восстановлению не подлежит”, единственный выход — использование цифровых регуляторов. В принципе, такие регуляторы можно построить и на обычной цифровой логике, пропуская звуковой сигнал через микросхему цифро-аналогового преобразователя (ЦАП). Подобные схемы неоднократно публиковались в отечественной литературе начала 90-х годов, но дешевле и удобней воспользоваться специализированной микросхемой, например, КА2250 (Samsung) или ТС9153 (Toshiba).

Регуляторы громкости на ЦАПе КА2250,  ТС9153

ka2250_mikroshema

Эти микросхемы — полные аналоги по электрическим характеристикам и цоколевке (рис.4), отличия только в названии. Они являются 5-битным стереоЦАПом (шаг регулировки — 2 дБ) с довольно скзерными характеристиками регулирования и не очень сложной схемой управления. Что радует — крайне низкие искажения. По этому параметру микросхемы практически не отличаются от переменного резистора, естественно, если амплитуда входного сигнала не превышает 1,5…2,0 В и правильно разведены “земли”.

Также предусмотрено “запоминание” уровня громкости при отключении питания, но в ячейке ОЗУ, т.е. для подпитки самой микросхемы нужна батарейка или конденсатор с малой утечкой.
Для нормальной работы этих микросхем требуется внешний источник образцового напряжения (UREF)- Если у источника сигнала (предварительного усилителя) есть свое UREF. тогда просто подводим его к выводам 4,13 микросхемы (рис.4а). Если же его нет, “сооружаем” внешний делитель напряжения (R1-R2- С1 на рис.4).

В обоих случаях напряжение на выводах 4 и 13 должно быть на 1…2 В меньше напряжения питания, но выше 1…2 В относительно общего провода. Напряжение UREF d каждом канале может быть разным. Собственно регулятор громкости состоит из пары резисторных матриц, коммутируемых через высококачественные полевые транзисторы.

На рисунке эти матрицы обозначены как постоянные резисторы. Для нормального функционирования микросхемы обе матрицы должны быть соединены последовательно и, желательно, через разделительный конденсатор (С4). Так как матрицы содержат только резисторы, то, в принципе, “вход” и “выход” можно поменять местами (что иногда можно обнаружить даже в “фирменных” изделиях), но лучше этого не делать.

Цифровая часть микросхем состоит из генератора с внешними частотозадающими элементами КЗ-С7, двух кнопок SB1, SB2 и коммутатора на диодах VD1, VD2. Громкость изменяется при нажатии и удерживании соответствующей кнопки. У микросхем имеется цифровой выход. Ток через этот выход изменяется от 0 до 1,3 мА (с шагом 0,1 мА) при уменьшении/увеличении громкости. Вывод 7 микросхем служит для “выключения” — при “нуле” на этом входе генератор отключается, а потребляемый микросхемами ток уменьшается до минимума.

“Регулирующая” часть микросхем при этом работает как обычно, но изменять громкость невозможно. Для того, чтобы при отключении питания микросхема “запоминала” уровень громкости, ее желательно подключать так, как показано на рис.46. При отключении питания напряжение на входах “Uпит” уменьшается до нуля, одновременно снижается напряжение на выводе 7, и цифровая часть микросхемы “отключается”.

Сама микросхема при этом питается через батарейку, ее заряда хватает на десятки лет. В принципе, использовать батарейку не обязательно — достаточно одного конденсатора емкостью более 1000 мкф, но даже самый лучший конденсатор не “продержится” более недели. Конденсатор С2 служит для начального сброса микросхемы при включении питания, поэтому он обязателен и должен располагаться в непосредственной близости от выводов питания микросхемы.

Автор

Продолжение статьи находится здесь

Регулятор громкости: схема и применение

Для изменения настройки звука существуют специальные регуляторы. По частотности их делят на активные, а также пассивные. Дополнительно разделение осуществляется по типу настройки. Самыми распространенными принято считать цифровые регуляторы. Создаются они под разные виды усилителей и имеют свою канальность. Чтобы понять принцип работы данных приборов, следует подробно разобраться в их устройстве.

регулятор громкости

Как устроен регулятор?

Важным элементом регулятора принято считать микросхемы. По своим параметрам они довольно сильно могут отличаться. Если рассматривать профессиональные модели, то там имеется до 100 различных контактов. Дополнительно в регуляторе наличествует контроллер, который занимается изменением предельной частоты прибора. С помехами в устройстве справляются конденсаторы. В простой модели их имеется до четырех. Обычно можно встретить в регуляторе керамические конденсаторы. Их частотность, как правило, указывается в маркировке.

регуляторы громкости звука

В профессиональных моделях конденсаторы устанавливаются электролитические. Проводимость у них гораздо лучше, но стоят они дорого. Резисторов в стандартной схеме можно встретить до десяти единиц. Отличаются они между собой по предельному сопротивлению. Самые простые модели способны похвастаться параметром в 2 Ома. Резисторы с такими показателями встречаются довольно часто. Наконец, последним элементом регулятора следует назвать замыкающий механизм. Чаще всего он представлен в виде кнопки, однако есть модели со сложной системой индикации.

Применение электронной модели

Электронный регулятор громкости устанавливается практически на всех звуковых девайсах. Изменять колебания при этом можно различными способами. Чаще всего можно встретить плавные контроллеры, которые позволяют очень тонко настаивать звук, однако есть и скачковые системы. В таком случае изменение параметров осуществляется пошагово и резко. В студиях звукозаписей имеются многоканальные устройства для микшеров. Они позволяют регулировать множество эффектов. Если рассматривать комбинированный электронный регулятор громкости, то многое в данном случае зависит от акустической системы.

Самостоятельная сборка регулятора

Для того чтобы собрать регулятор громкости своими руками для усилителя средней мощности, понадобится микросхема как минимум на 8 бит. Транзисторы для нее лучше всего использовать биполярные. Обычно они в магазине представлены с маркировкой "2НН". Показатель сопротивления у них в среднем колеблется в районе 3 Ом. Контроллеры в основном побираются линейные. Они позволяют довольно плавно изменять предельную частоту. При этом амплитуда помех будет зависеть исключительно от конденсаторов.

регуляторы тембра и громкости

Для обычного регулятора будет достаточно установить их три штуки. Светодиоды могут использоваться только на пару с выпрямителями. В некоторых случаях, для того чтобы сделать регулятор громкости своими руками, дополнительно в начале цепи советуют использовать стабилитрон. Данный элемент значительно повышает работоспособность резисторов и регулятора в целом.

Как устроены регуляторы для наушников?

Регулятор громкости для наушников имеет только два конденсатора. Отличительной особенностью таких устройств можно назвать слабую пропускную способность. Сигнал во многих моделях идет долго. Связано это с тем, что транзисторы не рассчитаны на большую мощность. В некоторых моделях регуляторов устанавливаются резонаторы. Существуют они разных типов и имеют свои параметры. Наиболее часто можно встретить кварцевые резонаторы. Параметр сопротивления у них доходит до 4 Ом. В свою очередь ферритовые аналоги могут выдерживать только 2 Ом. Соединяется регулятор громкости для наушников с динамиком при помощи дросселя.

Схема регулятора тембра

Регуляторы тембра и громкости контроллер имеют операционный. Подходит он для усилителей разной мощности. Диоды в данном случае устанавливаются довольно редко. Выпрямители есть только в моделях, где транзисторов менее трех штук. Резисторы в приборах включаются с маркировкой "ВС". Пропускная способность у них довольно хорошая, но они чувствительны к высоким температурам. Конденсаторы во многих моделях стоят биполярные. Предельное сопротивление регуляторы тембра и громкости способны выдерживать на уровне 3 Ом. В стандартной модели гнездо имеется "РРА" для обычного кольца. Дроссель с резистором соединяются только через преобразователь.

Как настроить регулятор в "Виндовс"?

Осуществить настройку регулятора довольно просто. Находится значок данного элемента на панели "Пуск". Нажав на него один раз левой клавишей, можно изменять предельную частоту. В некоторых случаях пользователь не видит указанный значок. Происходит это из-за того, что регулятор громкости Windows не добавлен в область уведомлений. Обычно он переносится в автоматическом режиме операционной системой. Однако данное действие можно выполнить и вручную через панель управления. Также причина может заключаться в отсутствии файла Sndvol.exe. В таком случае его копию нужно сохранить на компьютере.

регулятор громкости для наушников

Параметры стереорегуляторов

Коэффициент шума у них находится в районе 70 дБ. Параметр нелинейного искажения обычно составляет 0.001 %. Диапазон рабочих частот колеблется от 0 до 10000 Гц. Входное напряжение устройства составляет 0.5 В. Во многих моделях контроллеры устанавливаются реверсивные. Выходное напряжение при этом должно равняться не более 0.5 В. Стабилизатор стерео регулятор громкости обычно имеет импульсный. Питание прибора осуществляется через блок с напряжением до 15 В.

Модели микрофонов с регуляторами

Микрофон с регулятором громкости является на сегодняшний день распространенным девайсом, а микросхема в нем обычно имеется серии "МК22". Пропускная способность у моделей довольно высокая, сигнал проходит хорошо. В стандартной схеме диодов имеется два. Один из них, как правило, располагается возле запирающего механизма. Конденсаторы устанавливаются с различными параметрами. Это необходимо для того, чтобы контролировать частоты различной величины.

Сопротивление у них в среднем выдерживается до 4 Ом. Конденсаторы в регуляторе должны быть только электролитические. В данном случае это даст большой прирост к чувствительности прибора. Резисторов в стандартной схеме имеется до восьми единиц. Ими сопротивление в среднем выдерживается на уровне 3 Ом. Непосредственно запирающий механизм регулятор громкости имеет в виде контроллера.

Схема кнопочного регулятора

Кнопочный регулятор громкости (схема показана ниже) отличается от других устройств тем, что диоды у него располагаются попарно. В результате микросхема довольно быстро передает сигнал на резистор. Выпрямители во многих моделях отсутствуют, и это следует учитывать. Конденсаторов в стандартной схеме предусмотрено до трех единиц. Сопротивление у них максимум выдерживается на уровне 2 Ом. Коэффициент шума у таких моделей в среднем колеблется в районе 50 дБ.

электронный регулятор громкости

Показатель нелинейного искажения, в свою очередь, равен 0.002 %. Из недостатков следует отметить определенные проблемы с неравномерностью. Связано это с малым диапазоном рабочих частот. В некоторых случаях имеет смысл устанавливать усилитель с напряжением более 15 В. В таком случае параметры звука повысятся.

Пассивные регуляторы

Пассивный регулятор громкости отличается от прочих устройств тем, что он производится многоканальным. Сопротивление им в среднем выдерживается на уровне 3 Ом. Запирающие механизмы устанавливаются стандартные. В свою очередь контроллеры в них имеются исключительно цифровые. Благодаря этому синхронизировать стереозвук в приборе получается более точно. Таким образом, проблема с неравномерностью отпадает сама собой.

Резисторы во многих моделях имеются подстроечного типа. Отличительной особенностью профессиональных моделей считается наличие резонатора. Выходное напряжение данного элемента способно доходить до 8 В. Чаще всего в регуляторах они устанавливаются кварцевого типа. Конденсаторов в стандартной схеме имеется два. Микросхема в системе рассчитана на 8 бит.

Применение активных моделей

Активный регулятор громкости, как правило, применяется для приемников, мощность которых не превышает 5 В. Резисторы в нем имеются с сопротивлением около 4 Ом. Резонаторы устанавливаются кварцевые. Отличительной особенностью данных регуляторов можно назвать сигнальные реле. Дроссели, как правило, в приборах не используются. Усилители уславливаются только операционного типа. В связи с этим необходимость в выпрямителях отсутствует. Системы индикации в приборах можно встретить самые разнообразные. Для мобильных устройств такой регулятор громкости не подходит.

Схема комбинированного регулятора

Комбинированный регулятор громкости (схема показана ниже) конденсаторов имеет не более пяти штук. Транзисторы при этом могут использоваться только биполярного типа. Пропускная способность у них довольно высокая. Сопротивление в среднем выдерживается на уровне 3 Ом. Транзисторы линейные в системе предусмотрены. Стабилизаторы уславливаются только в профессиональных моделях. Предельная частота у них не превышает 4000 Гц.

регулятор громкости схема

Как устроен тонкомпенсированный регулятор?

Регуляторы данного типа в основном используются в магнитолах. Система их устройства довольно простая. Микросхема в приборе устанавливается серии "КР2". Непосредственно контроллер имеется линейного типа. Транзистор используется только один. Располагается он рядом с микросхемой.

Конденсаторов всего имеется два. Чаще всего можно встретить именно электролитический тип. Номинальную мощность они способны выдерживать на уровне 16 В. Однако выходной сигнал устройством воспринимается довольно плохо. Резисторов в регуляторе имеется не более пяти. Все они устанавливаются с предельной частотой около 3000 Гц.

Профессиональные модели

Профессиональные регуляторы громкости звука микросхемы имеют многоканальные. Учитывая это, для нормальной работы им требуется подстроечный резистор. Находится он, как правило, рядом с конденсатором. Рассчитана система на нагрузку 8 бит. Замыкающий механизм в устройстве установлен обычный. Коэффициент шума прибора максимум достигает 55 дБ. Показатель нелинейного искажения в некоторых случаях способен превышать 0.001 %.

регулятор громкости своими руками

Рабочая частота в среднем колеблется в районе 2000 Гц. С равномерностью такие схемы проблемы испытывают редко. Выходное напряжение прибора равняется 0.5 В. Резисторная развязка сопротивление максимум выдерживает 3 Ом. Преобразователи в системе предусмотрены, а крепятся они к плате только через дроссель. Конденсаторов в стандартной модели имеется около трех единиц. Их вполне достаточно, чтобы справляться с различными сигналами. Возле гнезда устройства обязательно располагается ферритовое кольцо.

Электронные регуляторы тембра

Все электронные регуляторы отличаются компактными размерами, и предельное напряжение выдерживают большое. В данном случае они не способны работать без усилителя. Стабилизаторы, как правило, применяются только линейные. Цепи диодов располагаются сразу за платой.

Искажения устройством подавляются за счет резисторов. С предельной частотой регулятору помогают справиться стабилизаторы. Выпрямители устанавливаются крайне редко. Энергопотребление таких устройств высокое, а в преобразователях они не нуждаются. Увидеть указанные приборы на микшерах можно довольно часто.

СХЕМА РЕГУЛЯТОРА ГРОМКОСТИ

   Что поставить на вход стереоусилителя на микросхеме TDA1552 для управления звуком? Обычный сдвоенный резистор. А если у нас квадровключение на 4 канала? Кто-то подсказывает - счетверённый регулятор:) А если мы собрали домашний кинотеатр на 6 каналов? Тут уже в бой вступают сложные и дорогостоящие электронные регуляторы громкости на специализированных микросхемах. И такой узел по сложности и цене может превосходить сам усилитель. Тем не менее есть простой выход, как реализовать функцию управления громкостью всего на одном транзисторе. Предлагаемая ниже схема из журнала радиолюбитель, позволяет одним переменным резистором управлять громкостью сразу нескольких каналов.

Схема электронного регулятора громкости

Схема многоканального электронного регулятора

   На одной схеме показан один канал ргулятора громкости, а на другой - сразу 4 канала. Естественно их может быть и 5, и 10. Суть метода заключается в том, что подавая на базу транзистора положительный потенциал через резистор, транзистор открывается и шунтирует вход УНЧ - громкость снижается.

Детали самодельного регулятора

   С этой схемой был проведён ряд экспериментов. Выяснилось, что питание базы можно брать начиная от 1,5В. Максимальный предел напряжения определяется ограничительным резистором на 1кОм. Если мы нашли в УНЧ допустим 12В, то и резистор надо увеличить до безопастных для базового тока 30кОм. Ток потребления базовой цепи в открытом состоянии - несколько миллиампер. В общем подберёте. 

Макет регулятора громкости

   В открытом состоянии транзистора, возможно будет слышен очень тихий звук из-за падения напряжения на кремниевом кристалле. Чтоб молчание было полным - нужно использовать германиевый транзистор типа МП36 - МП38.

Резистор и детали электронного регулятора громкости

   Конденсаторы на входе и выходе электронного регулятора громкости используют неполярные. Транзистор ставим любой маломощный Н-П-Н, типа КТ315, КТ3102, С9014 и т.д. Переменный резистор для электронного регулятора на сопротивление в пределах 10-100кОм. Желательно с линейной характеристикой. 

Подключение электронного регулятора громкости к МП3

   При замыкании движка на массу, все транзисторы закроются и громкость станет максимальной. Перемещая движок к плюсу питания, мы понемногу открываем транзисторы и звук станет затихать. Резистором, что подключен к плюсу питания, выставляем плавность изменения громкости по всему повороту резистора. Чтоб не было так, когда уже после половины поворота громкость исчезла и дальше крутим напрасно. Использование данного электронного регулятора громкости с одной стороны немного увеличит уровень шумов, но с другой - снизит наводки на провода, так как теперь нет необходимости тянуть два раза экранированный провод от выхода предварительного усилителя до входа усилителя мощности.

   Форум по регуляторам и усилителям

   Обсудить статью СХЕМА РЕГУЛЯТОРА ГРОМКОСТИ


Пассивный регулятор громкости и тембра звука

От регулятора тембра мне нужен только подъем крайних частот диапазона для увеличения отдачи дешевых динамиков. Но на Али регуляторов такого типа, увы, не нашлось. Посему недорого приобрел традиционный регулятор НЧ-ВЧ с регулировками как в плюс, так и в минус.

Устройство собрано на компактной плате, комплектуется ручками для регуляторов. Но провода с разъемами в комплект поставки не входят!

Внешне все приемлемо — детали с 5% допуском, конденсаторы полипропиленовые, переменные резисторы B50k.

Схема устройства

Регулятор громкости включен делителем напряжения на входе. Следующий за регулятором громкости регулятор тембра собран по упрощенной схеме Баксандала.

С принципом работы такого регулятора и алгоритмом расчета его элементов можно ознакомиться, например, в статье А.Шихатова в №1 журнала «Радио» за 1999г. http://archive.radio.ru/web/1999/01/013/
Заметил, что номиналы деталей китайского устройства весьма близки к номиналам деталей регулятора на рис.2 в упомянутой статье 😉
Дополнительные ограничивающие резисторы на входе и выходе можно заменить перемычками или разделительными конденсаторами (ФВЧ).

Особенности подключения: пассивный регулятор тембра желательно подключать к источнику с низким выходным сопротивлением, а следующий за регулятором тембра усилитель должен иметь высокое входное сопротивление.
Приобретенное устройство предполагается подключать к выходу на наушники смартфона или плеера. Выходное сопротивление таких усилителей близко к нулю. С учетом разного рода отклонений, принял Zsrc равным 1 кОм.
В качестве усилителя предполагаю использование платки на основе микросхемы TPA3110D2. В даташите на нее ищу фразу «Input impedance» и получаю значение 60 кОм.
АЧХ темброблока при различных положениях регуляторов можно смоделировать в программе ToneStack Calculator http://www.duncanamps.com/tsc/
При средних положениях регуляторов НЧ-ВЧ АЧХ следующая:

Видно, что коэффициент передачи регулятора при этом составляет примерно -20 Дб. Для восстановления уровня громкости до исходного значения требуется дополнительно усилить сигнал в 10 раз по напряжению после регулятора. Или на вход регулятора подать усиленный сигнал, что при малом напряжении питания усилителя может привести к ограничению сигнала.
Этот момент меня не особо тревожит, поскольку я надеюсь, что упомянутая микросхема TPA3110D2 (на 15 Ватт выходной мощности) обеспечит необходимую громкость на имеющихся у меня 2 ваттных динамиках.
Привожу АЧХ при крайних положениях регуляторов.

Как видно, АЧХ далека от идеала. Исправить ее можно уменьшив номинал резистора R3 до 510 Ом.

Привожу АЧХ при крайних положениях регуляторов с измененным номиналом резистора.

Другое дело!

В целом впечатления от этого регулятора положительные, можно рекомендовать к покупке с учетом описанных особенностей

Практическая аудиофилия - Регулятор Громкости (РГ): dbnfkbr — LiveJournal
При построении усилителя возник вопрос: Как реализовать Регулятор Громкости (РГ)?

Аудиофилы не воспринимают никакой РГ кроме "регулятор громкости Никитина", который по своей сути является управляемым аттенюатором, где контакты реле замыкают/размыкают резисторы в делителях. Самые завёрнутые используют 7 и ли 8-разрядные, хотя на практике за глаза хватает и 6!

Мне приходилось слышать усилитель с таким регулятором - при переключении громкости в дополнение к механическому треску переключающихся реле ещё и в колонках отчётливо слышны "щелчки" ... да.. ослабление сигнала качественное, но уж очень некомфортное в работе! И это мне такой не нужен! Я пойду другим путём!



Происходит это потому, что при замыкании/размыкании контакта происходит  "дребезг".. У плохих реле его много, у очень дорогих его мало, но он всё равно есть, ибо его не может не быть - Законы физики отменить нельзя!!!Процесс дребезга при соударении контактов может быть представлен следующим образом. В момент t = 0 произошло соприкосновение контактов (точка А), в цепи появился ток, напряжение на контактах упало до нуля и началось смятие материала и торможение контакта. В точке В подвижный контакт остановился. Началось упругое восстановление материала контактов и обратное движение подвижного контакта.

Если бы материал был абсолютно упругим, то контакт восстановился бы до первоначального, практически же будет наблюдаться некоторая остаточная деформация. В точке С упругое восстановление материала контактов прекратилось, но подвижный контакт по инерции продолжает отходить. Происходит разрыв контактов. Ток в цепи становится равным нулю, напряжение на контактах восстанавливается. Контакт отходит на расстояние xк и под действием контактной пружины снова замыкается (точка D). Происходит повторное смятие материала и его восстановление, и так - несколько раз с затухающей амплитудой. В цифровой технике это "лечится" подключением конденсаторов, но в звуковом тракте они будут работать как фильтр нижних частот, подавляя высокие частоты, а значит этот способ не допустим!


Вот так дребезг выглядит визуально на экране осциллографа

Инженеры уже давно решили эту проблему, и создали интегральный РГ Никитина, работающий абсолютно по такомуже принципу - цифровые потенциометры

Т.к.  чувствительность человеческого уха к уровню звукового давления, или силе звука, изменяется в соответствии не с линейным, а с логарифмическим законом, то и регулятор громкости должен изменять уровень входного сигнала по логарифмическому закону! Для цифрового потенциометра это можно реализовать программно! Для этого всего лишь надо "прыгать" по шкале кодов через 1дБ! А чтобы рассчитать эти коды я воспользуюсь расчетами для РГ Никитина att_calc.xls

В случае переменного резистора делитель будет выглядеть следующим образом, а ослабление А (дБ) при условии Rinput=Rload будет рассчитыватсья по следующей формуле:


Т.к. сумма R1+R2 всегда должно давать Rload, в формулу забиваем R2=Rload-R1 и задачу будем решать с помощью функции EXEL "подбор параметра". Задаем установить в требуемое ослабление в ячейку "дБ" изменяя ячейку R1, а зная номиналы резисторов, можно высчитать коэффициент положения потенциометра и, соответственно, цифровой код ЦАП

Остаётся главный вопрос.... а сколько бит достаточно для реализации цифрового логарифмического РГ? Какой выбрать?


В итоге для ЦАП 8...16 бит получаются следующие ряды значений ослабления входного сигнала от 0 до -100дБ
Жёлтым цветом я выделил ячейки в которых происходит изменение кода без повторения
(по клику откроется полная таблица):

Для удобного визуального восприятия посмотрим на их в виде графика (по клику откроется подробный график):

разницы не заметно.... Кривые лежат друг на друге. Рассмотрим крупнее диапазон ослабления (100%-70%)

разницы практически не заметно.... Кривые снова лежат друг на друге! Рассмотрим крупнее диапазон ослабления (100%-90%)

до 94% разницы никакой вообще -  рассмотрим крупнее диапазон ослабления (100%-94%)

до 99% разница практически не существенная! Углубляемся и рассмотрим крупнее диапазон ослабления (100%-99%)

до 99,60% (-48дБ) ослабления входного сигнала разница практически не существенная и 8битный ЦАП с лёгкостью справится с этой задачей!

так что получается? все эти биты нужны для того чтобы плавно с дискретностью 52 шага регулировать ослабление в пределах 0,4% от 100 до 99,6%?

ПОКАЖИТЕ МНЕ ЭТУ ТВАРЬ, СПОСОБНУЮ ЭТО УСЛЫШАТЬ!!!

Что касается ЦАП с разрядностью 12-16бит то они до 99,90% идут практически "ноздря в ноздрю"!

с дискретностью ЦАП разобрались.... а что с самым главным инструментом? Что способно услышать наше ухо?
А вот что: Как доказал Александр Щербин между порогом слышимости и болевым порогом человек различает всего ~300 элементарных скачков ощущения громкости. Причём на разных частотах это количество разное!!!! т.е. глубина дискретизации нашего уха всего 8бит!!!

Вот теперь, аудиофилы, Вам с этим жить! 🙂

Таким образом считаю что 8-битного ЦАП будет более чем достаточно и останавливаю свой выбор на 8-битном AD8403!

В диапазоне от 0дБ (N=000)  до -30дБ (N=247) коды будут изменяться через 1дБ (как ни странно это полностью закрыло РГ Никитина на 6 релюшках), а оставшиеся 6 как получится. Вот этот ряд чисел, пользуйтесь! 🙂

-100дБ (N=255)
-54дБ (N=254)
-44дБ (N=253)
-40дБ (N=252)
-37дБ (N=251)
-35дБ (N=250)

-33дБ (N=249)
-32дБ (N=248)
-30дБ (N=247)
-29дБ (N=246)
-28дБ (N=244)
-27дБ (N=243)
-26дБ (N=242)
-25дБ (N=240)
-24дБ (N=238)
-23дБ (N=236)
-22дБ (N=233)
-21дБ (N=230)
-20дБ (N=227)
-19дБ (N=223)
-18дБ (N=219)
-17дБ (N=214)
-16дБ (N=209)
-15дБ (N=202)
-14дБ (N=195)
-13дБ (N=187)
-12дБ (N=177)
-11дБ (N=167)
-10дБ (N=155)
-09дБ (N=142)
-08дБ (N=128)
-07дБ (N=113)
-06дБ (N=097)
-05дБ (N=081)
-04дБ (N=064)
-03дБ (N=047)
-02дБ (N=031)
-01дБ (N=015)
-00дБ (N=000)

Регулятор громкости на реле для самодельной аудиоаппратуры
Почти у любой аудиоаппаратуры есть ручка или кнопки, задействовав которые, можно изменить громкость музыкальной песни или передачи, которая играет в данный момент. За ручкой или кнопками скрывается устройство, которое называется регулятором громкости. Или кратко РГ. Об одной реализации данного устройства напишу под катом.


Регуляторы громкости бывают четырех типов:
1. Аналоговые потенциометры:

2. Дискретные переключатели на резисторах:

3. Специализированные микросхемы:

4. Обработка цифрового сигнала микропроцессором c последующим выводом звука на ЦАП:

Каждое из технических решений имеет свои плюсы и свои минусы. Устройство из обзора — представитель 2 группы — дискретный переключатель. Резисторы переключаются тут не переключателем, а восемью специальными сигнальными реле. Переменный резистор на плате никак не связан со звуковым трактом. Он служит для управления электронной цифровой схемой.

Фотографии устройства:

Чипы:

Питание тут два переменных напряжения по 12В. Можно и просто обойтись постоянным стабилизированным напряжением в 12В. Для этого выпаять два диода-выпрямителя (используют двухполупериодный выпрямитель), стабилизатор напряжения и установить необходимые перемычки.
Потребление у устройства такое:

Для питания будет использоваться трансформатор мощностью 4,5 Ватт:

Доработка
Когда подключил устройство для тестов к звуковой карте, то в некоторых положениях регулятора получил дисбаланс каналов:

Решил отпаять резисторы на обратной стороне платы, проверить их сопротивления и заменить резисторы у которых были не одинаковые значения на обоих каналах:
Новые резисторы подобрал с помощью тестера в радиолюбительских «Закромах Родины». Синие резисторы перепаяны:

Измерения
Условия. На вход РГ на один канал подается сигнал синус 1кГц Vpp (разница напряжений между макс и мин синуса) =4.8 Вольт с генератора сигналов.

Выход РГ подключен к звуковой карте EMU0204. На ней измеряем уровень сигнала в децибелах относительно полного сигнала, поданного на звуковую карту.

Так же на выход РГ на этот канал подключен осциллограф. По нему смотрим уровень сигнала Vpp. На второй канал не подаем сигнал. Подключаем три тестера в режиме измерения сопротивления. Измеряем сопротивление между землей и входом, между входом и выходом, между выходом и землей. См схему на переключателях реле — по схеме понятно, как это все работает. Одновременно могут быть переключены несколько реле (хоть все 8):

На переменный резистор закрепляем бумажный круг с разметкой в 360 градусов и стрелкой.

Итоговая конструкция:

Проводим измерения и результат заносим в таблицу:

Выводы из таблицы:
1. Входное сопротивление меняется в зависимости от положения РГ.
2. Смотрим график:

Очень похоже на линейный потенциометр. Если смотреть в dB тогда:

Вывод — это РГ годиться для УНЧ с небольшим коэф. усиления (10-12 раз по напряжению) — т.е. маломощным (до 30 Ватт). С таким УНЧ и планируется использовать РГ. В случае мощного УНЧ будем получать уже при небольшом повороте ручки от нуля мощный и громкий сигнал.
Итог тестов в RMAA

Первый столбец — подключение линейного выхода зв.карты EMU0204 к ее лин.входу
Второй — регулятор громкости на максимуме
Третий — регулятор громкости на громкости, соотв. подключению к усилителю с коэф. усиления 10 и регулятором громкости на 90 градусов. Что соответствует макс. мощности примерно в 1 Ватт на нагрузку 4 Ома (тихий звук).
Графики не стал размещать — они почти совпадают.

Особенности:
1. Сигнал на выход подается не сразу. Где-то через 2 секунды. При отключении сигнала звук пропадает сразу.
2. Когда крутится регулятор — мигает один светодиод, шуршат реле (слышно). Второй светодиодные горит синим всегда — это индикатор питания.
3. 128 вариантов громкости по китайским расчетам (256 вариантов по другими расчетам)

Плюсы:
1. Два полностью независимых канала.
2. После доработки с балансом между каналами все ок.
3. Нет глюков обычных недорогих потенциометров Например: звук при нулевом положении РГ, разбаланс каналов, треск при вращении.
4. Такой регулятор можно разместить в любом месте корпуса. Например, плату разместить около входных раз'емов, а регулятор выпаять и установить на переднюю панель.
5. Работает нормально — без треска и щелчков в динамиках.

Минусы:
1.Флюс отмыт плохо. Я специально не отмывал. Буду отмывать вместе со всеми платами устройства.
2. Нестандартный штекер питания. Перепаял.
3. Разъемы вход-выход нет. Провода припаиваются сразу на плату.
4. Реле шуршат сильно
5. Разное сопротивление устройства на входе.
6. Иногда при неудачном повороте ручки начинают бешено трещать реле. Это слышно. Нужно немного «довернуть» ручку.
7. На нулевой громкости вход УНЧ (выход РГ) не замкнут на землю. Фон не слышен — но «не по фэн-шую».
8. Из-за почти линейных характеристик такой РГ желательно использовать с УНЧ небольшой мощности (до 30 Ватт).
9. Необходимо отдельное питание для РГ.

Вызов традициям Hi-Fi. Цифровые потенциометры в деталях. Часть вторая / Хабр

Для меня стало неожиданностью, что наиболее горячие споры при обсуждении моей предыдущей статьи касались в первую очередь возможности применения цифровых сопротивлений в качестве регулятора громкости аудиосигнала в HiFi аппаратуре. Для того чтобы внести в этот вопрос ясность я решил посвятить отдельную статью детальному разбору схемотехники высококачественного регулятора громкости с цепями подавления импульсных помех переключения на основе VDAC AD9252. Кроме схемотехники вы также сможете под катом познакомиться с достигнутыми характеристиками.

Тем, кто не читал мою вчерашнюю статью, в которой разбирались общие вопросы, касающихся цифровых сопротивлений настоятельно рекомендую предварительно с ней ознакомиться тут. Во первых, лучше поймёте о чём собственно идёт речь ниже, а во вторых если вас заинтересовала сегодняшняя тема, то и в ней найдёте интересный для себя материал.

Для того чтобы привести обещанные примеры реальных схем программно управляемых преобразователей величин, перестраиваемых фильтров и других электронных узлов параметры которых можно менять с помощью цифрового сопротивления придётся писать третью статью. Постараюсь сделать это в ближайшем будущем, а пока предлагаю исследовать тянет ли регулятор громкости собранный на основе топового прибора от ADI на применения в HiFi аппаратуре ну хотя бы низшего ценового сегмента.

Представляю попытку создать регулятор громкости на основе одной их топовых микросхем цифровых регуляторов производства ADI, претендующий на звание Hi-Fi.

Для начала приведу общие характеристики, которые удалось выжать. Низкие гармонические искажения. Нормализованная передаточная характеристка. Динамический диапазон регулировки уровня громкости составляет 46 dB. Кроме этого, существует возможность функции MUTE с ослаблением сигнала на 130 dB. В данный режим регулятор входит после перехода регулятора AD5292 в shutdown режим, путём подачи специальной команды. Ну и конечно имеется специальная схема для уменьшения влияния эффекта возникновения режущих слух импульсных помех в момент переключения уровня громкости. Данный эффект наибольшим образом даёт о себе знать именно в логарифмических усилителях потому, что их громкость может меняться скачком в очень широком диапазоне. Для сведения помехи при переключении уровня громкости к минимуму, это переключение необходимо производить при переходе сигнала через ноль.

Регулятор может работать с входным сигналом уровнем вплоть до ±14 вольт (10 V RMS), что обеспечивает хорошие шумовые характеристики. Максимальный ток нагрузки по выходу 20 мА. Управление по SPI интерфейсу. Интерфейс подсоединения микросхемы к управляющему микроконтроллеру не показан, так как является стандартным.

Схема и принцип её работы

Сигнал с входного повторителя поступает на регулятор уровня AD5292 c логарифмической характеристикой. Часть сигнала ответвляется от основного с помощью делителя напряжения на резисторах R4 и R5, нагруженного на ОУ AD8541, который выступает в роли динамической нагрузки формирующей искусственную землю на уровне 1.81 В. Далее сигнал поступает на компараторы U3 и U4, которые формируют “окно” шириной всего в 13 милливольт в районе перехода сигнала через ноль. В момент прохода сигнала через ноль логическим элементом U5A формируется низкий уровень.

Для того, чтобы переключить уровень громкости необходимо записать новые данные в буферный регистр и подать отрицательный фронт на вход SYNC U6. Когда после записи кода мы подаём низкий уровень на нижний вход U5B, он транслируется в уровень переключения значения цифрового сопротивления только в момент прохождения аудиосигнала через “окно ” компараторов. Обратите внимание, что для повышения точности работы вся схема работает только по постоянному току.

Для получения максимально комфортной для уха характеристики регулировки громкости средний вывод цифрового сопротивления шунтируется резистором R8. В результате получаем нормализованную характеристику передачи сигнала, изображённую на рисунке ниже.

Иллюстрация работы схемы уменьшения импульсных помех

Давайте для начала посмотрим что происходит при переключении уровня сопротивления в отключенной схемой подавления импульсных помех.

Вот так выглядит переходной процесс в момент включения звука, который произошёл во время, помеченное нулём.

Для случая переключения звука с одного значения на другое всё может выглядеть ещё хуже.

На следующей картинке изображён результат работы нашей помехогасящей схемы при переходе от большей громкости к меньшей.

Характеристики регулятора

Теперь давайте посмотрим на другие характеристики, которых удалось достичь в нашем регуляторе.

Как справедливо указал уважаемый Alex013 в комментариях к моей предыдущей статье качество звука достаточно сильно зависит от уровня нечётных гармоник сигнала в усилительном тракте. Для того чтобы показать как на них влияет наш цифровой регулятор давайте рассмотрим результат FFT преобразований сигнала частотой 1 КГц проходящего через схему при “движке потенциометра” установленным в крайнее вернее положение — т. е. коэффициент передачи равен единице.

На мой взгляд характеристики весьма достойные, уровень третьей гармоники ушёл ниже-100 дб, пятой вообще не видно невооружённым глазом. Интересно что скажут наши эксперты по звуку.

Следующий график я привожу специально для хаброюзера barabanus извиняюсь за выражение проевшего мне мозг в комментариях к прошлой статье. Надеюсь теперь мы согласитесь со мной, уважаемый, что сопротивление не только 10, но даже 20 килоомного резистора не изменяется на величины порядка десяти процентов на частотах от нуля до 20 КГц при любом выставленном сопротивлении! Фаза сигнала меняется, но на мой взгляд весьма незначительно.

На частоте 1 КГц наша схема обеспечивает общий уровень искажения сигнала на уровне -93 дБ. Зависимость собственного уровня шумов схемы и нелинейных искажений от частоты сигнала при коэффициенте передачи усилителя равном единице изображена на графике ниже.

Вариант схемы для любителей компромиссов.

На этом закончим исследование нашей схемы, а в качестве бонуса предлагаю её упрощённый вариант, с несколько худшими характеристиками, зато с более доступной элементной базой.

А вот осциллограмма процесса переключения уровня громкости на весьма высокой частоте. Как видите без нелинейных искажений в момент переключения не обошлось, но никаких режущих ухо выбросов нет и в помине!

Спасибо дочитавшим до конца. Попробую испытать Ваше терпение чуть дольше. Поскольку я не являюсь специалистом в области «чистого прозрачного звука» и мне трудно оценить качество описанного дивайса, прошу высказать своё мнение в виде ответа на вопрос или в комментариях.

Ссылка на предыдущую статью серии: «Когда не помогает ЦАП. Цифровые потенциометры в деталях. Часть первая»

В статье использован фрагмент фотографии лампового усилителя пользователя eta4ever.

Регуляторы громкости - Win32 приложения

  • 3 минуты, чтобы прочитать

В этой статье

Клиенты, которые управляют потоками совместно используемого режима, обычно используют интерфейсы ISimpleAudioVolume и IAudioSessionEvents в WASAPI для управления и мониторинга уровней громкости потока.С помощью методов интерфейса ISimpleAudioVolume клиент может получить и установить уровни громкости аудиосеансов, к которым относятся потоки общего режима. Если Sndvol или другое приложение изменяет уровень громкости сеанса, клиент может получить уведомление об изменении через интерфейс IAudioSessionEvents .

Клиенты, которые управляют потоками исключительного режима, обычно используют интерфейсы IAudioEndpointVolume и IAudioEndpointVolumeCallback в API-интерфейсе EndpointVolume для управления и мониторинга уровней громкости потока.С помощью методов интерфейса IAudioEndpointVolume клиент может получить и установить уровень громкости конечного аудиоустройства. Если Sndvol или другое приложение изменяет уровень громкости конечного устройства, клиент может получить уведомление об изменении через интерфейс IAudioEndpointVolumeCallback .

Как объяснено в Audio Sessions, Sndvol - это программа управления громкостью системы. Он отображает регуляторы громкости для конечных устройств аудио-рендеринга в системе.(В настоящее время он не отображает регуляторы громкости для конечных устройств захвата звука.) Чтобы просмотреть регуляторы громкости для определенного устройства, щелкните Устройство в строке меню и выберите имя устройства в списке доступных устройств.

Окно Sndvol разделяет регуляторы громкости для устройства на две группы. Групповое поле в левой части окна помечено как Устройство . Блок Device содержит единый регулятор громкости, который управляется интерфейсом IAudioEndpointVolume .Изменения, которые пользователь вносит в этот регулятор громкости, можно отслеживать через интерфейс IAudioEndpointVolumeCallback .

Групповое поле с правой стороны окна Sndvol помечено Applications . Блок Applications содержит регуляторы громкости для приложений, которые в данный момент используют устройство. Для приложений, которые используют устройство в совместно используемом режиме, регуляторы громкости представляют уровни громкости, которые управляются интерфейсом ISimpleAudioVolume .Изменения, которые пользователь вносит в эти регуляторы громкости, можно отслеживать через интерфейс IAudioSessionEvents .

Хотя приложение общего режима может использовать свой интерфейс IAudioSessionEvents для мониторинга изменений, которые пользователь вносит в регулятор громкости приложения в поле Приложения в окне Sndvol, приложение не может отслеживать изменения в элементах управления громкостью других, не связанных друг с другом Приложения. Точно так же приложение может изменять уровни громкости своих аудиосеансов через интерфейс ISimpleAudioVolume , но оно не может изменять уровни громкости сессий, которые принадлежат другим, не связанным приложениям.

Однако два или более связанных приложения (или экземпляры одного и того же приложения) могут совместно использовать один и тот же регулятор громкости в окне Приложения в окне Sndvol, либо назначив свои аудиопотоки одному и тому же межпроцессному сеансу, либо связав их соответствующие сеансы с одинаковым параметром группировки. Для получения дополнительной информации см. Аудио сеансы и параметры группировки.

WASAPI предоставляет два дополнительных интерфейса, IChannelAudioVolume и IAudioStreamVolume , для управления уровнями громкости потоков совместно используемого режима.Эти интерфейсы в основном используются специализированными клиентами, которым требуется контроль уровней громкости отдельных каналов в сеансе или отдельных потоков в сеансе.

API-интерфейс DeviceTopology позволяет клиентам получать доступ к элементам управления громкостью в топологиях аудиоадаптеров. Однако клиенты, которые управляют потоками исключительного режима, обычно используют API EndpointVolume вместо API DeviceTopology для управления уровнями громкости потока. API EndpointVolume упрощает управление громкостью конечного устройства двумя способами.Во-первых, если конечное устройство реализует аппаратный контроль громкости, API-интерфейс DeviceTopology требует, чтобы клиент прошел топологию устройства в поисках аппаратного контроля. API EndpointVolume, напротив, автоматически находит аппаратный регулятор громкости для клиента. Во-вторых, если конечное устройство не реализует аппаратный контроль громкости, клиент DeviceTopology должен реализовать программный контроль громкости. В противоположность этому API-интерфейс EndpointVolume автоматически заменяет программный регулятор громкости отсутствующим аппаратным элементом управления.

В следующих разделах описаны регуляторы громкости для аудиосеансов и конечных аудиоустройств:

Руководство по программированию

,

регуляторы громкости | AtlasIED

Регуляторы громкости для коммерческих и жилых помещений, кабели и аксессуары

Коммерческая

Picture for category Commercial

Выбор коммерческих аттенюаторов из списка UL, доступных в исполнении из нержавеющей стали, декорации или в стойке.

Стерео

Picture for category Stereo

Стерео аттенюаторы в стиле decora

Системы коммутации колонок

Picture for category Speaker Switching Systems

Система переключения динамиков с согласованием импедансов

Аксессуары

Picture for category Accessories

Аппаратные средства и компоненты для регулировки громкости

Legacy Volume Controls

Picture for category Legacy Volume Controls

Прекращены регуляторы громкости.

,

Регуляторы громкости

VC30R

VC30R

Power Handling

Макс. 30 Вт RMS макс. Вход / канал

Шаги затухания

7 верхних шагов составляют -3 дБ за шаг; самые низкие два шага -6 дБ за шаг; последний шаг в положении ВЫКЛ.

Частотная характеристика

20 Гц - 20 кГц ± 2 дБ

Соединения

Быстроразъемный винтовой зажим, емкость провода 20-14 AWG.

Дизайн

Decora Style Rotary

Размеры (ШхВхГ)

1 3/4 "x 4" x 2 1/4 "(44 мм x 102 мм x 57 мм)

Вес Отправления

1 фунт (0,45 кг)

VC60R

VC60R

Power Handling

RMS макс. 60 Вт / канал

Шаги затухания

Верхние 6 шагов составляют -3 дБ за шаг; самые низкие четыре шага -6 дБ за шаг; последний шаг в положении ВЫКЛ.

Частотная характеристика

20 Гц - 20 кГц ± 1 дБ

Соединения

Быстроразъемный винтовой зажим, емкость провода 20-14 AWG.

Дизайн

Decora Style Rotary

Размеры (ШхВхГ)

1 3/4 "x 4" x 2 3/4 "(44 мм x 102 мм x 76 мм)

Вес Отправления

2 фунта(0,9 кг)

VC60S

VC60S

Power Handling

RMS макс. 60 Вт / канал

Шаги затухания

Верхние 6 шагов составляют -3 дБ за шаг; самые низкие четыре шага -6 дБ за шаг; последний шаг в положении ВЫКЛ.

Частотная характеристика

20 Гц - 20 кГц ± 1 дБ

Соединения

Быстроразъемный винтовой зажим, емкость провода 20-14 AWG.

Дизайн

Decora Style Slider

Размеры (ШхВхГ)

1 5/8 "x 4" x 3 "(41 мм x 102 мм x 76 мм)

Вес Отправления

2 фунта (0,9 кг)

,

Отправить ответ

avatar
  Подписаться  
Уведомление о