Широтно импульсная модуляция это: Что такое ШИМ – Широтно-Импульсная Модуляция? ⋆ diodov.net

Содержание

Что такое ШИМ – Широтно-Импульсная Модуляция? ⋆ diodov.net

Программирование микроконтроллеров Курсы

Рассмотрим, что такое ШИМ или PWM. А также, чем отличается ШИМ от ШИР. Алгоритм широтно-импульсной модуляции применяется для плавного изменения мощности на нагрузке, поступающей от источника питания. Например, с целью регулирования скорости вращения вала двигателя; плавности изменения яркости освещения или подсветки. Отдельной широкой областью применения ШИМ являются импульсные источники питания и автономные инверторы.

Для питания нагрузки часто необходимо изменять величину напряжения, подводимого от источника питания. Принципиально можно выделить два способа регулирования напряжения – линейный и импульсный.

Способы регулирования напряжения

Примером линейного способа может послужить переменный резистор. При этом значительная часть мощности теряется на резисторе. Чем больше разница напряжений источника питания и потребителя, тем ощутимей потери мощности, которая попросту «сгорает» на резисторе, превращаясь в тепло. Поэтому линейный способ регулирования рационально применять только при небольшой разнице входного и выходного напряжений. В противном случае коэффициент полезного действия источника питания в целом будет очень низкий.

Линейный способ регулирования напряжения

В современной преобразовательной технике преимущественно используются импульсное регулирование мощности на нагрузке. Одним из способов реализации импульсного регулирования является широтно-импульсная модуляция ШИМ. В англоязычной литературе PWM – pulse-width modulation.

Импульсный способ регулирования напряжения

Принцип импульсного регулирования

Основными элементами любого типа импульсного регулятора мощности являются полупроводниковые ключи – транзисторы или тиристоры. В простейшем виде схема импульсного источника питания имеет следующий вид. Источника постоянного напряжения

Uип ключом K подсоединяется к нагрузке Н. Ключ К переключается с определенной частотой и остается во включенном состоянии определенную длительность времени. С целью упрощения схемы я на ней не изображаю другие обязательные элементы. В данном контексте нас интересует только работа ключа К.

Упрощенная схема импульсного блока питания

Чтобы понять принцип ШИМ воспользуемся следующим графиком. Разобьем ось времени на равные промежутки, называемые периодом T. Теперь, например половину периода мы будем замыкать ключ K. Когда ключ замкнут, к нагрузке Н подается напряжение от источника питания Uип. Вторую часть полупериода ключа находится в закрытом состоянии. А потребитель останется без питания.

Широтно-импульсное регулирование ШИР

Время, в течение которого ключ замкнут, называется временем импульса tи. А время длительности разомкнутого ключа называют временем паузы tп. Если измерить напряжение на нагрузке, то оно будет равно половине Uип.

Среднее значение напряжения на нагрузке можно выразить следующей зависимостью:

Uср.н = Uип tи/T.

Отношение времени импульса к периоду T называют коэффициентом заполнения D. А величина, обратная ему называется скважностью:

S = 1/D = T/tи.

На практике удобнее пользоваться коэффициентом заполнения, который зачастую выражают в процентах. Когда транзистор полностью открыт на протяжении всего времени, то коэффициент заполнения D равен единице или 100 %.

Если D = 50 %, то это означает, что половину времени за период транзистор находится в открытом состоянии, а половину в закрытом. В таком случае форма сигнала называется меандр.
Следовательно, изменяя коэффициент D от 0 до единицы или до 100 % можно изменять величину Uср.н от 0 до Uип:

Uср.н = Uип∙D.

А соответственно регулировать и величину подводимой мощности:

Pср.н = Pип∙D.

Широтно-импульсное регулирование ШИР

В западной литературе практически не различают понятия широтно-импульсного регулирования ШИР и широтно-импульсной модуляции ШИМ. Однако у нас различие между ними все же существует.

Сейчас во многих микросхемах, особенно применяемых в DC-DC преобразователях, реализован принцип ШИР. Но при этом их называют ШИМ контроллерами. Поэтому теперь различие в названии между этими двумя способами практически отсутствует.

Схема импульсного регулирования напряженияВ любом случае для формирования определенной длительности импульса, подаваемого на базу транзистора и открывающего последний, применяют источники опорного и задающего напряжения, а также компаратор.
Рассмотрим упрощенную схему, в которой аккумуляторная батарея GB питает потребитель Rн импульсным способом посредством транзистора VT. Сразу скажу, что в данной схеме я специально не использовал такие элементы, необходимые для работы схемы: конденсатор, дроссель и диод. Это сделано с целью упрощения понимания работы ШИМ, а не всего преобразователя.

Упрощенно, компаратор имеет три вывода: два входа и один выход. Компаратор работает следующим образом. Если величина напряжения на входном выводе «+» (неинвертирующий вход) выше, чем на входе «-» (инвертирующий вход), то на выходе компаратора будет сигнал высокого уровня. В противном случае – низкого уровня.

В нашем случае, именно сигнал высокого уровня открывает транзистор VT. Рассмотрим, как формируется необходимая длительность времени импульса tи. Для этого воспользуемся следующим графиком.

Принцип ШИР Широтно-импульсное регулирование

При ШИР на одни вход компаратора подается сигнал пилообразной формы заданной частоты. Его еще называют опорным. На второй вход подается задающее напряжение, которое сравнивается с опорным. В результате сравнения на выходе компаратора формируется импульс соответствующей длительности.

Если на неинверитирующем входе компаратора опорный сигнал, то сначала будет идти пауза, а затем импульс. Если на неинвертирующий вход подать задающий сигнал, то сначала будет импульс, затем пауза.

Принцип ШИМ Широтно-импульсное регулирование

Таким образом, изменяя значение задаваемого сигнала, можно изменять коэффициент заполнения, а соответственно и среднее напряжение на нагрузке.

Частоту опорного сигнала стремятся сделать максимальной, чтобы снизить параметры дросселей и конденсаторов (на схеме не показаны). Последнее приводит к снижению массы и габаритов импульсного блока питания.

ШИМ – широтно-импульсная модуляция

ШИМ в преобладающем большинстве применяется для формирования сигнала синусоидальной формы. Часто ШИМ применяется для управления работой инверторного преобразователя. Инвертор предназначен для преобразования энергии постоянного тока в энергию переменного тока.

Рассмотрим простейшую схему инвертора напряжения.

Инвертор напряжения с ШИМ

В один момент времени открывается пара транзисторов VT1 и VT3. Создается путь для протекания тока от аккумулятора GB через активно-индуктивную нагрузку RнLн. В следующий момент VT1 и VT3 заперты, а открыты диагонально противоположные транзисторы VT2 и VT4. Теперь тока протекает от аккумулятора через RнLн в противоположном направлении. Таким образом, ток на нагрузке изменяет свое направление, поэтому является переменным. Как видно, ток на нагрузке не является синусоидальным. Поэтому применяют ШИМ для получения синусоидально формы тока.

ШИМ Широтно-импульсная модуляция

Существует несколько типов ШИМ: однополярная, двухполярная, одностороння, двухсторонняя. Здесь мы не будем останавливаться на каждом конкретном типе, а рассмотрим общий подход.

В качестве модулирующего сигнала применяется синусоида, а опорным является сигнал треугольной формы. В результате сравнивания этих сигналов формируются длительности импульсов и пауз (нижний график), которые управляют работой транзисторов VT1…VT4.

Обратите внимание, что амплитуда напряжения на нагрузке всегда равна амплитуде источника питания. Также остается неизменным период следования импульсов. Изменяется лишь ширина открывающего импульса. Поэтому при подключении нагрузки ток, протекающий через нее, будет иметь синусоидальную форму (показано пунктиром на нижнем графике).

Так вот, основное отличие между ШИР и ШИМ заключается в том, что при широтно-импульсном регулировании время импульса и паузы сохраняют постоянное значение. А при широтно-импульсной модуляции изменяются длительности импульсов и пауз, что позволяет реализовать выходной сигнал заданной формы.

Электроника для начинающих

Еще статьи по данной теме

Все про широтно-импульсную модуляцию (ШИМ)

Широтно-импульсная модуляция (ШИМ) – это метод преобразования сигнала, при котором изменяется длительность импульса (скважность), а частота остаётся константой. В английской терминологии обозначается как PWM (pulse-width modulation). В данной статье подробно разберемся, что такое ШИМ, где она применяется и как работает.

Область применения

С развитием микроконтроллерной техники перед ШИМ открылись новые возможности. Этот принцип стал основой для электронных устройств, требующих, как регулировки выходных параметров, так и поддержания их на заданном уровне. Метод широтно-импульсной модуляции применяется для изменения яркости света, скорости вращения двигателей, а также в управлении силовым транзистором блоков питания (БП) импульсного типа.

Широтно-импульсная (ШИ) модуляция активно используется в построении систем управления яркостью светодиодов. Благодаря низкой инерционности, светодиод успевает переключаться (вспыхивать и гаснуть) на частоте в несколько десятков кГц. Его работа в импульсном режиме воспринимается человеческим глазом как постоянное свечение. В свою очередь яркость зависит от длительности импульса (открытого состояния светодиода) в течение одного периода. Если время импульса равно времени паузы, то есть коэффициент заполнения – 50%, то яркость светодиода будет составлять половину от номинальной величины. С популяризацией светодиодных ламп на 220В стал вопрос о повышении надёжности их работы при нестабильном входном напряжении. Решение было найдено в виде универсальной микросхемы – драйвера питания, работающего по принципу широтно-импульсной или частотно-импульсной модуляции. Схема на базе одного из таких драйверов детально описана здесь.

Подаваемое на вход микросхемы драйвера сетевое напряжение постоянно сравнивается с внутрисхемным опорным напряжением, формируя на выходе сигнал ШИМ (ЧИМ), параметры которого задаются внешними резисторами. Некоторые микросхемы имеют вывод для подачи аналогового или цифрового сигнала управления. Таким образом, работой импульсного драйвера можно управлять с помощью другого ШИ-преобразователя. Интересно, что на светодиод поступают не высокочастотные импульсы, а сглаженный дросселем ток, который является обязательным элементом подобных схем.

Масштабное применение ШИМ отражено во всех LCD панелях со светодиодной подсветкой. К сожалению, в LED мониторах большая часть ШИ-преобразователей работает на частоте в сотни Герц, что негативно отражается на зрении пользователей ПК.

Микроконтроллер Ардуино тоже может функционировать в режиме ШИМ контроллера. Для этого следует вызвать функцию AnalogWrite() с указанием в скобках значения от 0 до 255. Ноль соответствует 0В, а 255 – 5В. Промежуточные значения рассчитываются пропорционально.

Повсеместное распространение устройств, работающих по принципу ШИМ, позволило человечеству уйти от трансформаторных блоков питания линейного типа. Как результат – повышение КПД и снижение в несколько раз массы и размеров источников питания.

ШИМ-контроллер является неотъемлемой частью современного импульсного блока питания. Он управляет работой силового транзистора, расположенного в первичной цепи импульсного трансформатора. За счёт наличия цепи обратной связи напряжение на выходе БП всегда остаётся стабильным. Малейшее отклонение выходного напряжения через обратную связь фиксируется микросхемой, которая мгновенно корректирует скважность управляющих импульсов. Кроме этого современный ШИМ-контроллер решает ряд дополнительных задач, способствующих повышению надёжности источника питания:

  • обеспечивает режим плавного пуска преобразователя;
  • ограничивает амплитуду и скважность управляющих импульсов;
  • контролирует уровень входного напряжения;
  • защищает от короткого замыкания и превышения температуры силового ключа;
  • при необходимости переводит устройство в дежурный режим.

Принцип работы ШИМ контроллера

Задача ШИМ контроллера состоит в управлении силовым ключом за счёт изменения управляющих импульсов. Работая в ключевом режиме, транзистор находится в одном из двух состояний (полностью открыт, полностью закрыт). В закрытом состоянии ток через p-n-переход не превышает несколько мкА, а значит, мощность рассеивания стремится к нулю. В открытом состоянии, несмотря на большой ток, сопротивление p-n-перехода чрезмерно мало, что также приводит к незначительным тепловым потерям. Наибольшее количество тепла выделяется в момент перехода из одного состояния в другое. Но за счёт малого времени переходного процесса по сравнению с частотой модуляции, мощность потерь при переключении незначительна.

Широтно-импульсная модуляция разделяется на два вида: аналоговая и цифровая. Каждый из видов имеет свои преимущества и схемотехнически может реализовываться разными способами.

Аналоговая ШИМ

Принцип действия аналогового ШИ-модулятора основан на сравнении двух сигналов, частота которых отличается на несколько порядков. Элементом сравнения выступает операционный усилитель (компаратор). На один из его входов подают пилообразное напряжение высокой постоянной частоты, а на другой – низкочастотное модулирующее напряжение с переменной амплитудой. Компаратор сравнивает оба значения и на выходе формирует прямоугольные импульсы, длительность которых определяется текущим значением модулирующего сигнала. При этом частота ШИМ равна частоте сигнала пилообразной формы.

Цифровая ШИМ

Широтно-импульсная модуляция в цифровой интерпретации является одной из многочисленных функций микроконтроллера (МК). Оперируя исключительно цифровыми данными, МК может формировать на своих выходах либо высокий (100%), либо низкий (0%) уровень напряжения. Однако в большинстве случаев для эффективного управления нагрузкой напряжение на выходе МК необходимо изменять. Например, регулировка скорости вращения двигателя, изменение яркости светодиода. Что делать, чтобы получить на выходе микроконтроллера любое значение напряжения в диапазоне от 0 до 100%?

Вопрос решается применением метода широтно-импульсной модуляции и, используя явление передискретизации, когда заданная частота переключения в несколько раз превышает реакцию управляемого устройства. Изменяя скважность импульсов, меняется среднее значение выходного напряжения. Как правило, весь процесс происходит на частоте в десятки-сотни кГц, что позволяет добиться плавной регулировки. Технически это реализуется с помощью ШИМ-контроллера – специализированной микросхемы, которая является «сердцем» любой цифровой системы управления. Активное использование контроллеров на основе ШИМ обусловлено их неоспоримыми преимуществами:

  • высокой эффективности преобразования сигнала;
  • стабильность работы;
  • экономии энергии, потребляемой нагрузкой;
  • низкой стоимости;
  • высокой надёжности всего устройства.

Получить на выводах микроконтроллера ШИМ сигнал можно двумя способами: аппаратно и программно. В каждом МК имеется встроенный таймер, который способен генерировать ШИМ импульсы на определённых выводах. Так достигается аппаратная реализация. Получение ШИМ сигнала с помощью программных команд имеет больше возможностей в плане разрешающей способности и позволяет задействовать большее количество выводов. Однако программный способ ведёт к высокой загрузке МК и занимает много памяти.

Примечательно, что в цифровой ШИМ количество импульсов за период может быть различным, а сами импульсы могут быть расположены в любой части периода. Уровень выходного сигнала определяется суммарной длительностью всех импульсов за период. При этом следует понимать, что каждый дополнительный импульс – это переход силового транзистора из открытого состояния в закрытое, что ведёт к росту потерь во время переключений.

Пример использования ШИМ регулятора

Один из вариантов реализации ШИМ простого регулятора уже описывался ранее в этой статье. Он построен на базе микросхемы NE555 и имеет небольшую обвязку. Но, несмотря на простату схемы, регулятор имеет довольно широкую область применения: схемы управления яркости светодиодов, светодиодных лент, регулировка скорость вращения двигателей постоянного тока.

Что такое ШИМ - принцип работы широтно-импульсной модуляции

Микропроцессоры работают исключительно с цифровыми сигналами: с логическим нулем (0В) или с логической единицей (5В или 3.3В). По этой причине на выходе микропроцессор не может сформировать промежуточное напряжение. Применение для решения таких задач внешних ЦАП нецелесообразно из-за сложности. Специально для этого разработана широтно-импульсная модуляция — определенный процесс управления мощностью, идущей к нагрузке, методом изменения скважности импульсов постоянной частотности.

Что такое шим (широтно-импульсная модуляция)?

Это современный метод управления уровнем мощности подаваемой к нагрузке, заключающийся в изменении продолжительности импульса при постоянной частоте их следования. Это технология модуляции сигнала за счет вариативного изменения ширины импульсов, а не выходного напряжения.  ШИМ преобразователь может быть аналоговый, цифровой и пр.

Широтно-импульсная модуляция — важнейшие параметры:

  1. Т  -период тактирования — промежутки времени, через которые подаются импульсы.
  2. Длительность импульса — время пока подается сигнал.
  3. Скважность — рассчитанное по формуле соотношение длины импульса к импульсному Т периоду тактирования.
  4. D коэффициент заполнения — показатель обратный скважности.

Область применения

Применение ШИМ позволяет увеличить и намного коэффициент полезного действия электрических преобразователей. Тем более это относится к импульсным преобразователям, которые сегодня преимущественно применяются во вторичных источниках питания разных электронных аппаратов. Импульсные преобразователи обратноходовые, прямоходовые 1-тактные, 2-тактные, полумостовые, резонансные управляются с участием ШИМ.

Принцип ШИМ сегодня стал основным для электронных устройств, которым требуется поддержание на заданном уровне выходных параметров и их регулировка. Метод применяется для изменения скорости вращения двигателей, яркости света, управления силовым транзистором БП импульсного типа.

Используется ЩИМ модуляция и в системах управления яркостью светодиодов. Светодиод, благодаря низкой инерционности, успевает мигнуть на частоте всего в несколько десятков кГц. Для человеческого глаза работа светодиода в импульсном режиме воспринимается как свечение. Яркость светодиода зависит от продолжительности импульса в течение одного периода. При коэффициенте заполнения в 50%, то есть, если время свечения равно времени паузы, яркость светодиода составляет одну вторую номинальной величины. Когда появились светодиодные лампы 220В, нашлась проблема повышения их надёжности при нестабильном входном напряжении. Задача была решена разработкой драйвера питания, функционирующего по принципу ШИМ.

Распространение устройств, функционирующих по принципу ШИМ, позволило уйти от линейных трансформаторных БП. В результате чего повысилось КПД и уменьшились масса и габариты источников питания. Поэтому сегодня ШИМ-контроллер является сегодня неотъемлемой частью импульсного БП. Он управляет силовым транзистором и напряжение на выходе блока питания всегда остаётся стабильным. Кроме этого, ШИМ-контроллер:

  • обеспечивает плавный пуск преобразователя;
  • ограничивает скважность и амплитуду управляющих импульсов;
  • контролирует входное напряжение;
  • защищает от КЗ силового ключа;
  • в аварийной ситуации переводит устройство в деж. режим.

Сегодня широтно-импульсная модуляция применяется повсеместно и позволяет управлять яркостью подсветки ЖК дисплеев мобильных телефонов, смартфонов, ноутбуков. Реализована микросхема ШИМ в сварочных аппаратах, в автоинверторах, в зарядных устройствах и пр. В любом зарядном устройстве используется сегодня ШИМ.

ШИМ контроллер

ШИМ контроллер: принцип работы

ШИМ сигналом управляет ШИМ контроллер. Он управляет силовым ключом благодаря изменениям управляющих импульсов. В ключевом режиме транзистор может быть полностью открытым или полностью открытым. В закрытом состоянии через p-n-переход идет ток не больше нескольких мкА, то есть мощность рассеивания близка к нулю. В открытом состоянии идет большой ток, но так как сопротивление p-n-перехода мало, происходят небольшие теплопотери. Больше тепла выделяется в при переходе из одного состояния в другое. Однако благодаря быстроте переходного процесса в сравнении с частотой модуляции, мощность этих потерь незначительна.

Все это позволило разработать высокоэффективный компактный широтно импульсный преобразователь, то есть с малыми теплопотерями. Резонансные преобразователи с переключением в 0 тока ZCS позволяют свести теплопотери к минимуму.

Аналоговая ШИМ

В аналоговых ШИМ-генераторах управляющий сигнал формируется при помощи аналогового компаратора, когда на его инвертирующий вход подается пилообразный или треугольный сигнал, а на неинвертирующий — непрерывный модулирующий.

Выходные импульсы идут прямоугольной формы. Частота их следования соответствует частоте пилы, а длительность плюсовой части импульса зависит от времени, когда уровень постоянного модулирующего сигнала, идущего на неинвертирующий вход компаратора, выше уровня пилообразного сигнала, подающегося на инвертирующий вход. В период когда напряжение пилообразного сигнала будет превышать модулирующий сигнал — на выходе будет фиксироваться отрицательная часть импульса.

Во время когда пилообразный сигнал подается на неинвертирующий вход, а модулирующий — на инвертирующий, выходные прямоугольные импульсы будут положительными, когда напряжение пилы будет выше уровня модулирующего сигнала на инвертирующем входе, а отрицательное — когда напряжение пилы станет ниже сигнала модулирующего.

Цифровая ШИМ

Работая с цифровой информацией, микроконтроллер может формировать на выходах или 100% высокий или 0% низкий уровень напряжения. Но для эффективного управления нагрузкой такое напряжение на выходе нужно изменять. Например, когда осуществляется регулировка скорости вращения вала мотора или при изменении яркости светодиода.

Вопрос решают ШИМ контроллеры. То есть, 2-хуровневая импульсно-кодированная модуляция — это серия импульсов, характеризующаяся  частотой 1/T и либо шириной Т, либо шириной 0. Для их усреднения применяется передискретизация. При цифровой ШИМ прямоугольные подимпульсы, которыми и заполнен период, могут занимать любое место в периоде. Тогда на среднем значении сигнала за период сказывается лишь их количество. Так как процесс осуществляется на частоте в сотни кГц, можно добиться плавной регулировки. ШИМ контроллеры решают эту задачу.

Можно провести следующую аналогию с механикой. Когда маховик вращается при помощи двигателя, при включенном двигателе маховик будет раскручиваться или продолжать вращение, если двигатель выключен, маховик будет тормозить из-за сил трения. Однако, если движок включать/выключать на несколько секунд, вращение маховика будет держаться на определенной скорости благодаря инерции. Чем дольше период включения двигателя, тем быстрее раскрутится маховик. Аналогично работает и ШИМ модулятор. Так работают ШИМ контроллеры, в которых переключения происходят в секунду тысячи раз, и частоты могут достигнуть единиц мегагерц.

Использование ШИМ-контроллеров обусловлено их следующими преимуществами:

  • стабильностью работы;
  • высокой эффективностью преобразования сигнала;
  • экономией энергии;
  • низкой стоимостью.

Получить на выводах микроконтроллера (МК) ШИМ сигнал можно:

  • аппаратным способом;
  • программным способом.

В каждом МК есть встроенный таймер, генерирующий ШИМ импульсы на определённых выводах. Это аппаратный способ. Получение ШИМ сигнала при помощи команд программирования более эффективно за счет разрешающей способности и дает возможность задействовать больше выводов. Но программный способ вызывает высокую загрузку МК, занимая много памяти.

Принцип шим-регулятора

Работа ШИМ регулятора сложностью не отличается. ШИМ-регулятор — устройство, выполняющее такую же функцию, что и традиционный линейный регулятор мощности (то есть, меняет напряжение или ток за счёт силового транзистора, рассеивающего значительную мощность на себе). Но ШИМ-регулятор отличается намного большим КПД. Достигается это благодаря тому, что управляющий силовой транзистор функционирует в ключевом режиме (либо включен, тогда пропускает большой ток, но мало падение напряжения, либо выключен — ток не проходит). В результате на таких силовых транзисторах мощность практически не рассеивается и энергия впустую не тратится.

После силового транзистора напряжение выходит как прямоугольные импульсы с изменяющейся скважностью в зависимости от необходимой мощности. Но сигнал нужно демодулировать (то есть, выделить среднее напряжение). Этот процесс происходит или в самой нагрузке (когда она индуктивного характера) или если между нагрузкой и силовым каскадом располагают фильтр нижних частот.

Пример использования шим регулятора

Самый простой пример использования регулятора напряжения ШИМ — ШИМ микросхема NE555, с которой знаком каждый радио-любитель. Благодаря ее универсальности можно конструировать самые разнообразные детали: от простейшего одновибратора импульсов с 2 в обвязке до модулятора, состоящего из большого числа компонентов. ШИМ регулятор напряжения имеет широкую область применения — это схемы регулировки яркости светодиодов и лент, а также регулировка скорости вращения движков.

В чем отличие между шим и шир?

На Западе понятия широтно-импульсного регулирования ШИР и ШИМ практически не различаются. Однако у нас между ними все же существует различие. Во многих микросхемах реализован принцип ШИР, однако при этом они все равно называются ШИМ контроллеры. Таким образом различий в названии этих двух способов практически нет.

Единственное отличие между ШИР и ШИМ — при ШИР время импульса и паузы постоянны. А при ШИМ их длительности изменяются, что позволяет сформировать выходной ШИМ сигнал заданной формы.

Широтно-импульсная модуляция (ШИМ). Аналоговая и цифровая

Принцип ШИМ – широтно-импульсная модуляция заключается в изменении ширины импульса при постоянстве частоты следования импульса. Амплитуда импульсов при этом неизменна.

Широтно-импульсное регулирование находит применение там, где требуется регулировать подаваемую к нагрузке мощность. Например, в схемах управления электродвигателями постоянного тока, в импульсных преобразователях, для регулирования яркости светодиодных светильников, экранов ЖК-мониторов, дисплеев в смартфонах и планшетах и т.п.

Большинство вторичных источников питания электронных устройств в настоящее время строятся на основе импульсных преобразователей, применяется широтно-импульсная модуляция и в усилителях низкой (звуковой) частоты класса D, сварочных аппаратах, устройствах зарядки автомобильных аккумуляторов, инверторах и пр. ШИМ позволяет повысить коэффициент полезного действия (КПД) вторичных источников питания в сравнении с низким КПД аналоговых устройств.

Широтно-импульсная модуляция бывает аналоговой и цифровой.

Аналоговая широтно-импульсная модуляция

Как уже упоминалось выше, частота сигнала и его амплитуда при ШИМ всегда постоянны. Один из важнейших параметров сигнала ШИМ – это коэффициент заполнения, равный отношению длительности импульса t к периоду импульса T. D = t/T. Так, если имеем сигнал ШИМ с длительностью импульса 300 мкс и периодом импульса 1000 мкс, коэффициент заполнения составит 300/1000 = 0,3. Коэффициент заполнения также выражается в процентах, для чего коэффициент заполнения умножается на 100%. По примеру выше процентный коэффициент заполнения составляет 0,3 х 100% = 30%.

Скважность импульса – это отношение периода импульсов к их длительности, т.е. величина, обратная коэффициенту заполнения. S = T/t.

Частота сигнала определяется как величина, обратная периоду импульса, и представляет собой количество полных импульсов за 1 секунду. Для примера выше при периоде 1000 мкс = 0,001 с, частота составляет F = 1/0,001 – 1000 (Гц).

Смысл ШИМ заключается в регулировании среднего значения напряжения путем изменения коэффициента заполнения. Среднее значение напряжения равно произведению коэффициента заполнения и амплитуды напряжения. Так, при коэффициенте заполнения 0,3 и амплитуде напряжения 12 В среднее значение напряжения составит 0,3 х 12 = 3,6 (В). При изменении коэффициента заполнения в теоретически возможных пределах от 0% до 100% напряжение будет изменяться от 0 до 12 В, т.е. Широтно-импульсная модуляция позволяет регулировать напряжение в пределах от 0 до амплитуды сигнала. Что и используется для регулирования скорости вращения электродвигателя постоянного тока или яркости свечения светильника.

Сигнал ШИМ формируется микроконтроллером или аналоговой схемой. Этот сигнал обычно управляет мощной нагрузкой, подключаемой к источнику питания через ключевую схему на биполярном или полевом транзисторе. В ключевом режиме полупроводниковый прибор либо разомкнут, либо замкнут, промежуточное состояние исключается. В обоих случаях на ключе рассеивается ничтожная тепловая мощность. Поскольку эта мощность равна произведению тока через ключ на падение напряжения на нем, а в первом случае к нулю близок ток через ключ, а во втором напряжение.

В переходных состояниях на ключе присутствует значительное напряжение с прохождением значительного тока, т.е. значительна и рассеиваемая тепловая мощность. Поэтому в качестве ключа необходимо применение малоинерционных полупроводниковых приборов с быстрым временем переключения, порядка десятков наносекунд.

Если ключевая схема управляет светодиодом, то при малой частоте сигнала светодиод будет мигать в такт с изменением напряжения сигнала ШИМ. При частоте сигнала выше 50 Гц мигания сливаются вследствие инерции человеческого зрения. Общая яркость свечения светодиода начинает зависеть от коэффициента заполнения – чем ниже коэффициент заполнения, тем слабее светится светодиод.

При управлении посредством ШИМ скорости вращения двигателя постоянного тока частота ШИМ должна быть очень высокой, и лежать за пределами слышимых звуковых частот, т.е. превышать 15-20 кГц, в противном случае двигатель будет «звучать», издавая раздражающий слух писк с частотой ШИМ. От частоты зависит и стабильность работы двигателя. Низкочастотный сигнал ШИМ с невысоким коэффициентом заполнения приведет к нестабильной работе двигателя и даже возможной его остановке.

Тем самым, при управлении двигателем желательно повышать частоту сигнала ШИМ, но и здесь существует предел, определяемый инерционными свойствами полупроводникового ключа. Если ключ будет переключаться с запаздываниями, схема управления начнет работать с ошибками. Чтобы избежать потерь энергии и добиться высокого коэффициента полезного действия импульсного преобразователя, полупроводниковый ключ должен обладать высоким быстродействием и низким сопротивлением проводимости.

Сигнал с выхода ШИМ можно также усреднять посредством простейшего фильтра низких частот. Иногда можно обойтись и без этого, поскольку электродвигатель обладает определенной электрической индуктивностью и механической инерцией. Сглаживание сигналов ШИМ происходит естественным путем в том случае, когда частота ШИМ превосходит время реакции регулируемого устройства.

Реализовать ШИМ можно посредством компаратора с двумя входами, на один из которых подается периодический пилообразный или треугольный сигнал от вспомогательного генератора, а на другой модулирующий сигнал управления. Длительность положительной части импульса ШИМ определяется временем, в течение которого уровень управляющего сигнала, подаваемого на один вход компаратора, превышает уровень сигнала вспомогательного генератора, подаваемого на другой вход компаратора.

При напряжении вспомогательного генератора выше напряжения управляющего сигнала на выходе компаратора будет отрицательная часть импульса.

Коэффициент заполнения периодических прямоугольных сигналов на выходе компаратора, а тем самым и среднее напряжение регулятора, зависит от уровня модулирующего сигнала, а частота определяется частотой сигнала вспомогательного генератора.

Цифровая широтно-импульсная модуляция

Существует разновидность ШИМ, называемая цифровой ШИМ. В этом случае период сигнала заполняется прямоугольными подымпульсами, и регулируется уже количество подымпульсов в периоде, что и определяет среднюю величину сигнала за период.

В цифровой ШИМ заполняющие период подымпульсы (или «единички») могут стоять в любом месте периода. Среднее значение напряжения за период определяется только их количеством, при этом подымпульсы могут следовать один за другим и сливаться. Отдельно стоящие подымпульсы приводят к ужесточению режима работы ключа.

В качестве источника сигнала цифровой ШИМ можно использовать COM-порт компьютера с 10-битовым сигналом на выходе. С учетом 8 информационных битов и 2 битов старт/стоп, в сигнале COM-порта присутствует от 1 до 9 «единичек», что позволяет регулировать напряжение в пределах 10-90% напряжения питания с шагом в 10%.

Похожие темы:

Широтно-импульсная модуляция — Википедия

График, иллюстрирующий применение трёхуровневой ШИМ для управления электродвигателем, которая используется в приводах асинхронных электродвигателей с переменной частотой. Напряжение от ШИ-модулятора, подаваемое на обмотку машины изображено синим (V). Магнитный поток в статоре машины показан красным (B). Здесь магнитный поток имеет приблизительно синусоидальную форму, благодаря соответствующему закону ШИМ.

Широтно-импульсная модуляция (ШИМ, англ. pulse-width modulation (PWM)) — процесс управления мощностью, подводимой к нагрузке, путём изменения скважности импульсов, при постоянной частоте. Различают аналоговую ШИМ и цифровую ШИМ, двоичную (двухуровневую) ШИМ и троичную (трёхуровневую) ШИМ[1].

Причины распространения ШИМ

Основной причиной применения ШИМ является стремление к повышению КПД при построении вторичных источников питания электронной аппаратуры и в других узлах, например, ШИМ используется для регулировки яркости подсветки LCD-мониторов и дисплеев в телефонах, КПК и т.п..

Тепловая мощность, выделяемая на ключе при ШИМ

В ШИМ в качестве ключевых элементов использует транзисторы (могут быть применены и др. полупроводниковые приборы) не в линейном, а в ключевом режиме, то есть транзистор всё время или разомкнут (выключен), или замкнут (находится в состоянии насыщения). В первом случае транзистор имеет почти бесконечное сопротивление, поэтому ток в цепи весьма мал, и, хотя всё напряжение питания падает на транзисторе, выделяемая на транзисторе мощность практически равна нулю. Во втором случае сопротивление транзистора крайне мало, и, следовательно, падение напряжения на нём близко к нулю — выделяемая мощность также мала. В переходных состояниях (переход ключа из проводящего состояния в непроводящее и обратно) мощность, выделяемая в ключе, значительна, но так как длительность переходных состояний крайне мала, по отношению к периоду модуляции, то средняя мощность потерь на переключение оказывается незначительной.

1. Rtr→∞↔P=U2R→0{\displaystyle R_{tr}\rightarrow \infty \leftrightarrow P={{\frac {{U}^{2}}{R}}\rightarrow 0}}

2. Rtr→0↔P=I2R→0{\displaystyle R_{tr}\rightarrow 0\leftrightarrow P={I}^{2}R\rightarrow 0}

Принцип работы ШИМ

Аналоговая ШИМ

R_{{tr}}\rightarrow 0\leftrightarrow P={I}^{{2}}R\rightarrow 0 Один из методов двухуровневой ШИМ с помощью аналогового компаратора. На один из входов компаратора подаётся пилообразное напряжение от вспомогательного генератора, на другой вход — модулирующее напряжение. Состояние выхода компаратора — ШИ-модуляция. На рис.: сверху — пилообразный сигнал и модулирующее напряжение, снизу — результат ШИМ.

ШИМ-сигнал генерируется аналоговым компаратором, на один вход (по рисунку — на инвертирующий вход компаратора) которого подаётся вспомогательный опорный пилообразный или треугольный сигнал, значительно большей частоты, чем частота модулирующего сигнала, а на другой — модулирующий непрерывный аналоговый сигнал. Частота повторения выходных импульсов ШИМ равна частоте пилообразного или треугольного напряжения. В ту часть периода пилообразного напряжения, когда сигнал на инвертирующем входе компаратора выше сигнала на неинвертирующем входе, куда подается модулирующий сигнал, на выходе получается отрицательное напряжение, в другой части периода, когда сигнал на инвертирующем входе компаратора ниже сигнала на неинвертирующем входе — будет положительное напряжение[2].

Аналоговая ШИМ реализуется с помощью компаратора, на один вход которого подаются треугольный или пилообразный периодический сигнал со вспомогательного генератора, а на другой — модулирующий сигнал. На выходе компаратора образуются периодические прямоугольные импульсы с переменной шириной, скважность которых изменяется по закону модулирующего сигнала, а частота равна частоте треугольного или пилообразного сигнала и обычно постоянна.

Аналоговая ШИМ применяется в усилителях низкой частоты класса «D».

Цифровая ШИМ

В двоичной цифровой технике, выходы в которой могут принимать только одно из двух значений, приближение желаемого среднего уровня выхода при помощи ШИМ является совершенно естественным. Схема настолько же проста: пилообразный сигнал генерируется N-битным счётчиком. Цифровые устройства (ЦШИП) работают на фиксированной частоте, обычно намного превышающей реакцию управляемых установок (передискретизация). В периоды между фронтами тактовых импульсов выход ЦШИП остаётся стабильным, на нём действует либо низкий уровень, либо высокий, в зависимости от выхода цифрового компаратора, сравнивающего значение счётчика с уровнем приближаемого цифрового сигнала V(n). Выход за много тактов можно трактовать как череду импульсов с двумя возможными значениями 0 и 1, сменяющими друг друга каждый такт T. Частота появления единичных импульсов получается пропорциональной уровню приближаемого сигнала ~V(n). Единицы, следующие одна за другой, формируют контур одного, более широкого импульса. Длительности полученных импульсов переменной ширины ~V(n) кратны периоду тактирования T, а частота равна 1/(T*2N). Низкая частота означает длительные, относительно T, периоды постоянства сигнала одного уровня, что даёт невысокую равномерность распределения импульсов.

Описанная цифровая схема генерации подпадает под определение однобитной (двухуровневой) импульсно-кодовой модуляции (ИКМ). 1-битную ИКМ можно рассматривать в терминах ШИМ как серию импульсов частотой 1/T и шириной 0 либо T. Добиться усреднения за менее короткий промежуток времени позволяет имеющаяся передискретизация. Высоким качеством обладает такая разновидность однобитной ИКМ, как импульсно-плотностная модуляция (англ.)русск., которая ещё именуется импульсно-частотной модуляцией.

Восстанавливается непрерывный аналоговый сигнал арифметическим усреднением импульсов за много периодов при помощи простейшего фильтра низких частот. Хотя обычно даже этого не требуется, так как электромеханические составляющие привода обладают индуктивностью, а объект управления (ОУ) — инерцией, импульсы с выхода ШИМ сглаживаются и ОУ, при достаточной частоте ШИМ-сигнала, ведёт себя как при управлении обычным аналоговым сигналом.

В цифровой ШИМ период делится на части, которые заполняются прямоугольными подымпульсами. Средняя величина за период зависит от количества прямоугольных подымпульсов. Цифровая ШИМ — приближение бинарного сигнала (с двумя уровнями — вкл/выкл) к многоуровневому или непрерывному сигналу так, чтобы их средние значения за период времени t2−t1{\displaystyle t_{2}-t_{1}} были бы приблизительно равны.

Формально это можно записать так:

∫t1t2x(t)dtt2−t1=∑i=1nA∗ΔTit2−t1,{\displaystyle {\int _{t_{1}}^{t_{2}}{x(t)\,dt} \over {t_{2}-t_{1}}}={\sum _{i=1}^{n}{A*\Delta T_{i}} \over {t_{2}-t_{1}}},}

где x(t){\displaystyle x(t)} — входной сигнал в пределах от t1 до t2, а ΔTi=t2−t1n{\displaystyle \Delta T_{i}={\frac {t_{2}-t_{1}}{n}}} — продолжительность i -го ШИМ подымпульса, каждого с амплитудой A. n выбирается таким образом, чтобы за период разность суммарных площадей (энергий) обеих величин была меньше допустимой:

∫t1t2x(t)dt−∑i=1nA∗ΔTi<E{\displaystyle \int _{t_{1}}^{t_{2}}{x(t)\,dt}-\sum _{i=1}^{n}{A*\Delta T_{i}}<E}.

Управляемыми «уровнями», как правило, являются параметры питания силовой установки, например, напряжение импульсных преобразователей /регуляторов постоянного напряжения/ или скорость электродвигателя. Для импульсных источников x(t) = Uconst стабилизации.

В цифровой ШИМ прямоугольные подымпульсы, заполняющие период, могут стоять в любом месте периода, на среднюю величину за период влияет только их количество. Например, при разбиении периода на 8 частей последовательности 11110000, 11101000, 11100100, 11100010, 11100001 и др. дают одинаковую среднюю за период величину, но отдельно стоящие «1» ухудшают режим работы ключа (транзистора).

В качестве ШИМ можно использовать даже COM-порт. Так как 0 передаётся как 0 0000 0000 1 (8 бит данных + старт/стоп), а 255 как 0 1111 1111 1, то диапазон выходных напряжений — 10-90 % с шагом в 10 %.

См. также

Примечания

Ссылки

ШИМ - широтно-импульсная модуляция | joyta.ru

ШИМ или PWM (англ. Pulse-Width Modulation) — широтно-импульсная модуляция — это метод предназначен для контроля величины напряжения и тока. Действие ШИМ заключается в изменении ширины импульса постоянной амплитуды и постоянной частотой.

Свойства ШИМ регулирования используются в импульсных преобразователях, в схемах управления двигателями постоянного тока или яркостью свечения светодиодов.

Принцип действия ШИМ

Принцип действия ШИМ, как указывает на это само название, заключается в изменении ширины импульса сигнала. При использовании метода широтно-импульсной модуляции, частота сигнала и амплитуда остаются постоянными. Самым важным параметром сигнала ШИМ является коэффициент заполнения, который можно определить по следующей формуле:

Также можно отметить, что сумма времени высокого и низкого сигнала определяет период сигнала:

где:

  • Ton — время высокого уровня
  • Toff — время низкого уровня
  • T — период сигнала

Время высокого уровня и время низкого уровня сигнала показано на нижнем рисунке. Напряжение U1- это состояния высокого уровня сигнала, то есть его амплитуда.

На следующем рисунке представлен пример сигнала ШИМ с определенным временным интервалом высокого и низкого уровня.

Расчет коэффициента заполнения ШИМ

Расчет коэффициента заполнения ШИМ на примере:

 

Для расчета процентного коэффициента заполнения необходимо выполнить аналогичные вычисления, а результат умножить на 100%:

Как следует из расчета, на данном примере, сигнал (высокого уровня) характеризуется заполнением, равным 0,357 или иначе 37,5%. Коэффициент заполнения является абстрактным значением.

Важной характеристикой  широтно-импульсной модуляции может быть также частота сигнала, которая рассчитывается по формуле:

Значение T, в нашем примере, следует взять уже в секундах для того, чтобы совпали единицы в формуле. Поскольку, формула частоты имеет вид 1/сек, поэтому 800ms переведем в 0,8 сек.

Благодаря возможности регулировки ширины импульса можно изменять, например, среднее значение напряжения. На рисунке ниже показаны различные коэффициенты заполнения при сохранении той же частоты сигналов и одной и той же амплитуды.

Для вычисления среднего значения напряжения ШИМ необходимо знать коэффициент заполнения, поскольку среднее значение напряжения является произведением коэффициента заполнения и амплитуды напряжения сигнала.
Для примера, коэффициент заполнения был равен 37,5% (0,357) и амплитуда напряжения U1 = 12В даст среднее напряжение Uср:

В этом случае среднее напряжение сигнала ШИМ составляет 4,5 В.

ШИМ дает очень простую возможность понижать напряжение  в диапазоне от напряжения питания U1 и до 0. Это можно использовать, например, для регулировки яркости свечения светодиодов, или скорости вращения двигателя DC (постоянного тока), питающиеся от величины среднего напряжения.

Сигнал ШИМ может быть сформирован микроконтроллером или аналоговой схемой. Сигнал от таких схем характеризуется низким напряжением и очень малым выходным током. В случае необходимости регулирования мощных нагрузок, следует использовать систему управления, например, с помощью транзистора.

Это может быть биполярный или полевой транзистор. На следующих примерах будет использован биполярный транзистор BC547.

Пример управления светодиодом при помощи ШИМ.

Сигнал ШИМ поступает на базу транзистора VT1 через резистор R1, иначе говоря, транзистор VT1 с изменением сигнала то включается, то выключается. Это подобно ситуации, при которой транзистор можно заменить обычным выключателем, как показано ниже:

Упрощенная схема управления светодиодом.

Когда переключатель замкнут, светодиод питается через резистор R2 (ограничивающий ток) напряжением 12В. А когда переключатель разомкнут, цепь прерывается, и светодиод гаснет. Такие переключения с малой частотой в результате дадут мигающий светодиод.

Однако, если необходимо управлять интенсивностью свечения светодиодов необходимо увеличить частоту сигнала ШИМ, так, чтобы обмануть человеческий глаз. Теоретически переключения с частотой 50 Гц уже не незаметны для человеческого глаза, что в результате дает эффект уменьшения яркости свечения светодиода.

Чем меньше коэффициент заполнения, тем слабее будет светиться светодиод, поскольку во время одного периода светодиод  будет гореть меньшее время.

Такой же принцип и подобную схему можно использовать и для управления двигателем постоянного тока. В случае двигателя необходимо, однако, применять более высокую частоту переключений (выше 15-20 кГц) по двум причинам.

Первая из них касается звука, какой может издавать двигатель (неприятный писк). Частота 15-20 кГц является теоретической границей слышимости человеческого уха, поэтому частоты выше этой границы будут неслышны.

Второй вопрос касается стабильности работы двигателя. При управлении двигателем низкочастотным сигналом с малым коэффициентом заполнения, обороты двигателя будут нестабильны или может привести к его полной остановке. Поэтому, чем выше частота сигнала ШИМ, тем выше стабильность среднего выходного напряжения. Также меньше пульсаций напряжения.

Не следует, однако, слишком завышать  частоту сигнала ШИМ, так как при больших частотах транзистор может не успеть полностью открыться или закрыться, и схема управления  будет работать не правильно. Особенно это относится к полевым транзисторам, где время перезарядки может быть относительно большое, в зависимости от конструкции.

Слишком высокая частота сигнала ШИМ также вызывает увеличение потерь на транзисторе, поскольку каждое переключение вызывает потери энергии. Управляя большими токами на высоких частотах необходимо подобрать быстродействующий транзистор с низким сопротивлением проводимости.

Управляя  двигателем постоянного тока с помощью ШИМ, следует помнить о применении диода для защиты транзистор VТ1 от индукционных всплесков, появляющимся в момент выключения транзистора. Благодаря использованию диода, индукционный импульс разряжается через него и внутреннее сопротивление двигателя, защищая тем самым транзистор.

Схема системы управления скоростью вращения двигателя постоянного тока с защитным диодом.

Для сглаживания всплесков питания между клеммами двигателя, можно подключить к ним параллельно конденсатор небольшой емкости (100nF), который будет стабилизировать напряжение между последовательными переключениями транзистора. Это также снизит помехи, создаваемые частыми переключениями транзистора VT1.

Широтно импульсная модуляция сигналов (ШИМ)

Широтно-импульсная модуляция сигналов (сокращенно ШИМ) — процесс представления сигнала в виде череды импульсов с постоянной частотой и управления уровнем этого сигнала путём изменения скважности данных импульсов. В английском варианте ШИМ имеет название pulse-width modulation (PWM)

Определение звучит сложно, но на самом деле все очень просто. Достаточно понять, что такое скважность и среднее результирующее напряжение. Самый простой способ разобраться в понятии скважности и представить, что такое ШИМ, — это рассмотреть участок цепи, который находится под постоянным напряжением Uп, в результате чего в цепи течет постоянный ток Iп. Временная диаграмма такой ситуации представлена на рисунке 1.

Рисунок 1

Из диаграммы видно, что напряжение остается постоянным во времени. Теперь представьте, что это постоянное напряжение Uп мы начинаем равномерно включать-выключать с высокой частотой, например 2000 раз в секунду. В результате получим набор импульсов рисунок 2.

Рисунок 2

Оказывается, что в этом случае набор импульсов воспринимается потребителем тока (каким либо устройством) как постоянное напряжение, но с другим (результирующим) уровнем напряжения Uрез. Это справедливо только при достаточно большой частоте импульсов.  Чтобы оценить, как это результирующее напряжение отличается от постоянного, необходимо сравнить количество заряженных частиц, протекающих по проводнику за период импульсного колебания (время импульса + время паузы), с количеством заряда протекающего при постоянном напряжении за то же время.

После математических вычислений получим формулу: Uрез = (Uи·tи) / T ,
где - напряжение импульса; - время длительности импульса; Т - период одного импульсного колебания (сумма времени импульса и времени паузы).

Таким образом, для случая, изображенного на рис. 2, когда продолжительность импульса равна времени паузы между импульсами (то есть Т=2·tи) , результирующее напряжение получится: Uрез = (Uи·tи)/2·tи = 0,5 Uи. Результирующее напряжение получилось в два раза меньше напряжения импульса. При этом важно отметить, что в теории выделяются такие коэффициенты, как скважность - S = T / tи и обратный ему коэффициент заполнения - D = tи / T . Он, как правило, выражается в процентах.

Фактически коэффициент заполнения показывает, на сколько процентов импульс заполняет весь период колебания Т. Если коэффициент заполнения D равен 1 (100%), то время импульса целиком заполняет период и фактически это постоянное напряжение. Если уменьшить коэффициент заполнения D, например, до 0,25 (25%), то длительность импульса будет всего 25% от всего периода, а результирующее напряжение будет уже в 4 раза меньше, как показано на рисунке 3.

Рисунок 3

Из всего сказанного следует и более наглядное понимание термина «Широтно-импульсная модуляция». Получается, что уровень сигнала (величина уровня напряжения) регулируется широтой импульса, т.е. сигнал модулируется посредством череды импульсов разной ширины.

Как видите, с помощью такой модуляции можно получать напряжения разных уровней. Причем в отличие от банального пропускания тока через резистор с целью уменьшения напряжения метод ШИМ гораздо экономичнее. Если регулировать напряжение резистором, то на нем выделяется тепло и часть электрической энергии теряется. При ШИМ энергии теряется существенно меньше, поэтому данная модуляция активно используется в различных регуляторах напряжения и блоках питания. Принципы импульсной модуляции используются для решения многих других задач.

Сгенерировать собственную ШИМ, а так ж собрать различные интересные схемы с применением устройств управляемых ШИМ, вы сможете в наборах первого уровня Эвольвектор.

Широтно-импульсная модуляция

- learn.sparkfun.com

Что такое широтно-импульсная модуляция?

Широтно-импульсная модуляция (PWM) - это причудливый термин для описания типа цифрового сигнала. Широтно-импульсная модуляция используется во множестве приложений, включая сложные схемы управления. Обычно мы используем их в SparkFun для управления затемнением светодиодов RGB или для управления направлением сервопривода. Мы можем достичь ряда результатов в обоих приложениях, потому что широтно-импульсная модуляция позволяет нам изменять, сколько времени сигнал находится на высоком уровне аналоговым способом.Хотя сигнал может быть только высоким (обычно 5 В) или низким (земля) в любое время, мы можем изменить пропорцию времени, в течение которого сигнал является высоким, по сравнению с тем, когда он низкий в течение согласованного интервала времени.

Роботизированная клешня, управляемая серводвигателем с использованием широтно-импульсной модуляции

Рекомендуемая литература

Некоторые базовые руководства, которые вы можете рассмотреть в первую очередь:

Рабочий цикл

Когда сигнал высокий, мы называем это «вовремя».Для описания количества «вовремя» мы используем понятие рабочего цикла. Рабочий цикл измеряется в процентах. Процент рабочего цикла конкретно описывает процент времени, в течение которого цифровой сигнал остается включенным в интервале или периоде времени. Этот период обратно пропорционален частоте сигнала.

Если цифровой сигнал проводит половину времени включенным, а другую половину - выключенным, мы бы сказали, что цифровой сигнал имеет рабочий цикл 50% и напоминает идеальную прямоугольную волну. Если процентное значение выше 50%, цифровой сигнал проводит больше времени в высоком состоянии, чем в низком, и наоборот, если рабочий цикл меньше 50%.Вот график, иллюстрирующий эти три сценария:

Примеры рабочего цикла 50%, 75% и 25%

100% рабочий цикл будет таким же, как установка напряжения на 5 В (высокое). Рабочий цикл 0% будет таким же, как заземление сигнала.

Примеры

Вы можете управлять яркостью светодиода, регулируя рабочий цикл.

ШИМ используется для управления яркостью светодиода

С помощью светодиода RGB (красный, зеленый, синий) вы можете контролировать, какое количество каждого из трех цветов вы хотите в смешении цветов, уменьшая их яркость с различной степенью.

Основы смешивания цветов

Если все три горят в равной степени, в результате будет белый свет различной яркости. Синий, равно смешанный с зеленым, станет чирок. В качестве чуть более сложного примера попробуйте полностью включить красный, зеленый - 50% рабочего цикла и синий - полностью выключить, чтобы получить оранжевый цвет.

PWM можно использовать для смешивания цветов RGB

При управлении светодиодами частота прямоугольной волны должна быть достаточно высокой, чтобы получить надлежащий эффект затемнения.Волна 20% рабочего цикла при 1 Гц будет очевидна, что она включается и выключается для ваших глаз, в то время как 20% рабочий цикл при 100 Гц или выше будет выглядеть тусклее, чем полностью включенный. По сути, период не может быть слишком большим, если вы стремитесь к эффекту затемнения с помощью светодиодов.

Вы также можете использовать широтно-импульсную модуляцию для управления углом серводвигателя, прикрепленного к чему-то механическому, например, манипулятору робота. Сервоприводы имеют вал, который поворачивается в определенное положение в зависимости от его линии управления. Наши серводвигатели имеют диапазон около 180 градусов.

Частота / период зависят от управления конкретным сервоприводом. Ожидается, что типичный серводвигатель будет обновляться каждые 20 мс с импульсом от 1 до 2 мс, или, другими словами, от 5 до 10% рабочего цикла на форме волны 50 Гц. С импульсом 1,5 мс серводвигатель будет в естественном положении на 90 градусов. При импульсе 1 мс сервопривод будет в положении 0 градусов, а при импульсе 2 мс сервопривод будет в положении 180 градусов. Вы можете получить полный диапазон движения, обновив сервопривод промежуточным значением.

ШИМ используется для удержания серводвигателя под углом 90 градусов относительно его кронштейна

Ресурсы и движение вперед

Широтно-импульсная модуляция используется в различных приложениях, особенно для управления. Вы уже знаете, что его можно использовать для затемнения светодиодов и управления углом наклона серводвигателей, и теперь вы можете начать исследовать другие возможные применения. Если вы чувствуете себя потерянным, не стесняйтесь проверить SparkFun Inventor's Kit, в котором есть примеры использования широтно-импульсной модуляции.Если вы готовы немедленно приступить к кодированию и иметь Arduino, посмотрите здесь пример кодирования PWM.

Не стесняйтесь исследовать:

.

Широтно-импульсная модуляция [Analog Devices Wiki]

Цель

В этой лаборатории мы исследуем широтно-импульсную модуляцию и ее использование в различных приложениях.

Широтно-импульсная модуляция (ШИМ) - это метод кодирования аналогового сигнала в один цифровой бит. Сигнал ШИМ состоит из двух основных компонентов, которые определяют его поведение: рабочий цикл и частота.

Он используется для передачи информации путем кодирования сообщения в импульсный сигнал, а также для управления мощностью электронных устройств, таких как двигатели, и в качестве основного алгоритма для фотоэлектрических зарядных устройств солнечных батарей.

Рабочий цикл описывает количество времени, в течение которого сигнал находится в высоком (включенном) состоянии, как процент от общего времени, необходимого для завершения одного цикла.

На следующей диаграмме показаны последовательности импульсов при рабочем цикле 0%, 25% и 100%.

Частота определяет, насколько быстро ШИМ завершает цикл и, следовательно, насколько быстро он переключается между высоким и низким состояниями.

При включении и выключении цифрового сигнала с достаточно высокой скоростью и с определенным рабочим циклом выходной сигнал будет вести себя как аналоговый сигнал постоянного напряжения при подаче питания на устройства, которые реагируют намного медленнее, чем частота ШИМ, например аудиоколонки, электродвигатели и соленоидные приводы.

Материалы

Модуль активного обучения ADALM2000
Макетная плата без пайки и комплект перемычек
1 Операционный усилитель OP97
1 Резистор 1 кОм 1 потенциометр 10 кОм

Широтно-импульсный модулятор - Принцип работы

Широтно-импульсная модуляция (ШИМ) - это метод генерации низкочастотных выходных сигналов из высокочастотных импульсов. Быстрое переключение выходного напряжения ветви инвертора между верхним и нижним напряжениями шины постоянного тока, низкочастотный выход можно рассматривать как среднее значение напряжения за период переключения.

Помимо этого, есть также несколько других способов генерации сигналов с широтно-импульсной модуляцией, включая аналоговые методы, сигма-дельта модуляцию и прямой цифровой синтез.

Один из простейших методов генерации сигнала ШИМ - это сравнение двух сигналов управления, сигнала несущей и сигнала модуляции. Это известно как несущая ШИМ. Несущий сигнал представляет собой высокочастотный (частота переключения) треугольный сигнал. Сигнал модуляции может иметь любую форму.

Используя этот подход, выходной сигнал может быть ШИМ-представлением любой желаемой формы сигнала.В машинах синусоидальная и трапецеидальная формы волны являются одними из самых распространенных.

Рассмотрим схему на рисунке 1.

Рисунок 1. Принцип работы ШИМ.

Следуя описанию принципа ШИМ, мы используем отрицательный вход операционного усилителя для несущей, а положительный вход для сигнала модуляции. Таким образом, более высокий сигнал модуляции приведет к выходу с высоким уровнем в течение большей части периода ШИМ.

Настройка оборудования

Создайте следующую макетную схему для широтно-импульсной модуляции.

Рисунок 2. Принцип работы ШИМ - макетная схема.

Процедура

Используйте первый генератор формы волны в качестве несущего сигнала, обеспечивающего размах амплитуды 4 В, сдвиг 2,5 В, возбуждение треугольной волны 1 кГц для схемы. Используйте второй генератор сигналов в качестве сигнала модуляции с размахом амплитуды 3 В, 2.Смещение 5 В, синусоидальная волна 50 Гц.

Подайте на операционный усилитель + 5В от источника питания. Настройте осциллограф так, чтобы входной сигнал отображался на канале 1, а выходной сигнал отображался на канале 2.

На рисунке представлены два канала генератора сигналов, содержащие два входных сигнала (оранжевый - сигнал несущей, фиолетовый - сигнал модуляции).

График выходного сигнала на канале 2 осциллографа представлен на рисунке 4.

Если мгновенная величина сигнала модуляции больше, чем сигнал несущей в определенный момент времени, выходной сигнал будет высоким. Если сигнал модуляции ниже, чем сигнал несущей, выходной сигнал будет низким.

Если пик модуляции меньше, чем пик несущего сигнала, выход будет точным ШИМ-представлением сигнала модуляции. редактировать

Управление шириной импульса с использованием модуляции постоянного напряжения

Фон

Для этого конкретного приложения мы будем использовать простой операционный усилитель в конфигурации режима переключения (дополнительные сведения см. В разделе «Действие: операционный усилитель в качестве компаратора»), чтобы продемонстрировать широтно-импульсную модуляцию постоянного напряжения.

Рассмотрим схему на рисунке 5.

Рисунок 5. Регулировка ширины импульса с использованием напряжения модуляции постоянного тока.

Схема работает как простой компаратор, где отрицательный вход операционного усилителя подключен к сигнал несущей, в то время как положительный вход действует как пороговое напряжение, которое устанавливает, когда происходят переходы между выходом высокого напряжения и выходом низкого напряжения. Потенциометр действует в качестве делителя напряжения для входных опорного напряжения, регулировок порогового напряжения, и неявно рабочего цикла выходного сигнала.

Настройка оборудования

Создайте следующую макетную схему для управления шириной импульса, используя напряжение модуляции постоянного тока.

Рисунок 6. Управление шириной импульса с помощью модуляции постоянного напряжения - схема макетной платы

Процедура

Используйте первый генератор сигналов в качестве источника Vin для подачи в схему возбуждения треугольной волны амплитудой 5 В от пика до пика, 1 кГц . Используйте второй генератор сигналов в качестве источника постоянного напряжения с размахом амплитуды 5 В.Подайте на операционный усилитель + 5В от источника питания. Настройте осциллограф так, чтобы входной сигнал отображался на канале 1, а выходной сигнал отображался на канале 2.

Анимированный сюжет представлен на рисунке 7.

Рисунок 7. Регулировка ширины импульса с помощью модуляции постоянного тока. Напряжение - формы сигналов.

Выходной сигнал представляет собой ШИМ-представление входного напряжения. Обратите внимание, что при изменении значения потенциометра рабочий цикл сигнала изменяется, а частота остается постоянной.

Фиксированная 50% ШИМ с нестабильным мультивибратором

Фон

Рассмотрим схему на рисунке 8.

Рисунок 8. ШИМ с нестабильным мультивибратором.

На схеме показан нестабильный мультивибратор на одном операционном усилителе. Функциональность легко понять, если рассмотреть принцип работы триггера Шмитта (схема компаратора с гистерезисом изучается в Activity: Op Amp as Comparator): Вход триггера Шмитта, идентичный инвертирующему входу операционного усилителя, подключен к выходу схемы через резистивно-конденсаторную цепь.В то время как напряжение конденсатора (которое также является входом триггера Шмитта) ниже нижнего порога, выходное напряжение равно положительному напряжению питания схемы. Теперь конденсатор заряжается через резистор R 3 , пока не будет достигнут верхний порог срабатывания триггера Шмитта. В результате выходное напряжение операционного усилителя снижается до отрицательного напряжения питания. Теперь конденсатор разряжается через R 3 , пока напряжение на этих устройствах не достигнет нижнего порога срабатывания триггера Шмитта.Выходное напряжение операционного усилителя приводится к положительному напряжению питания, и весь процесс начинается снова.

Преимущество этой схемы в том, что ей не требуется M2K для генерации несущей (но рабочий цикл фиксирован на 50%).

Настройка оборудования

Постройте следующую макетную схему для ШИМ с нестабильным мультивибратором.

Рис. 9. ШИМ с макетной платой нестабильного мультивибратора.

Процедура

Подайте в цепь +/- 5В от источника питания.Настройте осциллограф так, чтобы выходной сигнал отображался на канале 1.

График с выходным сигналом на канале 1 осциллографа представлен на рисунке 10.

Рисунок 10. Форма выходного сигнала ШИМ с нестабильным мультивибратором.

Обратите внимание, что рабочий цикл выходного сигнала составляет примерно 50%, в то время как значения низкого / высокого напряжения имеют тенденцию достигать положительных / отрицательных значений питания.

В предыдущем примере мы сгенерировали ШИМ с фиксированным рабочим циклом 50% с использованием нестабильных мультивибраторов.Но как мы можем отрегулировать рабочий цикл? Для этого нам нужно будет немного изменить схему.

Рассмотрим схему, представленную на рисунке 11.

Рисунок 11. Регулировка рабочего цикла для ШИМ с мультивибратором.

Резистор R 3 на рисунке 8 был заменен потенциометром и вставлены два диода. Теперь зарядный ток конденсатора проходит через D 1 , а разрядный ток проходит через D 2 .В зависимости от настройки потенциометра VR 1 сопротивление зарядного тока, протекающего через верхнюю ветвь цепи, отличается от сопротивления разрядного тока, протекающего через нижнюю ветвь.

Настройка оборудования

Создайте следующую макетную схему для регулировки рабочего цикла ШИМ с мультивибраторами.

Рисунок 12. Регулировка рабочего цикла для ШИМ с макетной схемой мультивибратора.

Процедура

Подайте в цепь +/- 5В от источника питания.Настройте осциллограф так, чтобы выходной сигнал отображался на канале 1, а напряжение на конденсаторе (на отрицательном входе операционного усилителя) отображалось на канале 2.

Измените значение потенциометра и обратите внимание на изменение рабочего цикла. Пример графика представлен на рисунке 13.

Рисунок 13. Регулировка рабочего цикла для ШИМ с нестабильными формами сигналов мультивибратора.

В этом примере рабочий цикл был установлен примерно на 25%. Всякий раз, когда рабочий цикл изменяется, неизбежно происходит небольшое изменение частоты переключения, потому что две цепи связи на инвертирующем и неинвертирующем входе обе подключены к выходу операционного усилителя.

Продолжаем работу с лабораторией

Вся деятельность в этой лаборатории основана на простом операционном усилителе (OP97), сконфигурированном как компаратор. В комплект деталей ADALP2000 входит также компаратор AD8561, предназначенный для этой единственной цели. Следовательно, производительность схем ШИМ может быть увеличена с помощью этой части.

Постройте описанные выше схемы, используя AD8561 из набора деталей, и обсудите любые заметные изменения поведения схемы и входных / выходных сигналов.

Дополнительная литература

университет / курсы / электроника / электроника-лаборатория-широтно-импульсная модуляция.txt · Последнее изменение: 25 июня 2020 г., 22:07 (внешнее редактирование)

.

Что такое широтно-импульсная модуляция (ШИМ)? Определение, основы, генерация и обнаружение Схема и приложения широтно-импульсной модуляции

Определение : Метод модуляции, при котором ширина импульсов импульсной несущей волны изменяется в соответствии с модулирующим сигналом, известен как широтно-импульсная модуляция (ШИМ). ) . Он также известен как Длительно-импульсная модуляция (PDM) .

Основы широтно-импульсной модуляции

Это тип метода импульсной временной модуляции (PTM) , в котором синхронизация несущего импульса изменяется в соответствии с модулирующим сигналом.

При длительно-импульсной модуляции (PDM) амплитуда импульса остается постоянной, и замечается только изменение ширины. В качестве информационной составляющей присутствует ширина импульсов. Таким образом, во время передачи сигнала сигнал подвергается широтно-импульсной модуляции.

Благодаря свойству постоянной амплитуды он меньше подвержен влиянию шума. Однако шум в канале передачи вносит некоторое изменение в амплитуду, поскольку он аддитивен по своей природе. Но это полностью легко снимается на приемнике, используя схему ограничителя.

По ширине импульсов содержится информация. Таким образом, коэффициент шума не вызывает значительных искажений сигнала. Следовательно, устойчивость к шуму у системы ШИМ лучше, чем у системы PAM.

Генерация сигнала ШИМ Представление формы волны

На рисунке ниже показан процесс широтно-импульсной модуляции. Широко известен как косвенный метод генерации ШИМ.

Block diagram for generation of PWM signal

Сигнал сообщения и сигнал несущей подается на модулятор, который генерирует сигнал PAM.Этот импульсно-амплитудно-модулированный сигнал подается на неинвертирующий вывод компаратора.

Линейный сигнал, генерируемый пилообразным генератором, подается на инвертирующий вывод компаратора.

Эти два сигнала складываются и сравниваются с опорным напряжением схемы компаратора. Уровень компаратора отрегулирована таким образом, чтобы иметь пересечение с ссылкой наклона формы сигнала.

Импульс ШИМ начинается с переднего фронта пилообразного сигнала, а ширина импульса определяется схемой компаратора.

Ширина сигнала ШИМ пропорциональна пропущенной части линейного сигнала на уровне компаратора.

Рисунок ниже поможет вам лучше понять, как сигнал ШИМ генерируется компаратором:

waveform representation of PWM signal generation

Здесь первое изображение, т.е. (a) показывает форму синусоидального модулирующего сигнала, а второе (b) показывает импульсную несущую. После модуляции генерируется сигнал PAM, который показан на (c). Этот сигнал PAM, когда он добавлен к сигналу линейного изменения, показанному на (d), сравнивается с опорным напряжением компаратора, показанного на рисунке (e).

Наконец, на рисунке (f) показан сигнал ШИМ.

Мы уже упоминали, что ширина импульса напрямую зависит от части формы волны, которая находится выше уровня компаратора.

Так генерируется сигнал с широтно-импульсной модуляцией.

Обнаружение сигнала ШИМ

На рисунке ниже показана схема обнаружения ШИМ, которая выдает исходный сигнал сообщения из модулированного.

Block diagram for detection of PWM signal

Как мы знаем, во время передачи сигнала к сигналу ШИМ добавляется некоторый шум.Итак, сначала для устранения шума, вносимого в передаваемый сигнал, входящий сигнал подается на генератор импульсов. Это регенерирует сигнал ШИМ.

Этот регенерированный импульс ШИМ затем передается в генератор опорных импульсов, который генерирует импульсы постоянной амплитуды и постоянной ширины.

Восстановленные импульсы также подаются на генератор пилообразного сигнала, который генерирует пилообразный сигнал постоянного наклона, длительность которого аналогична длительности импульса. Таким образом, высота линейного сигнала пропорциональна ширине импульса ШИМ.

Импульсы постоянной амплитуды затем подаются в сумматор для добавления к пилообразному сигналу. Добавленный выходной сигнал затем подается на ограничитель, который обрезает сигнал до его порогового значения, тем самым генерируя сигнал PAM на своем выходе.

Этот сигнал PAM затем передается в LPF, чтобы сгенерировать исходный сигнал сообщения из модулированного.

На рисунке ниже представлена ​​форма волны процесса обнаружения ШИМ.

waveform representation of PWM signal detection

Первое изображение (i) показывает искаженную волну ШИМ, а следующее (ii) показывает регенерированный импульс ШИМ.

Работа генератора пилообразного сигнала показана на (iii) и (iv), где показан выходной сигнал генератора опорных импульсов. Операция суммирования и отсечения сигнала показана на (v).

Последнее изображение на рисунке выше (vi) представляет импульсы PAM, из которых восстанавливается исходный сигнал сообщения.

Частотный спектр сигнала ШИМ

Спектр сигнала ШИМ показан ниже

spectrum of PWM signal

Здесь модулирующий сигнал представляет собой синусоидальный сигнал с частотой f m .Таким образом, представленный спектр показывает модулирующую частоту fm вместе с несколькими боковыми полосами.

Влияние шума на длительную импульсную модуляцию

Как мы уже обсуждали, содержание информации присутствует в ширине импульсов, а не в амплитуде. Мы также знаем, что шум складывается с амплитудой импульсного сигнала, вызывая некоторые его изменения.

Таким образом, исходная информация не подвергается влиянию шума во время передачи.Тем самым проявляя невосприимчивость к шумовым воздействиям.

Преимущества широтно-импульсной модуляции

  1. Он более устойчив к шуму, индуцированному каналом, чем PAM.
  2. Поскольку шум увеличивает амплитуду, восстановление ШИМ-сигнала из искаженного ШИМ-сигнала довольно просто.
  3. Нет необходимости синхронизировать передачу и прием.

Недостатки широтно-импульсной модуляции

  1. Из-за изменения ширины импульсов также отмечается изменение мощности передачи.
  2. Требования к полосе пропускания в случае ШИМ несколько больше, чем у PAM.

Применение широтно-импульсной модуляции

Используется в телекоммуникациях, регулировании яркости света или скорости вращения вентиляторов и т. Д.

.

Как работает широтно-импульсная модуляция в VFD

Преобразователи частоты (VFD), используемые в промышленных приложениях, обеспечивают эффективный способ изменения скорости и крутящего момента подключенного двигателя. ЧРП состоит из трех основных частей: секции входного преобразователя, промежуточной шины постоянного тока и выходной части инвертора.

VFD topology Рисунок 1 - ЧРП состоит из 3 основных частей

В секции преобразователя используется диодный мостовой выпрямитель для преобразования входного переменного напряжения в постоянное.Секция шины постоянного тока состоит из батареи конденсаторов, которая используется для сглаживания постоянного напряжения из секции преобразователя и обеспечения некоторой емкости хранения напряжения. Секция инвертора частотно-регулируемого привода принимает напряжение постоянного тока из шины постоянного тока и инвертирует его обратно в переменное напряжение и переменную частоту переменного напряжения, используемое для управления двигателем.


Что такое широтно-импульсная модуляция (ШИМ)?

Процесс преобразования постоянного напряжения в переменное напряжение переменной частоты (VVVF) переменного напряжения в инверторной секции частотно-регулируемого привода называется широтно-импульсной модуляцией или ШИМ.

Широтно-импульсная модуляция использует транзисторы, которые включают и выключают постоянное напряжение в определенной последовательности для создания выходного переменного напряжения и частоты. В большинстве частотно-регулируемых приводов сегодня используются биполярные транзисторы с изолированным затвором или IGBT. Типичная конфигурация IGBT в инверторной секции частотно-регулируемого привода показана ниже на рисунке 2.

vfd output igbt schematic Рисунок 2 - Схема выходного каскада IGBT ЧРП

Транзисторы действуют как переключатель, соединяющий шину постоянного тока между обмотками двигателя.ЧРП с входом 480 В переменного тока будет иметь шину постоянного тока примерно 678 В постоянного тока. Таким образом, «импульс» относится к включению и выключению транзисторов, производящих импульс напряжения с амплитудой приблизительно 678 В постоянного тока.

Задача управления ШИМ - создать выходной сигнал синусоидальной формы тока для создания крутящего момента в двигателе.

Чтобы ток протекал между двумя фазами двигателя, указанного выше, должен быть активирован по крайней мере один транзистор в верхней части диаграммы и один в нижней части диаграммы.Используя определенные комбинации транзисторов, можно индуцировать ток в любом направлении между фазами.

Например, если T1 и T6 разомкнуты, ток будет течь от положительного полюса шины постоянного тока через фазу U-V двигателя, а затем - через отрицательный полюс шины постоянного тока. Если T3 и T4 разомкнуты, то ток будет течь от положительной шины постоянного тока через фазу V-U двигателя к отрицательной.

Одним из преимуществ использования частотно-регулируемого привода с технологией PWM является возможность управлять величиной тока, проходящего через обмотки двигателя, что при работе роторного промышленного двигателя преобразуется в управление величиной крутящего момента на валу двигателя.

В случае ЧРП, в котором используется технология ШИМ, это достигается путем изменения среднеквадратичного напряжения на двигателе. Контролируя время включения и выключения каждого импульса, можно управлять результирующим среднеквадратичным напряжением на фазах двигателя. «Ширина» импульса влияет на результирующее выходное среднеквадратичное значение напряжения.

Более длительное время «ВКЛ» импульса приводит к более высокому среднеквадратичному напряжению на фазах.

pwm long graphic ШИМ-представление с более длительным временем включения

Более короткое время «ВКЛ» импульсов приводит к более низкому среднеквадратичному напряжению на фазах двигателя.

pulse width modulation vfd ШИМ-представление с более коротким временем включения

Таким образом, модулируя ширину импульса на каждой последующей полуволне, можно управлять среднеквадратичным напряжением на фазах двигателя. Результирующее переменное среднеквадратичное значение напряжения позволяет частотно-регулируемому преобразователю изменять величину тока, протекающего между фазами двигателя. Форма волны тока, создаваемая в процессе ШИМ, также зависит от частоты переключения IGBT.


Частота переключения

Частота переключения IGBT относится к скорости включения / выключения отдельных IGBT.Типичные используемые частоты переключения составляют 4 кГц, 8 кГц и даже до 16 кГц.

Более высокая частота переключения обеспечит более чистую форму волны для двигателя, поскольку будет больше импульсов на каждой полуволне. См. Сообщение в блоге KEB о частоте переключения для получения дополнительной информации.

В дополнение к крутящему моменту двигателя (току), скорость двигателя (частота) также может контролироваться с помощью ШИМ. Изменяя период импульсов напряжения, которые индуцируют ток в фазах двигателя, можно изменить результирующую частоту формы выходного тока.

pwm for different frequencies Различные формы сигнала ШИМ приводят к разным выходным частотам

Сводка

Соединяя управление шириной импульса и периодом группы импульсов, ШИМ-приводы предоставляют средства для управления как напряжением, так и частотой на выходе двигателя переменного тока.

Возможность управления крутящим моментом и скоростью двигателя переменного тока открывает возможности применения для разработчиков машин. Скорость вращения двигателя может быть оптимизирована для конкретного применения для достижения более высокой эффективности системы (т.е.е. управление вентилятором). Скорость двигателя можно увеличить выше номинальной, чтобы увеличить производительность. Крутящий момент двигателя можно ограничить, чтобы защитить механические компоненты системы. Контролируемый запуск и остановка двигателей может устранить механические компоненты, которые могут со временем изнашиваться.

.

Отправить ответ

avatar
  Подписаться  
Уведомление о