Активное сопротивление в цепи переменного тока: описание, формула
Переменный ток — основной источник бытового и промышленного электроснабжения. При подаче напряжения на потребителях возникает сопротивление. Статья даст подробное разъяснение, что такое активное сопротивление в цепи переменного тока.
Дополнительно будет дана формула расчета этого значения, описаны разновидности, условия для идеальной цепи и основные факторы, влияющие на увеличение этих значений.
Переменный ток
Для того чтобы понять, что такое активное сопротивление, необходимо разобраться в самом явлении переменного тока. Переменным является такой тип тока, который непрерывно изменяет направление своего протекания. Во время протекания потенциалы переменного тока постоянно изменяются. Это происходит благодаря работе генератора, а точнее за счет взаимодействия магнитного поля с медной обмоткой. Движение хорошо прослеживается при помощи осциллографа. Своей формой оно напоминает синусоиду.
Роль переменного тока сложно переоценить. Главное его достоинство заключается в простоте передачи от источника к потребителю, возможность занижать или увеличивать напряжение при помощи трансформаторов. Также, переменные электрические токи можно доставлять потребителю с гораздо меньшими затратами.
Сопротивление
Сопротивлением является способность проводника замедлять прохождение заряженных частиц через свою структуру. На эту способность влияет материал проводника, его толщина и длина. Единицей измерения электрического сопротивления является 1 Ом.
Расчет производится при пропускании через проводник напряжения в один вольт и силой тока равной одному амперу. В электрических схемах данный параметр обозначается буквой «R».
Активное сопротивление
Переменный ток доставляется потребителю с целью его преобразования в иные виды энергии, например, тепло и свет. В бытовых сетях преобладает использование однофазного переменного тока. При подключении потребителя создается активное сопротивление.
Простые цепи переменного тока с активным сопротивлением включает в себя генератор тока и идеальный резистор. При этом должны соблюдаться необходимые условия для идеальной цепи:
- Активное сопротивление не должно равняться нулю, обязательное условие.
- Емкость и индуктивность цепи должны быть равны нулю.
Также, для идеального активного сопротивления должны соблюдаться следующие условия:
- Соблюдаются закон Ома для мгновенных, среднеквадратичных и амплитудных параметров цепи.
- Значение полностью независимо от амплитудных колебаний.
- Между током и напряжением отсутствует сдвиг фаз.
- Элемент, находящийся под напряжением, выделяет долю тепловой энергии, то есть нагревается.
Все эти условия позволяют электрическим приборам работать в пределах точно установленных параметров с максимальным КПД. Любое изменение может быть причиной отсутствия надежного контактного соединения или неисправностью самого потребителя.
Для того чтобы рассчитать величину активного сопротивления в цепи, необходимо знать величину напряжения и силы тока. Для расчета используется формула: R=U/I. Формула состоит из следующих значений:
- «R» — сопротивление, Ом;
- «U» — величина напряжения, вольт;
- «I» — величина силы тока, ампер.
Далее можно сделать простой расчет. В качестве потребителя выступает электрическая печь, включенная в цепь однофазного переменного тока:
- Напряжение цепи 240 вольт.
- При замере силы тока получено значение 4 ампера.
- R= 240/4=60 Ом.
Расчетная величина активного сопротивления — это не окончательное значение. На нее влияет прежде всего сечение проводов включенных в цепь, схема взаимодействия между цепями емкостных и полупроводниковых элементов.
Активное значение цепи также вызывает безвозвратную потерю первоначальной электрической энергии, а так же приводит к снижению мощности.
Активная емкость
В простой схеме величина активного значения также зависит от активной емкости. Для идеальной емкости — в схеме под переменным напряжением должен находится конденсатор. Идеальный конденсатор обозначается буквой «С».
Для получения идеальной цепи с активной емкостью, должны соблюдаться следующие условия:
- Активная индуктивность и сопротивление должны быть равны 0.
- Емкость самого конденсатора в цепи должна быть больше 0.
При данных условиях электрическая цепь приобретает следующие особенности:
- Закон Ома соблюдается без малейших отклонений.
- На переменный ток оказывается емкостное сопротивление «X».
- Прослеживается нелинейное уменьшение емкости при повышении частоты колебаний.
- Между напряжением и током происходит сдвиг по фазе до величины 90 градусов.
- Емкость цепи непостоянна. Причина кроется в периодическом накоплении и отдаче энергии.
Цепь переменного тока с активным емкостным сопротивлением может дополняться индуктивностью. Для создания индуктивности, в цепь включается катушка индуктивности. Катушка также добавляет свою долю сопротивления в общую цепь. При таком подключении в схеме появляется индуктивное сопротивление. Оба элемента: катушка и конденсатор, не являются конечными потребителями энергии. Эти элементы не находятся под постоянным напряжением, их работа строится на накоплении и отдаче тока в цепь.
Мощность
При наличии активного сопротивления, значительно снижается мощность этой цепи. Это значение зависит от скорости снижения напряжения и преобразования электрической энергии. В электрической схеме мощность обозначается буквой «P».
Для того чтобы добиться минимального снижения средней и мгновенной мощностей, которые образуются в момент появления активного сопротивления, снижения напряжения и преобразования энергий, необходимо чтобы простейшие цепи состояли из идеальных элементов с высокой электрической проводимостью.
Зависимость
Величина активного сопротивления во многом зависит от диаметра проводников. При подаче высокочастотных токов, сопротивление проводника может быть снижено, только если его поверхностный слой намного тоньше основного. Для того чтобы добиться идеального сечения, этот слой должен состоять из материала с очень высокой проводимостью, например, золота или серебра. Данный эффект возникает по причине взаимодействия напряжения и магнитного поля, образованного им. Поле сильно влияет на ток, протекающий по проводнику и выталкивает его на поверхностный слой. Таким образом ближе к поверхности проводника проводимость снижается и становится критично малой в его верхнем слое.
Так же присутствуют следующие эффекты: потери утечки и диэлектрические потери. Оба эффекта связаны с наличием конденсатора в цепи. Диэлектрические потери возникают за счет увеличения температуры диэлектрика внутри конденсатора. Потеря утечки возникает в следствии доли пробоя изолятор конденсатора.
Гистерезис. Это тоже тип потери энергии переменного тока. Такая потеря возникает при формировании магнитного поля вокруг предметов из металла. Электромагнитное воздействие приводит к нагреванию металла, а значит преобразованию энергии.
Последним фактором утечки является радиоизлучение. Радиоволны появляются по причине сильного магнитного поля и его взаимодействия с металлами цепи. Для подавления, особенно в радиоаппаратуре, используются экраны, которые впитывают часть поля и отталкивают остальную долю.
Замер
Измерение сопротивления осуществляется следующими способами:
- Вольтметр и амперметр. С помощью этих приборов измеряются величины силы тока и напряжения, а после производится расчет по описанной выше формуле.
- Логометром. Это прибор для измерения сопротивления под высоким напряжением и большой частотой. Его главное преимущество в сильном исключении зависимостей и погрешностей.
- Омметр. Прибор используется только для измерения по типу усилителя сигнала. При использовании омметра учитывается высокая погрешность, которая может достигать 5 %. Обычные омметры электронного типа не подходят для замера активного сопротивления.
Заключение
Активное сопротивление переменного тока важная величина. Она позволяет точно рассчитать, какая электроэнергия расходуется и какие ее утечки при этом возможны. В промышленных сетях при помощи этой величины рассчитывается доля потребления на различных участках с разными по мощности потребителями.
Видео по теме
Переменный ток. Активное сопротивление. Конденсатор и катушка индуктивности в цепи переменного тока
Огромное практическое значение имеют незатухающие вынужденные колебания. Свободные электромагнитные колебания в контуре быстро затухают и поэтому практически не используются. Переменный ток, используемый потребителями, представляет собой не что иное, как вынужденные электромагнитные колебания. Частота переменного тока показывает число колебаний за 1 секунду. Стандартная частота промышленного тока равна 50 Герц. Значит, на протяжении 1 с ток 50 раз течет в одну сторону и 50 раз в другую. Частота 50 Герц принята для промышленного тока во многих странах мира. Сила тока и напряжение меняются со временем по гармоническому закону. Это вытекает из следующих рассуждений. Если напряжение на концах цепи меняется по гармоническому закону, то напряженность электрического поля внутри проводников будет также меняться гармонически. Эти гармонические изменения напряженности поля вызовут гармонические колебания скорости упорядоченного движения заряженных частиц и, следовательно, гармонические колебания силы тока. При изменении напряжения на концах цепи электрическое поле не меняется мгновенно во всей цепи. Если время распространения изменений поля в цепи гораздо меньше периода колебаний напряжения, то можно считать, что электрическое поле во всей цепи меняется почти мгновенно при изменении напряжения на концах цепи. Переменное напряжение, использующее потребителями в осветительной сети, создается генераторами на электростанциях. Проволочную рамку, вращающуюся в постоянном однородном магнитном поле, можно рассматривать как простейшую модель генераторов переменного тока. Поток магнитной индукции, который пронизывает проволочную рамку, пропорционален косинусу угла альфа между нормалью к рамке и вектором магнитной индукции. При равномерном вращении рамки угол альфа увеличивается прямо пропорционально времени. Поэтому поток магнитной индукции меняется гармонически. Согласно закону электромагнитной индукции, ЭДС индукции в рамке равна взятой со знаком минус скорости изменения потока магнитной индукции по времени. Иначе ЭДС электромагнитной индукции равна производной потока магнитной индукции по времени. При изменении напряжения по гармоническому закону напряженность электрического поля в проводнике изменяется по такому же закону. Под действием переменного электрического поля в проводнике возникает переменный электрический ток, частота и фаза колебаний которого совпадает с частотой и фазой колебаний напряжения. Цепи с резистором. Цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением, называемым активным сопротивлением. При наличии нагрузки, обладающей активным сопротивлением, цепь поглощает энергию, поступающую от генератора. Эта энергия превращается во внутреннюю энергию проводников — они нагреваются. В проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения. В цепи переменного тока промышленной частоты, равной 50 Герц, сила тока и напряжение изменяются сравнительно быстро. Мощность в цепи постоянного тока на участке с сопротивлением равна по определению произведению квадрата силы тока на сопротивление. На протяжении очень малого интервала времени переменный ток можно считать неизменным. Поэтому мгновенная мощность в цепи переменного тока на участке, имеющем активное сопротивление, определяется произведением квадрата мгновенного значения силы тока на сопротивление. Под средней за период мощностью переменного тока понимают отношение суммарной энергии, поступающей в цепь за период, к периоду. Человеку необходимо знать среднюю мощность тока на участке цепи за большой промежуток времени, включающий много периодов.
Индуктивность в цепи влияет на силу переменного тока. Это можно доказать с помощью простого опыта. Составим цепь из катушки большой индуктивности и электрической лампы накаливания. С помощью переключателя можно подключить эту цепь или к источнику постоянного напряжения, или к источнику переменного напряжения с равными значениями. Лампа светится ярче при постоянном напряжении. Следовательно, действующее значение силы переменного тока в рассматриваемой цепи меньше силы постоянного тока. Здесь проявляется самоиндукция. При подключении катушки к источнику постоянного напряжения сила тока в цепи нарастает постепенно. Возникающее при нарастании силы тока вихревое электрическое поле тормозит движение электронов. Лишь со временем сила тока достигает наибольшего установившегося значения, соответствующего данному постоянному напряжению. Если напряжение быстро меняется, то сила тока не будет достигать тех значений, которые оно бы приобрело с течением времени при постоянном напряжении. Следовательно, максимальное значение силы переменного тока (его амплитуда) ограничивается индуктивностью цепи и будет тем меньше, чем больше индуктивность и чем больше частота приложенного напряжения. При изменении силы тока по гармоническому закону ЭДС самоиндукции будет равна противоположному значению производной индуктивности. Так как удельная работа кулоновского поля равна напряжению на концах катушки, то напряжение на концах катушки оказывается гармонически связанным с амплитудным значением напряжения контура. Следовательно, колебания напряжения на катушке опережают колебания силы тока на пи-пополам. В момент, когда напряжение на катушке достигает максимума, сила тока равна нулю. В момент, когда напряжение становится равным нулю, сила тока будет максимальной. Величину икс-эл, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением. Амплитуда силы тока в катушке можно найти отношением амплитуды напряжения на индуктивное сопротивление. Так выглядит закон Ома для цепи постоянного тока с катушкой. Индуктивное сопротивление увеличивается с ростом частоты, значит, катушка хорошо проводит низкочастотные колебания и плохо – высокочастотные, а для постоянного тока оно равно нулю. Рассмотрим использование частотных свойств конденсатора и катушки индуктивности. Реальные электрические цепи содержат все виды сопротивлений: активное, индуктивное, емкостное, поэтому ток в реальной цепи зависит от ее полного эквивалентного сопротивления.
Конденсатор хорошо проводит высокочастотные колебания и плохо – низкочастотные колебания. Катушка наоборот: хорошо проводит низкочастотные колебания и плохо – высокочастотные колебания. Эти свойства позволяют создать различные частотные фильтры – схемы, позволяющие выделить из всего сигнала низкочастотные и высокочастотные составляющие.
Колебательный контур обладает замечательным свойством – пропускать колебания только определенной частоты, зависящей от емкости конденсатора и индуктивности катушки, под действием резонанса. Эти свойства контура широко применяются в радио- и телеприёмной и передающей аппаратуре для селекции сигналов.
Задача
Конденсатор включен в цепь переменного тока с частотой 200 Герц. Напряжение в цепи 40 Вольт, сила тока 0,64 Ампера. Какова емкость конденсатора?
Вспомнив закон Ома для цепи с колебательным контуром, выразим емкость конденсатора как отношение силы тока к напряжению и циклической частоте. Чтобы определить циклическую частоту, необходимо частоту переменного тока разделить на два-пи. Получаем результат 0,5 микрофарад есть емкость конденсатора.
Сопротивление цепи переменного тока индуктивное
Индуктивный датчик представляет собой катушку с железным сердечником, включенную в цепь переменного тока. Индуктивность такой катушки определяется ее магнитным сопротивлением. Последнее же является функцией трех величин длины сердечника, площади его поперечного сечения и магнитной проницаемости его материала. Если датчик имеет якорь, замыкающий магнитную цепь катушки и отделенный от сердечника небольшим зазором, то магнитное сопротивление будет в основном зависеть от характеристик зазора его величины, поперечного сечения и магнитной проницаемости. [c.37]Найдите резонансную частоту последовательной цепи переменного тока конденсатора емкостью 10 мкФ и катушки индуктивностью 1 Гн с активным сопротивлением 10 Ом. [c.296]
Фиг. 7. Цепь переменного тока, содер жащая последовательно включенные активное, индуктивное и емкостное сопротивления. |
Магнитный усилитель представляет собой электромагнитное устройство, в котором с помощью сигнала постоянного тока осуществляется управление значительно большей мощностью переменного тока. На рис. 31, а представлен магнитный усилитель на двух сердечниках 2 и 3 с общей управляющей обмоткой 5, намотанной на оба сердечника. Обмотка 5 присоединена к цепи постоянного тока, а обмотки 4п 1 — к цепи переменного тока. Небольшие изменения силы постоянного тока в обмотке 5 меняют индуктивное сопротивление и силу тока в обмотках 4и I. Магнитные усилители виброустойчивы, дешевы, имеют большой коэф- [c.163]
Предельный коэффициент эффективности акустического излучения. В цепях переменного тока с последовательным соединением мощность, расходуемая источником э.д. с., идет на нагревание активного сопротивления. Индуктивная нагрузка накапливает энергию в форме энергии магнитного поля и периодически обменивается ею с источником напряжения. Аналогичный процесс осуществляется и в поле при излучении акустических волн мощность источника энергии излучателя поглощается в виде потока энергии аку- [c.200]
Катушка индуктивности Ь обладает индуктивным сопротивлением, т. е. сопротивлением, которое вносит в цепь переменного тока катушка индуктивности вследствие явления самоиндукции. [c.97]
Таким образом, мощность, связанная с реактивной частью импеданса, аналогична мощности, потребляемой индуктивностью в цепи переменного тока, а сама реактивная часть 1т 2 — индуктивному сопротивлению катушки. Активная же часть Не 2 = р с ЗоЯ определяет мощность, необратимо теряемую источником на излучение в среду, и она эквивалентна активному сопротивлению электрической цепи. Поэтому эквивалентная схема акустического импеданса пульсирующей сферы может быть представлена параллельно соединенными катушкой и омическим сопротивлением. [c.208]
В цепь переменного тока при этом включены электромагнитные вентили ОЭ и ТЭ электровоздухораспределителей ЭВ, однако они не сработают из-за большого индуктивного сопротивления их катушек. [c.63]
Магнитные усилители и дроссели насыщения могут рассматриваться как регулируемые индуктивные сопротивления, включаемые в цепь переменного тока. Изменения величины индуктивного сопротивления магнитного [c.67]
Основное свойство дросселя насыщения состоит в том, что величина реактивного (индуктивного) сопротивления обмоток переменного тока зависит от величины постоянного тока в обмотке управления. Это свойство объясняется способностью стали насыщаться. При насыщении сердечника уменьшается его магнитная проницаемость, от которой зависит индуктивность обмоток. Если в обмотке управления нет тока, сопротивление рабочих обмоток будет большим и ток в цепи рабочие [c.358]
Если цепь переменного тока содержит, кроме активного сопротивления, также и индуктивное сопротивление, то напряжение и ток не совпадают по фазе. В этом случае, в зависимости от соотношения между индуктивным и активным сопротивлением, ток будет отставать по фазе от напряжения на тот или другой угол. [c.35]
Схема включения простейшего индуктивного датчика приведена на рис. 82, а. Дроссель индуктивного датчика ДИ включен в цепь переменного тока последовательно с исполнительным токовым реле Р. Когда магнитная цепь датчика разомкнута, т. е. когда напротив П-об-разного сердечника нет магнитного шунта, индуктивное сопротивление датчика мало и исполнительное реле Р включено. Когда магнитный шунт, укрепленный на кабине, подходит к датчику, закрепленному в шахте, магнитная цепь датчика замыкается, его индуктивное сопротивление резко возрастает и исполнительное реле отключается вследствие уменьшения тока в цепи датчика. Работа индуктивного датчика не меняется, если дроссель датчика укреплен на кабине, а магнитный шунт — в шахте. [c.121]
Для регулирования тока возбуждения генератора применен однофазный магнитный усилитель. Силовые обмотки магнитного усилителя ОС/ и 0С2 включены в цепь переменного тока совместно с селеновым выпрямителем Вп2 и обмоткой возбуждения генератора Г таким образом, что по обмотке Г течет постоянный ток, величина которого зависит от реактивного (индуктивного) сопротивления обмоток 0С1 и 0С2. Чем меньше сопротивление обмоток, тем больше величина тока в обмотке возбуждения генератора. Когда все обмотки управления магнитного усилителя выключены, сопротивление силовых обмоток так велико, что в обмотке возбуждения тормозного генератора практически нет тока. [c.184]
Основное свойство дросселя насыщения состоит в том, что величина реактивного (индуктивного) сопротивления обмоток переменного тока зависит от величины постоянного тока в обмотке управления, Это свойство объясняется способностью стали насыщаться. При насыщении сердечника уменьшается его магнитная проницаемость, от которой зависит индуктивность обмоток. Если в обмотке управления нет тока, сопротивление рабочих обмоток будет большим и ток в цепи рабочие обмотки — потребитель будет иметь наименьшее значение. С появлением тока в цепи обмотки управления реактивное сопротивление рабочих обмоток уменьшится, следовательно, возрастет ток в цепи потребителя. [c.121]
Индуктивное сопротивление в цепи переменного тока [c.36]
Активное, индуктивное и емкостное сопротивления в цепи переменного тока [c.36]
В цепях переменного тока различают активное, индуктивное и емкостное сопротивления. [c.12]
СВАРОЧНЫЙ ДРОССЕЛЬ (для дуговой сварки) — регулируемое индуктивное сопротивление, включаемое последовательно с дугой в сварочную цепь переменного тока. [c.146]
Магнитные усилители. Магнитным усилителем называется электромагнитный аппарат, в котором для плавного регулирования переменного тока изменяют индуктивное сопротивление катушки с сердечником путем подмагничивания ее постоянным током. До того как перейти магнитному усилителю, остановимся на дросселе насыщения (рис. 65, а), состоящем из ферромагнитного сердечника с катушкой индуктивности 1 (рабочей) и подмагничивающей катушкой 2 (управления). Если включить дроссель в -цепь переменного тока и изменять ток управления /у, то будет изменяться индуктивность в рабочей обмотке 1 и создаваемое ею сопротивление, а следовательно, будет изменяться ток в цепи нагрузки. [c.122]
В сварочную цепь переменного тока (рис. 96, 6) включено омическое и индуктивное сопротивление (балластный реостат и дроссель) [c.153]
В сварочную цепь переменного тока (рис. 98, б) включено омическое и индуктивное сопротивления (балластный реостат и [c.163]
На фиг. 168, а изображен датчик с малым воздушным зазором 8, длина которого изменяется под действием измеряемой механической величины Р. Вследствие изменения зазора, изменяется магнитное сопротивление магнитной цепи, а следовательно, и индуктивность катушки, надетой на сердечник и включенной в цепь переменного тока. Изменение индуктивного сопротивления катушки ведет к изменению ее полного сопротивления Z. [c.210]
Общепринятая мера стабилизации сварочной дуги переменного тока — включение в сварочные цепи переменного тока дросселей, что позволяет поддерживать стабильность дуги и регулировать сварочный ток изменением индуктивного сопротивления. [c.31]
Распространение волн по разветвленной системе можно, как мы видели, удобно описать, если представить себе произвольную волну разложенной на компоненты, пропорциональные е , и использовать комплексную проводимость У, зависящую от ю, для определения отклика любой части системы на такие компоненты. Общая формула, которая, если пренебречь ослаблением волны, имеет вид (61), связывает эффективную проводимость у предыдущего разветвления с проводимостями у последующего разветвления. Многократное применение этой формулы в обратном порядке, начиная от наиболее отдаленных разветвлений и кончая самым первым, позволяет охарактеризовать свойства всей системы подобным образом цепи переменного тока изучаются с помощью суммирования (в соответствии с законами Кирхгофа) зависящих от частоты комплексных проводимостей (или сопротивлений) сосредоточенных элементов сети. Эта аналогия вызывает вопрос, могут ли для одномерных волн в жидкости существовать какие-либо сосредоточенные элементы с чисто мнимой проводимостью, подобные таким обычным элементам электрической цепи, как емкости и индуктивности. В этом разделе мы найдем их близкие аналоги, укажем, как можно проанализировать системы с такими элементами, и исследуем условия резонанса, в некоторых случаях аналогичные условиям колебательного контура . [c.144]
Индуктивность в цепи переменного тока. В любом проводнике, по которому протекает переменный ток, возникает ЭДС самоиндукции. Поэтому ни одна электрическая цепь не обладает только актикным сопротивлением. [c.242]
В цепях переменного тока рассеяние мощности в катушках индуктивности иногда оценивают тангенсом угла магнитных потерь. Тороидальную катушку индуктивности с сердечником из магнитного материала, собственной емкостью и сопротивлением обмотки 1чОторой можно пренебречь, представим в виде схемы, состоящей из последовательно соединенных индуктивности L и сопротивления 1квивалентн0г0 всем видам потерь мощности в магнетике (рис. 9-10) для этого случая из векторной диаграммы получим [c.273]
Электрическое сопротивление активное, реактивное и полное (комплексное). В цепи переменного тока различают активное и реактивное сопротивления. Первым обладает участок цепи, в котором отсутствует индуктивность или емкость. Реактивное сопротивление может быть индуктивным, равным о)(где Ь — индуктивность, а со — круго- [c.247]
Новый класс частотозависимых мостовых цепей переменного тока, уравновешиваемых изменением одной лишь частоты, позволил разработать универсальные высокочастотные преобразователи сопротивления, емкости и индуктивности в частоту переменного тока и компенсационные частотомеры. Аналоговые мосты и компенсаторы переменного тока с непрерывным автоматическим уравновешиванием двумя параметрами, позволяющие одновременно измерять, контролировать и регулировать обе составляющие комплексных величин, были разработаны в период с 1956 по 1960 г. [c.263]
Резонанс. Явления резонанса возникают в цепях переменного тока при равенстве индуктивного и ёмкостного сопротивлений или при равенстве индуктивной и ёмкостной проводимости. В этих случаях контур по отношению внешней цепи является безиндуктивным, как бы состоящим из одного активного сопротивления. [c.521]
ИНДУКТИВНОЕ СОПРОТИВЛЕНИЕ в цепи переменного тока — реактивная часть сопротивления двухполюсника (см. Импеданх), в к-рои синусоидальный ток отстаёт по фазе от приложенного напряжения подобно тому, как это имеет место для катуш- КН самоиндукции. В идеальном случае, когда катушка самоиндукции может быть охарактеризована единств, параметром — индуктивностью i = onst, И. с. определяется как отношение амплитуд напряжепия и тока и равно Xi — aL (oj —- циклич. частота). При этом ток отстаёт по фазе от напряжения точно на угол я/2, вследствие чего в среднем за период но происходит ни накопления эл.-магп. энергии в катушке, ип её диссипации дважды за период энергия накачивается внутрь катушки (в основном в виде энергии маги, поля) и дважды возвращается обратно источнику (или во внеш. цепь). [c.141]
Индуктивным преобразователем (датчиком) является электромагнитное устройство, преобразующее контролируемую неэлектрическую величину (перемещение уровня ванны) в электрический параметр (индуктивное сопротивление). Простейщий индуктивный датчик представляет собой магнитную цепь, состоящую из сердечника с катущкой и подвижного якоря, разделенных воздущным зазором 6 (рис. 3.15). Полное сопротивление катущки со стальным сердечником в цепи переменного тока [c.161]
Применение тиристорной схемы управления позволяег простыми средствами бесступенчато регулировать обороты электродвигателя. Диоды Д7—Д10 в цепи управления тиристоров Д5 и Д6 установлены для предотвращения возникновения импульса обратной полярности на управляющем электроде. Резисторы R1 и R2 включены для выравнивания углов зажигания тиристоров. Сдвиг фазы управляющего напряжения относительно напряжения питания тиристоров осуществляется с помощью фазовращателя, который представляет собой цепь переменного тока, содержащую активное, индуктивное и емкостное сопротивления. При изменении сопротивлений резисторов R3 и R4 фаза управляющего напряжения тиристоров сдвигается в идеальном случае от О до 180°, практически л[c.332]
Изменение тока в электрической цепи (включение, выключение) вызывает появление в ней ЭДС самоиндукции, препятствующей этому изменению. При увеличении тока она направлена против ЭДС источника напряжения, а при уменьшении тока, она мешает ему исчезнуть. Сопротивление в цепи, возникающее в результате действия ЭДС самоиндукции, называется индуктивным, а сопро-тивл 1ние проводников цепи—активным. Вся мощность, получаемая цепью переменного тока, называется кажущейся и состоит из активной и реактивной — мощностей. Активная мощность расходуется на нагрев. В двигателях переменного тока большая часть активной мощности превращается в механическую. Реактивная мощность обусловлена наличием магнитных и электрических полей в индуктивностях и емкостях цепей. В цепи с индуктивной нагрузкой нельзя избежать наличия реактивной мощ- [c.31]
V.4.29. Реактивное сопротивление (реоктанс) электрической цепи переменного тока (при последовательном соединении индуктивности L и емкости О [c.58]
В любой электрической цепи переменного тока вокруг проводников с током возникает магнитное поле, следовательно электрическая цепь всегда обладает индуктивностью. Если переменное напряжение приложить к катушке индуктивности, ток в цепи будет меньше в сравнении с тем током, который бы протекал при наличии одного активного сопротивления катуш ки. ЭДС самоиндукции катушки противодействует периодическим изменениям переменного тока, т. е. в катушке возникает дополнительное препятствие (кроме активного сопротивления) прохождению по ней переменного тока. Противодействие катушки индуктивности переменному току, измеряемое в омах, условно назвали индуктивным сопротивлением Индуктивное сопротивление пропорционально индуктивности цепи и частоте переменного токя Xц=2n f L. Коэффициент 2л [c.12]
П. переменного тока. При компенсации на переменном токе необходимо, чтобы непосредственно сравниваемые эдс были равны по величине и имели одинаковые 1) частоту, 2) форму кривой и 3) фазу. Выполнения первых двух условий достигают, питая потенциометр через соответствующий трансформатор от того же генератора, напряжение к-рого нужно измерить. Для выполнения третьего условия необходим регулятор фаз (П. сист. Дрисдаля) или особый трансформатор без железа (комплексный П. системы Гартмана и Брауна). В виду отсутствия эталона переменной эдс для установления силы рабочего тока в П. переменного тока служат электродинамические амперметры, поэтому точность измерения величины напряжения не превосходит точности этого амперметра (0,5%). П. переменного тока применяются при всех точных измерениях в цепях переменного тока при калибровке амперметров и вольтметров, при точном измерении емкостного и индуктивного сопротивления цепи, при определении угла сдвига фаз между токами в отдельных участках цепи. Измерение угла при помощи регулятора фаз м. б. произведено с точностью не более 0,5°, с помощью комплексного П.—до 0,25°, но измерение последним величины эдс имеет погрешность 0,5 [c.241]
Обозначения h(H) — высота оси вращения i3jj — наружный диаметр сердечников статоров (для асинхронных двигателей) Р — номинальная мощность 7 — номинальное напряжение питания /ц —номинальное значение силы тока — номинальная частота вращения вала — номинальный момент max — максимальная частота вращения вала т — коэффициент полезного действия Ля — сопротивление якорной обмотки Лд — сопротивление дополнительных полюсов (на дополнительных полюсах располагается компенсационная обмотка, которая включается последовательно с обмоткой якоря и предназначена для улучшения процесса коммутации в щеточно-коллекторном узле) — сопротивление обмотки возбуждения — индуктивность обмотки якоря J — момент инерции якоря S — номинальное скольжение М ах> — максимальный и пусковой момент на валу соответственно (для асинхронных двигателей) — пусковой ток os ф — коэффициент мощности (отношение активной мощности цепи переменного тока к полной мощности, чем ближе к единице, тем лучше). [c.194]
Магнитные усилители. В настоящее время наряду с электронными усилителями в САУ широко применяют магнитные усилители. Основой магнитного усилителя является дроссель насыщения, представляющий собой реактивную катушку с двумя обмотками и сердечником из ферромагнитного материала. Одна из обмоток включается в цепь переменного тока, а другая используется для подмагничивания и обтекается постоянным током. При прохождении по обмотке постоянного тока /= (ток подмагничивания) в сердечнике возникает постоянное магнитное поле Н=, что приводит к уменьшению магнитной проницаемости сердечника для обмотки переменного тока. В результате этого снижается индуктивное сопротивление дросселя = = (о1/др(1/др ц) и переменный ток 1 = /-//соЬдр возрастает. Таким образом, изменением силы тока в обмотке подмагничивания можно управлять силой тока в обмотке переменного тока. Этот принцип лежит в основе работы магнитного усилителя. [c.890]
Принцип работы индуктивных измерительных приборов заключается в том, что с изменением размера контролируе.мого изделия изменяется воздушный зазор в замкнутом дросселе и вместе с тем сопротивление в цепи переменного тока. Электросхеыа прибора представляет собой мостовую схему. Измеряемая величина находится в определенной зависимости от тока, протекающего в цепи и выпрямленного для целей измерения, целей сортировки или регулирования необходимые управляющие процессы осуществляются с помощью лампового каскада или специального реле. Ввиду того, что raгнитнaя цепь индуктивных датчиков обладает очень малыми воздушными зазорами, весьма незначительное изменение измеряемой величины соответствует сравнительно большому изменению магнитного сопротивления. Следовательно, в индуктивных измерительных приборах можно обойтись без рычажной передачи перемещение измерительного штока передается непосредственно на воздушный зазор в магнитной цепи. В некоторых конструкциях индуктивных приборов применяют односторонний якорь, закрепленный в пружинном шарнире. Существенным преимуществом индуктивных приборов для контроля размеров является отсутствие в датчике чувствительных опор, шарниров, контактов, которые вызывают чувствительность прибора к сотрясениям, ограничивают его надежность и срок службы при эксплуатации. [c.440]
Катушка индуктивности в цепи переменного тока. Индуктивное сопротивление | Основы физики сжато и понятно
Для школьников.
В предыдущих статьях рассмотрены цепи переменного тока, содержащие только активное сопротивление и содержащие только емкостное сопротивление.
Сейчас рассмотрим случай, когда в цепи переменного тока находится только катушка индуктивности (индуктивное сопротивление), а активным и емкостным сопротивлениями цепи можно пренебречь.
Начнём с опыта, позволяющего понять, когда появляется и от чего зависит индуктивное сопротивление в цепи переменного тока.
Две маленькие одинаковые электрические лампочки подключались к источникам одинакового напряжения. Но одна (правая) подключалась к источнику постоянного тока (аккумуляторной батарее), а другая (левая) — к источнику переменного тока.
Лампочки светили одинаково, так как количество выделяющегося тепла не зависит от того, какой ток протекает по нитям лампочек (постоянный или переменный).
Затем к лампочкам последовательно подключили катушки индуктивности, сделанные из толстой медной проволоки, содержащей большое число витков. Внутри катушек находятся железные сердечники.
Катушками индуктивности называются катушки, имеющие большую индуктивность и малое активное сопротивление (изготовлены из толстой проволоки). Часто активным сопротивлением такой катушки можно пренебречь.
Опыт показал, что в случае постоянного тока лампочка горит ярко, а в случае переменного тока она светит тускло. Как это объяснить?
В случае постоянного тока лампочка горит ярко, потому что сопротивление катушки мало.
Но почему катушка индуктивности очень сильно ослабляет переменный ток? Продолжаем рассматривать опыт.
Если из катушки (рис. б) постепенно вытягивать железный сердечник, то нить лампочки будет накаляться всё сильнее. При полном вытягивании сердечника лампочка будет светить довольно ярко. Убрав железный сердечник, во много раз уменьшили индуктивность катушки, значит дело в индуктивности.
Так как сила переменного тока быстро меняется, то в катушке возникает ЭДС самоиндукции.
В цепи только с индуктивным сопротивлением приложенное к цепи напряжение в каждый момент времени равно и противоположно ЭДС самоиндукции.
ЭДС самоиндукции по правилу Ленца направлена так, что стремится препятствовать изменению тока, то есть оказывает току сопротивление. Чем больше индуктивность катушки, тем большая ЭДС самоиндукции в ней возникает, тем больше индуктивное сопротивление. Индуктивное сопротивление зависит ещё от частоты тока, чем больше частота, тем больше это сопротивление.
При нарастании тока ЭДС самоиндукции препятствует этому нарастанию, поэтому ток позже достигает максимума, чем в отсутствие самоиндукции.
При убывании тока ЭДС самоиндукции стремится поддерживать ток. Поэтому нулевые значения тока достигаются в более поздний момент, чем в отсутствие самоиндукции.
Таким образом, при наличие индуктивности ток отстаёт по фазе от тока в отсутствие индуктивности, а следовательно, отстаёт по фазе от своего напряжения.
Можно сказать так: из-за явления самоиндукции ток в катушке индуктивности не может меняться скачком и отстаёт от напряжения.
Чем больше частота тока, тем больше будет ЭДС самоиндукции, стремящейся противодействовать изменению тока и тем больше будет сопротивление переменному току.
Индуктивное сопротивление находится по формуле, которая получена теоретически и подтверждена опытом:
Напряжение на индуктивном сопротивлении (индуктивное напряжение) :
Ток в цепи, содержащей только индуктивность, равен отношению напряжения на зажимах источника к индуктивному сопротивлению цепи:
В цепи, содержащей только индуктивное сопротивление, напряжение опережает ток на четверть Т/4 периода (или ток отстаёт от напряжения на четверть периода):
Из рисунка видно, когда ток ещё только проходит через нулевое положение, напряжение уже проходит через максимум, то есть мгновенные значения напряжения и тока меняются согласно уравнениям:
Разность фаз между током и напряжением, равная «пи» пополам, величина отрицательная.
На следующем рисунке показано, как меняются во времени мгновенные значения тока, напряжения и мощности в цепи переменного тока, содержащей только индуктивное сопротивление:
Мгновенные значения мощности находятся через произведение мгновенных значений напряжения и тока, уравнения для которых записаны выше.
Видим, что мгновенная мощность в цепи, обладающей только индуктивностью, изменяется по синусоидальному закону с двойной частотой и имеет равные по модулю положительные и отрицательные значения.
В первую и третью части периода, когда ток в цепи растёт, мощность имеет положительное значение. В эти части периода магнитное поле вокруг электрической цепи усиливается за счёт энергии источника.
Убыванию тока соответствует отрицательное значение мощности. В эти части периода (второй и четвёртый) магнитное поле ослабевает, его энергия идёт обратно к источнику тока.
Таким образом, в цепи, содержащей только катушку индуктивности, происходит периодическая перекачка энергии от источника в энергию магнитного поля катушки индуктивности и возвращение её источнику.
Положительные и отрицательные значения мощности по модулю равны, поэтому средняя мощность за период в такой цепи равна нулю.
Эта мощность не расходуется во внешней части цепи, поэтому называется реактивной индуктивной мощностью:
Она образуется при работе электроприборов (трансформаторов, двигателей, электромагнитов и др., обладающих большой индуктивностью.)
Реактивная мощность в промышленных электрических цепях увеличивает нагрузку на провода и снижает коэффициент мощности цепи, поэтому реактивную нагрузку в электрической цепи на предприятиях снижают (об этом будет сказано в последующих статьях.)
Пример.
Катушка с индуктивностью 0,01 Гн включена в цепь переменного тока напряжением 120 В и частотой 50 Гц. Определить силу тока в катушке, индуктивное напряжение в ней и её реактивную мощность, если активным сопротивлением катушки можно пренебречь.
Используем формулы:
Ответ: 38,2 А; 120 В; 1460 Вт.
Из полученного ответа видим, что всё приложенное к катушке напряжение является индуктивным.
Итак, присутствие индуктивности в цепи переменного тока приводит к сдвигу фаз между током и напряжением в сети (колебания тока отстают от колебаний напряжения).
Емкостная мощность не совершает механической работы, не нагревает проводники.
Катушка индуктивности лишь периодически накапливает энергию магнитного поля и возвращает её обратно источнику тока.
К.В. Рулёва
Предыдущая запись : Конденсатор в цепи переменного тока. Емкостное сопротивление.
Следующая запись :Последовательное соединение сопротивлений. Резонанс напряжений. Мощность переменного тока. Коэффициент мощности.
Ссылки на занятия до электростатики даны в Занятии 1 .
Ссылки на занятия (статьи), начиная с электростатики, даны в конце Занятия 45 .
Ссылки на занятия (статьи), начиная с теплового действия тока, даны в конце Занятия 58 .
Ссылки на занятия, начиная с переменного тока, даны в конце Занятия 70 .
Емкостное сопротивление в цепи переменного тока | |
При включении конденсатора в цепь постоянного напряжения сила тока I=0, а при включении конденсатора в цепь переменного напряжения сила тока I ? 0. Следовательно, конденсатор в цепи переменного напряжения создает сопротивление меньше, чем в цепи постоянного тока. | |
Мгновенное значение напряжения равно . Мгновенное значение силы тока равно: Таким образом, колебания напряжения отстают от колебаний тока по фазе на π/2. | |
Т.к. согласно закону Ома сила тока прямо пропорциональна напряжению, то для максимальных значений тока и напряжения получим: , где — емкостное сопротивление. | |
Емкостное сопротивление не является характеристикой проводника, т.к. зависит от параметров цепи (частоты). | |
Чем больше частота переменного тока, тем лучше пропускает конденсатор ток (тем меньше сопротивление конденсатора переменному току). | |
Т.к. разность фаз между колебаниями тока и напряжения равна π/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и емкостной нагрузкой. Такая нагрузка наз. реактивной. | |
Индуктивное сопротивление в цепи переменного тока | |
В катушке, включенной в цепь переменного напряжения, сила тока меньше силы тока в цепи постоянного напряжения для этой же катушки. Следовательно, катушка в цепи переменного напряжения создает большее сопротивление, чем в цепи постоянного напряжения. | |
Мгновенное значение силы тока: | |
Мгновенное значение напряжения можно установить, учитывая, что u = — εi, где u – мгновенное значение напряжения, а εi – мгновенное значение эдс самоиндукции, т. е. при изменении тока в цепи возникает ЭДС самоиндукции, которая в соответствии с законом электромагнитной индукции и правилом Ленца равна по величине и противоположна по фазе приложенному напряжению. | |
. Следовательно , где амплитуда напряжения. Напряжение опережает ток по фазе на π/2. | |
Т.к. согласно закону Ома сила тока прямо пропорциональна напряжению и обратно пропорциональная сопротивлению, то приняв величину ωL за сопротивление катушки переменному току, получим: — закон Ома для цепи с чисто индуктивной нагрузкой. | |
Величина — индуктивное сопротивление. | |
Т.о. в любое мгновение времени изменению силы тока противодействует ЭДС самоиндукции. ЭДС самоиндукции — причина индуктивного сопротивления. | |
В отличие от активного сопротивления, индуктивное не является характеристикой проводника, т.к. зависит от параметров цепи (частоты): чем больше частота переменного тока, тем больше сопротивление, которое ему оказывает катушка. | |
Т.к. разность фаз между колебаниями тока и напряжения равна π/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и индуктивной нагрузкой. Такая нагрузка наз. реактивной. |
Сопротивление в цепи переменного тока. (11 класс)
1. АКТИВНОЕ, ЕМКОСТНОЕ И ИНДУКТИВНОЕ СОПРОТИВЛЕНИЯ В ЦЕПИ ПЕРЕМЕННОГО ТОКА 11 класс
НАГРУЗКА В ЦЕПИ ПЕРЕМЕННОГОТОКА
РЕАКТИВНАЯ
Индуктивная
АКТИВНАЯ
Емкостная
3. АКТИВНОЕ СОПРОТИВЛЕНИЕ В ЦЕПИ ПЕРЕМЕННОГО ТОКА
• Электрические устройства, преобразующиеэлектрическую энергию во внутреннюю,
называются активными сопротивлениями.
15 Ом
4. АКТИВНОЕ СОПРОТИВЛЕНИЕ В ЦЕПИ ПЕРЕМЕННОГО ТОКА
• От чего зависит активное сопротивлениепроводника?
5. АКТИВНОЕ СОПРОТИВЛЕНИЕ В ЦЕПИ ПЕРЕМЕННОГО ТОКА
Рассмотрим сначала цепь, состоящую из одного лишь
сопротивления , подключённого к синусоидальной ЭДС:
• Из второго правила Кирхгофа для такой цепи
можно сделать следующие три вывода:
• 1) ток через сопротивление совершает гармонические колебания в
одной фазе с напряжением;
• 2) максимальная сила тока (достигается при значении синуса,
равном единице) ;
• 3) связь амплитуд силы тока и напряжения на сопротивлении
формально совпадает с законом Ома для участка цепи с постоянным
током.
6. АКТИВНОЕ СОПРОТИВЛЕНИЕ В ЦЕПИ ПЕРЕМЕННОГО ТОКА
iu
R
7. ЕМКОСТНОЕ СОПРОТИВЛЕНИЕ В ЦЕПИ ПЕРЕМЕННОГО ТОКА
• Емкостное сопротивление — величина,характеризующая сопротивление, оказываемое
переменному току электрической емкостью
8. ЕМКОСТНОЕ СОПРОТИВЛЕНИЕ В ЦЕПИ ПЕРЕМЕННОГО ТОКА
9. ЕМКОСТНОЕ СОПРОТИВЛЕНИЕ В ЦЕПИ ПЕРЕМЕННОГО ТОКА
Рассмотрим цепь, состоящую из одной лишь ёмкости , подключенной ксинусоидальной ЭДС. Второе правило Кирхгофа для такой цепи
Тогда сила тока .
Величина
называется ёмкостным сопротивлением.
Можно сделать следующие три вывода:
1) ток в цепи совершает гармонические колебания, опережая по фазе
напряжение на
;
2) максимальная сила тока
;
3) связь амплитуд силы тока и напряжения на конденсаторе формально
совпадает с законом Ома для участка цепи в случае постоянных токов.
10. ЕМКОСТНОЕ СОПРОТИВЛЕНИЕ В ЦЕПИ ПЕРЕМЕННОГО ТОКА
Почему конденсатор оказывает конечноесопротивление переменному току? Ведь между
обкладками конденсатора – диэлектрик, а
значит, цепь разомкнута, и её сопротивление
должно быть очень большим. Этот факт имеет
простое объяснение. Переменный
электрический ток не проходит сквозь
конденсатор, а представляет собой
периодически повторяющийся процесс
зарядки и разрядки конденсатора.
11. ЕМКОСТНОЕ СОПРОТИВЛЕНИЕ В ЦЕПИ ПЕРЕМЕННОГО ТОКА
i,u
i
u
t
0
Uc
Ic
12. ИНДУКТИВНОЕ СОПРОТИВЛЕНИЕ В ЦЕПИ ПЕРЕМЕННОГО ТОКА
Индуктивное сопротивление- величина,характеризующее сопротивление, оказываемое
переменному току индуктивностью цепи
13. ИНДУКТИВНОЕ СОПРОТИВЛЕНИЕ В ЦЕПИ ПЕРЕМЕННОГО ТОКА
14. ИНДУКТИВНОЕ СОПРОТИВЛЕНИЕ В ЦЕПИ ПЕРЕМЕННОГО ТОКА
Рассмотрим цепь, состоящую из одной лишь катушки индуктивности ,присоединённой к синусоидальной ЭДС. Второе правило Кирхгофа для
такой цепи
Интегрируя, получаем:
Величина
называется индуктивным сопротивлением.
Можно сделать следующие три вывода:
1) ток через индуктивность совершает гармонические колебания и отстаёт
от напряжения по фазе на
;
2) максимальная сила тока
;
3) связь амплитуд силы тока и напряжения на индуктивности формально
совпадает с законом Ома для участка цепи в случае постоянных токов.
15. ИНДУКТИВНОЕ СОПРОТИВЛЕНИЕ В ЦЕПИ ПЕРЕМЕННОГО ТОКА
i,u
i
u
t
U
0
16. ИНДУКТИВНОЕ СОПРОТИВЛЕНИЕ В ЦЕПИ ПЕРЕМЕННОГО ТОКА
17. Сравнить накал лампочек, подключённых к синусоидальному и постоянному напряжениям. Накал лампочек для рисунка (а) одинаков.
Одинаковый накал лампочек на рис (а)означает, что напряжения источника
постоянного тока равно эффективному
напряжению источника переменного тока
Если в обе цепи включить конденсатор
достаточно большой ёмкости (б), то лампочка в
цепи источника переменного тока будет попрежнему гореть ярко, поскольку ёмкостное
сопротивление переменному току обратно
пропорционально ёмкости и, следовательно,
будет мало. В цепи постоянного тока накал
отсутствует, поскольку между обкладками
конденсатора диэлектрик, и цепь разомкнута.
анализируя формулу
.
Постоянный ток означает, что циклическая частота
,
и, значит,
.
Если в обе цепи включить катушку достаточно большой индуктивности, то ток в цепи источника
переменного тока будет мал из-за большого индуктивного сопротивления, лампочка погаснет, а в цепи
источника постоянного тока лампочка по-прежнему будет гореть ярко, поскольку индуктивное
сопротивление постоянному току равно нулю. Действительно, в случае постоянного тока
,и
индуктивное сопротивление
.
18. Метод векторных диаграмм
1) Векторнаправлен вдоль оси 0x
так как напряжение на активном
сопротивлении колеблется в одной фазе
с током.
U 0 U 0 R U 0 L U 0C
2) напряжение на индуктивности
опережает ток по фазе на
, вектор
повёрнут относительно оси 0x на угол
против часовой стрелки, т.е. направлен
вдоль положительного направления оси
0y.
3) напряжение на ёмкости отстаёт от
тока по фазе на
, вектор
повёрнут относительно оси 0x на угол
по часовой стрелке, т.е. направлен
вдоль отрицательного направления
оси 0y.
Сначала удобно сложить противоположно направленные вектора
и
сумма равна вектору, направленному вдоль оси 0y и по величине равному
. Их
,
где реактивное сопротивление цепи. Далее по теореме Пифагора
находим величину результирующего вектора
Величина
называется полным
сопротивлением цепи.
20. закон Ома для переменного тока
21. Пример Рассчитать допустимую амплитуду напряжения генератора в электрической цепи на рис, если пробой конденсатора наступает
при напряжении U=500 В.Параметры схемы: C=10 мкФ, L= 1Гн, R=3 Ом, частота
генератора 50 Гц.
22. Cдвиг фаз между током в цепи и суммарным напряжением на концах цепи
• Сдвиг фаз равен углумежду векторами
и . Из
прямоугольного
треугольника
1
L
I0 X X
C
tg
I0R R
R
8 Сопротивление в цепи переменного тока
Сопротивление в цепи переменного тока. ЗАКОН ОМА
ДЛЯ ЦЕПЕЙ ПЕРЕМЕННОГО ТОКА
Сопротивления, возникающие в цепи при прохождении по ней переменного тока, имеют несколько иной характер, чем при постоянном токе.
При прохождении переменного тока по проводнику, вокруг него появляется переменный магнитный поток, который индуктирует в проводнике э. д. с. самоиндукции (см. § 10). Э. д. с. самоиндукции действует против э. д. с. сети и оказывает как бы дополнительное сопротивление прохождению электрического тока. Та часть напряжения сети, которая идет на преодоление (уравновешивание) э. д. с. самоиндукции EL, называется индуктивным падением напряжения.
Большой индуктивностью обладают катушки, обмотки генераторов и другие проводники, создающие большие магнитные потоки при прохождении переменного тока.
Закон Ома для цепи переменного тока, имеющей индуктивность, будет иметь следующее математическое выражение:
I= EL/ XL= UL/ XL,
где UL— напряжение цепи, обладающей индуктивностью;
XL— индуктивное сопротивление цепи, или реактивное сопротивление индуктивности, измеряемое в Омах.
«8 Методы обработки экспериментальных данных» — тут тоже много полезного для Вас.
Для цепи переменного тока, содержащей емкость, закон Ома будет выражаться формулой
I = UC/ XC
где U с — напряжение цепи, обладающей емкостью; UC также называется емкостным падением напряжения;
Хс — емкостное сопротивление, или реактивное сопротивление емкости.
Емкостью называется свойство проводников накапливать и удерживать электрический заряд. Емкость проводников обозначается буквой С. Единицей измерения емкости принята Фарада, обозначаемая буквами Ф или F- мкФ и μF —миллионная часть Фарады.
Индуктивное сопротивление XLувеличивается с увеличением частоты переменного тока; емкостное сопротивление Хс с увеличением частоты тока уменьшается.
Сопротивление переменному току – обзор
Сопротивление переменному току
Сопротивление жилы, оболочки или брони переменному току можно рассчитать из сопротивления постоянному току по следующей формуле:
(3.104a)R(ac)=R(dc)[ 1+y(kS+kP)]Ом/км
, где y = 1 для одножильных, двухжильных и трехжильных кабелей, но y = 1,5 для трубчатых кабелей. k S и k P – скин-факторы и коэффициенты эффекта близости соответственно. Также
(3.104b)R(dc)=1000ρA[1+α20×(T-20)]Ом/км
ρ – удельное сопротивление проводника, Ом·м, А – номинальное сечение проводника, м 2 , Тл — температура проводника в °C, а α 20 в °C −1 — температурный коэффициент постоянной массы при 20°C. Таблица 3.1 иллюстрирует типичные значения для α 20 и удельного сопротивления при 20°C.
Таблица 3.1. Типичные значения α 20 и удельных сопротивлений проводника при 20 ° C