Типы подключения ТЭНов типа ЗВЕЗДА или ТРЕУГОЛЬНИК для трехфазной сети: схемы и примеры :: информационная статья компании Полимернагрев
Трубчатые электронагреватели являются самым популярным типом нагревательных элементов как в промышленности, так и в бытовых приборах. Каждый электрический ТЭН, даже если он рассчитан на 220В, может подключаться как к однофазной, так и к трехфазной сети. Давайте подробно рассмотрим, какие типы подключения к трехфазной сети для нагревателей существуют и какие требования к характеристикам ТЭНов предъявляются для них.
Для подключения электронагревательных элементов к 3-фазной сети применяются такие виды схем:
Если мы имеем не специальные нагреватели, типа блок ТЭНов или сухие керамические ТЭНы, а обычные трубчатые ТЭНы, то для получения равномерной нагрузки необходимо иметь на каждой фазе трехкратное количество электронагревателей. То есть минимальное количество нагревателей будет равно 3. При этом в технических параметрах ТЭНов напряжение питания может быть как 380, так и 200 Вольт.
Для электронагревательных ТЭНов с параметрами напряжения электропитания 220 В нужно использовать тип подключения к 3-фазной сети типа ЗВЕЗДА. А для тех, которые производятся с характеристикой напряжения равной 380 Вольт, возможно применять обе схемы подключения: и вариант ЗВЕЗДА и вариант ТРЕУГОЛЬНИК.
Вариант подключения к трехфазной сети питания типа ЗВЕЗДА
Тип ЗВЕЗДА применяется в сухих ТЭНах от компании Полимернагрев в варианте подключения № 3 с четырьмя болтами в качестве типа токовывода. Также тип подключения «звезда» может применяться при подключении блок ТЭНов ТЭНБ. В данных случаях подключение нагревательных спиралей производится по следующей электрической схеме:
Давайте теперь рассмотрим, как можно подключить нагреватели по данной схеме, если у нас имеются в наличии не специальные, а стандартные электрические воздушные или водяные металлические ТЭНы.
К питающему напряжению должен подключаться только один вывод от каждого ТЭНа. Именно поэтому для подключения к трехфазной сети у нас должно быть кратное трем количество электронагревателей. Остальные же контактные выводы, которые не подключены к напряжению, должны быть соединены в одну так называемую нулевую точку. Таким образом, мы получаем трехпроводную соединенную нагрузку.
Давайте подробно рассмотрим схему трехпроводного соединения на 380 В для включения 3-х водяных ТЭНов. На первом рисунке вы можете рассмотреть описанную выше схему включения ТЭНов, а на втором к схеме добавляется специальное устройство для подачи напряжения на ТЭНы с защитными переключателями. Как четко видно на схеме, каждый второй токовывод нагревателя подается на фазы А, В и С, а остальные же соединяются вместе.
Подключая ТЭНы таким образом мы получаем значение напряжения электропитания на каждом электротэне между подключением к сети и нейтральной точкой равное 220 В.
В приведенной схеме можно увидеть, что выводы нагревателей справа подсоединены к фазам А, В, С. Выводы, которые находятся слева — соединяются в общей нейтральной точке. Рабочее напряжение между выводами справа и нейтральной точкой равно 220 Вольт.
Также есть вариант подключения к трехфазной сети ЗВЕЗДА, который использует четырехпроводную схему. При таком способе применяют трехфазное питание с напряжением 230В, а нулевую точку подают на нейтраль источника электропитания.
Тут так же, как и в предыдущем случае, одни выводы соединяются в нулевую точку, а другие подводятся к трехфазной сети. Если соединение с нулевой точкой передавать на нулевую шину источника электропитания, мы получим на каждом нагревателе между питанием и нулем напряжение в 220-230В.
Когда возникает необходимость в полном отключении питания на нагреватели, нужно применять выключатели типа 3+n или же 3р+n, способные функционировать в автоматическом режиме. Автоматы данного типа могут использоваться для полного перевода всех силовых электроконтактов на полностью автоматический рабочий режим.
Давайте рассмотрим, как же на практике следует применять тип подключения ЗВЕЗДА, на примере монтажа ТЭНов в электрокотле.
Подключение нагревателей по схеме ЗВЕЗДА для электрокотла
В электрических нагревательных котлах ТЭНы могут подключаться различными способами, но для демонстранции схемы подключения по типу ЗВЕЗДА опишем вариант установки сухих ТЭНов к 3-фазной сети питания с напряжением 220В.
Высокая мощность водяных сухих ТЭНов накладывает определенные требования к качеству соединений. Надежность соединений должна быть обеспечена высоким качеством термостойких проводов и строгим соответствием всех действий описанной в инструкции схеме.
Первое, что нужно сделать, это при подключении фазных поводов произвести накрутку гайки M4. Далее вам необходимо наложить шайбу и установить кольцевой наконечник провода питания. Следующим шагом будет наложение еще одной такой же шайбы, поверх которой помещается еще одна специальная пружинная шайба гровер. И это все нужно надежно зафиксировать гайкой M4.
Провода, которые выводятся на нейтральную фазу, крепятся при помощи болта типа M8. Провод нейтрали нужно поместить в перемычку, которая находится между контактами отверстий ТЭНа.
Обязательно заземлите корпус нагревательного элемента и проводов питания после того, как подключите все провода на питающие и нулевые контакты ТЭНа. В большинстве случаев в стандартных электрокотлах болт заземления располагается с левой стороны около блока с ТЭНами. К нему мы и должны присоединить провод для заземления.
После подключения проводов следует провести заземление корпуса нагревателя и проводов подключения ТЭНа. Обычно у котлов для заземления с левой стороны у блока электронагревателей находится болт, к которому и следует подключать проводник заземления.
Вы можете использовать для заземления как отдельный провод уравнения потенциалов, так и провод с клеммника заземления блока управления.
Наглядно все вышеописанное вы можете посмотреть на рисунке ниже в виде схемы и фото подключения ТЭНа.
Если вы сделали все в четком соответствии инструкции, подключение блок Тэна электрокотла можно считать завершенным. Останется лишь вернуть защитный кожух на блок нагрева.
В электрических котлах управление нагревом осуществляется на основе данных от термодатчиков. Терморегулирующие устройства находятся на основной панели управления котла. На терморегулятор будут подаваться данные о температуре ТЭНа и температуре теплоносителя. На основе этих показаний и установленных на терморегуляторе настройках автоматикой принимается решение о подаче или отключении питания нагревательных элементов. Пока температура будет меньше установленной, будет подаваться питание, и Тэны будут производить нагрев, а при достижении или превышении порогового значения питание будет отключено и ТЭН прекратит нагреваться. При остывании до нижнего порога ТЭН опять включится.
Терморегулятор позволяет человеку всего один раз установить температуру (верхний и нижний порог) и потом работа электрокотла будет осуществляться в автоматическом режиме, а температура будет поддерживаться на нужном уровне.
Есть вариант использования терморегуляторов с несколькими типами термодатчиков, которые будут не только контролировать нагревание самого ТЭНа, но и температуру воздуха в помещении. Для этого термодатчик нужно установить на расстоянии от котла и теплоносителя.
Вариант подключения к трехфазной сети питания типа ТРЕУГОЛЬНИК
Рассмотрим на схеме второй вариант подключения нагревательных элементов к трехфазной сети под названием ТРЕУГОЛЬНИК.
При данном варианте нагреватели соединяются между собой последовательно. У нас в итоге должно сформироваться три плеча для фазы А, В и С. Для примера:-
Для А фазы – соединяем первый вывод ТЭНа №1 и первый вывод ТЭНа №2
-
Для В фазы – соединяем второй вывод ТЭНа №2 и второй вывод ТЭНа №3
-
Для С фазы – соединяем второй вывод ТЭНа №1 и первый вывод ТЭНа №3
Теперь, когда мы познакомились с двумя типами подключения ТЭНов, можно рассмотреть зависимость мощности и температуры нагревателей от типа схемы подключения.
Зависимость температуры и мощности нагрева от варианта схемы подключения
Мощность нагревателя – это очень важный параметр, на который многие покупатели ориентируются при покупке ТЭНа. По сути же мощность ТЭНа зависит только от показателя сопротивления греющей спирали. Конечно же, если не использовать трансформаторы и питание от определенной сети будет постоянным. Данное свойство зависимости можно легко вычислить, воспользовавшись простой формулой из школьного курса физики:
Мощность (P) = Напряжение (U) * Сила тока (I)
В данном случае за величину напряжения берем разницу потенциалов между выводами электрического ТЭНа, а силу тока нужно измерять ту, которая будет протекать по греющей спирали.
Силу тока можно вычислить по формуле I=U/R, где R – электрическое сопротивление нагревательной спирали. Теперь подставим данное значение в формулу мощности, и получится, что мощность ТЭНа зависит только от напряжения и сопротивления.
Таким образом, делаем вывод, что при постоянном напряжении сети питания мощность электронагревателя будет меняться только при изменении сопротивления.
Значение сопротивления резистивного элемента в основной массе нагревателей имеет прямую зависимость от значения выделения температуры. Но в нагревателях с нихромовой или фехралевой спиралью, к примеру, в пределах сотни-другой градусов сопротивление практически не изменяется.
В ситуации с высокотемпературными нагревателями из карбида кремния или дисилицид молибдена картина будет совсем другой. В выскотемпературных нагревателях с увеличением температуры сопротивление падает очень значительно в пределах от 5 до 0,5 Ом, что делает их очень выгодными с точки зрения потребления электроэнергии в печах.
Но из-за данного качества высокотемпературных КЭНов их нельзя подключать напрямую даже к сети питания 220В, не говоря уже о 380В. Технически можно произвести подключение к 220в КЭНы, если соединить их последовательным образом. Однако при данном способе будет невозможно контролировать мощность и температурную выработку нагревателей в печи. Для подключения высокотмепературных нагревателей неметаллического типа следует использовать специальные регулируемые трансформаторы или же стандартные статистические ЭМ устройства.
В компании Полимернагрев вы можете купить электронагреватели, которые производятся специально с учетом подключения к трехфазной сети питания. Это сухие керамические ТЭНы, блок Тэны для воды и трехстержневые КЭНы. Тип подключения данных нагревателей зависит от показателя напряжения по схеме звезды или треугольника.
При подключении электрических Тэнов в соответствии со схемой ТРЕУГОЛЬНИК соединяются три нагревательных спирали, у которых равные значения сопротивления и на питание будет подано 380В. Подключение ТЭНов ЗВЕЗДА подразумевает наличие нулевого вывода, а на каждый элемент нагрева будет подаваться 220В. Нулевой провод позволяет подключать потребители с разным значением сопротивления.
Если у вас остались вопросы по типам подключения нагревателей к трехфазной сети, вы можете обратиться к нашим специалистам по телефону в Москве или задайте свой вопрос в форме ниже, мы постараемся подробно ответить вам в самые кратчайшие сроки.
Схема подключения электродвигателя звезда треугольник
Схема подключения электродвигателя звезда треугольник
Произошёл тут такой случай. Принёс человек в ремонт новый двигатель, который проработал у него 10 секунд и задымил. Двигатель он подключил треугольником в обычную трехфазную сеть, а на шильдике двигателя есть схема, на которой написано: треугольник – 230 В. звезда – 400 В. В общем, подключил он неправильно, потому двигатель и сгорел.
Для тех, кто не понимает, почему нельзя делать так, как сделал сделал тот товарищ, спаливший двигатель, предназначена эта статья.
Вот всем известные схемы подключения треугольником (D) и звездой (Y):
Совершенно неважно как вы подключаете двигатель: звездой или треугольником. Важно только то, какое напряжение вы подаёте на обмотки двигателя. Будет ли это напряжение получаться как межфазное (треугольник) или как фазное (между фазой и нулевой точкой – звезда) – двигателю это совершенно неважно.
Если у вас есть двигатель с номинальным напряжением обмотки 220 В и есть две разные трёхфазные сети, у одной из которых линейное напряжение 380 В (220 В на фазу), а у другой – 220 В (127 В на фазу), то к первой вы можете подключать двигатель звездой, а ко второй – треугольником, разницы для двигателя не будет никакой, отличаться будут лишь токи, протекающие в проводниках на линии, ведущей к двигателю.
Линейное напряжение трёхфазной сети – это межфазное напряжение, именно оно обозначается на шильдиках двигателей. Фазное напряжение (между фазой и нейтралью) на шильдиках не обозначается.
Условно говоря, вы можете считать, что на шильдике обозначено фазное напряжение, но только в том случае, если собираетесь подключать двигатель только к одной фазе через конденсатор.
Для сетей переменного тока 50 Гц линейное напряжение выше фазного в квадратный корень из трёх раз (т.е. примерно в 1.73 раза, т.е. 220 х 1.73 = 380).
Для такого двигателя на шильдике будет написано: D/Y 220V / 380V, 4.9А / 2.8А. Соответственно, в этих двух случаях отличаются только токи в проводниках, ведущих к двигателю (именно они указаны на шильдике, в то время как ток на обмотке будет одинаковый, что видно на рисунке сверху). Следовательно, для России (линейное напряжение 400 В) для такого двигателя надо использовать схему подключения звезда.
Номинальное напряжение обмотки большинства двигателей при частоте тока 50 Гц обычно составляет либо 127 В , либо 230 В, либо 400 В, либо 690 В. Ну, или как было раньше: 220, 380, 660 В соответственно.
Теперь логичный вопрос:
если двигателю нет разницы по какой схеме он будет подключен, а важно лишь напряжение на обмотках, то зачем вообще делать двигатели с разным номинальным напряжением на этих самых обмотках?Двигатели малой мощности
D 230V / Y 400VДля того, чтобы двигатель можно было так подключить в однофазную сеть, его номинальное напряжение каждой обмотки должно быть равно фазному напряжению сети. Это значит, что если двигатель планируется использовать в России или Европе, то номинальное напряжение обмотки должно быть равно 230 В. В таком случае этот двигатель можно будет использовать как в трёхфазной сети с линейным напряжением 400 В (подключение звезда), так и в однофазной сети 230 В (подключение треугольником через конденсатор). Это те самые двигатели, где на шильдике написано напряжение D 220V / Y 380V.
Соответственно, если нужно такой двигатель использовать в стране с более низким линейным напряжением, например, в США (где линейной напряжение 240 В, а фазное – 120 В при частоте тока 60 Гц), то по-нормальному подключить такой двигатель в их однофазную сеть через конденсатор не получится. Однако, по крайней мере, можно использовать 3-фазное подключение треугольником. Для такого подключения потребуется немного более высокое напряжение, чем 230 В (из-за частоты тока 60 Гц), но у них там как раз 240 В, что как раз подходит.
D 115V / Y 230VОдновременно с этим, маломощные двигатели, предназначенные для стран, где стандартное напряжение ниже, чем у нас, будут подключаться как D 127V / Y 220V. Однако, двигатели с такой надписью на шильдике вы вряд ли найдёте, потому что 127 В, 50 Гц – это очень малораспространённое напряжение в мире (см. тут). Поэтому, скорее всего, вам встретится двигатель с шильдиком, где будет указано напряжение D 115V / Y 208-230V.
Насчет заморочки с 208 вольтами можно почитать в этой статье.
Подключить такой двигатель к стандартной российской трёхфазной сети (все три фазы) можно только через преобразователь частоты переменного тока, поскольку на них есть возможность переключения линейного напряжения на выходе: 230 / 400 В.
В однофазную сеть можно подключить звездой через конденсатор. Тогда напряжение, подаваемое на каждое обмотку, будет составлять половину фазного напряжения сети (230 В / 2 = 115 В). Выглядит это вот так:
Двигатели мощности более 5 кВт
D 400V / Y 690VДля двигателей мощнее 5 кВт обычно не предусматривают возможность подключения в однофазную сеть, т.е. номинальное напряжение обмоток делают такое, которое соответствует линейному напряжению. Т.е. штатной схемой подключения таких двигателей в трёхфазную сеть является треугольник. В России и Европе это двигатели с номинальным напряжением обмоток 400В, т.е. где на шильдике написано D 400V / Y 690V.
Для определённых задач, где на валу двигателя находится свободная нагрузка (системы вентиляции, осевые насосы), ну, и вообще те задачи, где возможно регулирование скорости вращения вала только лишь напряжением (трансформатором), часто используют схему подключения “звезда” при старте с последующим переключением на “треугольник”. Т.е. при старте на обмотку подаётся заниженное напряжение 230В вместо номинальных 400В, а затем происходит переключение на штатный режим (т.е. на треугольник). Из-за свободной нагрузки на валу момент вращения при старте на низком напряжении также будет ниже, т.е. пусковой ток будет не столь высок, как при старте на номинальном напряжении. Поэтому такой пуск двигателя называют “щадящим”.
Следует помнить, что для нагрузок, требующих большого момента при запуске, подобный режим приведет напротив, к возрастанию тока в обмотках и последующим неприятным событиям.
Кроме того, надо иметь ввиду, что подключение двигателей даже со свободной нагрузкой на валу звездой для “щадящего старта” вовсе не означает, что если по такой схеме постоянно эксплуатировать двигатель (не переходя на треугольник), то такой режим станет “щадящим” для него. Низкий момент при старте ещё не означает, что заниженное напряжение годится для его нормальной работы, поскольку сам двигатель (со своими номинальными характеристиками) обычно как раз и подбирается под конкретную нагрузку. Поэтому постоянная эксплуатация двигателей на напряжении ниже номинального иногда приводит к их выходу из строя. Чтобы не было неприятностей двигатель всегда надо эксплуатировать на номинальном напряжении, а если требуется снизить обороты вращения вала, то тогда нужно использовать редукторы или преобразователи частоты переменного тока, а не пытаться решить вопрос самым дешёвым способом. К слову сказать, частотник тоже меняет не только частоту тока, но и напряжение, однако, он это делает с умом.
D 220V / Y 440VДвигатели мощностью выше 5 кВт, изготовленные в США, будут иметь номинальное напряжение обмотки 220 В, т.е. на шильдике будет написано D 220V / Y 440V (для 60 Гц). Подключать такие двигатели к российской трёхфазной сети 400 В следует звездой, а к российской однофазной сети через конденсатор – треугольником. Касательно величин напряжения, есть двигатели, где более подробно расписано подключение для сетей 50 Гц и 60 Гц, например вот так:
Чем отличаются соединения звездой и треугольником
Питание асинхронного электродвигателя происходит от трехфазной сети с переменным напряжением. Такой двигатель, при простой схеме подключения, оснащен тремя обмотками, расположенными на статоре. Каждая обмотка имеет сдвиг друг относительно друга на угол 120 градусов. Сдвиг на такой угол предназначен для создания вращения магнитного поля.
Концы фазных обмоток электродвигателя выведены на специальную «колодку». Выполнено это с целью удобства соединения. В электротехнике используют основных 2 метода подключения асинхронных электродвигателей: методом соединения “треугольника” и метод “звезды”. При соединении концов применяют специально предназначенные для этого перемычки.
Различия между «звездой» и «треугольником»
Исходя из теории и практических знаний основ электротехники, способ подключения «звезда», позволяет электродвигателю работать плавнее и мягче. Но при этом данный способ не позволяет выйти двигателю на всю мощность, представленную в технических характеристиках.
Соединив фазные обмотки по схеме «треугольник», двигатель способен быстро выйти на максимальную рабочую мощность. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта. Но у такой схемы соединения есть свой недостаток: большие пусковые токи. Для уменьшения значения токов применяют пусковой реостат, позволяя осуществить более плавный пуск двигателя.
Соединение «звездой» и его преимущества
Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.
При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.
Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.
Основные преимущества применения схемы «звезда»:
- Устойчивый и длительный режим безостановочной работы двигателя;
- Повышенная надежность и долговечность, за счет снижения мощности оборудования;
- Максимальная плавность пуска электрического привода;
- Возможность воздействия кратковременной перегрузки;
- В процессе эксплуатации корпус оборудования не перегревается.
Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов.
Подключение трехфазного двигателя к однофазной сети по схеме звезда
Соединение «треугольником» и его преимущества
Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В. И дальше по аналогии – конец одной обмотки с началом другой. В итоге конец обмотки фазы С замыкает электрическую цепь, создавая неразрывный контур. Данную схему можно назвать было кругом, если бы не структура монтирования. Форму треугольника предает эргономичное размещение соединения обмоток.
При соединении «треугольником» на каждой из обмоток, присутствует линейное напряжение равное 220В или 380В.
Основные преимущества применения схемы «треугольник»:
- Увеличение до максимального значения мощности электрооборудования;
- Использование пускового реостата;
- Повышенный вращающийся момент;
- Большие тяговые усилия.
Недостатки:
- Повышенный ток пуска;
- При длительной работе двигатель сильно греется.
Метод соединения обмоток двигателя «треугольником» широко используется при работе с мощными механизмами и наличия высоких пусковых нагрузок. Большой вращающий момент создается за счет увеличения показателей ЭДС самоиндукции, вызванных протекающими большими токами.
Подключение трехфазного двигателя к однофазной сети по схеме треугольник
Тип соединения «звезда-треугольник»
В сложных механизмах, зачастую используется комбинированная схема «звезда-треугольник». При таком переключении резко вырастает мощность, и если двигатель по техническим характеристикам не предназначен для работы по методу «треугольника», то он перегреется и сгорит.
В этом случае напряжение на соединении каждой обмотки будет в 1,73 раза меньше, следовательно, будет меньше и протекающий в этот период ток. Дальше происходит увеличение частоты и продолжение снижения показания тока. Тогда применяя релейно-контактную схему, произойдет переключение со «звезды» на «треугольник».
В итоге, используя данную комбинацию, получим максимальную надежность и эффективную продуктивность используемого электрического оборудования, не боясь вывести ее из строя.
Переключение «звезда-треугольник» допустимо для электродвигателей с облегченным режимом пуска. Этот метод неприменим, если необходимо понизить ток пуска и одновременно не снижать большой пусковой момент. В этом случае применяют двигатель с фазным ротором с пусковым реостатом.
Основные преимущества комбинации:
- Увеличение срока службы. Плавный пуск позволяет избежать неравномерности нагрузки на механическую часть установки;
- Возможность создания двух уровней мощности.
Звезда или треугольник. Оптимальное подключение асинхронного электродвигателя
Двигатели асинхронного типа имеют целый набор безусловных достоинств. Среди плюсов асинхронных двигателей в первую очередь хочется назвать высокую производительность и надежность их эксплуатации, совсем небольшую стоимость и неприхотливость ремонта и обслуживания двигателя, а также способность переносить достаточно высокие перегрузки механического типа. Все эти достоинства, которыми обладают асинхронные двигатели, обусловлена тем, что данный тип двигателей имеет очень простую конструкцию. Но, не смотря на большое число достоинств, асинхронным двигателям присущи и их определенные отрицательные моменты.
В практической работе принято использовать два основных способа подключения трёхфазных электродвигателей к электросети. Эти способы подключения носят названия: “подключение методом звезды” и “подключение методом треугольника”.
Когда выполняется соединение трёхфазного электродвигателя по типу подключения “звезда”, тогда соединение концов обмоток статора электродвигателя происходит в одной точке. При этом трехфазное напряжение подают на начала обмоток. Ниже, на рисунке 1, наглядно проиллюстрирована схема подключения асинхронного двигателя “звездой”.
Когда выполняется соединение трёхфазного электродвигателя по типу подключения “треугольник”, тогда обмотки статора электродвигателя присоединяются последовательно друг за другом. При этом начало последующей обмотки соединяется с концом предыдущей обмотки и так далее. Ниже, на рисунке 2, наглядно проиллюстрирована схема подключения асинхронного двигателя “треугольником”.
Если не вдаваться в теоретические и технические основы электротехники, то можно принять на веру тот факт, что работа тех электродвигателей, у которых обмотки подключены по схеме “звезда”, является более мягкой и плавной, чем у электродвигателей, обмотки которых соединены по схеме “треугольник”. Но тут же стоит обратить внимание на ту особенность, что электродвигатели, обмотки которых подключены по схеме “звезда”, не способны развить полную мощность, заявленную в паспортных характеристиках. В том случае, если соединение обмоток выполнено по схеме “треугольник”, то электродвигатель работает на максимальную мощность, которая заявлена в техническом паспорте, но при этом имеют место быть очень высокие значения пусковых токов. Если произвести сравнение по мощности, то электродвигатели, чьи обмотки будут соединены по схеме “треугольник”, способны выдавать мощность в полтора раза выше, чем те электродвигатели, обмотки которых подключены по схеме “звезда”.
Основываясь на всем вышеописанном, для того, чтобы снизить токи при запуске, целесообразно применять подключение обмоток по комбинированной схеме “треугольник-звезда”. Особенно такой тип подключения актуален для электродвигателей, обладающих большей мощностью. Таким образом, в связи с соединением по схеме “треугольник- звезда” изначально запуск выполняется по схеме «звезда», а после того, как электродвигатель «набрал обороты», выполняется переключение в автоматическом режиме по схеме «треугольник».
Схема управления электродвигателем представлена на рисунке 3.
Рис. 3 Схема управления
Еще один вариант схемы управления электродвигателем заключается в следующем (рис. 4).
Рис. 4 Схема управления двигателем
На контакт NC (нормально закрытый) реле времени K1, а также на контакт NC реле K2, в цепи катушки пускателя КЗ, подаётся напряжение питания.
После того, как произойдет включение пускателя КЗ, нормально закрытыми контактами КЗ расцепляются цепи катушки пускателя K2 (запрет случайного включения). Контакт КЗ в цепи питания катушки пускателя K1 замыкается.
Когда запускается магнитный пускатель K1, в цепи питания его катушки замыкаются контакты K1. Реле времени включается в то же самое время, контакт этого реле K1 в цепи катушки пускателя КЗ размыкается. А в цепи катушки пускателя K2 – замыкается.
При отключении обмотки пускателя КЗ, замкнётся контакт КЗ в цепи катушки пускателя K2. После того, как пускатель K2 включится, он размыкает своими контактами K2 цепь питания катушки пускателя КЗ.
Трёхфазное напряжение питания подаётся на начало каждой из обмоток W1, U1 и V1 с помощью силовых контактов пускателя K1. Когда срабатывает магнитный пускатель КЗ, тогда при помощи его контактов КЗ выполняется замыкание, посредством которого между собой соединяются концы каждой из обмоток электродвигателя W2, V2 и U2. Таким образом, выполняется подключение обмоток электродвигателя по схеме соединения “звезда”.
Реле времени, объединенное с магнитным пускателем K1, сработает спустя определенное время,. При этом происходит отключение магнитного пускателя КЗ и одновременное включение магнитного пускателя K2. Таким образом силовые контакты пускателя K2 замкнутся и напряжение питания будет подано на концы каждой из обмоток U2, W2 и V2 электродвигателя. Иными словами, электродвигатель включается по схеме подключения “треугольник”.
Для того, чтобы электродвигатель запустить по схеме соединения “треугольник-звезда”, различные изготовители производят специальные пусковые реле. Данные реле могут носить разнообразные названия, например, реле “старт-дельта” или “пусковое реле времени”, а также и некоторые другие. Но назначение всех этих реле заключается в одном и том же.
Типовая схема, выполненная с реле времени, предназначенном для запуска, то есть реле “треугольник-звезда”, для осуществления управления запуска трехфазного электродвигателя асинхронного типа представлена на рисунке 5.
Рис.5 Типовая схема с пусковым реле времени (реле “звезда/треугольник”) для управления запуском трехфазного асинхронного двигателя.
Итак, подытожим все вышеописанное. Для того, чтобы понизить пусковые токи осуществлять запуск электродвигателя требуется в определенной последовательности, а именно:
- сперва электродвигатель запускают на пониженных оборотах соединённым по схеме “звезда”;
- затем электродвигатель соединяют по схеме “треугольник”.
Первоначальный запуск по схеме “треугольник” создаст максимальный момент, а последующее соединение по схеме “звезда” (для которой в 2 раза меньше пусковой момент) с продолжением работы в номинальном режиме, когда двигатель «набрал обороты», произойдёт переключение на схему соединения “треугольник” в автоматическом режиме. Но не стоит забывать о том, какая нагрузка создается перед запуском на валу, так как вращающий момент при соединении по схеме “звезда” ослаблен. По этой причине маловероятно, что данный метод запуска будет приемлем для электродвигателей с высокой нагрузкой, так как они в таком случае могут потерять свою работоспособность.
{SOURCE}
Содержание:
Конструкция трехфазного электродвигателя представляет собой электрическую машину, для нормальной работы которой необходимы трехфазные сети переменного тока. Основными частями такого устройства являются статор и ротор. Статор оборудован тремя обмотками, сдвинутыми между собой на 120 градусов. Когда в обмотках появляется трехфазное напряжение, на их полюсах происходит образование ных потоков. За счет этих потоков, ротор двигателя начинает вращаться. В промышленном производстве и в быту практикуется широкое применение трехфазных асинхронных двигателей. Они могут быть односкоростными, когда производится соединение звездой и треугольником обмоток электродвигателя или многоскоростными, с возможностью переключения с одной схемы на другую. Соединение обмоток звездой и треугольникомУ всех трехфазных электродвигателей обмотки соединяются по схеме звезды или треугольника. При подключении обмоток по схема звезда, их концы соединяются в одной точке в нулевом узле. Поэтому, получается еще один дополнительный нулевой вывод. Другие концы обмоток соединяются с фазами сети 380 В. Соединение треугольником заключается в последовательном соединении обмоток. Конец первой обмотки соединяется с начальным концом второй обмотки и так далее. В конечном итоге, конец третьей обмотки, соединится с началом первой обмотки. Подача трехфазного напряжения осуществляется в каждый узел соединения. Подключение по схеме треугольник отличается отсутствием нулевого провода. Совет Оба вида соединений получили примерно одинаковое распространение и не имеют между собой значительных отличительных особенностей. Существует и комбинированное подключение, когда используются оба варианта. Такой способ применяется достаточно часто, его целью является плавный запуск электродвигателя, которого не всегда можно добиться при обычных подключениях. В момент непосредственного пуска, обмотки находятся в положении звезда. Далее, используется реле, которое обеспечивает переключение в положение треугольника. За счет этого происходит уменьшение пускового тока. Комбинированная схема, чаще всего, применяется во время пуска электродвигателей, обладающих большой мощностью. Для таких двигателей требуется и значительно больший пусковой ток, превышающий номинальное значение примерно в семь раз. https://www.youtube.com/watch?v=PjZextDphQU Электродвигатели могут подключаться и другими способами, когда применяется двойная или тройная звезда. Такие подключения используются для двигателей с двумя и более регулируемыми скоростями. Запуск трехфазного электродвигателя с переключением со звезды на треугольникДанный способ применяется для того, чтобы снизить пусковой ток, который может примерно в 5-7 раз превышать номинальный ток электродвигателя. Агрегаты со слишком большой мощностью имеют такой пусковой ток, при котором легко перегорают предохранители, отключаются автоматы и, целом, значительно понижается напряжение. При таком уменьшении напряжения снижается накаливание ламп, происходит снижение вращающего момента других электродвигателей, самопроизвольно отключаются ные пускатели и контакторы. Поэтому, применяются разные способы, с целью уменьшения пускового тока.
Наибольшее распространение получило переключение обмотки из звезды в положение треугольника. В положении звезды напряжение становится в 1,73 раза меньше, чем номинальное, поэтому и ток будет меньше, чем при полном напряжении. Во время пуска частота вращения электродвигателя увеличивается, происходит снижение тока и обмотки переключаются в положение треугольника. Такое переключение допускается в электродвигателях, имеющих облегченный режим пуска, так как происходит снижение пускового момента, примерно в два раза. Данным способом переключаются те двигатели, которые конструктивно могут соединяться в треугольник. У них должны быть обмотки, способные работать при линейном напряжении сети. Когда нужно переключаться с треугольника в звездуКогда необходимо выполнить соединение звездой и треугольником обмоток электродвигателя, следует помнить о возможности переключения с одного вида на другой. Основным вариантом является схема переключения звезда треугольник. Однако, при необходимости, возможен и обратный вариант. Всем известно, что у электродвигателей, загруженных не полностью, происходит снижение коэффициента мощности. Поэтому, такие двигатели желательно заменять устройствами с меньшей мощностью. Однако, при невозможности замены и большом запасе мощности, производится переключение треугольник-звезда. Ток в цепи статора не должен превышать номинала, иначе произойдет перегрев электродвигателя. |
Загрузка…
Существует два основных способа подключения трёхфазных электродвигателей: подключение звезда и подключение треугольник. При соединении трёхфазного электродвигателя звездой концы его статорных обмоток сводятся вместе, соединяясь в одной точке, а на начала обмоток подаётся питание (рис 1). При соединении трёхфазного электродвигателя треугольником обмотки статора соединяются последовательно – конец одной обмотки соединён с началом следующей (рис 2). Клеммные колодки электродвигателей и схемы соединения обмоток: Не вдаваясь в подробности теоретических основ электротехники можно сказать, что электродвигатели с обмотками, соединёнными звездой работают намного мягче, чем с соединением обмоток в треугольник, однако при соединении обмоток звездой двигатель не способен развить полную мощность. При соединении обмоток треугольником двигатель работает на полную паспортную мощность (примерно в 1,5 раз больше, чем при соединении звездой), но имеет очень большие значения пусковых токов. Поэтому целесообразно (особенно для электродвигателей большой мощности) подключение по схеме звезда – треугольник; запуск осуществляется по схеме звезда, после чего (когда электродвигатель «набрал обороты»), происходит автоматическое переключение на схему треугольник. Схема управления: Подключение оперативного напряжения через контакт NC (нормально закрытый) реле времени К1 и контакт NC К2, в цепи катушки пускателя К3. Включение пускателя К3, размыкает контакт К3 в цепи катушки пускателя К2 (блокировка случайного включения) и замыкает контакт К3, в цепи катушки магнитного пускателя К1 – он совмещен с контактами реле времени. При включении пускателя К1 замыкается контакт К1 в цепи катушки магнитного пускателя К1 и одновременно включается реле времени, размыкается контакт реле времени К1 в цепи катушки пускателя К3, замыкает контакт реле времени К1 в цепи катушки пускателя К2. Отключение пускателя К3, замыкается контакт К3 в цепи катушки магнитного пускателя К2. Включение пускателя К2, размыкает контакт К2 в цепи катушки пускателя К3. Важно На начала обмоток U1, V1 и W1 через силовые контакты магнитного пускателя К1 подаётся рабочее напряжение. Срабатывание магнитного пускателя К3 его силовые контакты К3, таким образом, соединяя концы обмоток U2, V2 и W2 – обмотки двигателя соединены звездой. Далее срабатывает реле времени, совмещённое с пускателем К1, отключая пускатель К3 и одновременно включая К2 – замыкаются силовые контакты К2 и подаётся напряжение на концы обмоток электродвигателя U2, V2 и W2. Теперь электродвигатель включен по схеме треугольник. |
Соединение звездой и треугольником обмоток электродвигателя
Конструкция трехфазного электродвигателя представляет собой электрическую машину, для нормальной работы которой необходимы трехфазные сети переменного тока. Основными частями такого устройства являются статор и ротор. Статор оборудован тремя обмотками, сдвинутыми между собой на 120 градусов. Когда в обмотках появляется трехфазное напряжение, на их полюсах происходит образование магнитных потоков. За счет этих потоков, ротор двигателя начинает вращаться.
Соединение обмоток звездой и треугольником
В промышленном производстве и в быту практикуется широкое применение трехфазных асинхронных двигателей. Они могут быть односкоростными, когда производится соединение звездой и треугольником обмоток электродвигателя или многоскоростными, с возможностью переключения с одной схемы на другую.
У всех трехфазных электродвигателей обмотки соединяются по схеме звезды или треугольника.
При подключении обмоток по схема звезда, их концы соединяются в одной точке в нулевом узле. Поэтому, получается еще один дополнительный нулевой вывод. Другие концы обмоток соединяются с фазами сети 380 В.
Соединение треугольником заключается в последовательном соединении обмоток. Конец первой обмотки соединяется с начальным концом второй обмотки и так далее. В конечном итоге, конец третьей обмотки, соединится с началом первой обмотки. Подача трехфазного напряжения осуществляется в каждый узел соединения. Подключение по схеме треугольник отличается отсутствием нулевого провода.
Оба вида соединений получили примерно одинаковое распространение и не имеют между собой значительных отличительных особенностей.
Существует и комбинированное подключение, когда используются оба варианта. Такой способ применяется достаточно часто, его целью является плавный запуск электродвигателя, которого не всегда можно добиться при обычных подключениях. В момент непосредственного пуска, обмотки находятся в положении звезда. Далее, используется реле, которое обеспечивает переключение в положение треугольника. За счет этого происходит уменьшение пускового тока. Комбинированная схема, чаще всего, применяется во время пуска электродвигателей, обладающих большой мощностью. Для таких двигателей требуется и значительно больший пусковой ток, превышающий номинальное значение примерно в семь раз.
Электродвигатели могут подключаться и другими способами, когда применяется двойная или тройная звезда. Такие подключения используются для двигателей с двумя и более регулируемыми скоростями.
Запуск трехфазного электродвигателя с переключением со звезды на треугольник
Данный способ применяется для того, чтобы снизить пусковой ток, который может примерно в 5-7 раз превышать номинальный ток электродвигателя. Агрегаты со слишком большой мощностью имеют такой пусковой ток, при котором легко перегорают предохранители, отключаются автоматы и, целом, значительно понижается напряжение. При таком уменьшении напряжения снижается накаливание ламп, происходит снижение вращающего момента других электродвигателей, самопроизвольно отключаются магнитные пускатели и контакторы. Поэтому, применяются разные способы, с целью уменьшения пускового тока.
Общим для всех способов является необходимость снижения напряжения в обмотках статора на время непосредственного пуска. Чтобы уменьшить пусковой ток, цепь статора на время пуска может дополняться дросселем, реостатом или автоматическим трансформатором.
Наибольшее распространение получило переключение обмотки из звезды в положение треугольника. В положении звезды напряжение становится в 1,73 раза меньше, чем номинальное, поэтому и ток будет меньше, чем при полном напряжении. Во время пуска частота вращения электродвигателя увеличивается, происходит снижение тока и обмотки переключаются в положение треугольника.
Такое переключение допускается в электродвигателях, имеющих облегченный режим пуска, так как происходит снижение пускового момента, примерно в два раза. Данным способом переключаются те двигатели, которые конструктивно могут соединяться в треугольник. У них должны быть обмотки, способные работать при линейном напряжении сети.
Когда нужно переключаться с треугольника в звезду
Когда необходимо выполнить соединение звездой и треугольником обмоток электродвигателя, следует помнить о возможности переключения с одного вида на другой. Основным вариантом является схема переключения звезда треугольник. Однако, при необходимости, возможен и обратный вариант.
Всем известно, что у электродвигателей, загруженных не полностью, происходит снижение коэффициента мощности. Поэтому, такие двигатели желательно заменять устройствами с меньшей мощностью. Однако, при невозможности замены и большом запасе мощности, производится переключение треугольник-звезда. Ток в цепи статора не должен превышать номинала, иначе произойдет перегрев электродвигателя.
виды подключения, особенности и отличия
Асинхронные электрические двигатели в настоящее время используются очень активно. У них есть определенные преимущества, благодаря которым они и стали так популярны. Для подключения к электрической сети мощных двигателей используются схемы «звезда», «треугольник». Электродвигатели, работающие на таких схемах, обладают своими достоинствами и недостатками. Сами же они отличаются надежностью в эксплуатации, возможностью получить большой крутящий момент, а также высоким показателем производительности.
Подключение двигателя
Как показывает практика, существует две оптимальных схемы — «звезда», «треугольник». Электродвигатели подключаются по одной из них. Возможно также преобразование «звезды» в «треугольник», к примеру.
Среди достоинств асинхронных двигателей выделяются следующие:
- возможность переключения обмоток во время работы;
- восстановление обмотки электрического двигателя;
- невысокая стоимость прибора по отношению к другим;
- наличие высокой стойкости к механическим повреждениям.
Основная особенность, характеризующая все асинхронные электрические двигатели, — это простота конструкции. Однако при всех своих преимуществах, есть и некоторые недостатки, возникающие во время работы:
- Отсутствует возможность контролировать частоту вращения ротора, не теряя при этом мощности.
- При увеличении нагрузки уменьшается крутящий момент.
- Высокие показатели пусковых токов.
Описание подключений
Схемы «звезда» и «треугольник» для электродвигателя имеют определенные различия в подключении. «Звезда» означает, что концы статорной обмотки оборудования собираются в одной точке. При этом напряжение сети в 380 В будет подаваться на начало каждой из обмоток. Обычно на всех схемах подключения такой способ обозначается как Y.
В случае использования схемы подключения «треугольник» статорные обмотки электродвигателя соединяются последовательно. То есть, конец первой обмотки соединяется с началом второй, она, в свою очередь, — с третьей. Последняя будет замыкать цепь, соединяясь с началом первой.
Отличия схем подключения
Схемы «звезда» и «треугольник» у электродвигателя — это единственные способы их подключения. Они отличаются между собой, обеспечивая разные режимы работы. Так, к примеру, подключение при помощи схемы Y обеспечивает более мягкую работу, если сравнивать с двигателями, соединенными в «треугольник». Данная разница играет ключевую роль при выборе мощности электрического устройства.
Более мощные двигатели эксплуатируются только на «треугольнике». Схема подключения электродвигателя «звезда-треугольник» отлично подходит для тех случаев, когда необходимо обеспечить плавный пуск. А в нужный момент переключиться между обмотками для получения максимальной мощности.
Здесь важно добавить: подключение Y гарантирует мягкую работу, но при этом двигатель не сможет набрать свою паспортную мощность.
С другой стороны, схема соединения электродвигателя «треугольник-звезда-звезда» обеспечит большую мощность, но вместе с этим значительно возрастет и значение пускового тока для оборудования.
Именно разница в мощности между подключением Y и треугольником является основным показателем. Электродвигатель со схемой звезды будет обладать мощностью примерно в 1,5 раза ниже, чем через треугольник, однако такое подключение поможет снизить значение пускового тока. Все соединения, которые имеют в своем составе два способа подключения, являются комбинированными. Обычно они применяются лишь в тех случаях, когда необходимо запустить в работу электрический двигатель с большой паспортной мощностью.
Схема пуска «звезда-треугольник» для электродвигателя отличается еще одним преимуществом. Включение осуществляется по схеме Y, что снижает значение пускового тока. Когда во время работы устройство набирает достаточные обороты, происходит переход на схему треугольника для достижения максимальной мощности.
Комбинированные подключения
Схема переключения «звезда-треугольник» электродвигателя достаточно часто применяется в случаях, когда нужно запустить двигатель с минимальным пусковым током. Но при этом всю работу осуществлять нужно на соединении «треугольник». Для создания такого переключения используются специальные контакторы на три фазы. Для обеспечения автоматического переключения между схемами необходимо выполнить два условия. Во-первых, обеспечить блокировку контактов от одновременного включения. Во-вторых, все работы обязательно должны выполняться с задержкой по времени.
Второй пункт необходим, чтобы со 100% вероятностью произошло полное отключение «звезды» перед включением «треугольника». Если этого не сделать, то во время переключения между фазами будет происходить короткое замыкание. Для выполнения нужных условий используется реле времени с задержкой от 50 до 100 миллисекунд.
Осуществление задержки времени
При использовании комбинированного метода подключения «звезда-треугольник» наличие реле времени для задержки переключения необходимо. Специалисты чаще всего выбирают один из трех способов:
- Первый вариант осуществляется при помощи нормально-разомкнутого контакта реле времени. В таком случае РВ будет отключать схему подключения треугольником во время пуска, а за переключение будет отвечать токовое реле РТ.
- Второй вариант предполагает применение современного реле времени с задержкой переключения от 6 до 10 секунд.
- Третий способ — это управление контакторами электродвигателя автоматическими приборами или вручную.
Рассмотрение способа переключения
Использование классического варианта с применением реле времени для комбинированных схем «звезда-треугольник» ранее считалось наиболее оптимальным. У него имелся лишь один недостаток, который иногда становился достаточно существенным, — габариты самого РВ. Такие типы приспособления гарантировали задержку времени переключения при помощи намагничивания сердечника. Однако на обратный процесс требовалось время.
В настоящее время такие РВ и прочие приборы были вытеснены современными приборами — частотными преобразователями. Переключение схемы электродвигателя со схемой «звезда-треугольник» при помощи ПЧ обладает большими преимуществами. Сюда относят более стабильную работу, низкие пусковые токи.
Это оборудование имеет встроенный микропроцессор, отвечающий за изменение частоты. Если рассматривать суть ПЧ для электродвигателя, то его принцип работы следующий: преобразователь вырабатывает нужную частоту переменного тока. На сегодняшний день в промышленности используются специальные или универсальные модели ПЧ для подключения асинхронных двигателей.
Специальные модели разрабатываются и используются лишь с определенными типами двигателей. Универсальные могут применяться в комплекте с любыми устройствами.
Недостатки схемы
Несмотря на то что классическая схема подключения проста и надежна, она имеет свои определенные недостатки.
Во-первых, очень важно точно определить нагрузку на вал электродвигателя. В противном случае он будет слишком долго набирать обороты, что, в свою очередь, исключит возможность быстрого переключения на схему треугольника при помощи токового реле. В этом режиме нежелательно долго эксплуатировать электрическое устройство.
Во-вторых, при такой схеме подключения возможен перегрев обмоток, из-за чего специалисты рекомендуют установить в схему дополнительное тепловое реле.
В-третьих, при использовании современных временных реле необходимо точно соблюдать паспортную нагрузку на вал электрического двигателя.
Заключение
При использовании подключения схемы «звезда-треугольник» очень важно правильно рассчитать нагрузку на вал электродвигателя. Еще один неприятный факт кроется в том, что в момент переключения с Y на треугольник, когда двигатель еще не набрал нужных оборотов, происходит самоиндукция. В этот момент в сети появляется повышенное напряжение. Это грозит выходом из строя других приборов и устройств, подключенных к этой же сети.
Взаимосвязь между методом соединения треугольником и звездой и сравнение их преимуществ и недостатков. – joymost.com
Один и тот же трехфазный двигатель можно подключить по схеме треугольника, что соответствует низкому напряжению, или по схеме звезды, что соответствует высокому напряжению; высокое напряжение в 3 раза превышает корень низкого напряжения.
Например, если двигатель 380 В с треугольным соединением подключен по схеме «звезда», соответствующее напряжение составит 660 В.
Конкретный способ подключения должен соответствовать напряжению источника питания.
После тщательного наблюдения мы также можем обнаружить, что большинство двигателей малого размера соединены звездой, а двигатели большого размера имеют треугольную форму; мы также можем обнаружить, что все металлургические двигатели крана используют метод соединения звездой.
Некоторые люди могут спросить, помимо требований к напряжению питания, для самого двигателя, в чем разница между двумя соединениями?
В принципе, внутри двигателя со звездообразным соединением нет циркулирующего тока, что теоретически лучше, чем треугольное соединение.
Поскольку трехфазная обмотка не может быть полностью сбалансирована, всегда существует небольшая разница в трехфазном напряжении, которая создает циркуляцию внутри треугольника, что приводит к нагреву двигателя и снижению КПД.
Существуют также исторические причины для выполнения треугольных соединений, то есть так называемый пуск звезда-треугольник, пуск звезда-треугольник может эффективно снизить пусковой ток, но также уменьшить пусковой крутящий момент, поэтому его можно использовать только при свете — состояние запуска под нагрузкой или без нагрузки.
Анализ преимуществ и недостатков соединения треугольником и соединением звездой:
Мы видим, что двигатель вентиляторного насоса может быть запущен звездой-треугольником, но на кране, безусловно, нет пуска звезды-треугольника, и в большинстве подъемников используется обмотка. последовательное сопротивление ротора для запуска. Есть причина, почему это так хлопотно.
Конечно, запуск преобразования частоты в текущих условиях полностью решил эту проблему.
В треугольном соединении используются три провода под напряжением, а напряжение, подаваемое на фазную обмотку, является линейным напряжением (полностью называемым напряжением на клеммах линии или напряжением между внешними фидерами).При соединении звездой используются три провода под напряжением и нулевой провод, а на фазную обмотку подается одна треть знака корня линейного напряжения.
Они сильно различаются по использованию, в основном в зависимости от нагрузки и источника питания.
1. Разница между силовой стороной
Будь то трехпроводная или четырехпроводная система (исключая заземляющий провод), электрический угол между трехфазными напряжениями составляет 120 градусов по фазе в идеальных условиях.
Предполагается, что 3N-я гармоника и 3N*120=360N генерируются в фазных обмотках терминала нагрузки соответственно из-за периодических помех, указывая на то, что фаза трехфазной 3-й гармоники точно такая же. Если амплитуда тоже одинаковая, то 3N-я гармоника трех групп линейных напряжений будет полностью смещена, то есть в межфазном напряжении нет целых кратных 3 гармоник.
При треугольном соединении ток 3N-й гармоники в той же фазе замыкается накоротко в треугольнике и бесконечно циркулирует в треугольнике, образуя циркуляцию.
Таким образом, в случае гармоник соединение треугольником или звездой может быть выбрано в зависимости от наличия 3N гармоник в напряжении или токе.
2. Из сравнительного анализа ситуации с нагрузкой
Фактически три провода абстрагируются от четырех проводов. Когда в N линиях вообще нет тока, три провода равны четырем проводам.
Поскольку наша нагрузка или источник питания в основном полностью сбалансированы по трем фазам, в случае игнорирования тока утечки заземляющего провода средняя линия не имеет тока, поэтому трехполюсная нагрузка может быть преобразована в треугольную цепь звездой. -преобразование треугольника.то есть треугольное соединение.
Если нагрузка несимметрична или напряжение несбалансировано, фактически существует разность потенциалов между средней точкой нагрузки и средней точкой источника питания, и напряжение нагрузки будет колебаться.
Если средняя точка источника питания заземлена, нагрузка в это время должна быть изолирована. Если он не будет тщательно заземлен, защита от утечки будет немедленно пропущена в легких случаях, а оборудование будет сожжено в серьезных случаях.
Таким образом, если эти две точки «замкнуты накоротко», то есть часть тока генерируется на проводе, и неравный потенциал вынужден притягиваться к электрической точке, так что землю можно заземлены, нет опасности утечки, и проще сделать электромагнитную совместимость. Этот «короткий путь» является средней линией, то есть звездным соединением.
Трансформация звезда-треугольник (tähti-kolmiomuunnos) — wikipe.wiki
Преобразование звезда-треугольник — это преобразование, используемое в электротехнике для трехфазных соединений, которое позволяет легко преобразовать соединение резисторов в звезду в соединение треугольником.Название преобразования «звезда-треугольник» происходит от способа соединения питаемых частей трехфазных устройств, таких как двигатели короткого замыкания, по отношению к фазам (см. рисунок ниже). При соединении в звезду каждая фаза трехфазного тока (L1, L2, L3), (R, S, T) объединяется в середине звезды. к точке звезды, через которую ток каждой фазы проходит от одной ступени к другой, или, альтернативно, к нейтральному проводнику (N), соединенному с точкой звезды с помощью соединений, показанных на рисунках.На рисунке однофазное соединение звездой, в котором фаза (L) подключена к точке U1, вторая фаза соответствует нулевому проводу цепи, а третья фаза заменена конденсатором между нулем и точкой V1. Напряжение, необходимое для третьей фазы, получается фазовым сдвигом конденсатора. Прямоугольник справа также является схемой клеммной коробки двигателя с коротким замыканием. Три клеммы вверху предназначены для фаз рабочего напряжения, а клеммы внизу — это клеммы, подключенные к другому концу обмотки статора.На той схеме концы всех обмоток соединены, т.е. двигатель соединен в звезду. При соединении треугольником каждая фаза трехфазного тока подключается к следующей фазе, и нейтральный проводник не используется. На рисунке однофазное соединение треугольником, в котором фаза (L) подключена к точке U1, вторая фаза соответствует нулевому проводу цепи, а третья фаза заменена конденсатором между нулем и точкой V1, который заменяет одну фазу кабеля с фазовым сдвигом N.Если необходимо изменить направление вращения, N подключается к V1. Из схемы соединительной коробки видно, что полюса обмотки статора соединены непосредственно с фазами, т.е. в треугольник, в отличие от соединения звездой. Преобразование звезда-треугольник обычно используется для пуска двигателей средней мощности (2-20 кВт) с коротким замыканием. Для двигателей с коротким замыканием требуется большой ток для запуска, а их пусковой момент низкий, из-за высокого потребления тока предохранители легко перегорают, но двигатель можно облегчить с помощью переключателя звезда-треугольник.На соседнем рисунке показано поперечное сечение простого трехфазного двигателя с коротким замыканием. Легкий цилиндр в виде клетки в середине представляет собой ротор, вокруг которого видны три отдельные статорные или стоячие обмотки. Пуск двигателя осуществляется соединением звездой, т. е. подключением всех трех фаз к обмоткам статора, по одной фазе к каждой обмотке, а провода с других концов обмоток соединяются звездой. Это создает звездную связь. Это видно из приведенной выше в статье принципиальной схемы, где I1, I2 и I3 обозначают обмотки статора и N звездных точек или нейтральных проводников.При пуске двигателя по схеме звезда сопротивление одной фазы выше, а требуемый ток ниже. Таким образом, механическое и магнитное сопротивление двигателя создает меньшую нагрузку на электрическую сеть, и когда двигатель достигает своей полной скорости, переключатель переключает двигатель на работу по треугольнику, запуская двигатель при более низком токе, но сохраняя его полную мощность. скорость и выход на полную мощность. Когда двигатель соединен треугольником, одна фаза проводится к каждому из трех статоров, но проводник с другого конца каждой катушки подключается не к точке звезды, а к следующей фазе, перед следующей обмоткой статора. .Это видно из принципиальной схемы в статье выше, где I1, I2 и I3 обозначают обмотки статора. Треугольное соединениеТекущий расчет соединения звездой и треугольником трехфазного двигателя мощностью 90 кВт
Площадь поперечного сечения главной линии является нашим ключевым фактором. Давайте посмотрим на ток соединения звездой и соединением треугольником. Как показано на следующем рисунке, левая фигура представляет собой треугольное соединение, а правая фигура — Y-образное соединение.
Тема трехфазного двигателя мощностью 90 кВт, поэтому при нормальной работе это треугольное соединение. По формуле мощности двигателя вычисляем: 1. Метод треугольного соединения
Величина линейного тока (три провода под напряжением, ток каждого провода под напряжением):
При треугольном соединении фазное напряжение = линейное напряжение = 380 В, линейный ток = √ трехфазный ток. Следовательно, фазный ток (ток через каждую фазную катушку) равен
Полное сопротивление каждой фазной катушки:
2.Звездное соединение
При соединении звездой линейное напряжение = √ трехфазное напряжение = 380 В. Итак, фазное напряжение равно
При соединении звездой линейный ток = фазному току, поэтому фазный ток (ток через каждую фазную катушку) равен
В соответствии с приведенным выше расчетом линейный ток при соединении по схеме «звезда» составляет около ⅓ фазного тока, что оказывает очевидное влияние на снижение тока.
Расчет тока каждого провода
Для облегчения понимания я перерисовал принципиальную схему и пронумеровал кабели.
Согласно предыдущему расчету,
1. Для треугольного соединения:
Ток проводов 1, 2 и 3 равен линейному току = 170А; Ток проводов 4, 5, 6, 7, 8, 9, 10, 11 и 12 равен фазному току = 98а; Ток проводов 13, 14, 15 и 16 равен 0А.
2. Соединение звездой:
Ток проводов 1-6 и 11-16 равен линейному току = 57А; Ток проводов 7, 8 и 9 равен 0А.
Поскольку провода необходимо рассчитывать по максимальному току, ток проводов 1, 2 и 3 рассчитывается как 170А, ток проводов 4, 5, 6, 7, 8, 9, 10, 11 и 12 рассчитывается как 98а, а ток проводов 13, 14, 15 и 16 рассчитан как 57А.
просмотров сообщений:
32
Разница между треугольником и звездой (с таблицей) – Спросите любую разницу
Термины «треугольник» и «звезда» можно найти в области распределения электроэнергии, и, в частности, эти термины относятся к трехфазной системе. Треугольник и звезда — это разные типы конфигураций, присутствующих в трехфазной системе.
Треугольник и звезда
Основное различие между соединением треугольником и звездой заключается в том, что первое представляет собой систему, состоящую из четырех проводов, три из которых соединены треугольником, и не имеет нейтрального провода.При этом последний соединяется звездой с нейтральным кабелем.
В системе соединения треугольником всего четыре провода. Он имеет три фазы, соединенные в виде треугольника. Нулевого кабеля нет, но есть один заземляющий провод. Здесь фазное напряжение равно линейному напряжению.
Система соединения звездой имеет в общей сложности пять проводов, из которых три провода под напряжением подключены к нейтральному проводу. В системе «звезда» используется соединение «звезда». Здесь фазное напряжение эквивалентно линейному напряжению, деленному на корень из 3.