Устройство ламп накаливания: устройство, преимущества, недостатки, принцип работы

Содержание

Лампы. Какие выбрать? Устройство и принцип работы ламп.

Работа любого осветительного прибора невозможна без источника света. Приобретая светильник, важно знать, какие лампы к нему подойдут. Лампы бывают разной формы, разной мощности, разным цоколем и т.д. Разберемся подробно в классификации ламп.

По принципу работы лампы делятся на:

  • Лампы накаливания, в т.ч. галогенные
  • Газоразрядные
  • Светодиодные

Лампа накаливания

Самая распространенная лампа. Состоит из цоколя и стеклянной колбы, в которой отсутствует воздух, либо колба наполнена газом. Внутри лампы находится вольфрамовая нить накала, она очень сильно нагревается при прохождении через нее электрического тока и излучает свет.

Достоинства лампы накаливания:
  • Низкая стоимость
  • Мгновенно запускается
  • Не содержит паров ртути
  • Работает при любой температуре окружающего воздуха
  • Излучает естественный свет
  • Совместима с диммерами (устройствами для плавного регулирования яркости лампы)
Недостатки ламп накаливания:
  • Очень низкий КПД. 95% потребляемой электроэнергии идет на нагрев
  • Недолговечность. Срок службы составляет 1000 часов
  • Теряется яркость в процессе эксплуатации. Это связано с испарением вольфрама и оседанием его на внутренней стороне колбы лампы, вследствие чего лампочка мутнеет

Галогенная лампа

Это разновидность лампы накаливания с аналогичным принципом работы. Разница лишь в том, что колба таких ламп изготавливается очень малого размера и содержит внутри себя пары брома или йода. В лампе накаливания, как было описано выше, происходит испарение вольфрама и осаждение его на колбе с внутренней стороны. Пары брома или йода не дают осаживаться испарившемуся вольфраму на стеклянную колбу, и как бы «возвращают» его обратно на нить накала. Небольшой размер колбы объясняется тем, что процесс, описанный выше, может происходить только в колбе небольшого объема с очень близко расположенной нитью накала. В связи с тем, что вольфрамовая нить расположена очень близко к колбе, возникает очень сильный нагрев лампы, который достигает 500°C. Поэтому важно, чтобы на лампе при установке не оставалось жирных следов от пальцев. Дело в том, что в месте загрязнения лампы происходит большой местный нагрев, возникают микротрещины на стекле и лампа выходит из строя раньше заявленного срока. Устанавливать галогенные лампы можно только в специальных перчатках, либо через кусок ткани.

Достоинства галогенных ламп:
  • Те же, что и у ламп накаливания
  • Увеличенный срок службы, который составляет 4000 часов
  • Яркость практически не теряется в процессе эксплуатации
  • Светоотдача выше, чем у ламп накаливания
Недостатки галогенных ламп:
  • Очень сильный нагрев
  • Чувствительны к перепадам напряжения, сокращается срок службы

Люминесцентные лампы.

На смену лампам накаливания пришли люминесцентные лампы, или как многие их называют «энергосберегающие». Такие лампы способны выдать тот же световой поток, что и лампа накаливания, потребляя в 5 раз меньше электроэнергии. Например, люминесцентная лампа мощностью 15 Вт будет аналогична 75 Ваттной лампе накаливания. Люминесцентная лампа состоит из цоколя и колбы. Колба выполнена из стекла и наполнена инертным газом с добавлением паров ртути. Внутренняя поверхность колбы покрыта люминофором. В результате работы лампы возникает ультрафиолетовое излучение. Люминофор преобразует это излучение в видимый нам свет. В компактных люминесцентных лампах (КЛЛ) с цоколем E27 и E14 имеется встроенная электронная пускорегулирующая аппаратура (ЭПРА), необходимая для запуска лампы. Без ЭПРА работа таких ламп невозможна, и если ЭПРА выходит из строя, то лампа, что называется «перегорает». Поэтому люминесцентные лампы прослужат дольше всего, если будут непрерывно находиться во включенном состоянии, нежели постоянно включаться/выключаться. Существуют люминесцентные лампы и с внешним ЭПРА, они используются, например, в светильниках типа «Армстронг». В случае выхода из строя ЭПРА, он подлежит замене.

Достоинства люминесцентных ламп:
  • Высокий КПД, в 5 раз выше, чем у ламп накаливания.
  • Меньший нагрев колбы, по сравнению с лампами накаливания
  • Срок службы 6000 часов, что в 6 раз больше, чем у ламп накаливания
Недостатки люминесцентных ламп:
  • Зажигаются не мгновенно
  • Не совместимы с диммерами
  • Содержат опасные пары ртути и должны специальным образом утилизироваться
  • При низких температурах возможны проблемы с запуском таких ламп
  • Самопроизвольное мерцание выключенной лампы. Происходит, как правило, если присутствует выключатель со световой индикацией. Объясняется тем, что лампа имеет значительную электрическую ёмкость, и даже при небольшой утечке тока эта емкость заряжается. В дальнейшем происходит разряд на электроды лампы, происходит кратковременная вспышка. Чем больше утечка тока, тем чаще будут наблюдаться вспышки света. Такое явление негативно сказывается на сроке службы лампы, а также может очень сильно раздражать, например, ночью.

Светодиодные лампы.

Это еще одна разновидность энергосберегающих ламп.Источником света в таких лампах являются светодиоды, которые помещены в колбу. В корпусе лампы размещается электронный драйвер, который является преобразователем питания.

В процессе работы светодиод вырабатывает тепло, и если он не будет охлаждаться, либо охлаждаться не достаточно, то через некоторое время выйдет из строя или существенно снизится яркость. Чтобы охладить плату со светодиодами на лампах предусмотрены радиаторы. Наиболее эффективным является алюминиевый радиатор, который может быть с ребрами, а может быть и гладким. Гладкий радиатор применяется в недорогих и маломощных лампах. Керамические радиаторы также используются для охлаждения светодиодов и являются весьма эффективными. Встречается также радиатор из алюминия, покрытого пластиком. Пластиковые радиаторы являются самыми неэффективными и, как правило, не вырабатывают свой ресурс.

Выбирая светодиодную лампу не гонитесь за дешевизной. Обратите внимание на радиатор. Отдайте предпочтение лампам с алюминиевым или керамическим радиатором, либо алюминий + пластик. Возьмите лампу в руку. Качественная лампа с алюминиевым радиатором будет заметно тяжелее пластиковой.

Достоинства светодиодных ламп
  • Низкое энергопотребление. Потребляют в 10 раз меньше электроэнергии, чем лампы накаливания и в 5 раз меньше, чем люминесцентные
  • Долгий срок службы. От 25000 часов и более
  • Самая низкая температура корпуса, по сравнению с лампами накаливания и люминесцентными лампами
  • Не требуют специальной утилизации, так как не содержат паров ртути
Недостатки светодиодных ламп:
  • Стоимость качественных светодиодных ламп выше, чем у ламп накаливания и люминесцентных. В дальнейшем затраты на приобретение таких ламп с лихвой компенсируются экономией электроэнергии
  • Деградация светодиодов при недостаточном охлаждении

Классификация ламп по форме:
  • Грушевидные. Лампы общего назначения. Используются в качестве источника света в люстрах, закрытых светильниках и т.д.
  • Шарообразные. Лампы общего назначения. Используются в качестве источника света в люстрах, закрытых светильниках и т.д.
  • Свеча. Используется в люстрах и светильниках, где плафон отсутствует, а также в узких плафонах.
  • Свеча на ветру. Декоративная лампа. Используется в люстрах и светильниках, где плафон отсутствует.
  • Рефлекторного типа. Используется в точечных светильниках. Дает направленный свет.
  • Капсульного типа. Галогенные и светодиодные лампы с цоколем G9 и G4
  • Спираль. Компактные люминесцентные лампы общего назначения
  • Таблетка. Используется в точечных светильниках.

Все виды форм лампочек на рисунке ниже.

Виды цоколей ламп.

Самые распространенные виды цоколей – это резьбовые и штырьковые.

Резьбовой цоколь маркируется буквой E и двумя цифрами, обозначающими диаметр цоколя в миллиметрах. Это самый распространенный тип цоколя, используется в большинстве осветительных приборов. С резьбовым цоколем выпускаются все виды ламп. Основные виды резьбовых цоколей:

  • E27. Диаметр резьбовой части 27 мм.
  • E14 (миньон). Диаметр резьбовой части 14 мм.
  • E40. Диаметр резьбовой части 40 мм.

Штырьковые цоколи.

Цоколь лампы соединяется с патроном при помощи штырьков. Маркировка начинается с буквы G с одной и более цифрами. Цифры обозначают расстояние между штырьками. После буквы G в маркировке могут присутствовать буквы U X Y Z, которые определяют модификацию конструкции. Например, лампы G5.3 и GX5.3 не взаимозаменяемы. Типы штырьковых цоколей в таблице ниже.

Тип

Расстояние междуконтактами, мм

G4 GU4 GY4

4

G5

5

G5.3 GU5.3 GX5.3

5.3

GY6.35

6.35

G9

9

GZ10

10

G13

13

G53 GU53 GX53

53


  • G4. Используется в галогенных и светодиодных миниатюрных лампах напряжением 12В, 24В, 220В
  • G9. Используется в галогенных и светодиодных миниатюрных лампах напряжением 12В, 24В, 220В
  • G5. Используется в трубчатых лампах
  • GU5.3. Софитная лампа, используется в точечных светильниках
  • GU10. На концах штырьков имеются утолщения для фиксации лампы в патроне путем поворачивания

разновидности + маркировка и правила выбора

Несмотря на целый перечень недостатков, выявленных при сравнении с другими источниками искусственного света, лампы накаливания остаются востребованными и в бытовой сфере, и в промышленных отраслях.

Дешевые и простые в использовании приборы не хотят сдавать свои позиции, хотя на рынке появилось огромное количество более экономичных и «долгоиграющих» заменителей – например, ламп на светодиодах.

В чем же основной секрет их успеха и почему они все еще популярны? Эти вопросы рассмотрим в нашей статье, обратившись к техническим характеристикам обычных лампочек, их основным видам. Также рассмотрим преимущества и недостатки и приведем рекомендации по выбору традиционной лампочки.

Содержание статьи:

Устройство лампы с нитью накала

Еще до недавнего времени лампы накаливания (ЛН) использовались повсеместно и сейчас их все еще покупают — они могут работать как «во всю силу», ярко освещая помещение, так и снижать яркость с помощью . Из-за распространенности традиционных лампочек среди населения с их конструкционными особенностями знакомы многие.

Причем часто приходилось «знакомиться» по причине выхода источника света из строя: перегорала вольфрамовая нить, лопалось стекло или колба вылетала из цоколя.

Некоторые производители использовали более надежные и проверенные материалы и относились к выпуску лампочек накаливания настолько ответственно, что их продукция работает уже на протяжении нескольких десятилетий. Но это скорее исключение, чем правило – сегодня никаких гарантий на продолжительный срок эксплуатации не дается.

Схематическое изображение лампы с указанием основных деталей. Конструкция источника искусственного освещения с момента изобретения почти не изменилась, совершенствовались только материалы и состав газа, наполняющего колбу

Главный действующий элемент – так называемое тело накала, закрепленное на держателях и присоединенное к электродам. В момент подключения электроэнергии через него проходит напряжение, вызывающее одновременно нагрев и свечение. Чтобы излучение стало видимым, температура нагрева должна достигнуть 570 °С.

Наиболее устойчивым к высокой температуре металлом признан вольфрам. Он начинает плавиться при нагреве до 3422 °С. Чтобы максимально увеличить площадь излучения, но сократить объем тела накала внутри стеклянной колбы, его скручивают в спираль.

Привычный комфортный свет желтого оттенка, который создает уют в доме и по визуальной оценке является «теплым», возникает при нагреве нити до 2830-2850 °С

Для защиты вольфрама от процесса окисления, характерного для металлов, из колбы откачивают воздух и заменяют его вакуумом или газом (криптоном, аргоном и пр.). Технология наполнения вакуумом устарела, для бытовых ламп чаще всего применяют смесь азота и аргона или криптон.

В результате тестирования была выявлена минимальная продолжительность горения лампы – 1 тысяча часов. Но, учитывая случайные причины, выводящие приборы из строя раньше времени, допускается, что нормативы распространяются лишь на 50% продукции из каждой партии. Время работы второй половины может быть больше или меньше – в зависимости от условий использования.

Виды и особенности применения ЛН

Качественные характеристики и маркировка вольфрамовых лампочек регламентирована ГОСТ Р 52712-2007. По типу наполнения колбы приборы ЛН делятся на вакуумные и газополные разновидности.

Первые служат меньше из-за неизбежного испарения вольфрамовой нити. Вдобавок вольфрамовые испарения оседают на стеклянной оболочке вакуумного источника, что ощутимо снижает прозрачность и способность стекла пропускать свет. Выпускают их с моноспиралью, в номенклатурном обозначении им присвоена литера В.

В газополных приборах минимизированы недостатки вакуумных лампочек. Газ сокращает процесс испарения и препятствует оседанию вольфрама на стенках колбы. Газополные моноспиральные виды обозначены буквой Г, а лампочки с дважды навитой спиралью, т.е. биспиральные, маркируются буквой Б. Если биспиральная разновидность имеет номенклатуру БК, значит, в ее наполнении был использован криптон.

В галогенных лампочках ГЛН к наполнителю стеклянной колбы добавляют бром или йод, благодаря которым испаряющиеся атомы вольфрама после испарения возвращаются снова на нить накала. Галогенки выпускают в двух форматах: в виде кварцевых трубок с длинной спиралью или в капсульном варианте с компактным рабочим элементом.

В государственных стандартах деление на группы происходит по сфере применения, однако затрагиваются и другие характеристики. Предположим, на одном уровне рассматриваются «ЛН электрические миниатюрные» (ЛН мн) и «ЛН инфракрасные зеркальные» (ЗК — приборы с концентрированным светораспределением, ЗД — со средним) – как видите, для обозначения категорий выбраны разные критерии.

Существуют группы, которые можно отнести к наиболее востребованным:

  • общего назначения;
  • для транспортных средств;
  • прожекторные;
  • миниатюрные и пр.

Рассмотрим сферы применения и особенности различных категорий, которые в некоторых случаях могут между собой пересекаться.

Галерея изображений

Фото из

Технические параметры приборов группы регламентируются ГОСТ 2239-79. Это самая большая категория, включающая устройства для бытового и промышленного использования, для внутреннего и уличного применения. Мощность – от 15Вт до 1000Вт. Бывают моноспиральные и биспиральные, вакуумные и газополные

Выпуск осветительных приборов ранее регулировался ГОСТ 1182-77. Мощность ламп ограничена, минимальный показатель – 15 Вт, максимальный – 60 Вт. По требованиям техники безопасности напряжение также ограничено и равняется 12 В в помещениях с особо опасными условиями, 36 В – в обычных помещениях

Категория включает в себя четыре подраздела, деление происходит по видам транспорта: судовые, автомобильные, самолетные, железнодорожные. Особенности каждого вида характеризуются механической прочностью, мощностью, напряжением в сети. Лампы-фары имеют особую конструкцию – вместо традиционного цоколя установлены контакты в виде винтов или ламелей

Особенностью источников света является расположение тала накала, позволяющее достигать максимальной яркости и определенной направленности. В эту группу входят прожекторы для киноаппаратуры, фонари для маяков и лампы для прожекторов общего применения. Часть ламп из категории входят в группу приборов для транспорта – например, прожекторы для ж/д составов

Большая группа приборов с ультратонкой вольфрамовой нитью, работающих под низким напряжением. Миниатюрные устройства востребованы в летательной технике, медицинском оборудовании, электронных изделиях. Часто применяются в качестве индикаторов. Штифтовые и резьбовые цоколи имеют нестандартные, маленькие габариты

Инфракрасные лампы с зеркальным напылением, сравнимые по сфере использования с фарами. Обладают увеличенным сроком службы – до 5 тыс. ч. Мощность – 40-1000Вт, напряжение – от 127 до 220 В. Колбы бывают прозрачными или красными, в зависимости от требуемого излучения. Различают два подвида ламп – концентрированного и широкого светораспределения

Галогенные лампы по всем параметрам превосходят обычные аналоги и насчитываю более 150 номенклатурных наименований. Служат примерно в 2 раза дольше обычных «лампочек Ильича», при одинаковых мощностях имеют большую светоотдачу и уменьшенные размеры. Применяются для использования на транспорте, в оборудовании и прожекторах, для общего освещения

В группу включены приборы, конструкции которых стандартизированы, но отличаются от традиционных исполнений. Это лампы для рудников, железнодорожных светофоров, телефонных коммутаторов. Один из подвидов – цилиндрические лампы, применяемые в различных сферах. Сюда же входят инфракрасные зеркальные приборы с алюминиевым отражателем и матовой наружной поверхностью

ЛОН – лампы общего назначения

Электролампы накаливания местного освещения

Лампы электрические для транспортных средств

Мощные лампы прожекторного типа

Сверхминиатюрные и миниатюрные источники искусственного света

Лампы-светильники направленного нагрева

Галогенки – усовершенствованные лампы накаливания

Категория ламп специального назначения

Описание  технических требований к каждой из перечисленных категорий можно найти в соответствующих разделах ГОСТ. Из-за особенностей конструкции и области применения маркировка устройств из различных групп отличается.

Лампу легче подобрать, если ориентироваться в условных обозначениях. Они отражают важные технические характеристики, возможную область использования, особенности конструкции и технологии изготовления.

Маркировка зарубежных производителей напоминает отечественную, но имеет свои особенности. Обычно она носится методом штамповки на цоколь и служит одним из способов отличия оригинального изделия от подделки

Вначале указаны буквы в количестве от 1 до 4, которые отражают характерные конструктивные особенности. Для более легкой расшифровки за основу взята первая буква основополагающего критерия, например, Г – газополная моноспиральная лампа, В – вакуумная моноспиральная, К – криптоновая и др.

Затем следует указание назначения:

  • Ж – железнодорожная;
  • А – автомобильная;
  • СМ – самолетная;
  • ПЖ – для прожекторов и др.

За буквам расположены цифры, обозначающие технические характеристики – напряжение (В) и мощность (ВТ). Маркировка ламп специального типа отличается: мощность не указана, зато можно определить ток, световой поток или силу света. Если в устройстве две спирали, то мощность для каждой из них указывается отдельно.

Последняя цифра может обозначать номер разработки, если конструкция модифицировалась.

Основные технические характеристики

Самым главным параметром источников света с телом накала является мощность, определяемая в ваттах. Назначение ламп разнообразное, поэтому диапазон велик – от 0,1 Вт индикаторных «светлячков» до 23 тыс. Вт прожекторов для маяков.

Компании General Electric и Osram выпускают мощные светильники для театральных и кинематографических постановок.

Прожекторные изделия отличаются не только значением мощности (до 24000Вт), но и световым потоком. Светодиодный прожектор способен выдать 400 000 люменов, тогда как специальная лампа накаливания – 800 000 люменов

В быту используют маломощные приборы, в основном, от 15 Вт до 150 Вт, а в промышленной сфере применяют лампы мощностью до 1500 Вт.

Качество светового потока и степень рассеивания регулируются материалом изготовления колбы. Максимальная светопередача характерна для ламп с прозрачным стеклом, тогда как два других типа поглощают часть света. Например, матовое стекло колбы крадет 3% светового потока, а белое – 20%.

Часто мощность бытовых ламп накаливания ограничена материалом светильников (абажуров, плафонов). Производители люстр и бра обычно указывают рекомендованные параметры – как правило, 40 Вт, реже 60 Вт.

Обычные электролампы сильно нагревают окружающие предметы в отличии, например, от светодиодных или маломощных галогенных, поэтому их нельзя использовать для монтажа в натяжные потолки

В 2011 году лампы накаливания официально признаны низко экономичными и пожароопасными, поэтому был принят закон о прекращении выпуска источников света 100 Вт. На очереди – закон о запрете устройств мощнее 50 Вт.

Однако пользователь ничего не теряет, так как на современном рынке огромное количество более производительных и экономичных и других аналогов.

Таблица, отражающая эффективность работы различных видов бытовых ламп. По указанным техническим характеристикам хорошо видно, как лампы накаливания проигрывают альтернативным вариантам по всем позициям

Сегодня многие отказываются от устаревшего вида ламп из-за большого потребления электроэнергии и короткого срока службы. Однако существуют категории людей, предпочитающие покупать дешевые и неэффективные источники – благодаря им производство лампочек накаливания продолжается.

Второй важный показатель, который обязательно нужно учитывать при покупке, — лампы накаливания, определяемый размером. У импортных и отечественных светодиодных ламп множество разновидностей цоколей, тогда как простые лампы ограничиваются тремя.

Если необходимо заменить лампочку в люстре или настольном светильнике, то обязательно обратите внимание на диаметр цоколя – Е14 или Е27. Приборы с цоколем Е40 в быту не применяют

Сейчас производителей обязывают упаковывать каждое изделие в отдельную коробочку, так что технические характеристики можно отыскать на ней. Обычно указывают мощность, класс энергоэффективности (низкий – Е), тип цоколя, прозрачность колбы, срок службы в часах.

Преимущества и недостатки ламп накаливания

Потребитель продолжает приобретать неэкономичные лампочки благодаря целому ряду плюсов, хотя некоторые из них весьма условны.

По отзывам, их выбирают из-за следующих качеств:

  • невысокая стоимость;
  • отсутствие пускорегулирующего оборудования;
  • моментальное зажигание после включения;
  • привычный «домашний» свет;
  • отсутствие вредных веществ;
  • нет реакции на низкую температуру и электромагнитные импульсы.

Однако мало кто оценивает качество светового потока или пульсацию, все же для большинства решающим оказывается первый фактор.

Но недостатки гораздо весомее, так как среди них сравнительно низкая световая отдача, ограниченный срок службы, небольшой диапазон цветовой температуры (только желтый свет), зависимость от перепадов напряжения в сети, пожароопасность.

Если включить лампу накаливания мощностью 40 Вт, спустя полчаса она нагревается до +145-148 °С и начинает нагревать окружающие предметы, что чревато случайным возгоранием

Сейчас существует возможность сравнить на практике работу ламп накаливания, газоразрядных и светодиодных аналогов. Каждый, кто заметил разницу в энергопотреблении, давно перешел на .

Рекомендации по выбору лампочки

При покупке лампочки ориентируются в первую очередь на величину цоколя и мощность. Эти два параметра легко определить по старому, перегоревшему источнику света.

Специально для любителей традиционных лампочек выпускаются филаментные устройства на светодиодах, похожие по форме, но выгодно отличающиеся своими характеристиками

Если вы выберете устройство меньшей мощности, то световой поток будет слабее, если большей, то рискуете целостностью плафонов – они могут деформироваться из-за высокой температуры нагрева.

Кроме технических характеристик стоит обратить внимание на качество изготовления лампы. Предпочтение стоит отдать изделиям с широким контактом цоколя, пропаянным токопроводом, стабильно закрепленной нитью накала.

Выводы и полезное видео по теме

Еще больше познавательной и интересной информации о производстве, использовании и недостатках ламп накаливания – в видеороликах, снятых специалистами и любителями.

Интересные факты о лампах накаливания:

Как происходит производство ЛН:

Сравнительный обзор ламп разных видов:

Популярно о выборе ламп для дома:

Потребитель сам вправе выбрать лампочку для использования в быту. Однако не стоит гнаться за дешевизной и обманчивой выгодой.

Учитывая, что освещением мы пользуемся постоянно, а лампочек в доме, как правило, более десятка, следует пересмотреть привычки. Многие пользователи давно уже перешли на более надежные, экономичные, безопасные светодиодные лампы.

Вы заметили в изложенном материале ошибки или неточности? Или хотите дополнить эту статью полезными рекомендациями? Напишите нам об этом, пожалуйста, в блоке комментариев.

Если вы предпочитаете использовать традиционные лампочки взамен более экономных энергосберегающих и хотите поделится своим мнением на их счет, пишите свою точку зрения о целесообразности использования обычных лампочек под этой статьей.

Устройство лампы накаливания, принцип работы

Доброго времени суток, дорогой читатель! Приветствую вас снова на страницах моего сайта podvi.ru. Сегодня хочется поговорить про обыденную вещь в нашем доме, но такую нужную, как лампа накаливания.

Сегодня мы можем наблюдать в наших домах и квартирах разнообразие видов электрических ламп. Но совсем недавно, в 20-ом веке, электрические лампы накаливания были основой для освещения помещений в темное время суток. Экономия электроэнергии подталкивает нас применять энергосберегающие лампы. Об этих лампах поговорим в других статьях, а сейчас разговор пойдет про старые, добрые лампочки «Ильича».

Почему такое название -«накаливания»? По логике вещей, сразу отвечаем: значит, что-то накаливается. Правильно, внутри колбы на специальных крючках закреплена нить накаливания, выполненная из тугоплавкого металла (вольфрам, тантал, осмий и др.) или их сплавов. Концы нити накаливания припаяны к двум тонким проволокам. Один наружный конец припаян к металлическому цоколю, другой — к винтовой нарезке.

Отступление: наверное всем доводилось пользоваться электроплиткой на спиральной основе. Когда включаем эл. плиту мы наблюдаем, как спираль начинает нагреваться и светиться красным цветом. Так вот, в лампах накаливания, нить разогревается до 2000 градусов С. Это явление позволяет лампе ярко светиться.

Вы можете спросить: зачем нужна стеклянная колба? Подаешь питание к спиральке и радуйся светом. Отвечаю: во-первых, колба служит как защитный чехол, во-вторых, чтобы нить накаливания не перегорела, из-под колбы откачивают воздух.

Отступление: бывают лампы, имеющие в колбе негорючий газ (азот, аргон). Газ в колбе нужен для того, чтобы нить накаливания, как можно дольше не распылялась при разогреве. Это дает возможность поднимать температуру накаливания нити до 2900 градусов С.

В общем, принцип действия лампы накаливания основан на свечении нагретых током проводников.

На заметку: на каждой лампе имеется соответствующая маркировка, в которую входят цифры, указывающие на напряжение лампы и потребляемую ею мощность. Обращайте внимание на напряжение указанное на маркировке. Обычно, напряжение в квартирах, домах 220-240 В. Если напряжение будет ниже вышеупомянутых цифр, лампа накаливания обязательно сгорит.

Могу добавить, чтобы повысить ощутимую экономию электроэнергии при использовании ламп накаливания, предлагаю:

  • применение криптоновых ламп накаливания. Ярче светят чем лампы с аргоновым наполнением;
  • замена двух ламп меньшей мощности на одну несколько большей мощности;
  • замена ламп к концу срока службы;
  • периодическая чистка от пыли и грязи ламп, плафонов и осветительной аппаратуры.

Заканчиваю свой рассказ. Буду рад добавленным комментариям на тему — лампа накаливания. Много полезного, связанного с электромонтажными работами и электротехникой, вы можете найти на карте сайта.

особенности электрической конструкции, характеристики, принцип действия

Если сравнивать с другими источниками света, лампа накаливания является очень простой конструкцией. Генерация светового потока происходит с помощью вольфрамовой нити, которая располагается внутри вакуумной стеклянной колбы. Для увеличения эксплуатационного срока в нее начали добавлять смесь специальных газов. Это стало началом возникновения галогеновых ламп. Первыми осветительными приборами считаются калильные конструкции.

История создания

В устройстве лампы накаливания сначала применяли не вольфрам, а совершенно другие материалы. Среди них была даже бумага и бамбук. Сейчас все лавры принадлежат Эдисону и Лодыгину. Они изобрели и усовершенствовали электрические лампы. Но всё же все заслуги приписывать им будет не совсем правильно.

Учёные прилагали усилия в таких направлениях:

  • Поиск наиболее подходящего материала, который можно использовать в качестве нити накаливания. Необходимо было найти то, что отлично противостояло бы возгоранию, а также имело большие показатели сопротивления. Раньше строение лампочки предполагало применение волокон бамбука в качестве нити накаливания. Эту нить покрывали очень тонким слоем графита, который выполнял роль токопроводящей среды. Конструкция работала, но изделия быстро перегорали.
  • Дальше изобретатели думали над тем, как выкачать весь воздух из колбы. Это было необходимо, потому что кислород является важнейшим веществом при горении. Поэтому необходимо, чтобы был вакуум (отсутствовал воздух).
  • Далее нужно было придумать разъёмные и контактные элементы цепи. Задача была довольно трудной. На это в значительной мере повлиял слой графита, который имеет очень высокое сопротивление. Исследователям пришлось прибегнуть к применению драгоценных металлов — платины и серебра. Это позволило увеличить проводимость тока, но конечная цена лампочки стала запредельной.
  • Е27 — цоколь Эдисона. Такая резьба применяется и по сегодняшний день. Первые варианты соединения изделия с электрической сетью предполагали применение пайки. Сегодня такой вариант не позволил бы быстро менять лампочки. Также это соединение очень быстро распадалось, когда происходил быстрый и сильный нагрев.

На сегодняшний день популярность таких устройств очень быстро падает. Сейчас в России увеличена амплитуда напряжение на 10%, если сравнивать с началом 2000-х годов. Это привело к тому, что лампы накаливания стали перегорать в 4 раза быстрее. Сейчас постепенно все переходят на светодиоды.

Принцип работы

Принцип работы лампы накаливания заключается в сильнейшем разогреве вольфрамовой нити. Это происходит благодаря электрическому току, проходящему через неё. Чтобы твёрдое вещество начало издавать красное свечение, его придётся разогреть до 570 градусов по Цельсию. Этот свет будет приятен для человеческого глаза, только если повысить показатель минимум в 3 раза.

Такую термоустойчивость имеют далеко не многие материалы. Из-за доступности вольфрама, его начали применять для изготовления ламп. Плавится он при температуре 3400 градусов по Цельсию. Его начали закручивать в спираль для повышения длины и площади этого изделия. Это помогает в значительной мере увеличить световое излучение.

Обычные лампочки устроены так, что главные части могут разогреваться до 2800 градусов. Работают лампы накаливания с цветовым излучением в 2000−3000 К. Это позволяет получить жёлтый спектр. Его, конечно, нельзя сопоставить с дневным, но этот цвет не оказывает пагубного влияния на зрение.

Если вольфрам попадёт в воздушную среду, то он очень быстро окислится, что приведёт к мгновенному разрушению. Именно поэтому использовали вакуумную колбу. Сейчас применяют вместо вакуума, смесь газов. На этапе экспериментов учёные ещё не знали, какой состав лучше применить. Современные изделия наполняются азотом, криптоном или же аргоном. С их помощью удалось увеличить срок эксплуатации лампы, а также повысить силу свечения. Длительность использования становится больше из-за того, что давление газов внутри колбы не даёт испаряться вольфрамовой нити, когда она нагрета.

Строение изделия

Обычные виды ламп накала состоят из стандартных элементов. Их размеры могут отличаться (самыми большими являются промышленные типы), но в целом они абсолютно одинаковые. Основные составные части конструкции:

  • Колба.
  • Цоколь. Он состоит из корпуса, на котором установлен изолятор и контакт.
  • Вакуум или смесь газов.
  • Нить накала.
  • Предохранитель.
  • Ножка.
  • Электроды. Через них подаётся электричество на нить.
  • Крючки. Предназначены для поддержания элемента накаливания.

Кроме стандартных типов конструктивных решений, есть ещё и изделия специального назначения. В них могут применяться держатели, которые заменяют цоколь. Также добавляется дополнительная стеклянная колба.

Чаще всего предохранитель делают из феррита и никеля. Он располагается в разрыве на каком-либо из выводов тока. Обычно его размещают в ножке. Делается это из-за того, что во время обрыва сети возникает электрическая дуга. Она расплавляет проводник, который попадает на стекло. В этом случае лампа может взорваться.

Колба и цоколь

Стеклянный сосуд необходим, чтобы защитить нить накаливания от воздействия кислорода, что приведёт к её разрушению. Размеры колбы выбираются исходя из скорости оседания вещества, из которого выполнен проводник.

Наиболее распространённым цоколем является модель Томаса Эдисона. Е10 — это самый маленький резьбовой контакт, который сейчас применяется. Например, он может использоваться в ёлочных гирляндах, а также в небольших фонариках.

Цоколь Е14 называют миньоном. Зачастую его используют в небольших осветительных приборах по типу бра. Также эта модель применяется в современных люстрах. Даже светодиодные лампы используют этот тип контакта.

Под этот патрон изготавливается множество видов ламп:

  • грушевидная;
  • каплевидная;
  • зеркальная;
  • шарообразная;
  • свечеобразная.

Цоколь Е27 — это самый распространённый тип контакта. Его применяют для стандартных патронов, которые есть в каждом доме и любом помещении. Светодиодные светильники с таким цоколем очень сильно напоминают обычные.

Газовая среда и нить накала

Раньше все осветительные изделия были вакуумными. Сейчас это решение используют только для маломощных ламп. Более мощные источники света наполняют инертным газом. Он напрямую влияет на количество излучаемого тепла.

В галогеновые изделия закачивают галогены. Вещество, покрывающие всю спираль накала, при нагреве постепенно испаряется. Оно вступает в реакцию с галогенами, расположенными внутри колбы. После этого начинают появляться соединения, которые снова разлагаются, что влечёт за собой возвращение вещества на нить. Это позволяет значительно увеличить температуру спирали, чтобы повысить КПД и длительность эксплуатации. Также газы позволяют сделать стеклянные ёмкости не такими большими.

Нить накала выполняется в разной форме. Предпочтение отдают исходя из специфики лампочки. Чаще всего используют проводник с круглым сечением или спираль. Очень редко применяют ленточные нити.

Современные лампы функционирует благодаря вольфраму или сплаву из осмия и вольфрама. Иногда используют биспирали и триспирали. Это возможно только благодаря повторному закручиванию. Наибольший коэффициент полезного действия наблюдается у последнего типа, потому что триспираль позволяет снизить количество теплового излучения.

Технические характеристики

Лампы накаливания имеют разную мощность, от которой зависит световая энергия. Изменения происходят не линейно. До 75 Вт светоотдача повышается, а свыше этого показателя — начинает снижаться. Основным преимуществом ламп с нитью является распределение светового излучения во все стороны в одинаковом количестве.

Такие изделия выдают пульсирующий свет. Определённые значения обычно сильно нагружают глаза. Нормальным показателем коэффициента пульсации является 10% и менее. Лампы не превышают порог в 4%. Наихудший показатель наблюдается у 40 Вт.

Среди всех изделий, которые выделяют световое излучение, лампы накаливания разогреваются больше остальных. Огромная доля электрического тока преобразуется в тепло, поэтому лампа зачастую похожа на обогреватель, а не на прибор освещения. Именно это стало причиной, что в законодательстве появился специальный пункт. Он запрещает использовать лампочки в быту, мощность которых превышает 100 Вт.

Если рассматривать излучаемый спектр, то можно увидеть, что обычные лампы содержат много красного цвета и мало синего при сравнении с естественным освещением. Но результат всё равно считается довольно приемлемым, так как он не становится причиной утомления глаз.

Для правильного использования осветительных приборов нужно знать условия их применения. Предельные температурные показатели составляют -60 и +50 градусов по Цельсию. Максимальная влажность — 98%. Такие устройства могут работать в паре с диммерами. Они необходимы, чтобы изменять светоотдачу путём регулирования интенсивности света. Эти изделия являются довольно дешёвыми. Также их очень просто заменить даже человеку, не имеющему никакой квалификации.

Коэффициент полезного действия

В результате применения электрического тока для работы ламп с нитью накаливания образуется не только тепловая энергия и видимый для человеческих органов зрения свет, но и инфракрасный свет, который не видят глаза. При температуре вольфрамовой нити в 3350 К коэффициент полезного действия лампочки составляет 15%. Если взять обычное изделие в 60 Вт при температуре 2800 К, то такое устройство будет выдавать минимальный КПД — 5%.

Чем сильнее разогрет проводник, тем выше будет коэффициент полезного действия. Но при большом нагреве вольфрамовой нити заметно снижается срок эксплуатации. Например, если температура лампы составляет 2800 К, то она будет работать около 1000 часов, а если 3400 К, то в несколько раз меньше. Можно увеличить напряжение на 20%, чтобы повысить выделение световой энергии в 2 раза. Но это будет не очень рационально, так как срок эксплуатации уменьшится на 95%.

Увеличение срока эксплуатации

Об увеличении срока эксплуатации обычных ламп хотят узнать побольше практически всё, кто ещё не перешёл на более современное светодиодное освещение. Это важно, так как иногда лампочка может перегореть даже при первом включении.

Существует несколько причин, из-за которых может значительно снизиться срок использования этих устройств. Вот основные из них:

  • Частые скачки напряжения в электрической сети. Слишком большая нагрузка уменьшает время эксплуатации.
  • Механические вибрации.
  • Замыкания или разрыв цепи в проводке квартиры.
  • Слишком большая температура окружающей среды.

Нужно придерживаться рекомендаций, чтобы лампочка проработала более длительный срок. Даже выполнение самых общих указаний может значительно продлить срок эксплуатации. Основные советы:

  • Выбирать следует только те изделия, которые полностью подходят для рабочего диапазона напряжений электрической сети.
  • Вкручивать и выкручивать лампочку можно только тогда, когда выключатель находится в выключенном состоянии. Это обусловлено тем, что даже самые незначительные вибрации способны вывести источник освещения из строя.
  • Если лампы всё время перегорают только в одном и том же месте, то следует заменить патрон или починить его.
  • Когда эксплуатация происходит в подъезде на лестничной площадке, следует к электрической цепи добавить диод для выпрямления напряжения. Необходимо параллельно подключить две лампы, имеющие одинаковую мощность.
  • К выключателю можно подсоединить устройство, которое будет плавно увеличивать подачу тока на лампу во время включения.

Технологии постоянно развиваются. Сейчас всё большую популярность набирают экономичные люминесцентные и светодиодные лампы. Основными причинами продолжения производства ламп накаливания являются налаженное производство и наличие слаборазвитых стран, если смотреть с технологической точки зрения. Также они имеют очень мягкий и комфортный свет.

Лампа накаливания: технические характеристики, устройство

Обеспечить комфорт и уют в доме невозможно без организации хорошего освещения. С такой целью наиболее часто сейчас используются лампы накаливания, которые можно применять в различных условиях сети (36 Вольт, 220 и 380).

Виды и характеристики

Лампа накаливания общего назначения (ЛОН) – это современное устройство, источник искусственного видимого светового излучения с низким КПД, но ярким свечением. Свое название она получила из-за наличия в корпусе специального тела накала, которое изготавливается из тугоплавких металлов или угольной нити. В зависимости от параметров этого тела определяется срок службы светильника, цена и прочие характеристики.

Фото — модель с вольфрамовой нитью

 

Несмотря на разные мнения, считается, что первым изобрел лампу ученый из Англии Деларю, но его принцип накаливания был далек от современных норм. После исследованиями занимались разные физики, впоследствии, Гебель презентовал первую лампу с угольной нитью (из бамбука), а после Лодыгин запатентовал первую модель из углеродной нити в вакуумной колбе.

В зависимости от конструктивных элементов и типа газа, защищающего нить накаливания, сейчас существую такие виды ламп:

  1. Аргоновые;
  2. Криптовые;
  3. Вакуумные;
  4. Ксенон-галогенные.

Вакуумные модели являются самыми простыми и привычными. Получили свою популярность из-за низкой стоимости, но вместе с этим они имеют наименьший срок службы. Стоит отметить их простоту замены, ремонту не поддаются. Конструкция имеет следующий вид:

Фото — конструкция вакуумных ламп

 

Здесь 1 – это, соответственно, вакуумная колба; 2 — вакуумная или наполненная специальным газом, емкость; 3 — нить; 4, 5 — контакты; 6 — крепежи для нити накаливания; 7 — стойка лампы; 8 — предохранитель; 9 — цоколь; 10 — стеклянная защита цоколя; 11 — цокольный контакт.

Аргоновые лампы ГОСТ 2239-79 по яркости очень отличаются вакуумных, но практически полностью повторяют их конструкцию. Они имеют больший срок годности, нежели привычные. Это обязано тем, что нить из вольфрама защищена колбой с нейтральным аргоном, который противостоит высоким температурам горения. Как результат, источник света более яркий и долговечный.

Фото — аргоновый ЛОН

 

Криптовую модель можно распознать по очень высокой световой температуре. Она светится ярким белым светом, поэтому иногда может вызывать боль в глазах. Высокий показатель яркости обеспечен криптоном – высоко-инертным газом, у которого высокая атомная масса. Его применение позволило значительно уменьшить вакуумную колбу, но при этом не терять яркость источника света.

Галогенные светильники накаливания получили большую популярность благодаря своей экономной работе. Современная энергосберегающая лампа поможет не только сократить расходы на оплату электрической энергии, но и уменьшить траты на покупку новых моделей для освещения. Производство такой модели осуществляется на специализированных заводах, как и утилизация. Предлагаем для сравнения изучить потребляемую мощность перечисленных выше аналогов:

  1. Вакуумные (обычные, без газа или с аргоном): 50 или 100 Вт;
  2. Галогеновые: 45—65 Вт;
  3. Ксеноновые, галогено-ксеноновые (комбинированные): 30 Вт.

Благодаря небольшому размеру, наиболее часто электрические ксеноновые и галогеновые осветители используют как автомобильные фары. У них высокое сопротивление и отличная долговечность.

Фото — ксенон

 

Классификация ламп производится не только исходя из наполняющего газа, а также, в зависимости от типов цоколей и назначения. Существуют такие виды:

  1. G4, GU4, GY4, и прочие. Галогеновые модели накаливания отличают патроны-штекеры;
  2. E5, E14, E17, E26, E40 – наиболее распространенные типы цоколей. В зависимости от номера, могут быть узкими и широкими, классифицируются по возрастанию. Первые люстры изготавливались именно под такие контактирующие части;
  3. G13, G24 производители используют эти обозначения для люминесцентных осветителей.
Фото — формы ламп и типы цоколей

 

Достоинства и недостатки

Сравнение отдельных видов светильников накаливания позволит выбрать наиболее подходящий вариант, исходя из того, какая нужна мощность и световая отдача. Но у всех перечисленных видов светильников есть общие достоинства и недостатки:

Плюсы:

  1. Доступная цена. Стоимость многих ламп находится в пределах 2 у. е.;
  2. Быстрое включение и выключение. Это наиболее значимый параметр в сравнении с энергосберегающими лампами с долгим включением;
  3. Маленькие размеры;
  4. Простая замена;
  5. Широкий выбор моделей. Сейчас есть декоративные светильники (свеча, ретро-завиток и другие), классические, матовые, зеркальные и прочие.

Минусы:

  1. Высокая потребляемая мощность;
  2. Негативное воздействие на глаза. В большинстве случаев от него поможет матовая или зеркальная поверхность колбы лампы накаливания;
  3. Низкая защита от перепадов напряжения. Для обеспечения нужного уровня используется блок защиты для лампы накаливания, он подбирается в зависимости от типа;
  4. Короткий эксплуатационный период;
  5. Очень низкий коэффициент полезного действия. Большая часть электрической энергии уходит не на освещение, а на нагрев колбы.

https://www.youtube.com/watch?v=ET-u92BP968

Параметры

Технические характеристики любой модели обязательно включают в себя: световой поток лампы накаливания, цвет свечения (или цветовая температура), мощность и срок службы. Сравним перечисленные типы:

Тип Световой поток, Люмен Световая температура Срок службы, часов
Вакуумная, без газа 300–1600 Теплая, холодная (синяя, желтая, белая), в зависимости от типа колбы — 2000—4500 градусов 1000
Аргоновая 200–8400 Также, как и в вакуумных 1500
Ксеноновая, галогеновая 14000–44000 Холодная, от 4500 4000
Криптоновая 500–10000 Холодная, от 4000 2000
Фото — цветовая температура

 

Из всех перечисленных типов только галогенки можно отнести к энергосберегающим моделям. Поэтому многие хозяева стремятся заменить все источники света в своем жилище на более рациональные, к примеру, на диодные. Соответствие светодиодных ламп накаливания, сравнительная таблица:

Параметр Вакуумный тип, без газа Галогеновая, ксеноновая Аргоновая Светодиод
Уровень нагрева колбы Высокий Нормальный Высокий Низкий
Стойкость к внешним воздействиям Разбивается при падении Очень хрупкая Разбивается Крепкая
Мощность (Вт) 75 15 45 10
Световой поток (Люмен) 600 700 800 800

Для лучшего объяснения энергозатрат предлагаем изучить соотношение ватт к люменам. Например, лампа дневного света, с вольфрамовой нитью накаливания 100 Вт – люмен 1200, соответственно, 500 Вт – более 8000.

Мощность лампы с аргоновым наполнителем, Ватт Мощность люминесцентной модели, Вт Мощность светодиодного светильника, Вт Световой поток, Люмен
20 5-7 2-3 250
40 10-13 4-5 400
60 15-16 8-10 700
75 18-20 10-12 900
100 25-30 12-15 1200
150 40-50 18-20 1800

При этом, часто использующаяся в производственных и бытовых условиях, люминесцентная модель, имеет похожие характеристики на ксеноновую. Благодаря таким характеристикам есть возможность обеспечить плавное включение ламп накаливания. Для этого используется специальный прибор – диммер для ламп накаливания.

Такой регулятор можно собрать своими руками, если есть схема, подходящая под Вашу лампу. Сейчас большой популярностью пользуются аналоги обычных вариантов, но с зеркальным напылением – рефлекторная модель Philips, импортные Osram и другие. Купить фирменную лампу накаливания можно в специализированных фирменных магазинах.

Устройство и работа ламп накаливания. Вольфрамовая нить, Электроды.

Лампа накаливания используется в качестве источника освещения свыше ста лет и, несмотря на появление более совершенных, современных, передовых с технологической точки зрения решений, спроса не теряет. Ниже мы расскажем вам о ее устройстве и принципах работы.

Устройство

Каждая лампа накаливания состоит из стеклянной колбы и металлического цоколя – из колбы в результате нагрева вольфрамовой нити излучается свет, а цоколь (материал – металл) обеспечивает тесный и надежный контакт прибора с электросетью. Нить накала (или спираль) располагается в стеклянной колбе. При прохождении тока происходит ее нагревание до 3000 С.

Поскольку лампа накаливания постоянно работает при очень высоких температурах, для изготовления нити должен использоваться тугоплавкий материал. Вольфрам имеет высокую температуру плавления (она составляет 3422 С) и как нельзя лучше подходит для решения данной задачи. Нить накала закрепляется внутри колбы с помощью электродов и удерживается крючками из молибдена, располагающимися на стеклянном стержне. Электроды, в свою очередь, присоединяются к контактам. Типы контактов, схемы их расположения бывают разными и зависят от вида цоколя.

Электроды могут быть одинаковыми или разными, когда один делается с маленьким утоньшением. Утоньшение выполняет роль предохранителя, перегорая первым и не давая колбе взорваться.

Из колбы выходит небольшая стеклянная трубочка (штенгель) – при изготовлении лампы через нее откачивается воздух. Это необходимо, поскольку в воздухе содержится кислород, который сжег бы вольфрамовую нить в первые секунды работы. После откачки штенгель запаивают. В мощных лампах накаливания используются инертные газы, продлевающие срок службы нити накаливания и снижающие теплотери источника света в процессе эксплуатации (напоминаем, что КПД лампы накаливания итак не очень высокий).

Как это работает?

Сначала нить накала подключается к источнику тока, затем (практически моментально) раскаляется до максимальной температуры и начинает излучать свет. Таким образом, принцип работы лампочки основывается на явлении нагрева вольфрамового проводника под воздействием тока. Поток, который дает раскаленный проводник, близок к дневному свету и не вызывает дискомфорта.

При питании переменным током мерцания исключены. Лампа накаливания рассчитана на широкий диапазон напряжений.

Лампа накаливания виды, устройство, предназначение

Старую добрую лампочку « Ильича» без преувеличения можно назвать символом уходящей эпохи. Вклад в развитие ламп накаливания внесли многие ученые 18 – 19 веков, но особую роль сыграли двое. Российский ученый Александр Лодыгин, можно сказать, создал рабочий опытный образец. Американец Томас Эдисон, говоря на современном техническом сленге, «допилил» и «раскрутил» лампы накаливания, то есть доработал и запустил в массовое производство.

Это эпохальное изобретение определило развитие человечества на многие годы вперед. Даже сейчас, спустя много десятков лет люди используют лампочки накаливания.

Предназначение

Основное применение ламп накаливания – освещение помещений и открытого пространства. Позже, после тщательного изучения физических свойств обнаружилось, что большая часть используемой энергии уходит в тепло. На освещение лампа тратит не более 10% потребляемой энергии. Поэтому имеет смысл использовать лампы накаливания в качестве нагревательных элементов.

Устройство

Основная часть лампы накаливания имеет вид стеклянной колбы, с вакуумной средой. Внутри колбы на металлических электродах расположена нить (спираль) накаливания. Она выполнена из тугоплавкого металла – вольфрама. Также к колбе прикреплен резьбовой цоколь с центральным проводником. Он служит для монтажа и присоединения лампы к электрической цепи.

Принцип действия

Электрический ток проходит по контактным элементам цоколя, далее по электродам и нити накаливания. Проходя через спираль, ток разогревает ее до высокой температуры, при которой происходит свечение. Вакуумная среда в колбе несколько усиливает свечение и не позволяет нити перегореть, ввиду отсутствия кислорода.

Разновидности

Разделяются лампы накаливания по следующим признакам:

1) по потребляемой мощности, соответственно интенсивности светового потока (яркости свечения). В быту используют лампы от 40 до 150 Вт (в настоящее время выпуск ламп мощностью менее 95 Вт прекращен во многих странах мира), в промышленности от 200 до 500 Вт;

2) по размеру цоколя, стандартные цоколя имеют виды: Е-12, Е-27, Е-40, первые используются в бытовых светильниках, последний — в промышленных.

Особые виды ламп

К этим категориям можно отнести специальные мощные лампы с графитными стержнями. Использовались такие лампы в промышленных и военных прожекторах, в настоящее время практически не применяются. Также особое место среди ламп накаливания занимают галогенные лампы. Отличаются они от простых тем, что в колбу закачиваются галогенные вещества. Наличие этих веществ позволяет сильнее разогреть спираль и увеличить яркость свечения в несколько раз. Такие лампы еще достаточно широко применяются в авто и мототехнике.

В заключение можно сказать, что лампы накаливания устройства, морально устаревшие и не отвечают современным стандартам эффективности. Но, в тоже время прощаться с «легендой» несколько преждевременно, старые добрые лампочки накаливания еще послужат человечеству верой и правдой.

Похожее

Лампа накаливания — обзор

VII.D Ограничения материалов, влияющие на рабочие характеристики

В отличие от ламп накаливания, в лампах HID нет единого механизма, который определяет срок службы лампы, и срок службы не обратно пропорционален эффективности. Более того, срок службы СПРЯТАННЫХ ламп невероятно долгий; Срок службы большинства ртутных и HPS-ламп составляет 24 000 часов, а срок службы ламп M-H — от 6 000 до 20 000 часов. Поскольку типичные часы работы при обслуживании на открытом воздухе от заката до рассвета или при двухсменном внутреннем коммерческом обслуживании составляют 4000 часов в год, эти показатели представляют собой срок службы до 6 лет.Тем не менее, выбор конструкции, ведущий к более высокой эффективности, ограничен материальными ограничениями, что приводит к сокращению срока службы. Электроды ртутной лампы и лампы HPS покрыты активатором электронной эмиссии, который со временем испаряется, что приводит к невозможности воспламенения или повторного воспламенения в каждом полупериоде. Все типы HID-ламп подвержены чрезмерному почернению дуговых трубок из-за испарения или разбрызгивания материала с электродов. В лампах HPS почернение стенок возле электродов может привести к повышению температуры амальгамы, а последующее повышение давления газа вызывает повышение напряжения.Это может привести к «зацикливанию» ближе к концу срока службы лампы, когда напряжение на лампе возрастает до значения, которое не может больше выдерживать балласт, и лампа гаснет. Затем лампа охлаждается до температуры, при которой импульс воспламенителя достаточен для перезапуска лампы, и процесс повторяется, что приводит к непрерывному циклу переключения, который повторяется каждые несколько минут. Эту проблему можно решить, уменьшив дозу амальгамы до такой степени, чтобы вся ртуть и натрий находились в паровой фазе при нормальной работе лампы.Этот принцип привел к разработке так называемых ламп HPS с «ненасыщенным паром». Для этих ламп критически важна минимизация потерь натрия из-за химических реакций с компонентами дуговых трубок, поскольку нет запаса натрия, который можно было бы заменить.

Потери натрия могут происходить в результате электролитического процесса на стенке дуговой трубки в лампах M-H. В процессе работы всегда есть несколько частей на миллион ионов натрия, растворенных в кварце в контакте с иодидом натрия, в результате достижения термохимического равновесия в обратимой реакции между кварцем и иодидом.Это количество не опасно для кварца и не означает значительного снижения содержания натрия по сравнению с введенной начальной дозой. Однако ионы натрия в кварце подвижны, и отрицательная зарядка внешней поверхности кварцевой дуговой трубки фотоэлектронами, испускаемыми из различных частей внешней оболочки, будет притягивать ионы натрия к внешней поверхности, чтобы они нейтрализовались и испарялись. Истощение ионной концентрации на внутренней поверхности затем позволяет протекать прямой реакции с получением большего количества ионов натрия, которые, в свою очередь, электролизуются, пока в конечном итоге не будет потеряна очень значительная часть исходной дозы натрия.Для решения этой проблемы используются конструкции внешней оболочки, обеспечивающие минимальное количество поверхностей, излучающих фотоэлектрическое излучение, или поверхности с положительным смещением (например, кожух).

Химические реакции между кварцем и металлами и иодидами металлов могут приводить к образованию стабильных оксидов металлов на стенках и высвобождению металлического кремния. Потеря металла в результате этого процесса снижает парциальное давление паров металла и в конечном итоге изменяет выходную мощность излучения лампы. Металлический кремний реагирует с йодом с образованием летучего тетраиодида кремния, который разлагается при температуре электрода и откладывает расплавленный кремний на электроде, резко искажая его форму и ухудшая его характеристики.Это становится одним из процессов, ограничивающих срок службы в лампах M-H, поскольку отрицательно влияет на процесс повторного зажигания каждые полупериод, до такой степени, что балласт больше не может повторно зажечь лампу. Эффективность HID-ламп увеличивается по мере увеличения входной мощности на единицу длины, во-первых, из-за уменьшения доли мощности, теряемой на теплопроводность, а во-вторых, из-за повышения температуры дуговых трубок, что приводит к более высокому давлению паров излучающих частиц. Однако повышение температуры дуговых трубок приводит к сокращению срока службы лампы из-за учащения химических реакций с материалом дуговых трубок, а в случае кварца — к изменению кристаллической структуры (де-витрификации).Эти ограничения обычно воплощаются в форме практических правил проектирования относительно допустимой нагрузки на стенки (подводимая мощность дуги на единицу площади внутренней поверхности стенки дугового трубопровода). Приемлемый срок службы ртутных ламп достигается при нагрузке на стену 10–12 Вт / см 2 , а кварцевые лампы M-H для общего освещения обычно имеют мощность 13–22 Вт / см 2 . Устойчивость PCA при более высоких температурах позволяет керамическим лампам M-H работать при ∼40 Вт / см 2 , а HPS может использовать конструкции с мощностью 15–20 Вт / см 2 .Для некоторых применений, таких как автомобильные фары и проекционные лампы, приемлем более короткий срок службы и может использоваться более высокая нагрузка на стены.

Уплотнения из молибденовой фольги как в ртутных лампах, так и в лампах M-H имеют достаточный срок службы при гораздо более высоких температурах, чем в лампах T-H, поскольку они защищены от окисления вакуумом или инертной атмосферой во внешней оболочке. Электрический ввод в лампах HPS включает металлический элемент ниобий (также известный как колумбий), выбранный для соответствия расширению в PCA и запечатанный смесью поликристаллических оксидов, плавкой без плавления ниобия или PCA.Ниобий защищен от окисления вакуумом во внешней рубашке. В лампах HPS максимальная температура уплотнения определяется стойкостью герметика к воздействию натрия, тем самым ограничивая температуру холодного пятна и, следовательно, максимальное давление паров натрия в дуговой трубке.

Безопасный свет миниатюрных ламп накаливания с использованием LTC2874

Лампы накаливания, описываемые как «обогреватели, излучающие немного света» [1] , являются целью правительств во всем мире из-за присущей им неэффективности.Лампы с более высокой мощностью могут быть обречены развивающимися стандартами эффективности, но их миниатюрные собратья все еще могут иметь светлое будущее в промышленных установках, таких как системы программируемых логических контроллеров (ПЛК) на 24 В.

Включение лампы накаливания 24 В постоянного тока — непростая задача для драйвера микросхемы. Обычные вольфрамовые нити в холодном состоянии примерно в 15 раз более проводящие, чем в горячем состоянии. Следовательно, при зажигании лампы водитель должен справляться с состоянием, близким к короткому замыканию, без перегрева.

LTC2874 может безопасно работать с восемью лампами. Вот как.

LTC2874 — это интерфейс питания и сигнализации Quad IO-Link Master для устройств, подключенных кабелями длиной до 20 м. Работая от 8 В до 30 В, каждый выходной сигнал драйвера CQ принимает или потребляет 100 мА. Этого достаточно, чтобы зажечь миниатюрные лампочки мощностью 1 Вт (тип 40 мА) или 2 Вт (тип 80 или 85 мА), которые иногда используются в системах 24 В постоянного тока.

Каждый из четырех выходов CQ может управлять лампой, дополнительно поддерживая IO-Link при подключении к интеллектуальному устройству.Четыре выхода источника питания L + Hot Swap также могут быть задействованы, каждый из которых обеспечивает ток до предела, установленного чувствительным резистором. Это означает, что один LTC2874 может работать с восемью лампами накаливания!

Выходы драйвера CQ LTC2874 (как и их выходные аналоги источника питания L +) защищены автоматическими выключателями максимального тока и схемами автоповтора с малым рабочим циклом, которые защищают от перегрева в случае неисправности или больших нагрузок. Как показано ниже, каждый вывод CQ легко зажигает лампочку мощностью 1 Вт, используя эти встроенные функции.В то время как нить накала потребляет высокий пусковой ток при нагревании, драйвер включается и выключается. Даже при рабочем цикле <1% лампа включается всего за несколько импульсов.

Соответствующие настройки битов регистра SPI:

Лампы большего размера, имеющие еще меньшее сопротивление холодной нити накаливания, не нагреваются при импульсном воздействии в низком рабочем цикле, определяемом функцией автоповтора LTC2874. Однако LTC2874 может их зажигать, если микроконтроллер (через интерфейс SPI) определяет более быстрый интервал отключения при включении.

Вот как это работает. Драйвер CQ включается и ограничивает ток до 160 мА TYP. После 0,48 мс в состоянии перегрузки по току вывод / IRQ сигнализирует и драйвер отключается. Отвечая на запрос прерывания, микроконтроллер ожидает интервала охлаждения TOFF, а затем очищает регистр 0 × 4, что позволяет драйверу снова начать новый импульс. Этот повторяющийся цикл генерирует импульс на выходе с коэффициентом заполнения 0,48 мс / (0,48 мс + TOFF).

Чтобы избежать чрезмерного нагрева ИС, следует соблюдать две меры предосторожности:

  1. Избегайте использования рабочего цикла выше 5–10%.
  2. Ограничьте общую продолжительность импульса, возможно, до 1 секунды. Если к этому моменту вывод / IRQ перестал сигнализировать, лампочка успешно загорелась. Если вывод / IRQ по-прежнему сигнализирует, мы должны принять меры против возможности жесткого короткого замыкания. Пора выключить водителя и объявить о неисправности.

Соответствующие настройки битов регистра SPI:

Чтобы увеличить гарантированный ток, расставьте точки над контактами CQ в любой комбинации. Просто не забудьте также объединить соответствующие входы драйверов (контакты TXD1-4) и элементы управления (контакты TXEN1-4 или биты регистра DVREN1-4).

Следующий пример кривой для лампы мощностью 2 Вт показывает, как более быстрый интервал импульсов и точечный выход ускоряют время включения.

Используя этот подход, три или четыре пунктирных контакта CQ могут работать с лампами даже большего размера.

Выходы источника питания L + могут управлять лампами аналогичным образом, используя режим автоповтора или синхронизируемый микроконтроллером импульсный режим. В этом приложении эти выходы добавляют гибкости (ограничения по току устанавливаются резисторами, время включения и выключения импульсов программируются) и ограничения (работа осуществляется только через интерфейс SPI).

Для этих выходов не должен перегреваться внешний МОП-транзистор с горячей заменой. При определении рабочего цикла учитывайте безопасную рабочую зону (SOA) этого устройства.

Соответствующие настройки битов регистра SPI:

LT3669 / LT3669-2 может также включать лампы накаливания. Эти компоненты с двумя драйверами имеют встроенную схему импульсов, которая автоматически управляет рабочим циклом при превышении предела выходного тока.

LTC2874 может безопасно работать с миниатюрными лампами накаливания.Для приложений 24 В постоянного тока контакты драйвера CQ могут работать с лампами мощностью 1 Вт с использованием встроенной функции автоповтора импульсов, с лампами мощностью 2 Вт с использованием микроконтроллера для управления рабочим циклом и несколько большего размера при объединении выходов. Выходы L + Hot Swap могут также включать лампы накаливания, что делает возможным использование восьмеричного драйвера лампы с микроконтроллером.

использованная литература

[1] Рахим, Сакиб. «Лампа накаливания уходит за кулисы после столетнего выступления.» New York Times , 28 июня 2010 г.

Нанофотонное возвращение ламп накаливания? | MIT News

Традиционные лампочки, которые, как считается, уже давно уже давно забыты, могут получить отсрочку благодаря технологическому прорыву.

Лампа накаливания и ее теплое, знакомое свечение существует уже более века назад, но практически без изменений сохраняется в домах по всему миру. Однако это быстро меняется, поскольку нормативные акты, направленные на повышение энергоэффективности, постепенно заменяют старые лампы на более эффективные компактные люминесцентные лампы (КЛЛ) и новые светодиодные лампы (СИД).

Лампы накаливания, коммерчески разработанные Томасом Эдисоном (и до сих пор используемые художниками-карикатуристами как символ изобретательского чутья), работают путем нагрева тонкой вольфрамовой проволоки до температур около 2700 градусов Цельсия. Этот горячий провод излучает так называемое излучение черного тела, очень широкий спектр света, который обеспечивает теплый вид и точную передачу всех цветов в сцене.

Но эти лампы всегда страдали от одной серьезной проблемы: более 95 процентов энергии, которая в них попадает, тратится впустую, в основном в виде тепла.Вот почему страна за страной запрещали или постепенно отказываются от неэффективных технологий. Теперь исследователи из Массачусетского технологического института и Университета Пердью, возможно, нашли способ все это изменить.

Новые открытия опубликованы в журнале Nature Nanotechnology тремя профессорами Массачусетского технологического института — Марином Солячичем, профессором физики; Джон Джоаннопулос, профессор физики Фрэнсиса Райта Дэвиса; и Ганг Чен, профессор энергетики Карла Ричарда Содерберга, а также главный научный сотрудник Массачусетского технологического института Иван Целанович, постдок Огнен Илич и профессор физики Purdue (и выпускник Массачусетского технологического института) Питер Бермел, доктор философии ’07.

Переработка света

Ключевым моментом является создание двухэтапного процесса, сообщают исследователи. На первом этапе используется обычная нагретая металлическая нить со всеми вытекающими отсюда потерями. Но вместо того, чтобы позволить отходящему теплу рассеиваться в виде инфракрасного излучения, вторичные структуры, окружающие нить накала, улавливают это излучение и отражают его обратно в нить, чтобы повторно поглотить и переизлучить в виде видимого света. Эти структуры, представляющие собой форму фотонного кристалла, состоят из элементов, которыми много на Земле, и могут быть изготовлены с использованием традиционной технологии осаждения материалов.

Этот второй шаг существенно влияет на то, насколько эффективно система преобразует электричество в свет. Одна величина, которая характеризует источник освещения, — это так называемая световая отдача, которая учитывает реакцию человеческого глаза. В то время как световая отдача обычных ламп накаливания составляет от 2 до 3 процентов, люминесцентных ламп (включая КЛЛ) — от 7 до 15 процентов, а у большинства коммерческих светодиодов — от 5 до 20 процентов, новые двухступенчатые лампы накаливания могут достичь эффективности. команда заявляет, что достигает 40 процентов.

Первые испытательные блоки, созданные командой, еще не достигли этого уровня, достигнув эффективности около 6,6%. Но даже этот предварительный результат соответствует эффективности некоторых современных КЛЛ и светодиодов, отмечают они. И это уже трехкратное повышение эффективности по сравнению с сегодняшними лампами накаливания.

Команда называет свой подход «рециркуляцией света», — говорит Илич, поскольку их материал принимает нежелательные, бесполезные длины волн энергии и преобразует их в желаемые длины волн видимого света.«Он перерабатывает энергию, которая в противном случае была бы потрачена впустую», — говорит Солячич.

Лампы и не только

Одним из ключей к их успеху была разработка фотонного кристалла, который работает в очень широком диапазоне длин волн и углов. Сам фотонный кристалл представляет собой стопку тонких слоев, нанесенных на подложку. «Когда вы складываете слои с правильной толщиной и последовательностью», — объясняет Илич, вы можете очень эффективно настроить то, как материал взаимодействует со светом. В их системе желаемые видимые длины волн проходят прямо через материал и выходят из лампы, но инфракрасные волны отражаются, как будто от зеркала.Затем они возвращаются к нити, добавляя больше тепла, которое затем преобразуется в больше света. Поскольку выходит только видимое, тепло продолжает отражаться обратно к нити накала, пока в конечном итоге не превратится в видимый свет.

«Результаты впечатляют, демонстрируя яркость и энергоэффективность, сопоставимые с показателями обычных источников, включая люминесцентные и светодиодные лампы», — говорит Алехандро Родригес, доцент кафедры электротехники Принстонского университета, который не принимал участия в этой работе.Результаты, по его словам, «предоставляют дополнительные доказательства того, что применение новых фотонных конструкций для решения старых проблем может привести к созданию потенциально новых устройств. Я верю, что эта работа придаст новый импульс и подготовит почву для дальнейших исследований излучателей накаливания, проложив путь для будущего дизайна коммерчески масштабируемых структур ».

Используемая технология имеет потенциал для многих других применений, помимо ламп накаливания, — говорит Солячич. Тот же подход может «иметь драматические последствия» для производительности схем преобразования энергии, таких как термофотовольтаика.В термофотовольтаическом устройстве тепло от внешнего источника (химического, солнечного и т. Д.) Заставляет материал светиться, заставляя его излучать свет, который преобразуется в электричество с помощью фотоэлектрического поглотителя.

«Светодиоды — замечательная вещь, и люди должны их покупать», — говорит Солячич. «Но понимание этих основных свойств» о том, как свет, тепло и материя взаимодействуют и как можно более эффективно использовать энергию света, «очень важно для самых разных вещей».

Он добавляет, что «способность контролировать тепловые выбросы очень важна.Это реальный вклад этой работы ». Что касается того, в каких именно практических приложениях с наибольшей вероятностью будет использоваться эта базовая новая технология, по его словам, «пока рано говорить».

Работа была поддержана Исследовательским офисом армии через Институт солдатских нанотехнологий Массачусетского технологического института и исследовательский центр S3TEC Energy Frontier, финансируемый Министерством энергетики США.

7.2: Устройства, вызывающие спонтанное излучение

Спонтанное излучение происходит во многих коммерчески доступных потребительских товарах.В этом разделе рассматриваются три категории устройств, преобразующих электричество в свет путем спонтанного излучения: лампы накаливания, газоразрядные лампы и светодиоды.

Лампы накаливания

Лампа накаливания — это устройство, преобразующее электричество в свет посредством излучения абсолютно черного тела. Эти устройства обычно состоят из твердой металлической нити внутри вакуумной трубки со стеклянными стенками. Через нить накала проходит ток, который нагревает ее до температуры в тысячи градусов. Высокие температуры используются, потому что видимый спектральный отклик дневного света близок к видимому спектральному отклику излучателя черного тела при температуре 6500 К [87].Основное ограничение ламп накаливания — их КПД. Большая часть электромагнитного излучения, испускаемого излучателем черного тела, выходит за пределы видимого диапазона.

Основное преимущество ламп накаливания перед другими технологиями — их простота. По этой причине лампы накаливания были одними из первых разработанных ламп. Хамфри Дэви продемонстрировал, что излучение абсолютно черного тела можно использовать для получения видимого света в 1802 году, а практические лампы накаливания относятся к 1850-м годам [88].Чтобы разработать эти практичные лампы накаливания, необходимо было разработать технологию вакуумной откачки и технологию очистки металла, используемого для изготовления нитей накаливания [88].

В некотором смысле лампа накаливания похожа на антенну. В обоих случаях вход принимает форму электричества, и эта электрическая энергия преобразуется в электромагнитную энергию, проходя через проводящий провод. В антенне входной сигнал изменяется во времени для кодирования информации, а выход — на радио- или микроволновых частотах.Однако в лампе накаливания вход обычно переменного тока и не содержит информации. Желаемая мощность лампы накаливания — видимый свет, но она также производит тепло и электромагнитное излучение в инфракрасных и других невидимых диапазонах. Кроме того, антенны обычно проектируются для работы на длине волны, близкой к длине антенны, и такие антенны могут создавать волны с определенной электромагнитной поляризацией и диаграммами направленности. Однако спонтанное излучение в лампах накаливания обязательно неполяризовано и некогерентно.

Газоразрядные лампы

Газовый разряд возникает, когда через плазму, ионизированный газ, образуется проводящий путь [89]. Газоразрядные устройства преобразуют электричество в свет путем спонтанного излучения, когда образуется токопроводящий путь этого типа. В 1802 г., помимо демонстрации излучения абсолютно черного тела и предложения идеи топливного элемента, Хэмфри Дэви продемонстрировал газоразрядное устройство [3, с. 222] [88]. Примерно в то же время В. Петров продемонстрировал газовый разряд [88]. Одна из первых практичных газоразрядных ламп, угольная дуговая лампа, была построена Леоном Фуку в 1850 году и использовалась для освещения театров [88].Разработка газоразрядных ламп потребовала возможности очистки газов в дополнение к развитию технологии вакуумной откачки [88]. 5 Па \) для разных ламп [87, с.206]. Типичное расстояние между электродами составляет порядка сантиметров [87]. В некоторых неоновых лампах расстояние между электродами составляет 1 мм, в то время как во многих люминесцентных лампах расстояние между электродами превышает 1 м. На электроды прикладываются от сотен до миллионов вольт [89]. Трансформаторы используются для достижения этих высоких уровней напряжения. Напряжение между электродами ионизирует газ внутри трубки и обеспечивает поступление свободных электронов, которые проходят по проводящему пути между электродами [89]. Газ может быть ионизирован, а электроны поданы другими методами, такими как химические реакции, статическое электрическое поле или оптическое поле [87, гл.5]. Электроны могут также поступать в газ за счет термоэлектронной эмиссии, выкипающей электроны с катода.

Оптические свойства лампы определяются газом внутри трубки. Энергия, передаваемая электрическим полем через электроды или другим способом, возбуждает электроны атомов газа на более высокие энергетические уровни. Спонтанное излучение происходит только между различными разрешенными уровнями энергии, поэтому излучение происходит в относительно узких диапазонах длин волн. Выбираются газы, имеющие разрешенные переходы уровней энергии в желаемом диапазоне длин волн.Типичные используемые газы включают гелий, неон, натрий и ртуть [87, с. 514].

Газоразрядные лампы классифицируются как устройства тлеющего разряда или устройства дугового разряда. На рисунке \ (\ PageIndex {1} \) показан пример графика зависимости тока между электродами от напряжения. Как показано на рисунке, вольт-амперная характеристика газоразрядной трубки весьма нелинейна. Тем не менее, его можно разбить на три общие области, обозначенные как темная область, область свечения и область дуги.Области отличаются изменением наклона вольт-амперной характеристики. Этот рисунок используется с разрешения [89], в котором приведены более подробные сведения о физике газовых разрядов.

Темная рабочая область соответствует низким токам и напряжениям, и говорят, что устройства, работающие в этой области, имеют темный или таунсендовский разряд. Оптическое излучение устройств, работающих в этой области, не является самоподдерживающимся. Хотя атомы газа могут ионизироваться и сталкиваться с другими атомами, цепная реакция ионизации не происходит.Переход между темным и тлеющим разрядами называется искрой [87, с. 160]. На рис. \ (\ PageIndex {1} \) VS — напряжение искры. Вторая область, соответствующая более высоким токам, называется областью свечения, и эта область называется самоподдерживающейся, потому что ионы сталкиваются и ионизируют дополнительные атомы газа, производя больше свободных электронов в лавинном процессе. Значительное спонтанное излучение происходит в области тлеющего разряда [87] [89]. Третий участок, соответствующий еще большему току, называется областью дуги.Дуговые разряды также являются самоподдерживающимися [87, с. 290], и возникает спонтанное излучение. После установления дугового разряда для его поддержания требуются относительно низкие напряжения по сравнению с напряжениями, необходимыми для поддержания тлеющего разряда.

Рисунок \ (\ PageIndex {1} \): Пример вольт-амперной характеристики газоразрядной лампы. Рисунок использован с разрешения из [89].

Люминесцентные лампы — это тип газоразрядного устройства, в котором используются химические вещества с желаемыми оптическими свойствами, называемые люминофором [87, с.542]. Напряжение газа и электродов, используемых в люминесцентных лампах, выбирается таким образом, чтобы производимое спонтанное излучение происходило на ультрафиолетовых частотах. Эти УФ-фотоны могут создаваться дугой или тлеющим разрядом. Произведенные УФ-фотоны поглощаются молекулами люминофора, и молекулы люминофора излучают свет с более низкими частотами. Примеры используемых люминофоров включают силикат цинка, вольфрамат кальция и сульфид цинка [87, с. 542].

Светодиоды

Светодиоды

— это устройства, которые посредством спонтанного излучения преобразуют электричество в свет.Они сделаны из pn переходов в полупроводниках. Pn-переходы обсуждались в разделе 6.5. Когда прямое смещение прикладывается к pn переходу, в переход инжектируются электроны и дырки. Энергия источника питания возбуждает электроны из валентной зоны в зону проводимости. Эти возбужденные электроны могут проходить через материал намного легче, чем невозбужденные. Некоторые электроны и дырки рядом с переходом объединяются и при этом спонтанно испускают фотоны. Некоторые светодиоды имеют тонкий внутренний нелегированный слой между слоями p-типа и n-типа на стыке для повышения эффективности.

Светодиоды

излучают свет в относительно узком диапазоне частот. Частота излучаемого света определяется запрещенной зоной полупроводника. Полупроводники используются, потому что запрещенная зона полупроводников соответствует энергии фотонов ближнего ультрафиолетового, видимого или инфракрасного диапазона. В то время как свет, излучаемый светодиодами, имеет узкий диапазон частот, лазеры излучают свет с гораздо более узким диапазоном частот. Светодиоды излучают свет в узком частотном диапазоне, но для таких приложений, как освещение жилых помещений, требуется белый свет с более широкой полосой пропускания.Одна из стратегий, используемых для получения белого света от светодиода, — это использование люминофоров. В таком устройстве светодиод преобразует электричество в ближний УФ или синий свет. Люминофоры поглощают синий свет и излучают свет с более низкой энергией с длинами волн в видимом диапазоне. По этой причине синие светодиоды были особенно важны для генерации белого света. С момента изобретения красных светодиодов в 1960-х годах до появления надежных синих светодиодов в 1980-х и 1990-х годах прошли десятилетия. В 2014 году Исаму Акасаки, Хироши Амано и Сюдзи Накамура были удостоены Нобелевской премии по физике за свою работу по разработке синих светодиодов.Эти усилия потребовали разработки технологии осаждения новых материалов, таких как нитрид галлия, и возможности осаждения этих материалов в очень чистых слоях без механической деформации, разрывающей материалы [90].

Родственное устройство, излучающее свет путем спонтанного излучения, представляет собой органический светоизлучающий диод, OLED. В OLED напряжение возбуждает электроны в тонком слое 100-200 нм органического материала, а тип используемого органического материала определяет длину волны излучаемого света [91].Некоторые плоские дисплеи состоят из массивов OLED. Белый свет в этих дисплеях достигается за счет комбинации красных, зеленых и синих OLED, расположенных рядом друг с другом [91].

Светодиоды

— это небольшие устройства, которые часто могут уместиться в кубический миллиметр. По этой причине их легче интегрировать в электронику, чем такие устройства, как лампы накаливания и газоразрядные лампы, для которых требуются вакуумные лампы. Для работы светодиодов требуется электричество низкого напряжения. Поскольку им требуется небольшая входная электрическая мощность, они производят небольшую выходную оптическую мощность.Лампы накаливания и газоразрядные лампы имеют преимущества в приложениях с высокой мощностью, но в этих приложениях также могут использоваться массивы светодиодов. Еще одно преимущество светодиодов в том, что они имеют более длительный срок службы. В газоразрядных лампах электроды разбрызгиваются, осаждая материал на поверхности трубки, ограничивая срок службы устройства.

Электрическая история: Освещение до лампы накаливания

Еще в середине 1800-х годов спички произвели революцию в использовании искусственного света.В то время в домах и на предприятиях масляные лампы были преобладающим источником света после захода солнца, но зажечь их было непростой задачей до тех пор, пока на месте происшествия не появилась спичка.

До матч, однако было предпринято несколько творческих попыток создать портативный и многоразовый осветительный прибор.

Платиновая зажигалка для губки, ок. 1830 г.

Один такой попыткой была платиновая губчатая зажигалка, в которой подвешивался небольшой кусок платина похожа на стальную вату в стеклянном корпусе.Когда водородный газ был попадание в контейнер, платина спонтанно воспламенилась бы, зажигая водород и производя небольшую струю пламени. Это пламя было тогда перевели на маленькую спиртовую лампу, и водородный пожар был потушен. Затем спиртовую лампу можно было переносить по всему зданию, чтобы зажечь масло. лампы. Конечно, как вы уже догадались, устройства могли быть немного привередливый. Неправильно смешали водород и воздух, и… бум. Может быть, поэтому это Сейчас так сложно найти образцы старых водородных ламп.

В то время как повсеместная доступность серной спички сделала такие лампы-осветительные приборы. устарело, набирало обороты еще одно изобретение, целью которого было поставить масляную лампу сам не у дел.

Углерод дуговая лампа была изобретена в начале 1800-х годов Хамфри Дэви, британским химиком и изобретатель. Устройство работало, пропуская электрический ток через два угольных электрода. электроды разделены воздушным зазором. Тепло испарило углерод на концах электродов, излучающих яркий свет.Со временем угольные электроды перегорят, что потребует регулировки устройства для поддержания надлежащего зазор.

В конце концов (начиная с 1870-х годов и продолжаясь в течение нескольких десятилетий после этого) дуга лампа будет широко использоваться для освещения улиц и больших зданий. Но получая потребуется преодоление некоторых ограничений устройства.

Электродуговая лампа Serrin, производство Breguet, ок. 1857

К середине века многие люди оснастили дуговые лампы электромагнитными регуляторы, которые поддерживали дугу при сгорании угольных электродов.Однако для зажигания дуги угольные стержни все же нужно было коснуться. вместе ненадолго, а затем расстались. Механизмы автоматизации этого процесса не помогли существуют, поэтому это нужно было делать вручную. Это было большой проблемой, особенно когда лампы находились в труднодоступных местах или погасли после того, как началось.

француз Виктор Серрен разработал первую самозапускающуюся саморегулирующуюся дуговую лампу в г. 1850-е гг. Единственный известный образец этого устройства, построенный в 1857 г. Французский производитель инструментов Луи Клеман Франсуа Бреге находится в SPARK Музей.

Serrin’s популярный дизайн был принят в качестве основного выбора для французских маяков, где прослужил много лет.

К тому времени Томас Эдисон начал серьезно работать над дизайном лампы накаливания. лампочка в конце 1870-х годов, дуговое освещение прочно закрепилось на рынке (во многом благодаря изобретению динамо-машины, которая является темой для другой день). Лампа накаливания заменит дуговое освещение. конечно, но это уже отдельная история.Эту историю лучше всего рассказал один из Удивительные доценты SPARK, пока вы смотрите на самую редкую из всех ламп Эдисона — один показан на демонстрации Эдисона в Менло-парке в канун Нового года в 1879 году — в Музее электрических изобретений SPARK в Беллингеме.

10 Преимущества технологии светодиодного освещения

10 сентября 2019

Светодиодное освещение

представляет собой последнюю разработку в индустрии освещения.Энергоэффективность и значительный срок службы светодиодных технологий обладают всем потенциалом для изменения того, как организации украшают свои помещения за счет снижения затрат на электроэнергию и общего энергопотребления.

Что такое светодиодное освещение?

LED — светодиод. Светодиод — это полупроводниковое устройство, генерирующее свет посредством процесса, называемого электролюминесценцией. Когда вы пропускаете электрический ток через полупроводниковый материал, он излучает видимый свет. Таким образом, светодиод резко контрастирует с фотоэлектрическим элементом, который используется в солнечных батареях для преобразования видимого света в электричество.

Мы знаем о технологиях, лежащих в основе светодиодов, уже много лет. Внося свой вклад в разработку твердотельных транзисторов, светодиодные технологии помогли высадить космонавта на Луну и создать портативные AM-радиоприемники!

В начале 60-х молодой ученый из General Electric разработал первые светодиоды. Компании сначала использовали их в качестве индикаторов для печатных плат, и они стали известны своей долговечностью и энергоэффективностью. Многие муниципалитеты использовали светодиоды второго поколения, которые стали доступны в 80-х и 90-х годах, в качестве замены традиционных ламп накаливания в уличных фонарях.Некоторые люди начали экспериментировать с их использованием в качестве замены люминесцентных ламп в наружных вывесках.

В настоящее время мы работаем со светодиодами третьего поколения. Это последнее поколение светильников служит дольше, долговечнее, работает лучше и более энергоэффективно, чем любой другой источник освещения. Многие промышленные, коммерческие и жилые объекты в настоящее время используют светодиоды для самых разных целей.

Узнайте о наших решениях для светодиодного освещения

Преимущества светодиодного освещения

Светодиодное освещение

предлагает множество преимуществ для промышленных и коммерческих предприятий, которые заинтересованы в снижении энергопотребления и затрат.Вот некоторые преимущества светодиодных фонарей:

1. Длительный срок службы

Срок службы светодиодной лампы намного выше, чем у обычной лампы накаливания. Срок службы лампы накаливания в среднем составляет около тысячи часов. Срок службы средней светодиодной лампы составляет 50 000 часов. В зависимости от того, как вы его используете, срок его службы может достигать 100 000 часов. Это означает, что светодиодный светильник может прослужить от шести до 12 лет, прежде чем вам потребуется его заменить. Это в 40 раз длиннее лампы накаливания.

Даже если вы используете люминесцентные, металлогалогенные или натриевые лампы, светодиодная лампа прослужит как минимум в два-четыре раза дольше.

Таким образом, экономия распространяется не только на затраты на замену, но и на затраты на техническое обслуживание в счетах вашей компании на освещение.

2. Энергоэффективность

Еще одно из главных преимуществ светодиодного освещения — это их энергоэффективная работа. Вы можете измерить энергоэффективность источника освещения в полезных люменах, которые описывают количество света, которое устройство излучает на каждую единицу мощности или ватт, которую использует лампа.Раньше мы измеряли количество люменов, которые он производил, но в действительности некоторые из этих люменов тратятся зря. Светодиодное освещение производит меньше ненужного света и дает больше полезного люмен, чем другие технологии освещения.

Если вы замените все освещение в своем офисе, школе или другом помещении на светодиоды, вы сможете увидеть повышение общей энергоэффективности на 60-70%. В некоторых случаях улучшение может достигать 90%, в зависимости от того, какие лампы вы заменяете и какие светодиодные лампы вы используете.

Эти улучшения в энергоэффективности напрямую связаны с финансовой экономией. Когда вы заменяете традиционный источник света на светодиодный, потребление энергии резко упадет, поэтому светодиодные фонари станут разумным вложением в чистую прибыль любого бизнеса!

3. Улучшение экологических показателей

Для компаний становится все более важным становиться экологичным. Клиенты все чаще ищут экологически безопасные варианты, и использование экологически безопасных источников света может помочь компаниям сократить потребление энергии, а также привлечь социально сознательных потребителей.

Экологические преимущества светодиодного освещения также распространяются на их производственный процесс. Многие традиционные источники освещения, такие как люминесцентные лампы и лампы с парами ртути, используют ртуть для внутренних целей как часть своей конструкции. Из-за этого, когда они достигают конца своей жизни, они требуют особого обращения. Вам не нужно беспокоиться ни об одной из этих проблем со светодиодной подсветкой.

4. Возможность работы в холодных условиях

Традиционные источники освещения не любят холода.Когда температура падает, источникам освещения, особенно люминесцентным лампам, требуется более высокое напряжение для запуска, и интенсивность их света уменьшается.

С другой стороны, светодиодные фонари

работают лучше при низких температурах примерно на 5%. Вот почему светодиодные фонари являются лучшим выбором для освещения, необходимого в морозильных камерах, шкафчиках для мяса, холодильных камерах или холодильных витринах. Их способность эффективно работать в холодную погоду также делает их идеальным выбором для освещения парковок, освещения по периметру зданий и освещения для наружных вывесок.

5. Отсутствие тепла или ультрафиолетового излучения

Если вы когда-нибудь пытались заменить лампочку накаливания сразу после того, как она погасла, вы знаете, насколько сильно они нагреваются, когда используются. Многие традиционные источники освещения, такие как лампы накаливания, превращают более 90% энергии, которую они используют для нагрева, выделяя только 10% энергии на фактическое производство света.

Светодиоды

почти не излучают тепла, и большая часть излучаемого ими света находится в пределах видимого спектра. Эта функция является одной из причин, по которой медицинские эксперты рассматривают светодиоды как возможное решение сезонного аффективного расстройства (САР), которое поражает многих людей в темные месяцы года.

Это также делает светодиоды идеальными для освещения произведений искусства, которые со временем ухудшаются или выходят из строя под воздействием ультрафиолетовых лучей.

6. Гибкость дизайна

светодиода очень маленькие (размером с перец). Это означает, что их можно использовать практически в любом приложении. Помните, что изначально они использовались в качестве светового индикатора на печатной плате. Если объединить их пучками, получится традиционная луковица. Если вы соедините серию светодиодных фонарей, вы создадите линию или серию огней — как гирлянду рождественских огней.

Подумайте о возможностях освещения на вашем предприятии. Светодиодные устройства могут быть настолько маленькими, что вы можете использовать их для освещения всего, от цеха до футбольного стадиона высшей лиги.

7. Мгновенное освещение и способность выдерживать частые переключения

Если вам нужен свет, который должен быстро загораться, выберите светодиодное освещение. Светодиодные фонари могут включаться и выключаться мгновенно. Например, если вы используете металлогалогенную лампу, вам нужно подготовиться к периоду прогрева.Подумайте о том, как флуоресцентный свет мигает, когда вы его включаете, и часто требуется две или три секунды, прежде чем он полностью загорится. Вот некоторые из сложностей, которые можно обойти, установив светодиодные фонари.

Кроме того, традиционные источники освещения имеют более короткий срок службы, если их часто включать и выключать. На светодиодные фонари не влияет частое переключение. Это не приводит к сокращению их срока службы или эффективности.

Эта функция делает светодиоды идеальным решением для вашего бизнеса, если вам нужно, чтобы свет снова включился сразу после отключения электроэнергии или скачка напряжения.Эта возможность также полезна, если вы хотите, чтобы ваш свет загорелся незамедлительно, когда сотрудник открывает здание рано утром до восхода солнца.

Поскольку светодиоды не зависят от включения и выключения, их можно быстро переключать для мигающих световых дисплеев или приложений, для которых требуются датчики, которые часто переключаются с включения на выключение и обратно.

8. Работа при низком напряжении

Если ваш бизнес находится в месте, где может произойти наводнение, вы хотите иметь возможность освещать свое предприятие устройствами, требующими как можно меньшего напряжения.Светодиоды идеально подходят для этого, потому что они работают от очень низкого напряжения. Когда вы используете низковольтную систему в зонах, которые могут быть подвержены наводнениям, вы защищаете свой персонал и других людей от потенциально опасных или смертельных ударов. Если во время очистки от наводнения кто-то по ошибке прикоснется к какому-либо электрическому компоненту, низковольтная система освещения, вырабатывающая 12 вольт, будет намного безопаснее, чем система линейного напряжения, вырабатывающая 120 вольт.

Это также делает их чрезвычайно полезными для использования на открытом воздухе, где другие решения по освещению могут не соответствовать местным нормам.

9. Возможности затемнения

Светодиоды

хорошо работают практически при любом проценте мощности, примерно от 5% до 100%. Некоторые источники освещения, такие как галогениды металлов, при затемнении работают менее эффективно. Иногда их вообще нельзя затемнить.

Обратное верно для светодиодного освещения. Когда вы используете не полную мощность светодиодной лампы, она работает более эффективно. Эта функция также дает другие преимущества. Это увеличивает срок службы лампы и означает, что вы потребляете меньше энергии, тем самым снижая свои затраты на электроэнергию.

Важно отметить, что вы не можете использовать традиционное оборудование для затемнения света при использовании светодиодов. Им нужно оборудование, соответствующее их технологии.

10. Направленность

Любая традиционная осветительная техника излучает свет на 360 ° вокруг источника света. Это означает, что если вы хотите, чтобы свет освещал определенную область, вам необходимо приобрести аксессуары, чтобы направлять или отклонять свет в нужном направлении.

Если вы не используете что-то для отражения или перенаправления света, вы потратите энергию на освещение областей, не требующих освещения, что приведет к более высоким затратам на электроэнергию.

Однако светодиодный светильник освещает только область 180 °, что делает светодиодное освещение идеальным, когда вам нужно встраиваемое освещение на промышленной кухне, в коридоре или в ванной комнате. Он также идеально подходит для освещения произведений искусства не только потому, что не ухудшает качество изображения, но и потому, что вы не теряете мощность освещения на задней стороне источника света.

Решения для коммерческого светодиодного освещения

Если вы хотите повысить энергоэффективность, упростить обслуживание или улучшить экологические характеристики вашей осветительной техники, светодиодное освещение — это решение для вас.

Светодиодные лампы

стоят больше, чем традиционные источники освещения, но с каждым годом эти расходы снижаются. Даже если вам придется заплатить немного больше вперед, то, что вы сэкономите в долгосрочной перспективе, с лихвой компенсирует более высокие первоначальные затраты. Светодиодные фонари — одно из важнейших достижений в снижении энергопотребления и затрат за последние несколько десятилетий.

Эти применения и преимущества — некоторые из многих причин, по которым светодиоды стали настолько популярными в бизнес-приложениях. По оценкам Министерства энергетики, если к 2027 году больше предприятий, компаний, правительственных организаций и частных лиц перейдут на светодиодное освещение, это может сэкономить 348 тераватт-часов электроэнергии.Это эквивалентно годовой выработке 44 крупных электростанций и приводит к экономии почти 30 миллиардов долларов для предприятий, компаний и частных лиц в Соединенных Штатах.

Узнайте о наших решениях для светодиодного освещения

Пусть SitelogIQ поможет вам найти решение для коммерческого светодиодного освещения

Команда SitelogIQ может помочь вам найти правильное решение освещения для вашего объекта и обеспечить беспроблемный процесс установки. Как национальный поставщик решений для светодиодного освещения для коммерческих и промышленных предприятий, мы располагаем 33 офисами в США и можем предоставить готовые решения и консультации для проектов любого размера.В нашу команду входят эксперты по энергоэффективности, инженеры и менеджеры проектов, которые могут помочь вам принять обоснованные решения о том, как вы можете использовать светодиодное освещение. Мы помогли больницам, школам K-12, федеральным тюрьмам, ледовым каткам и многим предприятиям сделать правильный выбор энергии.

Если вас интересует светодиодное решение для нового здания, производственного объекта или завода, или вы хотите модернизировать существующее, мы можем помочь. Если вы хотите поговорить с нами о решениях светодиодного освещения для вашего бизнеса, вы можете связаться с нами по телефону 888.819.0041 или заполните нашу онлайн-форму для связи. Мы будем рады помочь вам услышать ваше мнение и помочь найти правильное решение для уникальных потребностей вашей компании.

Подпишитесь на обновления SitelogIQ!

3 лучших лампочки для вашей бытовой техники

Различные лампочки могут повлиять на работу вашей бытовой техники. Узнайте о различиях и о том, что лучше всего подойдет для каждой из ваших бытовых приборов.

Автор фотографии: Shutterstock

Когда гаснет свет в духовке или холодильнике, может возникнуть соблазн использовать любую лампочку, которая есть у вас под рукой.Но на самом деле это не лучшее решение. Для бытовых приборов требуются лампы меньшего профиля, которые специально созданы для того, чтобы выдерживать тепло и содержат прочные нити, которые выдерживают вибрации от открывания и закрывания дверцы прибора. Также важно использовать лампочки с рекомендованной мощностью и правильным размером цоколя. Духовки, микроволновые печи, плиты, вытяжки, холодильники, морозильники и сушилки относятся к тем приборам, которым требуются эти специальные лампы.

В бытовой технике чаще всего используются лампы накаливания, галогенные лампы и компактные люминесцентные лампы (КЛЛ).Вот как они работают:

Лампы накаливания

• Содержат вольфрамовую нить
• Электрический ток нагревает нить для получения света
• Обычно содержит шток или стеклянную опору в основании для предотвращения утечек воздуха
• Шток заделан небольшими проволоками для поддержки нити
• Вакуум или инертный газ защищает нить от испаряющийся

Галогенная лампа

• Функционирует аналогично лампе накаливания
• Использует галогенный цикл
• Галогеновый газ способствует повторному осаждению вольфрама на нити накала для увеличения срока службы лампы

Компактные люминесцентные лампы (КЛЛ)

• Электричество излучается катодами, которые возбуждают пары ртути (неупругое рассеяние).
• Стеклянная оболочка содержит люминофор и благородный газ (напр.g., аргон)
• Атомы ртути излучают ультрафиолетовый (УФ) свет, заставляя люминофоры светиться и производить свет


Некоторые лампы можно использовать более чем в одном типе приборов.

Например, лампа накаливания на 40 Вт может быть той же лампой, что и в вашей духовке и вытяжке.

Вот некоторые из ламп, которые можно использовать в различных приборах.

Духовка: Для многих духовок требуются трубчатые галогенные лампы мощностью 15 Вт, в то время как другим требуется электрическая лампа мощностью 40 Вт.

Микроволновая печь: Часто требуется микроволновая лампа T7 мощностью 25 Вт. Имеет промежуточное основание и иногда используется в диапазонах и швейных машинах.

Холодильник: Обычно используется стандартная базовая лампа мощностью от 25 до 40 Вт, но в некоторых холодильниках используется лампа с промежуточным цоколем T8.

Сушилка: В большинстве сушилок используется лампа C7 на 10 Вт, 120 В.

В 2012 году производители и розничные продавцы начали поэтапный ввод ламп, которые соответствуют стандартам, требуемым Законом об энергетической независимости и безопасности (EISA), принятым Конгрессом в 2007 году.Закон требует более высоких стандартов эффективности для основных лампочек, но не распространяется на все специальные лампы. Лампочки для бытовых приборов не подпадают под действие этого правила.

Перед тем, как отправиться в хозяйственный магазин за лампами для замены, мы рекомендуем уделить минуту и ​​ознакомиться с руководством пользователя устройства, чтобы узнать, какие лампы рекомендуются производителем. Если у вас больше нет руководства, вы, вероятно, можете найти его в Интернете на веб-сайте производителя, указав номер модели принадлежащего вам устройства.

Next > Избегайте перегорания в микроволновой печи: простые советы по устранению неполадок

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *