Виды тиристоров: . , , , , . , . , , , , .

Содержание

Виды тиристоров и их особые свойства

Полупроводниковые технологии все еще разрабатываются и совершенствуются. За несколько десятилетий появились новые разновидности тиристоров, которые имеют некоторые отличия.

  • Динисторы или диодные тиристоры. Отличаются тем, что имеют только два вывода. Открываются подачей на анод и катод высокого напряжения в виде импульса. Называют еще «неуправляемые тиристоры».

  • Тринисторы или триодные тиристоры. В них есть управляющий электрод, но управляющий импульс может подаваться:

    • На управляющий выход и катод. Название — с управлением катодом.

    • На управляющий электрод и анод. Соответственно — управление анодом.

Тиристоры могут управляться как с анода, так и с катода

Есть также разные виды тиристоров по способу запирания. В одном случае достаточно уменьшения анодного тока ниже уровня тока удержания. В другом случае — подается запирающее напряжение на управляющий электрод.

Основные параметры тиристоров

  • Максимально допустимый прямой ток. Это максимальное значение тока открытого тиристора. У мощных приборов оно достигает сотен ампер.

  • Максимально допустимый обратный ток.

  • Прямое напряжение. Это падение напряжения при максимальном токе.

  • Обратное напряжение. Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности.

  • Напряжение включения. Это минимальное напряжение, приложенное к аноду. Здесь имеется ввиду минимальное напряжение, при котором вообще возможна работа тиристора.

  • Минимальный ток управляющего электрода. Он необходим для включения тиристора.

  • Максимально допустимый ток управления.

  • Максимально допустимая рассеиваемая мощность.

65)Эквивалентная схема однофазного двухполупериодного управляемого выпрямителя со средней точкой:

Выражение для угла коммутации у из соотношения

Влияние угла управления а и параметра у0 на угол коммутации управляемого выпрямителя при 1 -у0 = 1°, 2-5°, 3 -10°, 4 — 20°, 5 — 30°, 6 — 40°

Характерные диаграммы для управляемого выпрямителя с учетом явления коммутации

64) Диаграмма работы однофазного УВ с нулевым диодом

Однофаз­ный управляемый выпрямитель

применение нулевого диода позволяет уменьшить нагрузку на тиристоры (в особенности при больших ) и поднятьвыпрямителя.

61) Двухполупериодная мостовая вентильная схема с противо-эдс

Тиристоры. Виды — презентация онлайн

1. ТИРИСТОРЫ

• По способу действия тиристор можно сравнить с
переключателем или ключом.
• Переключается тиристор при помощи
напряжения, а отключается пропаданием тока
или снятием нагрузки.
• Принцип работы тиристора можно представлять
как ключ с электрическим управлением
Тиристоры
Триодный тиристор
УЭ
Диодный тиристор
А
p
p
n
n
К
А
p
p
n
n
К
Катод
Анод
П1
П2
П3
Принцип работы
П1
П2
Управляющий
П3электрод
— При плавном увеличении напряжения (U) на электродах
(+ к А, — к К → П1 и П3 — открыты, П2 — закрыт) тиристор
закрыт, ток мал.
— При достижении U , равном Uвкл, П1, П2, П3 открыты,
тиристор включается, ток резко возрастает.
— При уменьшении U процессы происходят в обратном
порядке и при достижении Uвыкл тиристор выключается.
Подавая напряжением на УЭ
(+ Uупр) можно изменять Uвкл.

5. Устройство тиристора

• Тиристор, как правило, имеет три выхода.
• Один управляющий и два,
через которые протекает ток.
• При подаче напряжения на управляющий выход,
коммутируется цепь через анод-коллектор.
• Тиристор сравним с транзистором. Только с той
разницей, что у транзистора величина
пропускаемого тока зависит от поданного на
управляющий вывод напряжения, а тиристор
либо полностью открыт, либо полностью закрыт.

6. Внешний вид тиристора

Элементы времен Советского Союза — металлические, с
тремя выводами. Два вывода — катод и управляющий
электрод с одной стороны. Электрод управления меньше по
размерам. Анод может находиться с противоположной
стороны от катода, или торчать вбок из-под шайбы, на
корпусе. Современные тиристоры это небольшой
пластиковый прямоугольник с металлической пластиной
сверху и тремя выводами-ножками снизу. В описании
указаны какой из выводов А, К и УЭ.
Тиристор можно представляют в виде двух
транзисторов, связанных между собой,
каждый из которых работает в активном
режиме.

8. Принцип работы

По принципу действия, тиристор можно сравнить с
диодом. Пропускать ток он будет в одном
направлении — от анода к катоду, но происходить это
будет только в состоянии «открыто».
Если сравнивать с диодом то есть существенные
отличия в выходном напряжении.

9. Принцип работы тиристора

• Стартовое состояние элемента — закрыто.
«Сигналом» к переходу в состояние «открыто»
является появление напряжения между анодом
и управляющим выводом.
• Вернуть тиристор в состояние «закрыто» можно
двумя способами:
• снять нагрузку;
• уменьшить ток ниже тока удержания
(одна из технических характеристик).

10. Работа тиристора в схемах с постоянным напряжением

После кратковременного появления напряжения
между анодом и управляющим выводом, элемент
переходит в состояние «открыто».
Далее может быть два варианта развития событий:
• Состояние «открыто» держится даже после того,
как напряжение анод-выход управления пропало.
Такое возможно если напряжение, поданное на
анод-управляющий
вывод,
выше
чем
неотпирающее
напряжение.
Прекращается
прохождение тока через тиристор, фактически
только разрывом цепи или выключением источника
питания. После восстановления цепи, ток не течет
до тех пор, пока на анод-управляющий вывод снова
не подадут напряжение.
• Состояние «закрыто» после снятия напряжения

11. В схемах постоянного тока есть два варианта использования тиристора — с удержанием открытого состояния и без.

12. Работа тиристора в схемах с переменным напряжением

Принцип
работы
в
схемах
переменного
напряжения существенно отличается.
Возвращение в запертое состояние происходит
«автоматически» — при падении силы тока ниже
порога удержания.
Если напряжение на анод-катод подавать
постоянно, на выходе тиристора получаем
импульсы тока, которые идут с определенной
частотой. Именно так построены импульсные
блоки питания. При помощи тиристора они
преобразуют синусоиду в импульсы.

13. Проверка работоспособности тиристора Проверить тиристор можно либо при помощи мультиметра, либо создав простенькую проверочную

схему. Если при прозвонке иметь
перед иметь информацию о технических
характеристиках, можно проверить сопротивление
переходов

14. Прозвонка мультиметром Переводим прибор в режим прозвонки

Поочередно прикасаемся щупами к парам выводов:
• При подключении щупов к аноду и катоду, прибор
должен показывать обрыв. Если отображаются иные
показатели хоть в одном направлении, тиристор
поврежден.
• Между анодом и управляющим электродом
(выводом) должно быть небольшое сопротивление
в одном из направлений. В противоположном —
обрыв. Если в обоих направлениях или обрыв, или
небольшое сопротивление — элемент поврежден.

15. Виды тиристоров и их особые свойства

• Динисторы или диодные тиристоры.
Отличаются тем, что имеют только два вывода.
Открываются подачей на анод и катод высокого
напряжения в виде импульса. Называют еще
«неуправляемые тиристоры».
• Тринисторы или триодные тиристоры. В них
есть управляющий электрод, но управляющий
импульс может подаваться:
— На управляющий выход и катод. Название — с
управлением катодом.
— На управляющий электрод и анод. Соответственно
— управление анодом.
По мощности
Тиристоры коммутирующие очень большие токи
называют силовыми.
Небольшие модели малоточных схем —
называют маломощными.
По способу запирания
В одном случае достаточно уменьшения
анодного тока ниже уровня тока удержания.
В другом случае — подается запирающее
напряжение на управляющий электрод.

18. Классификакция по проводимости

• Тиристоры проводят ток только в одном
направлении. Обратной проводимости нет.
Но существуют не только такие.
• Имеющие невысокое обратное напряжение,
называются обратно-проводящие.
• С ненормируемой обратной проводимостью
ставят в схемах, где обратное напряжение
возникнуть не может.
• Симисторы или Симметричные тиристоры.
Проводят ток в обоих направлениях.

20. Классификация по особым режимам работы

Можно выделить следующие подвиды тиристоров:
• Запираемые и незапираемые. Принцип работы
тиристора незапираемого немного другой. Он
находится в открытом состоянии когда плюс
приложен к аноду, минус — на катоде.
Переходит в закрытое состоянии при смене
полярности.
• Быстродействующие. Имеют малое время
перехода из одного состояния в другое.
• Импульсные. Очень быстро переходит из одного
состояние в другое, используется в схемах с
импульсными режимами работы.

Основные параметры тиристоров:
Максимальный прямой ток. Значение тока, который может
протекать через анод-катод.
Максимально допустимый обратный ток. Указывается не для
всех видов, только у обратно-проводящих.
Прямое напряжение. Это максимально допустимое падение
напряжения в открытом состоянии при прохождении
максимального тока.
Напряжение включения. Минимальный уровень
управляющего сигнала, при котором тиристор сработает.
Удерживающий ток. Если ток, протекающий через анод-катод
ниже этого значения, устройство переходит в запертое
состояние.
Минимальный ток управляющего сигнала. При подаче тока
ниже этого значения, элемент не откроется.
Максимальный ток управления. Если превысить этот
параметр, p-n переход выйдет из строя.
Рассеиваемая мощность. Определяет величину
подключаемой нагрузки.
Вольтамперная характеристика тиристора
К аноду тиристора подали небольшое положительное
напряжение. Эмиттерные переходы включены в прямом
направлении, а коллекторный в обратном.
Участок от нуля до единицы на вольт-амперной
характеристике будет примерно аналогичен обратной
ветви характеристики диода. Этот режим можно назвать
— режимом закрытого состояния тиристора.
• При увеличении анодного напряжения происходит инжекция
основных носителей в области баз, тем самым происходит накопление
электронов и дырок, что равносильно разности потенциалов на
коллекторном переходе.
• С увеличением тока через тиристор напряжение на коллекторном
переходе начнет уменьшаться, до определенного значения когда
тиристор перейдет в состояние отрицательного дифференциального
сопротивления (участок 1-2).
• После чего все переходы сместятся в прямом направлении тем
самым переведя тиристор в открытое состояние (участок 2-3).
• В открытом состоянии тиристор будет находится до тех пор, пока
коллекторный переход будет смещен в прямом направлении.
• Если же ток тиристора уменьшить, то в результате рекомбинации
уменьшится количество неравновесных носителей в базовых областях
и коллекторный переход окажется смещен в обратном направлении и
тиристор перейдет в закрытое состояние.
При обратном включении тиристора вольт-амперная характеристика
будет аналогичной как и у двух последовательно включенных диодов.
Обратное напряжение будет ограничиваться напряжением пробоя.
Условное обозначение, вольт-амперные характеристики
и параметры тиристоров
Диодный тиристор
А

Триодный тиристор
УЭ
UУЭК
А
К
К
Iа = F(Uа)
Uак


Iадоп
Выключаются
тиристоры обратным
напряжением Uак
Iуд
0
Uвыкл
Uвкл
Uак
Uобрдоп
Uак
Триодный
тиристор
включают по УЭ
Uуэ2 > Uуэ1
Iуд
Uвкл2 Uвкл1
Uобрдоп – наибольшее напряжение, которое может быть приложено в обратном
направлении.
Iа.доп – наибольшее значение постоянного анодного тока в открытом
Uак
состоянии прибора.
Uу.от – напряжение между УЭ и К, соответствующее отпирающему току УЭ.
Симметричные триодные тиристоры
(триаки или симисторы)
ЭТО тиристоры, которые могут переключаться из закрытого
состояния в открытое и наоборот при любых полярностях
напряжения на основных электродах (А и К)

Iуд
Uвыкл
0
Uвкл2
0
Uвыкл
Iуд
Uвкл1
Uак
Внешний вид тиристоров
Пример:
КУ202Н кремниевый триодный
тиристор, Uобр.доп = 400 В , Iадоп = 10 А, Uу.от ≤ 7 В

Типы тиристоров. Что такое тиристор и как он работает

Для того чтобы ясно представить себе работу необходимо дать понятие о сущности работы тиристора.

Управляемый проводник, состоящий из четырех полупроводниковых переходов P-N-P-N. Его принцип работы аналогичен работе диода и осуществляется при поступлении на управляющий электрод электротока.

Прохождение через тиристор тока возможно только в том случае, если потенциал анода будет выше, чем потенциал катода. Ток через тиристор прекращает проходить тогда, когда величина тока снизится до порога закрытия. Ток, который поступает на управляющий электрод не оказывает воздействие на величину тока в основной части тиристора и, кроме того ему не нужна постоянная поддержка при основном состоянии тиристора, он необходим исключительно для открытия тиристора.

Существует несколько решающих характеристик тиристора

В открытом состоянии, благоприятном для токопроводящей функции тиристор характеризуют следующие показатели:

  • Падение напряжения, оно определяется как пороговое напряжение с помощью внутреннего сопротивления.
  • Максимально допустимое значение тока до 5000 А, среднеквадратичная величина, свойственная для самых мощных компонентов.

В запертом состоянии тиристора – это:

  • Прямое максимально допустимое напряжение (выше, чем 5000А).
  • В общем случае прямое и обратное значение напряжения одинаковы.
  • Время запирания или время с минимальным значением, в течение которого на тиристор не осуществляется влияние положительного значения напряжения анода относительно катода, иначе произойдет самопроизвольное отпирание тиристора.
  • Ток управления, свойственный для открытой основной части тиристора.

Существуют тиристоры, предназначенные для работы в схемах, рассчитанных на небольшое значение частоты и для схем с высокой частотой. Это так называемые быстродействующие тиристоры, их область применения рассчитана на несколько килогерц. Для быстродействующих тиристоров характерно использование неодинакового прямого и обратного напряжения.

Для увеличения постоянного значения напряжения

Рис. №1. Габаритно-присоединительные размеры и чертеж тиристора. m 1, m 2 –контрольные точки, в которых происходит замер импульсного напряжения во время открытого состояния. L 1 min –наименьший воздушный промежуток (расстояние) по воздуху между выводами анода и управляющего электрода; L 2 min – минимальное расстояние длина прохождения тока утечки между выводами.

Разновидности тиристоров

  • – тиристор диодный, имеет два вывода анод и катод.
  • Тринистор – триодный тиристор оснащен добавочным управляющим электродом.
  • Симистор – симметричный тиристор, он является встречно-последовательным соединением тиристоров, обладает возможностью пропускать ток в прямом и обратном направлениях.

Рис. №2. Структура (а) и вольт-амперная характеристика (ВАХ) тиристора.

Тиристоры предназначены для работы в схемах с различными границами частот, в обычном применении тиристоры могут соединяться с диодами, который подключается встречно-включенным способом, это свойство используется для того чтобы увеличить постоянное напряжение, величину которого компонент способен выдержать в выключенном состоянии. Для усовершенствованных схем используется тиристор GTO (Gate Turn Oee – запираемый тиристор) , он полностью управляем. Его запирание происходит по управляющему электроду. Использование тиристоров подобного рода нашло применение в очень мощных преобразователях, так как он может пропускать высокие токи.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Тиристоры — это силовые электронные ключи, управляемые не полностью. Нередко в технических книгах можно увидеть еще одно название этого прибора — однооперационный тиристор. Другими словами, под воздействием управляющего сигнала он переводится в одно состояние — проводящее. Если конкретизировать, то он включает цепь. Чтобы она выключалась, необходимо создать специальные условия, которые обеспечивают падение прямого тока в цепи до нулевого значения.

Особенности тиристоров

Тиристорные ключи проводят электрический ток только в прямом направлении, причем в закрытом состоянии он выдерживает не только прямое, но и обратное напряжение. Структура тиристора четырехслойная, имеется три вывода:

  1. Анод (обозначается буквой А).
  2. Катод (буквой С или К).
  3. Управляющий электрод (У или G).

У тиристоров есть целое семейство вольт-амперных характеристик, по ним можно судить о состоянии элемента. Тиристоры — это очень мощные электронные ключи, они способны проводить коммутацию цепей, в которых напряжение может достигать 5000 вольт, а сила тока — 5000 ампер (при этом частота не превышает 1000 Гц).

Работа тиристора в цепях постоянного тока

Обычный тиристор включается путем подачи токового импульса на управляющий вывод. Причем он должен быть положительным (по отношению к катоду). Длительность переходного процесса зависит от характера нагрузки (индуктивная, активная), амплитуды и скорости нарастания в цепи управления импульса тока, температуры кристалла полупроводника, а также приложенного тока и напряжения на имеющиеся в схеме тиристоры. Характеристики схемы напрямую зависят от вида используемого полупроводникового элемента.

В той цепи, в которой находится тиристор, недопустимо возникновение большой скорости нарастания напряжения. А именно такого значения, при котором происходит самопроизвольное включение элемента (даже если нет сигнала в цепи управления). Но одновременно с этим у сигнала управления должна быть очень высокая крутизна характеристики.

Способы выключения

Можно выделить два типа коммутации тиристоров:

  1. Естественная.
  2. Принудительная.

А теперь более подробно о каждом виде. Естественная возникает тогда, когда тиристор работает в цепи переменного тока. Причем происходит эта коммутация тогда, когда ток падает до нулевого значения. А вот осуществить принудительную коммутацию можно большим количеством различных способов. Какое управление тиристором выбрать, решать разработчику схемы, но стоит поговорить о каждом типе отдельно.

Самым характерным способом принудительной коммутации является подключение конденсатора, который был заранее заряжен при помощи кнопки (ключа). LC-цепь включается в схему управления тиристором. Эта цепочка и содержит заряженный полностью конденсатор. При переходном процессе в нагрузочной цепи происходят колебания тока.

Способы принудительной коммутации

Существует еще несколько типов принудительной коммутации. Нередко применяют схему, в которой используется коммутирующий конденсатор, имеющий обратную полярность. Например, этот конденсатор может включаться в цепь при помощи какого-либо вспомогательного тиристора. При этом произойдет разряд на основной (рабочий) тиристор. Это приведет к тому, что у конденсатора ток, направленный навстречу прямому току основного тиристора, будет способствовать снижению тока в цепи вплоть до нуля. Следовательно, произойдет выключение тиристора. Это случается по той причине, что устройство тиристора имеет свои особенности, характерные только для него.

Существуют также схемы, в которых подключаются LC-цепочки. Они разряжаются (причем с колебаниями). В самом начале ток разряда течет навстречу рабочему, а после уравнивания их значений происходит выключение тиристора. После из колебательной цепочки ток перетекает через тиристор в полупроводниковый диод. При этом, покуда течет ток, к тиристору прикладывается некоторое напряжение. Оно по модулю равно падению напряжения на диоде.

Работа тиристора в цепях переменного тока

Если тиристор включить в цепь переменного тока, можно осуществить такие операции:

  1. Включить или отключить электрическую цепь с активно-резистивной или активной нагрузкой.
  2. Изменить среднее и действующее значение тока, который проходит через нагрузку, благодаря возможности регулировать момент подачи сигнала управления.

У тиристорных ключей имеется одна особенность — они проводят ток только в одном направлении. Следовательно, если необходимо использовать их в цепях приходится применять встречно-параллельное включение. Действующие и средние значения тока могут изменяться из-за того, что момент подачи сигнала на тиристоры различный. При этом мощность тиристора должна соответствовать минимальным требованиям.

Фазовый метод управления

При фазовом методе управления с коммутацией принудительного типа происходит регулировка нагрузки благодаря изменению углов между фазами. Искусственную коммутацию можно осуществить при помощи специальных цепей, либо же необходимо использовать полностью управляемые (запираемые) тиристоры. На их основе, как правило, изготавливают которое позволяет регулировать в зависимости от уровня зарядки аккумуляторной батареи.

Широтно-импульсное управление

Называют еще его ШИМ-модуляцией. Во время открытия тиристоров подается сигнал управления. Переходы открыты, а на нагрузке имеется некоторое напряжение. Во время закрытия (в течение всего переходного процесса) не подается сигнал управления, следовательно, тиристоры не проводят ток. При осуществлении фазового управления токовая кривая не синусоидальна, происходит изменение формы сигнала напряжения питания. Следовательно, происходит также нарушение работы потребителей, которые чувствительны к высокочастотным помехам (появляется несовместимость). Несложную конструкцию имеет регулятор на тиристоре, который без проблем позволит изменить необходимую величину. И не нужно применять массивные ЛАТРы.

Тиристоры запираемые

Тиристоры — это очень мощные электронные ключи, используются для коммутации высоких напряжений и токов. Но есть у них один огромный недостаток — управление неполное. А если конкретнее, то это проявляется тем, что для отключения тиристора нужно создавать условия, при котором прямой ток будет снижаться до нуля.

Именно эта особенность накладывает некоторые ограничения на использование тиристоров, а также усложняет схемы на их основе. Чтобы избавиться от такого рода недостатков, были разработаны специальные конструкции тиристоров, которые запираются сигналом по одному электроду управления. Их называют двухоперационными, или запираемыми, тиристорами.

Конструкция запираемого тиристора

Четырехслойная структура р-п-р-п у тиристоров имеет свои особенности. Они придают им отличия от обычных тиристоров. Речь сейчас идет о полной управляемости элемента. Вольт-амперная характеристика (статическая) при прямом направлении такая же, как и у простых тиристоров. Вот только прямой ток тиристор может пропускать куда больший по значению. Но функции блокировки больших обратных напряжений у запираемых тиристоров не предусмотрено. Поэтому необходимо соединять его встречно-параллельно с

Характерная особенность запираемого тиристора — это значительное падение прямых напряжений. Чтобы произвести отключение, следует осуществить подачу на управляющий вывод мощного импульса тока (отрицательного, в соотношении 1:5 к прямому значению тока). Но только длительность импульса должна быть как можно меньшей — 10… 100 мкс. Запираемые тиристоры обладают более низким значением предельного напряжения и тока, нежели обычные. Разница составляет примерно 25-30 %.

Виды тиристоров

Выше были рассмотрены запираемые, но существует еще немало типов полупроводниковых тиристоров, о которых также стоит упомянуть. В самых различных конструкциях (зарядные устройства, переключатели, регуляторы мощности) используются определенные типы тиристоров. Где-то требуется, чтобы управление проводилось путем подачи потока света, значит, используется оптотиристор. Его особенность заключается в том, что в цепи управления используется кристалл полупроводника, чувствительный к свету. Параметры тиристоров различны, у всех свои особенности, характерные только для них. Поэтому нужно хотя бы в общих чертах представлять, какие виды этих полупроводников существуют и где они могут применяться. Итак, вот весь список и основные особенности каждого типа:

  1. Диод-тиристор. Эквивалент этого элемента — тиристор, к которому подключен встречно-параллельно полупроводниковый диод.
  2. Динистор (диодный тиристор). Он может переходить в состояние полной проводимости, если превышается определенный уровень напряжения.
  3. Симистор (симметричный тиристор). Его эквивалент — два тиристора, включенных встречно-параллельно.
  4. Тиристор инверторный быстродействующий отличается высокой скоростью коммутации (5… 50 мкс).
  5. Тиристоры с управлением Часто можно встретить конструкции на основе МОП-транзисторов.
  6. Оптические тиристоры, которые управляются потоками света.

Осуществление защиты элемента

Тиристоры — это приборы, которые критичны к скоростям нарастания прямого тока и прямого напряжения. Для них, как и для полупроводниковых диодов, характерно такое явление, как протекание обратных токов восстановления, которое очень быстро и резко падает до нулевого значения, усугубляя этим вероятность возникновения перенапряжения. Это перенапряжение является следствием того, что резко прекращается ток во всех элементах схемы, которые имеют индуктивность (даже сверхмалые индуктивности, характерные для монтажа — провода, дорожки платы). Для осуществления защиты необходимо использовать разнообразные схемы, позволяющие в динамических режимах работы защититься от высоких напряжений и токов.

Как правило, источника напряжения, который входит в цепь работающего тиристора, имеет такое значение, что его более чем достаточно для того, чтобы в дальнейшем не включать в схему некоторую дополнительную индуктивность. По этой причине в практике чаще используется цепочка формирования траектории переключения, которая значительно снижает скорость и уровень перенапряжения в схеме при отключении тиристора. Емкостно-резистивные цепочки наиболее часто используются для этих целей. Они включаются с тиристором параллельно. Имеется довольно много видов схемотехнических модификаций таких цепей, а также методик их расчетов, параметров для работы тиристоров в различных режимах и условиях. А вот цепь формирования траектории переключения запираемого тиристора будет такая же, как и у транзисторов.

8 января 2013 в 19:23
  • Электроника для начинающих

Добрый вечер хабр. Поговорим о таком приборе, как тиристор. Тиристор — это полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три или больше взаимодействующих выпрямляющих перехода. По функциональности их можно соотнести к электронным ключам. Но есть в тиристоре одна особенность, он не может перейти в закрытое состояние в отличие от обычного ключа. Поэтому обычно его можно найти под названием — не полностью управляемый ключ.

На рисунке представлен обычный вид тиристора. Состоит он из четырех чередующихся типов электро-проводимости областей полупроводника и имеет три вывода: анод, катод и управляющего электрод.
Анод — это контакт с внешним p-слоем, катод — с внешним n-слоем.
Освежить память о p-n переходе можно .

Классификация

В зависимости от количества выводов можно вывести классификацию тиристоров. По сути все очень просто: тиристор с двумя выводами называется динисторами (соответственно имеет только анод и катод). Тиристор с тремя и четырьмя выводами, называются триодными или тетродными. Также бывают тиристоры и с большим количеством чередующихся полупроводниковых областей. Одним из самых интересных является симметричный тиристор (симистор), который включается при любой полярности напряжения.

Принцип работы



Обычно тиристор представляют в виде двух транзисторов, связанных между собой, каждый из которых работает в активном режиме.

В связи с таким рисунком можно назвать крайние области — эмиттерными, а центральный переход — коллекторным.
Чтобы разобраться как работает тиристор стоит взглянуть на вольт-амперную характеристику.


К аноду тиристора подали небольшое положительное напряжение. Эмиттерные переходы включены в прямом направлении, а коллекторный в обратном. (по сути все напряжение будем на нем). Участок от нуля до единицы на вольт-амперной характеристике будет примерно аналогичен обратной ветви характеристики диода. Этот режим можно назвать — режимом закрытого состояния тиристора.
При увеличении анодного напряжения происходит происходит инжекция основных носителей в области баз, тем самым происходит накопление электронов и дырок, что равносильно разности потенциалов на коллекторном переходе. С увеличением тока через тиристор напряжение на коллекторном переходе начнет уменьшаться. И когда оно уменьшится до определенного значения, наш тиристор перейдет в состояние отрицательного дифференциального сопротивления (на рисунке участок 1-2).
После этого все три перехода сместятся в прямом направлении тем самым переведя тиристор в открытое состояние (на рисунке участок 2-3).
В открытом состоянии тиристор будет находится до тех пор, пока коллекторный переход будет смещен в прямом направлении. Если же ток тиристора уменьшить, то в результате рекомбинации уменьшится количество неравновесных носителей в базовых областях и коллекторный переход окажется смещен в обратном направлении и тиристор перейдет в закрытое состояние.
При обратном включении тиристора вольт-амперная характеристика будет аналогичной как и у двух последовательно включенных диодов. Обратное напряжение будет ограничиваться в этом случае напряжением пробоя.

Общие параметры тиристоров

1. Напряжение включения — это минимальное анодное напряжение, при котором тиристор переходит во включенное состояние.
2. Прямое напряжение — это прямое падение напряжения при максимальном токе анода.
3. Обратное напряжение — это максимально допустимое напряжение на тиристоре в закрытом состоянии.
4. Максимально допустимый прямой ток — это максимальный ток в открытом состоянии.
5. Обратный ток — ток при максимальной обратном напряжении.
6. Максимальный ток управления электрода
7. Время задержки включения/выключения
8. Максимально допустимая рассеиваемая мощность

Заключение

Таким образом, в тиристоре существует положительная обратная связь по току — увеличение тока через один эмиттерный переход приводит к увеличению тока через другой эмиттерный переход.
Тиристор — не полностью управляющий ключ. То есть перейдя в открытое состояние, он остается в нем даже если прекращать подавать сигнал на управляющий переход, если подается ток выше некоторой величины, то есть ток удержания.

Тиристоры — это разновидность полупроводниковых приборов. Они предназначены для регулирования и коммутации больших токов. Тиристор позволяет коммутировать электрическую цепь при подаче на него управляющего сигнала. Это делает его похожим на транзистор.

Как правило, тиристор имеет три вывода, один из которых управляющий, а два других образуют путь для протекания тока. Как мы знаем, транзистор открывается пропорционально величине управляющего тока. Чем он больше, тем больше открывается транзистор, и наоборот. А у тиристора все устроено иначе. Он открывается полностью, скачкообразно. И что самое интересное, не закрывается даже при отсутствии управляющего сигнала.

Принцип действия

Рассмотрим работу тиристора по следующей простой схеме.

К аноду тиристора подключается лампочка или светодиод, а к ней подсоединяется плюсовой вывод источника питания через выключатель К2. Катод тиристора подключен к минусу питания. После включения цепи на тиристор подается напряжение, однако светодиод не горит.

Если нажать на кнопку К1, ток через резистор поступит на управляющий электрод, и светодиод начал светиться. Часто на схемах его обозначают буквой «G», что обозначает gate, или по-русски затвор (управляющий вывод).

Резистор ограничивает ток управляющего вывода. Минимальный ток срабатывания данного рассматриваемого тиристора составляет 1 мА, а максимально допустимый ток 15 мА. С учетом этого в нашей схеме подобран резистор сопротивлением 1 кОм.

Если снова нажать на кнопку К1, то это не повлияет на тиристор, и ничего не произойдет. Чтобы перевести тиристор в закрытое состояние, нужно отключить питание выключателем К2. Если же снова подать питание, то тиристор вернется в исходное состояние.

Этот полупроводниковый прибор, по сути, представляет собой электронный ключ с фиксацией. Переход в закрытое состояние происходит и тогда, когда напряжение питания на аноде уменьшается до определенного минимума, примерно 0,7 вольта.

Особенности устройства

Фиксация включенного состояния происходит благодаря особенности внутреннего устройства тиристора. Примерная схема выглядит таким образом:

Обычно он представляется в виде двух транзисторов разной структуры, связанных между собой. Опытным путем можно проверить, как работают транзисторы, подключенные по такой схеме. Однако, имеются отличия в вольтамперной характеристике. И еще нужно учитывать, что приборы изначально спроектированы так, чтобы выдерживать большие токи и напряжения. На корпусе большинства таких приборов имеется металлический отвод, на который можно закрепить радиатор для рассеивания тепловой энергии.

Тиристоры выполняются в различных корпусах. Маломощные приборы не имеют теплового отвода. Распространенные отечественные тиристоры выглядят следующим образом. Они имеют массивный металлический корпус и выдерживают большие токи.

Основные параметры тиристоров
  • Максимально допустимый прямой ток . Это максимальное значение тока открытого тиристора. У мощных приборов оно достигает сотен ампер.
  • Максимально допустимый обратный ток .
  • Прямое напряжение . Это падение напряжения при максимальном токе.
  • Обратное напряжение . Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности.
  • Напряжение включения . Это минимальное напряжение, приложенное к аноду. Здесь имеется ввиду минимальное напряжение, при котором вообще возможна работа тиристора.
  • Минимальный ток управляющего электрода . Он необходим для включения тиристора.
  • Максимально допустимый ток управления .
  • Максимально допустимая рассеиваемая мощность .
Динамический параметр

Время перехода тиристора из закрытого состояния в открытое при поступлении сигнала.

Виды тиристоров

Различают несколько разновидностей тиристоров. Рассмотрим их классификацию.

По способу управления разделяют на:

  • Диодные тиристоры, или по-другому динисторы. Они открываются импульсом высокого напряжения, которое подается на катод и анод.
  • Триодные тиристоры, или тринисторы. Они открываются током управления электродом.

Триодные тиристоры в свою очередь разделяются:

  • Управление катодом – напряжение, образующее ток управления, поступает на электрод управления и катод.
  • Управление анодом – управляющее напряжение подходит на электрод и анод.

Запирание тиристора производится:

  • Уменьшением анодного тока – катод меньше тока удержания.
  • Подачей напряжения запирания на электрод управления.

По обратной проводимости тиристоры делятся:

  • Обратно-проводящие – имеют малое обратное напряжение.
  • Обратно-непроводящие – обратное напряжение равно наибольшему прямому напряжению в закрытом виде.
  • С ненормируемым обратным значением напряжения – изготовители не определяют значение этой величины. Такие приборы применяются в местах, где обратное напряжение исключено.
  • Симистор – пропускает токи в двух направлениях.

Используя симисторы, нужно знать, что они действуют условно симметрично. Основная часть симисторов открывается, когда на электрод управления поступает положительное напряжение по сравнению с катодом, а на аноде может быть любая полярность. Но если на анод приходит отрицательное напряжение, а на электрод управления положительное, то симисторы не открываются, и могут выйти из строя.

По быстродействию разделяют по времени отпирания (включения) и времени запирания (отключения).

Разделение тиристоров по мощности

При действии тиристора в режиме ключа наибольшая мощность коммутируемой нагрузки определяется напряжением на тиристоре в открытом виде при наибольшем токе и наибольшей рассеиваемой мощности.

Действующая величина тока на нагрузку не должна быть выше наибольшей рассеиваемой мощности, разделенной на напряжение в открытом виде.

Простая сигнализация на основе тиристора

На основе тиристора можно сделать простую сигнализацию, которая будет реагировать на свет, издавая звук с помощью пьезоизлучателя. На управляющий вывод тиристора подается ток через фоторезистор и подстроечный резистор. Свет, попадая на фоторезистор, уменьшает его сопротивление. И на управляющий вывод тиристора начинает поступать отпирающий ток, достаточный для его открывания. После этого включается пищалка.

Подстроечный резистор предназначен для того, чтобы настроить чувствительность устройства, то есть, порог срабатывания при облучении светом. Самое интересное, что даже при отсутствии света тиристор продолжает оставаться в открытом состоянии, и сигнализирование не прекращается.

Если напротив светочувствительного элемента установить световой луч так, чтобы он светил немного ниже окошечка, то получится простейший датчик дыма. Дым, попадая между источником и приемником света, будет рассеивать свет, что вызовет запуск сигнализации. Для этого устройства обязательно нужен корпус, для того, чтобы на приемник света не поступал свет от солнца или искусственных источников света.

Открыть тиристор можно и другим способом. Для этого достаточно кратковременно подать небольшое напряжение между управляющим выводом и катодом.

Регулятор мощности на тиристоре

Теперь рассмотрим использование тиристора по прямому назначению. Рассмотрим схему простого тиристорного регулятора мощности, который будет работать от сети переменного тока напряжением 220 вольт. Схема простая и содержит всего пять деталей.

  • Полупроводниковый диод VD.
  • Переменный резистор R1.
  • Постоянный резистор R2.
  • Конденсатор С.
  • Тиристор VS.

Их рекомендованные номинальные значения показаны на схеме. В качестве диода можно использовать КД209, тиристор КУ103В или мощнее. Резисторы желательно использовать мощностью не менее 2 ватт, конденсатор электролитический на напряжение не менее 50 вольт.

Эта схема регулирует лишь один полупериод сетевого напряжения. Если представить, что мы из схемы убрали все элементы, кроме диода, то он будет пропускать только полуволну переменного тока, и на нагрузку, к примеру, на паяльник или лампу накаливания поступит лишь половина мощности.

Тиристор позволяет пропускать дополнительные, условно говоря, кусочки полупериода, срезанного диодом. При изменении положения переменного резистора R1 напряжение на выходе будет меняться.

К положительному выводу конденсатора включен управляющий вывод тиристора. Когда напряжение на конденсаторе возрастает до напряжения включения тиристора, он открывается и пропускает определенную часть положительного полупериода. Переменный резистор будет определять скорость зарядки конденсатора. А чем быстрее он зарядится, тем раньше откроется тиристор, и успеет до смены полярности пропустить часть положительного полупериода.

На конденсатор отрицательная полуволна не поступает, и напряжение на нем одной полярности, поэтому не страшно, что он имеет полярность. Схема позволяет изменять мощность от 50 до 100%. Для паяльника это в самый раз подходит.

Тиристор пропускает ток в одном направлении от анода к катоду. Но существуют разновидности, которые пропускают ток в обоих направлениях. Они называются симметричные тиристоры или симисторы. Они используются для управления нагрузкой в цепях переменного тока. Существует большое количество схем регуляторов мощности на их основе.

Данный прибор можно рассматривать и применять в качестве электронного выключателя или ключа, которые управляются с помощью нагрузки слабыми сигналами, а также могут переключаться из одного режима в другой. Общее количество современных тиристоров разделяется по способу управления и по степени проводимости, одно направление или два (такие приборы также называют симисторами).

Тиристоры также характеризуются нелинейной вольтамперной особенностью с наличием участка отрицательного дифференциального сопротивления. Эта особенность делает подобные приборы схожими с транзисторными ключами, но имеются между ними и различия. Так в переход из одного состояния в другое в цельной электрической цепи происходит путем лавинообразного скачка, а также методом внешнего воздействия на сам прибор. Последнее осуществляется двумя вариантами – токовым напряжением или воздействием света фототиристора.

Применение и типы тиристоров

Сфера применения данных приборов довольно разнообразна – это электронные ключи, современные системы CDI, механически управляемые выпрямители, диммеры или регуляторы мощности, а также инверторные преобразователи.

Как уже говорилось выше, подобные приборы разделяются на диодные и триодные. Первый тип также называют динисторами с двумя выводами, он разделяется на приборы, не имеющие возможность осуществлять проводимость в обратном направлении, на тип с проводимостью в обратном направлении и на симметричные приборы. Второй включает в себя триодные тиристоры с проводимостью в обратном направлении, приборы с отсутствием проводимости в обратном направлении, симметричные тиристоры, ассиметричные приборы и запираемые тиристоры.

Между ними, кроме количества выводов, нет существенных и принципиальных различий. Но, если в динисторе открытие происходит после достижения между анодом и катодом напряжения, зависящего от типа устройства, то в тиристоре имеющееся напряжение может быть в разы снижено или вовсе снято с помощью подачи токового импульса.

Существуют различия между триодными тиристорами и запираемыми приборами. Так у первого типа переключение в режим закрытого состояния происходит после снижения тока или после изменения полярности, а у запираемых устройств переход в открытое осуществляется путем воздействия тока на управляющий электрод.

Тиристор — принцип работы, виды и характеристики

Тиристор это полупроводниковый прибор, предназначенный для работы в качестве ключа. Он имеет три электрода и структуру p-n-p-n из четырёх слоёв полупроводника. Электроды именуются как анод, катод и управляющий электрод. Структура p-n-p-n функционально аналогична нелинейному резистору, который способен принимать два состояния:

  • с очень большим сопротивлением, выключенное;
  • с очень малым сопротивлением, включенное.

Виды

На включенном тиристоре сохраняется напряжение около одного или нескольких Вольт, которое незначительно увеличивается с возрастанием силы тока, протекающего через него. В зависимости от вида тока и напряжения, приложенного к электрической цепи с тиристором, в ней используется одна из трёх современных разновидностей этих полупроводниковых приборов. На постоянном токе работают:

  • включаемые тринисторы;
  • три разновидности запираемых тиристоров, именуемых как

На переменном и постоянном токе работают симисторы. Все эти тиристоры содержат управляющий электрод и два других электрода, через которые тёчёт ток нагрузки. Для тринисторов и запираемых тиристоров это анод и катод, для симисторов наименование этих электродов обусловлено правильностью определения свойств управляющего сигнала, подаваемого на управляющий электрод.

Наличие в тиристоре структуры p-n-p-n позволяет разделить её условно на две области, каждая из которых является биполярным транзистором соответствующей проводимости. Таким образом, эти взаимосвязанные транзисторы являются эквивалентом тиристора, что имеет вид схемы на изображении слева. Первыми на рынке появились тринисторы.

Свойства и характеристики

По сути это аналог самоблокирующегося реле с одним нормально разомкнутым контактом, роль которого выполняет полупроводниковая структура, расположенная между анодом и катодом. Отличие от реле состоит в том, что для этого полупроводникового прибора может быть применено несколько способов включения и выключения. Все эти способы объясняются транзисторным эквивалентом тринистора.

Два эквивалентных транзистора охвачены положительной обратной связью. Она многократно усиливает любые изменения тока в их полупроводниковых переходах. Поэтому существует несколько видов воздействия на электроды тринистора для его включения и выключения. Первые два способа позволяют выполнить включение по аноду.

  • Если напряжение на аноде увеличивать, при его определённом значении начнут сказываться эффекты начинающегося пробоя полупроводниковых структур транзисторов. Появившийся начальный ток лавинообразно усилится положительной обратной связью и оба транзистора включатся.
  • При достаточно быстром увеличении напряжения на аноде происходит заряд межэлектродных ёмкостей, которые присутствуют в любых электронных компонентах. При этом в электродах появляются зарядные токи этих ёмкостей, которые подхватывает положительная обратная связь и всё заканчивается включением тринистора.

Если перечисленные выше изменения напряжения отсутствуют, включение обычно происходит током базы эквивалентного n-p-n транзистора. Выключить тринистор можно одним из двух способов, которые также становятся понятны из-за взаимодействия эквивалентных транзисторов. Положительная обратная связь в них действует, начиная с некоторых величин токов, протекающих в структуре p-n-p-n. Если величину тока сделать меньше этих величин, положительная обратная связь сработает на быстрое исчезновение токов.

Другой способ выключения использует прерывание положительной обратной связи импульсом напряжения, который меняет полярность на аноде и катоде. При таком воздействии направления токов между электродами изменяется на противоположные и тринистор выключается. Поскольку для полупроводниковых материалов характерно явление фотоэффекта, существуют фото- и оптотиристоры, у которых включение может быть обусловлено освещением либо приёмного окошка, либо светодиодом в корпусе этого полупроводникового прибора.

Существуют ещё и так называемые динисторы (неуправляемые тиристоры). В этих полупроводниковых приборах нет управляющего электрода конструктивно. По своей сути это тринистор с одним отсутствующим выводом. Поэтому их состояние зависит только от напряжения анода и катода и они не могут включиться управляющим сигналом. В остальном процессы в них аналогичны обычным тринисторам. То же относится и к симисторам, которые по сути являются двумя тринисторами соединёнными параллельно. Поэтому они применяются для управления переменным током без дополнительных диодов.

Запираемые тиристоры

Если определённым образом изготовить области структуры p-n-p-n вблизи баз эквивалентных транзисторов можно достичь полной управляемости тиристором со стороны управляющего электрода. Такая конструкция структуры p-n-p-n показана на изображении слева. Включать и выключать такой тиристор можно соответствующими сигналами в любой момент времени подавая их на управляющий электрод. Остальные способы включения, применяемые к тринисторам, для запираемых тиристоров так же годятся.

Однако эти способы не применяются к таким полупроводниковым приборам. Они наоборот исключаются теми или иными схемотехническими решениями. Целью является получение надёжного включения и выключения только по управляющему электроду. Это необходимо для использования таких тиристоров в мощных инверторах повышенной частоты. GTO работают на частотах до 300 Герц, а IGCT способны на существенно более высокие частоты, достигающие 2 кГц. Номинальные значения токов могут быть несколько тысяч ампер, а напряжение – несколько киловольт.

Сравнение различных тиристоров приведено в таблице ниже.

Разновидность тиристора Преимущества Недостатки Где используется
Тринистор Минимальное напряжение во включенном состоянии при максимально больших токах и перегрузках. Наиболее надёжен из всех. Хорошая масштабируемость схем путём совместной работы нескольких тринисторв соединяемых либо параллельно, либо последовательно Отсутствует возможность произвольного управляемого отключения только управляющим электродом. Наиболее низкие рабочие частоты. Электроприводы, источники электропитания питания большой мощности; сварочные инверторы; управление мощными нагревателями; статические компенсаторы; коммутаторы в цепях с переменным током
GTO Возможность произвольного управляемого выключения. Относительно высокая способность к перегрузкам по току. Способность надёжно работать при последовательном соединении. Рабочая частота до 300 Гц, напряжение до 4000 В. Значительно напряжение во включенном состоянии при максимально больших токах и перегрузках и соответствующие им потери, в том числе и в системах управления. Сложная схемотехника построения системы в целом. Большие динамические потер. Электроприводы; статические компенсаторы реактивной мощности; источники электропитания питания большой мощности, индукционные нагреватели
IGCT Возможность произвольного управляемого выключения. Относительно высокая способность к перегрузкам по току. Относительно малое напряжение во включенном состоянии при максимально больших токах и перегрузках. Рабочая частота — до 2000 Гц. Простое управление. Способность надёжно работать при последовательном соединении. Наиболее дорогие из всех тиристоров Электроприводы; статические компенсаторы реактивной мощности; источники электропитания питания большой мощности, индукционные нагреватели

 

Тиристоры изготавливаются для широкого диапазона токов и напряжений. Конструкция их определяется размерами структуры p-n-p-n и необходимостью получения надёжного отвода тепла от неё. Современные тиристоры, а также их обозначения на электрических схемах показаны на изображениях ниже:

   

В наши дни тиристор является главным полупроводниковым прибором силовой электроники. Он обеспечивает наиболее эффективное преобразование электрической энергии.

основные виды полупроводников, способы коммутации и принцип работы силовых ключей

Для коммутации и регулирования мощного напряжения используются тиристоры, которые представляют собой разновидность полупроводниковых приборов. Сегодня применяются различные по своей мощности коммутаторы, обеспечивающие правильную работу электросети. Нужно лишь грамотно выбрать ВАХ (вольтамперная характеристика) тиристора, что позволяет исключить поломки оборудования, обеспечивая его правильное функционирование.

Особенности полупроводников

Основное назначение тиристорных ключей — это передача электротока в прямом направлении. В закрытом состоянии полупроводник задерживает прямое и обратное напряжение, обеспечивая тем самым регулировку электросети.

Структура тиристоров включает три вывода:

  • Управляющий электрод.
  • Катод.
  • Анод.

Все полупроводники имеют свои вольтамперные характеристики, по которым можно судить о назначении и состоянии этого элемента. Мощные ключи способны работать при напряжении в 5000 вольт, а максимально допустимая сила тока составляет 5000 ампер.

Принцип работы

Принцип работы тиристора чрезвычайно прост: его включение осуществляется за счёт подачи на вывод мощных токовых импульсов. Такие сигналы по отношению к катодам должны быть положительными. На работу тиристора влияет температура полупроводника и способ приложения напряжения и тока на используемые в схеме ключи.

В электроцепи, где используются тиристоры, исключается высокая скорость нарастания напряжения, что может привести к самопроизвольному включению элемента. Поэтому устанавливаются дополнительные диоды и цепи, которые обеспечивают выравнивание напряжения, предупреждая паразитные всплески. Одной из особенностей использования ключей является наличие в цепи крутизны характеристик сигнала управления, что необходимо для их правильной работы.

Основные разновидности

На сегодняшний день существует несколько основных типов полупроводников, которые отличаются своей конструкцией, принципом коммутации и рядом других параметров. Наибольшее распространение получили следующие виды тиристоров:

  • Оптические ключи, предназначенные для управления потоками света.
  • Тиристоры с полевым транзистором управления.
  • Инверторные полупроводники, характеризующиеся высокой скоростью коммутации.
  • Симметричные модификации позволяют заменить два подключённых встречно-параллельно полупроводника.
  • Диодные переходят в состояние проводимости при превышении пиковых показателей напряжения.

Параметры и ВАХ тиристоров в зависимости от их типа существенно различаются. Соответственно, подобрав ту или иную разновидность, можно будет обеспечить правильное функционирование электроцепей, упростив схему выполнения оборудования.

Способы коммутации

Управление работой ключей выполняется при помощи соответствующих сигналов коммутации, которые позволяют открывать и закрывать входы, обеспечивая при этом правильную работу электрооборудования.

Принято выделять два способа коммутации:

  • Принудительный.
  • Естественный.

Естественная коммутация проводников возникает в тех случаях, когда ключ используется с переменным током. Перенаправление происходит при падении электротока до нулевого значения. Такой способ управления приборами не получил должного распространения, так как при его использовании сложно обеспечить правильность работы электроцепи, существенно снижая функционал тиристоров.

При принудительной коммутации необходимы дополнительные конденсаторы, которые заранее заряжаются за счёт нажатия кнопки ключа. В используемую схему управления дополнительно включается LC-цепь, обязательным условием в которой является заряженный конденсатор. Мощные колебания тока происходят при переходе в нагрузочной цепи, что позволяет осуществлять коммутацию тиристоров. На сегодняшний день именно принудительное управление с полупроводниками получило наибольшее распространение, что объясняется его универсальностью, простотой и максимальной надежностью.

Разновидности схем принудительного управления

Для управления работой ключей могут использоваться различные типы принудительной коммутации. Чаще всего применяют схему с коммутирующим конденсатором с обратной полярностью. Такой диод включается в цепь с помощью дополнительного вспомогательного тиристора, что обеспечивает формирование заряда на рабочий полупроводник.

Ток конденсатора направляется навстречу току с основного ключа, что позволяет снизить напряжение в сети, вплоть до падения этого параметра до нуля. При уменьшении тока происходит отключение тиристора, после чего такт повторяется, что позволяет правильно управлять работой всей электроцепи и отдельных ее элементов в частности.

Также возможно использование схемы принудительной коммутации, где подключены LC-цепочки. В начале коммутации ток от LC-цепочки направляется навстречу рабочему напряжению, происходит их быстрое уравнивание и тиристор отключается.

Из колебательной схемы электроток протекает через ключ в полупроводниковый диод. К тиристорам прикладывается соответствующее напряжение, которое по модулю равняется показателю падения напряжения на диоде.

Использование в мощных схемах

Основное назначение тиристоров — это организация правильной работы мощной схемы. Включив в цепь полупроводники, можно осуществлять следующие операции:

  • Изменять среднее значение тока, что помогает регулировать подачу сигналов управления.
  • Отключать или включать электрическую цепь с активной и резистивной нагрузкой.

Особенностью тиристорных ключей является их свойство проводить ток исключительно в одном направлении. Поэтому, используя их в цепях с переменным током, необходимо обеспечить параллельное включение. Средние показатели электротока в момент подача сигналов на тиристоры могут изменяться, что вынуждает использовать дополнительные конденсаторы, для правильной организации работы цепи.

Фазовый способ управления работы с коммутацией принудительного типа позволяет регулировать нагрузку изменением амплитуды напряжения между фазами. Такая искусственная коммутация выполняется с помощью специальных цепей или установки дополнительных запираемых ключей. Фазовый метод управления применяется в зарядных устройствах, где требуется регулировать силу тока, с учетом уровня накопленной энергии аккумулятором.

Широтно-импульсную технологию управления часто называют шим-модуляцией тока. При открытии тиристора подается сигнал управления. В переходной фазе напряжение становится нулевым, что является сигналом к закрытию ключа. Токовая кривая при использовании фазового управления будет не синусоидальной, а полностью зависящей от формы сигналов напряжения питания. Широтно-импульсное управление имеет сложную схему реализации, поэтому такой способ коммутации применяется в промышленном оборудовании и мощных блоках питания.

Правильное подключение и защита

Силовые тиристоры критичны к показателям скорости нарастания тока. Значение электротока при протекании его обратно через ключ может падать до нуля, что приводит к перенапряжению полупроводников. Для защиты ключей используются дополнительные диоды и разнообразные схемы, позволяющие защитить приборы в динамических режимах.

Применение такой схемы позволяет параллельно включать в работу ключи, что предотвращает падение до нуля обратного тока и перенапряжения полупроводников. На сегодняшний день имеется множество вариантов схематических модификаций цепей, которые используются в зависимости от параметров работы тиристоров в различных условиях и режимах.

Высокая мощность виды тиристорных для бистабильной коммутации Free Sample Now

О продукте и поставщиках:
Использование виды тиристорных. в различных сферах применения, будь то в жилых или коммерческих помещениях, огромны, и Alibaba.com может помочь клиентам получить лучшие продукты. Эти категории продуктов на сайте сертифицированы и проверены профессионалами, чтобы гарантировать высочайшую производительность и постоянную стабильность. Разнообразные наборы этих полупроводников идеально подходят для использования в промышленности и на электростанциях, поскольку они помогают регулировать переменные токи. Эти продукты получают в твердотельном исполнении и действуют как невероятные бистабильные переключатели для электрических устройств и корпусов. Ведущий виды тиристорных. поставщики и оптовые торговцы на сайте предлагают эти продукты по привлекательным ценам и по привлекательным ценам.

Широкие варианты этих электрических полупроводников доступны в различных мощностях, поставляются со всеми рассеянными структурами и являются устройствами быстрого переключения. Эти изделия снабжены четырьмя слоями чередующихся материалов N и P-типа для улучшенного переключения и регулирования напряжения. Эти виды тиристорных. способны контролировать огромное количество напряжений и требований к мощности по сравнению с их относительно небольшими размерами. Они снабжены металлическими опорными плитами и изолированным монтажом. Закаленные соединения этих устройств обладают высокой надежностью, а также способны работать на высоких частотах.

На Alibaba.com представлены эти невероятные виды тиристорных. во множестве разновидностей в зависимости от их емкости, материалов и характеристик на выбор. Эти устройства термостойкие, ударопрочные и энергоэффективные, помогая пользователям экономить энергию. Полупроводниковые изделия оснащены конфигурациями встречно-штыревых усилителей и также представляют собой устройства, собранные под давлением. Они идеально подходят для управления двигателями переменного / постоянного тока и предотвращают воздействие избыточного напряжения на электрические устройства.

Ознакомьтесь с множеством виды тиристорных. ассортимент на Alibaba.com и покупайте эти продукты в рамках бюджета и требований. Эти продукты можно настраивать, а также предлагать сертификаты качества. Лучшая часть устройств - это их продвинутые и улучшенные возможности dv / dt.

Виды промышленных тиристорных преобразователей (инверторов)

В особых преобразовательных устройствах, работающих с мощными нагрузками величиной порядка десятков киловатт и более, традиционно применяются инверторы на основе переключающих тиристорных приборов. Они широко используются в самой различной промышленной аппаратуре, включая сварочные агрегаты, пусковые и зарядные приборы, выпрямители, электрические нагреватели и подобные им устройства. Во всех этих агрегатах преобразование исходного параметра осуществляется по общей функциональной схеме, приводимой далее.

Функциональная схема тиристорного преобразователя

Разберёмся с видами тиристорных преобразователей и принципом их работы более подробно.

Виды преобразовательных агрегатов

В соответствии с подлежащим преобразованию параметром, все известные виды устройств этого класса подразделяются на следующие категории:

  • Инверторы напряжения;
  • Преобразователи тока;
  • Устройства, предназначенные для трансформации частоты управляющего сигнала (ТПЧ).

Первые из этих моделей предназначаются для приведения выходного напряжения к удобному для работы с нагрузкой виду и способны преобразовывать переменное напряжение в постоянное и наоборот. Для этого используются электронные схемы, обеспечивающие либо выпрямление поступающего на вход переменного тока, либо превращение постоянного напряжения в серию импульсов, которые впоследствии преобразуются в синусоиду.

Обратите внимание! Как в первом, так и во всех остальных случаях, для получения требуемого результата удобнее всего воспользоваться высокоскоростными переключающими элементами – тиристорами.

Внешний вид тиристора

На этих же электронных приборах работает и тиристорный преобразователь частоты.

Схемы преобразования сигнала посредством частотных преобразователей особой конструкции (ТПЧ) используются для плавной регулировки оборотов электродвигателя. При наличии частотного инвертора удаётся получить оптимальные показатели его функционирования, как при запуске, так и в рабочих режимах.

Особенности тиристорного управления

В отличие от транзисторных элементов, тиристоры – это не полностью независимые электронные устройства, нуждающиеся в стороннем управлении. Для их открывания в проводящем направлении потребуется внешнее воздействие в виде импульса тока, подаваемого между катодом и управляющим выводом прибора.

Важно! При необходимости обратного действия (его запирания) недостаточно прекратить подачу управляющих импульсов. Для этого потребуется резко уменьшить значение протекающего через него тока, либо поменять полярность поданного напряжения анод-катод.

Исключением являются так называемые «запираемые тиристоры», закрываемые за счёт подачи на их электроды управления импульсов нужной полярности.

При наличии таких элементов изготовить преобразователь напряжения на тиристорах удаётся значительно легче, поскольку в этом случае сокращается количество необходимых узлов.

Дополнительная информация. Иногда в схемах преобразователей (ТПЧ, в частности) для запирания триодных приборов в нагрузке устанавливаются реактивные дискретные компоненты, такие как конденсаторы и дроссели.

За счёт реактивного характера их работы предварительно накопленная в них электрическая энергия расходуется на запирание уже открытых тиристоров.

Помимо этого, с целью подавления паразитных колебаний, сопровождающих высокоскоростные переключения тиристоров, в параллель им включаются специальные демпфирующие цепочки на основе RС-элементов.

Схемные решения преобразователей на основе тиристоров

Среди всего многообразия схемных решений, относящихся к проектированию тиристорных преобразователей напряжения, тока и частоты (ТПЧ), особо выделяются следующие варианты:

  • Последовательные и параллельные токовые инверторы;
  • Комбинированные инверторы тока;
  • Преобразователи напряжения Мак-Муррея;
  • Мостовые (резонансные) схемы.

Рассмотрим каждый из указных подходов к обустройству преобразователей на основе тиристоров более подробно.

Последовательный и параллельный инверторы тока

Этот тип преобразовательного устройства на выходе содержит отдельный конденсатор, подсоединённый последовательно к нагрузочной цепи (смотрите рисунок ниже).

Последовательный инвертор тока

Имеющийся в линии питания дроссель выполняет фильтрующую функцию: с его помощью удаётся частично сгладить образующиеся при переключении тиристоров токовые импульсы.

На начальном этапе (при подаче питания) переключающие элементы VS2 и VSЗ пребывают в открытом состоянии, а тиристоры VS1 и VS4, напротив, – закрыты. Протекающий по последовательной цепочке ток заряжает выходной конденсатор до возможного для него уровня.

После того, как на управляющие электроды VS1 и VS4 поступают токовые импульсы от внешнего источника, они открываются и остаются в этом состоянии вместе с двумя другими.

За счёт их открытия зарядившийся ранее конденсатор С1 может разряжаться токами, по знаку противоположными тем, что протекают через элементы VS2 и VSЗ. В тот момент, когда значения токов через тиристоры VS2 и VS3 приблизятся к нулю, эти коммутирующие приборы закроются.

Ток потечёт по другой цепочке, вследствие чего напряжение на выходном конденсаторе сменит свою полярность. То же самое, только в обратном порядке, будет наблюдаться, если управляющие импульсы подать на входы VS2 и VSЗ.

В результате под действием таких импульсов из постоянного входного тока на выходе формируются синусоидальные колебания с требуемыми параметрами.

Обратите внимание! При изменении частоты управляющих импульсов меняется амплитуда и частота получаемой на выходе синусоиды. По этой причине такая схема может использоваться в качестве частотозадающего узла в ТПЧ.

Все электрические процессы, происходящие в преобразователе параллельного типа, практически полностью совпадают с описанными ранее для последовательной структуры. Разница состоит лишь в том, что выходной конденсатор включается не последовательно, а в параллель с нагрузкой.

Комбинированные схемы

Параллельно-последовательные или комбинированные схемы инверторов тока характеризуются тем, что содержат элементы обоих видов включения нагрузки. Благодаря этому они совмещают преимущества как одного, так и другого способа подключения (смотрите размещённый ниже рисунок).

Инвертор комбинированного типа

В основе работы этой схемы заложены те же принципы, что уже были рассмотрены для предыдущих технических решений. Комбинированное включение заряжающихся и разряжающихся емкостей существенно улучшает рабочие параметры схемы и обеспечивает получение стабильной нагрузочной характеристики.

В отличие от других импульсных преобразующих устройств, такие приборы могут работать в отсутствии активной нагрузки.

Преобразователь напряжения Мак-Муррея

Особенностью устройств этого типа является наличие в них отдельного контура LС, обеспечивающего запирание основных рабочих тиристоров. Для этого в подходящий момент времени его элементы L и С объединяются через цепи, создаваемые путем включения дополнительных тиристоров. С электрической схемой такого оригинального устройства можно ознакомиться на размещённом ниже рисунке.

Инвертор напряжения

С её подробнейшим описанием можно ознакомиться в приводимом далее источнике http://meandr.org/archives/25356. В размещённом по этому адресу обзоре описаны все перечисленные ранее типы преобразователей. Особое внимание в нём уделяется мостовой схеме, которая требует специального рассмотрения.

Схема последовательного резонансного инвертора

Резонансный инвертор последовательного типа, изображенный на приводимом ниже рисунке, в отличие от уже описанных ранее схем, имеет одно преимущество. Последнее состоит в том, что он приспособлен к работе на больших преобразуемых частотах, что объясняется меньшими потерями в резонансном контуре.

Общий вид полумостовой резонансной схемы

При рассмотрении этой схемы можно отметить, что элементы С1 и С2 представляют собой делитель напряжения емкостного типа. Совместно с индуктивностями половинных обмоток (I и П) катушки L1 они образуют колебательный контур с резонансом на частоте следования управляющих импульсов.

Дополнительная информация. При небольших отличиях в указанных параметрах, что характерно для реальных (практических) схем, правильнее было бы называть их квазирезонансными.

В тех случаях, когда добротность такого контура очень мала, устройство не будет работать по причине отсутствия резонанса. При большой же величине этого показателя на квазирезонансном контуре (его первичной обмотке) и тиристорах будет действовать слишком большое напряжение. Последнее обстоятельство также усложнит работу схемы.

Обычно добротность такого контура выбирается в пределах от единицы до четырёх, а номиналы ёмкостей С1 и С2 подбираются по возможности равными. За счёт их одинаковости ток, протекающий через первичную обмотку TV1, в два раза превышает тот же показатель для каждого из конденсаторов.

Одновременно с этим частота нагрузочного тока определяется параметрами основных составляющих самого колебательного контура. Что касается формы выходных токовых импульсов, действующих в течение каждого из полупериодов, она практически ничем не отличается от синусоиды (точнее её половинки). В конце каждого из рабочих полупериодов величина токовых импульсов снижается до нуля, и тиристор VS1 закрывается.

Обратите внимание! При описанном выше порядке работы схемы тиристоры переходят в состояние отсечки при обнулении тока через них.

В заключение обзора отметим, что каждый из рассмотренных способов тиристорного преобразования энергии востребован в определённых условиях, когда возникает потребность в управлении вполне конкретным электромеханическим устройством. При необходимости выбора наиболее подходящей для данной ситуации схемы следует подробно исследовать все её сильные и слабые стороны.

Видео

Оцените статью:Типы тиристоров

— Руководство по покупке ThomasNet

Тиристоры — это бистабильные переключатели, которые проводят ток, когда они находятся в переднем положении, что означает, что напряжение не было реверсировано. Они сделаны из четырех слоев материала P- и N-типа, что делает устройство полупроводниковым. Материал N-типа создается путем легирования элемента электронами для увеличения количества электронов, несущих отрицательный заряд. Материал P-типа также получают путем легирования, хотя образующиеся в результате электроны, несущие заряд, заряжаются положительно.Путем чередования слоев материала P- и N-типа создается полупроводниковый тиристорный прибор. Два терминала с разным зарядом, анод и катод, переносят заряд с одного конца тиристора на другой. Третий управляющий вывод, часто называемый затвором, подключается к материалу P в непосредственной близости от катода.

Тиристор может принимать следующие состояния:

  • режим обратной блокировки;
  • режим прямой блокировки;
  • и режим прямой проводки.

Обратный режим блокировки означает, что напряжение подается в заданном направлении, что заставляет диод блокировать ток. Режим прямой блокировки влечет за собой приложение напряжения в заданном направлении, которое заставит диод проводить ток, но тиристор еще не активирован, и проводимость не может возникнуть. Режим прямой проводимости возникает при подаче напряжения и срабатывании тиристора, таким образом проводя напряжение до тех пор, пока напряжение не упадет ниже точки, известной как «ток удержания».”

Виды тиристоров

  • Тиристоры инверторные
  • Тиристоры асимметричные
  • Тиристоры с фазовым регулированием
  • Тиристор выключения затвора (GTO)
  • Тиристоры с управляемым светом

Условия покупки

Существует несколько видов тиристоров для различных применений, в том числе инверторные, асимметричные и тиристоры с регулировкой фазы. Другие варианты включают запирающие тиристоры и световые тиристоры.

  • Инверторные тиристоры : Обладая коротким временем включения и выключения, инверторные тиристоры часто работают от источника постоянного тока и используются в высокоскоростных коммутационных устройствах. Напряжение обычно изменяется обратно пропорционально времени выключения.
  • Асимметричные тиристоры: Асимметричные тиристоры не блокируют значительные количества обратного тока. Обычно сокращенно ASCR, асимметричные тиристоры хорошо работают в приложениях, где обратное напряжение относительно низкое, от 20 до 30 В (В), и где прямое напряжение составляет от 400 до 2000 В.
  • Тиристоры с фазовым управлением: Тиристоры этого типа не имеют возможности быстрого переключения и вместо этого работают на сетевой частоте. В результате тиристоры с регулировкой фазы подходят для применений с промышленной частотой, таких как приводы постоянного тока, контактная сварка и некоторые приложения для передачи энергии.
  • Тиристор отключения затвора (GTO): Тиристор отключения затвора (GTO) хорошо подходит для приложений с напряжением более 2500 В или током более 400 А.важно, чтобы все компоненты GTO активировались одновременно стробирующим импульсом; Точно так же не менее важно, чтобы все компоненты отключились одновременно, в противном случае тиристор может быть перегружен и впоследствии поврежден.
  • Световые тиристоры: Световые тиристоры (LTT), также называемые фототиристорами, специально разработаны для реакции на избыточные носители, производимые оптически. Если производится достаточное количество носителей, выполняются условия для срабатывания тиристора, и тиристор включается.

Типичные области применения

Тиристоры часто служат выпрямителями, преобразующими переменный ток в постоянный. Для этой цели обычно используются фазовые цепи (например, трех-, шести- и двенадцатифазные), и их можно найти в основе других приложений, таких как турбогенераторы. Еще одной важной областью применения тиристоров являются приложения для управления мощностью, включая цепи постоянного тока, цепи переменного тока и преобразователи частоты звена постоянного тока.Тиристоры также могут функционировать как циклоконвертеры, изменяя входную мощность на выходную мощность более низкой частоты.

Прочие «виды» изделий

Больше от Automation & Electronics

Основные типы тиристоров и их применение

В этой статье мы поговорим о различных типах тиристоров. Тиристоры представляют собой полупроводниковые устройства с 2 или 4 контактами, которые действуют как переключатели. Например, двухконтактный тиристор работает только тогда, когда напряжение на его выводах превышает напряжение пробоя устройства.Для 3-контактного тиристора путь тока контролируется третьим контактом, и когда на этот контакт подается напряжение или ток, тиристор проводит ток. В отличие от транзисторов, тиристоры работают только в состояниях ВКЛ и ВЫКЛ, и между этими двумя состояниями нет состояния частичной проводимости. Основные типы тиристоров: SCR, SCS, Triac, Четырехслойный диод и Diac.

Выпрямитель с кремниевым управлением (SCR)

Кремниевый выпрямитель обычно находится в состоянии ВЫКЛ, но когда небольшой ток поступает на его затвор G, он переходит в состояние ВКЛ.Если ток затвора удаляется, тиристор остается в состоянии «ВКЛ», и для переключения анода на катод ток должен быть снят или анод должен быть установлен на отрицательное напряжение по отношению к катоду. Ток течет только в одном направлении от анода к катоду. SCR используются в цепях переключения, цепях управления фазой, цепях инвертирования и т. Д.

Кремниевый управляемый коммутатор (SCS)

Работа SCS аналогична SCR, но также может быть отключена путем подачи положительного импульса на анодный затвор.SCS также можно включить, подав отрицательный импульс на анодный затвор. Ток течет только от анода к катоду. СКС используются в счетчиках, драйверах ламп, логических схемах и т. Д.

Симистор

Triac похож на SCR, но он проводит в обоих направлениях, что означает, что он может переключать переменный и постоянный токи. Симистор остается во включенном состоянии только при наличии тока на затворе G и выключается, когда этот ток снимается. Ток течет в обоих направлениях между MT1 и MT2.

Четырехслойный диод

Четырехслойный диод имеет 2 контакта и работает как переключатель, чувствительный к напряжению. Когда напряжение между двумя контактами превышает напряжение пробоя, он включается, в противном случае — выключен. Ток течет от анода к катоду.

Diac

Diac похож на четырехслойный диод, но он может проводить в обоих направлениях, что означает, что он может контактировать как с переменным, так и с постоянным током.

Основные приложения SCR

Базовая схема фиксации

В этой схеме SCR используется для формирования основной схемы фиксации.S1 — нормально разомкнутый переключатель, а S2 — нормально замкнутый переключатель. При кратковременном нажатии на S1 небольшой ток проходит через затвор SCR и включает его, запитывая нагрузку. Чтобы выключить его, мы должны нажать кнопку S2, чтобы ток через SCR прекратился. Резистор RG используется для установки напряжения затвора тринистора.

Цепь управления мощностью

В этой схеме SCR используется для изменения синусоидального сигнала, чтобы нагрузка получала меньшую мощность, чем при непосредственном приложении напряжения источника.Синусоидальный сигнал подается на затвор SCR через R1. Когда напряжение на затворе превышает напряжение срабатывания тринистора, он переходит в состояние ВКЛ и Vs подается на нагрузку. Во время отрицательной части синусоиды тиристор находится в выключенном состоянии. Увеличение R1 приводит к уменьшению напряжения, приложенного к затвору тринистора, и, таким образом, к запаздыванию времени проводимости. В этом случае нагрузка получает питание в течение меньшего времени, и поэтому средняя мощность нагрузки ниже.

Регулятор скорости двигателя постоянного тока

Это контроллер двигателя постоянного тока с регулируемой скоростью, использующий UJT, SCR и несколько пассивных компонентов.UJT вместе с резисторами и конденсатором образуют генератор, который подает переменное напряжение на затвор SCR. Когда напряжение затвора превышает напряжение срабатывания тринистора, тиристор включается, и двигатель работает. Регулируя потенциометр, изменяется выходная частота генератора, и, таким образом, изменяется время срабатывания тринистора, что, в свою очередь, изменяет скорость двигателя. Таким образом, двигатель получает серию импульсов, которые усредняются во времени, и скорость регулируется.

Основные приложения TRIAC

Диммер переменного тока

Это диммер переменного тока, состоящий из диака, симистора и некоторых пассивных компонентов.Конденсатор заряжается через два резистора, и когда напряжение на одном конце диака превышает напряжение пробоя, он включается и посылает ток на затвор симистора, переводя симистор во включенное состояние и, таким образом, запитывая лампу. После того, как конденсатор разряжен до напряжения ниже напряжения пробоя диака, диак, симистор и лампа выключаются. Затем конденсатор снова заряжается и так далее. Таким образом, лампа получает питание только на короткое время во время полной синусоиды. Это происходит очень быстро, и лампа кажется тусклой.Яркость регулируется с помощью потенциометра.

▷ Типы тиристоров

Насир делится кратким обзором различных типов тиристоров и их классификации… Наслаждайтесь!

Одна из самых интересных особенностей тиристоров заключается в том, что они производятся уникальным способом — путем диффузии. Мы уже изучили рабочие характеристики тиристора и то, как сигнал затвора действует при включении и выключении устройства.Когда устройство включено, анодному току требуется некоторое время, чтобы пройти через переход, поскольку мы знаем, что тиристор состоит из трех переходов.

Итак, чтобы инициировать эту активность, мы используем сигнал затвора, поэтому затвор, по сути, является одной из наиболее чувствительных и важных частей тиристора. В связи с этим при изготовлении тиристора производители уделяют особое внимание конструкции затвора.


Время включения и выключения

Структура затвора также влияет на некоторые другие свойства тиристора, в том числе:

  • Время распространения тока
  • Время включения тиристора
  • Время выключения тиристора

Теперь, учитывая время включения и выключения тиристора, мы видим, что тиристор легко включается коротким управляющим импульсом необходимой амплитуды.Так что включение тиристора не представляет большого труда, если знать требования к стробирующему импульсу. Но для того, чтобы тиристор отключился, нам нужна соответствующая схема управления и специально построенная внутренняя структура для выполнения процесса выключения тиристора.

Различные типы тиристоров разработаны для эффективного выполнения процесса выключения тиристора. У простых или обычных тиристоров есть только возможность включения, но разрабатываются новые универсальные типы с лучшими и более эффективными возможностями отключения.

Основные типы тиристоров

В зависимости от возможностей выключения и включения и, следовательно, физических структур, мы классифицируем тиристоры на следующие категории:

  1. Тиристоры с кремниевым управлением или тиристоры
  2. Двунаправленные тиристоры с фазовым управлением или BCT
  3. Тиристоры с быстрым переключением или тиристоры
  4. Двунаправленные триодные тиристоры или TRIACS
  5. Светоактивированные кремниевые управляемые выпрямители или LASCR
  6. Тиристоры с обратной проводимостью или RCT
  7. Тиристоры с управлением на полевых транзисторах или полевые транзисторы-CTH
  8. Затвор выключения Тиристоры или ГТО
  9. Эмиттер выключения тиристоров или ЭТО
  10. МОП отключающие тиристоры или МТО
  11. Тиристоры с интегрированной затворной коммутацией или IGCT

Распространенные тиристоры

Из этих одиннадцати типов кремниевые управляемые тиристоры, также известные как SCR, наиболее широко используются во многих электрических приложениях.Он имеет ту же четырехслойную структуру, что и обычный тиристор, и ток проходит от анода к катоду, когда тиристор правильно смещен.

BCT и TRIAC — это двунаправленные тиристоры с фазовым управлением, как видно из их названий выше. Это означает, что в них ток может двигаться в обоих направлениях.

Обозначение двунаправленного тиристора показано ниже:

Другие типы также используются в зависимости от потребности в схемах и необходимого времени переключения.

Чаще всего эти типы тиристоров используются для управления переменным током и в приложениях, где требуются высокие значения напряжения и тока. Эти приложения обычно выполняются с помощью SCR, электрические параметры которых рассчитаны на высокое напряжение и ток. SCR также используются для выпрямления переменного напряжения.

С другой стороны, мы находим широкое применение DIACS также в источниках питания, например, в телевизорах. Они используются для стабилизации постоянного напряжения, принимаемого телевизионным приемником.Они также находят применение в электрических диммерах, кино и театрах.

Перед покупкой тиристора следует позаботиться о том, чтобы он был хорошо осведомлен о своих потребностях и о различных типах, доступных на рынке.

Как было сказано в самом начале, это был краткий обзор различных типов тиристоров. Некоторые из наиболее часто используемых тиристоров также будут объяснены в следующих руководствах.

Спасибо за чтение!

Тиристоры различных типов и их функции

Тиристоры относятся к разнообразной классификации полупроводниковых устройств.Они похожи на транзисторы, резисторы и диоды и используются для устранения их недостатков. Если вы хотите использовать тиристор в своей электронной схеме, необходимо узнать о различных типах тиристоров и их функциях. Давайте взглянем!

Что такое тиристор?

Тиристор, также известный как кремниевый выпрямитель (SCR), представляет собой 4-слойное устройство с чередующимися полупроводниками N-типа и P-типа (P-N-P-N).

Базовый тиристор имеет 3 вывода — контрольный вывод (затвор), положительный вывод (анод) и отрицательный вывод (катод).Функция тиристора заключается в том, чтобы работать как переключатель, регулирующий электрическую мощность.

Тиристор — это легкий и небольшой компонент, который защищает электрические цепи с большими токами и напряжениями (до 4500 А, 6000 В). Поскольку тиристор может переключаться с проводящего тока на непроводящий, его можно использовать в качестве выпрямителя.

Более того, тиристоры требуют технического обслуживания, если они эксплуатируются в правильных условиях.

Имеют широкий спектр применения в электрических цепях — от охранной сигнализации до трансформаторных линий.

Различные типы тиристоров и их функции

Тиристоры

имеют разные классы в зависимости от их напряжения, тока, природы включения и выключения. Это:

Тиристоры этого типа обеспечивают однонаправленное управление. Одним из примеров может быть кремниевый управляющий выпрямитель, активируемый светом (LASCR).

Когда легкие частицы попадают в переход с обратным смещением, число электронно-дырочных пар увеличивается. Тиристор включается, когда интенсивность света превышает критическое значение.Он обеспечивает абсолютную электрическую изоляцию между коммутирующим устройством преобразователя мощности и источником света.

LASCR можно увидеть в генераторах импульсов большой мощности, передающих машинах HVDC и компенсаторах реактивной мощности.

Как и включающие тиристоры, этот тип также предлагает однонаправленное управление. Когда подано достаточное количество стробирующего импульса, необходимо прервать основной ток схемы, чтобы выключить ее.

Тиристор выключения затвора (GTO) является примером, который можно отключить, пропустив отрицательный ток на затвор.Нет необходимости снимать ток между катодом и анодом.

Подводя итог, можно сказать, что GTO можно выключить с помощью стробирующего сигнала отрицательной полярности, превратив его в управляемый переключатель. Коммутатор называется Switch-Controlled Switch.

GTO используются в приводах двигателей переменного и постоянного тока, стабилизаторах переменного тока и мощных инверторах.

Тиристор последнего типа находится под двунаправленным управлением. Они соединены встречно-параллельным образом, образуя две разные цепи управления.

Они могут проводить ток в двух направлениях. Примером этого является TRIAC (Триод для переменного тока). На половинах переменного сигнала симисторы обеспечивают управление за счет эффективной подачи энергии.

Маломощные используются для регулирования скорости электродвигателей и вентиляторов.

Заключительные слова

На этом пока все кончено. Теперь вы знаете, почему так важно знать о различных типах тиристоров и их функциях. Имейте в виду, что при проектировании схемы вам нужно выбрать тот, который соответствует вашим электрическим потребностям.

Руководство по выбору тиристоров

: типы, характеристики, применение

Описание

Тиристоры — это класс четырехслойных (PNPN) полупроводниковых устройств, которые действуют как переключатели, выпрямители или регуляторы напряжения. При срабатывании тиристоры включаются и становятся путями тока с низким сопротивлением и остаются таковыми даже после снятия триггера, пока ток не снизится до определенного уровня или пока тиристоры не сработают, в зависимости от типа устройства.

Типы

Четырехслойные диоды (диод Шокли)

Диоды Шокли работают как пара соединенных между собой транзисторов PNP и NPN.Как и все тиристоры, диоды Шокли, как правило, остаются включенными после включения (фиксации) и остаются выключенными после выключения.

Есть два способа зафиксировать диод Шокли: превысить напряжение переключения между анодом и катодом или превысить критическую скорость нарастания напряжения между анодом и катодом.

Есть только один способ заставить диод Шокли перестать проводить, и это уменьшить ток, проходящий через него, до уровня ниже его порога отключения при слабом токе.

Выпрямители с кремниевым управлением (SCR)

Выпрямители с кремниевым управлением (SCR)

имеют клемму управления входом (затвор), выходную клемму (анод) и клемму, общую как для входа, так и для выхода (катод). SCR в основном используются там, где используются высокие токи и напряжения, и часто используются для управления переменными токами, когда изменение знака тока вызывает автоматическое отключение устройства.

Например, диммер для освещения может быть реализован с использованием SCR, где точка включения контролируется так, чтобы происходить в определенной точке на синусоидальной кривой источника переменного тока.SCR остается включенным до конца этого цикла. Недостатком использования тиристоров является то, что они, как и диоды, проводят только в одном направлении.

Diacs

Диоды — это двунаправленные диоды, которые предназначены для запуска симистора или тиристора. Обычно диак не проводит (за исключением небольшого тока утечки) до тех пор, пока не будет достигнуто напряжение отключения.

Симисторы

Симисторы

— это трехконтактные кремниевые устройства, которые функционируют как два тиристора, сконфигурированных в обратном параллельном порядке, чтобы обеспечивать ток нагрузки в течение обеих половин напряжения питания переменного тока.

Симистор обычно используется для управления скоростью двигателя. Поскольку ток нагрузки (ток якоря) протекает в течение обеих половин приложенного переменного напряжения, двигатель вращается плавно на всех скоростях вращения.

Светоактивированный SCR (LASCR)

Светоактивируемые кремниевые выпрямители (LASCR) — это кремниевые выпрямители, состояние которых контролируется светом, падающим на кремниевый полупроводниковый слой устройства. LASCR проводят ток в одном направлении при активации достаточным количеством света и продолжают проводить, пока ток не упадет ниже заданного значения.

Тиристоры

LASCR наиболее чувствительны к свету при открытой клемме затвора. Кроме того, большинство LASCR имеют клемму затвора, так что электрический импульс может запускать устройство аналогично традиционным тиристорам SCR.

Коммутаторы с кремниевым управлением (SCS)

Кремниевые управляемые переключатели (SCS) — это четырехуровневые (PNPN) устройства, которые по конструкции аналогичны кремниевым выпрямителям. SCS, однако, имеет два терминала затвора; катодный затвор и анодный затвор.SCS можно включать и выключать с помощью любого терминала ворот.

Подача положительного напряжения между катодным затвором и катодными выводами включает SCS. Его можно выключить (принудительное переключение), подав отрицательное напряжение между анодным и катодным выводами или просто закоротив эти два вывода вместе. Вывод анода должен быть положительным по отношению к катоду, чтобы тиристор SCS мог защелкнуться.

Стандарты

BS IEC 60747-6 — Полупроводниковые приборы — Тиристоры

EIA-397 — Этот стандарт представляет подробное объяснение принципов работы тиристоров, определяя различные классы этих устройств, их физическую структуру и подробно описывая многочисленные методы испытаний и номинальные характеристики, необходимые для их применения в электронных и силовых схемах.

Список литературы

Кредит изображения:

Digi-Key Corporation


Что такое тиристор | Типы тиристоров

Что такое тиристор | Типы тиристоров

Во многих отношениях кремниевая управляемая терапия, тиристор или просто тиристор, как его еще называют, аналогичны по конструкции транзистору.

Нажмите, чтобы принять участие в Twitter (Открывается в новом окне) Нажмите, чтобы принять участие в Facebook (Открывается в новом окне) Нажмите, чтобы принять участие в LinkedIn (Открывается в новом окне)

Это многослойное полупроводниковое устройство, отсюда и название «кремний» от его имя. Требуется сигнал затвора, чтобы включить его, «управляемую» часть имени, и после того, как «ВКЛ» ведет себя как терапевтический диод, который является «терапевтической» частью имени. Фактически, закон схемы для тиристора указывает на то, что это устройство работает как управляемый терапевтический диод.

Обозначение тиристора

Тем не менее, в отличие от переходного диода, который представляет собой полупроводниковый прибор с двумя субкастами (PN), или обычно используемого биполярного транзистора, который представляет собой переключающее устройство с тремя субкастами (PNP или NPN), тиристор представляет собой четырехчастный полупроводниковый прибор. — субкастовое полупроводниковое устройство (PNPN), которое содержит три последовательно соединенных PN перехода, представленных символом, как показано.

A Тиристор , как и диод, является однонаправленным устройством, то есть он будет проводить ток только в одном направлении, но в отличие от диода, тиристор может работать либо как переключатель разомкнутой цепи, либо как терапевтический диод в зависимости от того, как работает затвор тиристора.Другими словами, тиристор может работать только в коммутационном режиме и не может быть использован для модификации.

Кремниевый управляемый выпрямитель, SCR, является одним из многочисленных силовых полупроводниковых устройств смещения наряду с симисторами (триода переменного тока), диаками (диодными переменными токами) и UJT (однопереходными транзисторами), которые могут работать как действительно быстрые твердотельные переключатели переменного тока. большие напряжения рассеивающего тока. и токи. Таким образом, для ученых-электронщиков это делает твердотельное смещение действительно удобным для управления двигателями переменного тока и освещением, а также для управления фазой.

A Тиристор представляет собой трехконтактное устройство, называемое «анодом», «катодом» и «затвором», и состоит из трех PN-переходов, которые можно переключать «ON» и «OFF» с действительно высокой скоростью, или они могут быть включены в течение переменного времени в течение полупериодов для подачи заданного количества мощности на нагрузку. Работа тиристора может быть лучше объяснена, если предположить, что он состоит из двух транзисторов, соединенных последовательно в виде связки взаимного регенеративные переключатели, как показано.

Две исходные схемы транзистора показывают, что коллекторный ток транзистора NPN TR2 напрямую подается на базу транзистора PNP TR1, в то время как коллекторный ток TR1 подается на базу TR2. Эти два подключенных транзистора зависят друг от друга по проводимости, поскольку каждый транзистор получает ток база-эмиттер от тока коллектор-эмиттер другого. Таким образом, до тех пор, пока на один из транзисторов не будет подан некоторый базовый ток, ничего не может быть, если есть напряжение между анодом и катодом.

Когда анодное место тиристора отрицательно по отношению к катоду, центральный N-P-переход имеет прямое предубеждение, но внешние PN переходы предвзяты и работают как обычный диод. Таким образом, тиристор предотвращает приток заднего тока до тех пор, пока точка напряжения пробоя двух внешних переходов не будет превышена в положении высокого напряжения, и тиристор будет проводить без подачи сигнала затвора.

Это важное отрицательное свойство тиристора, так как тиристор может быть непреднамеренно включен из-за проводимости из-за перенапряжения сзади, а также из-за перегрева или быстрого повышения напряжения du / dt, как на валу.

Тем не менее, внешние PN-переходы теперь предвзяты, а центральные N-P-переходы — сзади предвзяты, если удаленная анодная станция положительна по отношению к катоду. Таким образом, прямой ток также блокируется. Однако действующий ток коллектора течет в базу транзистора TR1, если положительный ток встроен в базу транзистора NPN TR2. Это, в свою очередь, заставляет ток коллектора течь в транзистор PNP, TR1 добавляет ток базы для TR2 и так далее.

Управляемый модифицированный кремний

Два транзистора действительно быстро заставляют друг друга срабатывать, поскольку они соединены по кругу регенеративной обратной связи, который не может быть остановлен. Когда он включается в режиме проводимости, ток, протекающий через устройство между анодом и катодом, ограничивается только сопротивлением внешней цепи, поскольку прямое сопротивление устройства при подключении может быть действительно низким и составлять менее 1 градуса, следовательно, напряжение падает на это и потери мощности также низкие.

Также мы можем видеть, что тиристор блокирует ток в обоих направлениях источника переменного тока в его состоянии «ВЫКЛ» и может быть включен «ВКЛ» и заставлен работать как обычный терапевтический диод, подав положительный ток на базу транзистора. , TR2, который называется для кремниевого контрольного терапевтического терминала «ворота».

Все о тиристорах — Innova Enterprises

Что такое тиристоры?

Тиристор — это одно из нескольких управляемых полупроводниковых устройств, которые могут действовать как переключатель, выпрямитель или как регулятор напряжения.
Тиристор — твердотельный аналог тиратронной вакуумной лампы. Название «тиристор» — это сочетание двух слов — тиратрон и транзистор. Тиристор работает как транзистор. Он состоит из трех электродов: затвора, анода и катода. Затвор действует как управляющий электрод. Когда небольшой ток течет в затвор, он позволяет большему току течь от анода к катоду. Тиристор может быть переключен из состояния блокировки (высокое напряжение, низкий ток) в проводящее состояние (низкое напряжение, высокий ток) с помощью подходящего импульса затвора.Прямая проводимость блокируется до тех пор, пока на вывод затвора не будет подан внешний положительный импульс. Тиристор нельзя выключить от затвора.

Обычно два или более тиристора собираются в тиристорный модуль. Основание этого типа блока не является электрически активным, поэтому его можно установить непосредственно на радиатор преобразователя. Большие тиристорные блоки обычно бывают дисковыми для лучшего охлаждения.

Тиристор — Основы

Тиристор — это четырехслойный полупроводниковый прибор, состоящий из чередующихся материалов типа P и N (PNPN).Четыре уровня действуют как бистабильные переключатели. Пока напряжение на устройстве не изменилось (то есть они смещены в прямом направлении), тиристоры продолжают проводить электрический ток.
Наиболее распространенным типом тиристоров является кремниевый выпрямитель (SCR). Когда катод заряжен отрицательно относительно анода, ток не течет до тех пор, пока на затвор не будет подан импульс. Затем SCR начинает проводить и продолжает проводить до тех пор, пока напряжение между катодом и анодом не изменится на противоположное или не упадет ниже определенного порогового значения
.Используя этот тип тиристора, можно переключать или контролировать большие мощности с помощью небольшого пускового тока или напряжения.

Использование тиристоров

Чаще всего тиристоры используются в цепях переменного тока. В цепи переменного тока прямой ток падает до нуля в течение каждого цикла, поэтому всегда будет функция отключения. Однако это означает, что гейт необходимо запускать каждый цикл, чтобы снова включить его. Именно в относительной синхронизации этих двух функций тиристор играет наиболее важную роль, т.е.е. Контроль мощности.
Тиристоры также используются в регуляторах скорости двигателя, регуляторах освещенности, системах контроля давления и регуляторах уровня жидкости.

Сегодня тиристоры производятся и продаются в виде модулей вплоть до 570 А. Также доступны дискретные формы, такие как шпильки и диски, до тех пор, пока в отрасли не доминируют модули на 570 А.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *