Зарядное из блока питания компьютера: для автомобильного аккумулятора, схема с регулировкой тока

Содержание

Зарядное из блока питания компьютера без переделок

Зарядное устройство для автомобильного аккумулятора из блока питания компьютера. На этой странице я вкратце расскажу Вам о том, как своими руками переделать блок питания персонального компьютера в зарядное устройство для автомобильных и не только аккумуляторов. Зарядное устройство для автомобильных аккумуляторов должно обладать следующим свойством: максимальное напряжение, подводимое к аккумулятору — не более Именно такой способ зарядки реализуется на борту автомобиля от генератора в штатном режиме работы электросистемы автомобиля. Однако, в отличие от материалов из этой статьи, мною была избрана концепция максимальной простоты доработок без использования самодельных печатных плат, транзисторов и прочих «наворотов».


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам. ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Зарядное устройство из компьютерного блока питания

Что можно сделать из компьютерного блока питания? Как сделать 12 вольт из блока питания компьютера


При эксплуатации авто только в городском режиме советуют раз в месяца полностью заряжать автомобильный аккумулятор штатным зарядным устройством.

Да вот беда — нормальное зарядное есть не у всех, денег на него жалко, а заряжать аккумулятор желательно регулярно. Для тех, у кого нет лишних баксов на автомобильную зарядку от сети, а иметь оную уж очень хочется, и предназначена эта статья. Очень неплохую вещь можно сделать из обычного компьютерного блока питания АТХ.

Компьютерный блок питания ваще шикарная штука, ибо предназначен для того, чтобы молотить круглосуточно, запитывая материнку, процессор, винчестер, да еще и выдавать при этом довольно солидные токи.

В самих компьютерах БП периодически мрут, ибо сделаны в большинстве своем китайцами, а эти ребята привыкли экономить на всем — занижать параметры конденсаторов, ставить резисторы меньшей мощности, и вообще за это им огромное спасибо, ибо благодаря их стараниям у меня, к примеру, нет недостатка в компьютерных блоках питания для экспериментов.

Скажу сразу — не всякий блок питания подойдет для переделки. Внутри блока питания стоит микросхема ШИМ-контроллера, которая управляет полумостовым преобразователем. На этой микросхеме с небольшими изменениями можно получить не только автомобильное зарядное устройство, но и полноценный лабораторный блок питания с регулируемым стабилизированным напряжением и ограничением тока. Структурная схема ШИМ показана на рисунке:.

ШИМ-контроллер работает на фиксированной частоте и содержит встроенный генератор пилообразного напряжения, который требует для установки частоты всего два внешних компонента: резистора Rt и конденсатора Ct. Для начала проверяем работоспособность источника дежурного питания. Дежурка работает всегда, когда на блок питания подано В и включен тублер. Сигнал Standbye — фиолетовый провод большого разъема питания, 9 контакт.

При включенном в сеть БП на 9 контакте должно быть 5В. Если нет, ищем неисправность в цепях дежурки. Если есть — проверяем наличие питания на выводе 12 ШИМ. Дежурка выполнена по схеме однотактного преобразователя с насыщающимся трансформатором. Чаще всего высыхают электролитические конденсаторы, теряют емкость конденсаторы обвязки.

Прозваниваем транзистор, диоды, первичную и вторичную обмотки трансформатора на предмет КЗ. Подключаем источник к выводу 12 ШИМ, вывод 4 закорачиваем на землю. В этом случае причина неисправности кроется в цепях защиты от перегрузок и цепях формирования служебных сигналов. Так как этот сигнал относится к цепям формирования служебных сигналов, он нас не интересует — мы запустим БП без него. Микросхему ШИМ легко найти невооруженным взглядом. Допустим ШИМ работает, но на выходе напряжений нет.

Все осциллограммы снимать относительно эмиттера. Условно будем полагать, что с этой задачей мы успешно справились, ибо разбор конструкции БП АТХ и принципы его ремонта не входит в нашу первоочередную задачу. Выходная часть с выпрямителем и фильтрами питания сделаны по примерно одной и той же схеме:. Заодно выпаиваем со схемы весь жгут проводов — он нам больше не понадобится.

Не бойтесь выпаивать все лишнее — для запуска ШИМ TL нужно всего 4 сопротивления и один конденсатор не считая пары переменных резисторов. Они уже есть на схеме, даже если Вы выпаяете лишнее, потом ориентируясь по печатным проводникам, можно будет вернуть нужные компоненты 3 сопротивления и 1 емкость на место. Нижняя микросхема LM — счетверенный компаратор, на котором собрана схема защиты, также не нужна. Ее можно смело выпаивать или выкусывать, я обломался. Так как раньше блок питания уже как-то работал, скорей всего эта обвязка уже присутствует в схеме, нужно только изменить подключение выводов 1, 2, 4, 15 и На контакт 12 подается напряжение с дежурного источника питания.

Контакт 4 садится на землю. Можно проследить дорожку и выпаять диод, через который на контакт 4 подается сигнал ошибки со схемы защиты.

Кроме этого, нам понадобится два переменных резистора нужного номинала, и шунт 0. Вот что вышло в итоге:. Фактически для переделки БП АТХ в лабораторный источник питания или зарядное устройство нужно два переменных резистора и шунт на 0. Ну и конечно мало-мальские познания в электронике и большое желание замутить что-то такое на зависть всем пацанам из соседних гаражей. Что в танке главное, знаете? Правильно, плюс небольшая внимательность.

В принципе уже после этого напряжение на выходе можно менять в пределах от 2. Выставив однажды сопротивлением Так как схема БП АТХ является по-сути стабилизатором напряжения, то она будет поддерживать заданное раннее напряжение, а вот ток по мере заряда аккумулятора будет падать.

Но так как такое зарядное устройство будет использоваться раз в два-три месяца, если не раз в год, а остальное время оно просто будет валяться в гараже, есть очень большой соблазн потратить еще один день, и сделать из него полноценный лабораторный блок питания. Понадобится только две измерительные головки — вольтметр и амперметр.

Либо для пущей убедительности возможна установка аналоговых вольтметра и амперметра. Амперметр нужен обязательно с шунтом на тот предел, который указан на шкале. Иначе замучаетесь подбирать отрезок провода необходимого сопротивления.

В моем случае манганиновый шунт уже встроен в амперметр. Вырезав из текстолита лицевую панель, профрезеровав отверстия под амперметр, вольтметр, регуляторы и прочее, я собрал все воедино. У меня заодно он обдувает и шунт. При этом чем выше напряжение, тем больше скорость вращения вентилятора. Не пытайтесь изменить направление вращения, изменяя полярность питания — внутри вентилятора стоит специальная микросхема, она скорей всего сдохнет. Это значит, что если замкнуть накоротко выходы источника питания, ток короткого замыкания в цепях будет равен лишь выставленному ранее ограничению тока!

Помните об этом, если Вы не хотите, чтобы из вашего блока ушел волшебный дым, на котором работает вся электроника. Для избежания подобных казусов нагрузка в моем случае подключается через предохранитель на 15А. К сожалению, происходит ровно наоборот — схема вылетает, защитив собой предохранитель. При подключении к аккумулятору строго соблюдать полярность! В противном случае все тот же волшебный дым покинет какой-то компонент схемы, и он больше никогда не будет работать. Порядок зарядки аккумулятора.

На холостом ходу выставить регулятором тока минимальное ограничение тока крайнее левое или крайнее правое положение сопротивления R3 согласно вышеприведенной схеме, зависящее положение от распайки резистора , регулятором напряжения выставить напряжение Отключить источник питания от сети.

Подключить аккумулятор, соблюдая полярность. Включить источник питания и регулятором тока выставить нужный ток заряда. При этом напряжение немного упадет до какого-то значения, которое зависит от внутреннего сопротивления аккумулятора, но стабилизатор тока будет держать нужный ток.

По мере набора аккумулятором емкости ток заряда будет падать, а напряжение вернется до установленного ранее значения. Выводы: зарядное устройство для аккумуляторов, сделанное на базе блока питания АТХ обладает следующими преимуществами:. Фантастическая живучесть и работоспособность. Другими словами, блок питания предназначен для того, чтобы сутками молотить включенным. Последний возьмет столько тока, сколько ему нужно.

Полноценный блок питания с широкими пределами регулирования для решения повседневных задач. Отлично вписывается в интерьер квартиры. Недостаток — время полного заряда аккумулятора большой емкости вследствии уменьшения тока заряда по экспоненте может оказаться несколько больше ожидаемого.

Имя обязательно. E-mail не публикуется обязательно. Мифы древней Греции Все о чешском пиве. Записная книжка зрелого мотоциклиста Свой и чужой мотоциклетный опыт. Задумал сделать зарядное для аккумулятора своего Днепра из бракованного компьютерного Блока Питания.

Аналоги подшипников и сальников на оппозиты Восстановление VAGовских моторов. Без рубрики. Схема дежурного источника питания выглядит примерно так: Дежурка выполнена по схеме однотактного преобразователя с насыщающимся трансформатором. Сетевой фильтр и выпрямитель. Схема измерений перенапряжений, она же схема защиты и формирования служебных сигналов. Дежурный источник питания. Усилитель мощности. Схема промежуточного усилителя. После выпаивания запасных компонентов должно получиться примерно следующее: Не бойтесь выпаивать все лишнее — для запуска ШИМ TL нужно всего 4 сопротивления и один конденсатор не считая пары переменных резисторов.

При переделке компьютерного БП в лабораторный источник питания я опирался вот на эту схему: Здесь показана минимальная обвязка ШИМ TL для того, чтобы микросхема заработала.

Вот что вышло в итоге: Фактически для переделки БП АТХ в лабораторный источник питания или зарядное устройство нужно два переменных резистора и шунт на 0. Можно пойти другим путем, и сделать переднюю панель скажем из нержавейки, порезав ее лазером. Не пытайтесь изменить направление вращения, изменяя полярность питания — внутри вентилятора стоит специальная микросхема, она скорей всего сдохнет ВНИМАНИЕ! Во избежании взрыва подключать и отключать аккумулятор только при выключенном источнике питания!!!!

Выводы: зарядное устройство для аккумуляторов, сделанное на базе блока питания АТХ обладает следующими преимуществами: 1. Возможность заряжать аккумулятор не отключая его от автомобиля.

Отлично вписывается в интерьер квартиры Недостаток — время полного заряда аккумулятора большой емкости вследствии уменьшения тока заряда по экспоненте может оказаться несколько больше ожидаемого. Рубрика: Без рубрики Метки: Приборы для настройки мото , схемы , Электооборудование.


Зарядное устройство из блока питания компьютера

Здравствуйте, уважаемые друзья! Сегодня я расскажу, как переделать компьютерный блок питания в зарядное устройство для автомобильного аккумулятора. Для переделки подойдет блок питания собранный на микросхемах TL или KA Другие блоки питания, к сожалению, переделать таким способом не получится. У каждого блока питания имеется защита от повышения напряжения и короткого замыкания, которую надо отключить. После этого блок питания будет запускаться автоматически при включении в сеть.

Зарядное устройство из блока питания компьютера — SDELAITAK Скачать схему переделки компьютерного блока питания в зарядное устройство Скачать После включения в сеть блок питания запускается без замыкания.

Уважаемый Пользователь!

Блок питания персонального компьютера без особых трудностей можно переделать в автомобильное зарядное устройство. Оно обеспечивает аналогичное напряжение и ток как при подзарядке от штатной электросети автомобиля. Схема лишена самодельных печатных плат и основана на концепции максимальной простоты доработок. Итак, для начала из блока питания нужно убрать все лишние запчасти. Это не даст сжечь устройство при случайном переключении переключателя в положение В. Затем необходимо избавится от всех отходящих проводов, за исключением пучка из 4-х черных и 2-х желтых проводов они ответственны за питание устройства. Далее следует добиться результата, когда блок питания будет работать всегда, когда включен в сеть, а также устранить защиту от перенапряжения. Защита отключает блок питания, если исходящее напряжение превышает некоторое заданное значение. Сделать это нужно потому, что необходимое нам напряжение должно составлять 14,4 В, вместо стандартных 12,0 В. Эти оптроны связывают низковольтную и высоковольтную стороны блока питания.

:: ЗАРЯДНОЕ ИЗ БЛОКА ПИТАНИЯ КОМПЬЮТЕРА ::

Дорогие друзья, я расскажу вам о простом способе переделки компьютерного блока питания в зарядное устройство для автомобильных аккумуляторов своими руками. Для переделки подойдут любые компьютерные блоки питания собранные на микросхемах TL или КА с любым буквенным индексом в конце. Модель, дата производства, цвет и размер блока питания никакого значения не имеют. Самое главное, это наличие в блоке питания микросхемы TL или ее аналога КА Снимите верхнюю крышку и проверьте на какой микросхеме собран блок.

Новокузнецк, Кемеровская обл.

Переделка компьютерного блока питания в зарядное устройство

Пожалуй каждый автолюбитель рано или поздно сталкивается с необходимостью подзарядить аккумулятор своего «коня». Я много раз находил информацию, что из компьютерного блока питания можно сделать хорошую зарядку для аккумуляторов, но всегда отбрасывал эту информацию так как на переделку просто не было достаточно свободного времени и у меня была простейшая зарядка внутри которой был трансформатор, диод и амперметр : Заряжать аккумуляторы при необходимости я мог, но вот качество этой зарядки оставляло желать лучшего. Потратив несколько часов на поиски в интернете был найден ненужный, ещё рабочий блок питания Codegen W и инструкция со схемой по переделке. Сразу скажу, что суммарно процесс переделки у меня занял около двух-трёх недель, так как взятая изначально схема дорабатывалась, просчитывалась, переделывалась и настраивалась. При этом за две-три недели перечитал кучу инструкций, статей, схем по принципам работы блоков питания, работе ШИМ контроллеров, назначению ДГС и ещё тонны полезнейшей информации для общего развития. Многие элементы схемы пришлось рассчитывать самому дабы получить именно то, что мне было необходимо.

Переделка компьютерного блока питания.

Коротко о содержании сайта. С чего все началось. Простой эксперимент. Мой электролизер. Простой блок питания. Материалы электролит и пластик. Материалы металл. Материалы — электрика, провода, реле.

и надежном зарядном на основе AT блока питания, без индикатора тока ( хотя амперметр никто не мешает поставить). Ну вот, нашли.

Зарядное из компьютерного блока питания.

Login to Your Account. Форум Техпомощь Своими Силами. Зарядка аккумулятора от блока питания ПК? Страница 1 из 2 1 2 Последняя К странице: Показано с 1 по 30 из

Зарядное из блока питания – переделка для новичков

При изготовлении зарядного устройства из компьютерного блока питания, многие сталкиваются с проблемой подбора блока. Производителей, как и схем блоков , существует огромное количество, практически все они при правильном подходе поддаются переделке. Но, сделать зарядное из блока питания можно за полчаса, а можно потратить на это целый вечер, все зависит от самого блока. Сегодня в нашей статье мы расскажем, как нужно выбирать блок питания для переделки в зарядное. Также, на примере блока CWT W , будут показаны основные нюансы подобных переделок, если не удалось найти даже схему самого блока.

У компьютерного блока питания, наряду с такими преимуществами, как малые габариты и вес при мощности от Вт и выше, есть один существенный недостаток — отключение при перегрузке по току.

Зарядное устройство из компьютерного БП ATX с защитой от переполюсовки и КЗ.

Нужны еще сервисы? Архив Каталог тем Добавить статью. Как покупать? В предлагаемой статье автор делится накопленным опытом переделки компьютерных блоков питания в устройства зарядки свинцово-кислотных аккумуляторных батарей. Особое внимание автор уделяет совершенствованию узла индикации зарядного тока, по которому можно определить заряженность батареи и момент окончания зарядки.

Автомобильное зарядное устройство из блока питания компьютера

Хороший лабораторный блок питания — это довольно дорогое удовольствие и не всем радиолюбителям оно по карману. Тем не менее в домашних условиях можно собрать не плохой по характеристикам блок питания, который вполне справится и с обеспечением питания различных радиолюбительских конструкций, и так же может служить и зарядным устройством для различных аккумуляторов. Собирают такие блоки питания радиолюбители, как правило из компьютерных БП АТХ , которые везде доступны и дешевы.


Автомобильное зарядное из блока питания компьютера. Переделка компьютерного блока питания. Собираем схему усиления тока и защиты от КЗ

Хороший лабораторный блок питания — это довольно дорогое удовольствие и не всем радиолюбителям оно по карману.
Тем не менее в домашних условиях можно собрать не плохой по характеристикам блок питания, который вполне справится и с обеспечением питания различных радиолюбительских конструкций, и так же может служить и зарядным устройством для различных аккумуляторов.
Собирают такие блоки питания радиолюбители, как правило из , которые везде доступны и дешевы.

В этой статье уделено мало внимания самой переделке АТХ, так как переделать компьютерный БП для радиолюбителя средней квалификации в лабораторный, или для каких то иных целей, обычно не составляет особого труда, а вот у начинающих радиолюбителей возникает по этому поводу много вопросов. В основном какие детали в БП нужно удалить, какие оставить, что добавить, чтобы такой БП превратить в регулируемый, ну и так далее.

Вот специально для таких радиолюбителей, я хочу в этой статье подробно рассказать о переделке компьютерных блоков питания АТХ в регулируемые БП, которые можно будет использовать и как лабораторный блок питания, и как зарядное устройство.

Для переделки нам понадобится исправный блок питания АТХ, который выполнен на ШИМ контроллере TL494 или его аналогах.
Схемы блоков питания на таких контроллерах в принципе отличаются друг от друга не сильно и все в основном похожи. Мощность блока питания не должна быть меньше той, которую планируете в будущем снимать с переделанного блока.

Давайте рассмотрим типовую схему блока питания АТХ, мощностью 250 Вт. У блоков питания «Codegen» схема почти не отличается от этой.

Схемы всех подобных БП состоят из высоковольтной и низковольтной части. На рисунке печатной платы блока питания (ниже) со стороны дорожек, высоковольтная часть отделена от низковольтной широкой пустой полосой (без дорожек), и находится справа (она меньше по размеру). Её мы трогать не будем, а будем работать только с низковольтной частью.
Это моя плата и на её примере я Вам покажу вариант переделки БП АТХ.

Низковольтная часть рассматриваемой нами схемы, состоит из ШИМ контроллера TL494, схемы на операционных усилителях, которая контролирует выходные напряжения блока питания, и в случае их несоответствия — даёт сигнал на 4-ю ножку ШИМ контроллера на выключение блока питания.
Вместо операционного усилителя на плате БП могут быть установлены транзисторы, которые в принципе выполняют ту же самую функцию.
Дальше идёт выпрямительная часть, которая состоит из различных выходных напряжений, 12 вольт, +5 вольт, -5 вольт, +3,3 вольта, из которых для наших целей будет необходим только выпрямитель +12 вольт (жёлтые выходные провода).
Остальные выпрямители и сопутствующие им детали необходимо будет удалить, кроме выпрямителя «дежурки», который нам понадобится для питания ШИМ контроллера и куллера.
Выпрямитель дежурки даёт два напряжения. Обычно это 5 вольт и второе напряжение может быть в районе 10-20 вольт (обычно около 12-ти).
Мы будем использовать для питания ШИМа второй выпрямитель. К нему также подключается и вентилятор (куллер).
Если это выходное напряжение будет значительно выше 12-ти вольт, то вентилятор подключать к этому источнику нужно будет через дополнительный резистор, как будет далее в рассматриваемых схемах.
На схеме ниже, я пометил высоковольтную часть зелёной линией, выпрямители «дежурки» — синей линией, а всё остальное, что необходимо будет удалить — красным цветом.

Итак всё, что помечено красным цветом — выпаиваем, а в нашем выпрямителе 12 вольт меняем штатные электролиты (16 вольт) на более высоковольтные, которые будут соответствовать будущему выходному напряжению нашего БП. Также необходимо будет выпаять в цепи 12-ой ножки ШИМ контроллера и средней части обмотки согласующего трансформатора — резистор R25 и диод D73 (если они есть в схеме), и вместо них в плату впаять перемычку, которая на схеме нарисована синей линией (можно просто замкнуть диод и резистор не выпаивая их). В некоторых схемах этой цепи может и не быть.

Далее в обвязке ШИМа на первой его ноге оставляем только один резистор, который идёт к выпрямителю +12 вольт.
На второй и третьей ноге ШИМа — оставляем только Задающую RC цепочку (на схеме R48 C28).
На четвёртой ноге ШИМа оставляем только один резистор (на схеме обозначен как R49. Да, ещё во многих схемах между 4-ой ногой и 13-14 ножками ШИМа — обычно стоит электролитический конденсатор, его (если он есть) тоже не трогаем, так как он предназначен для мягкого старта БП. В моей плате его просто не было, поэтому я его поставил.
Ёмкость его в стандартных схемах 1-10 мкФ.
Потом освобождаем 13-14 ножки от всех соединений, кроме соединения с конденсатором, и также освобождаем 15-ю и 16-ю ножки ШИМа.

После всех выполненных операций у нас должно получиться следующее.

Вот как это выглядит у меня на плате (ниже на рисунке).
Дроссель групповой стабилизации я здесь перемотал проводом 1,3-1,6 мм в один слой на родном сердечнике. Поместилось где то около 20-ти витков, но можно этого не делать и оставить тот, что был. С ним тоже всё хорошо работает.
На плату я так же установил другой нагрузочный резистор, который у меня состоит из двух параллельно включенных резисторов по 1,2 кОм 3W, общее сопротивление получилось 560 Ом.
Родной нагрузочный резистор рассчитан на 12 вольт выходного напряжения и имеет сопротивление 270 Ом. У меня выходное напряжение будет около 40-ка вольт, поэтому я поставил такой резистор.
Его нужно рассчитывать (при максимальном выходном напряжении БП на холостом ходу) на ток нагрузки 50-60 мА. Так как работа БП совсем без нагрузки не желательна, поэтому он и ставится в схему.

Вид платы со стороны деталей.

Теперь что необходимо будет нам добавить в подготовленную плату нашего БП, чтобы превратить его в регулируемый блок питания;

В первую очередь, чтобы не пожечь силовые транзисторы, нам нужно будет решить проблему стабилизации тока нагрузки и защиту от короткого замыкания.
На форумах по переделке подобных блоков, встретил такую интересную вещь — при экспериментах с режимом стабилизации тока, на форуме pro-radio , участник форума DWD привёл такую цитату, приведу её полностью:

«Я как-то рассказывал, что не смог получить нормальную работу ИБП в режиме источника тока при низком опорном напряжении на одном из входов усилителя ошибки ШИМ контроллера.
Более 50мВ — нормально, а меньше — нет. В принципе, 50мВ это гарантированный результат, а в принципе, можно получить и 25мВ, если постараться. Меньше — ни как не получалось. Работает не устойчиво и возбуждается или сбивается от помех. Это при плюсовом напряжении сигнала с датчика тока.
Но в даташите на TL494 есть вариант, когда с датчика тока снимается отрицательное напряжение.
Я переделал схему на этот вариант и получил отличный результат.
Вот фрагмент схемы.

Собственно, всё стандартно, кроме двух моментов.
Во первых, лучшая стабильность при стабилизации тока нагрузки при минусовом сигнале с датчика тока это случайность или закономерность?
Схема прекрасно работает при опорном напряжении в 5мВ!
При положительном сигнале с датчика тока стабильная работа получается только при более высоких опорных напряжениях (не менее 25мВ).
При номиналах резисторов 10Ом и 10КОм ток стабилизировался на уровне 1,5А вплоть до КЗ выхода.
Мне ток нужен больше, по этому поставил резистор на 30Ом. Стабилизация получилась на уровне 12…13А при опорном напряжении 15мВ.
Во вторых (и самое интересное), датчика тока, как такового у меня нет…
Его роль выполняет фрагмент дорожки на плате длиной 3см и шириной 1см. Дорожка покрыта тонким слоем припоя.
Если в качестве датчика использовать эту дорожку на длине 2см, то ток стабилизируется на уровне 12-13А, а если на длине 2,5см, то на уровне 10А.»

Так как этот результат оказался лучше стандартного, то и мы пойдём таким-же путём.

Для начала нужно будет отпаять от минусового провода средний вывод вторичной обмотки трансформатора (гибкую косу), или лучше не выпаивая её (если позволяет печатка) — перерезать печатную дорожку на плате, которая соединяет её с минусовым проводом.
Дальше нужно будет впаять между разрезом дорожки токовый датчик (шунт), который будет соединять средний вывод обмотки с минусовым проводом.

Шунты лучше всего брать из неисправных (если найдёте) стрелочных ампервольтметров (цешек), или из китайских стрелочных или цифровых приборов. Выглядят они примерно так. Вполне достаточно будет куска длинной 1,5-2,0 см.

Можно конечно попробовать поступить и так, как написал выше DWD , то есть если дорожка от косы к общему проводу достаточной длинны, то попробовать её использовать в качестве токового датчика, но я этого делать не стал, у меня плата попалась другой конструкции, вот такая, где обозначены красной стрелкой две проволочные перемычки, которые соединяли вывод косы с общим проводом, а между ними проходили печатные дорожки.

Поэтому после удаления лишних деталей с платы, я выпаял эти перемычки и на их место впаял токовый датчик от неисправной китайской «цешки».
Потом на место припаял перемотанный дроссель, установил электролит и нагрузочный резистор.
Вот ка выглядит кусок платы у меня, где я красной стрелкой пометил установленный токовый датчик (шунт) на месте проволочной перемычки.

Потом отдельным проводом необходимо этот шунт соединить с ШИМом. Со стороны косы — с 15-ой ножкой ШИМа через резистор 10 Ом, а 16-ю ножку ШИМ-а соединить с общим проводом.
С помощью резистора 10 Ом можно будет подобрать максимальный выходной ток нашего БП. На схеме DWD стоит резистор 30 Ом, но начните пока с 10-ти Ом. Увеличение номинала этого резистора — увеличивает максимальный выходной ток БП.

Как я уже раньше говорил, выходное напряжение блока питания у меня около 40-ка вольт. Для этого я перемотал себе трансформатор, но в принципе можно не перематывать, а повысить выходное напряжение другим способом, но для меня этот способ оказался удобнее.
Обо всём этом я расскажу немного позже, а пока продолжим и начнём устанавливать на плату необходимые дополнительные детали, чтобы у нас получился работоспособный блок питания или зарядное устройство.

Ещё раз напомню, что если у Вас на плате между 4-ой и 13-14 ножками ШИМа не стоял конденсатор (как в моём случае), то его желательно добавить в схему.
Так же нужно будет установить два переменных резистора (3,3-47 кОм) для регулировки выходного напряжения (V) и тока (I) и соединить их с нижеприведённой схемой. Провода соединения желательно делать как можно короче.
Ниже я привёл только часть схемы, которая нам необходима — в такой схеме проще будет разобраться.
На схеме вновь установленные детали обозначены зелёным цветом.

Схема вновь установленных деталей.

Приведу немного пояснений по схеме;
— Самый верхний выпрямитель — это дежурка.
— Величины переменных резисторов показаны, как 3,3 и 10 кОм — стоят такие, какие нашлись.
— Величина резистора R1 указана 270 Ом — он подбирается по необходимому ограничению тока. Начинайте с малого и у Вас он может оказаться совсем другой величины, например 27 Ом;
— Конденсатор С3 я не пометил, как вновь установленные детали в расчёте на то, что он может присутствовать на плате;
— Оранжевой линией обозначены элементы, которые может придётся подбирать или добавлять в схему в процессе наладки БП.

Дальше разбираемся с оставшимся 12-ти вольтовым выпрямителем.
Проверяем, какое максимальное напряжение способен выдать наш БП.
Для этого временно отпаиваем от первой ноги ШИМа — резистор, который идёт на выход выпрямителя (по схеме выше на 24 кОм), затем нужно включить блок в сеть, предварительно соединить в разрыв любого сетевого провода, в качестве предохранителя — обычную лампу накаливания 75-95 Вт. Блок питания в этом случае выдаст нам максимальное напряжение, на которое он способен.

Прежде, чем включать блок питания в сеть, убедитесь, что электролитические конденсаторы в выходном выпрямителе заменены на более высоковольтные!

Все дальнейшие включения БП производить только с лампой накаливания, она убережёт БП от аварийных ситуаций, в случае каких либо допущенных ошибок. Лампа в этом случае просто загорится, а силовые транзисторы останутся целыми.

Дальше нам нужно зафиксировать (ограничить) максимальное выходное напряжение нашего БП.
Для этого резистор на 24 кОм (по схеме выше) от первой ноги ШИМа, меняем временно на подстроечный, например 100 кОм, и выставляем им необходимое нам максимальное напряжение. Желательно выставить так, что бы оно было меньше процентов на 10-15 от максимального напряжения, которое способен выдать наш БП. Потом на место подстроечного резистора впаять постоянный.

Если Вы планируете этот БП использовать в качестве зарядного устройства, то штатную диодную сборку используемую в этом выпрямителе, можно оставить, так как её обратное напряжение 40 вольт и для зарядного устройства она вполне подойдёт.
Тогда максимальное выходное напряжение будущего зарядного нужно будет ограничить выше описанным способом, в районе 15-16 вольт. Для зарядного устройства 12-ти вольтовых АКБ это вполне достаточно и повышать этот порог не нужно.
Если планируете использовать Ваш переделанный БП в качестве регулируемого блока питания, где выходное напряжение будет больше 20-ти вольт, то эта сборка уже не подойдёт. Её нужно будет заменить на более высоковольтную с соответствующим током нагрузки.
Себе на плату я поставил две сборки в параллель по 16 ампер и 200 вольт.
При конструировании выпрямителя на таких сборках, максимальное выходное напряжение будущего блока питания может быть от 16-ти и до 30-32 вольт. Всё зависит от модели блока питания.
Если при проверке БП на максимально-выдавамое напряжение, БП выдаёт напряжение меньше планируемого, и кому то нужно будет больше напряжения на выходе (40-50 вольт например), то нужно будет вместо диодной — сборки собрать диодный мост, косу отпаять от своего места и оставить висеть в воздухе, а минусовой вывод диодного моста соединить на место выпаянной косы.

Схема выпрямителя с диодным мостом.

С диодным мостом выходное напряжение блока питания будет в два раза больше.
Очень хорошо для диодного моста подходят диоды КД213 (с любой буквой), выходной ток с которыми может достигать до 10-ти ампер, КД2999А,Б (до 20-ти ампер) и КД2997А,Б (до 30-ти ампер). Лучше всего конечно последние.
Все они выглядят вот так;

Нужно будет в таком случае продумать крепление диодов к радиатору и изоляцию их друг от друга.
Но я пошёл другим путём — просто перемотал трансформатор и обошёлся, как говорил выше. двумя диодными сборками в параллель, так как на плате было для этого предусмотрено место. Для меня этот путь оказался проще.

Перемотать трансформатор особого труда не составляет и как это сделать — рассмотрим ниже.

Для начала выпаиваем трансформатор из платы и смотрим по плате, к каким выводам припаяны 12-ти вольтовые обмотки.

В основном встречаются двух видов. Такие, как на фото.
Дальше нужно будет разобрать трансформатор. Проще конечно будет справиться с меньшими по размеру, но и бОльшие тоже поддаются.
Для этого нужно очистить сердечник от видимых остатков лака (клея), взять небольшую ёмкость, налить в неё воды, положить туда трансформатор, поставить на плиту, довести до кипения и «поварить» наш трансформатор 20-30 минут.

Для меньших трансформаторов это вполне достаточно (можно и меньше) и подобная процедура абсолютно не повредит сердечнику и обмоткам трансформатора.
Потом, придерживая сердечник трансформатора пинцетом (можно прямо в таре) — острым ножом пробуем отсоединить ферритовую перемычку от Ш-образного сердечника.

Делается это довольно легко, так как лак размягчается от такой процедуры.
Дальше так же аккуратно, пробуем освободить каркас от Ш-образного сердечника. Это тоже довольно просто делается.

Потом сматываем обмотки. Сначала идёт половина первичной обмотки, в основном около 20-ти витков. Сматываем её и запоминаем направление намотки. Второй конец этой обмотки можно и не отпаивать от места его соединения с другой половиной первички, если это не мешает дальнейшей работе с трансформатором.

Потом сматываем все вторички. Обычно идёт 4 витка сразу обеих половин 12-ти вольтовых обмоток, потом 3+3 витка 5-ти вольтовых. Всё сматываем, отпаиваем от выводов и наматываем новую обмотку.
Новая обмотка будет содержать 10+10 витков. Наматываем её проводом, диаметром 1,2 — 1,5 мм, или набором более тонких проводов (легче мотать) соответствующего сечения.
Начало обмотки припаиваем к одному из выводов, к которым была припаяна 12-ти вольтовая обмотка, мотаем 10 витков, направление намотки роли не играет, выводим отвод на «косу» и в том же направлении, что и начинали — мотаем ещё 10 витков и конец припаиваем на оставшийся вывод.
Дальше изолируем вторичку и наматываем на неё, смотанную нами ранее, вторую половину первички, в том же направлении, как она была намотана ранее.
Собираем трансформатор, впаиваем в плату и проверяем работу БП.

Если в процессе регулировки напряжения возникают какие либо посторонние шумы, писки, трески, то чтобы избавиться от них, нужно будет подобрать RC-цепочку, обведённую оранжевым эллипсом ниже на рисунке.

В некоторых случаях можно совсем убрать резистор и подобрать конденсатор, а в некоторых без резистора нельзя. Можно будет попробовать добавить конденсатор, или такую же RC цепочку, между 3 и 15 ножками ШИМа.
Если это не помогает, то нужно установить дополнительные конденсаторы (обведены оранжевым), номиналы их приблизительно 0,01 мкф. Если это мало помогает, то установить ещё и дополнительный резистор 4,7 кОм от второй ноги ШИМа к среднему выводу регулятора напряжения (на схеме не показан).

Потом нужно будет нагрузить выход БП, например автомобильной лампой ватт на 60, и попробовать регулировать ток резистором «I».
Если предела регулировки тока будет мало, то нужно увеличить номинал резистора, который идёт от шунта (10 Ом), и снова попробовать регулировать ток.
Не следует ставить вместо этого резистора подстроечный, изменяйте его величину, только установкой другого резистора с большим или меньшим номиналом.

Может случиться так, что при увеличении тока — лампа накаливания в цепи сетевого провода загорится. Тогда нужно уменьшить ток, выключить БП и вернуть номинал резистора к предыдущему значению.

Ещё, для регуляторов напряжения и тока, лучше всего попробовать приобрести регуляторы СП5-35, которые бывают с проволочными и жесткими выводами.

Это аналог многооборотных резисторов (всего на полтора оборота), ось которого совмещена с плавным и грубым регулятором. Регулируется сначала «Плавно», потом когда у него заканчивается предел, начинает регулироваться «Грубо».
Регулировка такими резисторами очень удобна, быстра и точна, гораздо лучше, чем многооборотником. Но если их достать не удастся, то приобретите обычные многооборотные, такие например;

Ну вот вроде я всё Вам и рассказал, что планировал довести по переделке компьютерного БП, и надеюсь, что всё понятно и доходчиво.

Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их на форуме.

Удачи Вам в конструировании!

Регулируемый блок питания из блока питания компьютера ATX

Если у Вас есть ненужный блок питания от компьютера ATX, то его можно легко превратить в лабораторный импульсный регулируемый блок питания, с регулировкой не только напряжения, но и тока, а это значит, что его можно использовать, например, для зарядки или восстановления аккумуляторов .

Блок питания имеет следующие параметры:

  • Напряжение — регулируемое, от 1 до 24В
  • Ток — регулируемый, от 0 до 10А
Возможны и другие пределы регулировки, по Вашей необходимости.

Для переделки подойдёт любой блок питания ATX, собранный на ШИМ-контроллере TL494. Часто в блоках питания применяется аналог этой микросхемы — KA7500.


Схемы большинства блоков питания похожи, и даже если Вы не смогли найти схему конкретно Вашего — ничего страшного. Первостепенная задача — выпаять из платы вторичные цепи после силового трансформатора, а также цепи, управляющие работой микросхемы TL494. На схеме ниже эти участки подсвечены красным. Перед выпаиванием пометьте выводы вторичной обмотки силового трансформатора по шине 12 вольт. Они нам понадобятся.


Нажмите на схему для увеличения
При этом на плате освободится много места. Печатные дорожки также можно удалить, проведя по ним нагретым паяльником. Некоторые печатные дорожки, идущие от выводов микросхемы, которые мы задействуем в дальнейшем, можно оставить для удобства и припаиваться к ним.


Теперь необходимо собрать новые выходные цепи и цепи регулировки тока и напряжения. К помеченным ранее обмоткам трансформатора шины 12 вольт необходимо припаять сборку двух диодов Шоттки с общим катодом. Сборку можно взять с шины +5В, обычно она имеет следующие параметры: напряжение — 30В, ток — 20А. Диоды Шоттки имеют очень малое падение напряжения, что в данном случае немаловажно. При данном типе выпрямителя можно питать большинство нагрузок.

Если же вам необходим большой ток на максимальном напряжении, данного варианта недостаточно. В этом случае необходимо убрать среднюю точку трансформатора, а выпрямитель сделать из четырёх диодов по классической схеме.

Затем необходимо намотать дроссель. Для этого необходимо взять выпаянный дроссель групповой стабилизации и смотать с него все обмотки. Сердечник дросселя имеет жёлтый цвет, одна сторона с торца покрашена белым. На это кольцо необходимо намотать 20 витков двемя проводами диаметром 1мм впараллель. Если такой толстой проволоки нет, то можно соединить вместе несколько жил более тонкой проволоки и намотать ими параллельно. При такой намотке все выводы на обоих концах обмотки необходимо залудить и соединить. Дроссель с такими параметрами обеспечит ток около 3А. Если нужен больший ток, то дроссель следует намотать десятью параллельными проводами диаметром 0,5мм.


После этого можно приступать к сборке той части схемы, которая отвечает за регулировки. Авторство этого метода принадлежит пользователю DWD, ссылка на тему с обсуждением:

http://pro-radio.ru/power/849/

Регулировка работает очень просто. Рассмотрим цепь регулировки напряжения. На вход компаратора (вывод 1) микросхемы TL494 подключен делитель напряжения на двух резисторах. Напряжение на их средней точке должно быть равно приблизительно 4.95 вольтам. Если Вы хотите изменить верхний предел регулировки напряжения блока питания, необходимо пересчитать именно этот делитель. Второй вход компаратора (вывод 2) подключен к средней точке переменного резистора, таким образом здесь также получается делитель напряжения. Если напряжение на выводе 1 компаратора будет меньше напряжения на выводе 2, то микросхема будет увеличивать ширину импульсов, пока напряжения не уравняются. Таким образом и осуществляется регулировка выходного напряжения блока питания.

Регулировка тока работает аналогично, только здесь для контроля протекающего в нагрузке тока используется падение напряжения на шунте Rш. В качестве шунта может быть использован практически любой шунт сопротивлением 0.01-0.05 Ом, например — участок токопроводящей дорожки, шунт от миллиамперметра или несколько SMD-резисторов. Верхний предел регулировки задаётся подстроечным резистором сопротивлением 1кОм. Если подстройка верхнего предела не нужна, то этот резистор следует заменить постоянным сопротивлением 270 Ом, что обеспечит регулировку до 10А.

Фото блока питания приведено ниже. На передней панели расположен экран ампервольтметра, под которым находятся ручки регуляторов напряжения и тока. Выходные клеммы выполнены из гнёзд RCA, приклееных изнутри эпоксидкой. К таким клеммам очень удобно цеплять зажимы типа крокодил. Большой жёлтый светодиод является индикатором включения блока питания, которое осуществляется большим красным переключателем.


В виду того, что корпус для блока питания выбран очень компактный (16*12см), монтаж получился плотный с обилием проводов. В будущем провода можно собрать в жгуты.


Для охлаждения блока питания применён термостат на микросхеме К157УД1, который охлаждает сборку выпрямительных диодов Шоттки и включается по мере надобности автоматически, затем выключается. О его конструкции будет рассказано отдельно.

Схемотехника этих блоков питания примерно одинакова практически у всех производителей. Небольшое отличие касается лишь БП AT и ATX. Главное различие между ними заключается в том, что БП в AT не поддерживает программно стандарт расширенного управления питанием. Отключить данный БП можно, лишь прекратив подачу напряжение на его вход, а в блоках питания формата ATX есть возможность программного отключения сигналом управления с материнской платы. Как правило плата ATX имеет большие размеры чем AT и вытянута по вертикали.


В любом компьютерном БП, напряжение +12 В предназначено для питания двигателей дисковых накопителей. Источник питания по этой цепи должен обеспечивать большой выходной ток, особенно в компьютерах с множеством отсеков для дисководов. Это напряжение также подается на вентиляторы. Они потребляют ток до 0.3А, но в новых компьютерах это значение ниже 0.1А. Питание +5 вольт подаётся на все узлы компьютера, поэтому имеет очень большую мощность и ток, до 20А, а напряжение +3.3 вольта предназначено исключительно для запитки процессора. Зная что современные многоядерные процессоры имеют мощность до 150 ватт, нетрудно подсчитать ток этой цепи: 100ватт/3.3вольт=30А! Отрицательные напряжения -5 и -12В раз в десять слабее основных плюсовых, поэтому там стоят простые 2-х амперные диоды без радиаторов.

В задачи БП входит и приостановка функционирования системы до тех пор, пока величина входного напряжения не достигнет значения, достаточного для нормальной работы. В каждом блоке питания перед получением разрешения на запуск системы выполняется внутренняя проверка и тестирование выходного напряжения. После этого на системную плату посылается специальный сигнал Power Good. Если этот сигнал не поступил, компьютер работать не будет



Сигнал Power Good можно использовать для сброса вручную если подать его на микросхему тактового генератора. При заземлении сигнальной цепи Power Good, генерация тактовых сигналов прекращается и процессор останавливается. После размыкания переключателя вырабатывается кратковременный сигнал начальной установки процессора и разрешается нормальное прохождение сигнала — выполняется аппаратная перезагрузка компьютера. В компьютерных БП типа ATX, предусмотрен сигнал, называемый PS ON, он может использоваться программой для отключения источника питания. Для проверки работоспособности блока питания, следует нагрузить БП лампами для автомобильных фар и померять все выходные напряжения тестером. Если напряжения в пределах нормы. Также стоит проверить изменение выдаваемое БП напряжение с изменением нагрузки.

Работа этих блоков питания очень стабильна и надёжна, но в случае сгорания, чаще всего выходят из строя мощные транзисторы, низкоомные резисторы, выпрямительные диоды на радиаторе, варисторы, трансформатор и предохранитель.



Для наших целей подойдёт абсолютно любой компьютерный БП. Хоть на 250 ватт, хоть на 500. Того тока, что он обеспечит, хватит для радиолюбительского БП с головой.


Переделка компьютерного БП ATX минимальна, и доступна для повторения даже начинающим радиолюбителям. Главное только помнить, что импульсный компьютерный БП ATX имеет на плате много элементов, которые находятся под напряжением сети 220В, поэтому будьте предельно аккуратны при испытаниях и настройке! Изменений каснулась в основном выходная часть БП ATX.


Дело в том, что блок питания от компьютера содержит в себе не только основной мощный преобразователь 300 ватт с шинами +5 и +-12В, но и небольшой вспомогательный источник питания дежурного режима материнской платы. Причём этот небольшой импульсный блок питания абсолютно независимый от основного.


Независимый настолько, что его можно смело выпилить из основной платы и подобрав подходящую коробку использовать для питания каких — нибудь электронных устройств. Доработка каснулась только обвязки микросхемы TL 431, сначала собрал делитель, но затем поступил проще – обычный подстроечник. С ним предел регулировки от 3,6 до 5,5 вольта.


Вот типовая схема компьютерного БП ATX, а ниже приведена схема участка вспомогательного преобразователя дежурного режима.


Естественно в каждом конкретном блоке питания ATX схема будет отличаться. Но принцип думаю понятен.

Аккуратно выпиливаем нужный участок печатной платы с ферритовым трансформатором, транзистором и другими необходимыми деталями и подключив к сети 220В проводим испытания на работоспособность этого блока.



В данном случае на выходе выставил напряжение ровно 4 вольта, ток срабатывания защиты 500ма, так как используется данный ИБП для проверки мобильных телефонов.


Мощность получившегося ИБП не велика, но однозначно выше стандартных импульсных зарядок от мобильных телефонов. Для этой переделки БП подойдёт абсолютно любой компьютерный блок питания ATX .
Для удобства эксплуатации, этот лабораторный блок питания можно снабдить цифровой индикацией тока и напряжения. Выполнить это можно или на микроконтроллере, или на специализированной микросхеме.


обеспечивает следующие параметры и функции:
1. Измерение и индикация выходного напряжения блока питания в диапазоне от 0 до 100В, с дискретностью 0,01В
2. Измерение и индикация выходного тока нагрузки блока питания в диапазоне от 0 до 10А с дискретностью 10 мА
3. Погрешность измерения — не хуже ±0,01В (напряжение) или ±10мА (ток)
4. Переключение между режимами измерения напряжение/ток осуществляется с помощью кнопки с фиксацией в нажатом положении.
5. Вывод результатов измерения на большой четырехразрядный индикатор. При этом три разряда используются для отображения значения измеряемой величины, а четвертый – для индикации текущего режима измерения.
6. Особенность моего вольтамперметра – автоматический выбор предела измерения. Смысл в том, что напряжения 0-10В отображаются с точностью 0,01В, а напряжения 10-100В с точностью 0,1В.
7. Реально делитель напряжения рассчитан с запасом, если измеряемое напряжение увеличивается больше 110В (ну может кому-то надо меньше, можно исправить это в прошивке), на индикаторе отображаются символы перегрузки – O.L (Over Load). Аналогично сделано и с амперметром, при превышении измеряемого тока больше 11А вольтамперметр переходит в режим индикации перегрузки.
Устройство осуществляет измерение и индикацию только положительных значений тока и напряжения, причем для измерения тока используется шунт в цепи «минуса».
Устройство выполнено на микроконтроллере DD1 (МК) ATMega8-16PU.


Технические параметры ATMEGA8-16PU:

Ядро AVR
Разрядность 8
Тактовая частота, МГц 16
Объем ROM-памяти 8K
Объем RAM-памяти 1K
Внутренний АЦП, кол-во каналов 23
Внутренний ЦАП, кол-во каналов 23
Таймер 3 канала
Напряжение питания, В 4.5…5.5
Температурный диапазон, C 40…+85
Тип корпуса DIP28

Количество дополнительных элементов схемы — минимально. (Более полные данные на МК можно узнать из даташита на него). Резисторы на схеме — типа МЛТ-0,125 или импортные аналоги, электролитический конденсатор типа К50-35 или аналогичный, напряжением не менее 6,3В, емкость его может отличаться в большую сторону. Конденсатор 0,1 мкФ — керамический импортный. Вместо DA1 7805 можно применить любые аналоги. Максимальное напряжение питания устройства определяется максимальным допустимым входным напряжением этой микросхемы. О типе индикаторов сказано далее. При переработке печатной платы возможно применение иных типов компонентов, в том числе SMD.

Резистор R… импортный керамический, сопротивление 0,1Ом 5Вт, возможно применение более мощных резисторов, если габариты печатки позволяют установить. Также нужно изучить схему стабилизации тока БП, возможно там уже есть токоизмерительный резистор на 0,1 Ом в минусовой шине. Можно будет использовать по возможности этот резистор. Для питания устройства может использоваться либо отдельный стабилизированный источник питания +5В (тогда микросхема стабилизатора питания DA1 не нужна), либо нестабилизированный источник +7…30В (с обязательным использованием DA1). Потребляемый устройством ток не превышает 80мА. Следует обращать внимание на то, что стабильность питающего напряжения косвенно влияет на точность измерения тока и напряжения. Индикация — обычная динамическая, в определенный момент времени светится только один разряд, но из-за инерционности нашего зрения мы видим светящимися все четыре индикатора и воспринимаем как нормальное число.

Использовал один токоограничительный резистор на один индикатор и отказался от необходимости дополнительных транзисторных ключей, т. к. максимальный ток порта МК в данной схеме не превышает допустимые 40 мА. Путем изменения программы можно реализовать возможность использования индикаторов как с общим анодом, так и с общим катодом. Тип индикаторов может быть любым — как отечественным, так и импортным. В моем варианте применены двухразрядные индикаторы VQE-23 зеленого свечения с высотой цифры 12 мм (это древние, мало-яркие индикаторы, найденные в старых запасах). Здесь приведу его технические данные для справки;

Индикатор VQE23, 20x25mm, ОК, зеленый
Двухразрядный 7-сегментный индикатор.
Тип Общий катод
Цвет зеленый (565nm)
Яркость 460-1560uCd
Десятичные точки 2
Номинальный ток сегмента 20mA

Ниже указано расположение выводов и габаритный чертеж индикатора:


1. Анод h2
2. Анод G1
3. Анод A1
4. Анод F1
5. Анод B1
6. Анод B2
7. Анод F2
8. Анод A2
9. Анод G2
10. Анод h3
11. Анод C2
12. Анод E2
13. Анод D2
14. Общ катод К2
15. Общ катод К1
16. Анод D1
17. Анод E1
18. Анод C1

Возможно использование вообще любых индикаторов как одно-, двух-, так и четырехразрядных с общим катодом, придется только разводку печатной платы под них делать. Плата изготовлена из двухстороннего фольгированного стеклотекстолита, но возможно применение одностороннего, просто надо будет несколько перемычек запаять. Элементы на плате устанавливаются с обеих сторон, поэтому важен порядок сборки:

Сначала необходимо пропаять перемычки (переходные отверстия), которых много под индикаторами и возле микроконтроллера.
Затем микроконтроллер DD1. Для него можно использовать цанговую панельку, при этом ее надо устанавливать не до упора в плату, чтобы можно было пропаять выводы со стороны микросхемы. Т.к. не было под лапой цанговой панельки, было решено впаять МК намертво в плату. Для начинающих не рекомендую, в случае неудачной прошивки 28-ногий МК очень неудобно заменять.
Затем все прочие элементы.

Эксплуатация данного модуля вольтамперметра не требует объяснения. Достаточно правильно подключить питание и измерительные цепи. Разомкнутый джемпер или кнопка – измерение напряжения, замкнутый джемпер или кнопка – измерение тока. Прошивку можно залить в контроллер любым доступным для вас способом. Из Fuse-битов, что необходимо сделать, так это включить встроенный генератор 4 МГц. Ничего страшного не случится, если их не прошить, просто МК будет работать на 1МГц и цифры на индикаторе будут сильно мерцать.

А вот и фотография вольтамперметра:


Я не могу дать конкретных рекомендаций, кроме вышесказанных, о том, как подключить устройство к конкретной схеме блока питания — ведь их такое множество! Надеюсь, эта задача действительно окажется такой легкой, как это я себе представляю. P.S. В реальном БП данная схема не проверялась, собрана как макетный образец, в будущем планируется сделать простой регулируемый БП с применением данного вольтамперметра. Буду благодарен тем, кто испытает в работе данный вольтамперметр и укажет на существенные и не очень недостатки. За основу взята схема от ARV Моддинг блока питания с сайта радиокот. Прошивку для микроконтроллера ATmega8 c исходными кодами для CodeVision AVR C Compiler 2.04, и плату в формате ARES Proteus можно скачать на отсюда . Также прилагается рабочий проект в ISIS Proteus. Материал предоставил – i8086.
Все основные и дополнительные детали блока питания монтируются внутри корпуса БП ATX. Места там хватает и для них, и для цифрового вольтамперметра, и для всех необходимых гнёзд и регуляторов.


Последнее преимущество так-же очень актуально, ведь корпуса часто являются большой проблемой. Лично у меня в ящике стола лежит немало девайсов, которые так и не обзавелись собственной коробкой.


Корпус получившегося блока питания можно обклеить декоративной чёрной самоклеющейся плёнкой или просто покрасить. Переднюю панель со всеми надписями и обозначениями делаем в фотошопе, печатаем на фотобумаге и наклеиваем на корпус.


Долгие испытания лабораторного блока питания показали его высокую надёжность, стабильность и отличные технические характеристики. Рекомендую всем повторить эту конструкцию, тем более, что пределка довольно простота и в итоге получится красивый компактный БП.

Зарядное устройство из компьютерного блока питания для автомобильной аккумуляторной батареи можно собрать самостоятельно. И такой агрегат пользуется популярностью. Ведь на его подготовку требуется минимум средств. При этом получается эффективное ЗУ.

На состояние автоаккумуляторной батареи обращают внимание в зимний период. Ведь в это время плотность электролитического состава меняется, быстро теряется заряд. В результате, запуск двигателя усложняется. Для решения этой проблемы используют зарядные устройства.

Разработкой и сборкой зу для акб занимаются многие компании. Поэтому подобрать модель с требуемыми параметрами сможет каждый водитель. Такие модели отличаются обширным функционалом: тренировка источника питания, восстановление заряда, прочее. Их стоимость достаточно высока.

Поэтому автолюбителей интересует зарядное устройство для автомобильного аккумулятора, которое сконструировано из подручных агрегатов и элементов.

Преимущества самостоятельной сборки

  1. Использование подручных материалов, элементов. Поэтому расходы на изготовления сокращаются.
  2. Небольшой вес. Он не превышает 1,5–2 кг. Поэтому перемещать самодельный агрегат для восстановления заряда батареи несложно.
  3. Постоянное охлаждение. В состав блока питания включен вентилятор. Поэтому вероятность нагрева минимальна.

Какие сложности?

  1. Сконструированный преобразователь не всегда работает тихо. Периодически он издает звуки, которые похожи на звон, шипение.
  2. Не допускается контакт самодельной зарядки и корпуса автотранспортного средства. Если заряжаем с включением в сеть, то контакт провоцирует поломку преобразователя, КЗ.
  3. Подключение токопроводящих выводов аккумуляторной батареи к проводам выполняется точно. Если на этом этапе допущены ошибки, то вторичные цепи переделанного блока питания в зарядное устройство выходят из строя.
  4. Все контакты и элементы перед подключением проверяются. Только после этого компьютерный блок питания используется для зарядки.

Правила эксплуатации автоаккумулятора

Для поддержания автоаккумулятора в работоспособном состоянии недостаточно подготовить надежное зарядное устройство. Дополнительно выполняются и такие рекомендации:

  • Постоянная поддержка заряда. Аккумуляторный источник постоянно подзаряжается. При перемещении заряд поступает от генератора и других узлов автотранспорта. Если техника не эксплуатируется, то для восстановления заряда применяют ЗУ, как стационарного, так и портативного типа. Если батарея полностью разряжается, то специалисты рекомендуют проводить стремительное восстановление. В противном случае, запуститься процесс сульфатации свинцовых пластин.
  • Пределы напряжения (около 14 В). Напряжение, которое подается генератором, не должно чрезмерно превышать этот параметр. При этом не имеет особого значения тот факт, какой именно режим запущен. Если мотор не функционирует, то напряжение может снижаться до 12,6–13 В. При таких показателях применяют ЗУ с соответствующими параметрами и индикаторами.
  • Отключение потребителей при неработающем моторе. Если зажигание отключено, то и все устройства, фары отключаются. В противном случае, источник питания достаточно быстро потеряет заряд.
  • Подготовка автоаккумулятора. Перед восстановлением заряда с аккумуляторной батареи удаляют подтеки электролитического состава, пыль. Токопроводящие выводы очищаются от окислов, налета. Перед подачей напряжения тщательно проверяются соединения и провода. Ведь даже минимальные смещения провоцируют нарушения, проблемы.
  • В зимний период источник перемещают в теплое помещение. Ведь при отрицательной температуре электролитический состав становится плотным, густым. Это провоцирует ухудшение прохождения заряда.

Основные этапы изготовления ЗУ

Перед тем как сделать из бп компьютера надежный зарядник, изучаются требования техники безопасности, особенности работы с такими агрегатами. Ведь в первичных цепях блока питания пк присутствует напряжение.

Подготавливаем блок питания. Допускается использование отличающихся по мощности моделей. Чаще всего выполняется переделка компьютерного БП, мощность которого составляет 200–250 Вт.

После выбора модели выполняются последующие действия:

  • Из блока питания компьютера откручиваются болтики. Такие действия необходимы для последующего демонтажа крышки.
  • Определение сердечника, который входит в состав импульсного трансформатора. Его измеряют. Полученное значение удваивают. Для каждого элемента этот параметр индивидуален. При проведении тестов удалось выявить, что для получения мощности в 100 Вт требуется 0,95–1 см2. Ведь зарядка источника питания эффективна, если выдает 60–70 Вт.
  • В состав многих моделей БП входит такая схема, как TL494. Подобная схема вводится в состав разнообразных БП, которые представлены на продажу.

Подготовка схемы

Для подготовки зарядного устройства из компьютерного блока питания своими руками требуются определенные компоненты цепи (их отличительная особенность — +12В). Все остальные элементы изымаются. Для этого используют паяльник. Для упрощения процесса изучаются схемы, которые присутствуют на специальных порталах. На них изображены основные элементы, которые потребуются для БП.

Цепи с такими показателями, как -12В, -/+5 В, изымаются. Демонтируется и переключатель, при помощи которого изменяется напряжение. Выпаивается и схема, которая требуется для сигнала запуска.

Сделать зарядное устройство из БП несложно. Но для этого потребуются резисторы (R43 и R44), которые причислены к опорному типу. Показатели резистора R43 изменяются. В случае необходимости напряжение выходное меняется.

Специалисты рекомендуют заменять R43 на 2 резистора (переменный тип — R432, постоянный тип — R431). Внедрение таких резисторов облегчает процесс создания регулируемого элемента. С его помощью проще изменять силу тока, а также выходное напряжение. Это требуется для сохранения работоспособности автоаккумулятора.

Решая, как переделать БП, стоит сосредоточиться на конденсаторе. На выходной части выпрямителя сосредотачивается стандартный конденсатор. Мастера проводят его замену на элемент, который отличается большими показателями напряжения. Так, часто пользуются конденсатором марки С9.

Рядом с вентилятором, который используется для обдува, сосредотачивается резистор. Его заменяют резистором, который выделяется большим сопротивлением.

При подготовке ЗУ для аккумулятора меняется и расположение вентилятора. Ведь воздушная масса должна поступать в подготавливаемый блок питания.

Со схемы ликвидируют дорожки, которые предназначены для соединения массы, фиксации платы непосредственно к шасси.

Сконструированный блок питания с регулировкой подводят к сети с переменным током. Для этих целей используют стандартную лампу накаливания (производительность составляет 40–100 Вт).

Такие действия выполняются для того, чтобы проверить, насколько эффективная схема получилась. Без предварительного тестирования сложно установить, перегорит ли БП с заданной мощностью при резких изменениях напряжения.

Для правильной настройки БП для автомобильной аккумуляторной батареи требуется соблюдение определенных правил.

  • Введение индикаторов. Для отслеживания того, насколько зарядился автомобильный аккумулятор, используются индикаторы. В состав схемы вводят цифровые или же стрелочные индикаторы. Их легко приобрести в специализированных магазинах или же демонтировать со старой техники. Допускается введение нескольких индикаторов, с помощью которых отслеживается степень заряда, напряжение на токопроводящих выводах.
  • Корпус с креплением или ручками. Наличие такой детали способствует упрощению процесса эксплуатации ЗУ из БП.

К сборке ЗУ из БП портативного компьютера допускается при условии, что есть определенный опыт, знания в области электроники. Проводить какие-либо мероприятия, если нет соответствующей подготовки, запрещено. Ведь в процессе нужно контактировать с токопроводящими выводами, элементами, на которые подается напряжение, ток.

Видео про сборку зарядного из БП компьютера для ватомобильного акб

Тематические материалы:

Обновлено: 17.01.2022

103583

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter

Схема простой переделки блока питания ATX, для возможности использовать его как зарядное устройство автоаккумулятора. После переделки получится мощный блок питания с регулировкой напряжения в пределах 0-22 В и тока 0-10 А. Нам понадобится обычный компьютерный БП ATX сделанный на микросхеме TL494. Для пуска никуда не подключенного БП типа АТХ необходимо на секунду закоротить зеленый и черный провода.

Выпаиваем из него всю выпрямительную часть и всё, что соединено с ножками 1, 2 и 3 микросхемы TL494. Кроме того, нужно отсоединить от схемы ножки 15 и 16 — это второй усилитель ошибки, который мы используем для канала стабилизации тока. Также нужно выпаять цепь питания, соединяющую выходную обмотку силового трансформатора от + питания TL494 , она будет питаться только от маленького «дежурного» преобразователя, чтобы не зависеть от выходного напряжения БП (у него есть выходы 5 В и 12 В). Дежурку лучше немного перенастроить подобрав делитель напряжения в обратной связи и получив напряжения 20 В для питания ШИМ и 9 В для питания измерительно-регулировочной схемы. Приводим принципиальную схему доработки:

Выпрямительные диоды соединяем с 12-вольтовыми отводами вторичной обмотки силового трансформатора. Лучше поставить диоды помощнее, чем те, которые обычно стоят в 12-вольтовой цепи. Дроссель L1 делаем из кольца от фильтра групповой стабилизации. Они разные по типоразмеру в некоторых БП поэтому намотка может отличатся. У меня получилось12 витков проводом диаметра 2 мм. Дроссель L2 берём из цепи 12 Вольт. На микросхеме ОУ LM358 (LM2904, или любой другой сдвоенный низковольтный операционник, который может работать в однополярном включении и при входных напряжениях почти от 0 В) собран измерительный усилитель выходного напряжения и тока, который будет давать сигналы управления на ШИМ TL494. Резисторы VR1 и VR2 задают опорные напряжения. Переменный резистор VR1 регулирует выходное напряжение, VR2 — ток. Токоизмерительный резистор R7 на 0.05 ом. Питание для ОУ берём с выхода «дежурных» 9В БП компьютера. Нагрузка подключается к OUT+ и OUT-. В качестве вольтметра и амперметра можно использовать стрелочные приборы. Если регулировка тока в какой-то момент не нужна, то VR2 просто выкручиваем на максимум. Работа стабилизатора в БП будет так: если, например, установлено 12 В 1 А, то если ток нагрузки меньше 1 А — стабилизируется напряжение, если больше — то ток. В принципе, можно перемотать и выходной силовой трансформатор, выкинутся лишние обмотки и можно уложить более мощную. При этом также рекомендую и выходные транзисторы поставить на больший ток.

На выходе нагрузочный резистор где-то на 250 ом 2 Вт параллельно C5. Он нужен чтобы блок питания без нагрузки не оставался. Ток через него не учитывается, он до измерительного резистора R7 (шунта) включён. Теоретически можно получить до 25 вольт при токе в 10 А. Заряжать устройством можно как обычные 12 В аккумуляторы от автомобиля, так и небольшие свинцовые, что стоят в ИБП.

Интересная простая конструкция светодиодного куба на 3х3х3 на светодиодах и микросхемах.

Зарядное устройство для автомобильного аккумулятора из блока питания компьютера. | Мастер-класс своими руками

На чтение 6 мин.

Здравствуйте, дорогие дамы и уважаемые господа!

   На этой странице я вкратце расскажу Вам о том, как своими руками переделать блок питания персонального компьютера в зарядное устройство для автомобильных (и не только) аккумуляторов.

   Зарядное устройство для автомобильных аккумуляторов должно обладать следующим свойством: максимальное напряжение, подводимое к аккумулятору — не более 14.4В, максимальный зарядный ток — определяется возможностями самого устройства. Именно такой способ зарядки реализуется на борту автомобиля (от генератора) в штатном режиме работы электросистемы автомобиля.

   Однако, в отличие от материалов из этой статьи, мною была избрана концепция максимальной простоты доработок без использования самодельных печатных плат, транзисторов и прочих «наворотов».

   Блок питания для переделки подарил мне друг, сам он его нашел где-то у себя на работе. Из надписи на этикетке можно было разобрать, что полная мощность данного блока питания составляет 230Вт, но по каналу 12В можно потреблять ток не более 8А. Вскрыв этот блок питания я обнаружил, что в нем нет микросхемы с цифрами «494» (как то было описано в предлагаемой выше статье), а основой его является микросхема UC3843. Однако, эта микросхема включена не по типовой схеме и используется только как генератор импульсов и драйвер силового транзистора с функцией защиты от сверхтоков, а функции регулятора напряжения на выходных каналах блока питания возложены на микросхему TL431, установленную на дополнительной плате:

 На этой же дополнительной плате установлен подстроечный резистор, позволяющий отрегулировать выходное напряжение в узком диапазоне.

   Итак, для переделки этого блока питания в зарядное устройство, сперва необходимо убрать все лишнее. Лишним является:

   1. Переключатель 220 / 110В с его проводами. Эти провода просто нужно отпаять от платы. При этом наш блок всегда будет работать от напряжения 220В, что устраняет опасность его сжечь при случайном переключении этого переключателя в положение 110В;

   2. Все выходные провода, за исключением одного пучка черных проводов (в пучке 4 провода) — это 0В или «общий», и одного пучка желтых проводов (в пучке 2 провода) — это «+».

Теперь необходимо сделать так, чтобы наш блок работал всегда, если включен в сеть (по умолчанию он работает только если замкнуть нужные провода в выходном пучке проводов), а также устранить действие защиты по перенапряжению, которая отключает блок, если выходное напряжение станет ВЫШЕ некоторого заданного предела. Сделать это необходимо потому, что нам нужно получить на выходе 14.4В (вместо 12), что воспринимается встроенными защитами блока как перенапряжение и он отключается.

   Как оказалось, и сигнал «включение-отключение», и сигнал действия защиты по перенапряжению проходит через один и тот же оптрон, которых всего три — они связывают выходную (низковольтную) и входную (высоковольтную) части блока питания. Итак, чтобы блок всегда работал и был нечувствителен к перенапряжениям на выходе, необходимо замкнуть контакты нужного оптрона перемычкой из припоя (т. е. состояние этого оптрона будет «всегда включен»):

Теперь блок питания будет работать всегда, когда он подключен к сети и независимо от того, какое напряжение мы сделаем у него на выходе.

   Далее следует установить на выходе блока, там где раньше было 12В, выходное напряжение, равное 14.4В (на холостом ходу). Поскольку только с помощью вращения подстроечного резистора, установленного на дополнительной плате блока питания, не удается установить на выходе 14.4В (он позволяет сделать только что-то где-то около 13В), необходимо заменить резистор, включенный последовательно с подстроечным, на резистор чуть меньшего номинала, а именно 2.7кОм:

 

 Теперь диапазон настройки выходного напряжения сместился в большую сторону и стало возможным установить на выходе 14.4В.

   Затем, необходимо удалить транзистор, находящийся радом с микросхемой TL431. Назначение этого транзистора неизвестно, но включен он так, что имеет возможность препятствовать работе микросхемы TL431, т. е. препятствовать стабилизации выходного напряжения на заданном уровне. Этот транзистор находился вот на этом месте:

 Далее, чтобы выходное напряжение было более стабильным на холостом ходу, необходимо добавить небольшую нагрузку на выход блока по каналу +12В (который у нас будет +14.4В), и по каналу +5В (который у нас не используется). В качестве нагрузки по каналу +12В (+14.4) применен резистор 200 Ом 2Вт, а по каналу +5В — резистор 68 Ом 0.5Вт (на фото не виден, т. к. находится за дополнительной платой):

Только после установки этих резисторов, следует отрегулировать выходное напряжением на холостом ходу (без нагрузки) на уровне 14.4В.

   Теперь необходимо ограничить выходной ток на допустимом для данного блока питания уровне (т. е. порядка 8А). Достигается это путем увеличения номинала резистора в первичной цепи силового трансформатора, используемого как датчик перегрузки. Для ограничения выходного тока на уровне 8…10А этот резистор необходимо заменить на резистор 0.47Ом 1Вт:

 

 После такой замены выходной ток не превысит 8…10А даже если мы замкнем накоротко выходные провода.

   Наконец, необходимо добавить часть схемы, которая будет защищать блок от подключения аккумулятора обратной полярностью (это единственная «самодельная» часть схемы). Для этого потребуется обычное автомобильное реле на 12В (с четырьмя контактами) и два диода на ток 1А (я использовал диоды 1N4007). Кроме того, для индикации того факта, что аккумулятор подключен и заряжается, потребуется светодиод в корпусе для установки на панель (зеленый) и резистор 1кОм 0.5Вт. Схема должна быть такая:

Работает следующим образом: когда к выходу подключается аккумулятор правильной полярностью, реле срабатывает за счет энергии, оставшейся в аккумуляторе, а после его срабатывания аккумулятор начинает заряжатся от блока питания через замкнутый контакт этого реле, о чем сигнализирует зажженный светодиод. Диод, включенный параллельно катушке реле, нужен для предотвращения перенапряжений на этой катушке при ее отключении, возникающих за счет ЭДС самоиндукции.

   Реле приклеивается к радиатору блока питания с помощью силиконового герметика (силиконового — потому что он остается эластичным после «засыхания» и хорошо выдерживает термические нагрузки, т. е. сжатие-расширение при нагревании-охлаждении), а после «засыхания» герметика на контакты реле монтируются остальные компоненты:

Провода к аккумулятору выбраны гибкие, с сечением 2.5мм2, имеют длину примерно 1 метр и оканчиваются «крокодилами» для подключения к аккумулятору. Для закрепления этих проводов в корпусе прибора использованы две нейлоновые стяжки, продетые в отверстия радиатора (отверстия в радиаторе необходимо предварительно просверлить).

   Вот, собственно, и все:

 

В заключении, с корпуса блока питания были удалены все этикетки и наклеена самодельная наклейка с новыми характеристиками прибора:

 К недостаткам полученного зарядного устройства следует отнести отсутствие какой-либо индикации степени заряженности аккумулятора, что вносит неясность — заряжен аккумулятор или нет? Однако, на практике установлено, что за сутки (24 часа) обычный автомобильный аккумулятор емкостью 55А·ч успевает полностью зарядится.

   К достоинствам можно отнести то, что с данным зарядным устройством аккумулятор может сколь угодно долго «стоять на зарядке» и ничего страшного при этом не произойдет — аккумулятор будет заряжен, но не «перезарядится» и не испортится.

Зарядка акб из блока питания компьютера

Здравствуйте, уважаемые друзья! Сегодня я расскажу, как переделать компьютерный блок питания в зарядное устройство для автомобильного аккумулятора. Для переделки подойдет блок питания собранный на микросхемах TL494 или KA7500. Другие блоки питания, к сожалению, переделать таким способом не получится.

У каждого блока питания имеется защита от повышения напряжения и короткого замыкания, которую надо отключить.

Чтобы отключить защиту надо перерезать дорожку от Vref +5v которая подходит к 13, 14 и 15 ноге микросхемы. После этого блок питания будет запускаться автоматически при включении в сеть.

Теперь сделаем блок питания регулируемым. Удаляем два резистора R1 28,7 кОм и R2 5,6 кОм. На место резистора R1 ставим переменный резистор на 100 кОм. Напряжение будет плавно регулироваться от 4 до 16 вольт.

Схема переделки компьютерного блока питания в зарядное устройство

Полная схема блока питания на микросхеме TL494, KA7500.

Схема переделки компьютерного блока питания на микросхеме TL494, KA7500 в зарядное устройство

Осталось подключить вольт амперметр по этой схеме и зарядное устройство будет полностью готово.

Схема подключения вольт амперметра к зарядному устройству

А теперь я расскажу, как работает готовое устройство, что бы вы могли реально оценить все плюсы этой самоделки. Напряжение этого зарядного устройства плавно регулируется от 4 до 16 вольт.

Это позволяет заряжать шести и двенадцати вольтовые аккумуляторы. С помощью встроенного вольт амперметра легко можно определить напряжение, зарядный ток и окончание процесса заряда аккумуляторной батареи.

Для проверки мощности я решил подключить супер яркую 12-ти вольтовую галогеновую лампу на 55 ватт.

Лампа горит полным накалом на вольтметре 12 вольт и сила тока 8,5 ампер и это еще не предел.

Как заряжать аккумулятор? Красный крокодил плюс, черный минус. Если перепутать полярность или замкнуть, ничего страшного не произойдет, просто перегорит десяти амперный предохранитель.

В данный момент вольтметр показывает напряжение аккумулятора. Эту ручку надо повернуть влево до упора. Включаю питание и плавно поднимаю напряжение до 14,5 вольт. Начальная сила тока должна быть не более 10% от емкости аккумулятора. То есть для 60-го аккумулятора начальный ток заряда будет не более 6-ти ампер, для 55-го соответственно 5,5 ампер. И так далее.

По мере заряда аккумулятора сила тока будет постепенно снижаться, когда сила тока снизится до 150 миллиампер, это будет означать, что аккумулятор полностью зарядился. Время зарядки полностью разряженного аккумулятора составит примерно 24 часа.

Друзья, желаю удачи и хорошего настроения! До встречи в новых статьях!

Дата: 29.09.2015 // 0 Комментариев

Наверняка каждому автолюбителю приходилось собирать зарядное устройство для автомобиля своими руками. Существует масса разнообразных подходов, начиная от простых трансформаторных схем, заканчивая импульсными схемами с автоматической регулировкой. Зарядное устройство из блока питания компьютера, как раз занимает золотую середину. Оно получается за копеечную цену, а его параметры отлично справляются с зарядкой автомобильных АКБ. Сегодня мы вам расскажем, как за полчаса можно собрать зарядное устройство из компьютерного блока питания ATX. Поехали!

Зарядное устройство из блока питания компьютера

Для начала необходим рабочий блок питания. Можно брать совсем старый на 200 – 250 Вт, этой мощности хватит с запасом. Учитывая что зарядка должна происходить при напряжении в 13,9 – 14,4 В, то самой главной доделкой в блоке станет поднятие напряжение на линии 12 В до 14,4 В. Подобный метод применялся в статьи: Зарядное устройство из блока питания светодиодных лент.

Внимание! В работающем блоке питания элементы находятся под опасным для жизни напряжением. Не стоит хапаться руками за все подряд.

Первым делом отпаиваем все провода, которые выходили с блока питания. Оставляем только зеленый провод, его необходимо запаять к минусовым контактам. (Площадки, от которых выходили черные провода — это минус.) Это делается для автоматического старта блока при включении в сеть. Также сразу рекомендую припаять провода с клеммами к минусу и шине + 12 В (бывшие желтые провода), для удобства и дальнейшей настройки зарядного.

Следующие манипуляции будут производиться с режимом работы ШИМ — у нас это микросхема TL494 (есть еще куча блоков питания с ее абсолютными аналогами). Ищем первую ножку микросхемы (самая нижняя левая ножка), дальше просматриваем дорожку с обратной стороны платы.

С первым выводом микросхемы соединены три резистора, нам нужен тот, который соединяется с выводами блока +12 В. На фото этот резистор отмечен красным лаком.

Этот резистор необходимо отпаять с платы и измерить его сопротивление. В нашем случае это 38,5 кОм.

Вместо него необходимо впаять переменный резистор, который предварительно настраиваем на такое же сопротивление 38,5 кОм.

Плавно увеличивая сопротивление переменного резистора, добиваемся значения напряжения на выходе в 14,4 В.

Внимание! Для каждого блока питания номинал этого резистора будет разный, т.к. схемы и детали в блоках разные, но алгоритм изменения напряжение один для всех. При поднятии напряжения свыше 15 В, может быть сорвана генерация ШИМ. После этого блок придется перезагружать, предварительно уменьшив сопротивление переменного резистора.

В нашем блоке сразу поднять напряжение до 14 В не получилось, не хватило сопротивление переменного резистора, пришлось последовательно с ним добавить еще один постоянный.

Когда напряжение 14,4 В достигнуто, можно смело выпаять переменный резистор и измерить его сопротивление (оно составило 120,8 кОм).

Поле замера резистора необходимо подобрать постоянный резистор с как можно близким сопротивлением.

Мы его составили из двух 100 кОм и 22 кОм.

На этом этапе можно смело закрывать крышку и пользоваться зарядным устройством. Но если есть желание, можно подключить к этому блоку цифровой вольтамперметр, это даст нам возможность контролировать ход зарядки.

Также можно прикрутить ручку для удобной переноски и вырезать отверстие в крышке под цифровой приборчик.

Финальный тест, убеждаемся, что все правильно собрано и хорошо работает.

Внимание! Данное зарядное устройство сохраняет функцию защиты от короткого замыкания и перегрузки. Но не защищает от переплюсовки! Ни в коем случае не допускается подключать к зарядному устройству аккумулятор неправильной полярностью, зарядное мгновенно выйдет из строя.

При переделке блока питания в зарядное устройство желательно иметь под рукой схему. Что бы упростить жизнь нашим читателями мы сделали небольшую подборку, где размещены схемы компьютерных блоков питания ATX.

Для защиты от переполюсовки существует масса интересных схем. С одной из них можно знакомиться в этой статье.

Аккумулятор автомобиля — часть системы, которая при длительном использования теряет заряд. Для восполнения запасов энергии используют готовые приборы. Можно самостоятельно сделать зарядное устройство из компьютерного блока питания.

Как сделать зарядку для АКБ из блока питания компьютера?

При сборке зарядного блока соблюдают требования, делающие прибор пригодным для восстановления работы аккумулятора. Выходное напряжение не должно превышать 14,4 В. В противном случае источник питания быстро выйдет из строя.

Необходимые материалы и инструменты

Для сборки устройств различной мощности используют такие материалы и инструменты:

  1. Зажимы. Используются для подсоединения питающих кабелей к клеммам батареи.
  2. Резисторы R43. Рекомендуется приобрести детали номиналом 2,7 и 10 кОм.
  3. Отвертки. Потребуются крестовая и плоская насадки.
  4. Конденсаторы. Необходимый номинал — 25 В.
  5. Диоды 1N4007.
  6. Светодиодная лампочка. Рекомендуется выбирать элемент зеленого цвета.
  7. Силиконовый герметик.
  8. Мультиметр.
  9. Медные кабели. Потребуется 2 провода длиной 1 м.

Блок питания компьютера должен иметь такие параметры:

  • выходное напряжение — 12В;
  • номинальное входное напряжение 110/220 В;
  • потребляемая мощность — 230 В;
  • максимальная сила тока — 8 А.

Пошаговая инструкция

Компьютер питается от блока с напряжением 220 В, этот параметр для зарядного устройства должен составлять не более 14,4 В. Главная задача — снижение рабочего показателя.

Для этого используется резистор, обеспечивающий регулировку выходного напряжения во всех режимах. Процесс сборки зарядки своими руками включает такие этапы:

  1. Подготовка компьютерного блока. Деталь освобождают от лишних элементов, после чего отключают все кабели. Контакты разъединяют путем нагревания. Необходимо снять переключатель напряжения. Это позволяет избежать перегорания устройства. Удаляют оба кабеля, подведенных к конденсатору в цепи. На микросхеме находится 4 провода желтого цвета. Их демонтировать не нужно. Оставляют и 4 черных кабеля, а также 1 зеленый.
  2. Осмотр микросхемы. Провод желтого цвета подключается к конденсаторам на 12 В. Этого параметра недостаточно для зарядки автомобильной АКБ, поэтому детали заменяют элементами номиналом 25 В.
  3. Обеспечение автоматического включения блока. Если устройство встроено в компьютер, оно активируется при замыкании некоторых контактов. Необходимо снять средство защиты от перепадов напряжения. Защита принимает повышение параметра до 14,4 В за скачок, в результате чего зарядка перестает функционировать. Схема снабжена 3 оптронами, обеспечивающими связь между передатчиками входного и выходного напряжения. Деактивируют элементы путем замыкания контактов.
  4. Получение нужного значения напряжения. Для этого устанавливают плату TL431. Компонент настраивает напряжение, поступающее по всем каналам устройства. Для повышения рабочего параметра используют резистор. Однако он дает недостаточное напряжение. Встроенный резистор заменяют новым, имеющим сопротивление менее 2,7 кОм.
  5. Удаление транзистора. Элемент, расположенный рядом с платой TL431, может препятствовать нормальной работе зарядного блока. Его нужно снять.
  6. Стабилизация выходного напряжения. Необходимо улучшить параметры канала, пропускающего ток 12 В. Использовать вспомогательные схемы с напряжением 5 В нельзя. Требуемую нагрузку обеспечивает резистор с сопротивлением 200 Ом. Дополнительный канал снабжается элементом номиналом 68 Ом. После монтажа резисторов можно отрегулировать напряжение.
  7. Ограничение силы выходного тока. Этот параметр на выходе блока не должен превышать 8 А. Для получения нужного значения повышают сопротивление резистора, включенного в электрическую цепь обмотки трансформатора. Деталь заменяют элементом большего номинала. Старый резистор выпаивают, после чего фиксируют новый. После выполнения этого действия сила тока не будет повышаться даже при замыкании.
  8. Установка дополнительной схемы. Плата не входит в комплект блока, поэтому ее делают своими руками. Для этого потребуется реле с 4 клеммами на 12 В. Схему снабжают диодом, отражающим процесс зарядки. Если лампочка горит, зарядное устройство подключено к аккумуляторной батарее правильно.
  9. Обеспечение защиты от перепадов напряжения. 2 диода соединяются параллельно. Реле закрепляют на вентиляторе компьютерного блока силиконовым герметиком. При отсутствии такого средства используют болты.
  10. Подсоединение проводов с зажимами. Рекомендуется использовать разноцветные кабели, что позволяет соблюдать полярность. К зарядному блоку провода прикрепляют нейлоновыми стяжками, которые пропускают через просверленные заранее отверстия. Для измерения силы тока заряда устройство снабжают амперметром. К электрической цепи прибор подключается параллельным способом.
  11. Проверка работоспособности зарядного устройства.

Зарядное устройство из БП ноутбука

Блок питания ноута имеет выходное напряжение в 19 В, параметр нужно снижать. Для этого используют 2 метода.

Без переделки

Способ подразумевает последовательное соединение АКБ автомобиля с мощной лампой. Осветительный прибор будет отнимать часть напряжения. Один контакт лампы соединяется с плюсовой клеммой питающего блока, другой — с плюсом АКБ. После этого зарядное устройство подключают к электрической сети.

Лампа при использовании этого способа быстро выходит из строя, что приводит к перезаряду и взрыву аккумулятора.

С переделкой блока питания

Процесс переделки источника питания ноутбука включает такие этапы:

  1. Разборка корпуса. Работу выполняют аккуратно, стараясь не повредить пластиковые детали, которые пригодятся для дальнейшего использования. Внутреннюю плату подключают к вольтметру, точно определяющему напряжение. Чаще всего оно составляет 19 В.
  2. Снижение напряжения. Для этого заменяют резистор, расположенный на выходе. Деталь соединяет шестой контакт микросхемы ТЕА1761 с плюсовой клеммой питающего блока. Элемент удаляют с помощью паяльника. Мультиметром замеряют сопротивление детали. Рабочее значение — 18 кОм. Вместо удаленного элемента устанавливают временный номиналом 22 кОм. Перед монтажом сопротивление настраивают на 18 кОм. Резистор запаивают, не затрагивая других компонентов схемы. Постепенным изменением сопротивления достигают снижения напряжения до 14,4 В.
  3. Удаление резистора. После получения нужного напряжения деталь снимают и замеряют сопротивление. Оно должно составлять 12,5 кОм. На основании этой величины выбирают постоянный резистор. Можно использовать 2 детали номиналом 10 и 2,5 кОм. Концы резистора устанавливают в термокембрик и припаивают к плате.
  4. Тестирование схемы. Перед сборкой заменяют выходные параметры тока. Значения в 14,2 В достаточно для зарядки автомобильного аккумулятора.
  5. Сборка устройства. С соблюдением полярности припаивают провода с зажимами. Минусовой контакт может иметь вид главного провода, плюсовой — оплетки.

В результате получается зарядное устройство с выходной силой тока 3 А. При падении параметра процедура зарядки считается законченной. Удобство пользования обеспечивает амперметр, включаемый в схему прибора.

Как правильно зарядить АКБ самодельной зарядкой?

Чтобы батарея не вышла из строя, при восстановлении заряда соблюдают такие правила:

  1. АКБ отсоединяют от бортовой сети автомобиля. Для этого снимают болты, удерживающие фиксатор аккумулятора. Устройство вынимают из гнезда и относят в отапливаемое помещение.
  2. Корпус АКБ очищают от загрязнений. Особое внимание удаляют клеммам. Их очищают от остатков электролита зубной щеткой или наждачной бумагой. Главное — не удалить рабочее напыление.
  3. Открыв банки АКБ, проверяют уровень электролита. Раствор должен полностью скрывать металлические пластины. При снижении уровня жидкости образуются газы, приводящие к взрыву. При необходимости банки заполняют дистиллированной водой.
  4. Корпус осматривают на наличие сколов и трещин. При обнаружении крупных дефектов батарею заряжать нельзя.
  5. При подключении зарядного прибора соблюдают полярность. Если все выполнено правильно, устройство подключают к сети. Снимать колпачки банок не нужно.

После восстановления заряда оценивают количество электролита. Если оно не изменилось, аккумулятор можно устанавливать в автомобиль.

Зарядное из компьютерного блока питания

Зарядное из компьютерного блока питания

Эдуард Орлов Просмотров 298

Здравствуйте. Завалялась у меня плата от АТ блока питания компьютера, а почему бы не переделать компьютерный блок питания в зарядное устройство.
Этот блок питания на 200Вт и особо нагружать его не хочется, поэтому буду его настраивать на 100Вт потребления на ток до 6А. Такого тока хватает для зарядки автомобильных аккумуляторов емкостью до 80А.ч.  и при таком токе почти не греются радиаторы, трансформатор и дроссель.
Плата долго ждала своего часа и изрядно подносилась. Части деталей нет, трещина на плате и естественно вековой слой пыли.
Плата блока питания собрана без лишних деталей, Шим стоит аналог TL494, так что все как по накатанной. Нахожу схему подходящего блока питания, среди моего архива схем блок питания ПК.

После переделки схема зарядного устройства выглядит так. Изменил обвязку компараторов TL494. Убрал шины 5В,3В,-5-12В, оставил 12В, PG убрал.
На схемах особо нечего объяснять. Для регулировки тока добавился шунт 25Вт 0,05 Ом напряжение с него приходит на 16 ногу. Регулируемый делитель на резисторах питает еще один делитель обозначенный звездочками, который идет на 15 ногу. Второй делитель настраивается на  напряжение равное падению напряжения на шунте. У меня шунт 0,05Ом и при 6А это напряжение 0,3В.
Для настойки напряжения окончания заряда установил по схеме R30 подстроечный многооборотный резистор на 22к

На схемах все понятно, значит за дело. Сначала все очистил от пыли, отмыл и восстановил разорванные дорожки на трещине.
Следом подал 15В от лабораторного блока питания на ШИМ TL494 и начал делать замеры. Снял осциллограммы с управляющих ключей до развязывающего трансформатора и после  на силовых ключах. Так же проверил мультиметром сами транзисторы. Тут вроде все в порядке, генератор исправно работает, да и развязывающий трансформатор тоже исправен.

Далее принялся за переделку обвязки ШИМ по схеме, регулировку тока пока не подключаю. Смотал старый дросель и намотал новый на 5 витков больше, чем было на 12В обмотке.
Проверил на КЗ первичные и вторичные цепи и готов к безопасному пуску через лампу
После включения лампа мелькнула и блок запустился, спираль почти не подсвечивает. На выходе блока питания настроил 14,4В подстроечным резистором Напряжение питания ШИМ почти в два раза больше

Раз блок запускается, нагружу на нихром без лампы. Сопротивление 1,5Ом и ток 9,4А, на выходных клемах 14,4В
Не буду гнаться за током остановлюсь на 6А, добавлю детали для регулировки тока.
По моему все что ожидал и хотел, кстати не боится КЗ. Зарядка почти готова
Осталось добавить защиту от переполюсовки, но об этом в другой раз.
Все применяемые приборы можно найти на распродаже Инструментов электронщика.
На этом все. Подписывайтесь на обновления в группах в социальных сетях вверху страницы и будете в курсе всех обновлений первыми.
С ув. Эдуард

Эта статья восстановлена из архива, надеюсь оказалась полезной.

Уважаемые читатели. Дело в том, что сборка моих проектов занимает очень много времени, не простительно много удерживаю средств из семейного бюджета и больше этого делать не буду. Если вам нравиться то, чем я тут занимаюсь и хотите продолжения, то прошу поддержки с вашей стороны. Будет поддержка, будет много нового(чертежи и схемы уже лежат).Поддержать можно тут

Зарядное устройство из блока питания ПК

В нашу недолгую, но такую насыщенную эпоху компьютеризации запчасти от компьютеров часто можно достать через знакомых или обнаружить завалявшийся системный блок в своем гараже. Наверняка у каждого из вас был старый настольный компьютер который оказался ненужен. Если вам необходимо зарядное устройство, то у вас есть отличный шанс переделать блок питания от компьютера в компактное и мощное зарядное устройство.

Фрагмент схемы переделанный из оригинального блока питания в наше З/У:

В качестве микросхемы DA1 почти во всех блоках питания компьютеров применяется широтно-импульсный контроллер TL494, реже применяется аналог KA7500.Стандартные аккумуляторные батареи для автомобиля имеют ёмкость 55-65 А-ч, согласно установленным нормам для подзарядки свинцового кислотного аккумулятора требуется 10 процентов от своей емкости, значит нам нужен ток от 5 до 7 ампер, такой ток легко может выдать блок питания от ПК.

Процесс изготовления:

Для начала мы выпаиваем все ненужные провода цепей с напряжениями: -12 В, +5 В, -5В. Резистор подающий напряжение +5 В на вывод 1, необходимо также выпаять. На его место необходимо поставить подстроечный резистор 27 кОм, и подать на него напряжение с шины +12В.16 вывод DA1 необходимо отсоединить от общего провода, а выводы 14 и 15 выводов перерезать.

На одной из стенок БП устанавливаем плату из текстолита или другого изоляционного материала, через нее заводим в корпус сетевой шнур, шнур с клеммами для подсоединения к аккумулятору и ставим переменное сопротивление для регулировки тока зарядки.В качестве R11 можно использовать резистор мощностью 5 ватт, номиналом 0.1 Ома, для умощнения можно применить два пятиваттных сопротивлением 0.2 ома соединив их параллельно.

Здесь же, для настройки собранного зарядного устройства устанавливаем подстроечный резистор R1.В целях техники безопасности, гальванической развязки и исключения влияния паразитных цепей необходимо будет изолировать корпус блока питания от общего провода.На фото показана установка платы с мощными резисторами и соединения проводов согласно принципиальной схемы:

До того как вы закончите окончательную сборку устройства необходимо переменным резистором R1 при установленном в среднем положении потенциометра R10 напряжение холостого хода установить в пределах 13,5-14,5 В. Это напряжение соответствует полному заряду батареи.На конце выводов для подключения к клеммам АКБ зажимы типа «крокодил», плюсовой вывод красного цвета, минусовой — черного.

Внимание! В случае неправильного подключения полярности прибор может выйти из строя.

На фото представлена фотография зарядки 55-ти амперного аккумулятора, на которой цифровой измеритель напряжения показывает 12 с половиной вольт, что соответствует зарядке начального цикла. Изначально потенциометром выставляют ток подзаряда 5.5 ампер, в результате зарядки напряжение на аккумуляторной батарее будет увеличиваться, пока не достигнет максимума, который предварительно выставлен потенциометром R1,а ток уменьшится вплоть до О по окончании зарядки.После того как аккумулятор полностью зарядится устройство, компенсируя ток саморазряда батареи перейдет в режим стабилизации напряжения. В таком режиме устройство без опасений перезарядки может оставаться неограниченное время.При повторении можно отказаться от применения вольтметра и амперметра, если устройство применяется только для зарядки автомобильных АКБ, где полному заряду будет соответствовать напряжение 14,2 В, а для установки начального тока можно отградуировать шкалу потенциометра R10 от 5,5 до 6,5А.После окончания процесса сборки вы получили компактное, надёжное и экономичное устройство с автоматическим циклом зарядки, не требующее участия человека в процессе работы.

Переделать компьютерный блок питания в регулируемый. Сделаем зарядное устройство из блока питания компьютера

Если у вас дома есть старый блок питания от компьютера (ATX), то не стоит его выбрасывать. Ведь из него можно сделать отличный блок питания для домашних или лабораторных целей. Доработка потребуется минимальная и в конце вы получите почти универсальный источник питания с рядом фиксированных напряжений.

Компьютерные блоки питания обладают большой нагрузочной способностью, высокой стабилизацией и защитой от короткого замыкания.


Я взял вот такой блок. У всех есть такая табличка с рядом выходных напряжений и максимальным током нагрузки. Основные напряжения для постоянной работы 3,3 В; 5 В; 12 В. Есть ещё выходы, которые могут быть использованы на небольшой ток, это минус 5 В и минус 12 В. Так же можно получить разность напряжений: к примеру, если подключится в к «+5» и «+12», то вы получите напряжение 7 В. Если подключиться к «+3,3» и «+5», то получите 1,7 В. И так далее… Так что линейка напряжений намного больше, чем может показаться с разу.

Распиновка выходов блока питания компьютера


Цветовой стандарт, в принципе, един. И эта схема цветовых подключений на 99 процентов подойдет и вам. Может что-то добавиться или удалиться, но конечно все не критично.

Переделка началась

Что нам понадобиться?
  • — Клеммы винтовые.
  • — Резисторы мощностью 10 Вт и сопротивлением 10 Ом (можно попробовать 20 Ом). Мы будем использовать составные из двух пятиватных резисторов.
  • — Трубка термоусадочная.
  • — Пара светодиодов с гасящими резисторами на 330 Ом.
  • — Переключатели. Один для сети, второй для управления

Схема доработки блока питания компьютера


Тут все просто, так что не бойтесь. Первое что нужно сделать, так это разобрать между собой и соединить провода по цветам. Затем, согласно схемы подключить светодиоды. Первый слева будет индицировать наличие питания на выходе после включения. А второй справа будет гореть всегда, пока сетевое напряжение присутствует на блоке.
Подключить переключатель. Он будет запускать основную схему, замыканием зеленого провода на общий. И выключать блок при размыкании.
Также, в зависимости от марки блока, вам понадобится повесить нагрузочный резистор на 5-20 Ом между общим выходом и плюсом пять вольт, иначе блок может не запуститься из-за встроенной защиты. Так же если не заработает, будьте готовы повесить такие резисторы на все напряжения: «+3,3», «+12». Но обычно хватает одного резистора на выход 5 Вольт.

Начнем

Снимаем верхнюю крышку кожуха.
Откусываем разъемы питания, идущие к материнской плате компьютера и другим устройствам.
Распутываем провода по цветам.
Сверлим отверстия в задней стенке под клеммы. Для точности сначала проходим тонким сверлом, а затем толстым под размер клеммы.
Будьте осторожны, не насыпьте металлическую стружку на плату блока питания.


Вставляем клеммы и затягиваем.


Складываем черные провода, это будет общий, и зачищаем. Затем залуживаем паяльником, одеваем термоусадочную трубку. Припаиваем к клемме и надев трубку на спайку – обдуваем термофеном.


Так делаем со всеми проводами. Которые не планируете использовать – откусите под корень у платы.
Также сверлим отверстия по тумблер и светодиоды.


Устанавливаем и фиксируем горячим клеем светодиоды. Припаиваем по схеме.


Нагрузочные резисторы ставим на монтажную платы и привинчиваем винтами.
Закрываем крышку. Включаем и проверяем ваш новый лабораторный блок питания.


Не лишним будет замерить выходное напряжение на выходе каждой клеммы. Чтобы быть уверенным, что ваш старый блок питания вполне работоспособен и выходные напряжения не вышли за пределы допустимых.


Как вы могли заметить, я использовал два переключателя – один есть в схеме, и он запускает работу блока. А второй, который побольше, двухполюсный – коммутирует входное напряжение 220 В на вход блока. Его можно не ставить.
Так что друзья, собирайте свой блок и пользуйтесь на здоровье.

Смотрите видео изготовления лабораторного блока своими руками

Здравствуйте, сейчас я расскажу о переделке ATX блока питания модели codegen 300w 200xa в лабораторный блок питания с регулировкой напряжения от 0 до 24 Вольт, и ограничением тока от 0,1 А до 5 Ампер. Выложу схему, которая у меня получилась, может кто чего улучшит или добавит. Выглядит сама коробка вот так, хотя наклейка, может быть синей или другого цвета.

Причем платы моделей 200xa и 300x почти одинаковы. Под самой платой есть надпись CG-13C, может быть CG-13A. Возможно, есть другие модели похожие на эту, но с другими надписями.

Выпаивание ненужных деталей

Изначально схема выглядела вот так:

Нужно убрать всё лишнее, провода atx разъёма, отпаять и смотать ненужные обмотки на групповом дросселе стабилизации. Под дросселем на плате, где написано +12 вольт ту обмотку и оставляем, остальные сматываем. Отпаять косу от платы (основного силового трансформатора), не в коем случае не откусывайте её. Снять радиатор вместе с диодами Шоттки, а после того как уберём все лишнее, будет выглядеть вот так:

Конечная схема после переделки, будет выглядеть вот так:

В общем выпаиваем все провода, детали.

Делаем шунт

Делаем шунт, с которого будем снимать напряжение. Смысл шунта в том, что падение напряжения на нём, говорит ШИМ-у о том, как нагружен по току — выход БП. Например сопротивление шунта у нас получилось 0,05 (Ом), если измерить напряжение на шунте в момент прохождения 10 А то напряжение на нём будет:

U=I*R = 10*0,05 = 0,5 (Вольт)

Про манганиновый шунт писать не буду, поскольку его не покупал и у меня его нет, использовал две дорожки на самой плате, замыкаем дорожки на плате как на фото, для получения шунта. Понятное дело, что лучше использовать манганиновый, но и так работает более чем нормально.

Ставим дроссель L2 (если есть) после шунта

Вообще их рассчитывать надо, но если что — на форуме где-то проскакивала программа по расчету дросселей.

Подаём общий минус на ШИМ

Можно не подавать, если он уже звонится на 7 ноге ШИМ. Просто на некоторых платах на 7 выводе не было общего минуса после выпайки деталей (почему — не знаю, мог ошибаться, что не было:)

Припаиваем к 16 выводу ШИМ провод

Припаиваем к 16 выводу ШИМ — провод, и данный провод подаём на 1 и 5 ножку LM358

Между 1 ножкой ШИМ и выходом плюс, припаиваем резистор

Данный резистор будет ограничивать напряжение выдаваемое БП. Этот резистор и R60 образует делитель напряжения, который будет делить выходное напряжение и подавать его на 1 ножку.

Входы ОУ(ШИМ) на 1-й и 2-й ножках у нас служат для задачи выходного напряжения.

На 2-ю ножку приходит задача по выходному напряжению БП, поскольку на вторую ножку максимально может прийти 5 вольт (vref) то обратное напряжение должно приходить на 1-ю ножку тоже не больше 5 вольт. Для этого нам и нужен делитель напряжения из 2х резисторов, R60 и тот что мы установим с выхода БП на 1 ногу.


Как это работает: допустим переменным резистором выставили на вторую ногу ШИМ 2,5 Вольта, тогда ШИМ будет выдавать такие импульсы (повышать выходное напряжение с выхода БП) пока на 1 ногу ОУ не придёт 2,5 (вольта). Допустим если этого резистора не будет, блок питания выйдет на максимальное напряжение, потому как нет обратной связи с выхода БП. Номинал резистора 18,5 кОм.

Устанавливаем на выход БП конденсаторы и нагрузочный резистор

Нагрузочный резистор можно поставить от 470 до 600 Ом 2 Ватта. Конденсаторы по 500 мкф на напряжение 35 вольт. Конденсаторов с требуемым напряжением у меня не было, поставил по 2 последовательно по 16 вольт 1000 мкф. Припаиваем конденсаторы между 15-3 и 2-3 ногами ШИМ.

Припаиваем диодную сборку

Ставим диодную сборку ту, что и стояла 16С20C или 12C20C, данная диодная сборка рассчитана на 16 ампер (12 ампер соответственно), и 200 вольт обратного пикового напряжения. Диодная сборка 20C40 нам не подойдет — не думайте её ставить — она сгорит (проверено:)).

Если у вас есть какие либо другие диодные сборки смотрите чтоб обратное пиковое напряжение было минимум 100 В ну и на ток, какой по больше. Обычные диоды не подойдут — они сгорят, это ультро-быстрые диоды, как раз для импульсного блока питания.

Ставим перемычку для питания ШИМ

Поскольку мы убрали кусок схемы который отвечал за подачу питания на ШИМ PSON, нам надо запитать ШИМ от дежурного блока питания 18 В. Собственно, устанавливаем перемычку вместо транзистора Q6.

Припаиваем выход блока питания +

Затем разрезаем общий минус который идёт на корпус. Делаем так, чтоб общий минус не касался корпуса, иначе закоротив плюс, с корпусом БП, всё сгорит.

Припаиваем провода, общий минус и +5 Вольт, выход дежурки БП

Данное напряжение будем использовать для питания вольт-амперметра.

Припаиваем провода, общий минус и +18 вольт к вентилятору

Данный провод через резистор 58 Ом будем использовать для питания вентилятора. Причём вентилятор нужно развернуть так, чтоб он дул на радиатор.

Припаиваем провод от косы трансформатора на общий минус

Припаиваем 2 провода от шунта для ОУ LM358

Припаиваем провода, а также резисторы к ним. Данные провода пойдут на ОУ LM357 через резисторы 47 Ом.

Припаиваем провод к 4 ножке ШИМ

При положительном +5 Вольт напряжении на данном входе ШИМ, идёт ограничение предела регулирования на выходах С1 и С2, в данном случае с увеличением на входе DT идёт увеличение коэффициента заполнения на С1 и С2 (нужно смотреть как транзисторы на выходе подключены). Одним словом — останов выхода БП. Данный 4-й вход ШИМ (подадим туда +5 В) будем использовать для остановки выхода БП в случае КЗ (выше 4,5 А) на выходе.

Собираем схему усиления тока и защиты от КЗ

Внимание: это не полная версия — подробности, в том числе фотографии процесса переделки, смотрите на форуме.

Обсудить статью ЛАБОРАТОРНЫЙ БП С ЗАЩИТОЙ ИЗ ОБЫЧНОГО КОМПЬЮТЕРНОГО

Обычно для переделки компьютерных блоков питания используют блоки ATX, собранные на микросхемах TL494 (KA7500), но в последнее время такие блоки не попадаются. Их стали собирать на более специализированных микросхемах, на которых сложнее сделать регулировку тока и напряжения с нуля. По этой причине был взят для доработки старый блок типа AT на 200W, который был в наличии.

Этапы переделки

1. Вмонтирована плата зарядного устройства от мобильного телефона Nokia AC-12E с доработкой. В принципе можно использовать и другие зарядные устройства.


Доработка заключалась в перемотке III обмотки трансформатора и установке дополнительного диода и конденсатора. После переделки блок стал выдавать напряжения +8V для питания вентилятора и вольтметра-амперметра и +20V для питания микросхемы управления TL494N.


2. С платы блока AT выпаяны детали самозапуска первичной цепи и цепи регулировки выходного напряжения. Также были удалены все вторичные выпрямители.


Выходной выпрямитель переделан по мостовой схеме. Использованы три диодных сборки MBR20100CT. Дроссель перемотан — диаметр кольца 27 мм, 50 витков в 2 провода ПЭЛ 1 мм. В качестве нелинейной нагрузки применена лампа накаливания 26V 0,12A. С ней напряжение и ток хорошо регулируются от нуля.
Для обеспечения устойчивой работы микросхемы изменены цепи коррекции. Для грубой и точной регулировок напряжения и тока применено особое подключение потенциометров. Такое подключение позволяет плавно изменять напряжение и ток в любом месте при любом положении потенциометра грубой регулировки.

Особого внимания требует шунт, провода для регулировки и измерения должны подключатся непосредственно к его выводам, так как напряжение, снимаемое с него невелико. На схеме эти подключения показаны фиолетовыми стрелками. Измеряемое напряжение для цепи регулирования снимается с делителя с коррекцией для устранения самовозбуждения в цепях управления.
Верхний предел установки напряжения подбираются резисторами R38, R39 и R40. Верхний предел установки тока подбирается резистором R13.


3. Для измерения тока и напряжения применен вольтметр-амперметр


За основу взята схема «Суперпростой амперметр и вольтметр на супердоступных деталях (автовыбор диапазона)» от Eddy71 .
В схему введена регулировка баланса ОУ при измерении тока, что позволило резко улучшить линейность. На схеме это потенциометр «Баланс ОУ», напряжение с которого поступает на прямой или инверсный входы (подбирается, куда подключить, на схеме обозначено зелеными линиями).
Автоматический выбор диапазона измерения реализован программно. Первый диапазон до 9,99A с указанием сотых долей, второй до 12A с указанием десятых долей ампера.


4. Программа для микроконтроллера написана на СИ (mikroC PRO for PIC)и снабжена комментариями.

Конструкция и детали

Конструктивно все элементы размещены в корпусе блока AT. Плата зарядного устройства закреплена на радиаторе с силовыми транзисторами. Сетевые разъемы убраны и на их месте установлен выключатель и выходные зажимы. Сбоку на крышке блока находятся резисторы установки напряжения и тока и индикатор вольтметра-амперметра. Закреплены они на фальшпанели с внутренней стороны крышки.

Чертежи выполнены в программе Frontplatten-Designer 1.0. Междукаскадный трансформатор блока AT не переделывается. Выходной трансформатор блока AT тоже не переделывается, просто средний отвод, выходящий из катушки, отпаивается от платы и изолируется. Выпрямительные диоды заменены на новые, указанные в схеме.
Шунт взят от неисправного тестера и закреплен на изоляционных стойках на радиаторе с диодами. Плата для вольтметра-амперметра использована от «Суперпростого амперметра и вольтметра на супердоступных деталях (автовыбор диапазона)» от Eddy71 с последующей доработкой (перерезаны дорожки, согласно схемы).

Замеченные особенности недостатки

В качестве базового блока использован блок AT 200 W. К сожалению, он имеет довольно маленький радиатор для силовых транзисторов. При этом вентилятор подключен к напряжению 8 Вольт (для уменьшения создаваемого шума), поэтому токи больше 6 – 7 Ампер, снимать можно только кратковременно, во избежание перегрева транзисторов.

Файлы

Файлы схем, плат, чертежей и исходники и прошивка
▼ 🕗 10/01/13 ⚖️ 70,3 Kb ⇣ 521

За основу был взят БП CODEGEN — 300X (типа 300Вт, ну Вы поняли китайских 300). Мозгом БП служит ШИМ-контроллер КА7500 (TL494…). Только такие мне приходилось переделывать. Управлять ШИМкой будет PIC16F876A, он же и для контроля и установки выходного напряжения и тока, отображение информации на LCD Wh2602(…), регулировка осуществляется кнопками.
Программу помог сделать один хороший человек (IURY, сайт «Кот», который радио), за что ему большое спасибо!!! В архиве схема, плата, программа для контроллера.

Берем рабочий БП (если не рабочий, то надо восстановить до рабочего состояния).
Ориентировочно определяемся, где у нас что будет располагаться. Выбираем место под LCD, кнопки, клеммы (гнезда), индикатор включения…
Определились. Делаем разметку для «окна» ЛСД. Вырезаем (я резал маленькой болгаркой 115мм), может кто-то дремелем, кто-то рассверливанием отверстий, а потом подгонка напильником. В общем кому как удобнее и доступнее. Должно получиться что-то похоже на это.

Продумываем как будем крепить дисплей. Можно сделать несколькими способами:
а) соединить с платой управления разъёмами;
б) сделать через фальшпанель;
в) или…
Или… припаять непосредственно 4 (3) винтика М2,5 к корпусу. Почему М2,5, а н М3,0? В ЛСД отверстия 2,5мм в диаметре для крепления.
Я припаял 3 винтика, потому что при пайке четвертого, отпаивается перемычка (на фото видно). Потом припаиваешь перемычку — отпадает винтик. Просто сильно близкое расстояние. Не стал заморачиваться — оставил 3 шт.

Пайка выполнена ортофосфорной кислотой. После пайки всё необходимо хорошо промыть водой с мылом.
Примеряем дисплей.

Изучаем схему, а именно все относительно TL494 (KA7500). Все что касается ног 1, 2, 3, 4, 13, 14, 15, 16. Всю обвязку возле этих выводов удаляем (на основной плате БП), и устанавливаем детали, согласно схемы.

Удаляем на основной плате БП всё лишнее. Все детали касательно +5, -5, -12, PG, PS — ON. Оставляем только всё, что касается +12 V и дежурного питания +5V SB. Желательно найти схему по своему БП, чтобы не удалить чего лишнего. В цепи питания +12 вольт — удаляем родные электролиты и ставим вместо них, аналогичный по ёмкости, но на рабочее напряжение 35-50 вольт.
Должно получиться что-то похоже на это.

Для увеличения, жмите на схему

Посмотрев на характеристики имеющегося блока питания (наклейка на корпусе) — по 12В выходной ток должен быть 13А. Ого неплохо вроде!!! Смотрим на плату, что у нас образовывает 12В, 13А??? Ха два диода FR302 (по даташиту 3А!). Ну пусть максимальный ток 6А. Нет, такое нас не устраивает, надо заменить на что-нибудь по мощнее, да еще и с запасом, поэтому ставим 40CPQ100 — 40А, Uобр=100В.

На радиаторе были какие-то изолирующие прокладки, прорезиненная ткань (что-то похожее). Отодрал, отмыл. Поставил нашу отечественную слюду.
Винты, поставил подлиннее. Под один сзади зажал еще слюду. Блок решил дополнить индикатором перегрева теплоотвода на МП42. Германиевый транзистор здесь используется в качестве датчика температуры

Схема индикатора перегрева теплоотвода собрана на четырёх транзисторах. В качестве транзистора стабилизатора применён КТ815, КТ817, а в качестве индикатора — двухцветный светодиод.

Печатную плату не рисовал. Думаю, что особой сложности при сборке этого узла возникнуть не должно. Как узел собран, видно на фото ниже.

Делаем плату управления. ВНИМАНИЕ! Перед подключением своего LCD изучите даташит на него!! Особенно выводы 1 и 2!

Соединяем все согласно схеме. Устанавливаем плату в БП. Также надо изолировать основную плату от корпуса. Сделал я всё это через пластиковые шайбочки.

Наладка схемы.

1.Все наладки блока питания проводить только через лампу накаливания 60 — 150 Вт, включенную в разрыв сетевого кабеля.
2.Корпус БП изолировать от GND, а цепь, которая образовывалась через корпус, соединить проводками.
3.Iizm (U15) — выставляется выходной ток (правильность показаний индикатора) по образцовому А — метру.
Uizm (U14) — выставляется выходное напряжение (правильность показаний индикатора), по образцовому В — метру.
Uset_max (U16) — выставляется МАХ выходное напряжение

Максимальный выходной ток данного блока питания составляет 5 ампер (вернее 4,96А), ограничен прошивкой.
Максимальное выходное напряжение для данного блока питания, не желательно выставлять более 20-22 вольт, так как в этом случае увеличивается вероятность пробоя силовых транзисторов из-за нехватки предела ШИМ-регулирования микросхемой TL494.
Для увеличения выходного напряжения более 22 вольт, необходима перемотка вторичной обмотки трансформатора.

Пробный запуск прошёл успешно. Слева двухцветный индикатор перегрева теплоотвода (холодный радиатор — цвет LED зеленый, теплый — оранжевый, горячий — красный). Справа — индикатор включения БП.

Установил выключатель. Основа — стеклотекстолит, обклеен самоклейкой «оракл».

Финал. То, что получилось в домашних условиях.

Блок питания ПК для зарядных устройств

  Старый блок питания AT (с переключатель сбоку)

Вам повезло. Этот блок питания старого образца (PS) намного проще в работе и как правило, корпус больше, поэтому у вас больше места для работы. Подключите блок питания и включите его. Вентилятор должен работать. Используйте свой VOM и определите правильный цвет пары проводов для +12 вольт.Это довольно легко. Выберите набор проводов, который заканчивается в вилке всего 4 провода. Это, вероятно, попало на дисковод (либо на жесткий диск, либо на дискету). Будет 2 центральных провода. одного цвета (вероятно, черного), а внешние провода будут разного цвета (возможно, желтого и красного). Используйте ВОМ с один щуп в центральном проводе и один щуп во внешнем проводе. Вы обнаружите, что центральные провода соответствуют отрицательному пост на аккумуляторе, а внешние провода — положительные посты.При достаточном количестве проб и ошибок вы можете определить большинство цветов. Я видел следующие:

Желтый +12 вольт

Черный Общий

Красный +5 вольт

Оранжевый -5 вольт

Синий -12 вольт

Белый Питание хорошее .

Будет много проводов +12 вольт, много проводов +5 вольт, ужасно много «Общих» провода и только один или два провода -12 вольт или -5 вольт.Обычно имеется только один провод «Power Good».

Теперь, когда вы знаете, какой цвет +12 вольт, а какой «общий», все, что вам нужно сделать, это «спроектировать» свою коробку. С мы планируем использовать этот блок питания в качестве замены автомобильного аккумулятора, я представляю его с «Положительным» и «Отрицательным» сообщения, как батарея. Выберите два места на корпусе PS, которые позволят закрепить зарядное устройство без короткого замыкания. снаружи, и что вы можете провести несколько проводов внутрь корпуса PS к этим местам.Зайдите в местный хозяйственный магазин и Получите:

2 резиновые втулки (центральные отверстия 1/4 дюйма подойдут)

2 крепежных болта #10 длиной 1 1/2 дюйма (они должны через люверсы без проблем)

4 гайки для болтов

4 плоские шайбы для болтов

4 больших (вероятно 1/4 дюйма на 2 дюйма) нейлоновые (или другие изолирующие) шайбы с небольшими (1/4 дюйма) отверстиями в центре

Теперь вернемся к магазин.Если у вас есть немного ленты Red Zagi и немного ленты Zagi Black, покройте одну сторону нейлоновой шайбы красной и одна сторона другой нейлоновой шайбы с черным. Обрежьте ленту с непокрытой стороны острым ножом. Просверлите отверстие 5/16 в каждое из выбранных вами мест. Вставьте резиновую втулку в каждое отверстие. Затем отрежьте 3 или 4 провода +12 вольт до нужной длины. первое отверстие. Припаяйте эти провода к болту (возле головки).«Кольцевые клеммы» — отличный вариант, скорее чем пайка непосредственно к болту, но любой способ будет работать. Наденьте гайку на болт и затяните ее до припаянного провода. Наденьте на болт металлическую плоскую шайбу. Затем наденьте на болт одну из нейлоновых шайб. Протолкните болт через втулку. При необходимости вы можете немного обрезать нейлоновую шайбу, если она с чем-то конфликтует, но оставьте достаточно нейлоновой шайбы, чтобы Убедитесь, что провода не касаются корпуса PS.Поместите еще одну нейлоновую шайбу (красную, если вы заклеили ее лентой Zagi) на болт. Наденьте на болт еще одну металлическую плоскую шайбу. Наденьте на болт еще одну гайку и затяните ее. Теперь у вас должно быть «Положительно». штырь аккумуляторной батареи, полностью изолированный от корпуса PS.

Затем отрежьте 3 или 4 «общих» провода до добраться до второго отверстия. Повторите тот же процесс, который вы сделали с проводами плюс 12 вольт, на этот раз, используя «общие» провода.Используйте шайбу из черного нейлона, если вы покрыли ее лентой Zagi. Теперь у вас есть «Отрицательный» пост для вашего новый ПС. Теперь осталось только отрезать лишние провода, чтобы не было короткого замыкания. Верните крышку на питание поставьте и отметьте посты как «Положительные» и «Отрицательные». Вы сделали.

 

Новые Блок питания AT Style (с кнопочным выключателем сбоку или на шнуре)

Этот блок питания (PS) немного сложнее, чем старые, и требует немного больше работы.Мало того, что они, как правило, меньше, и там внутри коробки PS меньше места для работы.

Подключите блок питания и включите его. Вентилятор может работать или просто начать, а затем остановить. Как правило, следующие цвета обозначают определенные функции:

Желтый +12 В

Черный Общий

Красный +5 В

Оранжевый Питание хорошее

Синий -12 В

Белый -5 В

Зеленый или Серый Источник питания – On (PS-on)

Примечание: «PS-on» может не существовать.Если он существует, то он будет частью двухрядной вилки, которая подошел к материнской плате ПК.

Если вентилятор работает нестабильно, выключите питание и временно подключите «Power Good» на линию +5 ​​вольт. Это должно обеспечить стабильную работу вентилятора при включении PS. Если вентилятор все еще не работает, вам следует найти линию «PS-on» и подключить ее к «общей» линии.PS-на линия на самом деле является переключателем для включения (или выключения) PS. Используйте свой VOM и определите правильный цвет пары проводов для +12 вольт. Это довольно легко. Выберите набор проводов, который заканчивается вилкой только с 4 проводами. Это, вероятно, попало на дисковод (либо жесткий диск или дискета). Будет 2 центральных провода одного цвета (вероятно, черного), а внешние провода будут разными. цвета (возможно, желтый и красный).Используйте VOM с одним щупом на центральном проводе и одним щупом на внешнем проводе. Что ты будешь обнаружить, что центральные провода соответствуют отрицательному выводу на аккумуляторе, а внешние провода — положительным. С достаточным количеством проб и ошибок вы можете определить большинство цветов. Будет много проводов +12 вольт, много проводов +5 вольт, ужасный много «общих» проводов и только один или два провода -12 вольт или -5 вольт.Обычно есть только один «Power Good». и один PS-на проводе.

Соединение от «Power Good» к +5 вольт сделать постоянным (припаять к немного термоусадки).

Теперь, когда вы знаете, какой цвет +12 вольт, а какой «общий», вам нужно «спроектировать» свою коробку. Поскольку мы планируем использовать этот блок питания в качестве замены автомобильного аккумулятора, я представляю его с «Положительным». и «Отрицательные» посты, как батарейка.Выберите два места на корпусе PS, которые позволят зарядному устройству защелкивается без короткого замыкания, и что вы можете провести несколько проводов внутри корпуса PS в этих местах.

Вы Возможно, вы захотите переместить выключатель питания PS в корпус, если это выключатель типа «пуповины». обычно я выбираю переместите его в отверстие, через которое «пуповина» выходит из корпуса ПС.Этот процесс просто вопрос отпаивать провода, укорачивать их и перепаивать. Обязательно припаяйте провода того же цвета обратно к такие же ушки на переключателе. Вам, вероятно, потребуется просверлить пару монтажных отверстий в корпусе PS, чтобы удерживать переключатель. и установите переключатель, используя эти отверстия и винты через каждое.

Пойдите в местный хозяйственный магазин и купите:

2 резины втулки (подойдут центральные отверстия 1/4 дюйма)

2 крепежных болта #10 длиной 1 1/2 дюйма (они должны проходить через втулки без проблем)

4 гайки для болтов

4 плоские шайбы для болтов

4 больших (вероятно, 1/4 дюйма на 2 дюйма диаметром) нейлоновые (или другие изолирующие) шайбы с небольшими (1/4 дюйма) отверстиями в центре

Автомобильный фонарь на 12 В с розетка и провода (я использую небольшой габаритный фонарь с янтарной линзой).Лампа #1154 или #1156 также хорошо работает.

Сейчас обратно в магазин. Если у вас есть лента Red Zagi и лента Black Zagi, закройте одну сторону нейлоновой шайбы. с красным и одна сторона другой нейлоновой шайбы с черным. Обрежьте ленту с непокрытой стороны острым ножом. Дрель отверстие 5/16 в каждом из выбранных вами мест. Вставьте резиновую втулку в каждое отверстие. Затем отрежьте 3 или 4 провода +12 вольт к длину до первого отверстия.Припаяйте эти провода к болту (возле головки). «Кольцевые клеммы» являются отличным вариант, а не припаивать непосредственно к болту, но любой способ будет работать. Наденьте гайку на болт и затяните ее припаянные провода. Наденьте на болт металлическую плоскую шайбу. Затем наденьте на болт одну из нейлоновых шайб. Просуньте болт насквозь втулка. . При необходимости вы можете немного подрезать нейлоновую шайбу, если она конфликтует с чем-то внутри корпуса PS, но оставить достаточно нейлоновой шайбы, чтобы убедиться, что провода не касаются корпуса PS.Наденьте на болт еще одну нейлоновую шайбу (используйте Красная нейлоновая шайба, если вы покрыли ее лентой Zagi). Наденьте на болт еще одну металлическую плоскую шайбу. Наденьте на болт еще одну гайку и подтяните его. Теперь у вас должен быть «положительный» аккумуляторный штырь, полностью изолированный от корпуса PS.

NСледующий отрежьте 3 или 4 «общих» провода по длине, чтобы добраться до второго отверстия. Повторите тот же процесс, что и с плюсом. 12-вольтовые провода, на этот раз с использованием «общих» проводов.Используйте шайбу из черного нейлона на этом, если вы покрыли его Zagi. Лента. Теперь у вас есть «Отрицательный» пост для вашего нового PS.

Модификация блока питания компьютера для зарядки аккумулятора LiPo

В этом руководстве мы модифицируем старый блок питания компьютера, чтобы его можно было использовать для зарядного устройства LiPo, такого как ISDT. Этот проект стоит не так дорого, как готовый блок питания, а материалы для него найти несложно. Делая этот блок питания, нет необходимости тратить еще 20-40 долларов на блок питания, который можно использовать для частей FPV.Более того, если вы умеете резать и зачищать провода и имеете базовые знания о пайке (об этом вы можете узнать здесь), его легко построить!

Эта статья была отправлена ​​через Программу сообщества GetFPV Эрвином Ляо. Вы можете посмотреть больше контента Эрвина на его YouTube и Instagram.

Отказ от ответственности: эта статья была написана исключительно членом сообщества FPV. Мнения и советы в этой статье принадлежат автору и не обязательно отражают мнение или взгляды GetFPV.

Материалы и инструменты для сборки

Материалы

  • Старый блок питания компьютера (можно найти в магазинах запчастей для старых компьютеров или иногда даже в магазине Goodwill)
  • Гнездовой разъем XT60 или разъем для питания зарядного устройства (доступен здесь)
  • Термоусадка или изолента (доступны здесь)
  • Припой (доступен здесь)

Необходимые инструменты*

  • Паяльник (доступен здесь)
  • Кусачки (доступны здесь)
  • Инструмент для зачистки проводов (доступен здесь)

*Лень покупать все инструменты по отдельности? На GetFPV есть набор, который может похвастаться большинством необходимых инструментов для этой сборки.Кроме того, если вы спешите сделать это и у вас есть материалы, инструменты можно найти в местном хозяйственном магазине, таком как Home Depot или Lowe’s.

Модификация блока питания

Шаг 1

В блоке питания должен быть один разъем 2×2, что дает четыре контакта. На разъеме должно быть два разных цвета (обычно желтый и черный). Мы будем использовать его для питания зарядного устройства. Отрежьте разъем от четырех проводов и зачистите их. После этого скрутите провода одного цвета вместе и спаяйте провода между собой.Затем наденьте на провода кусок термоусадки и сдвиньте его до упора.

Вы должны выяснить, какой из проводов положительный или отрицательный. Положительный провод обычно желтого цвета, а провод заземления обычно черного или коричневого цвета.

С помощью мультиметра следует выяснить, какой из проводов положительный, а какой отрицательный. Положительный провод обычно желтого цвета, а провод заземления обычно черного или коричневого цвета.

Шаг 2

Теперь подготовьте разъем XT60. Я не буду показывать, как это сделать, но если вам нужна помощь, вы можете следовать этому руководству от Crash and Learn FPV. После подготовки разъема XT60 припаяйте положительные провода (обычно желтые) к положительной стороне XT60. Припаяйте минус к другой стороне. Это должно выглядеть примерно так, как показано на рисунке ниже, где позитив будет коричневым, а негатив — черным.

По завершении пайки потяните термоусадку вверх и усадите ее.Если у вас нет термоусадки, вы также можете использовать изоленту. Однако, на мой взгляд, это более грязно с изолентой, как показано на фото ниже.

Этап 3

Если вы подключите блок питания сейчас, вы не получите питания, и вентилятор блока питания не начнет вращаться. Этот третий шаг показывает вам, как исправить эту проблему.

На блоке питания должен быть один разъем с наибольшим количеством контактов. В обычном блоке питания компьютера должно быть либо 18, либо 20 контактов.На этом разъеме отрежьте зеленый провод или провод с маркировкой «PS_ON#» и провод заземления или COM. Чтобы блок питания включился, вам необходимо соединить зеленый провод и провод COM. Любое заземление/COM на разъеме будет работать.

Провод PS_ON# — это сигнальный провод, который необходимо заземлить для работы источника питания. В компьютере он соединен с землей внутри.

После обрезки провода PS_ON# и провода заземления зачистите их и залудите паяльником.Наденьте термоусадку на одну сторону и спаяйте два провода вместе. Теперь, когда блок питания подключен к разъему XT60, он должен получать питание и работать при подключении к зарядному устройству. Один из способов проверить это, если вентилятор вращается, блок питания работает. Должно получиться примерно как на фото ниже.

Внимание!

Единственное, чего нельзя делать, так это отрезать остальные неиспользуемые провода на разъеме. Хотя это может выглядеть чище и эстетичнее, но сколько раз я ни пытался это сделать, это никогда не срабатывало.Блок питания просто выключается, а иногда, когда вентилятор все еще работает, блок питания не обеспечивает достаточную мощность для питания XT60. Можно просто стянуть провода сбоку стяжкой.

Заключение

Это довольно простая сборка, которую можно сделать дешево. Кроме того, этот блок питания позволяет вам тратить деньги на большее количество деталей FPV. Однако у этого блока питания есть один недостаток: он обеспечивает только 12 вольт по сравнению с рекомендуемыми 24 вольтами. Я давно пользуюсь 12 вольтами, и меня это не сильно беспокоило.Надеюсь, этот урок помог вам, ребята, в создании блока питания для зарядного устройства.

 

Ознакомьтесь с готовым блоком питания здесь.

Ознакомьтесь со всеми зарядными устройствами и аксессуарами, которые GetFPV может предложить здесь

Хотите вместо этого посмотреть видео? Посмотрите это видео от NewBeeDrone здесь

Автор: GetFPV
http://getfpv.com

Сайт GetFPV Learn — идеальное место для расширения ваших знаний о гоночных FPV-дронах.Посетите магазин GetFPV, где представлен огромный выбор лучших гоночных FPV-дронов.

Почтовая навигация

Блок питания ATX мощностью 550 Вт со встроенным зарядным устройством на 24 В

Главная > Продукция > Блок питания ATX мощностью 550 Вт со встроенным зарядным устройством на 24 В

Мощность

21 апреля 2016 г.

Джордан Малкер

TRUMPower представляет Intel Haswell-совместимый TMPC-550U, одобренный с медицинской точки зрения блок питания для ПК ATX мощностью 550 Вт со встроенным зарядным устройством на 24 В.К TMPC-550U можно подключить одну 24-вольтовую или две 12-вольтовые свинцово-кислотные батареи для использования в качестве источника бесперебойного питания с резервной мощностью 400 Вт. Зарядное устройство в сочетании со встроенным преобразователем постоянного тока в постоянный гарантирует, что все подключенное оборудование будет получать стабильную подачу питания с правильным соответствующим напряжением в случае отключения электроэнергии или временного отключения электроэнергии.

TMPC-550U поставляется с выходами постоянного напряжения и максимальной нагрузкой +3,3 В/20 А, +5 В/20 А, тройной +12 В/16 А, -12 В/0.5A и +5Vsb/3A для резервных целей. Максимальная общая выходная мощность составляет 550 Вт, а суммарная мощность +3,3 В и +5 В ограничена 120 Вт. Суммарная выходная мощность для +12 В 1 , +12 В 2 , +12 В 3 составляет максимум 432 Вт. Блок питания размером 140x150x86 мм поставляется со стандартным набором выходных кабелей, который включает 24-контактную материнскую плату ATX, разъемы питания PCI-E, 4-контактный Molex и SATA и т. д., который подходит для большинства приложений, связанных с ПК. В качестве альтернативы можно заказать индивидуальный набор кабелей.

TMPC-550U разработан в соответствии с 3-й редакцией IEC/EN 60601-1, ANSI/AAMI ES 60601-1:2005, CSA C22.2 № 60601-1: 2008 и IEC/EN 60601-1-2. :2014 (4-е издание) Стандарты ЭМС. Блок питания также разработан в соответствии со стандартами EN 55011/EN 55022, FCC и VCCI класса B по кондуктивным и излучаемым электромагнитным помехам. Кроме того, блок питания соответствует требованиям RoHS, а среднее время безотказной работы устройства при полной нагрузке превышает 100 000 часов при температуре окружающей среды 25°C, рассчитанное в соответствии с Telcordia SR-332.

Модель имеет максимальный ток утечки на землю 300 мкА при 264 В переменного тока, 63 Гц. Источник питания имеет универсальный вход 90–264 В переменного тока с активной коррекцией коэффициента мощности, соответствующий стандартам EN 61000-3-2. В качестве альтернативы он может работать при входном напряжении 24 В постоянного тока. TMPC-550U также оснащен интерфейсом USB 2.0 для связи между источником питания и резервной батареей через программу управления питанием, работающую в системе ПК. Он имеет как разъем порта батареи, так и разъем коммуникационного порта. Дополнительные ключевые характеристики включают защиту от перенапряжения и перегрузки по току на всех выходах, низкий уровень пульсаций и шума, а также рабочую температуру от 0 до +70°C без необходимости снижения номинальных характеристик ниже +50°C.

Зарядное устройство для ноутбука HP

Цены, характеристики, доступность и условия предложений могут быть изменены без предварительного уведомления. Защита цен, согласование цен или гарантии цены не распространяются на внутридневные, ежедневные предложения или акции с ограниченным сроком действия. Ограничения по количеству могут применяться к заказам, включая заказы на товары со скидкой и рекламные товары. Несмотря на все наши усилия, небольшое количество товаров может содержать ошибки в ценах, опечатках или фотографиях.Правильные цены и акции проверяются в момент размещения заказа. Эти условия применяются только к продуктам, продаваемым HP.com; Предложения реселлера могут различаться. Товары, продаваемые HP.com, не предназначены для немедленной перепродажи. Заказы, которые не соответствуют положениям, условиям и ограничениям HP.com, могут быть отменены. Контрактные и оптовые клиенты не имеют права.

Рекомендуемая производителем розничная цена HP может быть снижена. Рекомендованная производителем розничная цена HP указана либо как отдельная цена, либо как зачеркнутая цена, а также указана цена со скидкой или рекламная цена.На скидки или рекламные цены указывает наличие дополнительной более высокой рекомендованной розничной цены зачеркнутой цены. Системы 10 Pro с пониженной версией до Windows 7 Professional, Windows 8 Pro или Windows 8.1: эта версия Windows, работающая с процессором или наборами микросхем, используемыми в этой системе, имеет ограниченную поддержку со стороны Microsoft. Дополнительные сведения о поддержке Microsoft см. в разделе часто задаваемых вопросов о жизненном цикле поддержки Microsoft по адресу https://support.microsoft.com/lifecycle

Ультрабук, Celeron, Celeron Inside, Core Inside, Intel, логотип Intel, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside, логотип Intel Inside, Intel vPro, Itanium, Itanium Inside, Pentium, Pentium Inside, vPro Inside, Xeon, Xeon Phi, Xeon Inside и Intel Optane являются товарными знаками корпорации Intel или ее дочерних компаний в США и/или других странах.

Гарантия на дом доступна только для некоторых настраиваемых настольных ПК HP. Необходимость обслуживания на дому определяется представителем службы поддержки HP.Заказчику может потребоваться запустить программы самопроверки системы или исправить выявленные неисправности, следуя советам, полученным по телефону. Услуги на месте предоставляются только в том случае, если проблема не может быть устранена удаленно. Услуга недоступна в праздничные и выходные дни.

Компания HP передаст ваше имя и адрес, IP-адрес, заказанные продукты и связанные с ними расходы, а также другую личную информацию, связанную с обработкой вашего заявления, в Bill Me Later®. Bill Me Later будет использовать эти данные в соответствии со своей политикой конфиденциальности.

Microsoft Windows 10: не все функции доступны во всех выпусках и версиях Windows 10.Для систем может потребоваться обновление и/или отдельное приобретение аппаратного обеспечения, драйверов, программного обеспечения или обновления BIOS, чтобы в полной мере использовать функциональные возможности Windows 10. Windows 10 автоматически обновляется, что всегда включено. Могут взиматься сборы с интернет-провайдера, и со временем могут применяться дополнительные требования к обновлениям. См. http://www.microsoft.com.

Участвующие в программе HP Rewards продукты/покупки относятся к следующим категориям: принтеры, бизнес-ПК (марки Elite, Pro и рабочие станции), выберите аксессуары для бизнеса и выберите чернила, тонер и бумага.

Преобразование блока питания в зарядное устройство. Зарядное устройство для автомобиля от блока питания компьютера

Наверняка каждому автолюбителю приходилось собирать Зарядное устройство для автомобиля своими руками. Существует множество различных подходов, начиная от простых трансформаторных схем и заканчивая импульсными схемами с автоматической регулировкой… , просто берет золотую середину… Получается за копейки, а по своим параметрам отлично справляется с зарядкой автомобильных аккумуляторов. Сегодня мы расскажем, как можно за полчаса собрать зарядное устройство из компьютерного блока питания АТХ. … Идти!

Для начала вам понадобится работающий блок питания. Можно взять очень старенький 200 — 250 Вт , этой мощности хватит с запасом. Учитывая, что зарядка должна происходить при напряжении 13,9 — 14,4В , то самым важным дополнением в блоке будет поднятие напряжения на линии 12В до 14,4В … Аналогичный метод был использован в статье :.

Внимание! В исправном блоке питания элементы находятся под опасным для жизни напряжением … Не стоит хватать все руками.

Первым делом припаиваем все провода, которые вышли из блока питания. Оставляем только зеленый провод, его нужно припаять к минусовым контактам. (Участки, от которых ушли черные провода — это минус .) Это сделано для автоматического запуска блока при подключении к сети. Также сразу рекомендую провода с клеммами припаять к минусу и шине +12В ( бывшие желтые провода ), для удобства и дальнейшей настройки зарядного устройства.

Следующие манипуляции будем производить с режимом работы ШИМ — имеем микросхему TL494 (есть еще куча блоков питания с их абсолютными аналогами). Ищем первую ножку микросхемы (самая нижняя левая нога), затем смотрим на дорожку с задними боковыми платами.


К первому выводу микросхемы подключаются три резистора, нам нужен тот, который подключается к выводам блока +12 В …На фото этот резистор помечен красным лаком.


Этот резистор необходимо выпаять из платы и измерить его сопротивление. В нашем случае это 38,5 кОм .

Вместо него необходимо припаять переменный резистор, который мы предварительно настроили на такое же сопротивление 38,5 кОм .


Плавно увеличивая сопротивление переменного резистора, добиваемся значения напряжения на выходе 14,4В .


Внимание! Для каждого блока питания номинал этого резистора будет разным, так как схемы и детали в блоках разные, но алгоритм изменения напряжения у всех одинаков. При повышении напряжения выше 15 в генерация ШИМ может прерываться. После этого блок придется перезагрузить, предварительно уменьшив сопротивление переменного резистора.

В нашем блоке сразу поднять напряжение до 14 в не получилось, не хватило сопротивления переменного резистора, пришлось последовательно с ним добавить еще один постоянный.


Когда напряжение 14,4В достигнуто, можно смело выпаивать переменный резистор и измерять его сопротивление (было 120,8кОм ).


В области измерения резистора необходимо выбрать постоянный резистор с как можно более близким сопротивлением.

Собрали из двух 100кОм и 22кОм .


Проверяем работу.


На этом этапе можно смело закрывать крышку и пользоваться зарядным устройством.Но при желании к этому блоку можно подключить цифровой вольтамперметр, это даст нам возможность контролировать ход зарядки.


Вы также можете прикрутить ручку для удобства переноски и прорезать в крышке отверстие для цифрового манометра.


Заключительный тест, чтобы убедиться, что все правильно собрано и работает.


Внимание! Это зарядное устройство сохраняет функцию защиты от короткого замыкания и перегрузки …Но не защищает от обращения ! Ни в коем случае нельзя подключать аккумулятор к зарядному устройству с неправильной полярностью, зарядное устройство моментально выйдет из строя.


При переделке блока питания в зарядное желательно иметь под рукой схему. Чтобы облегчить жизнь нашим читателям, мы сделали небольшую подборку, где они размещены.

Для защиты от переполюсовки есть много интересных схем. С одним из них вы можете ознакомиться в этом.

В контакте с

В статье приведены схема и методика переделки блока питания (БП) из устаревшего ПК в мощное устройство для зарядки свинцово-кислотных аккумуляторных батарей практически любой емкости с зарядным током до 12 А. Работа по переделке блока питания прост и может быть осуществлен даже начинающим радиолюбителем, а само устройство получается недорогим и удобным в использовании. Внешний вид Зарядное устройство, сделанное из блока питания ПК, показано на фото 1, а его вид со снятой крышкой — на фото 2.

Для переделки подойдет любой исправный компьютерный блок питания АТХ или АТ мощностью от 350 Вт, собранный на микросхеме (МС) или ее аналоге (например). Переделку проводят в соответствии с принципиальной схемой рис. 1.

Выводы 5, 6, 7, 8, 9, 10, 11 и 12 микросхемы TL494 БП не трогаем, оставляем как есть все подключенные к ним элементы и цепи.Все элементы и цепи, подключенные непосредственно к остальным клеммам, следует удалить. Очень важно не переборщить. Микросхемы операционного усилителя (например,), компаратора (или др.) и элементы их обвязки, которые находятся рядом с платой, а элементы их обвязки пока оставляем, так как снимаем все подряд за счет сложной компоновки печатной платы и плотности компонентов можно также удалить необходимые элементы.
В образовавшееся свободное пространство вокруг TL494 MS легко помещаются все «новые» компоненты согласно схеме на рис.1. Вырежьте ненужные дорожки. Для начала все соединения можно произвести поверхностным монтажом, и только убедившись в полной работоспособности узла, можно окончательно убрать ненужные элементы и привести установку в «нормальный» вид.


Рассмотрим назначение установленных на плате элементов. R3, R4, R5 — делитель опорного напряжения (+5 В), которое поступает с 14 контакта МС TL494.Переменный резистор R3 является регулятором выходного напряжения. Причем, чем выше напряжение на выводе 2 МС TL494, тем выше выходное напряжение блока питания. При указанных на схеме номиналах диапазон выходного напряжения составляет 11…14,5 В.

Регулировка напряжения осуществляется через первый усилитель ошибки микросхемы TL494 (выводы 1 и 2). Узел ограничения выходного тока выполнен на втором усилителе ошибки этой МС (выводы 15 и 16). Переменным резистором R8 можно задавать ток заряда (в авторском варианте от 2.3 до 12,3 А). При подключении нагрузки к выходной цепи происходит падение напряжения на датчике тока R10, которое подается на вход 15 TL494. В качестве датчика тока использовался шунт от любого неисправного мультиметра диаметром 2 мм и длиной около 20 мм, материал которого, как правило, манганин.

Сопротивление шунта около 0,01 Ом. Если датчик тока R10 имеет меньшее сопротивление, то значение максимального выходного тока будет увеличиваться, и наоборот.Выходной ток, устанавливаемый переменным резистором, стабилен, а ток короткого замыкания будет равен установленному значению, в нашем случае от 2 до 12 А. Цепь R11C4 обеспечивает плавный, без перегрузок, пуск силового агрегата.

Для зарядки автомобильных аккумуляторов необходимо установить выходное напряжение блока 13,9 В и необходимый зарядный ток (из расчета 1/10 от емкости), затем подать напряжение на аккумулятор переключателем SB1 (тумблер), который откроет ключ на мощном полевом транзисторе VT1, сопротивление канала которого равно 2.8 мОм, максимальное напряжение сток-исток 30 В, ток стока до 76 А. Эти параметры позволяют установить его без радиатора.

В процессе настройки потенциометром R13 светодиод должен светиться в режиме стабилизации тока. Если при работе блок издает свистящие звуки, то необходимо подобрать конденсатор С1, так как в режиме стабилизации напряжения происходит самовозбуждение или конденсатор С2, если в режиме стабилизации тока слышен писк.

Для контроля регулировки тока при настройке блока следует последовательно к его выходу подключить амперметр (до 20 А) и нагрузить блок мощными низкоомными резисторами. Добившись нужных значений, можно сделать шкалу с делениями и установить на регулятор тока (фото 1).

Если блок предполагается использовать в качестве источника питания лабораторной установки, то необходимо внести изменения в делитель напряжения: заменить резистор R4 на 2.2 кОм, а переменный резистор R3 заменить на резистор 10 кОм, R5 оставить без изменений (4,7 кОм). При таких номиналах напряжение плавно регулируется от 9 до 21 В.

Сейчас накопилось много ненужных старых блоков питания АТХ для компьютера от 200 до 350Вт с одним выходом +12В. Сейчас такие блоки берут ради установки мощных видеокарт. Поэтому эти блоки питания не потянут, а если и работают, то срок службы материнки, видеокарты, а главное жесткого диска уменьшается.

Решил приспособить компьютерный блок питания АТХ для зарядки автомобильного аккумулятора.

Переделка не сложная по изменению цепей обратной связи и опорного напряжения.

Найдена схема Василия Соколова по переделке блока питания компьютера АТ. Для блока питания ATX оказалось проще превратить его в зарядное устройство для автомобильного аккумулятора. Главное найти более старый блок, сделанный с введением микросхем, содержащих в маркировке 494 или 7500 или их аналоги (TL494, KA7500, NE5561, DBL494, M5T494P, IR9494N, MB3759, ECG1729, IR3M02, IR9494, ECG1729, HA11794)

Слева схема блока питания, резистор обратной связи, идущий на +5В (периодически, кроме того, на +12В)

Отрезаем первую ногу и собираем световую схему (справа).Переменный резистор 2к4* лучше подобрать такой, чтобы

при выключенном S1 на выходе без нагрузки было +15В соответственно

при включенном S1 должно быть +14В.

Тех. у нас есть два режима, ускоренный и нормальный. Можно организовать плавную регулировку, но тогда для контроля нужен вольтметр, в «бою» он неактуален.
Схема выравнивает напряжение, но до тока перегрузки 3,5-4А, далее с увеличением тока в нагрузке напряжение падает практически линейно и при 8А составляет примерно 8-10В.Линия ограничения тока сделана мелкой для большей устойчивости схемы. Те. в старой схеме были замечены провалы в защите при подключении сильно разряженных аккумуляторов.

Желательно подключение предохранителя, иначе при неправильном подключении аккумулятора сгорят диоды и конденсаторы выпрямителя.
Параллельно резистору 0,1 Ом можно подключить измерительную головку через соответствующий резистор. Резистор делаем из нихрома, зажимаем в чашечки от 0.Резисторы на 5 или 1 Вт.


Транзисторы КТ3107 (маркировка на фото) подойдут к импортным аналогам КТ361 2SA601, 2SA611, 2SA555, BC250A, BC557B, BC446

Что еще нужно сделать, чтобы все заработало:


1. Заменить все конденсаторы на 16 вольт (те что на +12В и -12В) на 25..35 вольт. Будьте осторожны, электролиты забавны, поэтому они взрываются от перезаряда на своем напряжении.

2. Диоды выпрямительные(которые на +12В) должны быть в корпусе ТО-220 и прикручены к радиатору без всяких прокладок, если диоды цилиндрические — ждите взрыва от перегрева, их надо заменить на описанные выше , на КД213А или аналогичный и прикручен к радиатору.Но я не стал заморачиваться, потому что они были прикручены к радиатору, а во-вторых, я оставил вентилятор для охлаждения.

3. Вентилятор нужно прикрутить минусом на «-12В» (будет -15В), а плюсом на «-5В», чтобы не крутился при подключенном аккумуляторе и нет сети 220В и не воет от +15 Вольт.

4. Замыкаем зеленый провод на корпус (черный провод), чтобы включился наш блок питания ATX.

5. Разобраться и устранить цепочку защиты. В моем блоке питания все подходит к 1 ножке KA7500B, достаточно перерезать дорожку и припаять ножку к нашей схеме.


В других БП стоят разные и по разному реализованы. Основная — защита от перенапряжения, ставится либо резисторами, либо стабилитроном, схемы сравнения — на транзисторах или на компараторах.

Тех. наша правильно собранная схема ЗУ будет выдавать 14В и блок питания может сразу уйти в защиту при включении. В общем, чем лучше блок питания, тем лучше реализованы защиты.

Поиск лучше начать с выходов блока питания +5В и +12, в качестве эталонного напряжения для сравнения чаще всего берется -5В стабилизированное микросхемой 7905.Удаляйте ненужные детали до тех пор, пока не будет получен подходящий результат.

6. Обеспечить минимальную нагрузку блока питания — резистор 120-180 Ом 2 Вт на «+12В». Опционально, обычно впаяны 250 Ом и 80 от для «+5В»

Схема стандартного блока питания ATX

Номинальный зарядный ток автомобильного аккумулятора должен быть примерно в 10 раз меньше его номинальной емкости, т.е. 5,5А и время зарядки 10 часов. Имеем ток около 3,5А время зарядки (55А/3.5А) = 15,7 ч

Так как тема зарядки автомобильных аккумуляторов всегда актуальна, то хочу рассказать, как сделать зарядное устройство из компьютерного блока питания. Технология изготовления не отличается особой сложностью, но при необходимости всегда можно подзарядить аккумулятор. А сделать устройство можно самостоятельно в домашних условиях.

Вам подойдет практически любой блок питания для ПК, мощность которого будет составлять даже сто пятьдесят ватт. Когда вы достанете этот блок из системного шкафа, вы увидите пучок проводов.Все они вам не понадобятся. Отрежьте все лишнее, оставив только вывод плюсового провода с напряжением двенадцать вольт. Затем нужно выпаять резистор, функция которого понизить напряжение до двенадцати вольт. Его достаточно легко найти. Он проходит по схеме нужного нам провода к микросхеме через два резистора. Точно не знаю, но, скорее всего, такая закономерность наблюдается в каждом блоке питания.

Вместо выносного резистора припаяйте потенциометр, его номинал должен быть ниже снятой детали.Это необходимо для того, чтобы зарядное устройство могло регулировать силу тока. Наша задача добиться выходного напряжения в пятнадцать вольт, и чтобы диапазон тока мог варьироваться от нуля до шести ампер в час. Как вы понимаете, такие показатели просто идеальны для любого аккумулятора, и наше простое зарядное устройство тоже сможет их обеспечить.

Двигайтесь дальше. На блоке питания только один зеленый провод, который используется для включения. Приходится припаивать его к корпусу на минус.Что касается вентилятора, то его нужно будет повернуть таким образом, чтобы воздух нагнетался внутрь. Вам также нужно будет приобрести какой-нибудь амперметр и добавить его в цепь. Можно будет получить информацию о текущей силе подаваемого тока на аккумулятор.

Расскажу как именно у меня получилось зарядное устройство от блока питания компьютера. Новый потенциометр, впаянный вместо резистора, закрепил на корпусе. Я прикрепил амперметр с противоположной стороны.Для зажимов, которые цепляются за клеммы, я использовал металлические прищепки. Они являются отличными проводниками тока и имеют хорошую адгезию к клеммам. Также можно приобрести специальные так называемые крокодилы. Некоторые люди успешно использовали для этой цели зажимы для штор.


Итак, предлагаю подвести итоги этой затеи, а именно: какие плюсы и минусы у нашего зарядного устройства от блока питания компьютера. Преимущество в том, что вам не нужно тратить какие-либо финансовые ресурсы для этой цели.Надеюсь, вы сможете найти какой-нибудь старый блок питания от компьютера. Так как используются эти устройства, вся конструкция не будет такой громоздкой и тяжелой, как в традиционных стандартных. Что касается недостатков, то есть только один. Вы услышите шум вентилятора.

Компьютерный блок питания, наряду с такими преимуществами, как малые габариты и вес при мощности 250 Вт и выше, имеет один существенный недостаток — отключение при перегрузке по току. Этот недостаток не позволяет использовать БП в качестве зарядного устройства для автомобильного аккумулятора, так как последний имеет зарядный ток в начальный момент времени, достигающий нескольких десятков ампер.Добавление схемы ограничения тока в блок питания предотвратит его отключение даже при коротком замыкании в цепях нагрузки.

Автомобильный аккумулятор заряжается при постоянном напряжении … При этом методе напряжение зарядного устройства остается постоянным в течение всего времени зарядки. В ряде случаев зарядка аккумулятора этим способом предпочтительнее, так как обеспечивает более быстрое приведение аккумулятора в состояние, позволяющее запустить двигатель. Энергия, сообщаемая на начальном этапе зарядки, расходуется в основном на основной процесс зарядки, т. е. на восстановление активной массы электродов.Сила зарядного тока в начальный момент может достигать 1,5С, однако для исправных, но разряженных автомобильных аккумуляторов такие токи не принесут вредных последствий, а самые распространенные блоки питания АТХ мощностью 300 — 350 Вт не способны без последствий для себя отдать ток более 16 — 20А…

Максимальный (начальный) зарядный ток зависит от модели используемого блока питания, минимальный предельный ток 0,5А. Напряжение холостого хода регулируется, а для зарядки стартерного аккумулятора может быть 14 В… 14,5В.

Во-первых, необходимо доработать сам блок питания, отключив его защиту от перенапряжения +3,3В, +5В, +12В, -12В, а также удалив компоненты, которые не используются для зарядного устройства.

Для изготовления памяти был выбран блок питания модели FSP ATX-300PAF. Вторичная схема блока питания была нарисована на плате, и несмотря на тщательную проверку, мелкие ошибки, к сожалению, не исключены.

На рисунке ниже показана схема уже модифицированного блока питания.

Для комфортной работы с платой питания последняя выведена из корпуса, все провода цепей питания +3,3В, +5В, +12В, -12В, GND, +5Vsb, провод обратной связи +3,3Vs , из него выпаяна сигнальная цепь ГУ, схема включения питания ПСОНА, питание вентилятора +12В. Вместо пассивного дросселя коррекции коэффициента мощности (установлен на крышке блока питания) временно припаяна перемычка, провода питания ~220В, идущие от коммутатора к БП задней стенки, выведены из платы, напряжение будет подаваться по шнуру питания .

Первым делом деактивируем схему PSON для включения блока питания сразу после подачи сетевого напряжения. Для этого вместо элементов R49, С28 устанавливаем перемычки. Удаляем все элементы ключа, подающего питание на трансформатор гальванической развязки Т2, управляющий силовыми транзисторами Q1, Q2 (на схеме не показаны), а именно R41, R51, R58, R60, Q6, Q7, D18. На плате БП коллекторная и эмиттерная площадки транзистора Q6 соединены перемычкой.

После этого подаем ~220В на блок питания, убеждаемся в его включении и нормальной работе.

Далее отключить управление цепью питания -12В. Снимаем с платы элементы R22, R23, C50, D12. Диод D12 находится под дросселем групповой стабилизации L1, и его удаление без демонтажа последнего (о переделке дросселя будет написано ниже) невозможно, но и не нужно.

Удалить элементы R69, R70, C27 сигнальной цепи PG.

Включаем блок питания, убеждаемся, что он работает.

Тогда отключается защита от перенапряжения +5В. Для этого контакт 14 FSP3528 (контактная площадка R69) подключается перемычкой к цепи +5Vsb.

На печатной плате вырезается проводник, соединяющий контакт 14 с цепью +5В (элементы L2, C18, R20).

Элементы L2, C17, C18, R20 припаяны.

V Включаем блок питания, убеждаемся, что он работает.

Отключить защиту от перенапряжения +3,3В. Для этого на печатной плате вырезаем проводник, соединяющий вывод 13 FSP3528 с цепью +3,3В (R29, R33, C24, L5).

Снимаем элементы выпрямителя и магнитного стабилизатора с платы блока питания L9, L6, L5, BD2, D15, D25, U5, Q5, R27, R31, R28, R29, R33, VR2, C22, C25, C23 , С24, а также элементы цепи ООС R35, R77, С26. После этого добавляем делитель 910 Ом и 1.Резисторы 8 кОм, формирующие напряжение 3,3В от источника +5Всб. Средняя точка делителя подключается к выводу 13 FSP3528, вывод резистора 931 Ом (подойдет резистор 910 Ом) подключается к цепи +5Vsb, а вывод резистора 1,8 кОм к земле (вывод 17 FSP3528).

Далее, не проверяя работоспособность БП , отключить защиту по цепи +12В. Выпаиваем микросхему резистора R12. В контактной площадке R12, соединенной с выв.15 FSP3528 просверлено отверстие 0,8 мм. Вместо резистора R12 добавлено сопротивление, состоящее из последовательно соединенных резисторов сопротивлением 100 Ом и 1,8 кОм. Один вывод сопротивления подключен к цепи +5Vsb, другой к цепи R67, выв. 15 FSP3528.


Выпаиваем элементы цепи ООС +5В R36, C47.

После снятия ООС по цепям +3,3В и +5В необходимо пересчитать номинал резистора ООС цепи +12В R34.Опорное напряжение усилителя ошибки FSP3528 равно 1,25В, при среднем положении регулятора переменного резистора VR1 его сопротивление равно 250 Ом. При напряжении на выходе блока питания в +14В получаем: R34 = (Uвых / Uоп — 1) * (VR1 + R40) = 17,85 кОм, где Uвых, В — выходное напряжение блока питания, Uref, В — опорное напряжение усилителя ошибки FSP3528 (1,25В), VR1 — сопротивление подстроечного резистора, Ом, R40 — сопротивление резистора, Ом. R34 округляется до 18 кОм.Устанавливаем его на плату.

Целесообразно заменить конденсатор С13 3300х16В на конденсатор 3300х25В и добавить такой же на освободившееся место от С24, чтобы разделить пульсирующие токи между ними. Плюсовой вывод С24 через дроссель (или перемычку) подключается к цепи +12В1, с контактных площадок +3,3В снимается напряжение +14В.

Включаем блок питания, регулировкой VR1 устанавливаем выходное напряжение +14В.

После всех изменений в блоке питания переходим к ограничителю. Схема ограничения тока показана ниже.


Резисторы R1, R2, R4… R6, соединенные параллельно, образуют токоизмерительный шунт сопротивлением 0,01 Ом. Ток, протекающий в нагрузке, вызывает на ней падение напряжения, которое ОУ DA1.1 сравнивает с опорным напряжением, устанавливаемым подстроечным резистором R8. В качестве источника опорного напряжения используется стабилизатор DA2 с выходным напряжением 1,25В.Резистор R10 ограничивает максимальное напряжение, подаваемое на усилитель ошибки, до 150 мВ, а значит, максимальный ток нагрузки до 15А. Предельный ток можно рассчитать по формуле I=Ur/0,01, где Ur, В — напряжение на двигателе R8, 0,01 Ом — сопротивление шунта. Схема ограничения тока работает следующим образом.

Выход усилителя ошибки DA1.1 подключен к выводу резистора R40 на плате питания. Пока допустимый ток нагрузки меньше установленного резистором R8, напряжение на выходе ОУ DA1.1 равно нулю. Блок питания работает в штатном режиме, и его выходное напряжение определяется выражением: Uвых = ((R34/(VR1+R40)) + 1)*Uоп. Однако по мере увеличения напряжения на измерительном шунте из-за увеличения тока нагрузки напряжение на выводе 3 DA1.1 стремится к напряжению на выводе 2, что приводит к увеличению напряжения на выходе ОУ. -амп. Выходное напряжение БП начинает определяться другим выражением: Uвых = ((R34/(VR1+R40)) + 1)*(Uоп-Uош), где Uош, В — напряжение на выходе DA1 .1 усилитель ошибки. Другими словами, выходное напряжение БП начинает уменьшаться до тех пор, пока ток, протекающий в нагрузке, не станет немного меньше установленного предельного тока. Состояние равновесия (токоограничения) можно записать так: Uш / Rш = (((R34 / (VR1 + R40)) + 1) * (Uоп-Uош)) / Rн, где Rш, Ом — сопротивление шунта , Uш, В — падение напряжения на шунте, Rн, Ом — сопротивление нагрузки.

В качестве компаратора используется ОУ

DA1.2, сигнализирующий с помощью светодиода HL1 о включении режима ограничения тока.

Схема печатной платы и элемента ограничения тока


Несколько слов о деталях и их замене. Имеет смысл заменить электролитические конденсаторы, установленные на плате питания ФСП, на новые. В первую очередь в цепях выпрямителя резервного питания +5Всб это С41 2200х10В и С45 1000х10В. Не забываем про вольтодобавочные конденсаторы в базовых цепях силовых транзисторов Q1 и Q2 — 2.2х50В (на схеме не показаны). Конденсаторы выпрямителя 220В (560х200В) по возможности лучше заменить на новые, большей емкости. Конденсаторы выходного выпрямителя 3300х25В должны быть обязательно с низким ESR — серии WL или WG, иначе быстро выйдут из строя . В крайнем случае можно поставить б/у конденсаторы этих серий на меньшее напряжение — 16В.

Прецизионный операционный усилитель DA1 AD823AN rail-to-rail идеально подходит для этой схемы. Однако его можно заменить на порядок более дешевый ОУ LM358N.В этом случае стабильность выходного напряжения БП будет несколько хуже, также придется подобрать номинал резистора R34 в меньшую сторону, так как у этого ОУ минимальное выходное напряжение вместо нуля (0,04В, к быть точным) 0,65В.

Максимальная суммарная рассеиваемая мощность токоизмерительных резисторов R1, R2, R4… R6 КНП-100 составляет 10 Вт. На практике лучше ограничиться 5 Вт — даже при 50% максимальной мощности их нагрев превышает 100 градусов.

Диодные сборки BD4, BD5 U20C20, если их реально стоит 2 штуки, менять на что-то более мощное нет смысла, хорошо держат обещанный производителем БП 16А.Но бывает так, что в реальности устанавливается только один, и в этом случае приходится либо ограничиваться максимальным током в 7А, либо добавлять второй узел.

Тестирование БП током 14А показало, что через 3 минуты температура обмотки дросселя L1 превышает 100 градусов. Длительная безаварийная работа в таком режиме вызывает большие сомнения. Поэтому, если предполагается нагружать БП током более 6-7А, дроссель лучше переделать.

В заводском исполнении обмотка дросселя +12В намотана одножильным проводом диаметром 1.3 мм. Частота ШИМ составляет 42 кГц, при этом глубина проникновения тока в медь составляет около 0,33 мм. Из-за скин-эффекта на данной частоте эффективное сечение провода составляет уже не 1,32 мм 2 , а всего 1 мм 2 , что недостаточно для тока 16А. Другими словами, простое увеличение диаметра провода для получения большего сечения, а, следовательно, и для уменьшения плотности тока в проводнике малоэффективно для данного диапазона частот. Например, для провода диаметром 2 мм эффективное сечение на частоте 40 кГц всего 1.73 мм 2 , а не 3,14 мм 2 как ожидалось. Для эффективного использования меди мотаем обмотку дросселя литцендратом. Сделаем литцендрат из 11 отрезков эмалированной проволоки длиной 1,2 м и диаметром 0,5 мм. Диаметр провода может быть разным, главное, чтобы он был меньше удвоенной глубины проникновения тока в медь – в этом случае сечение провода будет использовано на 100%. Провода сворачиваются в «пучок» и скручиваются дрелью или отверткой, после чего пучок продевается в термоусадочную трубку диаметром 2 мм и обжимается газовой горелкой.

Готовый провод полностью наматывается на кольцо, а изготовленный дроссель устанавливается на плату. Обмотку -12В мотать смысла нет, индикатор HL1 «Питание» не нуждается ни в какой стабилизации.


Осталось установить плату ограничителя тока в корпус блока питания. Проще всего прикрутить его к торцу радиатора.


Подключим цепь «ООС» регулятора тока к резистору R40 на плате блока питания.Для этого вырежем на печатной плате блока питания часть дорожки, которая соединяет вывод резистора R40 с «корпусом», а рядом с контактной площадкой R40 просверлим 0,8 мм отверстие, куда будет вставлен провод от регулятора.


Подключаем питание регулятора тока +5В, для чего припаиваем соответствующий провод к цепи +5Vsb на плате блока питания.

«Корпус» ограничителя тока подключается к контактным площадкам «GND» на плате питания, цепь -14В ограничителя и +14В платы питания идут на внешние «крокодилы» для подключения к аккумулятору .

Индикаторы HL1 «Мощность» и HL2 «Предел» закреплены на месте вилки, установленной вместо выключателя «110В-230В».

Скорее всего, в вашей розетке отсутствует защитное заземление. Вернее, контакт может быть, но провод к нему не подходит. Про гараж и говорить нечего… Настоятельно рекомендуется хотя бы в гараже (подвале, сарае) организовать защитное заземление… Не пренебрегайте техникой безопасности.Иногда это заканчивается крайне плачевно. Для тех, у кого розетка 220В не имеет заземляющего контакта, оборудуйте блок питания внешней винтовой клеммой для его подключения.


После всех доработок включите блок питания и подстроечным резистором VR1 отрегулируйте требуемое выходное напряжение, а резистором R8 на плате ограничителя тока максимальный ток в нагрузке.

Подключаем вентилятор 12В к цепям -14В, +14В зарядного устройства на плате блока питания.Для нормальной работы вентилятора в разрыв провода +12В или -12В включаются два последовательно соединенных диода, что снизит напряжение питания вентилятора на 1,5В.

Подключаем пассивный дроссель коррекции коэффициента мощности, питание 220В от выключателя, вкручиваем плату в корпус. Закрепляем нейлоновой стяжкой выходной кабель зарядного устройства.


Прикручиваем крышку. Теперь зарядное устройство готово к использованию.


В заключение следует отметить, что ограничитель тока будет работать с блоком питания ATX (или AT) любого производителя, использующего ШИМ-контроллеры TL494, KA7500, KA3511, SG6105 или подобные.Разница между ними будет только в способах обхода защиты.

Если вы нашли ошибку, выделите фрагмент текста и нажмите Ctrl + Enter .

Если адаптер питания USB-C не заряжает ноутбук Mac

Узнайте, что делать, если адаптер питания USB-C, поставляемый с ноутбуком Mac, перестает заряжаться, нагревается или искрит.

Ноутбуки Mac

поставляются с адаптером питания USB-C и кабелем для зарядки. Вы можете узнать, какой адаптер питания и кабель поставляются с вашим ноутбуком Mac, а также найти советы по устранению неполадок ниже. Если у вас возникла проблема с адаптером питания стороннего производителя, попробуйте вместо него использовать адаптер питания Apple и кабель, входящие в комплект поставки вашего ноутбука Mac.

Адаптер питания USB-C

 

Вилка переменного тока или «утка»

 

Зарядный кабель USB-C

 

Если ваш ноутбук Mac с портом USB-C не заряжается

Если адаптер питания USB-C не заряжает MacBook, MacBook Air или MacBook Pro, сначала попробуйте отключить адаптер питания от электрической розетки, подождать несколько секунд и снова подключить.Если это не поможет, проверьте эти вещи.

Проверить мощность

Узнайте, как проверить розетку и вилку переменного тока.

Проверьте розетку

Убедитесь, что адаптер питания USB-C подключен к работающей розетке. Отсоедините адаптер питания USB-C от электрической розетки, затем подключите заведомо исправное устройство, например лампу или часы, чтобы убедиться, что оно включается правильно.Если розетка работает, подключите адаптер питания USB-C и попробуйте зарядить Mac. Если ваш Mac по-прежнему не заряжается, выключите Mac и закройте дисплей на 30 секунд, затем откройте дисплей и попробуйте снова зарядить Mac. Если вы не используете Mac с кремнием Apple, перезагрузите SMC.

Проверка на наличие шума в линии

Отсоедините адаптер питания от розетки, подождите 30 секунд, затем снова подключите адаптер:

  • Если ваш ноутбук Mac начинает заряжаться после того, как вы снова подключите адаптер питания, это может указывать на проблему с линейным шумом (нарушение, вызванное паразитными электромагнитными сигналами) от вашей сетевой розетки.Адаптер питания автоматически отключается, когда его встроенная функция защиты от перенапряжения обнаруживает линейный шум от розетки.
  • Некоторые возможные источники линейного шума включают лампы с балластами, холодильники или мини-холодильники, подключенные к той же электрической цепи, что и используемая вами розетка. Может помочь подключение адаптера питания к источнику бесперебойного питания (ИБП) или розетке другой цепи.

Если адаптер питания продолжает выключаться при подключении к заведомо исправной розетке, отнесите его в авторизованный сервисный центр Apple или в магазин Apple Store для дальнейшей оценки.

Проверьте вилку или кабель переменного тока

Адаптер питания поставляется со съемной вилкой переменного тока с ножевыми контактами, которые вы вставляете в электрическую розетку. Если ваш ноутбук Mac не заряжается при использовании вилки переменного тока с адаптером питания, попробуйте использовать другую вилку переменного тока Apple или попробуйте использовать удлинительный кабель адаптера питания Apple (продается отдельно).

Проверить кабели

Ваш ноутбук Mac поставляется с кабелем USB-C для зарядки компьютера.Вы можете узнать, вызывает ли этот кабель проблему с зарядкой, попробовав другой кабель USB-C. Помните, что не все кабели USB-C подходят для зарядки MacBook, MacBook Air или MacBook Pro, поэтому убедитесь, что используемый кабель предназначен для зарядки.

Если ваш ноутбук Mac заряжается одним кабелем USB-C, но не другим, немедленно прекратите использование неработающего кабеля и проверьте кабель и блок питания.

Если ваш ноутбук Mac начинает заряжаться только при покачивании или перемещении кабеля USB-C или удлинительного кабеля адаптера питания Apple (продается отдельно), немедленно прекратите использование кабеля и оцените кабель и блок питания.

Проверить наличие обновлений

В некоторых случаях для вашего компьютера могут быть доступны обновления программного обеспечения или микропрограммы, улучшающие связь с адаптером питания. Если ваш MacBook, MacBook Air или MacBook Pro не заряжается должным образом, проверьте наличие обновлений программного обеспечения на вашем Mac.

Если адаптер нагревается

Адаптер питания USB-C может нагреваться при обычном использовании, поэтому обязательно используйте его в хорошо проветриваемом помещении.Всегда подключайте адаптер питания напрямую к сетевой розетке с помощью вилки переменного тока или кладите его на стол или в другое хорошо проветриваемое место при использовании удлинительного кабеля адаптера питания (продается отдельно).

Не размещайте адаптер в плохо проветриваемых местах, например, на диване, толстом ковре, постельном белье или подушке. Не накрывайте адаптер одеялом или другим изоляционным материалом.

Адаптер питания может отключиться при перегреве. В этом случае отсоедините кабель USB-C от ноутбука Mac и дайте адаптеру питания остыть, прежде чем обращаться с ним.

Если увидишь искру

При подключении адаптера питания USB-C может возникнуть искра в месте, где штыри вилки входят в розетку. Обычно это нормально и может произойти, когда вы включаете любой электрический прибор в розетку.

Если при подключении адаптера вы наблюдаете что-либо из следующего или если у вас есть другие опасения по поводу искрения, обратитесь в Apple:

  • Свяжитесь с Apple, если искра исходит не от контактов вилки.
  • Свяжитесь с Apple, если вы заметили какие-либо повреждения или обесцвечивание адаптера.

Оцените свой ноутбук Mac и блок питания

Независимо от того, находится ли ваш ноутбук Mac с USB-C на гарантии или нет, вы можете принести его в авторизованный сервисный центр Apple или в Apple Store для оценки. Не забудьте взять с собой компьютер Mac, адаптер питания USB-C и все кабели USB-C, которые вы используете для зарядки.

Информация о продуктах, не производимых Apple, или о независимых веб-сайтах, не контролируемых и не тестируемых Apple, предоставляется без рекомендации или одобрения. Apple не несет ответственности за выбор, работу или использование сторонних веб-сайтов или продуктов. Apple не делает никаких заявлений относительно точности или надежности сторонних веб-сайтов.Свяжитесь с продавцом для получения дополнительной информации.

Дата публикации:

Почему некоторые адаптеры переменного тока и блоки питания издают свистящий шум и что с этим делать?

Большинство устройств преобразования энергии содержат катушки, такие как трансформаторы или катушки индуктивности.Эти компоненты используют электромагнетизм для преобразования мощности переменного тока в низковольтную мощность постоянного тока. Переменные магнитные поля, создаваемые этими компонентами, могут вызывать их физическую вибрацию с высокой частотой, что приводит к высокому шуму.

Большинство современных адаптеров переменного тока являются импульсными источниками питания. Внутренняя частота переключения SMPS обычно низка при разгрузке и увеличивается с нагрузкой до определенного момента в зависимости от конструкции. Частота без нагрузки часто достаточно низка, чтобы быть в пределах диапазона человеческого слуха.Кроме того, в ситуациях с низкой нагрузкой или без нагрузки ШИМ, используемый для регулирования напряжения на каскаде инвертора, будет иметь низкий рабочий цикл, создавая «шипообразный» выходной профиль, который более склонен вызывать вибрацию в катушках, а сам трансформатор будет работать. также имеют тенденцию вибрировать (см. ответ Даниэля Р. Хика ниже для более подробной информации). Вместе они могут привести к слышимому шуму, особенно в более дешевых устройствах, которые не могут подавить этот шум.

Под нагрузкой правильно функционирующий SMPS должен работать на частоте, значительно превышающей диапазон человеческого слуха, обычно 50 кГц или выше (хотя некоторые старые конструкции работают на частоте 33 кГц).Однако такой же шум может возникать под нагрузкой при плохо спроектированном или неисправном источнике питания, поскольку катушки могут вибрировать под действием электрического напряжения на субгармонической частоте.

Катушки, используемые в качестве катушек индуктивности или трансформаторов в других электронных устройствах, в том числе на материнских платах, видеокартах или других компонентах компьютера, также могут вибрировать во время работы. Таким образом, неисправное устройство может издавать слышимый шум катушки во время работы.

Вот почему вы иногда видите странные капли клея на катушках внутри электронных устройств.Клей помогает уменьшить вибрацию и шум, создаваемые катушками при нормальной работе. Для пользователей вполне возможно нанести клей на катушки с помощью клеевого пистолета, чтобы подавить визг катушек, и люди успешно сделали это на своих компьютерных компонентах. Однако, как правило, вы не можете легко сделать это на небольших настенных зарядных устройствах, которые вы упомянули, без риска повреждения зарядного устройства или воздействия потенциально опасного напряжения.

В конечном счете, воющий звук не обязательно является признаком неисправности дешевых настенных зарядных устройств, если они потребляют мало энергии или совсем не потребляют ее.Однако компьютерный блок питания или зарядное устройство для ноутбука, которые издают шум катушки, особенно под нагрузкой, могут быть неисправны, и вы можете рассмотреть возможность их замены.

Дополнительную информацию о шуме катушки можно найти в этой статье Википедии.

.

Добавить комментарий

Ваш адрес email не будет опубликован.