Электронная кнопка без фиксации схема: Электронная кнопка без фиксации схема

Содержание

Включение и выключение устройства кнопкой без фиксации

Нередко при конструировании различных электронных или электрических устройств необходимо управлять большой нагрузкой, либо эти устройства потребляют достаточно большой ток и их нужно как-то включать. В такой ситуации применение выключателей и кнопок становится не совсем нецелесообразным ввиду выгорания их контактов под действием больших токов. Особенно это касается выключателей и кнопок китайского производства. Указанное на них значение тока они не способны долговременно выдерживать. Помимо этого есть еще один недостаток, который выливается в наводки помех на чувствительные части схемы. Так может быть, если выключатель (кнопка) расположен на передней панели корпуса и силовой провод к нему проходит вдоль чувствительных участков схемы.

Для решения подобных проблем можно применить схемное решение, которое позволяет включать и выключать устройство или нагрузку одной слаботочной кнопкой без фиксации.

Схема электрическая принципиальная

Особенностью данной схемы является то, что питается она от сети переменного тока 220В 50Гц, это отличает ее от схемы, представленной в статье «Управление нагрузкой одной кнопкой». Для этого устройства не нужен дополнительный источник питания и это явный плюс.

Данную схему разработал радиолюбитель из Сербии Миле Славкович (Apex Audio).

Сетевое напряжение понижается с помощью гасящего конденсатора C5 и выпрямляется диодным мостом VD5-VD8. Постоянной нагрузкой (как я понимаю) для гасящего конденсатора C5 служит всегда открытый транзистор VT2.

Параметрический стабилизатор R7VD2 обеспечивает питание микросхемы D1 стабильным напряжением +12В. Емкость C3 сглаживает его пульсации.

Обмоткой реле K1 управляет транзистор VT1, который открывается высоким уровнем на выходе триггера (вывод 11). На обмотку подается напряжение +27В, которое обеспечивает стабилитрон VD3.

Диод VD1 защищает элементы схемы от явления самоиндукции в момент обесточивания обмотки реле.

Триггер построен на четырех логических элементах 2И-НЕ, собранных в корпусе микросхемы CD4011. Элементы D1.1 и D1.2 собственно представляют сам триггер, меняющий свое состояние при замыкании ключа S1. Сигнал с триггера через резистор R2 поступает на инвертор D1.4, выход которого через сопротивление R6 управляет базой транзистора VT1. Также с выхода D1.4 сигнал через сопротивление R3 поступает на вход инвертора D1.3, выход которого подключен к светодиоду LED1. Уровень сигнала на светодиоде будет инвертирован относительно сигнала на транзисторе VT1, то есть когда протекает ток через обмотку реле, то светодиод обесточен.

Емкости C1 и C2 уменьшают так называемый «дребезг» кнопки S1.

Компоненты схемы

Все номиналы компонентов устройства включения и выключения кнопкой без фиксации приведены на схеме, но у меня есть некоторые рекомендации.

Так, например резистор R10 я советую установить мощностью не менее 0.5Вт, так как при запуске на нем падает более 4 Вольт (рассеивается 0,48Вт), вернее это то, что успевает измерить цифровой вольтметр. После запуска на нем постоянно падает 2,5 Вольта (рассеивается 0,19Вт). При первом запуске резистор мощностью 0,25 вышел из строя мгновенно, и я установил в параллель два резистора 68Ом 0,25Вт.

Конденсатор C5 пленочный, рассчитанный на 400В и имеет емкость 1мкФ.

Стабилитрон ZF12 был заменен на 1N4742A, а ZY27 на1N4750A.

Транзистор BC550 спокойно меняется на BC547 или BC546 (я поставил BC547).

Транзистор BD241 я заменил на TIP41C. Данный транзистор неплохо нагревается. Для комфорта на него можно установить небольшой теплоотвод, но и без него устройство работает.

Реле на 24В. Я применил TRA3L-24VDC-S-2Z.

В качестве кнопок я применяю кнопки без фиксации типа представленной ниже на фото. Такой тип кнопок имеет минимальный «дребезг».

Внимание! Данное устройство не имеет гальванической развязки с сетью переменного тока ~220В. При включенном в сеть устройстве запрещено прикасаться к его элементам.

Управление низковольтной нагрузкой

По умолчанию, схема рассчитана на включение и выключение устройства, питающегося от сети переменного тока 220В. То есть, к клеммам «220V AC OUT» подключается коммутируемое устройство (лампа, усилитель звуковой частоты, блок питания и т.д.). Для управления любой другой нагрузкой, например низковольтной, необходимо немного подкорректировать печатную плату таким образом, чтобы к контактной группе реле не подходили дорожки с сетевым напряжением (смотри схему ниже).

Печатнаю плату можно скачать обратившись по E-mail: [email protected] (к Юрию).

Схема кнопки без фиксации

Схема управления электромагнитным реле по сущности представляет собой силовой включатель с фиксацией положения. Однако ее схематическое решение позволило применить в управлении устройством обычную кнопку без фиксации. Эта конструкция очень простая и выполнена на реле и одном биполярном n-канальном транзисторе. Работает устройство так .

Блог о электронике

С батарейным питанием все замечательно, кроме того, что оно кончается, а энергию надо тщательно экономить. Хорошо когда устройство состоит из одного микроконтроллера — отправил его в спячку и все. Собственное потребление в спящем режиме у современных МК ничтожное, сравнимое с саморазрядом батареи, так что о заряде можно не беспокоиться. Но вот засада, не одним контроллером живо устройство. Часто могут использоваться разные сторонние периферийные модули которые тоже любят кушать, а еще не желают спать. Прям как дети малые. Приходится всем прописывать успокоительное. О нем и поговорим.

▌Механическая кнопка


Что может быть проще и надежней сухого контакта, разомкнул и спи спокойно, дорогой друг. Вряд ли батарейку раскачает до того, чтобы пробить миллиметровый воздушный зазор. Урания в них для этого не докладывают. Какой нибудь PSW переключатель то что доктор прописал. Нажал-отжал.

Вот только беда, ток он маленький держит. По паспорту 100мА, а если запараллелить группы, то до 500-800мА без особой потери работоспособности, если конечно не клацать каждые пять секунд на реактивную нагрузку (катушки-кондеры). Но девайс может кушать и поболее и что тогда? Приматывать синей изолентой к своему хипстерскому поделию здоровенный тумблер? Нормальный метод, мой дед всю жизнь так делал и прожил до преклонных лет.

▌Кнопка плюс
Но есть способ лучше. Рубильник можно оставить слабеньким, но усилить его полевым транзистором. Например вот так.

Тут переключатель просто берет и поджимает затвор транзистора к земле. И он открывается. А пропускаемый ток у современных транзисторов очень высокий. Так, например, IRLML5203 имея корпус sot23 легко тащит через себя 3А и не потеет. А что-нибудь в DPACK корпусе может и десяток-два ампер рвануть и не вскипеть. Резистор на 100кОм подтягивает затвор к питанию, обеспечивая строго определенный уровень потенциала на нем, что позволяет держать транзистор закрытым и не давать ему открываться от всяких там наводок.

▌Плюс мозги
Можно развить тему управляемого самовыключения, таким вот образом. Т.е. устройство включается кнопкой, которая коротит закрытый транзистор, пуская ток в контроллер, он перехватывает управление и, прижав ногой затвор к земле, шунтирует кнопку. А выключится уже тогда, когда сам захочет. Подтяжка затвора тоже лишней не будет. Но тут надо исходить из схемотехники вывода контроллера, чтобы через нее не было утечки в землю через ногу контроллера. Обычно там стоит такой же полевик и подтяжка до питания через защитные диоды, так что утечки не будет, но мало ли бывает…

Или чуть более сложный вариант. Тут нажатие кнопки пускает ток через диод на питание, контроллер заводится и сам себя включает. После чего диод, подпертый сверху, уже не играет никакой роли, а резистор R2 эту линию прижимает к земле. Давая там 0 на порту если кнопка не нажата. Нажатие кнопки дает 1. Т.е. мы можем эту кнопку после включения использовать как нам угодно. Хоть для выключения, хоть как. Правда при выключении девайс обесточится только на отпускании кнопки. А если будет дребезг, то он может и снова включиться. Контроллер штука быстрая. Поэтому я бы делал алгоритм таким — ждем отпускания, выбираем дребезг и после этого выключаемся. Всего один диод на любой кнопке и нам не нужен спящий режим 🙂 Кстати, в контроллер обычно уже встроен этот диод в каждом порту, но он очень слабенький и его можно ненароком убить если вся ваша нагрузка запитается через него. Поэтому и стоит внешний диод. Резистор R2 тоже можно убрать если нога контроллера умеет делать Pull-down режим.

▌Отключая ненужное
Можно сделать и по другому. Оставить контроллер на «горячей» стороне, погружая его в спячку, а обесточивать только жрущую периферию.

Выделив для нее отдельную шину питания. Но тут надо учесть, что есть такая вещь как паразитное питание. Т.е. если вы отключите питание, например, у передатчика какого, то по шине SPI или чем он там может управляться пойдет питание, поднимется через защитные диоды и периферия оживет. Причем питания может не хватить для его корректной работы из-за потерь на защитных диодах и вы получите кучу глюков. Или же получите превышение тока через порты, как результат выгоревшие порты на контроллере или периферии. Так что сначала выводы данных в Hi-Z или в Low, а потом обесточивайте.

▌Выкидываем лишнее
Что-то мало потребляющее можно запитать прям с порта. Сколько дает одна линия? Десяток миллиампер? А две? Уже двадцать. А три? Параллелим ноги и вперед. Главное дергать их синхронно, лучше за один такт.

Правда тут надо учитывать то, что если нога может отдать 10мА ,то 100 ног не отдадут ампер — домен питания не выдержит. Тут надо справляться в даташите на контроллер и искать сколько он может отдать тока через все выводы суммарно. И от этого плясать. Но до 30мА с порта накормить на раз два.

Главное не забывайте про конденсаторы, точнее про их заряд. В момент заряда кондера он ведет себя как КЗ и если в вашей периферии есть хотя бы пара микрофарад емкостей висящих на питании, то от порта ее питать уже не следует, можно порты пожечь. Не самый красивый метод, но иногда ничего другого не остается.

▌Одна кнопка на все. Без мозгов
Ну и, напоследок, разберу одно красивое и простое решение. Его несколько лет назад набросил мне в комменты uSchema это результат коллективного творчества народа на его форуме.

Одна кнопка и включает и выключает питание.

При включении, конденсатор С1 разряжен. Транзистор Т1 закрыт, Т2 тоже закрыт, более того, резистор R1 дополнительно подтягивает затвор Т1 к питанию, чтобы случайно он не открылся.

Конденсатор С1 разряжен. А значит мы в данный момент времени можем считать его как КЗ. И если мы нажмем кнопку, то пока он заряжается через резистор R1 у нас затвор окажется брошен на землю.

Это будет одно мгновение, но этого хватит, чтобы транзистор Т1 распахнулся и на выходе появилось напряжение. Которое тут же попадет на затвор транзистора Т2, он тоже откроется и уже конкретно так придавит затвор Т1 к земле, фиксируясь в это положение. Через нажатую кнопку у нас С1 зарядится только до напряжения которое образует делитель R1 и R2, но его недостаточно для закрытия Т1.

Отпускаем кнопку. Делитель R1 R2 оказывается отрезан и теперь ничто не мешает конденсатору С1 дозарядиться через R3 до полного напряжения питания. Падение на Т1 ничтожно. Так что там будет входное напряжение.

Схема работает, питание подается. Конденсатор заряжен. Заряженный конденсатор это фактически идеальный источник напряжения с очень малым внутренним сопротивлением.

Жмем кнопку еще раз. Теперь уже заряженный на полную конденсатор С1 вбрасывает все свое напряжение (а оно равно напряжению питания) на затвор Т1. Открытый транзистор Т2 тут вообще не отсвечивает, ведь он отделен от этой точки резистором R2 аж на 10кОм. А почти нулевое внутреннее сопротивление конденсатора на пару с его полным зарядом легко перебивает низкий потенциал на затворе Т1. Там кратковременно получается напряжение питания. Транзистор Т1 закрывается.

Тут же теряет питание и затвор транзистора Т2, он тоже закрывается, отрезая возможность затвору Т1 дотянуться до живительного нуля. С1 тем временем даже не разряжается. Транзистор Т2 закрылся, а R1 действует на заряд конденсатора С1, набивая его до питания. Что только закрывает Т1.

Отпускаем кнопку. Конденсатор оказывается отрезан от R1. Но транзисторы все закрыты и заряд с С1 через R3 усосется в нагрузку. С1 разрядится. Схема готова к повторному включению.

Вот такая простая, но прикольная схема. Вот тут еще полно реализаций похожих схем. На сходном принципе действия.

Рассмотрено 6 принципиальных схем самодельных электронных выключателей и реле времени, выполненных на основе микросхем К561ТМ2 и CD4060, описана их работа и возможности по применению. В настоящее время в радиоэлектронной аппаратуре, в основном, электронные выключатели, либо и электронный и механический.

Электронный выключатель управляется обычно одной кнопкой, — одно нажатие, и аппарат включен, при следующем нажатии -выключен. Реже бывают с двумя кнопками, — одна для включения, вторая для выключения.

Электронный выключатель в радиоэлектронной аппаратуре в подавляющем большинстве случаев входит в состав контроллера управления, управляющего и другими функциями аппарата.

Но, если нужно оборудовать электронным выключателем какое-то устройство, самодельное или у которого не предусмотрен электронный выключатель, это можно по одной из приводимых здесь схем, на основе микросхемы КМОП-логики и мощного полевого ключевого транзистора.

Выключатель управляемый одной кнопкой

Первая схема простого выключателя, управляемого одной кнопкой приведена на рисунке 1. Мощный полевой транзистор VТ1 выполняет функции электронного ключа, а управляет им D-триггер микросхемы К561ТМ2.

Данная схема, как и все последующие, потребляет минимальный ток, измеряемый единицами микроампер, и поэтому, практически не оказывает влияния на расход источника питания.

Рис. 1. Схема простого электронного выключателя, управляемого одной кнопкой.

Для того чтобы в момент подключения источника питания нагрузка не включилась сама здесь имеется цепь C1-R2, которая при подаче питания триггер устанавливает в единичное состояние.

То есть, на его прямом выходе — единица. При этом, напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор остается закрытым, — питание на нагрузку не поступает.

При этом, на инверсном выходе триггера будет напряжение логического нуля. Оно через резистор R3, с небольшой задержкой, поступает на вход «D» триггера.

Теперь, при нажатии кнопки S1 на вход «С» триггера поступает от кнопки импульс и триггер устанавливается в то состояние, которое имеет место на его входе «D», то есть, в данный момент, в логический нуль.

Логический нуль на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ1 возрастает до величины, достаточной для открывания полевого транзистора VТ1. На нагрузку поступает питание.

Теперь на инверсном выходе триггера -единица. Эта единица, с небольшой задержкой, через резистор R3 поступает на вход «D» триггера.

Теперь, при следующем нажатии кнопки S1 на вход «С» триггера поступает от кнопки импульс и триггер устанавливается в то состояние, которое имеет место на его входе «D», то есть, в данный момент, в единицу. Единица на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ1 падает до величины, недостаточной для открывания полевого транзистора VТ1. Нагрузка выключается.

Электронный переключатель двух нагрузок

Но не всегда требуется именно выключатель, бывает что нужен переключатель. На рисунке 2 показана схема электронного переключателя двух нагрузок. Главное отличие от схемы на рис.1 в том, что здесь два мощных полевых транзистора.

Для того чтобы в момент подключения источника питания схема устанавливалась в одно известное положение, то есть, в данном случае, нагрузка 1 выключена, нагрузка 2 включена, здесь имеется цепь C1-R2, которая при подаче питания триггер устанавливает в единичное состояние. То есть, на его прямом выходе — единица, на инверсном — ноль.

При этом, напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор остается закрытым, питание на нагрузку 1 не поступает. А напряжение между истоком и затвором транзистора VТ2 будет достаточным для его открывания, и транзистор откроется, поступит питание на нагрузку 2.

Рис. 2. Схема простого самодельного электронного переключателя двух нагрузок.

При этом, нуль с инверсного выхода триггера через резистор R3, с небольшой задержкой, поступает на вход «D» триггера. Теперь, при нажатии кнопки S1 на вход «С» триггера поступает от кнопки импульс и триггер устанавливается в то состояние, которое имеет место на его входе «D», то есть, в данный момент, в логический нуль.

Логический нуль на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ 1 возрастает до величины, достаточной для открывания полевого транзистора VТ1. На нагрузку 1 поступает питание.

Но транзистор VТ2 при этом закрывается, и нагрузка 2 выключается. Таким образом, при каждом нажатии кнопки S1 происходит переключение нагрузок.

Несколько слов, о назначении цепи C2-R3 в схемах на рис.1 и рис.2. Дело в том, что кнопка -это механические контакты, которые соединяются механически, и здесь практически не возможно обойтись без дребезга контактов. И чем больше износ кнопки, тем сильнее проявляется дребезг её контактов.

Поэтому, как при нажатии кнопки, так и при её отпускании, может формировать не один импульс, а целая серия коротких импульсов. И это может привести к многократному переключению триггера, и в результате, установке его в произвольное состояние. Чтобы такого не происходило здесь есть цепь C2-R3.

Она несколько задерживает приход логического уровня с инверсного выхода триггера на его вход «D». Поэтому, пока длится дребезг контактов, напряжение на входе «D» не меняется, и импульсы дребезга на состояние триггера не влияют.

Выключатель с двумя кнопками

Как уже отмечено выше, электронные выключатели бывают как с одной кнопкой, так и с двумя, — одна для включения, другая для выключения. На рисунке 3 показана схема именно выключателя.

Рис. 3. Схема электронного выключателя нагрузки с двумя кнопками.

Здесь точно так же, мощный полевой транзистор VТ1 выполняет функции электронного ключа, а управляет им триггер микросхемы К561ТМ2. Только работает он не как D-триггер, а как RS-триггер. Для этого его входы «С» и «D» соединены с общим минусом питания (то есть, на них всегда логические нули).

Для того чтобы в момент подключения источника питания нагрузка не включилась сама здесь имеется цепь C1-R2, которая при подаче питания триггер устанавливает в единичное состояние.

То есть, на его прямом выходе — единица. При этом, напряжение между истоком и затвором транзистора VT1 будет слишком мало для его открывания, и транзистор остается закрытым, — питание на нагрузку не поступает.

Для включения нагрузки служит кнопка S1. При её нажатии триггер переключается в положение «R», то есть, на его прямом выходе устанавливается логический ноль.

Логический нуль на затворе VT1 приводит к тому, что напряжение между истоком и затвором VT1 возрастает до величины, достаточной для открывания полевого транзистора VT1.

На нагрузку поступает питание. Для того, чтобы выключить нагрузку нужно нажать кнопку S2. При её нажатии триггер переключается в положение «S», то есть, на его прямом выходе устанавливается логическая единица.

Единица на затворе VT1 приводит к тому, что напряжение между истоком и затвором VT1 падает до величины, недостаточной для открывания полевого транзистора VT1. Нагрузка выключается.

Две кнопки и две нагрузки

Электронный переключатель с двумя кнопками работает логичнее однокнопочного, во всяком случае понятно, что одна кнопка включается одну нагрузку, а другая — другую нагрузку. На рисунке 4 показана схема двухкнопочного электронного переключателя двух нагрузок.

Рис. 4. Схема электронного переключателя с двумя кнопками для двух нагрузок.

Для того чтобы в момент подключения источника питания схема устанавливалась в одно известное положение, то есть, в данном случае, нагрузка 1 выключена, нагрузка 2 включена, здесь имеется цепь C1-R2, которая при подаче питания триггер устанавливает в единичное состояние. То есть, на его прямом выходе — единица, на инверсном — ноль.

При этом, напряжение между истоком и затвором транзистора VT1 будет слишком мало для его открывания, и транзистор остается закрытым, — питание на нагрузку 1 не поступает.

А напряжение между истоком и затвором транзистора VT2 будет достаточным для его открывания, и транзистор откроется, поступит питание на нагрузку 2. Для включения нагрузки 1 служит кнопка 51. При её нажатии триггер переключается в положение «R», то есть, на его прямом выходе устанавливается логический ноль.

Логический нуль на затворе VT1 приводит к тому, что напряжение между истоком и затвором VT1 возрастает до величины, достаточной для открывания полевого транзистора VT1. На нагрузку поступает питание.

При этом, на инверсном выходе триггера присутствует логическая единица. Напряжение между истоком и затвором транзистора VT2 будет слишком мало для его открывания, и транзистор остается закрытым, — питание на нагрузку 2 не поступает.

Для включения нагрузки 2 служит кнопка 52. При её нажатии триггер переключается в положение «S», то есть, на его инверсном выходе устанавливается логический ноль. Логический нуль на затворе VT2 приводит к тому, что напряжение между истоком и затвором VT2 возрастает до величины, достаточной для открывания полевого транзистора VT2.

На нагрузку 2 поступает питание. При этом, на прямом выходе триггера присутствует логическая единица. Напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор остается закрытым, — питание на нагрузку 1 не поступает.

Электронное реле времени

Но понадобиться могут не только выключатели и переключатели, но реле времени. На рисунке 5 показана схема электронного реле времени, которое включает нагрузку при нажатии кнопки S1, а выключает её примерно через 30 секунд.

Рис. 5. Схема электронного реле времени для включения нагрузки при нажатии кнопки и выключения через 30 секунд.

Реле времени запускается кнопкой S1. При её нажатии триггер переключается в положение «R», то есть, на его прямом выходе устанавливается логический ноль.

Логический нуль на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ 1 возрастает до величины, достаточной для открывания полевого транзистора VТ1. На нагрузку поступает питание.

В то же время, логическая единица с инверсного выхода начинает через резистор R2 медленно заряжать конденсатор С1. Время включенного состояния нагрузки истекает тогда, когда конденсатор С1 зарядится до напряжения, которое будет понято микросхемой как логическая единица. Тогда триггер установится в состояние «S».

То есть, на его прямом выходе — единица. При этом, напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор закроется, -питание на нагрузку выключится. Время включенного состояния нагрузки зависит от цепи C1-R2.

Реле времени на 8 часов

Изменением составляющих этой цепи можно изменять это время в широких пределах, но очень большого времени выдержки достигнуть сложно. На рисунке 6 показана схема реле времени на цифровой микросхеме, время включенного состояния нагрузки в котором составляет около 8 часов.

Рис. 6. ЁПринципиальная схема реле времени на цифровой микросхеме, которое включает нагрузку на 8 часов.

Реле времени запускается кнопкой S1. При её нажатии счетчик микросхемы D1 переключается в нулевое состояние, то есть, на всех его выходах устанавливается логический ноль, в том числе и на самом старшем выходе D14. Откуда он поступает на затвор VТ1.

Логический нуль на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ1 возрастает до величины, достаточной для открывания полевого транзистора VТ1. На нагрузку поступает питание.

Далее, счетчик начинает отсчитывать время, считая импульсы, которые вырабатывает его встроенный мультивибратор. Спустя заданное время на выводе 3 устанавливается логическая единица. При этом, напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор закроется, — питание на нагрузку выключится.

В то же время, логическая единица через диод VD3 поступает на вывод 11 D1 и блокирует внутренний мультивибратор микросхемы. Генерация импульсов прекращается. Во всех схемах для подачи питания на нагрузку используются транзисторы IRFR5505. Это ключевой полевой транзистор с допустимым током коллектора 18А и сопротивлением в открытом состоянии 0,1 От.

Открывается транзистор при напряжении на затворе не ниже 4,25V. Поэтому и минимальное напряжение питания в схемах указано 5V, так сказать, чтобы точно хватило. Но, при напряжении питания схемы до 7V и при большом токе нагрузки транзистор все же открывается не полностью.

И сопротивление его канала существенно больше 0,1 Ом, поэтому, при питании ниже 7V ток нагрузки не должен превышать 5А. При питании же более высоким напряжением, ток может быть до 18А. Так же нужно учесть, что при токе нагрузки более 4А транзистору нужен будет радиатор для отвода тепла. Одно из свойств таких транзисторов, -это относительно большая емкость затвора.

И именно этого боятся микросхемы КМОП — относительно большой емкости на выходе. Потому что, хотя статическое сопротивление затвора и стремится к бесконечности, но при изменении напряжения на затворе возникает существенный бросок тока на заряд / разряд его емкости.

В очень редких случаях это повреждает микросхему, гораздо чаще это приводит к сбоям в работе микросхемы, особенно триггеров и счетчиков. Чтобы этих сбоев не происходило между выходами микросхем и затворами транзисторов в этих схемах включены токоограничивающие резисторы, например, R4 в схеме на рис.1. Плюс два диода, ускоряющих заряд / разряд емкости затвора.

Литовкин С. Н. РК-08-17.

Литература: И. Нечаев. — Электронный выключатель. Р-02-2004.

Схема выключателя света без фиксации » Паятель.Ру


Первая схема выключателя освещения предназначена в первую очередь для подсобных помещений. Может работать в двух режимах — в обычном и с самовозвратом. В обычном режиме при каждом нажатии на кнопку выключатель меняет состояние на противоположное. С самого начала (после подачи питания) выключатель будет выключен. Теперь если нажать кнопку он включит осветительную лампу, а при повторном нажатии — выключит.


В режиме с самовозвратом, выключатель работает почти так же, как в обычном режиме, но если его не выключить через две-три минуты он выключится сам. Этот режим для таких помещений, в которых мы находимся непродолжительное время и часто забываем выключить свет.

Принципиальная схема показана на рис.1. Включение и выключение — кнопкой S1 (она без фиксации). Переключатель S2 (он с фиксацией положения) — для выбора режима «0» — обычный, «В» — с самовозвратом).

Когда S2 находится в «0», в момент подачи питания (подключения к сети) цепь C2-R3 создает импульс, устанавливающий триггер D1.2 в нулевое положение. При этом ключ VT1-VS1 выключает лампу h2. Данная цепь нужна для того, чтобы после перерыва в электроснабжении выключатель обязательно установился в выключенное положение, независимо от того, в каком положении он был до прерывания электроснабжения.

Схема на триггере D1.1 нужна только для предотвращения влияния дребезга контактов кнопки S1 на состояние триггера D1.2. В исходном состоянии (когда S1 не нажата) на выходе D1.1 — логический ноль. При нажатии и отпускании этой кнопки на выходе D1.1 появляется единица на время нахождения кнопки S1 в нажатом состоянии.

Так, после каждого нажатия и отпускания S1 на выходе D1.1 получается один полный импульс, который поступает на вход С триггера D1.2, включенного делителем надвое. Каждый импульс пишет в него уровень, который у него до прихода импульса был на инверсном выходе. То есть, каждый полный импульс меняет состояние триггера D1.2 на обратное. Соответственно этому состоянию ключ VT1-VS1 либо включает лампу Н1, либо её выключает.

Когда переключатель S2 в положении «В» работа схемы отличается тем, что после того как триггер D1.2 устанавливается в состояние единицы на прямом выходе (свет включен), начинается зарядка С1 через R4, которая длится около 2-3 минут. Как только напряжение на С1 достигает уровня логической единицы, триггер автоматически возвращается в нулевое состояние (свет выключен), так как напряжение с С1 через S2 проходит на его вход R.

Питается «логика» от бестрансформаторного источника стабильного напряжения 11,5V, собранного на VD3, VD2, R6 и С3, а так же, выпрямительного моста VD1, от которого питается и осветительная лампа.

Конденсатор С1 составлен из двух конденсаторов по 2,2м каждый, они обязательно должны быть не электролитическими. В противном случае ток утечки сделает работу в режиме самовозврата невозможной.

При налаживании может потребоваться подбор сопротивления R4, так, чтобы само-возврат срабатывал уверенно и через нужное время. S2 должен быть подключен наикратчайшими проводами.

Рис.2
При работе тиристора без радиатора, и выпрямителе КЦ405А, мощность лампы не должна быть больше 150W. Вторая схема (рисунок 2) отличается тем, что в ней нет такого обычного режима, как в первой схеме, в время, которое проходит до самовозврата (до автоматического выключения) можно установить семью ступенями от 3,25 до 240 минут.

Особенность схемы еще и в том, что управляется она обычным сетевым выключателем, которым её можно выключить в любой момент. Работает выключатель так: свет можно как обычно выключать и включать сетевым выключателем (даже не подозревая о том, что есть эта схема), но если свет будет оставаться включенным более заданного времени, схема его выключит автоматически.

Включение зажигания автомобиля одной кнопкой (К561ТМ2, К561ЛА7)

Принципиальная схема автоматического включения зажигания в автомобиле, управляемая одной кнопкой. Сейчас практически все автомобили оборудованы охранными сигнализациями, как сигнализирующими о покушении на автомобиль, так и блокирующими пуск двигателя, а так же, запирающие и опирающие двери, багажник. В этих условиях замок зажигания кажется анахронизмом. Не удивительно, что во многих современных автомобилях его уже нет, — вместо него кнопка пуска.

Любой желающий может избавиться от замка зажигания, заменив его кнопкой пуска. Это можно сделать двумя способами. Самый простой — электротехнический. Убираем замок зажигания и ставим две кнопки. Она с фиксацией нажатого состояния, другая без фиксации.

Затем подключаем к ним два реле. Кнопка с фиксацией будет включать зажигание, кнопка без фиксации — стартер. Но, в таком случае, как видите, две кнопки.

А не одна. Чтобы кнопка была одна нужна либо специальная кнопка, с особым механизмом, различающим глубину нажатия, либо нужно сделать электронную схему.

Так как приобрести специальную кнопку не представилось никакой возможности, было решено сделать электронную. Здесь приводится описание схемы электронной кнопки пуска легкового автомобиля «ВАЗ-21043» производства «ИЖМАШ». Но, считаю, что аналогичную схему можно применить и к любому другому автомобилю.

Штатный замок зажигания имеет три положения. В первом включается вентилятор печки, во втором зажигание и все остальное, в третьем — стартер. Считаю, что первые два положения можно смело объединить в одно.

Таким образом, кнопка должна работать на две цепи, — зажигание, плюс все остальное (включая и вентилятор печки), и стартер.

Алгоритм работы кнопки следующий. Чтобы завести двигатель нужно нажать кнопку и удерживать её нажатой пока не включится стартер и не заработает двигатель. Затем кнопку отпустить. Чтобы выключить двигатель нужно коротко нажать кнопку. При этом зажигание выключается.

Чтобы только включить зажигание без пуска двигателя нужно, когда зажигание выключено, коротко нажать кнопку. В общем, все довольно просто и понятно. Хотим пустить двигатель, — нажимаем кнопку продолжительно и ждем пока двигатель заработает, затем, сразу как двигатель заработает, кнопку отпускаем. Хотим выключить двигатель, — нажимаем на кнопку коротко.

Принципиальная схема

Схема показана на рисунке 1. Орган управления — кнопка S1. На триггере D1.1 сделана схема подавления дребезга контактов кнопки. Когда кнопка не нажата она находится в показанном на схеме положении.

Рис. 1. Принципиальная схема системы зажигания автомобиля, управляемой однйо кнопкой.

При этом триггер D1.1 находится в нулевом состоянии, — на его выводе 1 — ноль, а на выводе 2 -единица.

Триггер D1.2 в момент подачи питания на схему цепью C2-R3 устанавливается в нулевое состояние. Для включения зажигания используется реле К1. Пока триггер D1.2 в нулевом положении ток на обмотку реле не подается, и зажигание выключено.

Для включения стартера используется реле К2. Пока кнопка S1 не нажата на выходе элемента D2.4 — ноль, и стартер не включен. При нажатии S1 уровни на выходе триггера D1.1 меняются на противоположные. Единица с вывода 1 поступает на вход «С» триггера D1.2 и он переключается.

Теперь на выводе 12 D1.2 единица, и транзистор VT1 открыт, а реле К1 включает зажигание. Если кнопку удерживаем нажатой, ноль с вывода 2 D1.1 поступает на входы инверторов D2.1 и D2.2. На их выходах — единица. Конденсатор С4 начинает заряжаться через R8.

И примерно через две секунды на нем напряжение достигает логической единицы. Теперь единицы на двух входах D2.3, и на его выходе — ноль, а на выходе D2.4 -единица. Транзистор VT2 открывается и реле К2 включает стартер.

Как только двигатель начинает работать, отпускаем S1. Ноль на выводе 8 D2.3 выключает стартер, а зажигание остается включенным. Чтобы выключить двигатель нужно коротко нажать S1.

При этом триггер D1.2 вернется в исходное положение, и зажигание будет выключено. А конденсатор С4 не успеет зарядиться во время короткого нажатия S1, поэтому стартер включаться не будет.

Детали и монтаж

Монтаж выполнялся на макетной печатной плате, поэтому разводка не прорабатывалась. Реле К1 и К2 стандартные «жигулевские» 90.3747.

Время, через которое включается стартер при нажатии и удержании кнопки можно изменить как угодно подбором номиналов цепи R8-C4. Кнопка S1 — без фиксации в нажатом состоянии. Все конденсаторы должны быть на напряжение не ниже напряжения питания.

Никишин В. Я. РК-2017-03.

Схема простого триггера на одном реле, схема включения и выключения одной кнопкой.

Вашему вниманию очень простая электрическая схема триггера на одном реле. Для тех, кто не знает, что это такое, поясню. Допустим имеется задача организовать схему, которая бы замыкала контакты, управляющие той или иной нагрузкой, с помощью всего одной кнопки (без фиксации). То есть, один раз нажали на кнопку – реле сработало и включилось, второй раз нажали на кнопку – реле выключилось, перейдя в исходное состояние. Ну, а примером применения такого электрического переключателя на реле может быть вариант проходного выключателя. Это когда включение и выключения освещения можно осуществлять из различных мест, где установлены кнопки схемы. Количество кнопок вкл/выкл может быть различным, и все они подключаются параллельно друг другу. Думаю смысл этого понятен.

Теперь давайте разберем как именно работает данная схема, состоящая всего из нескольких элементов. Сразу можно увидеть, что схему можно разделить на две части по вертикали. Неким мостом этих частей выступают электрические переключатели (не фиксируемая кнопка S1 и одна рабочая группа контактов самого реле K1). Итак, на схему подано напряжение питания (используется постоянный ток). В начальный момент с реле ничего не происходит, а вот поданное на схему питание идет на зарядку конденсатора C1. Причем, скорость процесса заряда ограничивается резистором R1.

Конденсатор заряжается достаточно быстро. После чего с этой схеме никаких токов не протекает, данный триггер на реле находится в состоянии покоя и ожидания. Далее когда мы нажмем на кнопку S1, то накопленный конденсатором электрический заряд через эту кнопку пойдет на катушку реле, что спровоцирует кратковременное срабатывание этого реле. При этом рабочая группа контактов K1 данного реле переключится. То есть, плюс питания уже присоединиться к резистору R3, что обеспечивает постоянное питание катушки реле от источника питания этой схемы. Реле перешло в режим самозахвата (поддерживает внешним питанием само себя).

В результате мы одним нажатием на кнопку перевели реле из нерабочего состояния в рабочее. Другие группы контактов реле (которые не указаны на этой схеме, но имеются на самом реле) могут быть подключены к различным внешним устройствам, тем самым управляя ими. Если эта схема триггера на реле стоит в проходном выключателе, то начнет гореть свет в определенном помещении, коридоре и т.д.

Поскольку плюс питания переключен на катушку реле, то в это время процесс заряда конденсатора отсутствует, а тот, который был до этого был израсходован на старт включения катушки реле. А то остаточное количество электрического заряда, что могло остаться на конденсаторе быстро разрядится через параллельно стоящий резистор R2. Итак, как известно разряженный конденсатор имеет практически нулевое сопротивление. Как только мы второй раз нажмем на кнопку S1, то получится что этот конденсатор на короткое время закоротит катушку реле. Это равносильно, что мы на короткий промежуток времени поставим перемычку на эту обмотку реле.

Естественно, это приведет к тому, что реле кратковременно отключится и вернет свои рабочие контакты K1 в исходное состояние. В итоге плюс питания обратно начнет заряжать конденсатор, а катушка реле останется без запитки. Схема триггера на одном реле снова поменяет свое  состояние из рабочего в нерабочее. Наша схема проходного выключателя, что взята для примера, отключит освещение в помещении. И эта схема обратно готова к новому циклу включения-выключения.

А зачем нужны резисторы R1 и R3? Стоящие последовательно конденсатору и катушке реле. Ведь они только ограничивают силу тока. Дело в том, что если не будет резистора R1 на конденсаторе, то при подаче напряжения питания для его зарядки в начальный момент возникнет некоторая просадка напряжение в самой питающей цепи. Поскольку, как я ранее упомянул, в разряженном состоянии конденсатор имеет практически нулевое сопротивление. Именно это кратковременное падение напряжения в цепи питания схемы может отрицательно влиять на стабильность работы триггера, что приведет к нестабильным срабатывания данной схемы.

Если же будет отсутствовать резистор R3, стоящий последовательно катушке реле триггера (плюс будет сразу подаваться на катушку реле), то при попытке отключить питание от катушки реле, путем ее замыкания разряженным конденсатором, значительная сила тока питания не даст это сделать. Энергия питания окажется достаточной и для осуществления питания катушки и процесса заряда конденсатора. В итоге при нажатии на кнопку для отключения схемы ничего не произойдет, схема триггера на реле не отключится. Именно резистор R3 делает определенное ограничение по току питания и делает схему работоспособной.

Видео по данной теме:

P.S. К сожалению данная схема триггера на одном реле имеет ряд значительных недостатков. У нее плохая стабильность к работе, к различным реле нужно будет подбирать свои номиналы резисторов и конденсатора, малая скорость перехода из одного состояния в другое и т.д. На этой простой схеме легко можно понять сам принцип работы подобный триггеров. Более же лучший вариант, где уже отсутствуют эти недостатки, вы можете найти на следующей странице. Эти недостатки устранены путем дополнения в эту схему нескольких полупроводниковых компонентов, про которые вы также узнаете в следующей статье.

Схемы электронных виключателей питания для схем на микроконтроллерах. Электронный выключатель. Схема, описание

Кнопка или выключатель — обязательная часть едва ли не любой конструкции. В зависимости от требований, к ним предъявляемых, различаются обычные кнопки (без фиксации), а также кнопки с зависимой и независимой фиксацией. Соответственно их назначению отличаются и конструкции кнопок, причем весьма значительно.

Между тем, все разнообразие кнопок можно реализовать, используя одну единственную конструкцию кнопки — кнопку без фиксации с одной замыкающей контактной группой. Достоинства такой конструкции кнопки — простота (например, мембранная или «резиновая» кнопка), намного более широкая номенклатура кнопок, малые габариты и низкая стоимость. При наличии в конструкции микроконтроллера, задача создания кнопки с заданными свойствами решается программным путем. Если же использование в конструкции микроконтроллера невозможно или нецелесообразно, то разные виды кнопок можно изготовить следующим образом.

Кнопка «вкл/откл» (кнопка с независимой фиксацией)

Схема кнопки с независимой фиксацией приведена на рис. 1. Основой ее является микросхема таймера КР1006ВИ1. На вывод 4 микросхемы подключена цепь сброса С2, R4, VD1, устанавливающая начальное состояние кнопки в лог.0 (вывод 3). Входы компараторов таймера (выводы 2 и 6) соединены вместе и подключены к делителю напряжения R2, R3, устанавливающему на входе компараторов напряжение, равное половине напряжения питания. Выходным сигналом таймера через резистор R1 заряжается конденсатор С1.

При нажатии на кнопку SA конденсатор подключается к точке соединения делителя напряжения и компараторов, в результате чего на входах компараторов возникает кратковременный всплеск напряжения, вызывающий срабатывание одного из компараторов таймера. Выходной сигнал таймера изменяется на противоположный. Соотношение резисторов R1, R2 и R3 подобрано таким образом, что новое состояние таймера также оказывается устойчивым: генерация на выходе не возникает. При отпускании кнопки конденсатор С1 вновь заряжается выходным сигналом таймера-теперь уже другого логического уровня. При повторном нажатии на кнопку описанные процессы повторяются.

Достоинством схемы, помимо использования кнопки с замыкающей контактной группой, являются небольшие габариты «кнопки» (корпус таймера — DIP8). Высокая нагрузочная способность таймера (выходной ток до 200 мА) позволяет не только передавать сигнал включения на другие микросхемы, но и непосредственно питать от него достаточно мощные нагрузки (например, лампочку, обмотку реле или даже всю конструкцию в целом).

Кнопка с автоповтором

Такая кнопка при ее нажатии и удержании достаточно длительное время начинает автоматическое повторение «нажатий» -такая кнопка бывает удобной, например, для изменения уровня громкости усилителя. Схема кнопки приведена на рис. 2. Основой ее также является таймер КР1006ВИ1. Цепь сброса таймера через резистор R2 и блокировочный конденсатор С2 соединена с общим проводом конструкции, удерживая таким образом сигнал лог.0 на выходе таймера (вывод 3). При нажатии на кнопку сигнал сброса с таймера снимается, на выходе таймера появляется сигнал лог.1 и таймер переходит в штатный режим генерации импульсов.

При отпускании кнопки на выводе 4 вновь появляется сигнал сброса, и устройство возвращается в исходное состояние. Эта схема также отличается небольшими габаритами и высокой нагрузочной способностью. В силу особенностей работы таймера первый импульс от кнопки является удлиненным, что очень удобно при ее использовании. Соотношение длительности первого и последующих импульсов можно в некоторых пределах менять подключением резистора между выводом 5 таймера и общим проводом (либо проводом питания).

Кнопки с зависимой фиксацией

Схема кнопок с зависимой фиксацией приведена на рис. 3. Таймер DA1 в этой схеме используется в типовом включении в качестве генератора тактовых импульсов, и может быть заменен любым другим источником импульсов (например, однопереходным транзистором или мультивибратором). Основой схемы является счетчик с дешифратором DD1 типа К176ИЕ8 (можно вместо него применить К561ИЕ9), включенный нестандартным способом — тактовые импульсы подаются на вход разрешения V счетчика, а счетный вход С подключен через резистор R3 к источнику питания, при этом счет импульсов счет-чика заблокирован и он находится в неизменном состоянии.

На вход сброса счетчика подсоединена цепочка R2, С2, VD1. При включении на выходе 0 счетчика будет установлен сигнал лог.1, на остальных — лог.0. При нажатии на одну из кнопок на вход С счетчика будет подан (с подсоединенной через кнопку линии) сигнал лог.0.

В настоящее время в радиоэлектронной аппаратуре часто применяют электронные выключатели, в которых одной кнопкой можно осуществлять как ее включение, так и выключение. Сделать такой выключатель мощным, экономичным и малогабаритным можно, если применить полевой переключательный транзистор и цифровую КМОП микросхему.

Схема простого выключателя приведена на рис. 1. Транзистор VT1 выполняет функции электронного ключа, а триггер DD1 им управляет. Устройство постоянно подключено к источнику питания и потребляет небольшой ток — единицы или десятки микроампер.

Если на прямом выходе триггера высокий логический уровень, то транзистор закрыт, нагрузка обесточена. При замыкании контактов кнопки SB1 триггер переключится в противоположное состояние, на его выходе появится низкий логический уровень. Транзистор VT1 откроется, и напряжение поступит на нагрузку. В таком состоянии устройство будет находиться до тех пор, пока снова не окажутся замкнутыми контакты кнопки. Тогда транзистор закроется, нагрузка обесточится.

Указанный на схеме транзистор имеет сопротивление канала 0,11 Ом, а максимальный ток стока может достигать 18 А. Следует учитывать, что напряжение затвор-сток, при котором транзистор открывается, составляет 4…4,5 В. При напряжении питания 5…7 В ток нагрузки не должен превышать 5 А, в противном случае падение напряжения на транзисторе может превысить 1 В. Если напряжение питания больше, ток нагрузки может достигать 10… 12 А.

Когда ток нагрузки не превышает 4 А, транзистор можно использовать без теплоотвода. Если ток больше, необходим теплоотвод, либо следует применить транзистор с меньшим сопротивлением канала. Подобрать его нетрудно по справойной таблице, приведенной в статье «Мощные переключательные транзисторы фирмы International Rektifier» в «Радио», 2001, №5, с. 45.

На такой выключатель можно возложить и другие функции, например, автоматическое отключение нагрузки при снижении или превышении питающим напряжением заранее установленного значения. В первом случае это может понадобиться при питании аппаратуры от аккумуляторной батареи, чтобы не допустить ее чрезмерного разряда, во втором — для защиты аппаратуры от завышенного напряжения.

Схема электронного выключателя с функцией отключения при снижении напряжения приведена на рис. 2. В него дополнительно введены транзистор VT2,стабилитрон,конденсатор и резисторы, один из которых — подстроенный (R4).


При нажатии на кнопку SB 1 полевой транзистор VT1 открывается, напряжение поступает на нагрузку. Из-за зарядки конденсатора С1 напряжение на коллекторе транзистора в начальный момент не превысит 0,7 В, т.е. будет иметь низкий логический уровень. Если напряжение на нагрузке станет больше установленного подстроечным резистором значения, на базу транзистора поступит напряжение, достаточное для его открывания. В этом случае на входе «S» триггера останется низкий логический уровень, а кнопкой можно включать и выключать питание нагрузки.

Как только напряжение снизится ниже установленного значения, напряжение на движке подстроечного резистора станет недостаточным для открывания транзистора VT2 — он закроется. При этом на коллекторе транзистора напряжение увеличится до высокого логического уровня, который поступит на вход «S» триггера. На выходе триггера появится также высокий уровень, что приведет к закрыванию полевого транзистора. Нагрузка обесточится. Нажатия на кнопку в этом случае приведут только к кратковременному подключению нагрузки и последующему ее отключению.

Для введения защиты от превышения питающего напряжения автомат следует дополнить транзистором VT3, стабилитроном VD2 и резисторами R5, R6. В этом случае устройство работает аналогично описанному выше, но при увеличении напряжения выше определенного значения транзистор VT3 откроется, что приведет к закрыванию VT2, появлению высокого уровня на входе «S» триггера и закрыванию полевого транзистора VT1.

Кроме указанных на схеме, в устройстве можно применить микросхему К561ТМ2, биполярные транзисторы КТ342А-КТ342В, КТ3102А-КТ3102Е, стабилитрон КС156Г. Постоянные резисторы — МЛТ, С2-33, Р1-4, подстроенные — СПЗ-3, СПЗ-19, конденсатор — К10 17, кнопка — любая малогабаритная с самовозвратом.


При использовании деталей для поверхностного монтажа (микросхема CD4013, биполярные транзисторы КТ3130А-9 — КТ3130Г-9, стабилитрон BZX84C4V7, постоянные резисторы P1-I2, конденсатор К10-17в) их можно разместить на печатной плате (рис. 3) из односторонне фольгированного стеклотекстолита размерами 20×20 мм. Внешний вид смонтированной платы показан на рис. 4.

Казалось бы, чего проще, включил питание и прибор, содержащий МК, заработал. Однако на практике бывают случаи, когда обычный механический тумблер для этих целей не годится. Показательные примеры:

  • микропереключатель хорошо вписывается в конструкцию, но он рассчитан на низкий ток коммутации, а устройство потребляет на порядок больше;
  • необходимо осуществить дистанционное включение/выключение питания сигналом логического уровня;
  • тумблер питания сделан в виде сенсорной (квазисенсорной) кнопки;
  • требуется осуществить «триггерное» включение/выключение питания повторным нажатием одной и той же кнопки.

Для таких целей нужны специальные схемные решения, основанные на применении электронных транзисторных ключей (Рис. 6.23, а…м).

Рис. 6.23. Схемы электронного включения питания (начало):

а) SI — это выключатель «с секретом», применяемый для ограничения несанкционированного доступа к компьютеру. Маломощный тумблер открывает/закрывает полевой транзистор VT1, который подаёт питание на устройство, содержащее МК. При входном напряжении выше +5.25 В требуется поставить перед М К дополнительный стабилизатор;

б) включение/выключение питания +4.9 В цифровым сигналом ВКЛ-ВЫКЛ через логический элемент DDI и коммутирующий транзистор VT1

в) маломощная «квазисенсорная» кнопка SB1 триггерно включает/выключает питание +3 В через микросхему DDL Конденсатор C1 снижает «дребезг» контактов. Светодиод HL1 индицирует протекание тока через ключевой транзистор VTL Достоинство схемы — очень низкое собственное потребление тока в выключенном состоянии;


Рис. 6.23. Схемы электронного включения питания (продолжение):

г) подача напряжения +4.8 В маломощной кнопкой SBI (без самовозврата). Источник входного питания +5 В должен иметь защиту по току, чтобы не вышел из строя транзистор VTI при коротком замыкании в нагрузке;

д) включение напряжения +4.6 В по внешнему сигналу £/вх. Предусмотрена гальваническая развязка на оптопаре VU1. Сопротивление резистора RI зависит от амплитуды £/вх;

е) кнопки SBI, SB2 должны быть с самовозвратом, их нажимают по очереди. Начальный ток, проходящий через контакты кнопки SB2, равен полному току нагрузки в цепи +5 В;

ж) схема Л. Койла. Транзистор VTI автоматически открывается в момент соединения вилки ХР1 с розеткой XS1 (за счёт последовательно включённых резисторов R1, R3). Одновременно в основное устройство подаётся звуковой сигнал от аудиоусилителя через элементы С2, R4. Резистор RI допускается не устанавливать при низком активном сопротивлении канала «Audio»;

з) аналогично Рис. 6.23, в, но с ключом на полевом транзисторе VT1. Это позволяет снизить собственное потребление тока как в выключенном, так и во включённом состоянии;


Рис. 6.23. Схемы электронного включения питания (окончание):

и) схема активизации МК на строго фиксированный промежуток времени. При замыкании контактов переключателя S1 конденсатор С5 начинает заряжаться через резистор R2, транзистор VTI открывается, МК включается. Как только напряжение на затворе транзистора VT1 уменьшится до порога отсечки, МК выключается. Для повторного включения надо разомкнуть контакты 57, выдержать небольшую паузу (зависит от R, С5) и затем снова их замкнуть;

к) гальванически изолированное включение/выключение питания +4.9 В при помощи сигналов с СОМ-порта компьютера. Резистор R3 поддерживает закрытое состояние транзистора VT1 при «выключенной» оптопаре VUI;

л) удалённое включение/выключение интегрального стабилизатора напряжения DA 1 (фирма Maxim Integrated Products) через СОМ-порт компьютера. Питание +9 В может быть снижено вплоть до +5.5 В, но при этом надо увеличить сопротивление резистора R2, чтобы напряжение на выводе 1 микросхемы DA I стало больше, чем на выводе 4;

м) стабилизатор напряжения DA1 (фирма Micrel) имеет вход включения питания EN, который управляется ВЫСОКИМ логическим уровнем. Резистор RI нужен, чтобы вывод 1 микросхемы DAI «не висел в воздухе», например, при Z-состоянии КМОП-микросхемы или при расстыковке разъёма.

Электронная кнопка включения выключения

Блог о электронике

С батарейным питанием все замечательно, кроме того, что оно кончается, а энергию надо тщательно экономить. Хорошо когда устройство состоит из одного микроконтроллера — отправил его в спячку и все. Собственное потребление в спящем режиме у современных МК ничтожное, сравнимое с саморазрядом батареи, так что о заряде можно не беспокоиться. Но вот засада, не одним контроллером живо устройство. Часто могут использоваться разные сторонние периферийные модули которые тоже любят кушать, а еще не желают спать. Прям как дети малые. Приходится всем прописывать успокоительное. О нем и поговорим.

▌Механическая кнопка
Что может быть проще и надежней сухого контакта, разомкнул и спи спокойно, дорогой друг. Вряд ли батарейку раскачает до того, чтобы пробить миллиметровый воздушный зазор. Урания в них для этого не докладывают. Какой нибудь PSW переключатель то что доктор прописал. Нажал-отжал.

Вот только беда, ток он маленький держит. По паспорту 100мА, а если запараллелить группы, то до 500-800мА без особой потери работоспособности, если конечно не клацать каждые пять секунд на реактивную нагрузку (катушки-кондеры). Но девайс может кушать и поболее и что тогда? Приматывать синей изолентой к своему хипстерскому поделию здоровенный тумблер? Нормальный метод, мой дед всю жизнь так делал и прожил до преклонных лет.

▌Кнопка плюс
Но есть способ лучше. Рубильник можно оставить слабеньким, но усилить его полевым транзистором. Например вот так.

Тут переключатель просто берет и поджимает затвор транзистора к земле. И он открывается. А пропускаемый ток у современных транзисторов очень высокий. Так, например, IRLML5203 имея корпус sot23 легко тащит через себя 3А и не потеет. А что-нибудь в DPACK корпусе может и десяток-два ампер рвануть и не вскипеть. Резистор на 100кОм подтягивает затвор к питанию, обеспечивая строго определенный уровень потенциала на нем, что позволяет держать транзистор закрытым и не давать ему открываться от всяких там наводок.

▌Плюс мозги
Можно развить тему управляемого самовыключения, таким вот образом. Т.е. устройство включается кнопкой, которая коротит закрытый транзистор, пуская ток в контроллер, он перехватывает управление и, прижав ногой затвор к земле, шунтирует кнопку. А выключится уже тогда, когда сам захочет. Подтяжка затвора тоже лишней не будет. Но тут надо исходить из схемотехники вывода контроллера, чтобы через нее не было утечки в землю через ногу контроллера. Обычно там стоит такой же полевик и подтяжка до питания через защитные диоды, так что утечки не будет, но мало ли бывает…

Или чуть более сложный вариант. Тут нажатие кнопки пускает ток через диод на питание, контроллер заводится и сам себя включает. После чего диод, подпертый сверху, уже не играет никакой роли, а резистор R2 эту линию прижимает к земле. Давая там 0 на порту если кнопка не нажата. Нажатие кнопки дает 1. Т.е. мы можем эту кнопку после включения использовать как нам угодно. Хоть для выключения, хоть как. Правда при выключении девайс обесточится только на отпускании кнопки. А если будет дребезг, то он может и снова включиться. Контроллер штука быстрая. Поэтому я бы делал алгоритм таким — ждем отпускания, выбираем дребезг и после этого выключаемся. Всего один диод на любой кнопке и нам не нужен спящий режим 🙂 Кстати, в контроллер обычно уже встроен этот диод в каждом порту, но он очень слабенький и его можно ненароком убить если вся ваша нагрузка запитается через него. Поэтому и стоит внешний диод. Резистор R2 тоже можно убрать если нога контроллера умеет делать Pull-down режим.

▌Отключая ненужное
Можно сделать и по другому. Оставить контроллер на «горячей» стороне, погружая его в спячку, а обесточивать только жрущую периферию.

Выделив для нее отдельную шину питания. Но тут надо учесть, что есть такая вещь как паразитное питание. Т.е. если вы отключите питание, например, у передатчика какого, то по шине SPI или чем он там может управляться пойдет питание, поднимется через защитные диоды и периферия оживет. Причем питания может не хватить для его корректной работы из-за потерь на защитных диодах и вы получите кучу глюков. Или же получите превышение тока через порты, как результат выгоревшие порты на контроллере или периферии. Так что сначала выводы данных в Hi-Z или в Low, а потом обесточивайте.

▌Выкидываем лишнее
Что-то мало потребляющее можно запитать прям с порта. Сколько дает одна линия? Десяток миллиампер? А две? Уже двадцать. А три? Параллелим ноги и вперед. Главное дергать их синхронно, лучше за один такт.

Правда тут надо учитывать то, что если нога может отдать 10мА ,то 100 ног не отдадут ампер — домен питания не выдержит. Тут надо справляться в даташите на контроллер и искать сколько он может отдать тока через все выводы суммарно. И от этого плясать. Но до 30мА с порта накормить на раз два.

Главное не забывайте про конденсаторы, точнее про их заряд. В момент заряда кондера он ведет себя как КЗ и если в вашей периферии есть хотя бы пара микрофарад емкостей висящих на питании, то от порта ее питать уже не следует, можно порты пожечь. Не самый красивый метод, но иногда ничего другого не остается.

▌Одна кнопка на все. Без мозгов
Ну и, напоследок, разберу одно красивое и простое решение. Его несколько лет назад набросил мне в комменты uSchema это результат коллективного творчества народа на его форуме.

Одна кнопка и включает и выключает питание.

При включении, конденсатор С1 разряжен. Транзистор Т1 закрыт, Т2 тоже закрыт, более того, резистор R1 дополнительно подтягивает затвор Т1 к питанию, чтобы случайно он не открылся.

Конденсатор С1 разряжен. А значит мы в данный момент времени можем считать его как КЗ. И если мы нажмем кнопку, то пока он заряжается через резистор R1 у нас затвор окажется брошен на землю.

Это будет одно мгновение, но этого хватит, чтобы транзистор Т1 распахнулся и на выходе появилось напряжение. Которое тут же попадет на затвор транзистора Т2, он тоже откроется и уже конкретно так придавит затвор Т1 к земле, фиксируясь в это положение. Через нажатую кнопку у нас С1 зарядится только до напряжения которое образует делитель R1 и R2, но его недостаточно для закрытия Т1.

Отпускаем кнопку. Делитель R1 R2 оказывается отрезан и теперь ничто не мешает конденсатору С1 дозарядиться через R3 до полного напряжения питания. Падение на Т1 ничтожно. Так что там будет входное напряжение.

Схема работает, питание подается. Конденсатор заряжен. Заряженный конденсатор это фактически идеальный источник напряжения с очень малым внутренним сопротивлением.

Жмем кнопку еще раз. Теперь уже заряженный на полную конденсатор С1 вбрасывает все свое напряжение (а оно равно напряжению питания) на затвор Т1. Открытый транзистор Т2 тут вообще не отсвечивает, ведь он отделен от этой точки резистором R2 аж на 10кОм. А почти нулевое внутреннее сопротивление конденсатора на пару с его полным зарядом легко перебивает низкий потенциал на затворе Т1. Там кратковременно получается напряжение питания. Транзистор Т1 закрывается.

Тут же теряет питание и затвор транзистора Т2, он тоже закрывается, отрезая возможность затвору Т1 дотянуться до живительного нуля. С1 тем временем даже не разряжается. Транзистор Т2 закрылся, а R1 действует на заряд конденсатора С1, набивая его до питания. Что только закрывает Т1.

Отпускаем кнопку. Конденсатор оказывается отрезан от R1. Но транзисторы все закрыты и заряд с С1 через R3 усосется в нагрузку. С1 разрядится. Схема готова к повторному включению.

Вот такая простая, но прикольная схема. Вот тут еще полно реализаций похожих схем. На сходном принципе действия.

Блог о электронике

С батарейным питанием все замечательно, кроме того, что оно кончается, а энергию надо тщательно экономить. Хорошо когда устройство состоит из одного микроконтроллера — отправил его в спячку и все. Собственное потребление в спящем режиме у современных МК ничтожное, сравнимое с саморазрядом батареи, так что о заряде можно не беспокоиться. Но вот засада, не одним контроллером живо устройство. Часто могут использоваться разные сторонние периферийные модули которые тоже любят кушать, а еще не желают спать. Прям как дети малые. Приходится всем прописывать успокоительное. О нем и поговорим.

▌Механическая кнопка
Что может быть проще и надежней сухого контакта, разомкнул и спи спокойно, дорогой друг. Вряд ли батарейку раскачает до того, чтобы пробить миллиметровый воздушный зазор. Урания в них для этого не докладывают. Какой нибудь PSW переключатель то что доктор прописал. Нажал-отжал.

Вот только беда, ток он маленький держит. По паспорту 100мА, а если запараллелить группы, то до 500-800мА без особой потери работоспособности, если конечно не клацать каждые пять секунд на реактивную нагрузку (катушки-кондеры). Но девайс может кушать и поболее и что тогда? Приматывать синей изолентой к своему хипстерскому поделию здоровенный тумблер? Нормальный метод, мой дед всю жизнь так делал и прожил до преклонных лет.

▌Кнопка плюс
Но есть способ лучше. Рубильник можно оставить слабеньким, но усилить его полевым транзистором. Например вот так.

Тут переключатель просто берет и поджимает затвор транзистора к земле. И он открывается. А пропускаемый ток у современных транзисторов очень высокий. Так, например, IRLML5203 имея корпус sot23 легко тащит через себя 3А и не потеет. А что-нибудь в DPACK корпусе может и десяток-два ампер рвануть и не вскипеть. Резистор на 100кОм подтягивает затвор к питанию, обеспечивая строго определенный уровень потенциала на нем, что позволяет держать транзистор закрытым и не давать ему открываться от всяких там наводок.

▌Плюс мозги
Можно развить тему управляемого самовыключения, таким вот образом. Т.е. устройство включается кнопкой, которая коротит закрытый транзистор, пуская ток в контроллер, он перехватывает управление и, прижав ногой затвор к земле, шунтирует кнопку. А выключится уже тогда, когда сам захочет. Подтяжка затвора тоже лишней не будет. Но тут надо исходить из схемотехники вывода контроллера, чтобы через нее не было утечки в землю через ногу контроллера. Обычно там стоит такой же полевик и подтяжка до питания через защитные диоды, так что утечки не будет, но мало ли бывает…

Или чуть более сложный вариант. Тут нажатие кнопки пускает ток через диод на питание, контроллер заводится и сам себя включает. После чего диод, подпертый сверху, уже не играет никакой роли, а резистор R2 эту линию прижимает к земле. Давая там 0 на порту если кнопка не нажата. Нажатие кнопки дает 1. Т.е. мы можем эту кнопку после включения использовать как нам угодно. Хоть для выключения, хоть как. Правда при выключении девайс обесточится только на отпускании кнопки. А если будет дребезг, то он может и снова включиться. Контроллер штука быстрая. Поэтому я бы делал алгоритм таким — ждем отпускания, выбираем дребезг и после этого выключаемся. Всего один диод на любой кнопке и нам не нужен спящий режим 🙂 Кстати, в контроллер обычно уже встроен этот диод в каждом порту, но он очень слабенький и его можно ненароком убить если вся ваша нагрузка запитается через него. Поэтому и стоит внешний диод. Резистор R2 тоже можно убрать если нога контроллера умеет делать Pull-down режим.

▌Отключая ненужное
Можно сделать и по другому. Оставить контроллер на «горячей» стороне, погружая его в спячку, а обесточивать только жрущую периферию.

Выделив для нее отдельную шину питания. Но тут надо учесть, что есть такая вещь как паразитное питание. Т.е. если вы отключите питание, например, у передатчика какого, то по шине SPI или чем он там может управляться пойдет питание, поднимется через защитные диоды и периферия оживет. Причем питания может не хватить для его корректной работы из-за потерь на защитных диодах и вы получите кучу глюков. Или же получите превышение тока через порты, как результат выгоревшие порты на контроллере или периферии. Так что сначала выводы данных в Hi-Z или в Low, а потом обесточивайте.

▌Выкидываем лишнее
Что-то мало потребляющее можно запитать прям с порта. Сколько дает одна линия? Десяток миллиампер? А две? Уже двадцать. А три? Параллелим ноги и вперед. Главное дергать их синхронно, лучше за один такт.

Правда тут надо учитывать то, что если нога может отдать 10мА ,то 100 ног не отдадут ампер — домен питания не выдержит. Тут надо справляться в даташите на контроллер и искать сколько он может отдать тока через все выводы суммарно. И от этого плясать. Но до 30мА с порта накормить на раз два.

Главное не забывайте про конденсаторы, точнее про их заряд. В момент заряда кондера он ведет себя как КЗ и если в вашей периферии есть хотя бы пара микрофарад емкостей висящих на питании, то от порта ее питать уже не следует, можно порты пожечь. Не самый красивый метод, но иногда ничего другого не остается.

▌Одна кнопка на все. Без мозгов
Ну и, напоследок, разберу одно красивое и простое решение. Его несколько лет назад набросил мне в комменты uSchema это результат коллективного творчества народа на его форуме.

Одна кнопка и включает и выключает питание.

При включении, конденсатор С1 разряжен. Транзистор Т1 закрыт, Т2 тоже закрыт, более того, резистор R1 дополнительно подтягивает затвор Т1 к питанию, чтобы случайно он не открылся.

Конденсатор С1 разряжен. А значит мы в данный момент времени можем считать его как КЗ. И если мы нажмем кнопку, то пока он заряжается через резистор R1 у нас затвор окажется брошен на землю.

Это будет одно мгновение, но этого хватит, чтобы транзистор Т1 распахнулся и на выходе появилось напряжение. Которое тут же попадет на затвор транзистора Т2, он тоже откроется и уже конкретно так придавит затвор Т1 к земле, фиксируясь в это положение. Через нажатую кнопку у нас С1 зарядится только до напряжения которое образует делитель R1 и R2, но его недостаточно для закрытия Т1.

Отпускаем кнопку. Делитель R1 R2 оказывается отрезан и теперь ничто не мешает конденсатору С1 дозарядиться через R3 до полного напряжения питания. Падение на Т1 ничтожно. Так что там будет входное напряжение.

Схема работает, питание подается. Конденсатор заряжен. Заряженный конденсатор это фактически идеальный источник напряжения с очень малым внутренним сопротивлением.

Жмем кнопку еще раз. Теперь уже заряженный на полную конденсатор С1 вбрасывает все свое напряжение (а оно равно напряжению питания) на затвор Т1. Открытый транзистор Т2 тут вообще не отсвечивает, ведь он отделен от этой точки резистором R2 аж на 10кОм. А почти нулевое внутреннее сопротивление конденсатора на пару с его полным зарядом легко перебивает низкий потенциал на затворе Т1. Там кратковременно получается напряжение питания. Транзистор Т1 закрывается.

Тут же теряет питание и затвор транзистора Т2, он тоже закрывается, отрезая возможность затвору Т1 дотянуться до живительного нуля. С1 тем временем даже не разряжается. Транзистор Т2 закрылся, а R1 действует на заряд конденсатора С1, набивая его до питания. Что только закрывает Т1.

Отпускаем кнопку. Конденсатор оказывается отрезан от R1. Но транзисторы все закрыты и заряд с С1 через R3 усосется в нагрузку. С1 разрядится. Схема готова к повторному включению.

Вот такая простая, но прикольная схема. Вот тут еще полно реализаций похожих схем. На сходном принципе действия.

Слаботочные выключатели без фиксации, подобные монтируемым на плату тактовым кнопкам, дешевы, доступны и отличаются большим разнообразием размеров и стилей. В то же время кнопки с фиксацией часто имеют бóльшие габариты, они дороже, а диапазон их конструктивных вариантов относительно ограничен. Это может оказаться проблемой, если вам потребуется миниатюрный недорогой выключатель для фиксации питания нагрузки. В статье предлагается схемное решение, позволяющее придать кнопке с самовозвратом функцию фиксации.

Ранее были предложены конструкции, схемы которых основывались на дискретных компонентах [1] и микросхемах [2], [3]. Однако ниже будет описана схема, которой для выполнения тех же функций потребуется всего пара транзисторов и горсть пассивных компонентов.

На Рисунке 1а приведен вариант схемы включения питания для случая нагрузки, подключенной к земле. Схема работает в режиме «переключателя»; это значит, что первое нажатие включает питание нагрузки, второе выключает, и так далее.

а) б)
Рисунок 1. Эта схема превращает кнопку без фиксации в выключатель питания.

Чтобы понять принцип работы схемы, представим, что источник питания +VS только что подключен, конденсатор C1 в исходном состоянии разряжен, и транзистор Q1 выключен. При этом резисторы R1 и R3 оказываются включенными последовательно и подтягивают затвор P-канального MOSFET Q2 к шине +VS, удерживая транзистор в закрытом состоянии. Сейчас схема находится в «деблокированном» состоянии, когда напряжение нагрузки VL на контакте OUT (+) равно нулю.

При кратковременном нажатии нормально разомкнутой кнопки затвор Q2 подключается к конденсатору C1, разряженному до 0 В, и MOSFET включается. Напряжение нагрузки на клемме OUT (+) немедленно увеличивается до +VS, через резистор R4 транзистор Q1 получает базовое смещение и открывается. Вследствие этого Q1 насыщается и через резистор R3 подключает затвор Q2 к земле, удерживая MOSFET открытым, когда контакты кнопки разомкнуты. Теперь схема находится в «зафиксированном» состоянии, когда оба транзистора открыты, нагрузка получает питание, а конденсатор C1 заряжается до напряжения +VS через резистор R2.

После повторного кратковременного замыкания переключателя напряжение на конденсаторе C1 (теперь равное +VS) окажется приложенным к затвору Q2. Поскольку напряжение затвор-исток Q2 теперь близко к нулю, MOSFET выключается, и напряжение нагрузки падает до нуля. Напряжение база-эмиттер Q1 также опускается до нуля, закрывая транзистор. В результате при отпущенной кнопке ничто не удерживает Q2 в открытом состоянии, и схема возвращается в «деблокированное» состояние, когда оба транзистора выключены, нагрузка обесточена, а C1 разряжается через резистор R2.

Шунтирующий выходные зажимы резистор R5 устанавливать необязательно. При отпущенной кнопке конденсатор C1 разряжается на нагрузку через резистор R2. Если импеданс нагрузки очень велик (то есть, соизмерим с величиной R2), или нагрузка содержит активные устройства, такие, скажем, как светодиоды, напряжение нагрузки во время выключения Q2 может оказаться достаточно большим, чтобы через резистор R4 открыть транзистор Q1 и не позволить схеме выключиться. Резистор R5 при выключении Q2 подтягивает клемму OUT (+) к шине 0 В, обеспечивая быстрое выключение Q1 и давая схеме возможность надлежащим образом перейти в закрытое состояние.

При правильном выборе транзисторов схема будет работать в широком диапазоне напряжений и может использоваться для управления такими нагрузками, как реле, соленоиды, светодиоды и т. д. Однако не забывайте, что некоторые работающие на постоянном токе вентиляторы и моторы продолжают вращаться и после выключения питания. Это вращение может создавать противоЭДС, достаточно большую, чтобы открыть транзистор Q1 и не позволить схеме выключиться. Решение проблемы показано на Рисунке 1б, где последовательно с выходом включен блокировочный диод. В этом случае также можно добавить в схему в резистор R5.

На Рисунке 2 изображена еще одна схема, предназначенная для нагрузок, подключенных к верхней шине питания, таких, например, как показанное в этом примере электромагнитное реле.

Обратите внимание, что Q1 был заменен p-n-p транзистором, а на месте Q2 теперь находится N-канальный MOSFET. Эта схема работает точно так же, как схема описанная выше. Здесь R5 выполняет функцию подтягивающего резистора, соединяющего выходной контакт OUT (-) с шиной +VS, когда транзистор Q2 выключается, и обеспечивающего быстрое закрывание Q1. Как и в предыдущей схеме, резистор R5 является необязательным компонентом, и устанавливается только при некоторых типах нагрузки, упомянутых выше.

Заметим, что в обеих схемах постоянная времени C1, R2 выбирается исходя из требуемого подавления дребезга контактов. Обычно нормальной считается величина от 0.25 с до 0.5 с. Меньшие постоянные времени могут привести к неустойчивой работе схемы, в то время как бóльшие увеличивают время ожидания между замыканиями контактов кнопки, за которое должен произойти достаточно полный заряд и разряд конденсатора C1. При указанных на схеме значениях C1 = 330 нФ и R2 = 1 МОм номинальная величина постоянной времени равна 0.33 с. Обычно этого бывает достаточно, чтобы устранить дребезг контактов и переключить нагрузку за время порядка пары секунд.

Рисунок 2. Схема, видоизмененная для нагрузки, подключенной к
положительной шине питания.

Обе схемы предназначены для фиксации и отпускания ключа в ответ на кратковременные замыкания контактов. Однако каждая из них проектировалась таким образом, чтобы гарантировать правильную работу даже при сколь угодно длительном нажатии кнопки. Рассмотрим схему на Рисунке 2, когда транзистор Q2 закрыт. Если кнопка нажимается для выключения схемы, затвор подключается к потенциалу 0 В (поскольку конденсатор C1 разряжен), и MOSFET закрывается, давая возможность общей точке резисторов R1 и R2 подключиться к шине +VS через резистор R5 и импеданс нагрузки. Одновременно Q1 также выключается, в результате чего затвор Q2 оказывается соединенным с шиной GND через резисторы R3 и R4. Если кнопку сразу же отпустить, C1 просто зарядится через резистор R2 до напряжения +VS. Однако если оставить кнопку замкнутой, напряжение затвора Q2 будет определяться потенциалом делителя, образованного резисторами R2 и R3+R4. Считая, что при разблокированной схеме напряжение на контакте OUT (-) приблизительно равно +VS, для напряжения затвор-исток транзистора Q2 можно записать следующее выражение:

Даже если напряжение +VS будет равно 30 В, результирующего напряжения 0.6 В между затвором и истоком не хватит, чтобы открыть MOSFET вновь. Следовательно, при разомкнутых контактах кнопки оба транзистора будут оставаться выключенными.

Схема на Рисунке 2 фиксируется в открытом состоянии кратковременным замыканием контактов кнопки, когда конденсатор C1 заряжен до напряжения +VS, в результате чего Q2 быстро открывается и потенциал клеммы OUT (-) падает до нуля, а вслед за ним быстро включается Q1. Нажатие кнопки после размыкания контактов позволило бы конденсатору C1 разрядиться до нуля через резистор R2. Однако если кнопка останется нажатой, напряжение на затворе Q2 будет определяться потенциалом, задаваемым делителем R2 и R3. Поскольку Q1 открыт и насыщен, напряжение в точке соединения R3 и R4 на коллекторе Q1 будет близко к +VS, а общая точка резисторов R1 и R2 через транзистор Q2 будет подключена к шине GND. Поэтому при удержании кнопки в замкнутом состоянии напряжение затвор-исток транзистора Q2 равно

Следовательно, если напряжение питания равно, по крайней мере, пороговому напряжению затвор-исток Q2, оба транзистора Q2 и Q1 будут включены до тех пор, пока контакты кнопки остаются разомкнутыми.

Обе схемы служат примерами недорого способа фиксации питания нагрузки с помощью нефиксируемой кнопки. Как и у механического переключателя, мощность, рассеиваемая схемами при отключенной нагрузке, равна нулю.

Ссылки

  1. Smith, Anthony H., «Latching power switch uses momentary-action pushbutton», EDN, October 28, 2004.
  2. Schelle, Donald, «Electronic circuit replaces mechanical push-push switch», EDN, September 28, 2006.
  3. Bhandarkar, Santosh, «Single-IC-based electronic circuit replaces mechanical switch», EDN, March 15, 2007.

Перевод: AlexAAN по заказу РадиоЛоцман

Как работают кнопочные переключатели в электрической цепи?

Электрические цепи должны быть полностью исправными. Электричество должно иметь возможность бесперебойно протекать через различные провода и компоненты. Но схемы, которые замкнуты постоянно, не так полезны, как те, которые работают только тогда, когда мы этого хотим. Это то, что делает переключатель. Некоторые переключатели спрятаны внутри оборудования; другие — там, где мы можем их увидеть и использовать. Кнопочный переключатель имеет тысячи привычных применений, от лифтов до автомобильных стереосистем.Он бывает двух основных видов: мгновенный и немоментальный.

Конструкция

Кнопочный переключатель — это небольшой герметичный механизм, замыкающий электрическую цепь при нажатии на него. Когда он включен, небольшая металлическая пружина внутри соприкасается с двумя проводами, позволяя течь электричеству. Когда он выключен, пружина втягивается, контакт прерывается, и ток не течет. Корпус переключателя изготовлен из непроводящего пластика.

Мгновенный контакт

Мгновенные переключатели работают только до тех пор, пока вы их нажимаете, как кнопки телефона, калькулятора или дверного зуммера.Их можно разделить на нормально включенные и нормально выключенные.

Нормально выключен

При выключенном выключателе соединение отсутствует, пока вы не нажмете кнопку. Таким образом используется большинство кнопочных переключателей. Примеры включают кнопки дверного звонка, ключи от сотовых телефонов и устройства открывания гаражных ворот.

Normally-On

Здесь переключатель работает нормально, но при нажатии на него прерывается цепь. Это более специализированный метод, который можно использовать вместе с трюком с подключением.Например, подключение нормально включенного переключателя параллельно с лампочкой приведет к включению лампы при нажатии кнопки; в противном случае через переключатель будет протекать ток, а лампочка останется выключенной.

Немгновенный контакт

Немгновенные переключатели включают одно нажатие для включения, другое — для выключения. В телевизорах и стереосистемах для кнопок питания используются переключатели без мгновенного действия.

Номинальные характеристики

Для надежности и безопасности переключатели рассчитаны на ток и напряжение. Это необходимо, поскольку более высокие требования к напряжению или току требуют более крупных и дорогих деталей, а переключатели, как и большинство деталей, имеют ровно столько, сколько необходимо.Сотовые телефоны и портативные радиоприемники не требуют больших затрат; промышленные машины предъявляют большие требования.

Назначение выводов кнопочного / тактильного переключателя, использование, размеры и лист данных

Функции кнопок
  • Предотвращение нарастания флюса за счет вставной клеммы
  • Клемма с защелкой
  • Отскок контакта: макс. 5 мс
  • Четкое нажатие благодаря тактильной обратной связи
  • Выдерживаемое напряжение диэлектрика 250 В переменного тока в течение 1 минуты

Технические характеристики
  • Режим работы: тактильная обратная связь
  • Номинальная мощность: МАКС. 50 мА, 24 В постоянного тока
  • Сопротивление изоляции: 100 МОм при 100 В
  • Рабочая сила: 2.55 ± 0,69 Н
  • Контактное сопротивление: макс. 100 мОм
  • Диапазон рабочих температур: от -20 до +70 ℃
  • Диапазон температур хранения: от -20 до +70 ℃

Где использовать кнопку?

Кнопки нормально разомкнутые тактильные переключатели . Кнопки позволяют нам запитать схему или выполнить какое-либо конкретное соединение только тогда, когда мы нажимаем кнопку. Просто замыкает цепь при нажатии и размыкает при отпускании.Кнопка также используется для запуска SCR клеммой затвора. Это самые распространенные кнопки, которые мы видим в нашем повседневном электронном оборудовании. Некоторые приложения кнопки упомянуты в конце статьи.

Как пользоваться кнопкой?

При подключении между источником питания и цепью мы должны подключать провода только к обеим ножкам кнопки, как показано на схеме ниже:

Кнопка также может использоваться для запуска, например, для SCR.SCR — это переключатель, управляемый затвором, которому требуется запускающий импульс. Итак, для этого мы можем добавить кнопку в схему, чтобы подавать запускающий импульс, как показано на схеме ниже:

Приложения
  • Калькуляторы
  • Телефоны кнопочные
  • Кухонная техника
  • Замки магнитные
  • Прочие различные механические и электронные устройства бытовые и коммерческие.

2D-модель

8 эффективных методов работы кнопочных переключателей

Кнопочные переключатели

— это своего рода управляющий переключатель.

Это ссылка на кнопку на картинке (со спецификацией)

Другие кнопки можно нажать

Электрические цепи должны быть полностью укомплектованы для работы.

Электроэнергия должна иметь возможность бесперебойно проходить через различные провода и компоненты. Но цепи, которые замкнуты все время, не так полезны, как те, которые работают только тогда, когда мы этого хотим.

Это то, что делает коммутатор. Некоторые переключатели спрятаны внутри оборудования; другие — там, где мы можем их увидеть и использовать.

Кнопочный переключатель имеет тысячи привычных применений, от лифтов до автомобильных стереосистем. Он бывает двух основных видов: мгновенный и немоментальный.

Конструкция кнопочных переключателей

Кнопочный переключатель — это небольшой герметичный механизм, замыкающий электрическую цепь при нажатии на него.

Когда он включен, небольшая металлическая пружина внутри соприкасается с двумя проводами, позволяя течь электричеству.

Когда он выключен, пружина втягивается, контакт прерывается, и ток не течет. Корпус переключателя изготовлен из непроводящего пластика.

Мгновенный контакт

Переключатели мгновенного действия работают только до тех пор, пока вы на них нажимаете, как кнопки на телефоне,

Калькулятор

или дверной зуммер. Их можно разделить на нормально включенные и нормально выключенные.

Кнопочные переключатели нормально выключены

С нормально выключенными кнопочными переключателями нет соединения, пока вы не нажмете кнопку.

Большинство кнопочных переключателей используются таким образом. Примеры включают кнопки дверного звонка, ключи от сотовых телефонов и устройства открывания гаражных ворот.

Кнопочные переключатели в нормальном состоянии

Здесь кнопочные переключатели работают нормально, но прерывают цепь, когда вы нажимаете на нее.

Это более специализированный способ, который может использоваться вместе с трюком с подключением.Например, подключение нормально включенного переключателя параллельно лампочке приведет к включению лампы при нажатии кнопки; в противном случае через переключатель будет протекать ток, а лампочка останется выключенной.

Немедленный контакт

Не мгновенные переключатели включают одно нажатие для включения, другое — для выключения. В телевизорах и стереосистемах для кнопок питания используются переключатели без мгновенного действия.

Рейтинги

Для надежности и безопасности переключатели рассчитаны на ток и напряжение.

Это необходимо, поскольку более высокие требования к напряжению или току требуют более крупных и дорогих деталей, а переключатели, как и большинство деталей, имеют ровно столько, сколько необходимо.

Сотовые телефоны и портативные радиоприемники не требуют больших затрат; промышленные машины предъявляют большие требования.

Видео-шоу

ФИЛН введение компании

Filn — инновационная промышленная и торговая компания, объединяющая исследования, разработки, производство и продажи. Компания была основана в 1998 году и имеет 21-летнюю историю. Сейчас у компании три фабрики и одна торговая компания.

FILN производит световые индикаторы, кнопочные переключатели, переключатели для лодок, гитарные переключатели, переключатели сенсорных систем управления, водонепроницаемые микровыключатели и другую продукцию.

FILN — это самая полная в мире категория индикаторных ламп производственной компании, но также единственная в Китае имеет небольшие индикаторные лампы с сертификатом UL от производителей на материке.

FILN является основателем категории металлических кнопок с проволокой, но также и создателем водонепроницаемых переключателей для лодок с большим током.

В 2016 году был награжден сертификатом системы менеджмента качества ISO9001, сертификатом VDE в том же году и в том же году участвовал в Корейской ярмарке электроники и Немецкой ярмарке электроники.Открыта дорога выставки

.

В 2017 году он начал проектировать и разрабатывать продукты для гитарных переключателей, а в 2018 году он завершил дизайн нового гитарного переключателя с подсветкой. Он также участвовал в выставке электроники в Таиланде и выставке электроники в Бразилии.

В 2018 году получил сертификат UL в США и сертификат качества CCC в Китае. Одновременно участвовал в выставках в Сингапуре, США и Германии.

В 2019 году в Шэньчжэне был открыт центр исследований и разработок для разработки сенсорных переключателей для систем управления. В то же время компания участвовала в электронной выставке в Бразилии и электронной выставке в Гонконге.

Кнопочные переключатели | RJS Electronics Ltd

🔝
Что такое кнопочный переключатель?

Кнопочный переключатель (кнопки) — это устройства, которые нажимаются для замыкания или размыкания электрической цепи.Или, проще говоря, объект, на который вы нажимаете, чтобы устройство что-то сделало или остановило. Они бывают всех форм и размеров и имеют множество вариантов.

PCB Кнопочные переключатели?

Переключатель печатной платы — это переключатель, который устанавливается непосредственно на печатную плату. Переключатели для поверхностного монтажа на печатной плате (SMD / SMT) предназначены для установки прямо на печатной плате. Переключатели для печатных плат со сквозным отверстием или «сквозным отверстием» вставляются в просверленное отверстие на печатной плате и припаиваются к контактным площадкам на противоположной стороне.

Мгновенная функция или функция фиксации?

Переключатель мгновенного действия работает только тогда, когда на кнопку нажимают с усилием, после того как эта сила снята, переключатель больше не задействуется. Переключатель с фиксацией сохраняет состояние после нажатия до тех пор, пока кнопка не будет нажата снова, чтобы освободить переключатель.

Варианты светодиодной подсветки?

RJS поставляет как выключатели с подсветкой, так и без подсветки. Выбор типа будет зависеть от функции и дизайна вашего продукта.Существует множество вариантов светодиодного освещения, включая одно-, двухцветное, двухцветное или светодиодное освещение RGB. То, как отображается освещение, также различается. Варианты включают;

• Кольцевая подсветка
• Точечная подсветка
• Пользовательская подсветка текста / символов
• Полная подсветка

Переключатель включения или нажатия кнопки?

A Переключатель включения или «нормально разомкнутый» (NO) — это когда электрический поток активируется в цепи при нажатии кнопки.Когда кнопка отпускается, цепь разрывается, и электрический ток прекращается. Это наиболее распространенный тип переключателя.
В то время как переключатель Push to Break или «нормально замкнутый» (NC) работает противоположным образом, при нажатии он останавливает существующий электрический поток через цепь.

Poles and Throws

Переключатель SPST (однополюсный, однонаправленный) имеет только один выход и один вход.

Переключатели SPDT (однополюсные, двухпозиционные) имеют три клеммы, один общий контакт и два контакта, которые соревнуются за подключение к общему контакту.Наиболее подходит для устройств, выбирающих между двумя источниками питания.

DPDT-переключатели (двухполюсные, двухпозиционные) — это, по сути, два переключателя SPDT, которые управляют двумя отдельными цепями и переключаются вместе одним исполнительным механизмом.

Мы работаем с понедельника по четверг с 8:00 до 17:00 и по пятницам с 8:00 до 16:30, позвоните нам по телефону +44 (0) 1234 213600 , чтобы поговорить с нашими инженерами по продажам, или напишите нам по электронной почте [адрес электронной почты защищен] в качестве альтернативы, оставьте нам сообщение, используя нашу онлайн-форму для связи.

Загрузите нашу последнюю брошюру и каталог продукции.Присоединяйтесь к нашему списку рассылки, чтобы получать последние новости, читать сообщения в нашем блоге и видеть наши последние продукты.

Кнопочные переключатели Интернет-магазин | Future Electronics

Дополнительная информация о кнопочных переключателях …

Что такое кнопочный переключатель?

Что такое кнопочный переключатель? Кнопочные переключатели состоят из простого механизма электрического переключателя, который управляет некоторыми аспектами машины или процесса. Кнопки обычно изготавливаются из твердого материала, такого как пластик или металл.Поверхность обычно имеет форму, подходящую для человеческого пальца или руки, поэтому электронный переключатель можно легко нажать или нажать. Кроме того, большинство кнопочных переключателей также известны как переключатели со смещением. Смещенный переключатель также можно рассматривать как то, что мы называем «мгновенным переключателем», когда пользователь нажимает на «включено» или нажимает для «выключения». Это также известно как механизм включения (SPST Momentary) или кнопки включения (SPST Momentary). Переключатели с механизмом включения (нормально разомкнутый или NO) представляют собой тип кнопки электрический переключатель, который работает от переключателя, контактирующего с электронной системой при нажатии кнопки, и прерывает текущий процесс при отпускании кнопки.Примером этого является кнопка на клавиатуре.

Электронный переключатель «нажми и отключи» (или нормально замкнутый, или нормально замкнутый), с другой стороны, размыкает контакт при нажатии кнопки и замыкает контакт при ее отпускании.

Типы кнопочных переключателей

Существует много различных типов кнопочных переключателей, и в Future Electronics мы храним многие из наиболее распространенных типов. Мы работаем с некоторыми из ведущих производителей и поставщиков кнопочных переключателей, включая: Alps, C & K, E-Switch, EECO, Grayhill, Marquardt Switches, NKK Switches, Panasonic, Rafi USA, Schurter, SUNS и TE Connectivity Лучшее из всех наших электронных толкателей. Предлагаются кнопочные переключатели различных размеров от миниатюрных до промышленных.Доступны даже кнопочные переключатели с подсветкой. Используйте наши параметрические фильтры, чтобы уточнить поиск по электрическим кнопочным переключателям на нашем веб-сайте. Вы можете выбирать по количеству позиций, по схемам, по типу привода и по оконечной нагрузке, среди прочего.

Кнопочные переключатели Приложения

Типичные области применения включают: телекоммуникации, сети, аудио / видео, промышленное управление, транспорт, медицинское оборудование / приборы, киоски, торговые автоматы, кухонные приборы, магнитные замки и различные другие механические и электронные устройства. , бытовая и коммерческая.

Кнопочные переключатели в количествах для исследований и разработок или в готовой к производству упаковке

На нашем современном предприятии в Мемфисе и FutureElectronics.com у вас есть возможность заказать точное количество кнопочных переключателей, необходимых для ваших исследований и разработок или производства без ненужных излишков покупки полных катушек или коробок.

Кнопочные переключатели | MPJA.COM

Когда мы говорим о кнопочных или кнопочных электронных переключателях, мы имеем в виду те типы переключателей, которые используются в электронном оборудовании или на нем, например, источники питания, усилители, испытательное оборудование и т. Д.У нас есть кнопочные переключатели мини, полноразмерные, промышленные 22 мм и другие. Некоторые кнопочные переключатели подсвечиваются. Вот что вам нужно знать о наших кнопочных переключателях. Эти переключатели могут иметь различные клеммы (соединения с переключателем), такие как винтовые, припойные, быстроразъемные, печатные платы и провода. Контакт / Набор контактов — это внутренние подвижные и неподвижные части, которые размыкают / замыкают цепь. Привод — это кнопка в кнопочном переключателе. Некоторые основные используемые определения: SP означает однополюсный, 1 набор контактов для одной цепи, DP означает двойной полюс, 2 набора контактов для 2 цепей.3P означает 3 полюса, 3 набора контактов и т. Д. ST означает одинарный ход, переключатель замкнут или разомкнут, ВКЛ или ВЫКЛ, 2 положения привода показаны как ВКЛ / ВЫКЛ. DT означает «двойной бросок». Переключатель имеет общий переключатель, который чередуется между двумя другими контактами: один включен, другой выключен. Кнопочный переключатель мгновенного действия выполняет указанные выше действия, за исключением того, что указанная контактная функция сохраняется до тех пор, пока исполнительный механизм нажат. После отпускания кнопка возвращается в исходное положение. Кнопочные переключатели бывают двух типов; Мгновенный, когда действие происходит только при нажатии на привод; и Альтернативное действие, при котором контакты сохраняются до повторного нажатия.Кнопочные переключатели доступны в однополюсных и многополюсных вариантах, но ограничены двумя положениями. Наиболее распространенным является нормально разомкнутый контакт, такой как SPST-NO или DPST-NO. Они похожи на выключатель дверного звонка. Тип контакта NC похож на тот, который можно найти в вашем холодильнике. Некоторые из наших кнопочных переключателей для промышленных распределительных щитов имеют модульную конструкцию, в которой вы можете изменять контакты, чтобы сформировать различные комбинации НО и НЗ, и они подсвечиваются. Кнопочные переключатели, Мгновенные кнопочные переключателиМы заботимся о всех типах кнопочных переключателей.Просмотрите множество различных конфигураций напряжения и тока наших кнопочных переключателей мгновенного действия. Кнопочные переключатели мгновенного действия, кнопочный переключатель, кнопочный

99-355: Кнопки и переключатели чтения

Переключатели и кнопки

легко подключить, если вы разберетесь с некоторыми основами:

  1. Для надежных показаний, некоторые электрические входы всегда должны быть подключены к входному контакту
  2. Кнопки и переключатели могут иметь неочевидную внутреннюю проводку!
  3. На Arduino Uno, 5 вольт означает HIGH , а 0 вольт (земля) означает LOW

Легкая ошибка

Многие новички часто строят трассу, подобную показанной ниже.Имеет смысл. Когда кнопка нажата, входной контакт видит 5 В, а когда он не нажат, он будет видеть 0 В, поэтому он будет заземлен (потому что к нему ничего не подключено). Правильно?

Нет. Как сказано выше в пункте №1, для получения хороших показаний вы должны постоянно подключать некоторый электрический вход к входному контакту . Когда кнопка на схеме выше не нажата, контакт 2 не подключен ни к чему, кроме небольшого провода. , а не , будет надежно считывать 0 вольт из-за способа считывания цифровых входов на Arduino.

Решение? Добавьте «понижающий резистор», чтобы, когда кнопка не была нажата, входной контакт все еще был подключен к земле, как показано здесь:

Почему называется «выпадающий»? Потому что, когда вход был бы в неоднозначном состоянии (потому что он не был подключен ни к чему с известным напряжением), резистор «тянет» его на землю. Как правило, это резисторы высокого номинала (с высоким сопротивлением); 10 кОм — стандартный выбор.

Типы переключателей

У нас есть множество коммутаторов, доступных в лаборатории физических вычислений, и их действительно огромное количество в мире.(Например, на момент написания этой статьи Mouser продает 24 602 типа тумблеров, а Digi-Key продает 25 378 типов кнопок.)

Здесь мы рассмотрим переключатели, включенные в ваш учебный комплект, а также некоторые другие распространенные типы.

кнопка мгновенного действия («тактильные» кнопки)

Эта маленькая кнопка с четырьмя ножками издает приятный звук щелчка, когда вы ее нажимаете. У , а не у есть внутренняя проводка, которую вы можете ожидать. Вот кнопка рядом со схемой, поясняющей проводку:

Обратите внимание, что верхняя правая и верхняя левая ножки всегда соединены друг с другом, а нижняя левая и нижняя правая ножки также всегда соединены друг с другом.Действие кнопки заключается в соединении верхней части переключателя с нижней частью переключателя.

Кнопка спроектирована с интервалом, специально предназначенным для размещения поперек центральной разделяющей впадины на стандартной макетной плате, например:

Помните об удивительной внутренней проводке коммутатора, когда используете их на макетной плате — верхний ряд переключателя будет вести себя так, как будто электрический ряд проходит через впадину макета (поскольку внутренняя часть переключателя перекрывает этот зазор), и то же самое с дно.

однополюсный двухпозиционный переключатель

Этот тип простого переключателя называется «однополюсный двойной ход», потому что есть только один «полюс», на который работает переключатель (в данном случае центральный штифт), и этот однополюсный переключатель имеет два возможных соединения («бросок»). это может сделать. Это «поддерживаемый» переключатель, в отличие от «мгновенного», что означает, что он будет оставаться в последнем положении, в которое он был нажат (в отличие от переключателя мгновенного действия, у него нет внутренней пружины).

Центральный штифт всегда будет подключаться либо к левому, либо к правому контакту.Левый и правый штырьки никогда не соединятся друг с другом, если только внутри переключателя не возникнет механическая неисправность. (Что возможно!)

Концевой микровыключатель или микрорычажный переключатель

Эти небольшие переключатели могут использоваться как «концевые» переключатели, то есть они обнаруживают, когда что-то, движущееся по прямой линии, вступает в физический контакт с чем-то другим в фиксированном положении. Это положение может быть определено как «предел перемещения» физической части, и это обычная операция в системах перемещения с электронным управлением, чтобы перемещать что-либо вдоль оси, пока оно не коснется концевого выключателя на конце.

Переключатели называются «рычажными переключателями» из-за их конструкции — рычаг, торчащий из переключателя, представляет собой небольшой рычаг, а переключатели бывают разных форм и размеров по длине и размерам, чтобы соответствовать различным конструктивным требованиям.

Если присмотреться, можно увидеть выпуклые буквы на пластиковом корпусе переключателя; ноги обозначены слева направо: C , NO и NC , что означает «общий», «нормально открытый» и «нормально закрытый» соответственно.(«Нормальный» означает, что кнопка / рычаг нажимается на , а не на .)

Мини рычажный переключатель

Этот переключатель является немного большим родственником микровыключателя. Он более прочен механически и предназначен для установки в стандартные держатели с выступами в различном оборудовании. У него есть ролик на конце его руки, что означает, что его можно использовать, например, в качестве толкателя кулачка или в другом приложении, где движение объекта, контактирующего с переключателем, не обязательно всегда будет перпендикулярно ему.

Обратите внимание, что в случае этого переключателя на пластиковом корпусе было достаточно места, чтобы производитель смог нарисовать небольшую, хотя и разборчивую схему переключателя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *