Электронные трансформаторы схемы: Электронные трансформаторы. Схемы, фото, обзоры

Содержание

Электронный трансформатор: схема правильного подключения

Электронный трансформатор — это устройство электромагнитного типа. Оно состоит из индуктивной обмотки, а также магнитопровода. Используется электронный трансформатор для преобразования переменного тока. Встречаются устройства в различных электроприборах.

Также с их помощью собирают блоки питания. Для подключения прибора используют различные элементы. В данном случае учитывается параметр порогового напряжения, частоты и проводимости тока. Для того чтобы во всем разобраться, следует рассмотреть конкретные схемы.

Схема подключения через конденсаторный резистор

Через конденсаторный резистор можно подсоединять любой электронный трансформатор. Схема подключения включает в себя модулятор, а также трансивер. Проводимость тока указанного элемента обязана составлять не менее 50 мк. В данном случае выходное напряжение зависит от количества резисторов. В некоторых случаях применяются расширительные трансиверы. Если рассматривать модель для блока питания, то усилитель используется клеммного типа. Для стабилизации процесса преобразования необходимы фильтры. Триггеры используются фазового типа.

Подключение через два регулятора

Через два регулятор разрешается подсоединять только низкочастотный электронный трансформатор. Схема подключения состоит из тетродов открытого типа. В данном случае показатель предельной проводимости элемента равняется 55 мк. Непосредственно регуляторы устанавливаются за реле. Усилители встречаются как оперативного, так и тороидального типа.

Для нормальной работы расширителя используется два коннектора. Емкость триггера обязана составлять не мене 2 пФ. Также важно обращать внимание на выходное напряжение на обмотке. В среднем оно составляет не более 40 В. Однако при высоком уровне отрицательного сопротивления указанный параметр может резко увеличиваться. Если рассматривать схему для блока питания, то тиристор подбирается дипольного типа. В этом случае параметр приводимости тока у элемента составляет не более 45 мк. Входное напряжение максимум может равняться 20 В. Для подключения конденсаторов используются контакторы.

Использование проводных стабилизаторов

Через проводные стабилизаторы можно подсоединять высокочастотный электронный трансформатор. Схема подключения предполагает использование триггеров с вторичной обмоткой. Тетроды в данном случае устанавливаются за реле. Для увеличения отрицательного сопротивления используются фильтры. Всего для блока питания на 30 Вт потребуется два контактора. Резисторы используются тороидального типа. Параметр выходного напряжения у элементов не превышает 45 В.

Подключение к диодному мосту

Низкочастотный трансформатор к диодному мосту можно подсоединять через один регулятор. Для этого тетрод применяется с двумя фильтрами. Проводимость тока у элемента обязана составлять не менее 55 мк. Все это позволит значительно повысить пороговое сопротивление. Модулятор для схемы подбирается импульсного типа. Если рассматривать преобразователь с усилителем, то реле необходимо использовать только с изоляторами. В этом случае сопротивление у трансформатора составит около 22 м. Выходное напряжение на обмотке будет колебаться в районе 30 В.

Подключение к галогенной лампе

К галогенным лампам разрешается подсоединять только низкочастотный электронный трансформатор. Схема подключения состоит из резисторов дипольного типа. Конденсаторы применяются с первичной обмоткой. Для стабилизации процесса индукции используются фильтры. Всего в схеме предусмотрено два усилителя. Реле в данном случае установлено за конденсаторами.

Расширитель разрешается использовать лишь открытого типа. Проводимость тока у элемента равняется 55 мк. Таким образом, сопротивление не должно превышать 12 Ом. Параметр выходного напряжения зависит от резисторов. Если рассматривать модели с не большой емкостью, то указанный параметр составляет около 13 В.

Схема подключения модели Taschibra

Через регулятор можно напрямую подсоединить Taschibra (электронный трансформатор). Схема подключения предполагает использование модулятора с первичной обмоткой. Непосредственно трансивер для конденсатора подбирается на две фазы. Через дипольный резистор также можно подсоединять Taschibra (электронный трансформатор). Схема подключения устройства в этом случае предполагает использование стабилитрона.

Если рассматривать стандартный модулятор, то проводимость тока равняется около 60 мк. В данном случае сопротивление не превышает 12 Ом. Иногда используются проводные реле. В таком случае расширитель берется без обмотки.

Подключение устройства RET251C

Этот электронный трансформатор (схема RET251C показана ниже) подключается через два дипольных резистора. Конденсаторы часто используются без модулятора. В данном случае входное напряжение зависит от параметра проводимости. Как правило, он лежит в пределах 40 мк. Также важно отметить, что транзисторы используются только открытого типа. Если рассматривать преобразователь не большой мощности, то коннектор устанавливается с одним усилителем. Для подключения расширителя применяется два изолятора. Тетрод разрешается использовать с двойным регулятором.

Подключение трансформатора GET 03

Указанный электронный трансформатор (схема GET 03 показана ниже) подключается через проводное реле. Регулятор используется с двумя переходниками. Тиристор для подключения берется открытого типа. Модулятор можно использовать с обмоткой, или без нее. Если рассматривать первый вариант, то резистор подключается с селектором. В свою очередь, тетрод устанавливается лучевого типа.

Если рассматривать схему без обмотки, то резистор применяется только с выходными контакторами. В данном случае регулятор устанавливается за реле. Усилитель в схеме не понадобится. Показатель проводимости тока будет составлять около 70 мк. Таким образом, сопротивление в цепи не превысит 30 Ом.

Схема подключения модели ELTR-60

Для различного электроинструмента часто используется этот электронный трансформатор. Схема для шуруповерта включает в себя выходной усилитель. Регулятор используется с двумя трансиверами. Таким образом, проводимость элемента равняется не менее 44 мк. В данном случае тетрод используется конденсаторного типа. Выходное напряжение трансформатора зависит от проводимости модулятора.

Если рассматривать схему с обмоткой, то конденсатор устанавливается за реле. Таким образом, проводимость тока равняется 35 мк. Показатель входного сопротивления составляет не более 12 Ом. Если рассматривать схему без обмотки, то потребуется использовать два расширителя. Триггер в данном случае применяется без фильтра. Непосредственно регулятор подбирается операционного либо импульсного типа.

Подключение устройства ELTR-70 к цепи на 24 В

Указанный электронный трансформатор (схема 24 вольта показана ниже) подключается через дипольный регулятор. Всего для модели потребуется два проводника. Триггер для преобразования тока используется открытого типа. Также схема подключения электронного трансформатора имеет фильтры, которые устанавливаются за обмоткой. Непосредственно тетрод подбирается высокой чувствительности. В указанной схеме параметр проводимости не должен превышать 60 мк. Все это позволит держать на стабильном уровне выходное сопротивление.

Трансивер в цепи используется низкочастотного типа. Для увеличения скорости протекания индукции применяются различные усилители. Устанавливаются они с конденсаторами или без них. Если рассматривать первый вариант, то реле используется с вторичной обмоткой. Когда речь идет о подключении без конденсаторов, то в этом случае используется один трансивер.

Подключение трансформатора TRA110

Схема подключения электронного трансформатора предполагает установку регулятора проводного типа. Трансиверы используются только вместе с динисторами. Всего для нормальной работы модели потребуется два конденсатора. Емкость расширителя обязана составлять не менее 4 пФ. В данном случае реле устанавливается за вторичной обмоткой.

Если рассматривать схему с триггером, то для нормальной работы трансформатора потребуются изоляторы. Тиристор для него подбирается с контакторами. Если рассматривать трансформатор без триггера, то в этом случае требуется устанавливать модулятор выходного типа. Проводимость тока у него обязана составлять как минимум 50 мк. Резисторы используются только векторного типа.

Электронный трансформатор для галогенных ламп 12в схема, get 0902

Электронный трансформатор — сетевой импульсный блок питания, который предназначен для питания галогенных ламп 12 Вольт. Подробнее о данном устройстве в статье «Электронный трансформатор (ознакомление)».

Устройство имеет достаточно простую схему. Простой двухтактный автогенератор, который выполнен по полумостовой схеме, рабочая частота порядка 30кГц, но этот показатель сильно зависит от выходной нагрузки.

Схема такого блока питания очень не стабильна, не имеет никаких защит от КЗ на выходе трансформатора, пожалуй именно из-за этого, схема пока не нашла широкого применения в радиолюбительских кругах. Хотя в последнее время на разных форумах наблюдается продвижение данной темы. Люди предлагают различные варианты доработки таких трансформаторов. Я сегодня попытаюсь все эти доработки совместить в одной статье и предложить варианты не только доработки, но и умощнения ЭТ.

В основу работы схемы углубляться не будем, а сразу приступим к делу.
Мы попытаемся доработать и увеличить мощность китайского ЭТ Taschibra на 105 Ватт.

Для начала хочу пояснить, по какой причине я решил взяться за умощнение и переделку таких трансформаторов. Дело в том, что недавно сосед попросил сделать ему на заказ зарядное устройство для автомобильного аккумулятора, который был бы компактным и легким. Собирать не хотелось, но позже я наткнулся на интересные статьи в которых рассматривалась переделка электронного трансформатора. Это натолкнуло на мысль — почему бы не попробовать?

Таким образом, были приобретены несколько ЭТ от 50 до 150 Ватт, но опыты с переделкой не всегда завершались успешно, из всех выжил только ЭТ на 105 Ватт. Недостатком такого блока является то, что трансформатор у него не кольцевой, в связи с чем неудобно отмотать или домотать витки. Но другого выбора не было и пришлось переделать именно этот блок.

Как нам известно, эти блоки не включаются без нагрузки, это не всегда является достоинством. Я планирую получить надежное устройство, которое можно свободно применять в любых целях, не боясь, что блок питания может перегореть или выйти из строя при КЗ.

В тему:

Электронный трансформатор (ознакомление)

Доработка №1

Суть идеи заключается в добавлении защиты от КЗ, также устранения вышеуказанного недостатка (активация схемы без выходной нагрузки или с маломощной нагрузкой).

Глядя на сам блок, мы можем увидеть простейшую схему ИБП, я бы сказал, что схема не до конца отработана производителем. Как мы знаем, если замкнуть вторичную обмотку трансформатора, то меньше, чем за секунду схема выйдет из строя. Ток в схеме резко возрастает, ключи в миг выходят из строя, иногда и базовые ограничители. Таким образом, ремонт схемы обойдется дороже стоимости (цена такого ЭТ порядка 2,5$).

Трансформатор обратной связи состоит из трех отдельных обмоток. Две из этих обмоток питают базовые цепи ключей.

Для начала удаляем обмотку связи на трансформаторе ОС и ставим перемычку. Эта обмотка включена последовательно с первичной обмоткой импульсного трансформатора.

Затем на силовом трансформаторе мотаем всего 2 витка и один виток на кольце (трансформаторе ОС). Для намотки можно использовать провод с диаметром 0,4-0,8мм.

Далее нужно подобрать резистор для ОС, в моем случае он на 6,2 ОМ, но резистор можно подобрать с сопротивлением 3-12 Ом, чем выше сопротивление этого резистора, тем меньше ток защиты от КЗ. Резистор в моем случае использован проволочный, чего делать не советую. Мощность этого резистора подбираем 3-5 ватт (можно использовать от 1 до 10 ватт).

Во время КЗ на выходной обмотке импульсного трансформатора ток во вторичной обмотке падает (в стандартных схемах ЭТ при КЗ ток возрастает, выводя из строя ключи). Это приводит к уменьшению тока на обмотке ОС. Таким образом, прекращается генерация, сами ключи запираются.

Единственным недостатком такого решение является то, что при долговременном КЗ на выходе, схема выходит из строя, поскольку ключи греются и достаточно сильно. Не стоит подвергать выходную обмотку КЗ с длительностью более 5-8 секунд.

Схема теперь будет заводиться без нагрузки, одним словом мы получили полноценный ИБП с защитой от КЗ.

Доработка №2

Теперь постараемся, в какой-то мере сгладить сетевое напряжение от выпрямителя. Для этого будем использовать дроссели и сглаживающий конденсатор. В моем случае использован готовый дроссель с двумя независимыми обмотками. Данный дроссель был снят от ИБП DVD проигрывателя, хотя можно использовать и самодельные дросселя.

После моста следует подключить электролит с емкостью 200мкФ с напряжением не менее 400 Вольт. Емкость конденсатора подбирается исходя из мощности блока питания 1мкФ на 1 ватт мощности. Но как вы помните, наш БП рассчитан на 105 Ватт, почему же конденсатор использован на 200мкФ? Это поймете уже совсем скоро.

Доработка №3

Теперь о главном — умощнение электронного трансформатора и реально ли это? На самом деле есть только один надежный способ умощнения без особых переделок.

Для умощнения удобно использовать ЭТ с кольцевым трансформатором, поскольку нужно будет перемотать вторичную обмотку, именно по этой причине мы заменим наш трансформатор.

Сетевая обмотка растянута по всему кольцу и содержит 90 витков провода 0,5-0,65мм. Обмотка мотается на двух сложенных ферритовых кольцах, которые были сняты от ЭТ с мощностью 150 Ватт. Вторичная обмотка мотается исходя от нужд, в нашем случае она рассчитана на 12 Вольт.

Планируется увеличить мощность до 200 Ватт. Именно поэтому и нужен был электролит с запасом, о котором говорилось выше.

Конденсаторы полумоста заменяем на 0,5мкФ, в штатной схеме они имеют емкость 0,22 мкФ. Биполярные ключи MJE13007 заменяем на MJE13009.
Силовая обмотка трансформатора содержит 8 витков, намотка делалась 5-ю жилами провода 0,7мм, таким образом, имеем в первичке провод с общим сечением 3,5мм.

Идем дальше. Перед и после дросселей ставим пленочные конденсаторы с емкостью 0,22-0,47мкФ с напряжением не менее 400 Вольт (я использовал именно те конденсаторы, которые были на плате ЭТ и которые пришлось заменить для увеличения мощности).

Далее заменяем диодный выпрямитель. В стандартных схемах применяются обычные выпрямительные диоды серии 1N4007. Ток диодов составляет 1 Ампер, наша схема потребляет немало тока, поэтому диоды стоит заменить на более мощные, во избежание неприятных результатов после первого включения схемы. Можно использовать буквально любые выпрямительные диоды с током 1,5-2 Ампер, обратное напряжение не менее 400 Вольт.

Все компоненты, кроме платы с генератором смонтированы на макетной плате. Ключи были укреплены на теплоотвод через изоляционные прокладки.

Продолжаем нашу переделку электронного трансформатора, дополнив схему выпрямителем и фильтром.
Дросселя намотаны на кольцах из порошкового железа (сняты от компьютерного БП), состоят из 5-8 витков. Намотку удобно сделать сразу 5-ю жилами провода с диаметром 0,4-0,6мм каждая жила.

Сглаживающий конденсатор подбираем с напряжением 25-35 Вольт, в качестве выпрямителя применен один мощный диод шоттки (диодные сборки из компьютерного блока питания). Можно использовать любые быстрые диоды с током 15-20 Ампер.

>Электронный трансформатор

Устройство и схема электронного трансформатора

Электронные трансформаторы приходят на смену громоздким трансформаторам со стальным сердечником. Сам по себе электронный трансформатор, в отличие от классического, представляет собой целое устройство – преобразователь напряжения.

Применяются такие преобразователи в освещении для питания галогенных ламп на 12 вольт. Если вы ремонтировали люстры с пультом управления, то, наверняка, встречались с ними.

Вот схема электронного трансформатора JINDEL (модель GET-03) с защитой от короткого замыкания.

Как видим, схема довольно проста и собрана из радиодеталей, которые легко обнаружить в любом электронном балласте для питания люминесцентных ламп, а также в лампах – «экономках».

Основными силовыми элементами схемы являются n-p-n транзисторы MJE13009, которые включены по схеме полумост. Они работают в противофазе на частоте 30 — 35 кГц. Через них прокачивается вся мощность, подаваемая в нагрузку – галогенные лампы EL1…EL5. Диоды VD7 и VD8 необходимы для защиты транзисторов V1 и V2 от обратного напряжения. Симметричный динистор (он же диак) необходим для запуска схемы.

На транзисторе V3 (2N5551) и элементах VD6, C9, R9 — R11 реализована схема защиты от короткого замыкания на выходе (short circuit protection).

Если в выходной цепи произойдёт короткое замыкание, то возросший ток, протекающий через резистор R8, приведёт к срабатыванию транзистора V3. Транзистор откроется и заблокирует работу динистора DB3, который запускает схему.

Резистор R11 и электролитический конденсатор С9 предотвращают ложное срабатывание защиты при включении ламп. В момент включения ламп нити холодные, поэтому преобразователь выдаёт в начале пуска значительный ток.

Для выпрямления сетевого напряжения 220V используется классическая мостовая схема из 1,5-амперных диодов 1N5399.

В качестве понижающего трансформатора используется катушка индуктивности L2. Она занимает почти половину пространства на печатной плате преобразователя.

В силу своего внутреннего устройства, электронный трансформатор не рекомендуется включать без нагрузки. Поэтому, минимальная мощность подключаемой нагрузки составляет 35 — 40 ватт. На корпусе изделия обычно указывается диапазон рабочих мощностей. Например, на корпусе электронного трансформатора, что на первой фотографии указан диапазон выходной мощности: 35 — 120 ватт. Минимальная мощность нагрузки его составляет 35 ватт.

Галогенные лампы EL1…EL5 (нагрузку) лучше подключать к электронному трансформатору проводами не длиннее 3 метров. Так как через соединительные проводники протекает значительный ток, то длинные провода увеличивают общее сопротивление в цепи. Поэтому лампы, расположенные дальше будут светить тусклее, чем те, которые расположены ближе.

Также стоит учитывать и то, что сопротивление длинных проводов способствует их нагреву из-за прохождения значительного тока.

Стоит также отметить, что из-за своей простоты электронные трансформаторы являются источниками высокочастотных помех в сети. Обычно, на входе таких устройств ставится фильтр, который блокирует помехи. Как видим по схеме, в электронных трансформаторах для галогенных ламп нет таких фильтров. А вот в компьютерных блоках питания, которые собираются также по схеме полумоста и с более сложным задающим генератором, такой фильтр, как правило, монтируется.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

  • Как определить мощность трансформатора?

  • Блок питания на 12 вольт своими руками.

  • Типы выпрямителей переменного тока.

Электронные трансформаторы. Устройство и работа. Особенности

Рассмотрим основные преимущества, достоинства и недостатки электронных трансформаторов. Рассмотрим схему их работы. Электронные трансформаторы появились на рынке совсем недавно, но успели завоевать широкую популярность не только в радиолюбительских кругах.

В последнее время в интернете часто наблюдаются статьи на основе электронных трансформаторов: самодельные блоки питания, зарядные устройства и многое другое. На самом деле электронные трансформаторы являются простым сетевым импульсным блоком питания. Это самый дешевый блок питания. Зарядное устройство для телефона стоит дороже. Электронный трансформатор работает от сети 220 вольт.

Устройство и принцип действия
Схема работы

Генератором в этой схеме является диодный тиристор или динистор. Сетевое напряжение 220 В выпрямляется диодным выпрямителем. На входе питания присутствует ограничительный резистор. Он одновременно служит и предохранителем, и защитой от бросков сетевого напряжения при включении. Рабочую частоту динистора можно определить от номиналов R-С цепочки.

Таким образом можно увеличить рабочую частоту генератора всей схемы или уменьшить. Рабочая частота в электронных трансформаторах от 15 до 35 кГц, ее можно регулировать.

Трансформатор обратной связи намотан на маленьком колечке сердечника. В нем присутствуют три обмотки. Обмотка обратной связи состоит из одного витка. Две независимые обмотки задающих цепей. Это базовые обмотки транзисторов по три витка.

Это равноценные обмотки. Ограничительные резисторы предназначены для предотвращения ложных срабатываний транзисторов и одновременно ограничения тока. Транзисторы применяются высоковольтного типа, биполярные. Часто используют транзисторы MGE 13001-13009. Это зависит от мощности электронного трансформатора.

Первичная или сетевая обмотка состоит из 85 витков провода диаметром 0,5-0,6 мм. Используются маломощные выпрямительные диоды с обратным напряжением в 1 кВ и током в 1 ампер. Это самый дешевый выпрямительный диод, который можно найти серии 1N4007.

На схеме детально виден конденсатор, частотно задающий цепи динистора. Резистор на входе предохраняет от бросков напряжения. Динистор серии DB3, его отечественный аналог КН102. Также имеется ограничивающий резистор на входе. Когда напряжение на частотно задающем конденсаторе достигает максимального уровня, происходит пробой динистора. Динистор – это полупроводниковый искровой разрядник, который срабатывает при определенном напряжении пробоя. Тогда он подает импульс на базу одного из транзисторов. Начинается генерация схемы.

Транзисторы работают по противофазе. Образуется переменное напряжение на первичной обмотке трансформатора заданной частоты срабатывания динистора. На вторичной обмотке мы получаем нужное напряжение. В данном случае все трансформаторы рассчитаны на 12 вольт.

Электронные трансформаторы китайского производителя Taschibra

Он предназначен для питания галогенных ламп на 12 вольт.

Со стабильной нагрузкой, как галогенные лампы, такие электронные трансформаторы могут работать бесконечно долго. Во время работы схема перегревается, но не выходит из строя.

Принцип действия

Подается напряжение 220 вольт, выпрямляется диодным мостом VDS1. Через резисторы R2 и R3 начинает заряжаться конденсатор С3. Заряд продолжается то тех пор, пока не пробьется динистор DB3.

Напряжение открытия этого динистора составляет 32 вольта. После его открытия на базу нижнего транзистора поступает напряжение. Транзистор открывается, вызывая автоколебания этих двух транзисторов VT1 и VT2. Как работают эти автоколебания?

Ток начинает поступать через С6, трансформатор Т3, трансформатор управления базами JDT, транзистор VT1. При прохождении через JDT он вызывает закрытие VT1 и происходит открытие VT2. После этого ток течет через VT2, через трансформатор баз, Т3, С7. Транзисторы постоянно открывают и закрывают друг друга, работают в противофазе. В средней точке появляются прямоугольные импульсы.

Частота преобразования зависит от индуктивности обмотки обратной связи, емкости баз транзисторов, индуктивности трансформатора Т3 и емкостей С6, С7. Поэтому частотой преобразования управлять очень сложно. Еще частота зависит от нагрузки. Для форсирования открытия транзисторов используются ускоряющие конденсаторы на 100 вольт.

Для надежного закрытия динистора VD3 после возникновения генерации прямоугольные импульсы прикладываются к катоду диода VD1, и он надежно запирает динистор.

Кроме этого, есть устройства, которые используют для осветительных приборов, питают мощные галогенные лампы в течение двух лет, работают верой и правдой.

Блок питания на основе электронного трансформатора

Сетевое напряжение через ограничительный резистор поступает на диодный выпрямитель. Сам диодный выпрямитель состоит из 4-х маломощных выпрямителей с обратным напряжением в 1 кВ и током 1 ампер. Такой же выпрямитель стоит на блоке трансформатора. После выпрямителя постоянное напряжение сглаживается электролитическим конденсатором. От резистора R2 зависит время заряда конденсатора С2. При максимальном заряде срабатывает динистор, возникает пробой. На первичной обмотке трансформатора образуется переменное напряжение частоты срабатывания динистора.

Основное достоинство этой схемы – это наличие гальванической развязки с сетью 220 вольт. Основным недостатком является малый выходной ток. Схема предназначена для питания малых нагрузок.

Электронные трансформаторы DM-150T06A

Потребление тока 0,63 ампера, частота 50-60 герц, рабочая частота 30 килогерц. Такие электронные трансформаторы предназначены для питания более мощных галогенных ламп.

Достоинства и преимущества

Если использовать приборы по прямому назначению, то имеется хорошая функция. Трансформатор не включается без входной нагрузки. Если вы просто включили в сеть трансформатор, то он не активен. Нужно подключить на выход мощную нагрузку, чтобы началась работа. Эта функция экономит электроэнергию. Для радиолюбителей, которые переделывают трансформаторы в регулируемый блок питания, это является недостатком.

Можно реализовать систему автовключения и систему защиты от короткого замыкания. Несмотря на имеющиеся недостатки, электронный трансформатор всегда будет самой дешевой разновидностью блоков питания полумостового типа.

В продаже можно найти более качественные недорогие блоки питания с отдельным генератором, но все они реализуются на основе полумостовых схем с применением самотактируемых полумостовых драйверов, таких как IR2153 и ему подобные. Такие электронные трансформаторы гораздо лучше работают, более стабильны, реализована защита от короткого замыкания, на входе сетевой фильтр. Но старая Taschibra остается незаменимой.

Недостатки электронных трансформаторов

Они имеют ряд недостатков, несмотря на то, что они сделаны по хорошим схемам. Это отсутствие каких-либо защит в дешевых моделях. У нас простейшая схема электронного трансформатора, но она работает. Именно эта схема реализована в нашем примере.

На входе питания отсутствует сетевой фильтр. На выходе после дросселя должен стоять хотя бы сглаживающий электролитический конденсатор на несколько микрофарад. Но он тоже отсутствует. Поэтому на выходе диодного моста мы можем наблюдать нечистое напряжение, то есть, все сетевые и другие помехи передаются на схему. На выходе мы получаем минимальное количество помех, так как реализована гальваническая развязка.

Рабочая частота динистора крайне неустойчива, зависит от выходной нагрузки. Если без выходной нагрузки частота составляет 30 кГц, то с нагрузкой может наблюдаться довольно большой спад до 20 кГц, зависит от конкретной нагруженности трансформатора.

Еще одним недостатком можно назвать то, что на выходе этих устройств переменная частота и ток. Чтобы использовать электронные трансформаторы в качестве блока питания, нужно выпрямить ток. Выпрямлять нужно импульсными диодами. Обычные диоды тут не подходят из-за повышенной рабочей частоты. Поскольку в таких блоках питания не реализованы никакие защиты, то стоит лишь замкнуть выходные провода, блок не просто выйдет из строя, а взорвется.

Одновременно при коротком замыкании ток в трансформаторе увеличивается до максимума, поэтому выходные ключи (силовые транзисторы) просто лопнут. Выходит из строя и диодный мост, поскольку они рассчитаны на рабочий ток в 1 ампер, а при коротком замыкании рабочий ток резко увеличивается. Выходят также из строя ограничительные резисторы транзисторов, сами транзисторы, диодный выпрямитель, предохранитель, который должен предохранять схему, но не делает этого.

Еще несколько компонентов могут выйти из строя. Если у вас имеется такой блок электронного трансформатора, и он случайно выходит по каким-то причинам из строя, то ремонтировать его нецелесообразно, так как это не выгодно. Только один транзистор стоит 1 доллар. А готовый блок питания также можно купить за 1 доллар, совсем новый.

Мощности электронных трансформаторов

Сегодня в продаже можно найти разные модели трансформаторов, начиная от 25 ватт и заканчивая несколькими сотнями ватт. Трансформатор на 60 ватт выглядит следующим образом.

Производитель китайский, выпускает электронные трансформаторы мощностью от 50 до 80 ватт. Входное напряжение от 180 до 240 вольт, частота сети 50-60 герц, рабочая температура 40-50 градусов, выход 12 вольт.

О трансформаторах для питания галогеновых лампочек

Производство и продажа бытовых ламп накаливания запрещено в странах ЕС, но галогеновые лампочки (а они тоже используют спираль накала, но она регенерируется благодаря наполнению баллона специальным составом) пока разрешено. У нас они активно применяются, ибо всё везут из Китая, а они плевали на все запреты. Галогенки используются в качестве врезных светильниках как в фальшпотолках, в люстрах, в кухонной мебели, да и не только в кухонной. Бывают они двух видов — 12 вольт и 220 вольт. Ну и мощность потребления также бывает разной – 5, 10, 20 и более ватт. С лампами 220 вольт всё понятно: их просто включают прямо в сеть, а вот для тех, что работают от 12-ти необходимо специальное устройство преобразущее 220 вольт в 12. Кстати! Настоятельно рекомендую вообще не покупать и нигде не применять «точечные» галогенки на 220 вольт. У них феноменально низкая надежность, даже у тех, что произведены «крутыми» фирмами. Ну, разве если ставить устройство плавного включения.

А вот 12-вольтовые работают относительно надежно, другое дело, что в «игру» вступает этот самый преобразователь. Еще в 90-е годы им был обычный трансформатор на 50 Гц, большой и тяжелый. Причем на каждую лампочку нужно было ставить свой отдельный трансформатор. Я в начале 90-х годов делал электрику в очень крутом (по тогдашним меркам) магазине автозапчастей, там в потолок было вмонтировано штук 30 таких ламп, от каждой шло два провода в специальный бокс где мы разместили трансформаторы. По данным на 2010 год все трансформаторы работали, хотя лампочки, конечно менять приходилось, хоть и редко. Сейчас такие трансформаторы тоже можно купить, но стоят они дорого – где то 20 долларов штука. И покупает их мало кто, а может и вообще никто. В ходу – импульсные высокочастотные преобразователи! Маленькие, но такие что тянут по 50-60 ватт (так написано на корпусе), то есть можно подключить к ним 2-3 лампы.

Всё бы ничего, но! Преобразователи бывают двух видов – дешевые и дорогие. Минимум 95% рынка – дешевые преобразователи. 5% — дорогие, но дороговизна – не гарантия от поломок. Вообще, я вам скажу так: в настоящее время электронная промышленность могла бы производить просто феноменально надежные преобразователи, но таковые никто не производит, во всяком случае, мне не попадались. Те что дорогие отличаются от дешевых не качеством деталей (они везде одинаковы), а некоторыми схемными «наворотами» которые действительно снижают вероятность выхода изделия по крайней мере в течении гарантийного срока. И если дешевые преобразователи на 220-12 вольт 50-60 ватт стоят 3-4 доллара, то дорогой — 12-15, а иногда и больше.

Сегодня мы поговорим о ремонте дешевых, благо их тут у меня нарисовалось штук десять. Вообще, почти все их предпочитают выкидывать, но смех в том, что покупая новый дешевый преобразователь, вы не получаете никакой гарантии что он у вас не вылетит через пару часов работы. А имея тестер, паяльник и руки растущие из нужного места, можно быстро отремонтировать эти штуковины. И как китайские производители еще не додумались заливать их эпоксидкой?

Вот они. Фирма Feron. Герман Технолоджи, фор лоу-вольтс халоген лэмпс. Ну в общем вы поняли,да? 60 ватт. То есть 5 ампер на выходе. Нехило, для такой мелкой штуковины. Правда они все не работают, а одна, как вы видите даже расплавилась. Обратим внимание, что корпус герметичный, то есть там нет никакой вентиляции. Вот точно также сейчас делают корпуса блоков питания для ноутбуков – герметично склеивают. Оттого вылетают эти блоки пачками. В половине случаев, причина – перегрев элементов. То же самое лампы-экономки. Белый цоколь где размещена схема – совершенно герметичен, хотя должен быть как решетка. Вентиляции — ноль. Понятно, что это сделано для того, чтобы долго ничего не работало.

Проводим вскрытие. Обращаем внимание на «радиаторы». И это у штуковины которая выдает 5 ампер на выходе:

Срисовываем схему:

Схема преобразователя в варианте 1 феноменально проста. По сути – самое простое что можно вообразить, здесь даже нельзя выкинуть ни одной делали. Самый минимум чтобы работало. Диодный мост, RC цепь плюс динистор для запуска генератора, сам генератор собранный по полумостовой схеме и понижающий трансформатор. На входе – низкоомный резистор выполняющий функции предохранителя. Он должен героически сгореть в случае наступления аварийного режима, никаких других защит принципиально не предусмотрено. И это всё собрано их самых дешевых деталей. Единственное к чему нет претензий – к трансформаторам, они сделаны нормально.

Вариант 2 вообще мутный. Да, они вставили в эмиттерные цепи резисторы R5-R6, типа «ограничение тока», но это глупо и бессмысленно, если не предусмотрено никакой блокировки транзисторов или другого способа срыва генерации в случае превышения этого самого тока. И совершенно непонятно назначение цепи выделенной красным цветом. Какой-то местный китайский креатив.

Начинаем проверять детали омметром, не выпаивая их из платы:

  1. В 8 платах из 10 обнаруживаем что сопротивление резистора R1 – бесконечность. То есть он сгорел. В некоторых случаях даже видно растрескавшийся корпус. Это фактически со 100% вероятностью говорит о том, что сгорело 2 силовых транзистора (в этой схеме если сгорает один, автоматически сгорает и второй). То есть сразу меняем и резистор и транзисторы. Впрочем, транзисторы на всякий случай проверяем (прямо в плате) и выясняем, что в некоторых блоках они вылетели странным образом: коллекторный переход имеет нулевое сопротивление, а эмиттерный – бесконечное. Это означает что, скорее всего, вылетели и резисторы R3-R4 в цепи баз. Проверяем омметром. Так и есть. Смотрим через «очки» и видим трещины и облезший лак. Да, в схеме по варианту 2 разумеется разорваны транзисторы в цепи эмиттера. Иначе – никак. Меняем.

Видно как потемнела плата под транзисторами. Очевидно что они перегревались.

  1. Симметричный динистор V1 проверить омметром нельзя. В норме он должен давать бесконечность в обе стороны. Но даже если он и дает, это не факт что он работает. Впрочем, в моем варианте рабочими оказались все 10 динисторов.
  2. Конечно, не может идти и речь об эксплуатации транзисторов с такими, с позволения сказать, «радиаторами». Усиливаем их и вырезаем кусок корпуса, дабы создать естественное охлаждение. Трансы будут помещены в недоступное место, так что за безопасность можно не волноваться. В крайнем случае, одеть термоусадочный кембрик.
  3. После всех замен и усовершенствований, включаем штуковину. Профит! На 20 ваттной лампочке после часа работы радиатор едва нагрелся до 35 градусов. Это нормально. Хотя мой совет: эксплуатируйте эти трансформаторы максимум в 2/3 заявленной мощности. А лучше – в половину.

4. В двух других трансформаторах собранных по варианту 1 оказался неисправным конденсатор C1. Причем он был не пробитым, но высохшим. То есть потерял емкость. Уверен что это было из-за перегрева — данным тип конденсаторов вообще плохо держит температуру.

О ремонте дорогих преобразователей для галогенок я расскажу в другой раз. В настоящее время я заканчиваю делать свой преобразователь на базе данного «Ферона», который, по моему мнению, должен быть лишен всех явных недостатков и работать надежно.

Можно конечно задать себе вопрос – а нафига их вообще чинить? Стоит ли затраты полученного результата? Давайте подсчитаем. Вот у меня было 10 преобразователей. Каждый по 4 доллара. Итого – 40 долларов. 2 транзистора стоят 2×0,3 = 0,6 долл. Резистор – 0,05 долл. При этом резисторы вылетели не во всех преобразователях. В общем, весь ремонт обошелся в 6 долл. Профит — 34 долл. и примерно два часа работы. С дорогими – еще выгоднее.

В заключении представляю еще 2 схемы. Их я нашел в инете, они похожи на мои, но всё же отличаются.

Галогеновые лампы с каждым днем все активнее применяются в украшении различных торговых комплексов и витрин. Яркая цветовая гамма, насыщенность в передаче изображения придают им все большую популярность. Срок их службы намного больше, чем у обычных ламп. При этом они могут длительно работать без выключения. В галогенках используются нити накала, но процесс свечения, в сравнении с лампами накаливания, у них отличается благодаря наполнению баллона особым составом. Такие лампочки используются в различных светильниках, люстрах, кухонной мебели и бывают 220 и 12 вольтовые. Блок питания для галогенок напряжением 12 вольт необходим, потому что при прямом их включении в электрическую сеть произойдет короткое замыкание.

Технические характеристики

Вольтаж галогенок бывает не только 220 и 12 вольт. В продаже можно найти лампочки на 24 и даже на 6 вольт. Мощность тоже может быть различной – 5, 10, 20 ватт. Галогеновые лампы от 220 В включаются прямо в сеть. Тем, которые работают от 12 В, необходимы специальные устройства, преобразующие ток из сети для 12 вольт, – так называемые трансформаторы или специальные блоки питания.

Двенадцативольтовые галогенки работают очень хорошо. Раньше, в 90-е годы, применялся трансформатор больших размеров на 50 Гц, который обеспечивал работу только одной галогеновой лампы. В современном освещении применяются импульсные высокочастотные преобразователи. По размерам очень маленькие, но могут потянуть 2 – 3 лампы одновременно.

На современном рынке встречаются как дорогие, так и дешевые блоки питания. В процентном соотношении дорогих продается около 5 %, а дешевки намного больше. Хотя, в принципе, дороговизна – это еще не гарантия надежности. В крутых преобразователях, к сожалению, не используются высококачественные детали, а лишь применяются хитроумные схемные «навороты», способствующие нормальной работе блока питания хотя бы в течение гарантийного срока. Как только он заканчивается, устройство сгорает.

Трансформаторы для галогеновых ламп

Разбор будет проведен на примере блока питания фирмы «Ферон Герман Технолоджи». На выходе этот трансформатор имеет ни много ни мало – 5 ампер. Для такой небольшой коробочки значение потрясающее. Корпус сделан герметичным способом, с отсутствием всякого рода вентиляции. Наверное, поэтому некоторые экземпляры таких блоков питания плавятся от высокой температуры.

Схема преобразователя в первом варианте очень простая. Настолько минимален набор всех деталей, что вряд ли из нее можно что-то выкинуть. При перечислении видим:

  • мост из диодов;
  • RC цепь с динистором, чтобы запустился генератор;
  • генератор, собранный на полумостовой схеме;
  • трансформатор, понижающий входное напряжение;
  • низкоомный резистор, который служит в качестве предохранителя.

При большом перепаде напряжения такой преобразователь на 100% «сдохнет», приняв весь «удар» на себя. Все выполнено из довольно дешевого набора деталей. Лишь к трансформаторам нет никаких нареканий, потому что они сделаны на совесть.

Второй вариант выглядит очень слабым и недоработанным. В эмиттерные цепи вставлены резисторы R5 и R6 для ограничения тока. При этом совершенно не продумана блокировка транзисторов в случае резкого повышения тока (ее просто нет!). Сомнение вызывает электрическая цепь (на схеме она красным цветом).

Фирма «Ферон Герман Технолоджи» выпускает галогеновые лампы мощностью до 60 ватт. Сила тока блока питания на выходе получается 5 ампер. Это многовато для такой лампочки.

При снятии крышки обратите особое внимание на размеры радиатора. Для выходных 5 ампер они очень маленькие.

Расчет мощности трансформатора для ламп и схема подключения

Продаются сегодня различные трансформаторы, поэтому существуют определенные правила подбора необходимой мощности. Не стоит брать трансформатор слишком мощный. Он будет работать практически вхолостую. Недостаток мощности приведет к перегреву и дальнейшему выходу устройства из строя.

Рассчитать мощность трансформатора можно самостоятельно. Задачка скорее математическая и по силам каждому начинающему электрику. Например, необходимо установить 8 точечных галогенок напряжением 12 В и мощностью 20 ватт. Общая мощность при этом составит 160 ватт. Берем с запасом на 10 % примерно и приобретаем мощностью 200 ватт.

Схема №1 выглядит примерно таким образом: на линии 220 стоит одноклавишный выключатель, при этом оранжевый и синий провод подсоединяются ко входу трансформатора (первичные клеммы).

На линии 12 вольт все лампы подключаются к трансформатору (на вторичные клеммы). Соединяющие медные провода обязательно должны иметь одинаковое сечение, иначе яркость у лампочек будет разная.

Еще одно условие: провод, соединяющий трансформатор с галогеновыми лампами, должен быть длиной не менее 1,5 метров, лучше, если 3. Если сделать его слишком коротким, он начнет греться, и яркость лампочек снизится.

Схема №2 – для подключения галогеновых светильников. Здесь можно поступить по-другому. Разбить, к примеру, шесть светильников на две части. Для каждой установить понижающий трансформатор. Правильность такого выбора обусловлена тем, что при поломке одного из блоков питания вторая часть светильников все-таки будет продолжать работать. Мощность одной группы составляет 105 ватт. С небольшим коэффициентом запаса получаем, что приобрести необходимо два трансформатора на 150 ватт.

Совет! Каждый понижающий трансформатор запитайте своими проводами и соедините их в распределительной коробке. Места соединения оставьте в свободном доступе.

Переделка блока питания своими руками

Для работы галогенных ламп начали применяться импульсные источники тока с высокочастотным преобразованием напряжения. При домашнем изготовлении и налаживании довольно часто сгорают дорогостоящие транзисторы. Так как питающее напряжение в первичных цепях достигает 300 вольт, то к изоляции предъявляются очень высокие требования. Все эти трудности вполне можно обойти, если приспособить готовый электронный трансформатор. Он применяется для питания 12-вольтовых галогенок в подсветке (в магазинах), которые запитываются от стандартной электросети.

Существует определенное мнение, что получить самодельный импульсный блок питания – дело нехитрое. Можно лишь добавить выпрямительный мост, сглаживающий конденсатор и стабилизатор напряжения. На самом деле все обстоит куда сложнее. Если к выпрямителю подключить светодиод, то при включении можно зафиксировать только одно зажигание. Если выключить и включить преобразователь в сеть снова, повторится еще одна вспышка. Чтобы появилось постоянное свечение, необходимо к выпрямителю подвести дополнительную нагрузку, которая, отбирая полезную мощность, превращала бы ее в тепло.

Один из вариантов самостоятельного изготовления импульсного блока питания

Описываемый блок питания вполне можно изготовить из электронного трансформатора мощностью 105 Вт. Практически этот трансформатор напоминает компактный импульсный преобразователь напряжения. Для сборки дополнительно понадобится согласующий трансформатор Т1, сетевой фильтр, выпрямительный мост VD1-VD4, выходной дроссель L2.

Схема двухполярного блока питания

Такой аппарат стабильно функционирует длительное время с усилителем низкой частоты мощностью 2х20 ватт. При 220 В и силе тока 0,1 А выходное напряжение будет 25 В, при увеличении силы тока до 2 ампер напряжение падает до 20 вольт, что считается нормальной работой.

Ток, минуя выключатель и предохранители FU1 и FU2, следует на фильтр, защищающий цепь от помех импульсного преобразователя. Середину конденсаторов С1 и С2 соединяют с экранирующим кожухом блока питания. Потом ток поступает на вход U1, откуда с выходных клемм пониженное напряжение подается на согласующий трансформатор Т1. Переменное напряжение с другой (вторичной обмотки) выпрямляет диодный мост и сглаживает фильтр L2C4C5.

Самостоятельная сборка

Трансформатор Т1 изготавливается самостоятельно. Число витков на вторичной обмотке влияет на выходное напряжение. Сам трансформатор выполнен на кольцевом магнитопроводе К30х18х7 из феррита марки М2000НМ. Первичная обмотка состоит из провода ПЭВ-2 диаметром 0,8 мм, сложенного вдвое. Вторичная обмотка состоит из 22 витков провода ПЭВ-2, сложенного вдвое. При соединении конца первой полуобмотки с началом второй получаем среднюю точку вторичной обмотки. Дроссель также изготавливаем самостоятельно. Его наматывают на таком же ферритовом кольце, обе обмотки содержат по 20 витков.

Выпрямительные диоды располагаются на радиаторе площадью не менее 50 кв.см. Обратите внимание, что диоды, у которых аноды соединены с минусовым выходом, изолируются от теплоотвода слюдяными прокладками.

Сглаживающие конденсаторы С4 и С5 состоят из трех параллельно включенных К50-46 емкостью по 2200 мкФ каждый. Такой способ применяется, чтобы снизить общую индуктивность электролитических конденсаторов.

На входе блока питания лучше будет установить сетевой фильтр, но возможна работа и без него. Для дросселя сетевого фильтра можно использовать ДФ 50 Гц.

Все детали блока питания располагаются навесным монтажом на плате из изоляционного материала. Полученная конструкция помещается в экранирующий кожух из тонкой листовой латуни или луженой жести. В нем не забудьте просверлить отверстия для вентиляции воздуха.

Правильно собранный блок питания не нуждается в налаживании и начинает сразу же работать. Но на всякий случай можно проверить его работоспособность с помощью подключения на выход резистора сопротивлением 240 Ом, мощностью рассеяния 3 Вт.

Электронные трансформаторы схемы с печатной платой. Как устроен электронный трансформатор. Детали, которые понадобятся для переделки

Устройство имеет достаточно простую схему. Простой двухтактный автогенератор, который выполнен по полумостовой схеме, рабочая частота порядка 30кГц, но этот показатель сильно зависит от выходной нагрузки.

Схема такого блока питания очень не стабильна, не имеет никаких защит от КЗ на выходе трансформатора, пожалуй именно из-за этого, схема пока не нашла широкого применения в радиолюбительских кругах. Хотя в последнее время на разных форумах наблюдается продвижение данной темы. Люди предлагают различные варианты доработки таких трансформаторов. Я сегодня попытаюсь все эти доработки совместить в одной статье и предложить варианты не только доработки, но и умощнения ЭТ.

В основу работы схемы углубляться не будем, а сразу приступим к делу.
Мы попытаемся доработать и увеличить мощность китайского ЭТ Taschibra на 105 Ватт.

Для начала хочу пояснить, по какой причине я решил взяться за умощнение и переделку таких трансформаторов. Дело в том, что недавно сосед попросил сделать ему на заказ зарядное устройство для автомобильного аккумулятора, который был бы компактным и легким. Собирать не хотелось, но позже я наткнулся на интересные статьи в которых рассматривалась переделка электронного трансформатора. Это натолкнуло на мысль — почему бы не попробовать?

Таким образом, были приобретены несколько ЭТ от 50 до 150 Ватт, но опыты с переделкой не всегда завершались успешно, из всех выжил только ЭТ на 105 Ватт. Недостатком такого блока является то, что трансформатор у него не кольцевой, в связи с чем неудобно отмотать или домотать витки. Но другого выбора не было и пришлось переделать именно этот блок.

Как нам известно, эти блоки не включаются без нагрузки, это не всегда является достоинством. Я планирую получить надежное устройство, которое можно свободно применять в любых целях, не боясь, что блок питания может перегореть или выйти из строя при КЗ.

Доработка №1

Суть идеи заключается в добавлении защиты от КЗ, также устранения вышеуказанного недостатка (активация схемы без выходной нагрузки или с маломощной нагрузкой).


Глядя на сам блок, мы можем увидеть простейшую схему ИБП, я бы сказал, что схема не до конца отработана производителем. Как мы знаем, если замкнуть вторичную обмотку трансформатора, то меньше, чем за секунду схема выйдет из строя. Ток в схеме резко возрастает, ключи в миг выходят из строя, иногда и базовые ограничители. Таким образом, ремонт схемы обойдется дороже стоимости (цена такого ЭТ порядка 2,5$).


Трансформатор обратной связи состоит из трех отдельных обмоток. Две из этих обмоток питают базовые цепи ключей.

Для начала удаляем обмотку связи на трансформаторе ОС и ставим перемычку. Эта обмотка включена последовательно с первичной обмоткой импульсного трансформатора.
Затем на силовом трансформаторе мотаем всего 2 витка и один виток на кольце (трансформаторе ОС). Для намотки можно использовать провод с диаметром 0,4-0,8мм.



Далее нужно подобрать резистор для ОС, в моем случае он на 6,2 ОМ, но резистор можно подобрать с сопротивлением 3-12 Ом, чем выше сопротивление этого резистора, тем меньше ток защиты от КЗ. Резистор в моем случае использован проволочный, чего делать не советую. Мощность этого резистора подбираем 3-5 ватт (можно использовать от 1 до 10 ватт).


Во время КЗ на выходной обмотке импульсного трансформатора ток во вторичной обмотке падает (в стандартных схемах ЭТ при КЗ ток возрастает, выводя из строя ключи). Это приводит к уменьшению тока на обмотке ОС. Таким образом, прекращается генерация, сами ключи запираются.

Единственным недостатком такого решение является то, что при долговременном КЗ на выходе, схема выходит из строя, поскольку ключи греются и достаточно сильно. Не стоит подвергать выходную обмотку КЗ с длительностью более 5-8 секунд.

Схема теперь будет заводиться без нагрузки, одним словом мы получили полноценный ИБП с защитой от КЗ.


Доработка №2

Теперь постараемся, в какой-то мере сгладить сетевое напряжение от выпрямителя. Для этого будем использовать дроссели и сглаживающий конденсатор. В моем случае использован готовый дроссель с двумя независимыми обмотками. Данный дроссель был снят от ИБП DVD проигрывателя, хотя можно использовать и самодельные дросселя.


После моста следует подключить электролит с емкостью 200мкФ с напряжением не менее 400 Вольт. Емкость конденсатора подбирается исходя из мощности блока питания 1мкФ на 1 ватт мощности. Но как вы помните, наш БП рассчитан на 105 Ватт, почему же конденсатор использован на 200мкФ? Это поймете уже совсем скоро.

Доработка №3

Теперь о главном — умощнение электронного трансформатора и реально ли это? На самом деле есть только один надежный способ умощнения без особых переделок.

Для умощнения удобно использовать ЭТ с кольцевым трансформатором, поскольку нужно будет перемотать вторичную обмотку, именно по этой причине мы заменим наш трансформатор.

Сетевая обмотка растянута по всему кольцу и содержит 90 витков провода 0,5-0,65мм. Обмотка мотается на двух сложенных ферритовых кольцах, которые были сняты от ЭТ с мощностью 150 Ватт. Вторичная обмотка мотается исходя от нужд, в нашем случае она рассчитана на 12 Вольт.

Планируется увеличить мощность до 200 Ватт. Именно поэтому и нужен был электролит с запасом, о котором говорилось выше.

Конденсаторы полумоста заменяем на 0,5мкФ, в штатной схеме они имеют емкость 0,22 мкФ. Биполярные ключи MJE13007 заменяем на MJE13009.
Силовая обмотка трансформатора содержит 8 витков, намотка делалась 5-ю жилами провода 0,7мм, таким образом, имеем в первичке провод с общим сечением 3,5мм.

Идем дальше. Перед и после дросселей ставим пленочные конденсаторы с емкостью 0,22-0,47мкФ с напряжением не менее 400 Вольт (я использовал именно те конденсаторы, которые были на плате ЭТ и которые пришлось заменить для увеличения мощности).


Далее заменяем диодный выпрямитель. В стандартных схемах применяются обычные выпрямительные диоды серии 1N4007. Ток диодов составляет 1 Ампер, наша схема потребляет немало тока, поэтому диоды стоит заменить на более мощные, во избежание неприятных результатов после первого включения схемы. Можно использовать буквально любые выпрямительные диоды с током 1,5-2 Ампер, обратное напряжение не менее 400 Вольт.

Все компоненты, кроме платы с генератором смонтированы на макетной плате. Ключи были укреплены на теплоотвод через изоляционные прокладки.

Продолжаем нашу переделку электронного трансформатора, дополнив схему выпрямителем и фильтром.
Дросселя намотаны на кольцах из порошкового железа (сняты от компьютерного БП), состоят из 5-8 витков. Намотку удобно сделать сразу 5-ю жилами провода с диаметром 0,4-0,6мм каждая жила.


Сглаживающий конденсатор подбираем с напряжением 25-35 Вольт, в качестве выпрямителя применен один мощный диод шоттки (диодные сборки из компьютерного блока питания). Можно использовать любые быстрые диоды с током 15-20 Ампер.


Для сборки самодельных мощных источников питания можно использовать электронные трансформаторы, применяемые для питания галогенных ламп. Электронный трансформатор представляет собой полумостовой автогенераторный импульсный преобразователь напряжения. Стоят такие импульсные трансформаторы достаточно дёшево, и после небольшой доработки их можно использовать для питания своих самодельных устройств требующих мощного источника питания.
При небольших размерах они обеспечивают большую выходную мощность, но у них есть определённые недостатки, такие как: нежелание запуститься без нагрузки, выход из строя при коротком замыкании, и очень сильный уровень помех.

Классическая схема электронного трансформатора на примере Taschibra
, но это может быть и любой другой электронный трансформатор, к примеру ZORN New, приведена ниже.

Напряжение сети поступает на диодный мост. Выпрямленное напряжение питает полумостовой преобразователь на транзисторах. В диагональ моста, образованного этими транзисторами и конденсаторами С1, С2, включена обмотка I импульсного трансформатора Т2. Запуск преобразователя обеспечивается цепью, состоящей из резисторов R3, конденсатора С3, диода D5 и диака D6. Трансформатор обратной связи Т1 имеет три обмотки — обмотка обратной связи по току, которая включена последовательно с первичной обмоткой силового трансформатора (то есть чем больше ток нагрузки — тем больше ток базы ключей, поэтому трансформатор не запускается без нагрузки, или при малой нагрузке напряжение меньше 12В, да и при коротком замыкании базовый ток ключей растет и они выходят из строя, а часто еще и резисторы в базовых цепях), и две обмотки по 3 витка, питающие базовые цепи транзисторов. Выходное напряжение электронного трансформатора представляет собой прямоугольные импульсы частотой 40 кГц, промодулированные частотой 100 Гц.

Внешний вид платы ZORN New 150 и обратная сторона


Первая проблема отсутствия запуска без нагрузки или при малой нагрузке устраняется довольно просто — меняем ОС (обратную связь) по току на ОС по напряжению. Удаляем обмотку ОС по току на коммутирующем трансформаторе и ставим вместо нее перемычку. Далее наматываем 1-2 витка на силовом трансформаторе и 1 на коммутирующем, используем резистор в ОС от 3-10 Ом мощностью не меньше 3 — 5 ватт, чем выше сопротивление — тем меньше ток защиты от КЗ. Этим токоограничивающим резистором устанавливается частота преобразования. При увеличении тока нагрузки частота становится больше. Если преобразователь не запустится необходимо изменить направление намотки.

Подключаем на выходе выпрямительного моста конденсатор, для сглаживания пульсаций выпрямленного напряжения. Емкость выбирается из расчета 1 — 1,5 мкФ на 1Вт. Рабочее напряжение конденсатора должно быть не менее 400В. При включении в сеть выпрямительного моста с конденсатором возникает бросок тока, поэтому нужно в разрыв одного из сетевых проводов включить терморезистор NTC или резистор 4,7 Ом 5Вт.

Если необходимо другое выходное напряжение, перематываем вторичную обмотку силового трансформатора. Самое простое, это посчитать количество витков вторичной обмотки на силовом трансформаторе, к примеру в электронном трансформаторе ZORN New 150 — 8 витков вторичной обмотки при выходном напряжении 11,8 вольт, соответственно получаем 1,47 вольт/виток. Необходимо также учитывать что, под нагрузкой напряжение упадет, примерно на 2 вольта. Диаметр провода выбирается исходя из тока нагрузки. Таким образом можно получить широкий спектр выходных напряжений от единиц до нескольких сотен вольт. Также можно намотать несколько обмоток для получения нескольких напряжений с одного блока питания, естественно при этом нужно учитывать суммарную мощность электронного трансформатора.

Для выпрямления переменного напряжения на выходе электронного трансформатора устанавливаем диодный мост. Электронные трансформаторы плохо работают с емкостной нагрузкой или не запускаются вообще. Для нормальной работы необходим плавный запуск устройства. Обеспечению плавного запуска способствует дроссель L1. Совместно с конденсатором он также выполняет функцию фильтрации выпрямленного напряжения. Емкость выходного конденсатора желательно подобрать из расчёта не менее 10 мкф на 1 ватт потребляемой нагрузки. Параллельно желательно поставить конденсатор емкостью 0.1 мкф.

Схема электронного трансформатора с переделками.

В нём применяются транзисторы . Даташит на него

Динистор И немного о динисторе.

DB3 — популярный зарубежный двусторонний динистор — диак. Выполнен в стеклянном цилиндрическом корпусе с гибкими проволочными выводами.

Наибольшее распространение прибор DB3 нашел в схемах сетевых регуляторов мощности нагрузки (диммеров).

Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.

В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.

Поскольку DB3 является симметричным динистором (оба его вывода являются анодами), то нет абсолютно ни какой разницы, как его подключать.

Характеристики:

  • (I откр — 0.2 А), В 5 — это напряжение при открытом состоянии;
  • Среднее максимально допустимое значение при открытом состоянии: А 0.3;
  • В открытом состоянии импульсный ток составляет А 2;
  • Максимальное напряжение (во время закрытого состояния): В 32;
  • Ток в закрытом состоянии: мкА — 10;
  • Максимальное импульсное не отпирающее напряжение составляет В 5.
  • Диапазон рабочих температур: C -40…70
Многие начинающие радиолюбители, и не только, сталкиваются с проблемами при изготовлении мощных источников питания. Сейчас в продаже появилось большое количество электронных трансформаторов, используемых для питания галогенных ламп. Электронный трансформатор представляет собой полумостовой автогенераторный импульсный преобразователь напряжения.
Импульсные преобразователи имеют высокий КПД, малые размеры и вес.
Стоят данные изделия не дорого, примерно 1рубль за один ватт. Их после доработки вполне можно использовать для питания радиолюбительских конструкций. В сети есть немало статей по этой теме. Хочу поделиться своим опытом переделки электронного трансформатора Taschibra 105W.

Рассмотрим принципиальную схему электронного преобразователя.
Напряжение сети через предохранитель поступает на диодный мост D1-D4 . Выпрямленное напряжение питает полумостовой преобразователь на транзисторах Q1 и Q2. В диагональ моста, образованного этими транзисторами и конденсаторами С1, С2, включена обмотка I импульсного трансформатора Т2. Запуск преобразователя обеспечивается цепью, состоящей из резисторов R1, R2, конденсатора С3, диода D5 и диака D6. Трансформатор обратной связи Т1 имеет три обмотки — обмотка обратной связи по току, которая включена последовательно с первичной обмоткой силового трансформатора, и две обмотки по 3 витка, питающие базовые цепи транзисторов.
Выходное напряжение электронного трансформатора представляет собой прямоугольные импульсы частотой 30 кГц, промодулированные частотой 100 Гц.


Для того, чтобы использовать электронный трансформатор в качестве источника питания, его необходимо доработать.

Подключаем на выходе выпрямительного моста конденсатор, для сглаживания пульсаций выпрямленного напряжения. Емкость выбирается из расчета 1мкФ на 1Вт. Рабочее напряжение конденсатора должно быть не менее 400В.
При включении в сеть выпрямительного моста с конденсатором возникает бросок тока, поэтому нужно в разрыв одного из сетевых проводов включить терморезистор NTC или резистор 4,7 Ом 5Вт. Это ограничит пусковой ток.

Если необходимо другое выходное напряжение, перематываем вторичную обмотку силового трансформатора. Диаметр провода (жгута из проводов) выбирается исходя из тока нагрузки.

Электронные трансформаторы имеют ОС по току, поэтому выходное напряжение будет изменяться в зависимости от нагрузки. Если нагрузка не подключена, трансформатор не запустится. Для того чтобы этого не было, нужно изменить схему обратной связи по току на ОС по напряжению.
Обмотку обратной связи по току удаляем и вместо нее на плате ставим перемычку. Затем пропускаем гибкий многожильный провод через силовой трансформатор и делаем 2 витка, далее пропускаем провод через трансформатор обратной связи и делаем один виток. Концы, пропущенного через силовой трансформатор и трансформатор обратной связи провода, соединяем через два параллельно соединенных резистора 6,8 Ом 5 Вт. Этим токоограничивающим резистором устанавливается частота преобразования (примерно 30кГц). При увеличении тока нагрузки частота становится больше.
Если преобразователь не запустится необходимо изменить направление намотки.

В трансформаторах Taschibra транзисторы прижаты к корпусу через картон, что небезопасно при эксплуатации. К тому же бумага очень плохо проводит тепло. Поэтому лучше установить транзисторы через теплопроводящую прокладку.
Для выпрямления переменного напряжения частотой 30кГц на выходе электронного трансформатора устанавливаем диодный мост.
Наилучшие результаты показали, из всех опробованных диодов, отечественные КД213Б (200В; 10А; 100кГц; 0,17мкс). При больших токах нагрузки они греются, поэтому их необходимо установить на радиатор через теплопроводящие прокладки.
Электронные трансформаторы плохо работают с емкостной нагрузкой или не запускаются вообще. Для нормальной работы необходим плавный запуск устройства. Обеспечению плавного запуска способствует дроссель L1. Совместно с конденсатором 100мкФ он также выполняет функцию фильтрации выпрямленного напряжения.
Дроссель L1 50мкГ наматывается на сердечнике Т106-26 фирмы Micrometals и содержит 24 витка проводом 1,2мм. Такие сердечники (жёлтого цвета, с одной гранью белого цвета) применяются в компьютерных блоках питания. Внешний диаметр 27мм, внутренний 14мм, и высота 12мм. Кстати, в убитых блоках питания можно найти и другие детали, в том числе терморезистор.

Если у вас есть шуруповерт или другой инструмент, у которого аккумуляторная батарея выработала свой ресурс, то в корпусе этой батареи можно поместить блок питания из электронного трансформатора. В результате у вас получится инструмент, работающий от сети.
Для стабильной работы на выходе блока питания желательно поставить резистор приблизительно 500 Ом 2Вт.

В процессе наладки трансформатора нужно быть предельно внимательным и аккуратным. На элементах устройства присутствует высокое напряжение. Не касайтесь фланцев транзисторов, чтобы проверить греются они или нет. Необходимо также помнить, что после выключения конденсаторы остаются заряженными некоторое время.

Электронный трансформатор — сетевой импульсный блок питания, который предназначен для питания галогенных ламп 12 Вольт. Подробнее о данном устройстве в статье « ». Устройство имеет достаточно простую схему. Простой двухтактный автогенератор, который выполнен по полумостовой схеме, рабочая частота порядка 30кГц, но этот показатель сильно зависит от выходной нагрузки. Схема такого блока питания очень не стабильна, не имеет никаких защит от КЗ на выходе трансформатора, пожалуй именно из-за этого, схема пока не нашла широкого применения в радиолюбительских кругах. Хотя в последнее время на разных форумах наблюдается продвижение данной темы. Люди предлагают различные варианты доработки таких трансформаторов. Я сегодня попытаюсь все эти доработки совместить в одной статье и предложить варианты не только доработки, но и умощнения ЭТ.

В основу работы схемы углубляться не будем, а сразу приступим к делу.
Мы попытаемся доработать и увеличить мощность китайского ЭТ Taschibra на 105 Ватт.

Для начала хочу пояснить, по какой причине я решил взяться за умощнение и переделку таких трансформаторов. Дело в том, что недавно сосед попросил сделать ему на заказ зарядное устройство для автомобильного аккумулятора, который был бы компактным и легким. Собирать не хотелось, но позже я наткнулся на интересные статьи в которых рассматривалась переделка электронного трансформатора. Это натолкнуло на мысль — почему бы не попробовать?

Таким образом, были приобретены несколько ЭТ от 50 до 150 Ватт, но опыты с переделкой не всегда завершались успешно, из всех выжил только ЭТ на 105 Ватт. Недостатком такого блока является то, что трансформатор у него не кольцевой, в связи с чем неудобно отмотать или домотать витки. Но другого выбора не было и пришлось переделать именно этот блок.

Как нам известно, эти блоки не включаются без нагрузки, это не всегда является достоинством. Я планирую получить надежное устройство, которое можно свободно применять в любых целях, не боясь, что блок питания может перегореть или выйти из строя при КЗ.

Доработка №1

Суть идеи заключается в добавлении защиты от КЗ, также устранения вышеуказанного недостатка (активация схемы без выходной нагрузки или с маломощной нагрузкой).

Глядя на сам блок, мы можем увидеть простейшую схему ИБП, я бы сказал, что схема не до конца отработана производителем. Как мы знаем, если замкнуть вторичную обмотку трансформатора, то меньше, чем за секунду схема выйдет из строя. Ток в схеме резко возрастает, ключи в миг выходят из строя, иногда и базовые ограничители. Таким образом, ремонт схемы обойдется дороже стоимости (цена такого ЭТ порядка 2,5$).

Трансформатор обратной связи состоит из трех отдельных обмоток. Две из этих обмоток питают базовые цепи ключей.

Для начала удаляем обмотку связи на трансформаторе ОС и ставим перемычку. Эта обмотка включена последовательно с первичной обмоткой импульсного трансформатора.
Затем на силовом трансформаторе мотаем всего 2 витка и один виток на кольце (трансформаторе ОС). Для намотки можно использовать провод с диаметром 0,4-0,8мм.

Далее нужно подобрать резистор для ОС, в моем случае он на 6,2 ОМ, но резистор можно подобрать с сопротивлением 3-12 Ом, чем выше сопротивление этого резистора, тем меньше ток защиты от КЗ. Резистор в моем случае использован проволочный, чего делать не советую. Мощность этого резистора подбираем 3-5 ватт (можно использовать от 1 до 10 ватт).

Во время КЗ на выходной обмотке импульсного трансформатора ток во вторичной обмотке падает (в стандартных схемах ЭТ при КЗ ток возрастает, выводя из строя ключи). Это приводит к уменьшению тока на обмотке ОС. Таким образом, прекращается генерация, сами ключи запираются.

Единственным недостатком такого решение является то, что при долговременном КЗ на выходе, схема выходит из строя, поскольку ключи греются и достаточно сильно. Не стоит подвергать выходную обмотку КЗ с длительностью более 5-8 секунд.

Схема теперь будет заводиться без нагрузки, одним словом мы получили полноценный ИБП с защитой от КЗ.

Доработка №2

Теперь постараемся, в какой-то мере сгладить сетевое напряжение от выпрямителя. Для этого будем использовать дроссели и сглаживающий конденсатор. В моем случае использован готовый дроссель с двумя независимыми обмотками. Данный дроссель был снят от ИБП DVD проигрывателя, хотя можно использовать и самодельные дросселя.

После моста следует подключить электролит с емкостью 200мкФ с напряжением не менее 400 Вольт. Емкость конденсатора подбирается исходя из мощности блока питания 1мкФ на 1 ватт мощности. Но как вы помните, наш БП рассчитан на 105 Ватт, почему же конденсатор использован на 200мкФ? Это поймете уже совсем скоро.

Доработка №3

Теперь о главном — умощнение электронного трансформатора и реально ли это? На самом деле есть только один надежный способ умощнения без особых переделок.

Для умощнения удобно использовать ЭТ с кольцевым трансформатором, поскольку нужно будет перемотать вторичную обмотку, именно по этой причине мы заменим наш трансформатор.

Сетевая обмотка растянута по всему кольцу и содержит 90 витков провода 0,5-0,65мм. Обмотка мотается на двух сложенных ферритовых кольцах, которые были сняты от ЭТ с мощностью 150 Ватт. Вторичная обмотка мотается исходя от нужд, в нашем случае она рассчитана на 12 Вольт.

Планируется увеличить мощность до 200 Ватт. Именно поэтому и нужен был электролит с запасом, о котором говорилось выше.

Конденсаторы полумоста заменяем на 0,5мкФ, в штатной схеме они имеют емкость 0,22 мкФ. Биполярные ключи MJE13007 заменяем на MJE13009.
Силовая обмотка трансформатора содержит 8 витков, намотка делалась 5-ю жилами провода 0,7мм, таким образом, имеем в первичке провод с общим сечением 3,5мм.

Идем дальше. Перед и после дросселей ставим пленочные конденсаторы с емкостью 0,22-0,47мкФ с напряжением не менее 400 Вольт (я использовал именно те конденсаторы, которые были на плате ЭТ и которые пришлось заменить для увеличения мощности).

Работа трансформатора сроится на преобразовании тока от сети с напряжением 220 В. Устройства делятся по количеству фаз, а также показателю перегрузки. На рынке представлены модификации однофазного и двухфазного типов. Параметр перегрузки тока колеблется от 3 до 10 А. При необходимости можно сделать электронный трансформатор своими руками. Однако для этого в первую очередь важно ознакомиться с устройством модели.

Схема модели

Схема электронного 12В предполагает использование пропускного реле. Непосредственно обмотка применяется с фильтром. Для повышения тактовой частоты в цепи имеются конденсаторы. Выпускаются они открытого и закрытого типа. У однофазных модификаций используются выпрямители. Указанные элементы необходимы для повышения проводимости тока.

В среднем чувствительность у моделей равна 10 мВ. При помощи расширителей решаются проблемы с перегрузками в сети. Если рассматривать двухфазную модификацию, то у нее используется тиристор. Указанный элемент, как правило, устанавливается с резисторами. Емкость их в среднем равна 15 пФ. Уровень проводимости тока в данном случае зависит от загруженности реле.

Как сделать самостоятельно?

Сделать своими руками можно легко. Для этого важно использовать проводное реле. Расширитель для него целесообразно подбирать импульсного типа. Для увеличения параметра чувствительности устройства используются конденсаторы. Многие специалисты рекомендуют резисторы устанавливать с изоляторами.

Для решения проблем со скачками напряжения припаиваются фильтры. Если рассматривать самодельную однофазную модель, то модулятор целесообразнее подбирать на 20 Вт. Выходное сопротивление в цепи трансформатора должно составлять 55 Ом. Непосредственно для подключения устройства припаиваются выходные контакты.

Устройства с конденсаторным резистором

Схема электронного трансформатора для 12В предполагает использование проводного реле. В данном случае резисторы устанавливаются за обкладкой. Как правило, модуляторы используются открытого типа. Также схема электронного трансформатора для галогенных ламп 12В включает выпрямители, которые подбираются с фильтрами.

Для решения проблем с коммутацией необходимы усилители. Параметр выходного сопротивления в среднем составляет 45 Ом. Проводимость тока, как правило, не превышает 10 мк. Если рассматривать однофазную модификацию, то у нее имеется триггер. Некоторые специалисты для увеличения проводимости используют триггеры. Однако в данном случае значительно повышаются тепловые потери.

Трансформаторы с регулятором

Трансформатор 220-12 В с регулятором устроен довольно просто. Реле в данном случае стандартно используется проводного типа. Непосредственно регулятор устанавливается с модулятором. Для решения проблем с обратной полярностью имеется кенотрон. Использоваться он может с обкладкой или без нее.

Триггер в данном случае подсоединяется через проводники. Указанные элементы способны работать только с импульсными расширителями. В среднем параметр проводимости у трансформаторов данного типа не превышает 12 мк. Также важно отметить, что показатель отрицательного сопротивления зависит от чувствительности модулятора. Как правило, он не превышает 45 Ом.

Использование проводных стабилизаторов

Трансформатор 220-12 В с проводным стабилизатором встречается очень редко. Для нормальной работы устройства необходимо качественное реле. Показатель отрицательного сопротивления составляет в среднем 50 Ом. Стабилизатор в данном случае фиксируется на модуляторе. Указанный элемент в первую очередь предназначен для понижения тактовой частоты.

Тепловые потери при этом у трансформатора незначительные. Однако важно отметить, что на триггер оказывается большое давление. Некоторые эксперты в сложившейся ситуации рекомендуют использовать емкостные фильтры. Продаются они с проводником и без него.

Модели с диодным мостом

Трансформатор (12 Вольт) данного типа производится на базе селективных триггеров. Показатель порогового сопротивления у моделей в среднем равняется 35 Ом. Для решения проблем с понижением частоты устанавливаются трансиверы. Непосредственно диодные мосты используются с различной проводимостью. Если рассматривать однофазные модификации, то в этом случае резисторы подбираются на две обкладки. Показатель проводимости не превышает 8 мк.

Тетроды у трансформаторов позволяют значительно повысить чувствительность реле. Модификации с усилителями встречаются очень редко. Основной проблемой трансформаторов данного типа является отрицательная полярность. Возникает она вследствие повышения температуры реле. Чтобы исправить ситуацию, многие эксперты рекомендуют использовать триггеры с проводниками.

Модель Taschibra

Схема электронного трансформатора для галогенных ламп 12В включает в себя триггер на две обкладки. Реле у модели используется проводного типа. Для решения проблем с пониженной частотностью применяются расширители. Всего у модели имеются три конденсатора. Таким образом, проблемы с перегрузкой в сети возникают редко. В среднем параметр выходного сопротивления держится на уровне 50 Ом. Как утверждают специалисты, выходное напряжение на трансформаторе не должно превышать 30 Вт. В среднем чувствительность модулятора составляет 5,5 мк. Однако в данном случае важно учитывать загруженность расширителя.

Устройство RET251C

Указанный электронный трансформатор для ламп производится с выходным переходником. Расширитель у модели имеется дипольного типа. Всего в устройстве установлены три конденсатора. Резистор применяется для решения проблем с отрицательной полярностью. Конденсаторы у модели перегреваются редко. Непосредственно модулятор подсоединяется через резистор. Всего у модели установлены два тиристора. В первую очередь они отвечают за параметр выходного напряжения. Также тиристоры призваны обеспечивать стабильную работу расширителя.

Трансформатор GET 03

Трансформатор (12 Вольт) указанной серии пользуется большой популярность. Всего у модели имеются два резистора. Находятся они рядом с модулятором. Если говорить про показатели, то важно отметить, что частота модификации равняется 55 Гц. Подключение устройства осуществляется через выходной переходник.

Расширитель подобран с изолятором. С целью решения проблем с отрицательной полярностью используются два конденсатора. Регулятор в представленной модификации отсутствует. Показатель проводимости трансформатора составляет 4,5 мк. Выходное напряжение колеблется в районе 12 В.

Устройство ELTR-70

Указанный электронный трансформатор 12В включает в себя два проходных тиристора. Отличительной особенностью модификации считается высокая тактовая частота. Таким образом, процесс преобразования тока осуществятся без скачков напряжения. Расширитель у модели используется без обкладки.

Для понижения чувствительности имеется триггер. Установлен он стандартно селективного типа. Показатель отрицательного сопротивления составляет 40 Ом. Для однофазной модификации это считается нормальным. Также важно отметить, что устройства подключаются через выходной переходник.

Модель ELTR-60

Это трансформатор выделяет высокой стабильностью напряжения. Относится модель к однофазным устройствам. Конденсатор у него используется с высокой проводимостью. Проблемы с отрицательной полярностью решаются за счет расширителя. Он установлен за модулятором. Регулятор в представленном трансформаторе отсутствует. Всего у модели используются два резистора. Емкость у них составляет 4,5 пФ. Если верить специалистам, то перегрев элементов наблюдается очень редко. Выходное напряжение на реле равно строго 12 В.

Трансформаторы TRA110

Указанные трансформаторы работают от проходного реле. Расширители у модели используются разной емкости. В среднем показатель выходного сопротивления трансформатора составляет 40 Ом. Относится модель к двухфазным модификациям. Показатель пороговой частоты у нее равен 55 Гц. В данном случае резисторы используются дипольного типа. Всего у модели имеются два конденсатора. Для стабилизации частоты во время работы устройства действует модулятор. Проводники у модели припаяны с высокой проводимостью.

Блок питания из электронного трансформатора Taschibra. Электронные трансформаторы. Схемы, фото, обзоры Электронный трансформатор навигатор 150 вт схема

Для сборки самодельных мощных источников питания можно использовать электронные трансформаторы, применяемые для питания галогенных ламп. Электронный трансформатор представляет собой полумостовой автогенераторный импульсный преобразователь напряжения. Стоят такие импульсные трансформаторы достаточно дёшево, и после небольшой доработки их можно использовать для питания своих самодельных устройств требующих мощного источника питания.
При небольших размерах они обеспечивают большую выходную мощность, но у них есть определённые недостатки, такие как: нежелание запуститься без нагрузки, выход из строя при коротком замыкании, и очень сильный уровень помех.

Классическая схема электронного трансформатора на примере Taschibra
, но это может быть и любой другой электронный трансформатор, к примеру ZORN New, приведена ниже.

Напряжение сети поступает на диодный мост. Выпрямленное напряжение питает полумостовой преобразователь на транзисторах. В диагональ моста, образованного этими транзисторами и конденсаторами С1, С2, включена обмотка I импульсного трансформатора Т2. Запуск преобразователя обеспечивается цепью, состоящей из резисторов R3, конденсатора С3, диода D5 и диака D6. Трансформатор обратной связи Т1 имеет три обмотки — обмотка обратной связи по току, которая включена последовательно с первичной обмоткой силового трансформатора (то есть чем больше ток нагрузки — тем больше ток базы ключей, поэтому трансформатор не запускается без нагрузки, или при малой нагрузке напряжение меньше 12В, да и при коротком замыкании базовый ток ключей растет и они выходят из строя, а часто еще и резисторы в базовых цепях), и две обмотки по 3 витка, питающие базовые цепи транзисторов. Выходное напряжение электронного трансформатора представляет собой прямоугольные импульсы частотой 40 кГц, промодулированные частотой 100 Гц.

Внешний вид платы ZORN New 150 и обратная сторона


Первая проблема отсутствия запуска без нагрузки или при малой нагрузке устраняется довольно просто — меняем ОС (обратную связь) по току на ОС по напряжению. Удаляем обмотку ОС по току на коммутирующем трансформаторе и ставим вместо нее перемычку. Далее наматываем 1-2 витка на силовом трансформаторе и 1 на коммутирующем, используем резистор в ОС от 3-10 Ом мощностью не меньше 3 — 5 ватт, чем выше сопротивление — тем меньше ток защиты от КЗ. Этим токоограничивающим резистором устанавливается частота преобразования. При увеличении тока нагрузки частота становится больше. Если преобразователь не запустится необходимо изменить направление намотки.

Подключаем на выходе выпрямительного моста конденсатор, для сглаживания пульсаций выпрямленного напряжения. Емкость выбирается из расчета 1 — 1,5 мкФ на 1Вт. Рабочее напряжение конденсатора должно быть не менее 400В. При включении в сеть выпрямительного моста с конденсатором возникает бросок тока, поэтому нужно в разрыв одного из сетевых проводов включить терморезистор NTC или резистор 4,7 Ом 5Вт.

Если необходимо другое выходное напряжение, перематываем вторичную обмотку силового трансформатора. Самое простое, это посчитать количество витков вторичной обмотки на силовом трансформаторе, к примеру в электронном трансформаторе ZORN New 150 — 8 витков вторичной обмотки при выходном напряжении 11,8 вольт, соответственно получаем 1,47 вольт/виток. Необходимо также учитывать что, под нагрузкой напряжение упадет, примерно на 2 вольта. Диаметр провода выбирается исходя из тока нагрузки. Таким образом можно получить широкий спектр выходных напряжений от единиц до нескольких сотен вольт. Также можно намотать несколько обмоток для получения нескольких напряжений с одного блока питания, естественно при этом нужно учитывать суммарную мощность электронного трансформатора.

Для выпрямления переменного напряжения на выходе электронного трансформатора устанавливаем диодный мост. Электронные трансформаторы плохо работают с емкостной нагрузкой или не запускаются вообще. Для нормальной работы необходим плавный запуск устройства. Обеспечению плавного запуска способствует дроссель L1. Совместно с конденсатором он также выполняет функцию фильтрации выпрямленного напряжения. Емкость выходного конденсатора желательно подобрать из расчёта не менее 10 мкф на 1 ватт потребляемой нагрузки. Параллельно желательно поставить конденсатор емкостью 0.1 мкф.

Схема электронного трансформатора с переделками.

В нём применяются транзисторы . Даташит на него

Динистор И немного о динисторе.

DB3 — популярный зарубежный двусторонний динистор — диак. Выполнен в стеклянном цилиндрическом корпусе с гибкими проволочными выводами.

Наибольшее распространение прибор DB3 нашел в схемах сетевых регуляторов мощности нагрузки (диммеров).

Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.

В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.

Поскольку DB3 является симметричным динистором (оба его вывода являются анодами), то нет абсолютно ни какой разницы, как его подключать.

Характеристики:

  • (I откр — 0.2 А), В 5 — это напряжение при открытом состоянии;
  • Среднее максимально допустимое значение при открытом состоянии: А 0.3;
  • В открытом состоянии импульсный ток составляет А 2;
  • Максимальное напряжение (во время закрытого состояния): В 32;
  • Ток в закрытом состоянии: мкА — 10;
  • Максимальное импульсное не отпирающее напряжение составляет В 5.
  • Диапазон рабочих температур: C -40…70
Многие начинающие радиолюбители, и не только, сталкиваются с проблемами при изготовлении мощных источников питания. Сейчас в продаже появилось большое количество электронных трансформаторов, используемых для питания галогенных ламп. Электронный трансформатор представляет собой полумостовой автогенераторный импульсный преобразователь напряжения.
Импульсные преобразователи имеют высокий КПД, малые размеры и вес.
Стоят данные изделия не дорого, примерно 1рубль за один ватт. Их после доработки вполне можно использовать для питания радиолюбительских конструкций. В сети есть немало статей по этой теме. Хочу поделиться своим опытом переделки электронного трансформатора Taschibra 105W.

Рассмотрим принципиальную схему электронного преобразователя.
Напряжение сети через предохранитель поступает на диодный мост D1-D4 . Выпрямленное напряжение питает полумостовой преобразователь на транзисторах Q1 и Q2. В диагональ моста, образованного этими транзисторами и конденсаторами С1, С2, включена обмотка I импульсного трансформатора Т2. Запуск преобразователя обеспечивается цепью, состоящей из резисторов R1, R2, конденсатора С3, диода D5 и диака D6. Трансформатор обратной связи Т1 имеет три обмотки — обмотка обратной связи по току, которая включена последовательно с первичной обмоткой силового трансформатора, и две обмотки по 3 витка, питающие базовые цепи транзисторов.
Выходное напряжение электронного трансформатора представляет собой прямоугольные импульсы частотой 30 кГц, промодулированные частотой 100 Гц.


Для того, чтобы использовать электронный трансформатор в качестве источника питания, его необходимо доработать.

Подключаем на выходе выпрямительного моста конденсатор, для сглаживания пульсаций выпрямленного напряжения. Емкость выбирается из расчета 1мкФ на 1Вт. Рабочее напряжение конденсатора должно быть не менее 400В.
При включении в сеть выпрямительного моста с конденсатором возникает бросок тока, поэтому нужно в разрыв одного из сетевых проводов включить терморезистор NTC или резистор 4,7 Ом 5Вт. Это ограничит пусковой ток.

Если необходимо другое выходное напряжение, перематываем вторичную обмотку силового трансформатора. Диаметр провода (жгута из проводов) выбирается исходя из тока нагрузки.

Электронные трансформаторы имеют ОС по току, поэтому выходное напряжение будет изменяться в зависимости от нагрузки. Если нагрузка не подключена, трансформатор не запустится. Для того чтобы этого не было, нужно изменить схему обратной связи по току на ОС по напряжению.
Обмотку обратной связи по току удаляем и вместо нее на плате ставим перемычку. Затем пропускаем гибкий многожильный провод через силовой трансформатор и делаем 2 витка, далее пропускаем провод через трансформатор обратной связи и делаем один виток. Концы, пропущенного через силовой трансформатор и трансформатор обратной связи провода, соединяем через два параллельно соединенных резистора 6,8 Ом 5 Вт. Этим токоограничивающим резистором устанавливается частота преобразования (примерно 30кГц). При увеличении тока нагрузки частота становится больше.
Если преобразователь не запустится необходимо изменить направление намотки.

В трансформаторах Taschibra транзисторы прижаты к корпусу через картон, что небезопасно при эксплуатации. К тому же бумага очень плохо проводит тепло. Поэтому лучше установить транзисторы через теплопроводящую прокладку.
Для выпрямления переменного напряжения частотой 30кГц на выходе электронного трансформатора устанавливаем диодный мост.
Наилучшие результаты показали, из всех опробованных диодов, отечественные КД213Б (200В; 10А; 100кГц; 0,17мкс). При больших токах нагрузки они греются, поэтому их необходимо установить на радиатор через теплопроводящие прокладки.
Электронные трансформаторы плохо работают с емкостной нагрузкой или не запускаются вообще. Для нормальной работы необходим плавный запуск устройства. Обеспечению плавного запуска способствует дроссель L1. Совместно с конденсатором 100мкФ он также выполняет функцию фильтрации выпрямленного напряжения.
Дроссель L1 50мкГ наматывается на сердечнике Т106-26 фирмы Micrometals и содержит 24 витка проводом 1,2мм. Такие сердечники (жёлтого цвета, с одной гранью белого цвета) применяются в компьютерных блоках питания. Внешний диаметр 27мм, внутренний 14мм, и высота 12мм. Кстати, в убитых блоках питания можно найти и другие детали, в том числе терморезистор.

Если у вас есть шуруповерт или другой инструмент, у которого аккумуляторная батарея выработала свой ресурс, то в корпусе этой батареи можно поместить блок питания из электронного трансформатора. В результате у вас получится инструмент, работающий от сети.
Для стабильной работы на выходе блока питания желательно поставить резистор приблизительно 500 Ом 2Вт.

В процессе наладки трансформатора нужно быть предельно внимательным и аккуратным. На элементах устройства присутствует высокое напряжение. Не касайтесь фланцев транзисторов, чтобы проверить греются они или нет. Необходимо также помнить, что после выключения конденсаторы остаются заряженными некоторое время.

Электронный трансформатор является сетевым импульсным блоком питания с весьма хорошими показателями. Такие блоки питания лишены защиты от КЗ на выходе, но эту недоработку можно исправить. Сегодня решил представить весь процесс увеличения мощности электронных трансформаторов для галогенных ламп. Китайский ЭТ с мощностью 150 ватт, мы превратим в мощный ИБП, который может быть использован практически для любых целей. Вторичная обмотка импульсного трансформатора, в моем случае содержит всего один виток. Обмотка намотана 10-ю жилами провода 0,5мм. Блок питания умощнен до 300 ватт, следовательно, его можно использовать для НЧ, таких как Холтон, Ланзар, Маршалл Лич и т.п. При желании, можно на основе такого ИБП собрать мощный лабораторный блок питания. Мы знаем, что многие ИБП такого типа не включаются без нагрузки, такой недостаток имеют электронные трансформаторы Tashibra с мощностью 105 ватт.

Наша схема не имеет такого недостатка, схема заводится без нагрузки и может работать с маломощными нагрузками (светодиоды и т.п.). Для умощнения нужно сделать несколько переделок. Нужно перемотать импульсный трансформатор, подобрать конденсаторы полумоста, заменить диоды в выпрямителе и использовать более мощные ключи. В моем случае использованы диоды на полтора ампера, которые я не заменил, но обязательно замените на любые диоды с обратным напряжением не менее 400 Вольт и с током 2 Ампер и более.


Для начала давайте переделаем импульсный трансформатор. На плате можно увидеть кольцевой трансформатор с двумя обмотками, обе обмотки нужно снять. Затем берем еще одно аналогичное кольцо (снял с такого же блока) и склеиваем их. Сетевая обмотка состоит из 90 витков, витки растянуты по всему кольцу.


Диаметр провода, которым намотана обмотка 0,5…0,7мм. Далее уже мотаем вторичную обмотку. Один виток дает полтора вольта, к примеру — для получения 12 Вольт выходного напряжения, обмотка должна содержать 8 витков (но бывают и другие значения).


Далее заменяем конденсаторы полумоста. В стандартной схеме использованы конденсаторы 0,22мкФ 630 Вольт, которые были заменены на 0,5мкФ 400 Вольт. Силовые ключи использованы серии MJE13007, которые были заменены на более мощные — MJE13009.


На этом переделка почти завершена и можно уже подключить в сеть 220 Вольт. После проверки работоспособности схемы идем дальше. Дополняем ИБП сетевого напряжения. Фильтр содержит из дросселей и сглаживающего конденсатора. Электролитический конденсатор подбирается с расчетом 1мкФ на 1 Вольт, для наших 300 Ватт подбираем конденсатор с емкостью 300мкФ с минимальным напряжением 400 Вольт. Дальше приступаем к дросселям. Дроссель у меня использован готовый, был выпаян с другого ИБП. Дроссель имеет две отдельные обмотки по 30 витков провода 0,4мм.


На входе питания можно поставить предохранитель, но в моем случае он уже был на плате. Предохранитель подбирают на 1,25 — 1,5Ампер. Вот теперь все готово, уже можно дополнить схему выпрямителем на выходе и сглаживающими фильтрами. Если планируете собрать на основе такого ИБП зарядное устройство для автомобильного аккумулятора, то на выходе хватит и одного мощного диода шоттки. К числу таких диодов относится мощный импульсный диод серии STPR40, который достаточно часто применяется в компьютерных блоках питания. Ток указанного диода 20Ампер, но для 300 ваттного блока питания и 20 Ампер маловато. Не беда! Дело в том, что указанный диод содержит в себе два аналогичных диода на 20 Ампер, нужно всего лишь подключить два крайних вывода корпуса друг к другу. Теперь у нас есть полноценный диод на 40 Ампер. Диод нужно будет установить на достаточно большой теплоотвод, поскольку последний будет перегреваться достаточно сильно, возможно понадобится небольшой кулер.

После всего сказанного в предыдущей статье (смотрите ), кажется, что сделать импульсный блок питания из электронного трансформатора достаточно просто: поставить на выход выпрямительный мост, при необходимости стабилизатор напряжения и подключить нагрузку. Однако это не совсем так.

Дело в том, что преобразователь не запускается без нагрузки или нагрузка не достаточна: если к выходу выпрямителя подключить светодиод, разумеется, с ограничительным резистором, то удастся увидеть, лишь только одну вспышку светодиода при включении.

Чтобы увидеть еще одну вспышку, потребуется выключить и включить преобразователь в сеть. Чтобы вспышка превратилась в постоянное свечение надо подключить к выпрямителю дополнительную нагрузку, которая будет просто отбирать полезную мощность, превращая ее в тепло. Поэтому такая схема применяется в том случае, когда нагрузка постоянна, например, двигатель постоянного тока или электромагнит, управление которыми будет возможно только по первичной цепи.

Если для нагрузки необходимо напряжение более, чем 12В, которое выдают электронные трансформаторы потребуется перемотка выходного трансформатора, хотя есть и менее трудоемкий вариант.

Вариант изготовления импульсного блока питания без разборки электронного трансформатора

Схема такого блока питания показана на рисунке 1.

Рисунок 1. Двухполярный блок питания для усилителя

Блок питания изготовлен на основе электронного трансформатора мощностью 105Вт. Для изготовления такого блока питания понадобится изготовить несколько дополнительных элементов: сетевой фильтр, согласующий трансформатор Т1, выходной дроссель L2, VD1-VD4.

Блок питания в течение нескольких лет эксплуатируется с УНЧ мощностью 2х20Вт без нареканий. При номинальном напряжении сети 220В и токе нагрузки 0,1А выходное напряжение блока 2х25В, а при увеличении тока до 2А напряжение падает до 2х20В, что вполне достаточно для нормальной работы усилителя.

Согласующий трансформатор Т1 выполнен на кольце К30х18х7 из феррита марки М2000НМ. Первичная обмотка содержит 10 витков провода ПЭВ-2 диаметром 0,8мм, сложенного вдвое и свитого жгутом. Вторичная обмотка содержит 2х22 витка со средней точкой, тем же проводом, также сложенным вдвое. Чтобы обмотка получилась симметричной, мотать следует сразу в два провода — жгута. После обмотки для получения средней точки соединить начало одной обмотки с концом другой.

Также самостоятельно придется изготовить дроссель L2 для его изготовления понадобится такое же ферритовое кольцо, как и для трансформатора Т1. Обе обмотки намотаны проводом ПЭВ-2 диаметром 0,8мм и содержат по 10 витков.

Выпрямительный мост собран на диодах КД213, можно применить также КД2997 или импортные, важно лишь, чтобы диоды были рассчитаны на рабочую частоту не менее 100КГц. Если вместо них поставить, например, КД242, то они будут только греться, а требуемого напряжения получить от них не удастся. Диоды следует установить на радиатор площадью не менее 60 — 70см2, используя при этом изолирующие слюдяные прокладки.

C4, C5 составлены из трех параллельно соединенных конденсаторов емкостью по 2200 микрофарад каждый. Обычно так делается во всех импульсных источниках питания для того, чтобы снизить общую индуктивность электролитических конденсаторов. Кроме этого полезно также параллельно им установить керамические конденсаторы емкостью 0.33 — 0,5мкФ, которые будут сглаживать высокочастотные колебания.

На входе блока питания полезно установить входной сетевой фильтр, хотя будет работать и без него. В качестве дросселя входного фильтра использован готовый дроссель ДФ50ГЦ, применявшийся в телевизорах 3УСЦТ.

Все узлы блока монтируют на плате из изоляционного материала навесным монтажом, используя для этого выводы деталей. Всю конструкцию следует поместить в экранирующий корпус из латуни или жести, предусмотрев в нем отверстия для охлаждения.

Правильно собранный источник питания в наладке не нуждается, начинает работать сразу. Хотя, прежде чем ставить блок в готовую конструкцию следует его проверить. Для этого на выход блока подключается нагрузка — резисторы сопротивлением 240Ом, мощностью не менее 5Вт. Включать блок без нагрузки не рекомендуется.

Еще один способ доработки электронного трансформатора

Случаются ситуации, что хочется применить подобный импульсный блок питания, но нагрузка оказывается очень «вредной». Потребление тока либо очень мало, либо меняется в широких пределах, и блок питания не запускается.

Подобная ситуация возникла, когда попытались в светильник или люстру со встроенными электронными трансформаторами, вместо поставить . Люстра просто отказалась с ними работать. Что же делать в таком случае, как заставить все это работать?

Чтобы разобраться с этим вопросом давайте, посмотрим на рисунок 2, на котором показана упрощенная схема электронного трансформатора.

Рисунок 2. Упрощенная схема электронного трансформатора

Обратим внимание на обмотку управляющего трансформатора Т1, подчеркнутую красной полосой. Эта обмотка обеспечивает обратную связь по току: если тока через нагрузку нет, или он просто мал, то трансформатор просто не заводится. Некоторые граждане, купившие это устройство, подключают к нему лампочку мощностью 2,5Вт, а потом несут обратно в магазин, мол, не работает.

И все же достаточно простым способом можно не только заставить работать устройство практически без нагрузки, да еще и сделать в нем защиту от короткого замыкания. Способ подобной доработки показан на рисунке 3.

Рисунок 3. Доработка электронного трансформатора. Упрощенная схема.

Для того, чтобы электронный трансформатор мог работать без нагрузки или с минимальной нагрузкой следует обратную связь по току заменить обратной связью по напряжению. Для этого следует убрать обмотку обратной связи по току (подчеркнутую красным на рисунке 2), а вместо нее запаять в плату проволочную перемычку, естественно, помимо ферритового кольца.

Далее на управляющий трансформатор Тр1, это тот, который на маленьком кольце, наматывается обмотка из 2 — 3 витков. А на выходной трансформатор один виток, и далее получившиеся дополнительные обмотки соединяется, как указано на схеме. Если преобразователь не заведется, то надо поменять фазировку одной из обмоток.

Резистор в цепи обратной связи подбирается в пределах 3 — 10Ом, мощностью не менее 1Вт. Он определяет глубину обратной связи, которая определяет ток, при котором произойдет срыв генерации. Собственно это и есть ток срабатывания защиты от КЗ. Чем больше сопротивление этого резистора, тем при меньшем токе нагрузки будет происходить срыв генерации, т.е. срабатывание защиты от КЗ.

Из всех приведенных доработок, эта, пожалуй, самая лучшая. Но это не помешает дополнить ее еще одним трансформатором как в схеме по рисунку 1.

Люминесцентные и галогенные лампы постепенно уходят в прошлое, уступая место светодиодным. В светильниках, где они применялись, остались ненужные электронные трансформаторы, отвечавшие за розжиг этих ламп. Кажется, что ненужному — место на помойке. Но это не так. Из этих трансформаторов можно собрать мощные блоки питания, которые смогут питать электроинструменты, светодиодные ленты и многое другое.

Устройство электронного трансформатора

Привычные нам массивные трансформаторы не так давно стали заменяться на электронные, которые отличаются дешевизной и компактностью. Размеры электронного трансформатора настолько малы, что его встраивают в корпуса компактных люминесцентных ламп (КЛЛ).

Все такие трансформаторы сделаны по одной схеме, различия между ними минимальны. В основе схемы лежит симметричный автогенератор, иначе называемый мультивибратором.

Состоят они из диодного моста, транзисторов и двух трансформаторов: согласующего и силового . Это основные части схемы, но далеко не все. Кроме них, в схему входят различные резисторы, конденсаторы и диоды.

Принципиальная схема электронного трансформатора.

В этой схеме постоянный ток из диодного моста поступает на транзисторы автогенератора, которые накачивают энергию в силовой трансформатор. Номиналы и тип всех радиодеталей подобраны так, чтобы на выходе получалось строго определённое напряжение.

Если включить такой трансформатор без нагрузки, то автогенератор не запустится и напряжения на выходе не будет.

Сборка по схеме своими руками

Электронный балласт можно купить в магазине или найти у себя в закромах, но самым интересным вариантом будет сборка электронного трансформатора своими руками. Собирается он довольно просто, а большинство необходимых деталей можно наковырять в сломанных блоках питания и в энергосберегающих лампах.

  • Необходимые компоненты:Диодный мост с обратным напряжением не ниже 400 В и током не менее 3 А или четыре диода с такими же характеристиками.
  • Предохранитель на 5 А.
  • Симметричный динистор DB3.
  • Резистор 500 кОм.
  • 2 резистора 2,2 Ом, 0,5 Вт.
  • 2 биполярных транзистора MJE13009.
  • 3 плёночных конденсатора 600 В, 100 нФ.
  • 2 тороидальных сердечника.
  • Провод с лаковым покрытием 0,5 мм².
  • Провод в обычной изоляции 2,5 мм².
  • Радиатор для транзисторов.
  • Макетная плата.

Начинается все с макетной платы, на которую вы будете устанавливать все радиокомпоненты. На рынке можно купить два вида плат — с односторонней металлизацией на коричневом стеклотекстолите.

И с двусторонней сквозной, на зелёном.

От выбора платы зависит, сколько времени и сил вы потратите на сборку проекта.

Коричневые платы — отвратительного качества. Металлизация на них выполнена настолько тонким слоем, что в некоторых местах на ней видны разрывы . Припоем она смачивается плохо, даже если использовать хороший флюс. А все, что удалось припаять — отрывается вместе с металлизацией при малейшем усилии.

Зелёные — стоят в полтора-два раза дороже, но зато с качеством все в порядке. Металлизация на них с толщиной проблем не имеет. Все отверстия в плате залужены на производстве, благодаря чему медь не окисляется и проблем при пайке не возникает.

Найти и купить эти макетки можно как в ближайшем радиомагазине, так и на алиэкспрессе. В Китае они стоят в два раза дешевле, но доставки придётся подождать.

Радиодетали выбирайте с длинными выводами, они вам пригодятся при монтаже схемы. Если вы собираетесь использовать бывшие в употреблении детали, то обязательно проверяйте их работоспособность и отсутствие внешних повреждений.

Единственная деталь, которую вам придётся сделать самим — это трансформатор.

Согласующий нужно наматывать тонким проводом. Количество витков в каждой обмотке:

  • I — 7 витков.
  • II — 7.
  • III — 3.

Не забывайте фиксировать обмотки скотчем, иначе они расползутся.

Силовой трансформатор состоит всего из двух обмоток. Первичную наматывайте проводом 0,5мм², а вторичную — 2,5мм². Первичка и вторичка состоят из 90 и 12 витков соответственно.

Для пайки лучше не использовать «дедовские» паяльники — ими запросто можно сжечь чувствительные к температуре радиоэлементы. Возьмите лучше паяльник с регулировкой мощности, они не перегреваются, в отличие от первых.

ранзисторы заранее установите на радиаторы. Делать это на уже собранной плате — крайне неудобно. Собирать схему нужно от маленьких деталей к большим. Если вы сначала установите большие, то они будут мешаться при пайке маленьких. Учитывайте это.

При сборке смотрите на принципиальную схему, все соединения радиоэлементов должны соответствовать ей. Просуньте выводы деталей в отверстия на плате и согните их в нужном направлении. Если длины не хватает, удлиняйте их проводом. Трансформаторы после пайки приклейте к плате эпоксидной смолой.

После сборки подключите к выводам устройства нагрузку и убедитесь в том, что оно работает.

Переделка в блок питания

Случается так, что аккумуляторы электроинструмента выходят из строя, а возможности купить новый нет. В таком случае поможет адаптер в виде блока питания. Из электронного трансформатора после небольшой доработки можно собрать такой переходник.

Детали, которые понадобятся для переделки:

  • Терморезистор NTC 4 Ом.
  • Конденсатор 100 мкФ, 400 В.
  • Конденсатор 100 мкФ, 63В.
  • Плёночный конденсатор 100 нФ.
  • 2 резистора 6,8 Ом, 5 Вт.
  • Резистор 500 Ом, 2 Вт.
  • 4 диода КД213Б.
  • Радиатор для диодов.
  • Тороидальный сердечник.
  • Провод сечением 1,2 мм².
  • Кусочек монтажной платы.

Перед работой проверьте, вдруг вы забыли какую-нибудь деталь. Если все детали на месте, начинайте переделку электронного трансформатора в блок питания.

К выходу диодного моста подпаяйте конденсатор 400 В, 100 мкФ. Для уменьшения зарядного тока конденсатора впаяйте терморезистор в разрыв силового провода. Если вы забудете это сделать, при первом же включении в сеть у вас сгорит диодный мост.

Отсоедините вторую обмотку согласующего трансформатора и замените её перемычкой. Добавьте на обоих трансформаторах по одной обмотке. На согласующем сделайте один виток, на силовом — два. Соедините обмотки между собой, впаяв в разрыв провода два параллельно соединённых резистора на 6,8 Ом.

Для изготовления дросселя намотайте на сердечник 24 витка провода 1,2 мм² и закрепите его скотчем. Затем на макетной плате соберите по схеме оставшиеся радиодетали и подключите сборку к основной схеме. Не забудьте установить диоды на радиатор , при работе под нагрузкой они сильно греются.

Закрепите всю конструкцию в любом подходящем корпусе и блок питания можно считать собранным.

После окончательной сборки включите устройство в сеть и проверьте его работу. Оно должно выдавать напряжение в 12 вольт. Если блок питания их выдаёт — вы со своей задачей справились на отлично. Если он не заработал, проверьте, вдруг вы взяли нерабочий трансформатор.

Электронный трансформатор регулировка мощности. Защита от кз и запуск электронных трансформаторов без нагрузки

Электронные трансформаторы начали входить в моду совсем недавно. По сути, он является импульсным блоком питания, который предназначен для понижения сетевых 220 Вольт до 12 Вольт. Такие трансформаторы применяются для питания галогенных ламп 12 Вольт. Мощность выпускаемых ЭТ на сегодня 20-250 Ватт. Конструкции почти у всех схем подобного рода схожи друг с другом. Это простой полумостовой инвертор, достаточно нестабильный в работе. Схемы лишены защиты от КЗ на выходе импульсного трансформатора. Еще одним недостатком схемы является то, что генерация происходит только тогда, когда на вторичную обмотку трансформатора подключают нагрузку определенной величины. Я решил написать статью, поскольку считаю, что ЭТ может быть использован в радиолюбительских конструкциях в качестве источника питания, если внести некоторые простые альтернативные решения в схему ЭТ. Суть переделки — дополнить схему защитой от КЗ и заставить ЭТ включаться при подаче сетевого напряжения и без лампочки на выходе. На самом деле переделка достаточно проста и не требует особых навыков в электронике. Схема показана ниже, красным — изменения.

На плате ЭТ мы можем увидеть два трансформатора — основной (силовой) и трансформатор ОС. Трансформатор ОС содержит 3 отдельные обмотки. Две из них являются базовыми обмотками силовых ключей и состоят из 3-х витков. На этом же трансформаторе есть еще одна обмотка, которая состоит всего из одного витка. Эта обмотка последовательно подключена к сетевой обмотке импульсного трансформатора. Именно эту обмотку нужно снять и заменить перемычкой. Дальше нужно поискать резистор с сопротивлением 3-8 Ом (от его величины зависит срабатывания защиты от КЗ). Затем берем провод диаметром 0,4-0,6мм и мотаем два витка на на импульсном трансформаторе, затем 1 виток на трансформаторе ОС. Резистор ОС подбираем с мощностью от 1 до 10 ватт, он будет нагреваться, и достаточно сильно. В моем случае использован проволочный резистор с сопротивлением 6,2 Ом, но не советую использовать их, поскольку проволока имеет некоторую индуктивность, что может повлиять на дальнейшую работу схемы, хотя точно сказать не могу — время покажет.



При КЗ на выходе тут же сработает защита. Дело в том, что ток во вторичной обмотке импульсного трансформатора, а также и на обмотках трансформатора ОС резко спадет, это приведет к запиранию ключевых транзисторов. Для сглаживания сетевых помех на входе питания установлен дроссель, который был выпаян от другого ИБП. После диодного моста желательно установить электролитический конденсатор с напряжением не менее 400 Вольт, емкость подобрать исходя от расчета 1мкФ на 1 ватт.



Но даже после переделки, не стоит замыкать выходную обмотку трансформатора более 5 секунд, поскольку силовые ключи будут греться и могут выйти из строя. Переделанный таким образом импульсный БП включится без выходной нагрузки вообще. При КЗ на выходе генерация срывается, но схема не пострадает. Обычный же ЭТ при замыкании выхода, просто мгновенно сгорает:



Продолжая экспериментировать с блоками электронных трансформаторов для питания галогенных ламп, можно доработать сам импульсный трансформатор, например для получения повышенного двухполярного напряжения для питания автомобильного усилителя.



Трансформатор в ИБП галогенных ламп выполнен на ферритовом кольце, и по виду с этого кольца можно выжимать нужные ватты. С кольца были сняты все заводские обмотки и на их место были намотаны новые. Трансформатор на выходе должен обеспечивать двухполярное напряжение — 60 вольт на плечо.



Для намотки трансформатора использовался провод от китайских обычных железных трансформаторов (входили в комплект приставки сега). Провод — 0,4 мм. Первичная обмотка — мотается 14-ю жилами, сначала 5 витков по всему кольцу, провод не отрезаем! После намотки 5 витков делаем отвод, скручиваем провод и мотаем еще 5. Такое решение избавит от трудной фазировки обмоток. Первичная обмотка готова.



Вторичка мотается также. Обмотка состоит из 9-ти жил того же провода, одно плечо состоит из 20 витков, тоже мотается по всему каркасу, затем отвод и мотаем еще 20 витков.



Для очищения лака я просто поджег провода зажигалкой, затем очистил их монтажным ножом и вытер кончики растворителем. Должен сказать — работает великолепно! На выходе получил требуемые 65 вольт. В дальнейших статьях мы рассмотрим варианты такого рода, а также добавим выпрямитель на выходе, превращая ЭТ в полноценный импульсный блок питания, который может быть использован практически для любых целей.

Устройство имеет достаточно простую схему. Простой двухтактный автогенератор, который выполнен по полумостовой схеме, рабочая частота порядка 30кГц, но этот показатель сильно зависит от выходной нагрузки.

Схема такого блока питания очень не стабильна, не имеет никаких защит от КЗ на выходе трансформатора, пожалуй именно из-за этого, схема пока не нашла широкого применения в радиолюбительских кругах. Хотя в последнее время на разных форумах наблюдается продвижение данной темы. Люди предлагают различные варианты доработки таких трансформаторов. Я сегодня попытаюсь все эти доработки совместить в одной статье и предложить варианты не только доработки, но и умощнения ЭТ.

В основу работы схемы углубляться не будем, а сразу приступим к делу.
Мы попытаемся доработать и увеличить мощность китайского ЭТ Taschibra на 105 Ватт.

Для начала хочу пояснить, по какой причине я решил взяться за умощнение и переделку таких трансформаторов. Дело в том, что недавно сосед попросил сделать ему на заказ зарядное устройство для автомобильного аккумулятора, который был бы компактным и легким. Собирать не хотелось, но позже я наткнулся на интересные статьи в которых рассматривалась переделка электронного трансформатора. Это натолкнуло на мысль — почему бы не попробовать?

Таким образом, были приобретены несколько ЭТ от 50 до 150 Ватт, но опыты с переделкой не всегда завершались успешно, из всех выжил только ЭТ на 105 Ватт. Недостатком такого блока является то, что трансформатор у него не кольцевой, в связи с чем неудобно отмотать или домотать витки. Но другого выбора не было и пришлось переделать именно этот блок.

Как нам известно, эти блоки не включаются без нагрузки, это не всегда является достоинством. Я планирую получить надежное устройство, которое можно свободно применять в любых целях, не боясь, что блок питания может перегореть или выйти из строя при КЗ.

Доработка №1

Суть идеи заключается в добавлении защиты от КЗ, также устранения вышеуказанного недостатка (активация схемы без выходной нагрузки или с маломощной нагрузкой).

Глядя на сам блок, мы можем увидеть простейшую схему ИБП, я бы сказал, что схема не до конца отработана производителем. Как мы знаем, если замкнуть вторичную обмотку трансформатора, то меньше, чем за секунду схема выйдет из строя. Ток в схеме резко возрастает, ключи в миг выходят из строя, иногда и базовые ограничители. Таким образом, ремонт схемы обойдется дороже стоимости (цена такого ЭТ порядка 2,5$).

Трансформатор обратной связи состоит из трех отдельных обмоток. Две из этих обмоток питают базовые цепи ключей.

Для начала удаляем обмотку связи на трансформаторе ОС и ставим перемычку. Эта обмотка включена последовательно с первичной обмоткой импульсного трансформатора.
Затем на силовом трансформаторе мотаем всего 2 витка и один виток на кольце (трансформаторе ОС). Для намотки можно использовать провод с диаметром 0,4-0,8мм.

Далее нужно подобрать резистор для ОС, в моем случае он на 6,2 ОМ, но резистор можно подобрать с сопротивлением 3-12 Ом, чем выше сопротивление этого резистора, тем меньше ток защиты от КЗ. Резистор в моем случае использован проволочный, чего делать не советую. Мощность этого резистора подбираем 3-5 ватт (можно использовать от 1 до 10 ватт).

Во время КЗ на выходной обмотке импульсного трансформатора ток во вторичной обмотке падает (в стандартных схемах ЭТ при КЗ ток возрастает, выводя из строя ключи). Это приводит к уменьшению тока на обмотке ОС. Таким образом, прекращается генерация, сами ключи запираются.

Единственным недостатком такого решение является то, что при долговременном КЗ на выходе, схема выходит из строя, поскольку ключи греются и достаточно сильно. Не стоит подвергать выходную обмотку КЗ с длительностью более 5-8 секунд.

Схема теперь будет заводиться без нагрузки, одним словом мы получили полноценный ИБП с защитой от КЗ.

Доработка №2

Теперь постараемся, в какой-то мере сгладить сетевое напряжение от выпрямителя. Для этого будем использовать дроссели и сглаживающий конденсатор. В моем случае использован готовый дроссель с двумя независимыми обмотками. Данный дроссель был снят от ИБП DVD проигрывателя, хотя можно использовать и самодельные дросселя.

После моста следует подключить электролит с емкостью 200мкФ с напряжением не менее 400 Вольт. Емкость конденсатора подбирается исходя из мощности блока питания 1мкФ на 1 ватт мощности. Но как вы помните, наш БП рассчитан на 105 Ватт, почему же конденсатор использован на 200мкФ? Это поймете уже совсем скоро.

Доработка №3

Теперь о главном — умощнение электронного трансформатора и реально ли это? На самом деле есть только один надежный способ умощнения без особых переделок.

Для умощнения удобно использовать ЭТ с кольцевым трансформатором, поскольку нужно будет перемотать вторичную обмотку, именно по этой причине мы заменим наш трансформатор.

Сетевая обмотка растянута по всему кольцу и содержит 90 витков провода 0,5-0,65мм. Обмотка мотается на двух сложенных ферритовых кольцах, которые были сняты от ЭТ с мощностью 150 Ватт. Вторичная обмотка мотается исходя от нужд, в нашем случае она рассчитана на 12 Вольт.

Планируется увеличить мощность до 200 Ватт. Именно поэтому и нужен был электролит с запасом, о котором говорилось выше.

Конденсаторы полумоста заменяем на 0,5мкФ, в штатной схеме они имеют емкость 0,22 мкФ. Биполярные ключи MJE13007 заменяем на MJE13009.
Силовая обмотка трансформатора содержит 8 витков, намотка делалась 5-ю жилами провода 0,7мм, таким образом, имеем в первичке провод с общим сечением 3,5мм.

Идем дальше. Перед и после дросселей ставим пленочные конденсаторы с емкостью 0,22-0,47мкФ с напряжением не менее 400 Вольт (я использовал именно те конденсаторы, которые были на плате ЭТ и которые пришлось заменить для увеличения мощности).

Далее заменяем диодный выпрямитель. В стандартных схемах применяются обычные выпрямительные диоды серии 1N4007. Ток диодов составляет 1 Ампер, наша схема потребляет немало тока, поэтому диоды стоит заменить на более мощные, во избежание неприятных результатов после первого включения схемы. Можно использовать буквально любые выпрямительные диоды с током 1,5-2 Ампер, обратное напряжение не менее 400 Вольт.

Все компоненты, кроме платы с генератором смонтированы на макетной плате. Ключи были укреплены на теплоотвод через изоляционные прокладки.

Продолжаем нашу переделку электронного трансформатора, дополнив схему выпрямителем и фильтром.
Дросселя намотаны на кольцах из порошкового железа (сняты от компьютерного БП), состоят из 5-8 витков. Намотку удобно сделать сразу 5-ю жилами провода с диаметром 0,4-0,6мм каждая жила.

Работа трансформатора сроится на преобразовании тока от сети с напряжением 220 В. Устройства делятся по количеству фаз, а также показателю перегрузки. На рынке представлены модификации однофазного и двухфазного типов. Параметр перегрузки тока колеблется от 3 до 10 А. При необходимости можно сделать электронный трансформатор своими руками. Однако для этого в первую очередь важно ознакомиться с устройством модели.

Схема модели

Схема электронного 12В предполагает использование пропускного реле. Непосредственно обмотка применяется с фильтром. Для повышения тактовой частоты в цепи имеются конденсаторы. Выпускаются они открытого и закрытого типа. У однофазных модификаций используются выпрямители. Указанные элементы необходимы для повышения проводимости тока.

В среднем чувствительность у моделей равна 10 мВ. При помощи расширителей решаются проблемы с перегрузками в сети. Если рассматривать двухфазную модификацию, то у нее используется тиристор. Указанный элемент, как правило, устанавливается с резисторами. Емкость их в среднем равна 15 пФ. Уровень проводимости тока в данном случае зависит от загруженности реле.


Как сделать самостоятельно?

Сделать своими руками можно легко. Для этого важно использовать проводное реле. Расширитель для него целесообразно подбирать импульсного типа. Для увеличения параметра чувствительности устройства используются конденсаторы. Многие специалисты рекомендуют резисторы устанавливать с изоляторами.

Для решения проблем со скачками напряжения припаиваются фильтры. Если рассматривать самодельную однофазную модель, то модулятор целесообразнее подбирать на 20 Вт. Выходное сопротивление в цепи трансформатора должно составлять 55 Ом. Непосредственно для подключения устройства припаиваются выходные контакты.

Устройства с конденсаторным резистором

Схема электронного трансформатора для 12В предполагает использование проводного реле. В данном случае резисторы устанавливаются за обкладкой. Как правило, модуляторы используются открытого типа. Также схема электронного трансформатора для галогенных ламп 12В включает выпрямители, которые подбираются с фильтрами.

Для решения проблем с коммутацией необходимы усилители. Параметр выходного сопротивления в среднем составляет 45 Ом. Проводимость тока, как правило, не превышает 10 мк. Если рассматривать однофазную модификацию, то у нее имеется триггер. Некоторые специалисты для увеличения проводимости используют триггеры. Однако в данном случае значительно повышаются тепловые потери.


Трансформаторы с регулятором

Трансформатор 220-12 В с регулятором устроен довольно просто. Реле в данном случае стандартно используется проводного типа. Непосредственно регулятор устанавливается с модулятором. Для решения проблем с обратной полярностью имеется кенотрон. Использоваться он может с обкладкой или без нее.

Триггер в данном случае подсоединяется через проводники. Указанные элементы способны работать только с импульсными расширителями. В среднем параметр проводимости у трансформаторов данного типа не превышает 12 мк. Также важно отметить, что показатель отрицательного сопротивления зависит от чувствительности модулятора. Как правило, он не превышает 45 Ом.


Использование проводных стабилизаторов

Трансформатор 220-12 В с проводным стабилизатором встречается очень редко. Для нормальной работы устройства необходимо качественное реле. Показатель отрицательного сопротивления составляет в среднем 50 Ом. Стабилизатор в данном случае фиксируется на модуляторе. Указанный элемент в первую очередь предназначен для понижения тактовой частоты.

Тепловые потери при этом у трансформатора незначительные. Однако важно отметить, что на триггер оказывается большое давление. Некоторые эксперты в сложившейся ситуации рекомендуют использовать емкостные фильтры. Продаются они с проводником и без него.

Модели с диодным мостом

Трансформатор (12 Вольт) данного типа производится на базе селективных триггеров. Показатель порогового сопротивления у моделей в среднем равняется 35 Ом. Для решения проблем с понижением частоты устанавливаются трансиверы. Непосредственно диодные мосты используются с различной проводимостью. Если рассматривать однофазные модификации, то в этом случае резисторы подбираются на две обкладки. Показатель проводимости не превышает 8 мк.

Тетроды у трансформаторов позволяют значительно повысить чувствительность реле. Модификации с усилителями встречаются очень редко. Основной проблемой трансформаторов данного типа является отрицательная полярность. Возникает она вследствие повышения температуры реле. Чтобы исправить ситуацию, многие эксперты рекомендуют использовать триггеры с проводниками.


Модель Taschibra

Схема электронного трансформатора для галогенных ламп 12В включает в себя триггер на две обкладки. Реле у модели используется проводного типа. Для решения проблем с пониженной частотностью применяются расширители. Всего у модели имеются три конденсатора. Таким образом, проблемы с перегрузкой в сети возникают редко. В среднем параметр выходного сопротивления держится на уровне 50 Ом. Как утверждают специалисты, выходное напряжение на трансформаторе не должно превышать 30 Вт. В среднем чувствительность модулятора составляет 5,5 мк. Однако в данном случае важно учитывать загруженность расширителя.

Устройство RET251C

Указанный электронный трансформатор для ламп производится с выходным переходником. Расширитель у модели имеется дипольного типа. Всего в устройстве установлены три конденсатора. Резистор применяется для решения проблем с отрицательной полярностью. Конденсаторы у модели перегреваются редко. Непосредственно модулятор подсоединяется через резистор. Всего у модели установлены два тиристора. В первую очередь они отвечают за параметр выходного напряжения. Также тиристоры призваны обеспечивать стабильную работу расширителя.


Трансформатор GET 03

Трансформатор (12 Вольт) указанной серии пользуется большой популярность. Всего у модели имеются два резистора. Находятся они рядом с модулятором. Если говорить про показатели, то важно отметить, что частота модификации равняется 55 Гц. Подключение устройства осуществляется через выходной переходник.

Расширитель подобран с изолятором. С целью решения проблем с отрицательной полярностью используются два конденсатора. Регулятор в представленной модификации отсутствует. Показатель проводимости трансформатора составляет 4,5 мк. Выходное напряжение колеблется в районе 12 В.

Устройство ELTR-70

Указанный электронный трансформатор 12В включает в себя два проходных тиристора. Отличительной особенностью модификации считается высокая тактовая частота. Таким образом, процесс преобразования тока осуществятся без скачков напряжения. Расширитель у модели используется без обкладки.


Для понижения чувствительности имеется триггер. Установлен он стандартно селективного типа. Показатель отрицательного сопротивления составляет 40 Ом. Для однофазной модификации это считается нормальным. Также важно отметить, что устройства подключаются через выходной переходник.

Модель ELTR-60

Это трансформатор выделяет высокой стабильностью напряжения. Относится модель к однофазным устройствам. Конденсатор у него используется с высокой проводимостью. Проблемы с отрицательной полярностью решаются за счет расширителя. Он установлен за модулятором. Регулятор в представленном трансформаторе отсутствует. Всего у модели используются два резистора. Емкость у них составляет 4,5 пФ. Если верить специалистам, то перегрев элементов наблюдается очень редко. Выходное напряжение на реле равно строго 12 В.

Трансформаторы TRA110

Указанные трансформаторы работают от проходного реле. Расширители у модели используются разной емкости. В среднем показатель выходного сопротивления трансформатора составляет 40 Ом. Относится модель к двухфазным модификациям. Показатель пороговой частоты у нее равен 55 Гц. В данном случае резисторы используются дипольного типа. Всего у модели имеются два конденсатора. Для стабилизации частоты во время работы устройства действует модулятор. Проводники у модели припаяны с высокой проводимостью.

После всего сказанного в предыдущей статье (смотрите ), кажется, что сделать импульсный блок питания из электронного трансформатора достаточно просто: поставить на выход выпрямительный мост, при необходимости стабилизатор напряжения и подключить нагрузку. Однако это не совсем так.

Дело в том, что преобразователь не запускается без нагрузки или нагрузка не достаточна: если к выходу выпрямителя подключить светодиод, разумеется, с ограничительным резистором, то удастся увидеть, лишь только одну вспышку светодиода при включении.

Чтобы увидеть еще одну вспышку, потребуется выключить и включить преобразователь в сеть. Чтобы вспышка превратилась в постоянное свечение надо подключить к выпрямителю дополнительную нагрузку, которая будет просто отбирать полезную мощность, превращая ее в тепло. Поэтому такая схема применяется в том случае, когда нагрузка постоянна, например, двигатель постоянного тока или электромагнит, управление которыми будет возможно только по первичной цепи.

Если для нагрузки необходимо напряжение более, чем 12В, которое выдают электронные трансформаторы потребуется перемотка выходного трансформатора, хотя есть и менее трудоемкий вариант.

Вариант изготовления импульсного блока питания без разборки электронного трансформатора

Схема такого блока питания показана на рисунке 1.

Рисунок 1. Двухполярный блок питания для усилителя

Блок питания изготовлен на основе электронного трансформатора мощностью 105Вт. Для изготовления такого блока питания понадобится изготовить несколько дополнительных элементов: сетевой фильтр, согласующий трансформатор Т1, выходной дроссель L2, выпрямительный мост VD1-VD4.

Блок питания в течение нескольких лет эксплуатируется с УНЧ мощностью 2х20Вт без нареканий. При номинальном напряжении сети 220В и токе нагрузки 0,1А выходное напряжение блока 2х25В, а при увеличении тока до 2А напряжение падает до 2х20В, что вполне достаточно для нормальной работы усилителя.

Согласующий трансформатор Т1 выполнен на кольце К30х18х7 из феррита марки М2000НМ. Первичная обмотка содержит 10 витков провода ПЭВ-2 диаметром 0,8мм, сложенного вдвое и свитого жгутом. Вторичная обмотка содержит 2х22 витка со средней точкой, тем же проводом, также сложенным вдвое. Чтобы обмотка получилась симметричной, мотать следует сразу в два провода — жгута. После обмотки для получения средней точки соединить начало одной обмотки с концом другой.

Также самостоятельно придется изготовить дроссель L2 для его изготовления понадобится такое же ферритовое кольцо, как и для трансформатора Т1. Обе обмотки намотаны проводом ПЭВ-2 диаметром 0,8мм и содержат по 10 витков.

Выпрямительный мост собран на диодах КД213, можно применить также КД2997 или импортные, важно лишь, чтобы диоды были рассчитаны на рабочую частоту не менее 100КГц. Если вместо них поставить, например, КД242, то они будут только греться, а требуемого напряжения получить от них не удастся. Диоды следует установить на радиатор площадью не менее 60 — 70см2, используя при этом изолирующие слюдяные прокладки.

C4, C5 составлены из трех параллельно соединенных конденсаторов емкостью по 2200 микрофарад каждый. Обычно так делается во всех импульсных источниках питания для того, чтобы снизить общую индуктивность электролитических конденсаторов. Кроме этого полезно также параллельно им установить керамические конденсаторы емкостью 0.33 — 0,5мкФ, которые будут сглаживать высокочастотные колебания.

На входе блока питания полезно установить входной сетевой фильтр, хотя будет работать и без него. В качестве дросселя входного фильтра использован готовый дроссель ДФ50ГЦ, применявшийся в телевизорах 3УСЦТ.

Все узлы блока монтируют на плате из изоляционного материала навесным монтажом, используя для этого выводы деталей. Всю конструкцию следует поместить в экранирующий корпус из латуни или жести, предусмотрев в нем отверстия для охлаждения.

Правильно собранный источник питания в наладке не нуждается, начинает работать сразу. Хотя, прежде чем ставить блок в готовую конструкцию следует его проверить. Для этого на выход блока подключается нагрузка — резисторы сопротивлением 240Ом, мощностью не менее 5Вт. Включать блок без нагрузки не рекомендуется.

Еще один способ доработки электронного трансформатора

Случаются ситуации, что хочется применить подобный импульсный блок питания, но нагрузка оказывается очень «вредной». Потребление тока либо очень мало, либо меняется в широких пределах, и блок питания не запускается.

Подобная ситуация возникла, когда попытались в светильник или люстру со встроенными электронными трансформаторами, вместо поставить . Люстра просто отказалась с ними работать. Что же делать в таком случае, как заставить все это работать?

Чтобы разобраться с этим вопросом давайте, посмотрим на рисунок 2, на котором показана упрощенная схема электронного трансформатора.

Рисунок 2. Упрощенная схема электронного трансформатора

Обратим внимание на обмотку управляющего трансформатора Т1, подчеркнутую красной полосой. Эта обмотка обеспечивает обратную связь по току: если тока через нагрузку нет, или он просто мал, то трансформатор просто не заводится. Некоторые граждане, купившие это устройство, подключают к нему лампочку мощностью 2,5Вт, а потом несут обратно в магазин, мол, не работает.

И все же достаточно простым способом можно не только заставить работать устройство практически без нагрузки, да еще и сделать в нем защиту от короткого замыкания. Способ подобной доработки показан на рисунке 3.

Рисунок 3. Доработка электронного трансформатора. Упрощенная схема.

Для того, чтобы электронный трансформатор мог работать без нагрузки или с минимальной нагрузкой следует обратную связь по току заменить обратной связью по напряжению. Для этого следует убрать обмотку обратной связи по току (подчеркнутую красным на рисунке 2), а вместо нее запаять в плату проволочную перемычку, естественно, помимо ферритового кольца.

Далее на управляющий трансформатор Тр1, это тот, который на маленьком кольце, наматывается обмотка из 2 — 3 витков. А на выходной трансформатор один виток, и далее получившиеся дополнительные обмотки соединяется, как указано на схеме. Если преобразователь не заведется, то надо поменять фазировку одной из обмоток.

Резистор в цепи обратной связи подбирается в пределах 3 — 10Ом, мощностью не менее 1Вт. Он определяет глубину обратной связи, которая определяет ток, при котором произойдет срыв генерации. Собственно это и есть ток срабатывания защиты от КЗ. Чем больше сопротивление этого резистора, тем при меньшем токе нагрузки будет происходить срыв генерации, т.е. срабатывание защиты от КЗ.

Из всех приведенных доработок, эта, пожалуй, самая лучшая. Но это не помешает дополнить ее еще одним трансформатором как в схеме по рисунку 1.

Хорошее и малогабаритное зарядное устройство для аккумуляторов можно собрать из обычного 12В электронного трансформатора. Как известно, электронный трансформатор можно использовать в самых разных конструкциях. Это достаточно неплохой импульсный блок питания, хотя уровень выходных помех несколько завышен.

При доработке электронного трансформатора, можно построить неплохой ИБП с весьма внушительными характеристиками. Для того, чтобы ответить на вопрос — можно ли ЭТ превратить в высококачественное импульсное ЗУ для автомобиля, пришлось переделать (перемотать) трансформатор.


Штатный трансформатор во вторичной обмотке содержит 8 витков, после измерения стало ясно, что обмотка дает 10,75 вольт, а я планировал регулируемое ЗУ 0…30 вольт.


Родной трансформатор был выпаян, снята вторичная обмотка и на ее место намотана новая. Обмотка состоит из 23 витков, намотка делалась 6-ю жилами с диаметром 0,5 мм каждая, то есть мы имеем обмотку с сечением провода 3 мм (этого должно хватить для зарядки даже автомобильного аккумулятора.


Related Posts

В этой статье я решил представить новинки этого года, речь пойдет о технологический изобретениях, которые уже можно найти на рынке. В основном все устройства представленные в данной статье связаны с […]

Электронный трансформатор схема taschibra. Китайский электронный трансформатор TASCHIBRA TRA25. Расчет мощности трансформатора для ламп и схема подключения

Внешне электронный трансформатор представляет собой небольшой металлический, как правило, алюминиевый корпус, половинки которого скреплены всего двумя заклепками. Впрочем, некоторые фирмы выпускают подобные устройства и в пластиковых корпусах.

Чтобы посмотреть, что же там внутри, эти заклепки можно просто высверлить. Такую же операцию предстоит проделать, если намечается переделка или ремонт самого устройства. Хотя при его низкой цене куда проще пойти и купить другое, чем ремонтировать старое. И все же нашлось немало энтузиастов, которые не только сумели разобраться в устройстве прибора, но и разработать на его основе несколько импульсных блоков питания.

Принципиальная схема к устройству не прилагается, как и ко всем нынешним электронным устройствам. Но схема достаточно проста, содержит малое количество деталей и поэтому принципиальную схему электронного трансформатора можно срисовать с печатной платы.

На рисунке 1 показана снятая подобным образом схема трансформатора фирмы Taschibra. Очень похожую схему имеют преобразователи, выпускаемые фирмой Feron. Отличие лишь в конструкции печатных плат и типах используемых деталей, в основном трансформаторов: в преобразователях Feron выходной трансформатор выполнен на кольце, в то время как в преобразователях Taschibra на Ш-образном сердечнике.

В обоих случаях сердечники выполнены из феррита. Следует сразу отметить, что кольцеобразные трансформаторы при различных доработках прибора лучше поддаются перемотке, чем Ш – образные. Поэтому, если электронный трансформатор приобретается для опытов и переделок, лучше купить прибор фирмы Feron.

При использовании электронного трансформатора лишь для питания галогенных ламп название фирмы – изготовителя значения не имеет. Единственное, на что следует обратить внимание, это на мощность: электронные трансформаторы выпускаются мощностью 60 — 250 Вт.

Рисунок 1. Схема электронного трансформатора фирмы Taschibra

Краткое описание схемы электронного трансформатора, ее достоинства и недостатки

Как видно из рисунка, устройство представляет собой двухтактный автогенератор, выполненный по полумостовой схеме. Два плеча моста выполнены на транзисторах Q1 и Q2, а два других плеча содержат конденсаторы C1 и C2, поэтому такой мост называется полумостом.

В одну из его диагоналей подается сетевое напряжение, выпрямленное диодным мостом, а в другую включена нагрузка. В данном случае это первичная обмотка выходного трансформатора. По очень похожей схеме выполнены электронные балласты для энергосберегающих ламп, но в них вместо трансформатора включен дроссель, конденсаторы и нити накала люминесцентных ламп.

Для управления работой транзисторов в их базовые цепи включены обмотки I и II трансформатора обратной связи Т1. Обмотка III это обратная связь по току, через нее подключена первичная обмотка выходного трансформатора.

Управляющий трансформатор Т1 намотан на ферритовом кольце с внешним диаметром 8 мм. Базовые обмотки I и II содержат по 3..4 витка, а обмотка обратной связи III – всего один виток. Все три обмотки выполнены проводами в разноцветной пластиковой изоляции, что немаловажно при экспериментах с устройством.

На элементах R2, R3, C4, D5, D6 собрана цепь запуска автогенератора в момент включения всего устройства в сеть. Выпрямленное входным диодным мостом напряжение сети через резистор R2 заряжает конденсатор C4. Когда напряжение на нем превысит порог срабатывания динистора D6, последний открывается и на базе транзистора Q2 формируется импульс тока, который запускает преобразователь.

Дальнейшая работа осуществляется без участия цепи запуска. Следует заметить, что динистор D6 двухсторонний, может работать в цепях переменного тока, в случае постоянного тока полярность включения значения не имеет. В интернете его также называют «диак».

Сетевой выпрямитель выполнен на четырех диодах типа 1N4007, резистор R1 с сопротивлением 1Ом и мощностью 0, 125Вт используется в качестве предохранителя.

Схема преобразователя в том виде, как она есть, достаточно проста и не содержит никаких «излишеств». После выпрямительного моста не предусмотрено даже просто конденсатора для сглаживания пульсаций выпрямленного сетевого напряжения.

Выходное напряжение прямо с выходной обмотки трансформатора также безо всяких фильтров подается прямо на нагрузку. Отсутствуют цепи стабилизации выходного напряжения и защиты, поэтому при коротком замыкании в цепи нагрузки сгорают сразу несколько элементов, как правило, это транзисторы Q1, Q2, резисторы R4, R5, R1. Ну, может и не все сразу, но хотя бы один транзистор точно.

И несмотря на такое, казалось бы, несовершенство схема себя вполне оправдывает при использовании его в штатном режиме, т.е. для питания галогенных ламп. Простота схемы обуславливает ее дешевизну и широкую распространенность устройства в целом.

Исследование работы электронных трансформаторов

Если к электронному трансформатору подключить нагрузку, например, галогенную лампу 12В х 50Вт, а к этой нагрузке подключить осциллограф, то на его экране можно будет увидеть картинку, показанную на рисунке 2.

Рисунок 2. Осциллограмма выходного напряжения электронного трансформатора Taschibra 12Vх50W

Выходное напряжение представляет собой высокочастотные колебания частотой 40КГц, модулированные на 100% частотой 100ГЦ, полученной после выпрямления сетевого напряжения частотой 50ГЦ, что вполне подходит для питания галогенных ламп. В точности такая же картинка будет получена для преобразователей другой мощности или другой фирмы, ведь схемы практически не отличаются друг от друга.

Если к выходу выпрямительного моста подключить электролитический конденсатор C4 47uFх400V, как показано пунктирной линией на рисунке 4, то напряжение на нагрузке примет вид, показанный на рисунке 4.

Рисунок 3. Подключение конденсатора к выходу выпрямительного моста

Рисунок 4. Напряжение на выходе преобразователя после подключения конденсатора C5

Однако, не следует забывать о том, что ток зарядки дополнительно подключенного конденсатора C4 приведет к перегоранию, причем достаточно шумному, резистора R1, который используется в качестве предохранителя. Поэтому этот резистор следует заменить более мощным резистором с номиналами 22Омх2Вт, назначение которого просто ограничить ток зарядки конденсатора С4. В качестве же предохранителя следует использовать обычный плавкий предохранитель на 0,5А.

Нетрудно заметить, что модуляция с частотой 100Гц прекратилась, остались лишь высокочастотные колебания с частотой около 40КГц. Даже если при этом исследовании и нет возможности воспользоваться осциллографом, то этот неоспоримый факт можно заметить по некоторому увеличению яркости лампочки.

Это говорит о том, что электронный трансформатор вполне пригоден для создания несложных импульсных блоков питания. Тут возможно несколько вариантов: использование преобразователя без разборки, только за счет добавления наружных элементов и с небольшими изменениями схемы, совсем небольшими, но придающими преобразователю совсем иные свойства. Но об этом более подробно мы поговорим в следующей статье.

Как сделать блок питания из электронного трансформатора?

После всего сказанного в предыдущей статье (смотрите Как устроен электронный трансформатор?), кажется, что сделать импульсный блок питания из электронного трансформатора достаточно просто: поставить на выход выпрямительный мост, сглаживающий конденсатор, при необходимости стабилизатор напряжения и подключить нагрузку. Однако это не совсем так.

Дело в том, что преобразователь не запускается без нагрузки или нагрузка не достаточна: если к выходу выпрямителя подключить светодиод, разумеется, с ограничительным резистором, то удастся увидеть, лишь только одну вспышку светодиода при включении.

Чтобы увидеть еще одну вспышку, потребуется выключить и включить преобразователь в сеть. Чтобы вспышка превратилась в постоянное свечение надо подключить к выпрямителю дополнительную нагрузку, которая будет просто отбирать полезную мощность, превращая ее в тепло. Поэтому такая схема применяется в том случае, когда нагрузка постоянна, например, двигатель постоянного тока или электромагнит, управление которыми будет возможно только по первичной цепи.

Если для нагрузки необходимо напряжение более, чем 12В, которое выдают электронные трансформаторы потребуется перемотка выходного трансформатора, хотя есть и менее трудоемкий вариант.

Вариант изготовления импульсного блока питания без разборки электронного трансформатора

Схема такого блока питания показана на рисунке 1.

Рисунок 1. Двухполярный блок питания для усилителя

Блок питания изготовлен на основе электронного трансформатора мощностью 105Вт. Для изготовления такого блока питания понадобится изготовить несколько дополнительных элементов: сетевой фильтр, согласующий трансформатор Т1, выходной дроссель L2, выпрямительный мост VD1-VD4.

Блок питания в течение нескольких лет эксплуатируется с УНЧ мощностью 2х20Вт без нареканий. При номинальном напряжении сети 220В и токе нагрузки 0,1А выходное напряжение блока 2х25В, а при увеличении тока до 2А напряжение падает до 2х20В, что вполне достаточно для нормальной работы усилителя.

Согласующий трансформатор Т1 выполнен на кольце К30х18х7 из феррита марки М2000НМ. Первичная обмотка содержит 10 витков провода ПЭВ-2 диаметром 0,8мм, сложенного вдвое и свитого жгутом. Вторичная обмотка содержит 2х22 витка со средней точкой, тем же проводом, также сложенным вдвое. Чтобы обмотка получилась симметричной, мотать следует сразу в два провода – жгута. После обмотки для получения средней точки соединить начало одной обмотки с концом другой.

Также самостоятельно придется изготовить дроссель L2 для его изготовления понадобится такое же ферритовое кольцо, как и для трансформатора Т1. Обе обмотки намотаны проводом ПЭВ-2 диаметром 0,8мм и содержат по 10 витков.

Выпрямительный мост собран на диодах КД213, можно применить также КД2997 или импортные, важно лишь, чтобы диоды были рассчитаны на рабочую частоту не менее 100КГц. Если вместо них поставить, например, КД242, то они будут только греться, а требуемого напряжения получить от них не удастся. Диоды следует установить на радиатор площадью не менее 60 — 70см2, используя при этом изолирующие слюдяные прокладки.

Электролитические конденсаторы C4, C5 составлены из трех параллельно соединенных конденсаторов емкостью по 2200 микрофарад каждый. Обычно так делается во всех импульсных источниках питания для того, чтобы снизить общую индуктивность электролитических конденсаторов. Кроме этого полезно также параллельно им установить керамические конденсаторы емкостью 0.33 — 0,5мкФ, которые будут сглаживать высокочастотные колебания.

На входе блока питания полезно установить входной сетевой фильтр, хотя будет работать и без него. В качестве дросселя входного фильтра использован готовый дроссель ДФ50ГЦ, применявшийся в телевизорах 3УСЦТ.

Все узлы блока монтируют на плате из изоляционного материала навесным монтажом, используя для этого выводы деталей. Всю конструкцию следует поместить в экранирующий корпус из латуни или жести, предусмотрев в нем отверстия для охлаждения.

Правильно собранный источник питания в наладке не нуждается, начинает работать сразу. Хотя, прежде чем ставить блок в готовую конструкцию следует его проверить. Для этого на выход блока подключается нагрузка – резисторы сопротивлением 240Ом, мощностью не менее 5Вт. Включать блок без нагрузки не рекомендуется.

Еще один способ доработки электронного трансформатора

Случаются ситуации, что хочется применить подобный импульсный блок питания, но нагрузка оказывается очень «вредной». Потребление тока либо очень мало, либо меняется в широких пределах, и блок питания не запускается.

Подобная ситуация возникла, когда попытались в светильник или люстру со встроенными электронными трансформаторами, вместо галогенных ламп поставить светодиодные. Люстра просто отказалась с ними работать. Что же делать в таком случае, как заставить все это работать?

Чтобы разобраться с этим вопросом давайте, посмотрим на рисунок 2, на котором показана упрощенная схема электронного трансформатора.

Рисунок 2. Упрощенная схема электронного трансформатора

Обратим внимание на обмотку управляющего трансформатора Т1, подчеркнутую красной полосой. Эта обмотка обеспечивает обратную связь по току: если тока через нагрузку нет, или он просто мал, то трансформатор просто не заводится. Некоторые граждане, купившие это устройство, подключают к нему лампочку мощностью 2,5Вт, а потом несут обратно в магазин, мол, не работает.

И все же достаточно простым способом можно не только заставить работать устройство практически без нагрузки, да еще и сделать в нем защиту от короткого замыкания. Способ подобной доработки показан на рисунке 3.

Рисунок 3. Доработка электронного трансформатора. Упрощенная схема.

Для того, чтобы электронный трансформатор мог работать без нагрузки или с минимальной нагрузкой следует обратную связь по току заменить обратной связью по напряжению. Для этого следует убрать обмотку обратной связи по току (подчеркнутую красным на рисунке 2), а вместо нее запаять в плату проволочную перемычку, естественно, помимо ферритового кольца.

Далее на управляющий трансформатор Тр1, это тот, который на маленьком кольце, наматывается обмотка из 2 — 3 витков. А на выходной трансформатор один виток, и далее получившиеся дополнительные обмотки соединяется, как указано на схеме. Если преобразователь не заведется, то надо поменять фазировку одной из обмоток.

Резистор в цепи обратной связи подбирается в пределах 3 — 10Ом, мощностью не менее 1Вт. Он определяет глубину обратной связи, которая определяет ток, при котором произойдет срыв генерации. Собственно это и есть ток срабатывания защиты от КЗ. Чем больше сопротивление этого резистора, тем при меньшем токе нагрузки будет происходить срыв генерации, т.е. срабатывание защиты от КЗ.

Из всех приведенных доработок, эта, пожалуй, самая лучшая. Но это не помешает дополнить ее еще одним трансформатором как в схеме по рисунку 1.

Эксперименты с электронным трансформатором Taschibra (Ташибра, Tashibra)

Думаю, что достоинства этого трансформатора оценили уже многие из тех, кто когда-либо занимался проблемами питания различных электронных конструкций. А достоинств у этого электронного трансформатора — не мало. Малый вес и габариты (как и у всех аналогичных схем), простота переделки под собственные нужды, наличие экранирующего корпуса, невысокая стоимость и относительная надежность (по крайней мере, если не допускать экстремальных режимов и КЗ, изделие, выполненное по аналогичной схеме, способно проработать долгие годы). Диапазон применения блоков питания на базе «Tasсhibra» может быть весьма широким, сопоставимым с применением обычных трансформаторов.

Применение оправдано в случаях дефицита времени, средств, отсутсвия необходимости стабилизации.Ну, что, — поэксперемтируем? Сразу оговорюсь, что целью экспериментов являлась проверка цепи запуска «Tasсhibra» при различных нагрузках, частотах и применении различных трансформаторов. Так же хотелось подобрать оптимальные номиналы компонентов цепи ПОС и проверить температурные режимы компонентов схемы при работе на различные нагрузки с учетом использования корпуса «Tasсhibra» в качестве радиатора.

Схема ЭТ Taschibra (Ташибра, Tashibra)

Несмотря на большое количество опубликованных схем электронного трансформатора, не поленюсь еще раз выложить ее на обозрение. Смотрим рис1, иллюстрирующий начинку «Tashibra».

Схема справедлива для ЭТ «Tashibra» 60-150Вт. Издевательство же производилось на ЭТ 150Вт. Предполагается, однако, что ввиду идентичности схем, результаты экспериментов с легкостью можно проецировать на экземпляры как с меньшей, так и с большей мощностью.

И еще раз напомню, чего же не хватает «Tashibra» для полноценного блока питания.1. Отсутствие входного сглаживающего фильтра (он же — противопомеховый, предотвращающий попадание продуктов преобразования в сеть),2. Токовая ПОС, допускающая возбуждение преобразователя и его нормальную работу лишь при наличии определенного тока нагрузки,3. Отсутствие выходного выпрямителя,4. Отсутствие элементов выходного фильтра.

Попробуем исправить все перечисленные недостатки «Tasсhibra» и попытаемся добиться его приемлемой работы с желаемыми выходными характеристиками. Для начала даже не будем вскрывать корпус электронного трансформатора, а просто добавим недостающие элементы…

1. Входной фильтр: конденсаторы С`1, C`2 с симметричным двухобмоточным дросселем (трансформатором) T`12. диодный мост VDS`1 со сглаживающим конденсатором C`3 и резистором R`1 для защиты моста от зарядного тока конденсатора.

Сглаживающий конденсатор обычно выбирается из расчета 1,0 — 1,5мкФ на ватт мощности, а параллельно конденсатору следует подключить разрядный резистор сопротивлением 300-500кОм для безопасности (прикосновение к выводам заряженного относительно высоким напряжением конденсатора — не очень приятно).Резистор R`1 можно заменить термистором 5-15Ом/1-5А. Такая замена в меньшей степени снизит КПД трансформатора.

На выходе ЭТ, как показано в схеме на рис3, подсоединим цепь из диода VD`1, конденсаторов C`4-C`5 и дросселя L1, включенного между ними, — для получения фильтрованного постоянного напряжения на выходе «пациента». При этом, на полистироловый конденсатор, размещенный непосредственно за диодом, приходится основная доля поглощения продуктов преобразования после выпрямления. Предполагается, что электролитический конденсатор, «спрятанный» за индуктивностью дросселя, будет выполнять лишь свои прямые функции, предотвращая «провал» напряжения при пиковой мощности подключенного к ЭТ устройства. Но и параллельно ему рекомендуется установить неэлектролитический конденсатор.

После добавления входной цепи в работе электронного трансформатора произошли изменения: амплитуда выходных импульсов (до диода VD`1) несколько возросла за счет повышения напряжения на входе устройства за счет добавления C`3 и модуляция частотой 50Гц уже практически отсутствует. Это — при расчетной для ЭТ нагрузке.Однако этого недостаточно. «Tashibra» не желает запускаться без существенного тока нагрузки.

Установка на выходе преобразователя нагрузочных резисторов для возникновения какого-либо минимального значения тока, способного запустить преобразователь, лишь снижает общий КПД устройства. Запуск при токе нагрузки около 100мА производится на очень низкой частоте, которую достаточно сложно будет отфильтровать, если блок питания предполагается для совместного применения с УМЗЧ и другим аудио-оборудованием с небольшим током потребления в режиме отсутствия сигнала, например. Амплитуда импульсов при этом также — меньше, чем при полной нагрузке.

Изменение частоты в режимах различной мощности — довольно сильное: от пары до нескольких десятков килогерц. Это обстоятельство накладывает существенные ограничения на использование «Tashibra» в таком (пока еще) виде при работе со многими устройствами.

Но — продолжим. Встречались предложения подключения дополнительного трансформатора к выходу ЭТ, как это показано, например, на рис2.

Предполагалось, что первичная обмотка дополнительного трансформатора способна создать ток, достаточный для нормальной работы базовой схемы ЭТ. Предложение, однако, заманчиво лишь тем, что не разбирая ЭТ, с помощью дополнительного трансформатора можно создать набор необходимых (по своему вкусу) напряжений. На самом деле тока холостого хода дополнительного трансформатора недостаточно для запуска ЭТ. Попытки увеличения тока (вроде лампочки на 6,3ВХ0,3А, подключенной к дополнительной обмотке), способного обеспечить НОРМАЛЬНУЮ работу ЭТ, приводили лишь к запуску преобразователя и зажиганию лампочки.

Но, быть может, кого-то заинтересует и этот результат, т.к. подключение дополнительного трансформатора справедливо и во многих других случаях для решения множества задач. Так, например, дополнительный трансформатор можно использовать совместно со старым (но рабочим) компьютерным БП, способного обеспечить значительную мощность на выходе, но имеющего ограниченный (зато — стабилизированный) набор напряжений.

Можно было бы и далее продолжать искать истину в шаманстве вокруг «Tashibra», однако, я счел для себя эту тему исчерпанной, т.к. для достижения необходимого результата (устойчивый запуск и выход на рабочий режим при отсутствии нагрузки, а, значит, и — высокий КПД; небольшое изменение частоты при работе БП от минимальной до максимальной мощности и устойчивый запуск при максимальной нагрузке) гораздо эффективней — влезть внутрь «Tashibra» и произвести все необходимые изменения в схеме самого ЭТ таким образом, как это показано на рис 4. Тем более, чт ос полсотни подобных схем мною было собрано еще во времена эры компьютеров «Спектрум» (именно для этих компьютеров). Различный УМЗЧ, запитанные аналогичными БП, где-то работают и сейчас. БП, выполненные по этой схеме, проявили себя с наилучшей стороны, работая, будучи собранными из самых различных комплектующих и в различных вариантах.

Переделываем? Конечно!

Тем более, что это совсем не сложно.

Выпаиваем трансформатор. Разогреваем его для удобства разборки, чтобы перемотать вторичную обмотку для получения желаемых выходных параметров так, как показано на этом фото или с помощью любых других технологий.

В данном случае трансформатор выпаян лишь для того, чтобы поинтересоваться его моточными данными (кстати: Ш-образный магнитопровод с круглым керном, стандартных для компьютерных БП габаритов с 90 витками первичной обмотки, намотанными в 3 слоя проводом диаметром 0,65мм и 7-ю витками вторичной обмотки с впятеро сложенным проводом диаметром приблизительно 1,1мм; все это без малейшей межслойной и межобмоточной изоляции — только лак) и освободить место для другого трансформатора.

Для экспериментов мне было проще использовать кольцевые магнитопроводы. Занимают меньше места на плате, что дает (при необходимости) возможность использования дополнительных компонентов в объеме корпуса. В данном случае использовалась пара ферритовых колец с внешним, внутренним диаметрами и высотой, соответственно 32Х20Х6мм, сложенных вдвое (без склеивания) — Н2000-НМ1. 90 витков первички (диаметр провода — 0,65мм) и 2Х12 (1,2мм) витков вторички с необходимой межобмоточной изоляцией.

Обмотка связи содержит 1 виток монтажного провода диаметром 0,35мм. Все обмотки наматываются в порядке, соответствующем нумерации обмоток. Изоляция самого магнитопровода — обязательна. В данном случае магнитопровод обмотан двумя слоями изоленты, надежно, кстати, фиксируя сложенные кольца.

Перед установкой трансформатора на плату ЭТ, выпаиваем токовую обмотку коммутирующего трансформатора и используем ее в качестве перемычки, запаяв туда же, но уже не пропуская через окно кольца трансформатора.

Устанавливаем намотанный трансформатор Tr2 на плату, запаяв выводы в соответствии со схемой на рис 4. и пропускаем провод обмотки III в окно кольца коммутирующего трансформатора. Используя жесткость провода, образуем подобие геометрически замкнутой окружности и виток обратной связи готов. В разрыв монтажного провода, образующего обмотки III обоих (коммутирующего и силового) трансформаторов, припаиваем достаточно мощный резистор (>1Вт) сопротивлением 3-10 Ом.

На схеме в рис 4 штатные диоды ЭТ не используются. Их следует удалить, как, впрочем, и резистор R1 в целях повышения КПД блока в целом. Но можно и пренебречь несколькими процентами КПД и оставить перечисленные детали на плате. По крайней мере, в момент проведения экспериментов с ЭТ, эти детали оставались на плате. Резисторы, установленные базовых цепях транзисторов следует оставить — они выполняют функции ограничения тока базы при запуске преобразователя, облегчая его работу на емкостную нагрузку.

Транзисторы непременно следует установить на радиаторы через изолирующие теплопроводящие прокладки (повзаимствованные, например, у неисправного компьютерного БП), предотвратив, тем самым их случайный мгновенный разогрев и обеспечив некоторую собственную безопасность в случае прикосновения к радиатору во время работы устройства.

Кстати, электрокартон, используемый в ЭТ для изоляции транзисторов и платы от корпуса, не является теплопроводным. Поэтому при «упаковке» готовой схемы БП в штатный корпус, между транзисторами и корпусом следует установить именно такие прокладки. Лишь в этом случае будет обеспечен хоть какой-то теплоотвод. При использовании преобразователя с мощностями свыше 100Вт на корпус устройства необходимо установить дополнительный радиатор. Но это, так, — на будущее.

А пока, закончив монтаж схемы, выполним еще один пункт безопасности, включив его вход последовательно через лампу накаливания мощностью 150-200 Вт. Лампа, в случае нештатной ситуации (КЗ, например) ограничит ток через конструкцию до безопасной величины и в худшем случае создаст дополнительное освещение рабочего пространства.

В лучшем случае, при некотрой наблюдательности лампой можно пользоваться, как индикатором, например, — сквозного тока. Так, слабое (или несколько более интенсивное) свечение нити лампы при ненагруженном или слабо нагруженном преобразователе, будет свидетельствовать о наличии сквозного тока. Подтверждением может послужить температура ключевых элементов — разогрев в режиме сквозного тока будет довольно быстрым. При работе исправного преобразователя видимое на фоне дневного света свечение нити 200-ваттной лампы проявится лишь на пороге 20-35 Вт.

Первый запуск

Итак, все готово для первого пуска переделанной схемы «Tashibra». Включаем для начала — без нагрузки, но не забываем о предварительно подключенном вольтметре на выход преобразователя и осциллографе. При правильно сфазированных обмотках обратной связи, преобразователь должен запуститься без проблем.

Если запуска не произошло, то провод, пропущенный в окно коммутирующего трансформатора (отпаяв его предварительно от резистора R5), пропускаем с другой стороны, придав ему, опять же, вид законченного витка. Подпаиваем провод к R5. Вновь подаем питание на преобразователь. Не помогло? Ищите ошибки в монтаже: КЗ, «непропаи», ошибочно установленные номиналы.

При запуске исправного преобразователя с указанными моточными данными, на дисплее осциллографа, подсоединенного к вторичной обмотке трансформатора Tr2 (в моем случае — к половине обмотки) будет отображена неизменяющаяся во времени последовательность четких прямоугольных импульсов. Частота преобразования подбирается резистором R5 и в моем случае при R5=5,1 Ohm, частота ненагруженного преобразователя составила 18 кГц.

При нагрузке 20 Ом — 20,5 кГц. При нагрузке 12 Ом — 22,3 кГц. Нагрузка подсоединялась непосредственно к контролируемой приборами обмотке трансформатора с действующим значением напряжения 17,5 В. Расчетное значение напряжения было несколько иным (20 В), но выяснилось, что вместо номинала 5,1 Ом, сопротивление установленного на плате R1=51 Ом. Будьте внимательны к подобным сюрпризам от китайсикх товарищей.

Впрочем, я счел возможность продолжить эксперименты без замены этого резистора, несмотря на его существенный, но терпимый нагрев. При отдаваемой преобразователем мощности в нагрузку около 25 Вт, мощность, рассеиваемая на этом резисторе не превышала 0,4 Вт.

Что же касается потенциальной мощности БП, то при частоте 20кГц установленный трансформатор сможет отдать в нагрузку не более 60-65Вт.

Попробуем частоту повысить. При включении резистора (R5) сопротивлением 8,2 Ом, частота преобразователя без нагрузки возросла до 38,5 кГц, с нагрузкой 12 Ом — 41,8 кГц.

При такой частоте преобразования с имеющимся силовым трансформатором можно смело обслужить нагрузку мощностью до 120Вт.С сопротивлениями в цепи ПОС можно экспериментировать и дальше, добиваясь необходимого значения частоты, имея ввиду, однако, что слишком большое сопротивление R5 может приводить к срывам генерации и нестабильному запуску преобразователя. При изменении параметров ПОС преобразователя, следует контролировать ток, проходящий через ключи преобразователя.

Можно эксперементировать так же и с обмотками ПОС обоих трансформаторов на свой страх и риск. При этом следует предварительно произвести расчеты количества витков коммутирующего трансформатора по формулам, размещенным на страничке //interlavka.narod.ru/stats/Blokpit02.htm, например, или с помощью оной из программ г-на Москатова, размещенных на страничке его сайта //www.moskatov.narod.ru/Design_tools_pulse_transformers.html.

Усовершенствование Tasсhibra — конденсатор в ПОС вместо резистора!

Можно избежать нагрева резистора R5, заменив его… конденсатором. Цепь ПОС при этом безусловно пробретает некоторые резонансные свойства, но каких либо ухудшений в работе БП не проявляется. Более того, конденсатор, установленный взамен резистора, нагревается значительно меньше, чем замененный резистор. Так, частота при установленном конденсаторе емкостью 220nF, возросла до 86,5кГц (без нагрузки) и составила при работе на нагрузку 88,1кГц. Запуск и работа преобразователя оставались такими же стабильными, как и в случае с применением резистора в цепи ПОС. Заметим, что потенциальная мощность БП пи такой частоте возрастает до 220 Вт (минимально).Мощность трансформатора: значения — приблизительны, с определенными допущениями, но не завышены.

К сожалению, у меня не было возможности для испытания БП с большим нагрузочным током, но, полагаю, что и описания произведенных экспериментов достаточно для того, чтобы обратить внимание многих на такие, вот, простые схемки преобразователей питания, достойных для использования в самых различных конструкциях.

Заранее приношу извинения за возможные неточности, недоговоренности и погрешности. Исправлюсь в ответах на ваши вопросы.

Константин (riswel)

Россия, г. Калининград

C детства — музыка и электро/радио-техника. Перепаял множество схем самых различных по разным поводам и просто, — для интереса, — и своих, и чужих.

За 18 лет работы в Северо-Западном Телекоме изготовил много различных стендов для проверки различного ремонтируемого оборудования. Сконструировал несколько, различных по функционалу и элементной базе, цифровых измерителей длительности импульсов.

Более 30-ти рацпредложений по модернизации узлов различного профильного оборудования, в т.ч. — электропитающего. С давних пор все больше занимаюсь силовой автоматикой и электроникой.

Почему я здесь? Да потому, что здесь все — такие же, как я. Здесь много для меня интересного, поскольку я не силен в аудио-технике, а хотелось бы иметь больший опыт именно в этом направлении.

datagor.ru

Электронные трансформаторы. Устройство и работа. Особенности

Рассмотрим основные преимущества, достоинства и недостатки электронных трансформаторов. Рассмотрим схему их работы. Электронные трансформаторы появились на рынке совсем недавно, но успели завоевать широкую популярность не только в радиолюбительских кругах.

В последнее время в интернете часто наблюдаются статьи на основе электронных трансформаторов: самодельные блоки питания, зарядные устройства и многое другое. На самом деле электронные трансформаторы являются простым сетевым импульсным блоком питания. Это самый дешевый блок питания. Зарядное устройство для телефона стоит дороже. Электронный трансформатор работает от сети 220 вольт.

Устройство и принцип действия
Схема работы

Генератором в этой схеме является диодный тиристор или динистор. Сетевое напряжение 220 В выпрямляется диодным выпрямителем. На входе питания присутствует ограничительный резистор. Он одновременно служит и предохранителем, и защитой от бросков сетевого напряжения при включении. Рабочую частоту динистора можно определить от номиналов R-С цепочки.

Таким образом можно увеличить рабочую частоту генератора всей схемы или уменьшить. Рабочая частота в электронных трансформаторах от 15 до 35 кГц, ее можно регулировать.

Трансформатор обратной связи намотан на маленьком колечке сердечника. В нем присутствуют три обмотки. Обмотка обратной связи состоит из одного витка. Две независимые обмотки задающих цепей. Это базовые обмотки транзисторов по три витка.

Это равноценные обмотки. Ограничительные резисторы предназначены для предотвращения ложных срабатываний транзисторов и одновременно ограничения тока. Транзисторы применяются высоковольтного типа, биполярные. Часто используют транзисторы MGE 13001-13009. Это зависит от мощности электронного трансформатора.

т конденсаторов полумоста тоже многое зависит, в частности мощность трансформатора. Они применяются с напряжением 400 В. От габаритных размеров сердечника основного импульсного трансформатора также зависит мощность. У него две независимые обмотки: сетевая и вторичная. Вторичная обмотка с расчетным напряжением 12 вольт. Наматывается она, исходя из требуемой мощности на выходе.

Первичная или сетевая обмотка состоит из 85 витков провода диаметром 0,5-0,6 мм. Используются маломощные выпрямительные диоды с обратным напряжением в 1 кВ и током в 1 ампер. Это самый дешевый выпрямительный диод, который можно найти серии 1N4007.

На схеме детально виден конденсатор, частотно задающий цепи динистора. Резистор на входе предохраняет от бросков напряжения. Динистор серии DB3, его отечественный аналог КН102. Также имеется ограничивающий резистор на входе. Когда напряжение на частотно задающем конденсаторе достигает максимального уровня, происходит пробой динистора. Динистор – это полупроводниковый искровой разрядник, который срабатывает при определенном напряжении пробоя. Тогда он подает импульс на базу одного из транзисторов. Начинается генерация схемы.

Транзисторы работают по противофазе. Образуется переменное напряжение на первичной обмотке трансформатора заданной частоты срабатывания динистора. На вторичной обмотке мы получаем нужное напряжение. В данном случае все трансформаторы рассчитаны на 12 вольт.

Модель трансформатора китайского производителя Taschibra

Он предназначен для питания галогенных ламп на 12 вольт.

Со стабильной нагрузкой, как галогенные лампы, такие электронные трансформаторы могут работать бесконечно долго. Во время работы схема перегревается, но не выходит из строя.
Принцип действия

Подается напряжение 220 вольт, выпрямляется диодным мостом VDS1. Через резисторы R2 и R3 начинает заряжаться конденсатор С3. Заряд продолжается то тех пор, пока не пробьется динистор DB3.

Напряжение открытия этого динистора составляет 32 вольта. После его открытия на базу нижнего транзистора поступает напряжение. Транзистор открывается, вызывая автоколебания этих двух транзисторов VT1 и VT2. Как работают эти автоколебания?

Ток начинает поступать через С6, трансформатор Т3, трансформатор управления базами JDT, транзистор VT1. При прохождении через JDT он вызывает закрытие VT1 и происходит открытие VT2. После этого ток течет через VT2, через трансформатор баз, Т3, С7. Транзисторы постоянно открывают и закрывают друг друга, работают в противофазе. В средней точке появляются прямоугольные импульсы.

Частота преобразования зависит от индуктивности обмотки обратной связи, емкости баз транзисторов, индуктивности трансформатора Т3 и емкостей С6, С7. Поэтому частотой преобразования управлять очень сложно. Еще частота зависит от нагрузки. Для форсирования открытия транзисторов используются ускоряющие конденсаторы на 100 вольт.

Для надежного закрытия динистора VD3 после возникновения генерации прямоугольные импульсы прикладываются к катоду диода VD1, и он надежно запирает динистор.

Кроме этого, есть устройства, которые используют для осветительных приборов, питают мощные галогенные лампы в течение двух лет, работают верой и правдой.

Блок питания на основе электронного трансформатора

Сетевое напряжение через ограничительный резистор поступает на диодный выпрямитель. Сам диодный выпрямитель состоит из 4-х маломощных выпрямителей с обратным напряжением в 1 кВ и током 1 ампер. Такой же выпрямитель стоит на блоке трансформатора. После выпрямителя постоянное напряжение сглаживается электролитическим конденсатором. От резистора R2 зависит время заряда конденсатора С2. При максимальном заряде срабатывает динистор, возникает пробой. На первичной обмотке трансформатора образуется переменное напряжение частоты срабатывания динистора.

Основное достоинство этой схемы – это наличие гальванической развязки с сетью 220 вольт. Основным недостатком является малый выходной ток. Схема предназначена для питания малых нагрузок.

Модель трансформатора DM-150T06A

Потребление тока 0,63 ампера, частота 50-60 герц, рабочая частота 30 килогерц. Такие электронные трансформаторы предназначены для питания более мощных галогенных ламп.

Достоинства и преимущества

Если использовать приборы по прямому назначению, то имеется хорошая функция. Трансформатор не включается без входной нагрузки. Если вы просто включили в сеть трансформатор, то он не активен. Нужно подключить на выход мощную нагрузку, чтобы началась работа. Эта функция экономит электроэнергию. Для радиолюбителей, которые переделывают трансформаторы в регулируемый блок питания, это является недостатком.

Можно реализовать систему автовключения и систему защиты от короткого замыкания. Несмотря на имеющиеся недостатки, электронный трансформатор всегда будет самой дешевой разновидностью блоков питания полумостового типа.

В продаже можно найти более качественные недорогие блоки питания с отдельным генератором, но все они реализуются на основе полумостовых схем с применением самотактируемых полумостовых драйверов, таких как IR2153 и ему подобные. Такие электронные трансформаторы гораздо лучше работают, более стабильны, реализована защита от короткого замыкания, на входе сетевой фильтр. Но старая Taschibra остается незаменимой.

Недостатки электронных трансформаторов

Они имеют ряд недостатков, несмотря на то, что они сделаны по хорошим схемам. Это отсутствие каких-либо защит в дешевых моделях. У нас простейшая схема электронного трансформатора, но она работает. Именно эта схема реализована в нашем примере.

На входе питания отсутствует сетевой фильтр. На выходе после дросселя должен стоять хотя бы сглаживающий электролитический конденсатор на несколько микрофарад. Но он тоже отсутствует. Поэтому на выходе диодного моста мы можем наблюдать нечистое напряжение, то есть, все сетевые и другие помехи передаются на схему. На выходе мы получаем минимальное количество помех, так как реализована гальваническая развязка.

Рабочая частота динистора крайне неустойчива, зависит от выходной нагрузки. Если без выходной нагрузки частота составляет 30 кГц, то с нагрузкой может наблюдаться довольно большой спад до 20 кГц, зависит от конкретной нагруженности трансформатора.

Еще одним недостатком можно назвать то, что на выходе этих электронных трансформаторов переменная частота и ток. Чтобы использовать его в качестве блока питания, нужно выпрямить ток. Выпрямлять нужно импульсными диодами. Обычные диоды тут не подходят из-за повышенной рабочей частоты. Поскольку в таких блоках питания не реализованы никакие защиты, то стоит лишь замкнуть выходные провода, блок не просто выйдет из строя, а взорвется.

Одновременно при коротком замыкании ток в трансформаторе увеличивается до максимума, поэтому выходные ключи (силовые транзисторы) просто лопнут. Выходит из строя и диодный мост, поскольку они рассчитаны на рабочий ток в 1 ампер, а при коротком замыкании рабочий ток резко увеличивается. Выходят также из строя ограничительные резисторы транзисторов, сами транзисторы, диодный выпрямитель, предохранитель, который должен предохранять схему, но не делает этого.

Еще несколько компонентов могут выйти из строя. Если у вас имеется такой блок электронного трансформатора, и он случайно выходит по каким-то причинам из строя, то ремонтировать его нецелесообразно, так как это не выгодно. Только один транзистор стоит 1 доллар. А готовый блок питания также можно купить за 1 доллар, совсем новый.

Мощности электронных трансформаторов

Сегодня в продаже можно найти разные модели трансформаторов, начиная от 25 ватт и заканчивая несколькими сотнями ватт. Трансформатор на 60 ватт выглядит следующим образом.

Производитель китайский, выпускает электронные трансформаторы мощностью от 50 до 80 ватт. Входное напряжение от 180 до 240 вольт, частота сети 50-60 герц, рабочая температура 40-50 градусов, выход 12 вольт.

Похожие темы:

electrosam.ru

Все больше и больше радиолюбители переходят на питание своих кострукций импульсыми источниками питания. На прилавках магазинов сейчас размещено очень много дешевых электронных трансформаторов (дальше просто ЭТ).

Проблема заключаетса в том, что в трансформаторе применена цепь обратной (дальше ОС) связи по току, то есть чем больше ток нарузки — тем больше ток базы ключей, поэтому трансформатор не запускается без нагрузки, или при малой нарузке напряжение меньше 12В, да и при КЗ базовый ток ключей растет и они выходят из строя, а часто еще и резисторы в базовых цепях. Устраняется всё это довольно просто — меняем ОС по току на ОС по напряжению, вот схема переделки. Красным отмечено то, что нужно изменить:

Итак, удаляем обмотку связи на коммутирующем трансформаторе и ставим вместо нее перемычку.

Потом наматываем 1-2 витка на силовом трансформаторе и 1 на коммутирующем, используем резистор в ОС от 3-10 Ом мощностью не меньше 1 ватта, чем выше сопротивление — тем меньше ток защиты от КЗ.

Если вас пугает нагрев резистора, вместо него можно использовать лампочку от карманного фонарика (2,5-6,3В). Но при этом ток срабатывания защиты будет очень мал, так как сопротивление горячей нити лампы довольно большое.

Трансформатор теперь спокойно запускается без нагрузки, и есть защита от КЗ.

При замыкании выхода ток на вторичке падает, соотвественно падает ток и на обмотке ОС — ключи запираются и срывается генерация, только во время КЗ очень сильно греются ключи, так как динистор пытаетса запустить схему, а ведь на ней КЗ и процес повторяетса. Поэтому данный электронный трансформатор может выдержать режим замыкания не болле 10 секунд. Вот видео работы защиты от КЗ в переделанном устройстве:

Сорри за качество, снимал на мобильник. Вот еще одно фото переделки ЭТ:

Но помещать фильтрующий конденсатор в корпус ЭТ не советую, я делал так на свой страх и риск, так как температура внутри и так немаленькая, да и места мало, может вздуть конденсатор и возможно вы услышите БА-БАХ:) Но не факт, пока что все работает отлично, время покажет… Позже мною были переделаны два трансформатора на 60 и 105 Вт, вторичные обмотки были перемотаны под свои нужды, вот фото, как разделить сердечник Ш-образного трансформатора (в блоке питания 105 Вт).

Также можно передлать импульсный блок питания малой мощности под большую, заменив при этом ключи, диоды сетевого моста, конденсаторы полумоста и конечно же трансформатор на феррите.

Вот немного фоток — переделан ЭТ на 60 Вт под 180Вт, транзисторы заменены на MJE 13009, конденсаторы 470 nF и трансформатор намотан на двух сложенных кольцах К32*20*6.

Первичка 82 витка в две жилы 0,4 мм. Вторичка по вашим требованиям.

И еще, чтоб не сжечь ЭТ при экспериментах или любой другой внештатной ситуации — лучше подключить его последовательно с ламой накаливания аналогичной мощности. В случае КЗ или другой поломки — загоритса лампа, а вы сбережёте радиодетали. С вами был AVG (Марьян).

el-shema.ru

Схема электронного трансформатора для галогенных ламп 12В. Как устроен электронный трансформатор?

Работа трансформатора сроится на преобразовании тока от сети с напряжением 220 В. Устройства делятся по количеству фаз, а также показателю перегрузки. На рынке представлены модификации однофазного и двухфазного типов. Параметр перегрузки тока колеблется от 3 до 10 А. При необходимости можно сделать электронный трансформатор своими руками. Однако для этого в первую очередь важно ознакомиться с устройством модели.

Схема модели

Схема электронного трансформатора для галогенных ламп 12В предполагает использование пропускного реле. Непосредственно обмотка применяется с фильтром. Для повышения тактовой частоты в цепи имеются конденсаторы. Выпускаются они открытого и закрытого типа. У однофазных модификаций используются выпрямители. Указанные элементы необходимы для повышения проводимости тока.

В среднем чувствительность у моделей равна 10 мВ. При помощи расширителей решаются проблемы с перегрузками в сети. Если рассматривать двухфазную модификацию, то у нее используется тиристор. Указанный элемент, как правило, устанавливается с резисторами. Емкость их в среднем равна 15 пФ. Уровень проводимости тока в данном случае зависит от загруженности реле.

Как сделать самостоятельно?

Сделать электронный трансформатор своими руками можно легко. Для этого важно использовать проводное реле. Расширитель для него целесообразно подбирать импульсного типа. Для увеличения параметра чувствительности устройства используются конденсаторы. Многие специалисты рекомендуют резисторы устанавливать с изоляторами.

Для решения проблем со скачками напряжения припаиваются фильтры. Если рассматривать самодельную однофазную модель, то модулятор целесообразнее подбирать на 20 Вт. Выходное сопротивление в цепи трансформатора должно составлять 55 Ом. Непосредственно для подключения устройства припаиваются выходные контакты.

Устройства с конденсаторным резистором

Схема электронного трансформатора для галогенных ламп 12В предполагает использование проводного реле. В данном случае резисторы устанавливаются за обкладкой. Как правило, модуляторы используются открытого типа. Также схема электронного трансформатора для галогенных ламп 12В включает выпрямители, которые подбираются с фильтрами.

Для решения проблем с коммутацией необходимы усилители. Параметр выходного сопротивления в среднем составляет 45 Ом. Проводимость тока, как правило, не превышает 10 мк. Если рассматривать однофазную модификацию, то у нее имеется триггер. Некоторые специалисты для увеличения проводимости используют триггеры. Однако в данном случае значительно повышаются тепловые потери.

Трансформаторы с регулятором

Трансформатор 220-12 В с регулятором устроен довольно просто. Реле в данном случае стандартно используется проводного типа. Непосредственно регулятор устанавливается с модулятором. Для решения проблем с обратной полярностью имеется кенотрон. Использоваться он может с обкладкой или без нее.

Триггер в данном случае подсоединяется через проводники. Указанные элементы способны работать только с импульсными расширителями. В среднем параметр проводимости у трансформаторов данного типа не превышает 12 мк. Также важно отметить, что показатель отрицательного сопротивления зависит от чувствительности модулятора. Как правило, он не превышает 45 Ом.

Использование проводных стабилизаторов

Трансформатор 220-12 В с проводным стабилизатором встречается очень редко. Для нормальной работы устройства необходимо качественное реле. Показатель отрицательного сопротивления составляет в среднем 50 Ом. Стабилизатор в данном случае фиксируется на модуляторе. Указанный элемент в первую очередь предназначен для понижения тактовой частоты.

Тепловые потери при этом у трансформатора незначительные. Однако важно отметить, что на триггер оказывается большое давление. Некоторые эксперты в сложившейся ситуации рекомендуют использовать емкостные фильтры. Продаются они с проводником и без него.

Модели с диодным мостом

Трансформатор (12 Вольт) данного типа производится на базе селективных триггеров. Показатель порогового сопротивления у моделей в среднем равняется 35 Ом. Для решения проблем с понижением частоты устанавливаются трансиверы. Непосредственно диодные мосты используются с различной проводимостью. Если рассматривать однофазные модификации, то в этом случае резисторы подбираются на две обкладки. Показатель проводимости не превышает 8 мк.

Тетроды у трансформаторов позволяют значительно повысить чувствительность реле. Модификации с усилителями встречаются очень редко. Основной проблемой трансформаторов данного типа является отрицательная полярность. Возникает она вследствие повышения температуры реле. Чтобы исправить ситуацию, многие эксперты рекомендуют использовать триггеры с проводниками.

Модель Taschibra

Схема электронного трансформатора для галогенных ламп 12В включает в себя триггер на две обкладки. Реле у модели используется проводного типа. Для решения проблем с пониженной частотностью применяются расширители. Всего у модели имеются три конденсатора. Таким образом, проблемы с перегрузкой в сети возникают редко. В среднем параметр выходного сопротивления держится на уровне 50 Ом. Как утверждают специалисты, выходное напряжение на трансформаторе не должно превышать 30 Вт. В среднем чувствительность модулятора составляет 5,5 мк. Однако в данном случае важно учитывать загруженность расширителя.

Устройство RET251C

Указанный электронный трансформатор для ламп производится с выходным переходником. Расширитель у модели имеется дипольного типа. Всего в устройстве установлены три конденсатора. Резистор применяется для решения проблем с отрицательной полярностью. Конденсаторы у модели перегреваются редко. Непосредственно модулятор подсоединяется через резистор. Всего у модели установлены два тиристора. В первую очередь они отвечают за параметр выходного напряжения. Также тиристоры призваны обеспечивать стабильную работу расширителя.

Трансформатор GET 03

Трансформатор (12 Вольт) указанной серии пользуется большой популярность. Всего у модели имеются два резистора. Находятся они рядом с модулятором. Если говорить про показатели, то важно отметить, что частота модификации равняется 55 Гц. Подключение устройства осуществляется через выходной переходник.

Расширитель подобран с изолятором. С целью решения проблем с отрицательной полярностью используются два конденсатора. Регулятор в представленной модификации отсутствует. Показатель проводимости трансформатора составляет 4,5 мк. Выходное напряжение колеблется в районе 12 В.

Устройство ELTR-70

Указанный электронный трансформатор 12В включает в себя два проходных тиристора. Отличительной особенностью модификации считается высокая тактовая частота. Таким образом, процесс преобразования тока осуществятся без скачков напряжения. Расширитель у модели используется без обкладки.

Для понижения чувствительности имеется триггер. Установлен он стандартно селективного типа. Показатель отрицательного сопротивления составляет 40 Ом. Для однофазной модификации это считается нормальным. Также важно отметить, что устройства подключаются через выходной переходник.

Модель ELTR-60

Это трансформатор выделяет высокой стабильностью напряжения. Относится модель к однофазным устройствам. Конденсатор у него используется с высокой проводимостью. Проблемы с отрицательной полярностью решаются за счет расширителя. Он установлен за модулятором. Регулятор в представленном трансформаторе отсутствует. Всего у модели используются два резистора. Емкость у них составляет 4,5 пФ. Если верить специалистам, то перегрев элементов наблюдается очень редко. Выходное напряжение на реле равно строго 12 В.

Трансформаторы TRA110

Указанные трансформаторы работают от проходного реле. Расширители у модели используются разной емкости. В среднем показатель выходного сопротивления трансформатора составляет 40 Ом. Относится модель к двухфазным модификациям. Показатель пороговой частоты у нее равен 55 Гц. В данном случае резисторы используются дипольного типа. Всего у модели имеются два конденсатора. Для стабилизации частоты во время работы устройства действует модулятор. Проводники у модели припаяны с высокой проводимостью.

fb.ru

Переделка электронного трансформатора | all-he

Электронный трансформатор — сетевой импульсный блок питания, который предназначен для питания галогенных ламп 12 Вольт. Подробнее о данном устройстве в статье «Электронный трансформатор (ознакомление)».

Устройство имеет достаточно простую схему. Простой двухтактный автогенератор, который выполнен по полумостовой схеме, рабочая частота порядка 30кГц, но этот показатель сильно зависит от выходной нагрузки.

Схема такого блока питания очень не стабильна, не имеет никаких защит от КЗ на выходе трансформатора, пожалуй именно из-за этого, схема пока не нашла широкого применения в радиолюбительских кругах. Хотя в последнее время на разных форумах наблюдается продвижение данной темы. Люди предлагают различные варианты доработки таких трансформаторов. Я сегодня попытаюсь все эти доработки совместить в одной статье и предложить варианты не только доработки, но и умощнения ЭТ.

В основу работы схемы углубляться не будем, а сразу приступим к делу.Мы попытаемся доработать и увеличить мощность китайского ЭТ Taschibra на 105 Ватт.

Для начала хочу пояснить, по какой причине я решил взяться за умощнение и переделку таких трансформаторов. Дело в том, что недавно сосед попросил сделать ему на заказ зарядное устройство для автомобильного аккумулятора, который был бы компактным и легким. Собирать не хотелось, но позже я наткнулся на интересные статьи в которых рассматривалась переделка электронного трансформатора. Это натолкнуло на мысль — почему бы не попробовать?

Таким образом, были приобретены несколько ЭТ от 50 до 150 Ватт, но опыты с переделкой не всегда завершались успешно, из всех выжил только ЭТ на 105 Ватт. Недостатком такого блока является то, что трансформатор у него не кольцевой, в связи с чем неудобно отмотать или домотать витки. Но другого выбора не было и пришлось переделать именно этот блок.

Как нам известно, эти блоки не включаются без нагрузки, это не всегда является достоинством. Я планирую получить надежное устройство, которое можно свободно применять в любых целях, не боясь, что блок питания может перегореть или выйти из строя при КЗ.

Доработка №1

Суть идеи заключается в добавлении защиты от КЗ, также устранения вышеуказанного недостатка (активация схемы без выходной нагрузки или с маломощной нагрузкой).

Глядя на сам блок, мы можем увидеть простейшую схему ИБП, я бы сказал, что схема не до конца отработана производителем. Как мы знаем, если замкнуть вторичную обмотку трансформатора, то меньше, чем за секунду схема выйдет из строя. Ток в схеме резко возрастает, ключи в миг выходят из строя, иногда и базовые ограничители. Таким образом, ремонт схемы обойдется дороже стоимости (цена такого ЭТ порядка 2,5$).

Трансформатор обратной связи состоит из трех отдельных обмоток. Две из этих обмоток питают базовые цепи ключей.

Для начала удаляем обмотку связи на трансформаторе ОС и ставим перемычку. Эта обмотка включена последовательно с первичной обмоткой импульсного трансформатора.Затем на силовом трансформаторе мотаем всего 2 витка и один виток на кольце (трансформаторе ОС). Для намотки можно использовать провод с диаметром 0,4-0,8мм.

Далее нужно подобрать резистор для ОС, в моем случае он на 6,2 ОМ, но резистор можно подобрать с сопротивлением 3-12 Ом, чем выше сопротивление этого резистора, тем меньше ток защиты от КЗ. Резистор в моем случае использован проволочный, чего делать не советую. Мощность этого резистора подбираем 3-5 ватт (можно использовать от 1 до 10 ватт).

Во время КЗ на выходной обмотке импульсного трансформатора ток во вторичной обмотке падает (в стандартных схемах ЭТ при КЗ ток возрастает, выводя из строя ключи). Это приводит к уменьшению тока на обмотке ОС. Таким образом, прекращается генерация, сами ключи запираются.

Единственным недостатком такого решение является то, что при долговременном КЗ на выходе, схема выходит из строя, поскольку ключи греются и достаточно сильно. Не стоит подвергать выходную обмотку КЗ с длительностью более 5-8 секунд.

Схема теперь будет заводиться без нагрузки, одним словом мы получили полноценный ИБП с защитой от КЗ.

Доработка №2

Теперь постараемся, в какой-то мере сгладить сетевое напряжение от выпрямителя. Для этого будем использовать дроссели и сглаживающий конденсатор. В моем случае использован готовый дроссель с двумя независимыми обмотками. Данный дроссель был снят от ИБП DVD проигрывателя, хотя можно использовать и самодельные дросселя.

После моста следует подключить электролит с емкостью 200мкФ с напряжением не менее 400 Вольт. Емкость конденсатора подбирается исходя из мощности блока питания 1мкФ на 1 ватт мощности. Но как вы помните, наш БП рассчитан на 105 Ватт, почему же конденсатор использован на 200мкФ? Это поймете уже совсем скоро.

Доработка №3

Теперь о главном — умощнение электронного трансформатора и реально ли это? На самом деле есть только один надежный способ умощнения без особых переделок.

Для умощнения удобно использовать ЭТ с кольцевым трансформатором, поскольку нужно будет перемотать вторичную обмотку, именно по этой причине мы заменим наш трансформатор.

Сетевая обмотка растянута по всему кольцу и содержит 90 витков провода 0,5-0,65мм. Обмотка мотается на двух сложенных ферритовых кольцах, которые были сняты от ЭТ с мощностью 150 Ватт. Вторичная обмотка мотается исходя от нужд, в нашем случае она рассчитана на 12 Вольт.

Планируется увеличить мощность до 200 Ватт. Именно поэтому и нужен был электролит с запасом, о котором говорилось выше.

Конденсаторы полумоста заменяем на 0,5мкФ, в штатной схеме они имеют емкость 0,22 мкФ. Биполярные ключи MJE13007 заменяем на MJE13009.Силовая обмотка трансформатора содержит 8 витков, намотка делалась 5-ю жилами провода 0,7мм, таким образом, имеем в первичке провод с общим сечением 3,5мм.

Идем дальше. Перед и после дросселей ставим пленочные конденсаторы с емкостью 0,22-0,47мкФ с напряжением не менее 400 Вольт (я использовал именно те конденсаторы, которые были на плате ЭТ и которые пришлось заменить для увеличения мощности).

Далее заменяем диодный выпрямитель. В стандартных схемах применяются обычные выпрямительные диоды серии 1N4007. Ток диодов составляет 1 Ампер, наша схема потребляет немало тока, поэтому диоды стоит заменить на более мощные, во избежание неприятных результатов после первого включения схемы. Можно использовать буквально любые выпрямительные диоды с током 1,5-2 Ампер, обратное напряжение не менее 400 Вольт.

Все компоненты, кроме платы с генератором смонтированы на макетной плате. Ключи были укреплены на теплоотвод через изоляционные прокладки.

Продолжаем нашу переделку электронного трансформатора, дополнив схему выпрямителем и фильтром.Дросселя намотаны на кольцах из порошкового железа (сняты от компьютерного БП), состоят из 5-8 витков. Намотку удобно сделать сразу 5-ю жилами провода с диаметром 0,4-0,6мм каждая жила.

Сглаживающий конденсатор подбираем с напряжением 25-35 Вольт, в качестве выпрямителя применен один мощный диод шоттки (диодные сборки из компьютерного блока питания). Можно использовать любые быстрые диоды с током 15-20 Ампер.

all-he.ru

СХЕМА ЭЛЕКТРОННОГО ТРАНСФОРМАТОРА ДЛЯ ГАЛОГЕННЫХ ЛАМП

В настоящее время импульсные электронные трансформаторы благодаря малым размерам и весу, низкой цены и широкому асортименту, широко применяются в массовой аппаратуре. Благодаря массовому производству, электронные трансформаторы стоят в несколько раз дешевле обычных индуктивных трансформаторов на железе аналогичной мощности. Хотя электронные трансформаторы разных фирм могут иметь отличающиеся конструкции, схема практически одна и та-же.

Возьмём для примера стандартный электронный трансформатор маркированный 12V 50Ватт, который используется для питания настольного светильника. Принципиальная схема будет такая:

Схема электронного трансформатора работает следующим образом. Напряжение сети выпрямляется с помощью выпрямительного моста до полусинусоидаьльного с удвоенной частотой. Элемент D6 типа DB3 в документации называется «TRIGGER DIODE”, — это двунаправленный динистор в котором полярность включения значения не имеет и он используется здесь для запуска преобразователя трансформатора. Динистор срабатывает во время каждого цикла, запуская генерацию полумоста. Открытие динистора можно регулировать. Это можно использовать например для функции регулировки яркости подключенной лампы. Частота генерации зависит от размера и магнитной проводимости сердечника трансформатора обратной связи и параметров транзисторов, обычно составляет в пределах 30-50 кГц.

В настоящее время начался выпуск более продвинутых трансформаторов с микросхемой IR2161, которая обеспечивает как простоту конструкции электронного трансформатора и уменьшение числа используемых компонентов, так и высокими характеристиками. Использование этой микросхемы значительно увеличивает технологичность и надежность электронного трансформатора для питания галогенных ламп. Принципиальная схема приведена на рисунке.

Особенности электронного трансформатора на IR2161:Интеллектуальный драйвер полумоста; Защита от короткого замыкания нагрузки с автоматическим перезапуском;Защита от токовой перегрузки с автоматическим перезапуском;Качание рабочей частоты для снижения электромагнитных помех;Микромощный запуск 150 мкА;Возможность использования с фазовыми регуляторами яркости с управлением по переднему и заднему фронтам;Компенсация сдвига выходного напряжения увеличивает долговечность ламп;Мягкий запуск, исключающий токовые перегрузки ламп.

Входной резистор R1 (0,25ватт) – своеобразный предохранитель. Транзисторы типа MJE13003 прижаты к корпусу через изоляционную прокладку металлической пластинкой. Даже при работе на полную нагрузку транзисторы греются слабо. После выпрямителя сетевого напряжения отсутствует конденсатор, сглаживающий пульсации, поэтому выходное напряжение электронного трансформатора при работе на нагрузку представляет собой прямоугольные колебания 40кГц, модулированные пульсациями сетевого напряжения 50Гц. Трансформатор Т1 (трансформатор обратной связи) – на ферритовом кольце, обмотки подключенные к базам транзисторов содержат по пару витков, обмотка, подключенная к точке соединения эмиттера и коллектора силовых транзисторов – один виток одножильного изолированного провода. В ЭТ обычно используются транзисторы MJE13003, MJE13005, MJE13007. Выходной трансформатор на ферритовом Ш-образном сердечнике.

Чтоб задействовать электронный трансформатор в импульсном источнике питания, нужно подключить на выход выпрямительный мост на ВЧ мощных диодах (обычные КД202, Д245 не пойдут) и конденсатор для сглаживания пульсаций. На выходе электронного трансформатора ставят диодный мост на диодах КД213, КД212 или КД2999. Короче нужны диоды с малым падением напряжения в прямом направлении, способные хорошо работать на частотах порядка десятков килогерц.

Преобразователь электронного трансформатора без нагрузки нормально не работает, поэтому его нужно использовать там, где нагрузка постоянна по току и потребляет достаточный ток для уверенного запуска преобразователя ЭТ. При эксплуатации схемы надо учитывать, что электронные трансформаторы являются источниками электромагнитных помех, поэтому должен ставиться LC фильтр, предотвращающий проникновение помехи в сеть и в нагрузку.

Лично я использовал электронный трансформатор для изготовления импульсного источника питания лампового усилителя. Так-же представляется возможным питать ими мощные УНЧ класса А или светодиодные ленты, которые как раз и предназначены для источников с напряжением 12В и большим выходным током. Естественно подключение такой ленты производится не напрямую, а через токоограничительный резистор или с помощью коррекции выходной мощности электронного трансформатора.

Форум по электронным трансформаторам

Обсудить статью СХЕМА ЭЛЕКТРОННОГО ТРАНСФОРМАТОРА ДЛЯ ГАЛОГЕННЫХ ЛАМП

radioskot.ru

Электронные трансформаторы для галогенных ламп на 12 В

Электропитание

Главная Радиолюбителю Электропитание

В статье описаны так называемые электронные трансформаторы, по сути, представляющие собой импульсные понижающие преобразователи для питания галогенных ламп, рассчитанных на напряжение 12 В. Предложены два варианта исполнения трансформаторов — на дискретных элементах и с применением специализированной микросхемы.

Галогенные лампы являются, по сути, более усовершенствованной модификацией обычной лампы накаливания. Принципиальное отличие заключается в добавлении в колбу лампы паров соединений галогенов, которые блокируют активное испарение металла с поверхности нити накала во время работы лампы. Это позволяет разогревать нить накала до более высоких температур, что даёт более высокую светоотдачу и более равномерный спектр излучения. Помимо этого, увеличивается срок службы лампы. Эти и другие особенности делают галогенную лампу весьма привлекательной для домашнего освещения, и не только. Промышленно выпускается широкий ассортимент галогенных ламп различной мощности на напряжение 230 и 12 В. Лампы с напряжением питания 12 В обладают лучшими техническими характеристиками и большим ресурсом по сравнению с лампами на 230 В, не говоря уже об электробезопасности. Для питания таких ламп от сети 230 В необходимо уменьшить напряжение. Можно, конечно, применить обычный сетевой понижающий трансформатор, но это дорого и нецелесообразно. Оптимальный выход — использовать понижающий преобразователь 230 В/12 В, часто называемый в таких случаях электронным трансформатором или галогенным конвертором (halogen convertor). О двух вариантах таких устройств и пойдёт речь в этой статье, оба рассчитаны на мощность нагрузки 20…105 Вт.

Один из наиболее простых и распространённых вариантов схемных решений для понижающих электронных трансформаторов — это полумостовой преобразователь с положительной обратной связью по току, схема которого приведена на рис. 1. При подключении устройства к сети конденсаторы С3 и С4 быстро заряжаются до амплитудного напряжения сети, формируя половинное напряжение в точке соединения. Цепь R5C2VS1 формирует запускающий импульс. Как только напряжение на конденсаторе С2 достигнет порога открывания динистора VS1 (24.32 В), он откроется и к базе транзистора VT2 будет приложено прямое напряжение смещения. Этот транзистор откроется, и ток потечёт по цепи: общая точка конденсаторов С3 и С4, первичная обмотка трансформатора Т2, обмотка III трансформатора Т1, участок коллектор — эмиттер транзистора VT2, минусовый вывод диодного моста VD1. На обмотке II трансформатора Т1 появится напряжение, поддерживающее транзистор VT2 в открытом состоянии, при этом к базе транзистора VT1 будет приложено обратное напряжение от обмотки I (обмотки I и II включены противофазно). Протекающий через обмотку III трансформатора Т1 ток быстро введёт его в состояние насыщения. Вследствие этого напряжение на обмотках I и II Т1 устремится к нулю. Транзистор VT2 начнёт закрываться. Когда он почти полностью закроется, трансформатор станет выходить из насыщения.

Рис. 1. Схема полумостового преобразователя с положительной обратной связью по току

Закрывание транзистора VT2 и выход из насыщения трансформатора Т1 приведут к изменению направления ЭДС и росту напряжения на обмотках I и II. Теперь к базе транзистора VT1 будет приложено прямое напряжение, ак базе VT2 — обратное. Транзистор VT1 начнёт открываться. Ток потечёт по цепи: плюсовой вывод диодного моста VD1, участок коллектор — эмиттер VT1, обмотка III Т1, первичная обмотка трансформатора Т2, общая точка конденсаторов С3 и С4. Далее процесс повторяется, а в нагрузке формируется вторая полуволна напряжения. После запуска диод VD4 поддерживает в разряженном состоянии конденсатор С2. Поскольку в преобразователе не используется сглаживающий оксидный конденсатор (в нём нет необходимости при работе на лампу накаливания, даже, наоборот, его присутствие ухудшает коэффициент мощ-ности устройства), то по окончании полупериода выпрямленного напряжения сети генерация прекратится. С приходом следующего полупериода генератор запустится снова. В результате работы электронного трансформатора на его выходе формируются близкие по форме к синусоидальным колебания частотой 30…35 кГц (рис. 2), следующие пачками с частотой 100 Гц (рис. 3).

Рис. 2. Близкие по форме к синусоидальным колебания частотой 30…35 кГц

Рис. 3. Колебания частотой 100 Гц

Важная особенность подобного преобразователя — он не запустится без нагрузки, поскольку при этом ток через обмотку III Т1 будет слишком мал, и трансформатор не войдёт в насыщение, процесс автогенерации сорвётся. Эта особенность делает ненужной защиту от режима холостого хода. Устройство с указанными на рис. 1 номиналами стабильно запускается при мощности нагрузки от 20 Вт.

На рис. 4 приведена схема усовершенствованного электронного трансформатора, в который добавлены помехоподавляющий фильтр и узел защиты от короткого замыкания в нагрузке. Узел защиты собран на транзисторе VT3, диоде VD6, стабилитроне VD7, конденсаторе C8 и резисторах R7-R12. Резкое увеличение тока нагрузки приведёт к увеличению напряжения на обмотках I и II трансформатора Т1 с 3…5 В в номинальном режиме до 9…10 В в режиме короткого замыкания. В результате на базе транзистора VT3 появится напряжение смещения 0,6 В. Транзистор откроется и зашунтирует конденсатор цепи запуска С6. В результате со следующим полупериодом выпрямленного напряжения генератор не запустится. Конденсатор С8 обеспечивает задержку отключения защиты около 0,5 с.

Рис. 4. Схема усовершенствованного электронного трансформатора

Второй вариант электронного понижающего трансформатора показан на рис. 5. Он более прост в повторении, поскольку в нём нет одного трансформатора, при этом более функционален. Это тоже полумостовой преобразователь, но под управлением специализированной микросхемы IR2161S. В микросхему встроены все необходимые защитные функции: от пониженного и повышенного напряжения сети, от режима холостого хода и короткого замыкания в нагрузке, от перегрева. Также IR2161S обладает функцией мягкого старта, который заключается в плавном нарастании напряжения на выходе при включении от 0 до 11,8 В в течение 1 с. Это исключает резкий бросок тока через холодную нить лампы, что значительно, иногда в несколько раз, повышает срок её службы.

Рис. 5. Второй вариант электронного понижающего трансформатора

В первый момент, а также с приходом каждого последующего полупериода выпрямленного напряжения питание микросхемы осуществляется через диод VD3 от параметрического стабилизатора на стабилитроне VD2. Если питание осуществляется напрямую от сети 230 В без использования фазового регулятора мощности (диммера), то цепь R1-R3C5 не нужна. После входа в рабочий режим микросхема дополнительно питается с выхода полумоста через цепь d2VD4VD5. Сразу же после запуска частота внутреннего тактового генератора микросхемы — около 125 кГц, что значительно выше частоты выходного контура С13С14Т1, в результате напряжение на вторичной обмотке трансформатора Т1 будет мало. Внутренний генератор микросхемы управляется напряжением, его частота обратно пропорциональна напряжению на конденсаторе С8. Сразу же после включения этот конденсатор начинает заряжаться от внутреннего источника тока микросхемы. Пропорционально росту напряжения на нём будет уменьшаться частота генератора микросхемы. Когда напряжение на конденсаторе достигнет 5 В (приблизительно через 1 с после включения), частота уменьшится до рабочего значения около 35 кГц, а напряжение на выходе трансформатора достигнет номинального значения 11,8 В. Так реализован мягкий старт, после его завершения микросхема DA1 переходит в рабочий режим, в котором вывод 3 DA1 можно использовать для управления выходной мощностью. Если параллельно конденсатору С8 подключить переменный резистор сопротивлением 100 кОм, можно, изменяя напряжение на выводе 3 DA1, управлять выходным напряжением и регулировать яркость свечения лампы. При изменении напряжения на выводе 3 микросхемы DA1 от 0 до 5 В частота генерации будет меняться от 60 до 30 кГц (60 кГц при 0 В — минимальное напряжение на выходе и 30 кГц при 5 В — максимальное).

Вход CS (вывод 4) микросхемы DA1 является входом внутреннего усилителя сигнала ошибки и используется для контроля тока нагрузки и напряжения на выходе полумоста. В случае резкого увеличения тока нагрузки, например, при коротком замыкании, падение напряжения на датчике тока — резисторах R12 и R13, а следовательно, и на выводе 4 DA1 превысит 0,56 В, внутренний компаратор переключится и остановит тактовый генератор. В случае же обрыва нагрузки напряжение на выходе полумоста может превысить предельно допустимое напряжение транзисторов VT1 и VT2. Чтобы избежать этого, к входу CS через диод VD7 подключён резистивно-ёмкостный делитель C10R9. При превышении порогового значения напряжения на резисторе R9 генерация также прекращается. Более подробно режимы работы микросхемы IR2161S рассмотрены в .

Рассчитать число витков обмоток выходного трансформатора для обоих вариантов можно, например, с помощью простой методики расчёта , выбрать подходящий магнитопровод по габаритной мощности можно с помощью каталога .

Согласно , число витков первичной обмотки равно

NI = (Uc max·t0 max) / (2·S·Bmax),

где Uc max — максимальное напряжение сети, В; t0 max — максимальное время открытого состояния транзисторов, мкс; S — площадь поперечного сечения магнитопровода, мм2; Bmax- максимальная индукция, Тл.

Число витков вторичной обмотки

где k — коэффициент трансформации, в нашем случае можно принять k = 10.

Чертёж печатной платы первого варианта электронного трансформатора (см. рис. 4) приведён на рис. 6, расположение элементов — на рис. 7. Внешний вид собранной платы показан на рис. 8. обложки. Электронный трансформатор собран на плате из фольгированного с одной стороны стеклотекстолита толщиной 1,5 мм. Все элементы для поверхностного монтажа установлены со стороны печатных проводников, выводные — на противоположной стороне платы. Большинство деталей (транзисторы VT1, VT2, трансформатор Т1, динистор VS1, конденсаторы С1-С5, С9, С10) подойдут от массовых дешёвых электронных балластов для люминесцентных ламп типа Т8, например, Tridonic PC4x18 T8, Fintar 236/418, Cimex CSVT 418P, Komtex EFBL236/418, TDM Electric EB-T8-236/418 и др., поскольку они имеют схожую схемотехнику и элементную базу. Конденсаторы С9 и С10 — металлоплёночные полипропиленовые, рассчитанные на большой импульсный ток и переменное напряжение не менее 400 В. Диод VD4 — любой быстродействующий с допустимым обратным на рис 11 пряжением не менее 150 В.

Рис. 6. Чертёж печатной платы первого варианта электронного трансформатора

Рис. 7. Расположение элементов на плате

Рис. 8. Внешний вид собранной платы

Трансформатор Т1 намотан на кольцевом магнитопроводе с магнитной проницаемостью 2300 ±15 %, его внешний диаметр — 10,2 мм, внутренний диаметр — 5,6 мм, толщина — 5,3 мм. Обмотка III (5-6) содержит один виток, обмотки I (1-2) и II (3-4) — по три витка провода диаметром 0,3 мм. Индуктивность обмоток 1-2 и 3-4 должна быть 10…15 мкГн. Выходной трансформатор Т2 намотан на магнитопроводе EV25/13/13 (Epcos) без немагнитного зазора, материал N27. Его первичная обмотка содержит 76 витков провода 5×0,2 мм. Вторичная обмотка содержит восемь витков литцендрата 100×0,08 мм. Индуктивность первичной обмотки равна 12 ±10 % мГн. Дроссель помехоподавляющего фильтра L1 намотан на маг-нитопроводе Е19/8/5, материал N30, каждая обмотка содержит по 130 витков провода диаметром 0,25 мм. Можно применить подходящий по габаритам стандартный двухобмоточный дроссель индуктивностью 30…40 мГн. Конденсаторы С1, С2 желательно применить Х-класса.

Чертёж печатной платы второго варианта электронного трансформатора (см. рис. 5) показан на рис. 9, расположение элементов — на рис. 10. Плата также изготовлена из фольгированного с одной стороны стеклотекстолита, элементы для поверхностного монтажа расположены со стороны печатных проводников, выводные — на противоположной стороне. Внешний вид готового устройства приведён на рис. 11 и рис. 12. Выходной трансформатор Т1 намотан накольцевом магнитопроводе R29.5 (Epcos), материал N87. Первичная обмотка содержит 81 виток провода диаметром 0,6 мм, вторичная — 8 витков провода 3×1 мм. Индуктивность первичной обмотки равна 18 ±10 % мГн, вторичной — 200 ±10 % мкГн. Трансформатор Т1 рассчитывался на максимальную мощность до 150 Вт, для подключения такой нагрузки транзисторы VT1 и VT2 необходимо установить на теплоотвод — алюминиевую пластину площадью 16…18 мм2, толщиной 1,5…2 мм. При этом, правда, потребуется соответствующая переделка печатной платы. Также выходной трансформатор можно применить от первого варианта устройства (потребуется добавить на плате отверстия под иное расположение выводов). Транзисторы STD10NM60N (VT1, VT2) можно заменить на IRF740AS или аналогичные. Стабилитрон VD2 должен быть мощностью не менее 1 Вт, напряжение стабилизации — 15,6…18 В. Конденсатор С12 — желательно дисковый керамический на номинальное постоянное напряжение 1000 В. Конденсаторы С13, С14 — металлопленочные полипропиленовые, рассчитанные на большой импульсный ток и переменное напряжение не менее 400 В. Каждую из резистивных цепей R4-R7, R14-R17, R18-R21 можно заменить одним выводным резистором соответствующих сопротивления и мощности, но при этом потребуется изменить печатную плату.

Рис. 9. Чертёж печатной платы второго варианта электронного трансформатора

Рис. 10. Расположение элементов на плате

Рис. 11. Внешний вид готового устройства

Рис. 12. Внешний вид собранной платы

Литература

1. IR2161 (S) & (PbF). Halogen convertor control IC. — URL: http://www.irf.com/product-info/datasheets/data/ir2161.pdf (24.04.15).

2. Peter Green. 100VA dimmable electronic convertor for low voltage lighting. — URL: http:// www.irf.com/technical-info/refdesigns/ irplhalo1e.pdf (24.04.15).

3. Ferrites and Accessories. — URL: http:// en.tdk.eu/tdk-en/1 80386/tech-library/ epcos-publications/ferrites (24.04.15).

Дата публикации: 30.10.2015

Мнения читателей

  • Веселин / 08.11.2017 — 22:18Какие электронные трансформаторы из представленных на рынке с им 2161 или подобные
  • Эдуард / 26.12.2016 — 13:07Здрвствуйте, можно ли вместо трансформатора на 160вт поставить на 180вт? Спасибо.
  • Михаил / 21.12.2016 — 22:44Я переделывал вот такие http://ali.pub/7w6tj
  • Юрий / 05.08.2016 — 17:57Здравствуйте! Нельзя ли узнать частоту переменного напряжения на выходе трансформатора для галогенных ламп? Спасибо.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:

www.radioradar.net

Электронный трансформатор является сетевым импульсным блоком питания с весьма хорошими показателями. Такие блоки питания лишены защиты от КЗ на выходе, но эту недоработку можно исправить. Сегодня решил представить весь процесс увеличения мощности электронных трансформаторов для галогенных ламп. Китайский ЭТ с мощностью 150 ватт, мы превратим в мощный ИБП, который может быть использован практически для любых целей. Вторичная обмотка импульсного трансформатора, в моем случае содержит всего один виток. Обмотка намотана 10-ю жилами провода 0,5мм. Блок питания умощнен до 300 ватт, следовательно, его можно использовать для НЧ, таких как Холтон, Ланзар, Маршалл Лич и т.п. При желании, можно на основе такого ИБП собрать мощный лабораторный блок питания. Мы знаем, что многие ИБП такого типа не включаются без нагрузки, такой недостаток имеют электронные трансформаторы Tashibra с мощностью 105 ватт.

Наша схема не имеет такого недостатка, схема заводится без нагрузки и может работать с маломощными нагрузками (светодиоды и т.п.). Для умощнения нужно сделать несколько переделок. Нужно перемотать импульсный трансформатор, подобрать конденсаторы полумоста, заменить диоды в выпрямителе и использовать более мощные ключи. В моем случае использованы диоды на полтора ампера, которые я не заменил, но обязательно замените на любые диоды с обратным напряжением не менее 400 Вольт и с током 2 Ампер и более.


Для начала давайте переделаем импульсный трансформатор. На плате можно увидеть кольцевой трансформатор с двумя обмотками, обе обмотки нужно снять. Затем берем еще одно аналогичное кольцо (снял с такого же блока) и склеиваем их. Сетевая обмотка состоит из 90 витков, витки растянуты по всему кольцу.


Диаметр провода, которым намотана обмотка 0,5…0,7мм. Далее уже мотаем вторичную обмотку. Один виток дает полтора вольта, к примеру — для получения 12 Вольт выходного напряжения, обмотка должна содержать 8 витков (но бывают и другие значения).


Далее заменяем конденсаторы полумоста. В стандартной схеме использованы конденсаторы 0,22мкФ 630 Вольт, которые были заменены на 0,5мкФ 400 Вольт. Силовые ключи использованы серии MJE13007, которые были заменены на более мощные — MJE13009.


На этом переделка почти завершена и можно уже подключить в сеть 220 Вольт. После проверки работоспособности схемы идем дальше. Дополняем ИБП сетевого напряжения. Фильтр содержит из дросселей и сглаживающего конденсатора. Электролитический конденсатор подбирается с расчетом 1мкФ на 1 Вольт, для наших 300 Ватт подбираем конденсатор с емкостью 300мкФ с минимальным напряжением 400 Вольт. Дальше приступаем к дросселям. Дроссель у меня использован готовый, был выпаян с другого ИБП. Дроссель имеет две отдельные обмотки по 30 витков провода 0,4мм.


На входе питания можно поставить предохранитель, но в моем случае он уже был на плате. Предохранитель подбирают на 1,25 — 1,5Ампер. Вот теперь все готово, уже можно дополнить схему выпрямителем на выходе и сглаживающими фильтрами. Если планируете собрать на основе такого ИБП зарядное устройство для автомобильного аккумулятора, то на выходе хватит и одного мощного диода шоттки. К числу таких диодов относится мощный импульсный диод серии STPR40, который достаточно часто применяется в компьютерных блоках питания. Ток указанного диода 20Ампер, но для 300 ваттного блока питания и 20 Ампер маловато. Не беда! Дело в том, что указанный диод содержит в себе два аналогичных диода на 20 Ампер, нужно всего лишь подключить два крайних вывода корпуса друг к другу. Теперь у нас есть полноценный диод на 40 Ампер. Диод нужно будет установить на достаточно большой теплоотвод, поскольку последний будет перегреваться достаточно сильно, возможно понадобится небольшой кулер.

Недавно в магазине на глаза попался электронный трансформатор для галогенных ламп. Стоит такой трансформатор копейки — всего 2,5$, что в разы дешевле стоимости используемых в нем компонентов. Блок был куплен для опытов. Как позже оказалось, он не имел защиту и при КЗ случился настоящий взрыв… Трансформатор был довольно мощным (150 Ватт), поэтому на входе был установлен предохранитель, который буквально лопнул. После проверки, оказалось, что половина компонентов сгорело. Ремонт обойдется дорого, да и незачем тратить нервы и время, лучше купить новый. На следующий день были куплены сразу три трансформатора на 50, 105 и 150 ватт.

Планировалось доработать блок, поскольку это был ИБП — без каких-либо фильтров и защит.

После доработки должен был получиться мощный ИБП, основная особенность которого — компактность.
Для начала блок был снабжен сетевым фильтром.

Дроссель был выпаян из блока питания DVD проигрывателя, состоит из двух идентичных обмоток, каждая содержит по 35 витков провода 0.3мм. Только проходя через фильтр, напряжение подается на основную схему. Для сглаживания НЧ помех использовались конденсаторы на 0.1 мкФ (подобрать с напряжением 250-400 вольт). Светодиод показывает наличие сетевого напряжения.

Регулятор напряжения

Была использована схема с применением всего одного транзистора. Эта самая простая схема из всех существующих, содержит пару компонентов и работает очень хорошо. Недостаток схемы — перегрев транзистора при больших нагрузках, но все не так уж и страшно. В схеме можно использовать любые мощные биполярные НЧ транзисторы обратной проводимости — КТ803,805,819,825,827 — рекомендую использовать последние три. Подстроечник можно брать с сопротивлением 1…6.8к, дополнительный защитный резистор берем с мощностью 0,5-1 Ватт.
Регулятор готов, идем дальше.

Защита

Еще одна простая схема, по сути это защита от переплюсовки. Реле буквально любое на 10-15 Ампер. Диод тоже можно применить любой выпрямительный, с током 1 ампер и более (отлично справляется широко применяемый 1N4007). Светодиод сигнализирует о неправильной полярности. Эта система отключает напряжение, если на выходе КЗ или неправильно подключено проверяемое устройство. БП можно использовать для проверки работоспособности самодельных УНЧ, преобразователей, автомагнитол и т.п., при этом не нужно боятся, что вдруг перепутаете полярность питания.

В дальнейшем мы рассмотрим еще несколько простых переделок электронного трансформатора, ну а пока у нас есть простой, компактный и мощный ИБП, который можно использовать в качестве лабораторного блока для начинающего.

Список радиоэлементов
Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Т1 Биполярный транзистор

КТ827А

1 В блокнот
VD1 Выпрямительный диод

1N4007

1 В блокнот
Диодный мост 1 В блокнот
С1, С2 Конденсатор 0.1 мкФ 2 В блокнот
С3 Конденсатор 0.22 мкФ 1 В блокнот
С4-С5 Электролитический конденсатор 3300 мкФ 2 В блокнот
R2 Резистор

480 Ом

1 В блокнот
R3 Переменный резистор 1 кОм 1 В блокнот
R4 Резистор

2.2 кОм

1 В блокнот
R5 Резистор

Содержание статьи:

Электрооборудование в нашем доме, и освещение в том числе, работает от электричества, напряжением 220В. Но обычная лампочка накаливания с вольфрамовой нитью — вчерашний день. КПД низкий, долговечность невысокая, да и частота 50Гц создает дополнительную нагрузку на зрение. Выход — применить трансформатор для галогенных ламп и с его помощью использовать высокочастотные галогенные лампы, работающие от электричества низкого напряжения.

Трансформатор для галогенных ламп понижает напряжение с 220В до 12В. Галогенные лампы светят именно от электричества напряжением 12В.

Первый вид приборов — обмоточный трансформатор для галогенных ламп представляет собой две медные обмотки, которые взаимодействуют посредством электромагнитного поля.

Сегодня электронный трансформатор для галогенных ламп перед обмоточным индукционным имеет свои преимущества:

Перечисленные особенности обеспечивают долговечность работы, продлевают срок службы как трансформатора, так и галогенных ламп.

Примечание: у электронного трансформатора для галогенных ламп КПД 95-99% против 75-80% у трансформатора обмоточного.

Расчет и подбор понижающих трансформаторов проводят по двум основным критериям:

Первый параметр показывает, галогенные лампы какого напряжения можно присоединить с помощью трансформатора. Второй дает общую мощность подключаемых ламп, подключаемых с его помощью. Значение основных параметров отображено на крышке корпуса трансформатора.

Примечание: галогенные лампы через трансформатор подключают параллельно. При этом суммируется их мощность, а напряжение остается неизменным. В отличие от параллельного подключения, при последовательном суммируется напряжение.

При необходимости подключения большого количества галогенных светильников, их следует разделить на группы. Для этого можно привести такие аргументы:

Разделив освещение на группы, обеспечим это условие.

Схема подключения светильников каждый через свой трансформатор — Фото 07

Совет: работая, трансформатор для галогенных ламп, особенно индукционный, во время работы может основательно нагреваться. Это надо учитывать, выбирая место его установки.

Широко используемый трансформатор (Рис. 2) имеет в своем составе с двунаправленный динистор «TRIGGER DIODE» и работает следующим способом: диодный мост выпрямляет переменное напряжение до полусинусоидального с удвоенной частотой. Двунаправленный динистор D6 запускает преобразователь трансформатора и генерацию полумоста, что позволяет довести частоту электрического тока на выходе до 30-50 кГц.

Сейчас применяются более совершенные трансформаторы с микросхемой IR2161. Использование микросхемы, имея всего 8 контактов, значительно основательно повысила надежность трансформаторов устройств, в первую очередь из-за уменьшения количества составляющих компонентов. Также он отличается высокой технологичностью, а именно:

Трансформатор для галогенных ламп имеет своего «родственника» — трансформатор для светодиодного освещения. Но даже при одинаковой номинальной мощности и напряжении на выходе эти трансформаторы приборы не взаимозаменяемы.

Дело в том, что в галогенной лампе источником света является нить накаливания. В свечении светодиода заложена совсем другая физика. Электрический ток проходит по P/N переходу диода и отдает часть энергии в виде фотона света. Это отличие физического явления свечения галогенной лампы и светодиода ставит различные требования к трансформаторам. Не вдаваясь в глубокий анализ осциллограмм трансформаторов в рамках этой статьи, сделаем вводы:

Электронный трансформатор 250w схема. Переделка электронного трансформатора в более мощный

Устройство имеет достаточно простую схему. Простой двухтактный автогенератор, который выполнен по полумостовой схеме, рабочая частота порядка 30кГц, но этот показатель сильно зависит от выходной нагрузки.

Схема такого блока питания очень не стабильна, не имеет никаких защит от КЗ на выходе трансформатора, пожалуй именно из-за этого, схема пока не нашла широкого применения в радиолюбительских кругах. Хотя в последнее время на разных форумах наблюдается продвижение данной темы. Люди предлагают различные варианты доработки таких трансформаторов. Я сегодня попытаюсь все эти доработки совместить в одной статье и предложить варианты не только доработки, но и умощнения ЭТ.

В основу работы схемы углубляться не будем, а сразу приступим к делу.
Мы попытаемся доработать и увеличить мощность китайского ЭТ Taschibra на 105 Ватт.

Для начала хочу пояснить, по какой причине я решил взяться за умощнение и переделку таких трансформаторов. Дело в том, что недавно сосед попросил сделать ему на заказ зарядное устройство для автомобильного аккумулятора, который был бы компактным и легким. Собирать не хотелось, но позже я наткнулся на интересные статьи в которых рассматривалась переделка электронного трансформатора. Это натолкнуло на мысль — почему бы не попробовать?

Таким образом, были приобретены несколько ЭТ от 50 до 150 Ватт, но опыты с переделкой не всегда завершались успешно, из всех выжил только ЭТ на 105 Ватт. Недостатком такого блока является то, что трансформатор у него не кольцевой, в связи с чем неудобно отмотать или домотать витки. Но другого выбора не было и пришлось переделать именно этот блок.

Как нам известно, эти блоки не включаются без нагрузки, это не всегда является достоинством. Я планирую получить надежное устройство, которое можно свободно применять в любых целях, не боясь, что блок питания может перегореть или выйти из строя при КЗ.

Доработка №1

Суть идеи заключается в добавлении защиты от КЗ, также устранения вышеуказанного недостатка (активация схемы без выходной нагрузки или с маломощной нагрузкой).

Глядя на сам блок, мы можем увидеть простейшую схему ИБП, я бы сказал, что схема не до конца отработана производителем. Как мы знаем, если замкнуть вторичную обмотку трансформатора, то меньше, чем за секунду схема выйдет из строя. Ток в схеме резко возрастает, ключи в миг выходят из строя, иногда и базовые ограничители. Таким образом, ремонт схемы обойдется дороже стоимости (цена такого ЭТ порядка 2,5$).

Трансформатор обратной связи состоит из трех отдельных обмоток. Две из этих обмоток питают базовые цепи ключей.

Для начала удаляем обмотку связи на трансформаторе ОС и ставим перемычку. Эта обмотка включена последовательно с первичной обмоткой импульсного трансформатора.
Затем на силовом трансформаторе мотаем всего 2 витка и один виток на кольце (трансформаторе ОС). Для намотки можно использовать провод с диаметром 0,4-0,8мм.

Далее нужно подобрать резистор для ОС, в моем случае он на 6,2 ОМ, но резистор можно подобрать с сопротивлением 3-12 Ом, чем выше сопротивление этого резистора, тем меньше ток защиты от КЗ. Резистор в моем случае использован проволочный, чего делать не советую. Мощность этого резистора подбираем 3-5 ватт (можно использовать от 1 до 10 ватт).

Во время КЗ на выходной обмотке импульсного трансформатора ток во вторичной обмотке падает (в стандартных схемах ЭТ при КЗ ток возрастает, выводя из строя ключи). Это приводит к уменьшению тока на обмотке ОС. Таким образом, прекращается генерация, сами ключи запираются.

Единственным недостатком такого решение является то, что при долговременном КЗ на выходе, схема выходит из строя, поскольку ключи греются и достаточно сильно. Не стоит подвергать выходную обмотку КЗ с длительностью более 5-8 секунд.

Схема теперь будет заводиться без нагрузки, одним словом мы получили полноценный ИБП с защитой от КЗ.

Доработка №2

Теперь постараемся, в какой-то мере сгладить сетевое напряжение от выпрямителя. Для этого будем использовать дроссели и сглаживающий конденсатор. В моем случае использован готовый дроссель с двумя независимыми обмотками. Данный дроссель был снят от ИБП DVD проигрывателя, хотя можно использовать и самодельные дросселя.

После моста следует подключить электролит с емкостью 200мкФ с напряжением не менее 400 Вольт. Емкость конденсатора подбирается исходя из мощности блока питания 1мкФ на 1 ватт мощности. Но как вы помните, наш БП рассчитан на 105 Ватт, почему же конденсатор использован на 200мкФ? Это поймете уже совсем скоро.

Доработка №3

Теперь о главном — умощнение электронного трансформатора и реально ли это? На самом деле есть только один надежный способ умощнения без особых переделок.

Для умощнения удобно использовать ЭТ с кольцевым трансформатором, поскольку нужно будет перемотать вторичную обмотку, именно по этой причине мы заменим наш трансформатор.

Сетевая обмотка растянута по всему кольцу и содержит 90 витков провода 0,5-0,65мм. Обмотка мотается на двух сложенных ферритовых кольцах, которые были сняты от ЭТ с мощностью 150 Ватт. Вторичная обмотка мотается исходя от нужд, в нашем случае она рассчитана на 12 Вольт.

Планируется увеличить мощность до 200 Ватт. Именно поэтому и нужен был электролит с запасом, о котором говорилось выше.

Конденсаторы полумоста заменяем на 0,5мкФ, в штатной схеме они имеют емкость 0,22 мкФ. Биполярные ключи MJE13007 заменяем на MJE13009.
Силовая обмотка трансформатора содержит 8 витков, намотка делалась 5-ю жилами провода 0,7мм, таким образом, имеем в первичке провод с общим сечением 3,5мм.

Идем дальше. Перед и после дросселей ставим пленочные конденсаторы с емкостью 0,22-0,47мкФ с напряжением не менее 400 Вольт (я использовал именно те конденсаторы, которые были на плате ЭТ и которые пришлось заменить для увеличения мощности).

Далее заменяем диодный выпрямитель. В стандартных схемах применяются обычные выпрямительные диоды серии 1N4007. Ток диодов составляет 1 Ампер, наша схема потребляет немало тока, поэтому диоды стоит заменить на более мощные, во избежание неприятных результатов после первого включения схемы. Можно использовать буквально любые выпрямительные диоды с током 1,5-2 Ампер, обратное напряжение не менее 400 Вольт.

Все компоненты, кроме платы с генератором смонтированы на макетной плате. Ключи были укреплены на теплоотвод через изоляционные прокладки.

Продолжаем нашу переделку электронного трансформатора, дополнив схему выпрямителем и фильтром.
Дросселя намотаны на кольцах из порошкового железа (сняты от компьютерного БП), состоят из 5-8 витков. Намотку удобно сделать сразу 5-ю жилами провода с диаметром 0,4-0,6мм каждая жила.

Электронный трансформатор является сетевым импульсным блоком питания с весьма хорошими показателями. Такие блоки питания лишены защиты от КЗ на выходе, но эту недоработку можно исправить. Сегодня решил представить весь процесс увеличения мощности электронных трансформаторов для галогенных ламп. Китайский ЭТ с мощностью 150 ватт, мы превратим в мощный ИБП, который может быть использован практически для любых целей. Вторичная обмотка импульсного трансформатора, в моем случае содержит всего один виток. Обмотка намотана 10-ю жилами провода 0,5мм. Блок питания умощнен до 300 ватт, следовательно, его можно использовать для НЧ, таких как Холтон, Ланзар, Маршалл Лич и т.п. При желании, можно на основе такого ИБП собрать мощный лабораторный блок питания. Мы знаем, что многие ИБП такого типа не включаются без нагрузки, такой недостаток имеют электронные трансформаторы Tashibra с мощностью 105 ватт.

Наша схема не имеет такого недостатка, схема заводится без нагрузки и может работать с маломощными нагрузками (светодиоды и т.п.). Для умощнения нужно сделать несколько переделок. Нужно перемотать импульсный трансформатор, подобрать конденсаторы полумоста, заменить диоды в выпрямителе и использовать более мощные ключи. В моем случае использованы диоды на полтора ампера, которые я не заменил, но обязательно замените на любые диоды с обратным напряжением не менее 400 Вольт и с током 2 Ампер и более.


Для начала давайте переделаем импульсный трансформатор. На плате можно увидеть кольцевой трансформатор с двумя обмотками, обе обмотки нужно снять. Затем берем еще одно аналогичное кольцо (снял с такого же блока) и склеиваем их. Сетевая обмотка состоит из 90 витков, витки растянуты по всему кольцу.



Диаметр провода, которым намотана обмотка 0,5…0,7мм. Далее уже мотаем вторичную обмотку. Один виток дает полтора вольта, к примеру — для получения 12 Вольт выходного напряжения, обмотка должна содержать 8 витков (но бывают и другие значения).



Далее заменяем конденсаторы полумоста. В стандартной схеме использованы конденсаторы 0,22мкФ 630 Вольт, которые были заменены на 0,5мкФ 400 Вольт. Силовые ключи использованы серии MJE13007, которые были заменены на более мощные — MJE13009.



На этом переделка почти завершена и можно уже подключить в сеть 220 Вольт. После проверки работоспособности схемы идем дальше. Дополняем ИБП сетевого напряжения. Фильтр содержит из дросселей и сглаживающего конденсатора. Электролитический конденсатор подбирается с расчетом 1мкФ на 1 Вольт, для наших 300 Ватт подбираем конденсатор с емкостью 300мкФ с минимальным напряжением 400 Вольт. Дальше приступаем к дросселям. Дроссель у меня использован готовый, был выпаян с другого ИБП. Дроссель имеет две отдельные обмотки по 30 витков провода 0,4мм.



На входе питания можно поставить предохранитель, но в моем случае он уже был на плате. Предохранитель подбирают на 1,25 — 1,5Ампер. Вот теперь все готово, уже можно дополнить схему выпрямителем на выходе и сглаживающими фильтрами. Если планируете собрать на основе такого ИБП зарядное устройство для автомобильного аккумулятора, то на выходе хватит и одного мощного диода шоттки. К числу таких диодов относится мощный импульсный диод серии STPR40, который достаточно часто применяется в компьютерных блоках питания. Ток указанного диода 20Ампер, но для 300 ваттного блока питания и 20 Ампер маловато. Не беда! Дело в том, что указанный диод содержит в себе два аналогичных диода на 20 Ампер, нужно всего лишь подключить два крайних вывода корпуса друг к другу. Теперь у нас есть полноценный диод на 40 Ампер. Диод нужно будет установить на достаточно большой теплоотвод, поскольку последний будет перегреваться достаточно сильно, возможно понадобится небольшой кулер.

Бывает, что, собирая то или иное устройство, требуется определиться с выбором источника питания. Это чрезвычайно важно, когда устройствам необходим мощный блок питания. Приобрести железные трансформаторы с необходимыми характеристиками на сегодняшний день не составляет труда. Но они довольно дорогостоящие, а большие размеры и вес являются их главными недостатками. А сборка и наладка хороших импульсных блоков питания весьма сложная процедура. И многие не берутся за это.

Далее, вы узнаете о том, как собрать мощный и при этом несложный блок питания, взяв за основу конструкции электронный трансформатор. По большому счету, разговор пойдет об увеличении мощности таких трансформаторов.

Для переделки был взят 50-ваттный трансформатор.

Планировалось увеличить его мощность до 300 Вт. Этот трансформатор был приобретен в ближайшем магазине и стоил примерно 100 р.

Стандартная схема трансформатора выглядит следующим образом:


Трансформатор представляет собой обычный двухтактный полумостовой автогенераторный инвертор. Симметричный динистор является основным компонентом, осуществляющим запуск схемы, поскольку он подает первоначальный импульс.

В схеме задействованы 2 высоковольтных транзистора с обратной проводимостью.


Схема трансформатора до переделки содержит следующие компоненты:

  1. Транзисторы MJE13003.
  2. Конденсаторы 0,1 мкФ, 400 В.
  3. Трансформатор, имеющий 3 обмотки, две из которых являются задающими и имеют по 3 витка провода сечением 0,5 кв. мм. Еще одна в качестве обратной связи по току.
  4. Входной резистор (1 Ом) используется как предохранитель.
  5. Диодный мост.

Несмотря на отсутствие в этом варианте защиты от КЗ, электронный трансформатор работает без сбоев. Назначение устройства – это работа с пассивной нагрузкой (к примеру, офисные «галогенки»), поэтому стабилизация выходного напряжения отсутствует.

Что касается основного силового трансформатора, то его вторичная обмотка выдает около 12 В.

Теперь взгляните на схему трансформатора с увеличенной мощностью:


В ней стало даже меньше компонентов. Из первоначальной схемы были взяты трансформатор обратной связи, резистор, динистор и конденсатор.


Оставшиеся детали были извлечены из старых компьютерных БП, а это 2 транзистора, диодный мост и силовой трансформатор. Конденсаторы были приобретены отдельно.

Транзисторы не помешает заменить на более мощные (MJE13009 в корпусе TO220).


Диоды были заменены на готовую сборку (4 А, 600 В).


Также годятся и диодные мосты от 3 А, 400 В. Емкость должна составлять 2,2 мкФ, но можно и 1,5 мкФ.


Силовой трансформатор был изъят из БП формата ATX на 450 Вт. На нем были удалены все штатные обмотки и намотаны новые. Первичная обмотка была намотана тройным проводом 0,5 кв. мм в 3 слоя. Общее количество витков – 55. Необходимо следить за аккуратностью намотки, а также за ее плотностью. Каждый слой изолировался синей изолентой. Расчет трансформатора производился опытным путем, и была найдена золотая середина.


Вторичная обмотка наматывается из расчета 1 виток – 2 В, но это лишь в том случае если сердечник такой же, как в примере.

При первом включении обязательно использовать страховочную лампу накаливания на 40-60 Вт.


Стоит заметить, что в момент запуска лампа не вспыхнет, поскольку после выпрямителя нет сглаживающих электролитов. На выходе высокая частота, поэтому для того чтобы делать конкретные замеры, необходимо сначала выпрямить напряжение. Для этих целей был использован мощный сдвоенный диодный мост, собранный из диодов КД2997. Мост выдерживает токи до 30 А, если прикрепить к нему радиатор.


Вторичная обмотка предполагалась на 15 В, хотя на деле получилось чуть больше.

В качестве нагрузки было взято все, что оказалось под рукой. Это мощная лампа от кинопроектора на 400 Вт при напряжении в 30 В и 5 20-ваттных ламп на 12 В. Все нагрузки подключались параллельно.


Первым делом был произведен замер тока, который показал, что токи свыше 20 А.

После этого нужно измерить выходное напряжение под нагрузкой. Расчетное напряжение составляло около 15 В. Реальное значение без нагрузки — 17 В, а под нагрузкой просело до 15,3 В. В итоге легко узнать мощность, которая составляет примерно 300 Вт. Это чистая мощность на выходе.

Прикрепленные файлы :

Обзор популярного китайского электронного трансформатора TASCHIBRA. В один прекрасный день мой знакомый принёс на ремонт импульсный электронный трансформатор для питания используемых для питания галогенных ламп. Ремонт был быстрый замена динистора. После того как его отдал владельцу. появилось желание сделать такой-же блок для себя. Сначала узнал где он его покупал и купил для последующего копирования.

Технические характеристики TASCHIBRA TRA25

  • Вход AC 220V 50/60 Hz.
  • Выход AC 12V. 60W MAX.
  • Класс защиты 1.


Схема электронного трансформатора


Подробнее схему можно посмотреть . Список деталей для изготовления:

  1. n-p-n транзистор 13003 2 шт.
  2. Диод 1N4007 4 шт.
  3. Плёночный конденсатор на 10nF 100V 1 шт (С1).
  4. Плёночный конденсатор на 47nF 250V 2 шт (С2, С3).
  5. Динистор DB3
  6. Резисторы:
  • R1 22 ома 0.25W
  • R2 500 кОм 0.25W
  • R3 2.5 ома 0.25W
  • R4 2.5 ома 0.25W

Изготовление трансформатора на Ш-образном ферритовом сердечнике от компьютерного блока питания.


Первичная обмотка содержит 1-жильную проволоку диаметр 0.5 мм длинна 2.85 м. и 68 витков. Стандартная вторичная обмотка содержит 4-жильный провод диаметром 0.5 мм длинна 33 см. и 8-12 витков. Наматывать обмотки у трансформатора нужно в одном направлении. Намотка дросселя на ферритовом кольце диаметром 8 мм катушки: 4 витка зелёного провода, 4 витка жёлтого провода и не полный 1 (0.5) виток красного провода.



Динистор DB3 и его характеристика:

  • (I откр — 0.2 А), В 5 — это напряжение при открытом состоянии;
  • Среднее максимально допустимое значение при открытом состоянии: А 0.3;
  • В открытом состоянии импульсный ток составляет А 2;
  • Максимальное напряжение (во время закрытого состояния): В 32;
  • Ток в закрытом состоянии: мкА — 10; максимальное импульсное не отпирающее напряжение составляет 5 В.


Вот такая получилась конструкция. Вид конечно не очень, зато убедился что можно собрать это импульсное устройство питания самому.

Трансформаторы (Часть 1) — Катушки индуктивности, конденсаторы, трансформаторы Видеолекция

Мы находимся в Разделе 7.2 и смотрим на Трансформеров. Трансформаторы являются основными компонентами схемы, такими как резисторы и катушки индуктивности. Трансформаторы используются почти во всех электронных системах, работающих от сети переменного тока, поэтому они получили широкое распространение. Работа трансформатора основана на том же принципе, что и катушки индуктивности. Почти каждый компьютер использует трансформатор для понижения напряжения до более низких уровней. Просто очень быстро, если у вас есть розетка, подключенная к стене, она входит в большую катушку индуктивности, проходит через трансформатор и проходит через несколько цепей.Вот где вы в конечном итоге получаете свои… в конце концов вы получаете свои 12 вольт, свои пять вольт и свои 3,5 вольта, которые нужны вашему компьютеру для работы. Там немного больше схем, чем я показал здесь, но, в конечном счете, трансформатор является началом этого процесса.

 

Базовый трансформер

Магнитная связь представляет собой индуктивность напряжения от одной катушки к другой. Трансформаторы работают по этому основному принципу. Процент потока, который проходит от одной катушки через вторую катушку, называется коэффициентом связи.Коэффициент связи может варьироваться от нуля до 100 (выражается в процентах). Обычно это выражается в виде десятичной дроби между нулем и единицей.

 

Действие трансформатора: коэффициент связи

На катушку L1 подается напряжение. Здесь у нас есть напряжение, подключенное к катушке. Здесь мы рассматриваем коэффициент связи. Теперь напряжение, подключенное сюда, должно индуцировать напряжение в L2. Но если вы заметите, L2 действительно находится за пределами диапазона потока L1.Вольтметр здесь показывает ноль вольт, потому что он просто недостаточно близок. Коэффициент связи здесь был бы хорошим нулем. Обратите внимание, что на нижнем рисунке катушка L2 находится ближе к L1 и находится в пределах магнитного потока. Следовательно, в L2 индуцируется напряжение, которое отображается на вольтметре. Здесь L2 находится гораздо ближе к L1, поэтому мы видим напряжение.

Теперь, если бы коэффициент связи был равен 1, это указывало бы на 100% передачу потока от L1 к L2. Технически это невозможно.Для наших целей мы собираемся сказать, что коэффициент связи равен 1, потому что мы не собираемся вдаваться в… в курсах более высокого уровня мы рассмотрим, каков фактический коэффициент связи. Но для наших целей это будет 1. 

.

 

Терминология трансформаторов

Обмотка, на которую подается приложенное переменное напряжение, называется «первичной». Здесь у нас есть первичная обмотка. Именно то, что получает ВА, это приложенное напряжение. Обмотки, в которых индуцируется напряжение в трансформаторе, называются «вторичной обмоткой».Индукционное действие, магнитное действие индуцирует напряжение, и вы видите его во вторичной обмотке. Полярность напряжения во вторичной обмотке зависит от направления намотки вторичной обмотки. Фазовые отношения указаны в преобразователе с «точечной нотацией», и мы рассмотрим это на следующем слайде.

 

Точечное обозначение

Здесь мы видим то, что мы называем точечной записью. Что вы заметите здесь, здесь у нас есть трансформатор, и это первичный, это вторичный.Обратите внимание, что две синие точки здесь говорят нам, что фазы или вход и выход совпадают по фазе, и вы видите здесь входной сигнал, видите выход, и вы заметите, что они совпадают по фазе. Теперь точечная запись здесь показывает нам, что они не совпадают по фазе, и поэтому вы видите здесь, что у нас есть вход переменного тока, а здесь выход не совпадает по фазе. Это указывает на фазовый сдвиг 1800 от входа к выходу.

 

Повышающий и понижающий трансформаторы

Понижающие трансформаторы используются во многих различных типах электронных устройств, требующих напряжения ниже 120 В переменного тока.Обычный компьютер работает от 3,5,5 и 12 В постоянного тока. Трансформатор понижает переменный ток со 120 В до гораздо более низкого уровня. Эти напряжения затем преобразуются в постоянный ток с помощью устройства, называемого выпрямителем, которое мы рассмотрим в следующих главах. Есть повышающие трансформаторы и есть понижающие трансформаторы. Это… то, о чем мы здесь говорим, было бы примером перехода в отставку. Обратите внимание, что в повышающем трансформаторе VOUT больше приложенного напряжения, а в понижающем трансформаторе V меньше приложенного напряжения.

 

Типы трансформаторов и их применение

Существует несколько способов классификации трансформаторов. Это классификация по применению. Первый — аудио. Они используются для подключения усилителей звука к динамикам. Следующий тип радио. Они используются для настройки промежуточных радиочастот (ПЧ). Третье — мощность. Они используются для повышения или понижения напряжения. Четвертое — изоляция. Одним из примеров изоляции являются трансформаторы, используемые в системах Ethernet. Трансформатор изолирует полезный сигнал от нежелательного шума.

 

Основной материал

Их также можно классифицировать по материалу сердцевины. То есть из чего сделан сердечник трансформатора? Теперь некоторые из них являются тем, что мы называем Air-core. Они намотаны на немагнитную катушку. Это может быть пластик, картон или любой другой материал с очень низкой проницаемостью. Помните, что проницаемость связана с проводимостью. Ну тут Air-core нужна проходимость крайне низкая. Поток, который не пересекает первичную и вторичную обмотки, называется потоком рассеяния.С Air-core у вас будет довольно много того, что мы называем потоком рассеяния.

Затем есть трансформаторы с железным сердечником. У них очень проницаемая сердцевина, обычно ограниченная диапазоном звуковых частот. Диапазон звуковых частот, как правило, составляет от 20 Гц до примерно 20 кГц. Они обычно используются в качестве силовых трансформаторов. Тогда они являются ферритовым сердечником. Они имеют высокую проходимость. Они из керамического материала. Они имеют тенденцию быть довольно хрупкими. Они используются в диапазоне звуковых частот, а также на высоких частотах вплоть до мегагерц.Очевидно, вы не сможете заметить, что это звук, а мегагерц — это миллионы циклов. Имеют низкий уровень потока рассеяния.

 

Классификация по соединению обмоток

На рисунке справа показана первичная обмотка с несколькими наборами обмоток для вторичной обмотки. Теперь здесь мы видим… здесь мы имеем… вот как на самом деле выглядит первичный элемент. Здесь у вас есть приложенное напряжение, и у вас есть обмотки, идущие вокруг первичного сердечника, а затем вторичная сторона, у нас есть обмотки, идущие вокруг.Это будет приложенное напряжение. От вторичной обмотки будет снято два напряжения. Теперь, если посмотреть на это на схематической диаграмме, это будет выглядеть так, и это будет первичная обмотка, а затем две катушки, отводящие напряжение во вторичной обмотке.

Хорошо, Классификация по соединению обмоток. На рисунках (a) и (b) показаны трансформаторы, в которых производитель имеет только одну вторичную обмотку, но использует «центральные отводы», так что можно «отводить» несколько различных напряжений от вторичной обмотки.Вот у нас вторичка. Вы заметите, что есть проводные соединения, а в некоторых случаях и несколько точек.

Здесь может произойти то, что у вас может быть одно напряжение от этого, а затем другое напряжение может быть отведено здесь и, возможно, другое напряжение отведено здесь. Мы могли бы иметь несколько отводов напряжения от них — от одной вторичной обмотки, а не от нескольких вторичных. Это обычно так и делается. Производитель просто должен пойти и подключить центральный ответвитель к точке, где напряжение, которое он хочет снять.

 

Автотрансформаторы

Вот и это… Я имею в виду (а), одна обмотка с ответвлениями служит как первичной, так и вторичной. Одна обмотка с ответвлениями действует как первичная и вторичная. Один конец является общим как для первичного, так и для вторичного. У нас есть общая точка для первичного и вторичного.

Выходное напряжение понижено по отношению к приложенному напряжению. Здесь у нас есть напряжение, которое проходит через всю обмотку трансформатора, и все же мы отводим только часть его прямо здесь.В этом случае VOUT будет меньше приложенного напряжения. У вас здесь более низкое значение, чем у вас на входе. В приведенной ниже схеме (b) выход проходит через весь трансформатор, а вход — только через часть трансформатора.

Используется для повышения напряжения. В этом случае центральный кран иногда можно перемещать, чтобы отрегулировать конечный результат. В данном случае здесь мы имеем приложенное напряжение. Обратите внимание, что он подключен только к части этого трансформатора. Теперь произойдет то, что у вас будет поток, который прикладывается сюда напряжением и который будет передаваться на остальную часть этого индуктора.Теперь, что в конечном итоге произойдет, так это то, что это приведет к тому, что отсюда и сюда вы будете иметь приложенное напряжение, но отсюда и до этого мы будем иметь все более высокие напряжения. Это то, что мы бы назвали повышающим трансформатором. Здесь выход будет больше, чем приложенное напряжение. Это называется автотрансформатор.

 

Анализ схем трансформаторных цепей

«Коэффициент витков» означает, сколько витков имеет вторичная обмотка трансформатора по отношению к первичной обмотке.Вы видите этот термин «соотношение оборотов» и видите Np/Ns. Если вы видите Np/N, это означает количество витков в первичной обмотке, деленное на количество витков во вторичной обмотке. Если бы у вас было 500 к 100, 500/100, то мы бы сказали, что наше соотношение оборотов равно пяти. Если бы входное напряжение было 120 вольт, то выходное было бы — в этом случае соотношение витков равно пяти, то есть 120/5, и поэтому наше выходное напряжение было бы 24 вольта. Это относится к термину «коэффициент поворота».

Хорошо. «Отношение напряжений» относится к напряжению, индуцированному во вторичной обмотке трансформатора, по сравнению с напряжением в первичной обмотке.Это то же самое, что мы только что рассмотрели здесь. Мы сказали, что Np/Ns и что это будет прямо пропорционально Vp/Vs. Мы только что сделали это. Мы говорим, что 500/100 — это соотношение оборотов. Если напряжение равно 120, то оно будет отражать соотношение витков. Если бы соотношение витков было 3:1, а входное напряжение 120, то выход трансформатора был бы 40.

Хорошо. «Коэффициент мощности» в трансформаторе… обратите внимание, это единица. Единица в данном случае означает 100%. Это означает, что мощность в трансформаторе будет равна мощности во вторичной обмотке.Если у нас есть данная схема здесь, и у нас есть компонент здесь, и у нас есть … скажем, это напряжение понижено, тогда E * I = P.

Мощность, которую мы имеем во вторичном, будет равна мощности, которую мы имеем здесь, в первичном. Сейчас это на самом деле некоторые потери, но для наших целей мы будем считать это единицей. Когда мы сделаем наши расчеты, мы будем … это будет равно этому. Реальность такова, что в первичной обмотке будет немного больше мощности, чем во вторичной, потому что передачи не идеальны.Но, как я уже сказал, для наших целей мы будем считать, что они на самом деле представляют собой единство, и на самом деле они очень близки к единству.

Коэффициент тока в трансформаторе Np/Ns равен… и обратите внимание, что они обратные. Это будет Is/Ip. Обратите внимание, что наше отношение в трансформаторе равно единице. Единство, чтобы сказать, что Np/Ns=Is/Ip. Теперь вы заметили, что они обратные. Вот первичка здесь. Количество витков находится в верхнем значении, а в текущем — в нижнем. Эти двое будут перевернуты.

Теперь давайте посмотрим, как мы это примирим? Ладно, мощность в первичке — E*I. Мы знаем, что то же самое… или сила продукта — это E*I. Так было бы и в первичке, и во вторичке. Если напряжение снижается, то ток во вторичной обмотке должен увеличиваться, чтобы мощность была равной. Идея здесь в том, что если мы понизим напряжение… помните, и если это правда, то ток должен возрасти, чтобы мощность была одинаковой как в первичной, так и во вторичной обмотках.

Вот… если отношение витков трансформатора 10 к 1, а ток первичной обмотки 100 мА, то каков ток вторичной обмотки? Давайте решим для … посмотрим.Мы знаем… мы сказали, что соотношение витков составляет 10 к 1. Первичный имеет 100 мА. Что такое вторичный ток? Давайте решим это уравнение для тока во вторичной обмотке прямо здесь. Что мы могли бы сделать, мы хотим изолировать это, чтобы мы могли взять эту часть уравнения (Is/Ip)*(Ip) и эту часть уравнения (Np/Ns)*(Ip). Это отменит это. Можно сказать, что Is будет равно (Np/Ns)*(Ip). Ip, что мы скажем, Ip имеет ток 100 мА, а затем мы сказали, что это соотношение 10 к 1, поэтому Np/Ns первичной обмотки ко второй составляет 10/1.(100) * (10/1), у нас будет 1000 мА. Это то же самое, что и 1 ампер. Это касается коэффициента тока в трансформаторе.

 

Анализ цепей трансформатора

Теперь мы рассмотрим «Коэффициент импеданса». Коэффициент импеданса измеряется в омах и из-за взаимосвязи между обмотками может быть изменен между первичной и вторичной обмотками. Отраженный импеданс относится к идее, что импеданс во вторичной обмотке трансформатора отражается в первичной обмотке.Связь между витками и импедансом такова, и здесь мы имеем эту конкретную формулу (Np/Ns)=?(Zp/Zs). Что мы хотим сделать, так это найти импеданс первичной обмотки, потому что обычно мы знаем, каково импеданс вторичной обмотки.

Обычно там есть компонент, резистор или что-то в этом роде. Мы знаем это сопротивление, но мы не обязательно знаем, каково импеданс первичной обмотки. Давайте решим это уравнение, потому что здесь мы говорим, что Np/Ns=?(Zp/Zs). Прежде всего, мы хотим удалить этот квадратный корень.Сначала возведем в квадрат обе части этого уравнения. Если мы это сделаем, то скажем, что (Np/Ns)2=Zp/Zs. Если мы хотим изолировать Zp, мы могли бы взять (Zp/Zs)*(Zs/1) и (Np/Ns)2*(Zs/1), и это отменяется. Мы увидим, что Zp=(Np/Ns)2*(Zs). Если бы мы знали, что это (Np/Ns), мы бы возвели это значение в квадрат, а затем умножили бы его на (Zs).

Хорошо, мы используем эту формулу и предыдущую формулу в следующем сеансе. Я пока остановлюсь на этом, и мы продолжим с частью (B).

Видеолекции, созданные Тимом Файгенбаумом в муниципальном колледже Северного Сиэтла.

Базовая электроника – Классификация трансформаторов по использованию

В предыдущей статье мы обсуждали классификацию трансформаторов по материалу сердечника, геометрии и уровням напряжения. Трансформаторы также можно классифицировать по их применению и использованию. Давайте сначала рассмотрим две широкие категории вариантов использования – трансформаторы, используемые в области электротехники, и трансформаторы, используемые в области электроники.

Трансформаторы, используемые в электротехнике, классифицируются по их применению следующим образом:

  • Питание
  • Распределение
  • Измерение 

В области электроники трансформаторы классифицируются по частотному диапазону их работы следующим образом:

  • Пульс
  • Аудио
  • ЕСЛИ
  • РФ

Силовые трансформаторы
Силовые трансформаторы используются для снижения линейного напряжения в сети 60 Гц.Эти трансформаторы бывают разных размеров, форм и коэффициентов намотки. Они могут быть как большими, как комната, так и маленькими, как кубик Рубика, в зависимости от того, где они используются, от электростанций и линий электропередач высокого напряжения до силовой части электроприборов. Силовые трансформаторы используются для преобразования переменного напряжения (как правило, для понижения) из линии электроснабжения в электрические цепи или из одной части линии электроснабжения в другую. Эти трансформаторы обычно характеризуются максимальным напряжением и током вторичной обмотки.

Самые большие из этих трансформаторов используются на электростанциях. Инженеры ничего не могут поделать с потерями энергии из-за сопротивления проводов и мощности, потребляемой нагрузками. Таким образом, у них остается возможность передавать мощность высокого напряжения по линиям электропередач. Чем выше напряжение, тем ниже ток, поэтому потери энергии при передаче энергии минимальны. Силовые трансформаторы на электростанциях преобразуют сильноточные низковольтные напряжения в малоточные высоковольтные переменные токи. Высокоэнергетические электростанции имеют более крупные силовые трансформаторы, которые могут передавать мощность до 100 МВА по линии электропередачи.Трансформаторы средней мощности обычно имеют номинальную мощность от 50 до 100 МВА, а трансформаторы малой мощности, используемые на местных электростанциях, обычно имеют номинальную мощность от 500 до 700 кВА.

Силовые трансформаторы крупнее распределительных трансформаторов. Они спроектированы так, чтобы иметь максимальную энергоэффективность, поскольку они остаются загруженными 24 часа в сутки. Такие силовые трансформаторы могут быть подключены непосредственно к потребителю или могут быть подключены к распределительной сети. Большинство силовых трансформаторов имеют трехфазную конфигурацию, тогда как некоторые небольшие силовые трансформаторы могут иметь однофазную конфигурацию.Трехфазные силовые трансформаторы дороги, хотя и намного энергоэффективнее по сравнению с однофазными трансформаторами.

Трансформаторы

используются в различных точках передающих сетей. По линиям высокого напряжения проходят напряжения в кВ или МВ, которые не могут быть напрямую подведены к потребителю. Силовые трансформаторы используются для понижения этих напряжений до более низких напряжений в точках ответвления. Пониженные напряжения дополнительно снижаются внутри сети. Наконец, напряжение переменного тока понижается до трехфазного 230 В или 120 В среднеквадратичного значения с помощью распределительных трансформаторов для питания на стороне потребителя.

Трансформаторы силовые малогабаритные используются в силовой части электроприборов для дальнейшего понижения напряжения сети переменного тока до низкого напряжения от 5В до 50В. Большинству бытовых приборов для работы требуется напряжение от 5 В до 12 В с минимальным потреблением тока. Различные силовые трансформаторы бывают разных конструкций, конфигураций и размеров.

Автотрансформаторы
Автотрансформаторы представляют собой силовые трансформаторы, первичная и вторичная обмотки которых расположены на общей обмотке.И первичка, и вторичка находятся на одной катушке и имеют одинаковое направление. Напряжение изменяется путем изменения положения вторичного ответвления.

Однофазные и трехфазные трансформаторы
Силовые трансформаторы могут иметь однофазную или трехфазную конфигурацию. Однофазные трансформаторы имеют одну пару первичной и вторичной обмоток. Эти трансформаторы обычно используются в электроприборах, где они преобразуют уровни напряжения с постоянной частотой.

Трехфазные трансформаторы имеют три пары первичных и вторичных обмоток, соединенных друг с другом.Эти трансформаторы экономически эффективны по сравнению с однофазными трансформаторами при использовании в производстве, передаче и распределении электроэнергии. Первичные и вторичные катушки в трехфазных трансформаторах могут иметь различные комбинации соединений звезды и треугольника, такие как соединения звезда-звезда, звезда-треугольник, треугольник-треугольник или треугольник-звезда на первичной и вторичной обмотках соответственно.

Схематическое изображение типичного трехфазного трансформатора (Изображение: Quora)

Распределительные трансформаторы
Распределительные трансформаторы используются в распределительных сетях для снижения напряжения линии электропередачи до менее 33 кВ в промышленных целях и 230-440 В в бытовых целях.Обычно они используются в конце распределительной сети в качестве трансформаторов столбового типа, а также могут быть установлены на подкладке или под землей в конце распределительной сети. Они имеют небольшие размеры, не всегда полностью нагружены и могут иметь изоляцию сухого типа или погруженную в жидкость. Они могут подавать однофазную или трехфазную сеть к потребителю. Эти трансформаторы недороги и рассчитаны на КПД от 50 до 70 процентов.

Измерительные/приборные трансформаторы
Измерительные трансформаторы используются для измерения больших значений тока и напряжения и используются вместе с измерительными приборами малого диапазона в качестве точных преобразователей коэффициента.Эти трансформаторы преобразуют высокое напряжение или ток в низкое напряжение или ток с точным соотношением, которое можно измерить обычным амперметром, вольтметром или ваттметром. Это могут быть либо трансформаторы тока, которые предполагается использовать с амперметром, либо трансформаторы напряжения, которые предполагается использовать с вольтметром переменного тока.

Приборный разделительный трансформатор 120:120 с двумя обозначениями полярности (Изображение: Википедия).

По сути, это изолирующие трансформаторы, которые надежно изолируют линию питания с измерительным прибором.Напряжение линии питания точно понижается за счет высокого коэффициента трансформации до более низкого напряжения, так что обычный измерительный прибор может легко его измерить. Трансформаторы тока подключаются последовательно к линии питания для измерения тока. Ток линии питания измеряется как сумма тока возбуждения и вторичного тока, умноженная на коэффициент трансформации. Трансформаторы тока с меньшей точностью также используются в качестве защитных трансформаторов.

Для измерения больших значений напряжения первичная часть трансформаторов напряжения или трансформаторов напряжения подключается к линии питания, а напряжение линии питания снижается до безопасного предела на вторичной обмотке.Трансформаторы напряжения могут быть электромагнитными, емкостными или оптическими. Электромагнитные типы представляют собой простые понижающие трансформаторы с проволочной обмоткой, конденсаторные типы используют конденсаторный делитель напряжения, а оптические типы используют оптоэлектронные компоненты.

Импульсные трансформаторы
Импульсные трансформаторы представляют собой малогабаритные трансформаторы, монтируемые на печатную плату, используемые в электронных устройствах для генерации импульсов фиксированной амплитуды. Эти трансформаторы изолируют цепь цифровой нагрузки и подают на нее импульсы постоянной амплитуды.

Аудиотрансформаторы
Трансформаторы, используемые в электронике, целесообразнее классифицировать по частотному диапазону их работы. Электронные преобразователи, работающие в диапазоне частот от 20 Гц до 20 кГц, классифицируются как звуковые преобразователи. Как правило, это малогабаритные трансформаторы общего назначения с многослойным сердечником E-I, аналогичные типичным трансформаторам общего назначения на 60 Гц. Это могут быть повышающие или понижающие трансформаторы. Аудиотрансформаторы в основном используются для согласования импеданса и рассчитаны на практически нулевое реактивное сопротивление.В звуковом трансформаторе может быть несколько первичных и вторичных катушек, которые могут быть разделены или иметь отвод от центра.

Трансформаторы ПЧ
Трансформаторы ПЧ используются для настройки сигналов промежуточной частоты. Это экранированные трансформаторы, обычно имеющие ферритовый сердечник с высокой проницаемостью.

ВЧ трансформаторы
Электронные трансформаторы, которые используются на радиочастотах, называются ВЧ трансформаторами. Это могут быть трансформаторы с проволочной обмоткой, такие как силовые трансформаторы, или трансформаторы линий электропередач.Наиболее распространены проволочные трансформаторы с тороидальным сердечником из порошкового железа. ВЧ-трансформаторы с воздушным сердечником используются для приложений большой мощности. В то время как трансформаторы с сердечником из порошкового железа обладают высокой проницаемостью и самоэкранированием, трансформаторы с воздушным сердечником гораздо более энергоэффективны, хотя и имеют значительные электромагнитные помехи. Эти трансформаторы также называются широкополосными трансформаторами и используются для диапазона частот от 3 МГц до 30 МГц. На более высоких частотах в качестве четвертьволновых антенн используются трансформаторы линий передачи.Это могут быть линии с параллельными проводами или коаксиальные кабели.

Применение трансформаторов
Трансформаторы широко используются как в электротехнике, так и в электронике. В электротехнике трансформаторы обычно используются для понижения напряжения переменного тока на электростанциях, в распределительных сетях или для измерения. В электронике трансформаторы используются во многих приложениях, таких как повышение или понижение напряжения, согласование импеданса, генерация импульсов, связь и изоляция.

Трансформаторы, используемые в области электроники, обычно имеют свои характеристики, такие как первичное напряжение, вторичное напряжение и номинальная мощность.Как правило, цветовые схемы обозначают выводы первичной обмотки, вторичной обмотки и центрального отвода.

Занятие 12
Довольно о трансформаторах. Теперь, когда вы хорошо знакомы с работой и техническими характеристиками трансформаторов, пришло время опробовать некоторые схемы. Получите принципиальные схемы и испачкайте руки некоторыми схемами для хобби, в которых используются трансформаторы, такие как однополупериодный выпрямитель, двухполупериодный выпрямитель, 12-вольтовый или 9-вольтовый симметричный настольный источник питания, аудиоусилитель мощности и предварительный усилитель.Проверьте роль и требуемые характеристики трансформаторов, используемых в этих цепях.

Упражнение 13
Подготовьте список некоторых трансформаторов генерации импульсов по их номерам деталей. Загрузите и проверьте их таблицы данных. Выясните важные электрические характеристики, упомянутые в их спецификациях, которые могут быть полезны в их применении.

В следующей статье мы обсудим блоки питания.


Filed Under: Tutorials

 


Небольшие электронные трансформаторы на продажу

PICO — T-22030 — TF5R21ZZ — Экранированный трансформатор тока 100 Ом/разветвитель 100 Ом, сверхминиатюрный аудиотрансформатор.

Аудиотрансформаторы

— это преобразователи, которые используются в диапазоне звуковых частот. Аудиотрансформаторы используются в различных приложениях. Они могут обеспечивать гальваническую развязку, усиление/потерю сигнала, согласовывать импедансы между двумя интерфейсами, могут использоваться в качестве эталона и для обеспечения сигнала обратной связи. Аудиотрансформаторы Pico Electronics производятся в соответствии с MIL-PRF-27 Grade 5 Class S. Эти сверхминиатюрные трансформаторы отличаются долговечностью при сохранении своих электрических характеристик.Все трансформаторы из каталога изготовлены в соответствии с Mil-Std-202, метод 107, термический удар от -55°C до +130°C. Все блоки могут быть изготовлены с гарантией 300 тепловых циклов. Доступны как стандартные, так и индивидуальные конструкции. Pico Electronics, Inc. является утвержденным источником QPL.

Технические характеристики :

  • MIL-PRF-27:  Все устройства изготовлены в соответствии с MIL-PRF-27, класс 5, класс S.
  • ЧАСТОТНАЯ ЧАСТОТА: ±3 дБ, 20 Гц — 25 кГц при 1.0 милливатт.
  • МАКСИМАЛЬНОЕ ИСКАЖЕНИЕ:  5% при номинальном уровне мощности при 1 кГц и 300 Гц. 10% Искажение при 20 Гц.
  • ДИЭЛЕКТРИЧЕСКАЯ ПРОЧНОСТЬ: Все устройства испытаны при 200 В среднеквадратичного значения.
  • СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ: Более 10 000 МОм при 300 В постоянного тока.
  • ВЕС:  28 грамм.
  • РАБОЧАЯ ТЕМПЕРАТУРА: от -55ºC до +130ºC. 
  • КЛЕММЫ:  Сплошной проводник диаметром 0,020.Способность к пайке в соответствии с MIL-STD-202 Method 208.
  • ТЕРМИЧЕСКИЙ УДАР:  25 циклов, метод 107, MIL-STD-202, условия испытаний от -55°C до +130°C.

Экранированный трансформатор тока 100 Ом/ 100 Ом с последовательной последовательной обмоткой, герметичная — 7-проводная.

Вторичный импеданс, Ом, параллельная параллельная обмотка: 25,00 Ом.

Частотная характеристика: 3

Мощность Ватт 1 кГц и выше: 3.000

Мощность Ватт 300 Гц и выше: 2.000

Мощность Ватт 20 Гц и выше: 0.006

Первичный несбалансированный постоянный ток мА: 10,00

Первичное сопротивление постоянному току Ом: 8,00

Вторичное сопротивление постоянному току, серия Ом, соединение: 10,00

Вторичное сопротивление постоянному току Ом Параллельное соединение: 2,50

Соотношение оборотов pri/Sec Sec Seri Conn: 1,01

Соотношение оборотов Пер/сек Параллельное соединение: 2,01

НСН: 5950-01-240-4210

Альтернативы: W-26095, R-20045, Y-27310, W-26085, Y-27505, S-21440

Упаковка: 0,75″ D x 0,82″ высота.

Дополнительные данные: https://www.picoelectronics.com/

 

Подробнее

типов трансформаторов, используемых в электронике – ТОМСОН ЭЛЕКТРОНИКС

Как правило, трансформатор представляет собой электрическое устройство или машину, которая индуктивно передает электрическую мощность, работающую при определенном токе и напряжении одной цепи, в другую цепь, которая работает при другом уровне тока и напряжения. Большинство трансформаторов изготавливаются таким образом, что их характеристики должны соответствовать особым требованиям применения, таким как постоянный ток, постоянное напряжение, более высокое полное сопротивление и т. д.

Наиболее распространенные типы трансформаторов, используемых в системах электропередачи, промышленности и электронных устройствах, включают силовые трансформаторы, измерительные трансформаторы, трансформаторы с переключением ответвлений, автотрансформаторы, ВЧ-трансформаторы, аудиотрансформаторы и т. д. Все они различаются по размеру, номинальным характеристикам и форме с друг друга, но основной принцип работы всех них одинаков. В этой статье обсуждаются различные типы трансформаторов, поэтому давайте посмотрим на них.

Силовой трансформатор

Некоторые силовые трансформаторы используются на электростанциях, подстанциях и линиях электропередач для понижения или повышения напряжения.При использовании повышающего силового трансформатора уровень напряжения в линии передачи повышается, благодаря чему по линии протекает слабый ток. Следовательно, потери I2R в линиях передачи уменьшаются. Понижающие силовые трансформаторы применяются для питания нагрузок в промышленности на свои номинальные напряжения.

Некоторые силовые трансформаторы также питают электронные схемы. Силовой трансформатор может быть однофазным или трехфазным в зависимости от области применения. Что касается уникальных характеристик трансформатора с переключением ответвлений, автотрансформатор и распределительный трансформатор обычно относятся к семейству силовых трансформаторов.Некоторые силовые трансформаторы обсуждаются ниже.

Трансформатор с многослойным сердечником

Это наиболее часто используемые трансформаторы мощностью от милливатт до мегаватта. Эти типы трансформаторов используются в передаче электроэнергии, а также в устройствах для подачи низкого напряжения. Этот трансформатор состоит из многослойного сердечника для уменьшения вихревых токов. Сердечник из тонкой стали или пластин CRGO или CRNGO «E» и «I» используется для трансформаторов малой и большой мощности, которые могут быть одно- или трехфазными трансформаторами.Эти пластины скрепляются болтами. И первичная, и вторичная обмотки наматываются на каркас и размещаются вокруг центрального стержня сердечника. В этих трансформаторах используется разрезная катушка для обеспечения высокой изоляции между обмотками небольших бытовых приборов. Между первичной и вторичной обмотками можно использовать экраны для уменьшения электромагнитных помех.

Трансформаторы с тороидальным сердечником

Этот тип трансформатора обладает многими преимуществами по сравнению с трансформатором с ламинированным сердечником, поскольку он обеспечивает тихую и эффективную работу с уменьшенными паразитными или внешними магнитными полями.Благодаря меньшему весу и небольшим размерам они легко проектируются для любого применения, работающего как при низком, так и при высоком напряжении. Используется высокоэффективный сердечник в форме пончика, который изготавливается из кремнистого железа с ориентированными зернами и разрезается на стальную ленту. Этот сердечник дополнительно обернут медными обмотками, как очень тугая часовая пружина. По сравнению с трансформатором с многослойным сердечником EI трансформаторы с тороидальным сердечником дороже. Однако для данного номинала тороидальный трансформатор будет меньше и легче по сравнению с трансформатором ламинированного типа EI.Кроме того, он обеспечивает меньшую утечку магнитного поля и более высокий КПД. Они доступны от нескольких десятков VA до тысяч VA. В основном они поставляются с центральным креплением к одному отверстию с помощью болта с шайбами ​​и резиновыми прокладками.

Автотрансформатор

Автотрансформаторы

отличаются от стандартных двух- или трехобмоточных трансформаторов тем, что содержат только одну обмотку, которая действует как первичная и вторичная. При этом часть этой одиночной обмотки является общей как для первичной, так и для вторичной обмотки, и, следовательно, они электрически связаны (две обмотки электрически изолированы в случае традиционного трансформатора).Таким образом, этот трансформатор работает как на проводимость, так и на индукцию. При этом ламинированный сердечник наматывается одной обмоткой, и часть этой обмотки делится на первичную и вторичную.

Они подразделяются на повышающие и понижающие автотрансформаторы. В понижающем автотрансформаторе полная обмотка действует как первичная, а часть ее — как вторичная, поэтому напряжение, индуцируемое во вторичной обмотке, меньше, чем в первичной. С другой стороны, для повышающего трансформатора будет иметь место обратное. Трехфазные силовые трансформаторы используются в системах распределения электроэнергии, которые могут быть автотрансформаторами, соединенными звездой или треугольником.Но в основном автотрансформаторы, соединенные звездой, используются для приложений большой мощности.

Переменные автотрансформаторы поставляются с числовыми ответвлениями на одиночной обмотке и вторичным соединением со скользящей угольной щеткой. Поэтому при скольжении угольной щетки во вторичной обмотке создается переменное напряжение, равное соотношению витков между всей обмоткой и отводом.

Автотрансформаторы

используются в качестве статоров для безопасного запуска различных электрических машин, таких как синхронные двигатели, асинхронные двигатели и т. д.И они также используются в качестве печных трансформаторов и усилителей.

Многофазный трансформатор

Этот тип трансформатора обычно используется в трехфазных системах электроснабжения, таких как электрические сети и линии электропередач, которые передают большое количество высокого напряжения. Они наиболее экономичны из-за широкого использования трехфазных систем генерации, передачи, распределения и использования переменного тока. Этот тип трансформатора состоит из трех обмоток, которые намотаны на трехстержневой сердечник и погружены в бак.Эти первичные и вторичные обмотки могут быть соединены в различных комбинациях, таких как звезда-звезда, звезда-треугольник, треугольник-треугольник и треугольник-звезда. Это могут быть повышающие или понижающие трехфазные трансформаторы в зависимости от применения или нагрузки. Благодаря общему сердечнику для всех обмоток, меньше будет магнитный поток рассеяния и, следовательно, КПД трансформатора выше.

Трансформаторы с масляным охлаждением

Трансформатор с масляным охлаждением

— это большие силовые трансформаторы, используемые в различных устройствах, от крупных электростанций или подстанций до блоков распределения электроэнергии.Эти трансформаторы заполнены стандартным трансформаторным маслом (или минеральным маслом) для обеспечения охлаждения, а также изоляции обмоток и сердечника. В трансформаторах с масляным охлаждением сердечник и катушки погружены или погружены в жидкость или масло. По сравнению с трансформаторами с воздушным охлаждением масло обеспечивает лучшую изоляцию и действует как лучший проводник тепла. Эти типы включают

  • Масляные трансформаторы с самоохлаждением

В этом типе тепло, выделяемое сердечником и обмотками, передается маслу в процессе теплопроводности.При повышении температуры масла за счет температуры сердечника и обмотки масло начинает двигаться внутри бака и достигает его стенок, где это тепло естественным образом отводится окружающим воздухом. Это масло продолжает циркулировать и, следовательно, рассеивает тепло в атмосфере.

  • Масляные трансформаторы с принудительным воздушным охлаждением

В этом типе метода охлаждения рассеивание тепла улучшается за счет направления нагнетаемого воздуха на внешнюю поверхность трансформатора с помощью вентиляторов. Эти вентиляторы работают автоматически, когда температура достигает определенного уровня.

  • Масляные трансформаторы с водяным охлаждением.

В этом типе тепло извлекается или рассеивается с помощью принудительной подачи воды через змеевики, погруженные в масло чуть ниже верхней части бака. Эта вода далее охлаждается в теплообменниках, брызгальных бассейнах или градирнях.

  • Масляные трансформаторы с принудительным масляным охлаждением.

В этом типе тепло отводится за счет циркуляции нагнетаемого масла с помощью насоса. Масло перекачивается вверх к обмоткам, а затем обратно через внешние радиаторы, так что тепло рассеивается нагнетаемым воздухом от вентиляторов во внешних радиаторах.Этот тип охлаждения используется для трансформаторов очень большой мощности, и в таких случаях используется радиатор воздушного охлаждения.

ВЧ трансформаторы

ВЧ-трансформаторы

используются в различных электронных схемах по нескольким причинам, таким как согласование импеданса для передачи максимальной мощности, изоляция постоянного тока между цепями, повышение или понижение напряжения и тока, взаимодействие между несбалансированными и симметричными цепями и т. д. Эти Трансформаторы поставляются в виде пакетов разъемов, пакетов для поверхностного монтажа и других различных конфигураций.Стальные пластины не используются для трансформаторов RF. Рабочие частоты этого трансформатора находятся в пределах от 30 кГц до 30 МГц, и чаще всего добавление конденсатора к одной обмотке помогает настроить их обмотки на определенную частоту.

Это могут быть трансформаторы с воздушным сердечником, ферритовым сердечником, трансформаторы балунного типа. Радиочастотные трансформаторы с воздушным сердечником, используемые в печатных платах, на которые припаяно несколько витков провода. Трансформаторы с ферритовым сердечником используются в супергетеродинных радиоприемниках, которые в основном представляют собой трансформаторы настроенного типа.Балунные трансформаторы используются для соединения несимметричных и симметричных цепей, таких как симметричные усилители (приложения подавления синфазного сигнала).

Аудиотрансформатор

Аудиотрансформаторы — это специально разработанные трансформаторы, используемые для передачи аудиосигнала в аудиоцепях. Рабочие частоты для этого типа трансформатора находятся в диапазоне от 20 Гц до 20 кГц. Они используются для многофункциональных функций, таких как повышение или понижение напряжения сигнала, преобразование цепи из симметричной в несбалансированную и наоборот, уменьшение или увеличение импеданса цепи, блокирование постоянной составляющей тока и разрешение сигнала переменного тока, а также для обеспечить электрическую гальваническую развязку от одного аудиоустройства к другому.К этим типам трансформаторов относятся микрофонный вход, линейный вход, фонокорректор с подвижной катушкой, линейный выход, межкаскадный и силовой выход, микрофонный выход, разветвитель, преобразователь импеданса, директ-бокс, шумоподавители, тороидальные трансформаторы ЗЧ для громкоговорителей и т. д.

 

Трансформаторы

Трансформаторы
Следующий: Согласование импеданса Вверху: Индуктивность Предыдущий: Цепь Трансформатор – это устройство для повышения или понижения напряжения переменный электрический сигнал.Без эффективных трансформаторов передача и распределение переменного тока электроэнергия на большие расстояния была бы невозможна. Рисунок 51 показана принципиальная схема типичного трансформатора. Есть два контура. А именно, первичная цепь и вторичная цепь . Прямого электрического соединения между двумя цепями нет, но каждая цепь содержит катушку, которая индуктивно соединяет ее с другой цепью. В настоящих трансформаторах две катушки намотаны на один и тот же железный сердечник.Железный сердечник предназначен для направления магнитного потока, создаваемого ток, протекающий по первичной обмотке, так что насколько это возможно, также связывает вторичная катушка. Общий магнитный поток, связывающий две катушки, условно обозначается на принципиальных схемах рядом параллельных прямых линий, проведенных между катушками.
Рисунок 51: Принципиальная схема трансформатора.

Рассмотрим особенно простой трансформатор, в котором первичная и вторичная обмотки катушки представляют собой соленоиды с одним и тем же заполненным воздухом сердечником.Предположим, что — длина сердечника, а — площадь его поперечного сечения. Пусть общее число витков в первичной обмотке, и пусть общее количество витков во вторичной катушке. Предположим, что переменное напряжение

(281)

подается в первичную цепь от какого-либо внешнего источника переменного тока. Здесь, пиковое напряжение в первичной цепи, частота чередования (в радианах в секунду).Ток, движущийся вокруг первичная цепь написана
(282)

где максимальный ток. Этот ток создает изменяющийся магнитный поток, в сердечнике соленоида, который связывает вторичную катушку, и, тем самым, индуктивно генерирует переменную ЭДС
(283)

во вторичной цепи, где пиковое напряжение. Предположим, что это ЭДС вызывает переменный ток
(284)

вокруг вторичной цепи, где пиковый ток.

Записано уравнение цепи для первичной цепи

(285)

предполагая, что сопротивление в этой цепи пренебрежимо мало. Первый срок в приведенном выше уравнении — ЭДС, генерируемая извне. Второй срок противо-ЭДС из-за собственной индуктивности первичной катушки. То окончательный термин — это ЭДС из-за взаимной индуктивности первичной обмотки. и вторичные катушки. При отсутствии какого-либо значительного сопротивления в первичном цепи эти три ЭДС в сумме должны равняться нулю.Уравнения (281), (282), (284) и (285) можно комбинировать, чтобы получить
(286)

поскольку
(287)

Переменная ЭДС, создаваемая во вторичной цепи, состоит из ЭДС, создаваемая собственной индуктивностью вторичной обмотки, плюс ЭДС, создаваемая взаимной индуктивностью первичной и вторичной катушек.Таким образом,

(288)

Уравнения (282), (283), (284), (287) и (288) дают
(289)

Теперь мгновенная выходная мощность внешнего источника переменного тока, питающего первичный контур

(290)

Точно так же мгновенная электрическая энергия в единицу времени, индуктивно передаваемая от первичный во вторичный контур
(291)

Если резистивные потери в первичной а вторичные цепи пренебрежимо малы, как и предполагается, тогда по энергосбережению, эти две силы должны быть всегда равны друг другу.Таким образом,
(292)

который легко сводится к
(293)

Уравнения (286), (289) и (293) дают
(294)

который дает
(295)

и, следовательно,
(296)

Уравнения (293) и (296) можно объединить, чтобы получить
(297)

Обратите внимание, что хотя взаимная индуктивность двух катушек несет полную ответственность за передачу энергия между первичной и вторичной цепями, это собственная индуктивность двух катушек, которые определяют соотношение пиковых напряжений и пиковые токи в этих цепях.

Теперь из разд. 10.2, собственные индуктивности первичного и вторичные катушки задаются а также , соответственно. Следует это

(298)

и, следовательно, что
(299)

Другими словами, отношение пиковых напряжений и пиковых токов в первичном и вторичном контурах определяется соотношением количество витков в первичной и вторичной обмотках.Это последнее соотношение обычно называют коэффициентом витков трансформатора. Если вторичная катушка содержит на больше витков, чем первичная катушка. пиковое напряжение во вторичной цепи превышает , что в первичной цепи. Этот тип трансформатора называется повышающим трансформатором , , потому что он увеличивает напряжение сигнала переменного тока. Обратите внимание, что при повышении трансформатор пиковый ток во вторичной обмотке цепи на 90 398 меньше, чем на 90 399 пикового тока в первичной цепи (как и должно быть, если необходимо сохранить энергию).Таким образом, повышающий трансформатор фактически понижает ток. Так же, если вторичная катушка содержит на меньше витков, чем первичная катушка тогда пиковое напряжение во вторичной цепи на меньше, чем на в первичном контуре. Этот тип трансформатора называется понижающим . трансформатор . Обратите внимание, что понижающий трансформатор фактически увеличивает мощность. ток ( т.е. , пиковый ток во вторичной цепи больше, чем в первом контуре).

Электроэнергия переменного тока вырабатывается на электростанциях при довольно низком пиковом напряжении. ( я.е. , что-то вроде 440В), и потребляется бытовыми пользователем при пиковом напряжении 110 В (в США). Однако электричество переменного тока передается от электростанции к месту, где он потребляется при очень высоком пиковом напряжении (обычно 50 кВ). Фактически, как только сигнал переменного тока выходит из генератора на электростанции он подается на повышающий трансформатор, повышающий пиковое напряжение с нескольких сотен вольт до многих десятков киловольт. Выходной сигнал повышающего трансформатора подается на линия электропередач высокого напряжения, которая обычно транспортирует электричество по многие десятки километров, и, как только электричество достигло своего точка потребления, питание подается через серию понижающих трансформаторов до тех пор, пока он не выйдет из бытовой розетки, его пиковое напряжение не только 110В.Но если электроэнергия переменного тока вырабатывается и потребляется при сравнительно низкие пиковые напряжения, зачем утруждать себя повышение пикового напряжения до очень высокого значения в электростанции, а затем снова понизить напряжение, как только электричество достиг точки потребления? Почему бы не генерировать, передавать и распределять электроэнергию при пиковом напряжении 110В? Ну думай об электрике линия электропередач, которая передает пиковую электрическую мощность между электростанцией и город. Мы можем думать о том, что зависит от количества потребителей в городе и характера электрические устройства, которыми они управляют, по существу, как фиксированное количество.Предположим, что и пиковое напряжение и пиковый ток сигнала переменного тока, передаваемого по линии, соответственно. Мы можем думать об этих числах как о переменных, поскольку мы можем изменить их с помощью трансформатора. Однако, поскольку произведение пика напряжение и пиковый ток должны оставаться постоянными. Предположим, что сопротивление линии есть . Пиковая скорость, при которой электрическая энергия теряется из-за к омическому нагреву в линии есть , что можно записать

(300)

Таким образом, если мощность, передаваемая по линии, является фиксированной величиной, как сопротивление линии, то мощность, теряемая в линии из-за омического нагрева, изменяется подобно обратному квадрату из пиковое напряжение в линии.Оказывается, даже при очень высоких напряжениях таких как 50кВ, омические потери мощности в линии электропередач протяженностью в десятки километров может составлять до 20% передаваемой мощности. Это легко может быть оценил, что если была предпринята попытка передать электроэнергию переменного тока при пиковом напряжении 110 В омические потери были бы настолько велики, что практически ни один из сила достигла бы своей цели. Таким образом, можно создать только электроэнергию в центральном месте, передавать ее на большие расстояния, а затем распределять его по месту потребления, если передача выполняется при очень высоких пиковых напряжениях (чем выше, тем лучше).Трансформеры играют жизненно важную роль в этом процессе, потому что они позволяют нам активизировать и понижать напряжение электрического сигнала переменного тока очень эффективно (хорошо продуманный трансформатор обычно имеет потери мощности, которые составляют всего несколько процентов от общая мощность, протекающая через него).

Конечно, трансформаторы не работают на постоянном токе, т.к. магнитный поток, создаваемый первичной катушкой, не изменяется во времени, и, следовательно, не индуцирует ЭДС во вторичной обмотке. На самом деле не существует эффективного метода активизации или понижение напряжения постоянного электрического сигнала.Таким образом, это невозможно эффективно передавать электроэнергию постоянного тока на большие расстояния. Это главная причина, по которой коммерчески вырабатываемое электричество является переменным, а не постоянным током.



Следующий: Согласование импеданса Вверху: Индуктивность Предыдущий: Цепь
Ричард Фицпатрик 2007-07-14
Основы трансформатора

| Примечания по электронике

— введение, обзор или учебник по основам трансформаторов.


Учебное пособие по индуктивности и трансформатору Включает:
Индуктивность Символы закон Ленца Собственная индуктивность Расчет индуктивного сопротивления Теория индуктивного сопротивления Индуктивность провода и катушки Трансформеры


Трансформаторы широко используются во всех отраслях электроники. Одно из наиболее известных применений — в силовых приложениях, где они используются для преобразования рабочего напряжения из одного значения в другое.Они также служат для изоляции цепи на выходе от прямого соединения с первичной цепью. Таким образом они передают энергию от одной цепи к другой без прямого соединения.

В Национальной энергосистеме используются очень большие трансформаторы для изменения линейного напряжения между различными требуемыми значениями. Однако для радиолюбителей или домашних энтузиастов трансформаторы обычно используются в источниках питания. Трансформаторы также широко используются в других схемах, от аудио до радиочастот, где их свойства широко используются для соединения различных каскадов в оборудовании.

Сетевой трансформатор, который можно использовать для питания электронного оборудования

Что такое трансформатор?

Базовый трансформатор состоит из двух обмоток. Они известны как первичные и вторичные. По сути, энергия входит в первичную систему и уходит во вторичную. Некоторые трансформаторы имеют больше обмоток, но принцип работы остается тем же.

В трансформаторе используются два основных эффекта, оба связаны с током и магнитными полями.В первом обнаружено, что ток, протекающий по проводу, создает вокруг него магнитное поле. Величина этого поля пропорциональна току, протекающему по проводу. Также установлено, что если проволоку намотать на катушку, то магнитное поле увеличится. Если это электрически генерируемое магнитное поле поместить в существующее поле, то на провод, по которому течет ток, будет действовать сила, точно так же, как два неподвижных магнита, расположенных близко друг к другу, будут либо притягиваться, либо отталкиваться друг от друга.Именно это явление используется в электродвигателях, счетчиках и ряде других электрических агрегатов.

Второй эффект заключается в том, что обнаружено, что если магнитное поле вокруг проводника изменяется, то в проводнике индуцируется электрический ток. Один из примеров этого может произойти, если магнит приблизить к проводу или катушке. В этих условиях будет индуцироваться электрический ток, но только при движении магнита.

Сочетание двух эффектов возникает, когда два провода или две катушки помещаются вместе.Когда ток меняет свою величину в первом, это приводит к изменению магнитного потока, а это, в свою очередь, приводит к индукции тока во втором. Это основная концепция трансформатора, и видно, что он будет работать только тогда, когда переменный или переменный ток проходит через входную или первичную цепь.

Коэффициент трансформации трансформатора

Чтобы протекал ток, должна присутствовать ЭДС (электродвижущая сила). Эта разность потенциалов или напряжение на выходе зависит от соотношения витков в трансформаторе.Установлено, что если в первичной обмотке больше витков, чем во вторичной, то напряжение на входе будет больше, чем на выходе, и наоборот. На самом деле напряжение можно легко рассчитать, зная соотношение витков:

Es     =     ns
Ep           np

Где
      Ep — первичная ЭДС
      Es — вторичная ЭДС
      np — количество витков на первичной обмотке
       ns — количество витков на вторичной обмотке

Если отношение витков ns/np больше единицы, то трансформатор будет выдавать более высокое напряжение на выходе, чем на входе, и он называется повышающим трансформатором.Точно так же трансформатор с коэффициентом трансформации меньше единицы является понижающим трансформатором.

Отношения напряжения и тока на трансформаторе

Существует ряд других факторов, которые можно легко рассчитать. Во-первых, это соотношение входных и выходных токов и напряжений. Поскольку входная мощность равна выходной мощности, можно рассчитать напряжение или ток, если другие три значения, используя простую формулу, показанную ниже. Этот факт не учитывает каких-либо потерь в трансформаторе, которыми, к счастью, можно пренебречь в большинстве расчетов.

Vp   x   Ip   =   Vs   x   Is

Возьмем, к примеру, сетевой трансформатор, выдающий 25 вольт на один ампер. При входном напряжении 250 вольт это означает, что входной ток составляет всего одну десятую ампера.

Для некоторых трансформаторов число витков на первичной обмотке будет таким же, как и на вторичной, а ток и напряжение на входе будут такими же, как и на выходе. Однако, если соотношение витков не равно 1:1, соотношение напряжения и тока будет различным на входе и выходе.Из простой зависимости, показанной выше, видно, что отношение напряжения к току изменяется между входом и выходом. Например, трансформатор с соотношением витков 2:1 может иметь вход 20 вольт с током 1 ампер, тогда как на выходе напряжение будет 10 вольт при 2 амперах. Поскольку соотношение напряжения и тока определяет импеданс, можно видеть, что трансформатор можно использовать для изменения импеданса между входом и выходом. На самом деле импеданс изменяется как квадрат отношения витков, как видно из:

Zp     =     np 2
Zs           ns 2

Используется

Трансформаторы

широко используются во многих областях радио и электроники.Одно из их основных применений — в источниках питания от сети. Здесь трансформатор используется для изменения входного сетевого напряжения (около 240 В во многих странах и 110 В во многих других) до напряжения, необходимого для питания оборудования. В большей части современного оборудования, использующего полупроводниковую технологию, требуемое напряжение намного ниже, чем входящее в сеть. В дополнение к этому трансформатор изолирует питание вторичной обмотки от сети, тем самым делая вторичное питание более безопасным.Если бы источник питания был взят непосредственно из сети, риск поражения электрическим током был бы намного выше.

Силовой трансформатор, подобный используемому в источнике питания, обычно намотан на железном сердечнике. Это используется для концентрации магнитного поля и обеспечения очень плотной связи между первичной и вторичной обмотками. Таким образом, эффективность сохраняется на максимально возможном уровне. Однако очень важно убедиться, что этот сердечник не действует как одновитковая обмотка. Чтобы этого не произошло, секции сердечника изолированы друг от друга.На самом деле сердечник состоит из нескольких пластин, каждая из которых чередуется, но изолирована одна от другой, как показано на рисунке.

Две обмотки силового трансформатора хорошо изолированы друг от друга. Это предотвращает любую вероятность того, что вторичная обмотка окажется под напряжением.

Хотя одним из основных применений трансформаторов, с которыми столкнется любитель, является преобразование питающего или сетевого напряжения до нового уровня, у них также есть множество других применений, для которых они могут быть использованы.Когда использовались лампы, они широко использовались в аудиоприложениях, чтобы громкоговорители с низким импедансом могли управляться схемами ламп, которые имели относительно высокий выходной импеданс. Они также используются для радиочастотных приложений. Тот факт, что они могут изолировать компоненты постоянного тока сигнала, действовать как трансформаторы импеданса и как настроенные схемы, означает, что они являются жизненно важным элементом во многих схемах. Во многих портативных приемниках эти преобразователи ПЧ обеспечивают избирательность приемника.В показанном примере видно, что первичная обмотка трансформатора настраивается с помощью конденсатора, чтобы привести ее в резонанс. Регулировка резонансной частоты обычно осуществляется с помощью сердечника, который можно вкручивать и выкручивать, чтобы изменять величину индуктивности катушки. Трансформатор также согласовывает более высокий импеданс коллекторного каскада предыдущего каскада с более низким импедансом следующего каскада. Он также служит для изоляции различных установившихся напряжений на коллекторе предыдущей ступени от базы следующей ступени.Если бы две цепи не были изолированы друг от друга, условия смещения постоянного тока для обоих транзисторов были бы нарушены, и ни один из каскадов не работал бы правильно. С помощью трансформатора каскады могут быть подключены к сигналам переменного тока, сохраняя при этом условия смещения постоянного тока.

Резюме

Трансформатор является бесценным компонентом современной электроники. Несмотря на то, что интегральные схемы и другие полупроводниковые устройства используются во все возрастающих количествах, замены трансформатору нет.Тот факт, что он может изолировать и передавать питание от одной цепи к другой при изменении импеданса, гарантирует, что он является уникальным инструментом для разработчиков электроники.

Дополнительные основные понятия и руководства по электронике:
Напряжение Текущий Власть Сопротивление Емкость Индуктивность Трансформеры Децибел, дБ Законы Кирхгофа Q, добротность РЧ-шум Сигналы
    Вернуться в меню основных понятий электроники .. .

Руководство по выбору трансформаторов для монтажа на плате

: типы, характеристики, области применения

 

Трансформаторы для монтажа на плате

— это трансформаторы, предназначенные для встраивания или установки на компьютерных платах. Назначение трансформатора, как правило, заключается в передаче мощности от одного устройства или цепи к другому. Обычно это делается с помощью процесса, называемого индукцией. Трансформаторы для монтажа на плате также называются трансформаторами для печатных плат, трансформаторами для монтажа на печатных платах или трансформаторами для печатных плат.

 

Как работают трансформеры

 

Трансформатор передает (и многократно преобразует) мощность из цепи в другую. В практических приложениях он используется для понижения или увеличения напряжения или тока сигнала. Трансформатор состоит из двух невзаимодействующих индуктивных цепей (обмоток), называемых соответственно первичной и вторичной. Когда напряжение подается на первичную обмотку, создается магнитное поле, которое индуцирует другое магнитное поле во вторичной обмотке, которое, в свою очередь, создает напряжение во вторичной обмотке.Величина наведенного напряжения во вторичной обмотке зависит от отношения числа витков обмотки вторичной обмотки к числу витков первичной. Процесс изображен ниже.

 

Изображение предоставлено: BillC — Википедия

 

 

 

Трансформаторная композиция

Трансформаторы для монтажа на плате
состоят из проводов первичной и вторичной катушек, металлического сердечника, внешнего корпуса, монтажных кронштейнов и соединительных клемм.Обычно они изготавливаются из легких материалов для установки на компьютерную плату или шасси. Некоторые из этих трансформаторов на самом деле представляют собой интегральные схемы, изготовленные с использованием обычных технологий производства полупроводников.

 

Технические характеристики


Есть несколько ключевых параметров, которые важно указать при выборе трансформаторов для монтажа на плате.

 

Номинальное первичное напряжение — диапазон напряжений или максимальное напряжение, которое трансформатор может обрабатывать в качестве входного, измеряется в вольтах (В).Трансформаторы применяют несколько номинальных напряжений нужно больше, чем на первичную обмотку.

 

Номинальное вторичное напряжение — диапазон напряжений или максимальное напряжение, которое может выдавать трансформатор, измеряется в вольтах (В). Трансформатор может обеспечивать более одного вторичного напряжения.

 

Номинальная мощность — максимальная мощность в ваттах (Вт) и вольт-амперах (ВА), которую может обеспечить трансформатор.

 

  • Реальная номинальная мощность (или мощность в ваттах) относится к диапазону выходной мощности в ваттах, которую способен вырабатывать трансформатор.

  • Воображаемая мощность (ВА) номинальная мощность представляет собой сумму номинальных вольт-ампер для всех вторичных обмоток.

Еще одна спецификация, о которой следует помнить, — это рабочая температура, которая описывает полный диапазон температур, при которых транзистор может эффективно работать без опасности выхода из строя или повреждения.

 

Приложения


 

Поскольку конструкция и характеристики трансформаторов зависят от их использования, при выборе трансформаторов очень важно указать область применения.Например, медицинский трансформатор должен иметь очень большую изоляцию для защиты пациентов и медицинского персонала от поражения электрическим током; силовой трансформатор должен быть рассчитан на большую мощность.

 

Форм-фактор


 

Форм-фактор важен, поскольку эти трансформаторы встроены в компьютерные платы, а доступное пространство ограничено. Поэтому важно знать размер трансформатора. Для трансформаторов для монтажа на плате наиболее распространены следующие форм-факторы:

 

Устройства с разъемами прикрепляются коаксиальными или другими типами разъемов.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Изображение предоставлено: Emhiser Tele-Tech, Inc.

 

 

Flat pack (FPAK) Устройства имеют «крыло чайки» или плоские выводы с двух или четырех сторон. Они обеспечивают исключительные тепловые и электрические характеристики и доступны в конфигурациях с полостью вверх и вниз.Устройства в плоской упаковке обычно керамические, герметичные и монтируются на поверхности. Они доступны в различных размерах корпуса и количестве контактов.

 

 

 

 

 

 

 

 

 

Изображение предоставлено: MPS Industries

 

 

Технология поверхностного монтажа (SMT) добавляет компоненты к печатной плате (PCB) путем припайки выводов компонентов или клемм к верхней поверхности платы.Компоненты SMT имеют плоскую поверхность, припаянную к плоской площадке на лицевой стороне печатной платы. Контактная площадка печатной платы обычно покрывается пастообразным составом из припоя и флюса. При аккуратном размещении компоненты SMT на паяльной пасте остаются на месте до тех пор, пока повышенная температура, обычно от инфракрасной печи, не расплавит пасту и не припаяет выводы компонента к контактным площадкам печатной платы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Изображение предоставлено Digi-Key Corp.

 

 

Технология сквозных отверстий (THT) позволяет монтировать компоненты на печатную плату (PCB), вставляя выводы компонентов через отверстия в плате, а затем припаивая выводы на противоположной стороне платы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Изображение предоставлено Digi-Key Corp.

 

 

Волноводные сборки используются в микроволновых волноводных системах. Они состоят из полого металлического проводника прямоугольного, эллиптического или круглого сечения. Некоторые проводники содержат твердые или газообразные диэлектрические материалы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Изображение предоставлено Allen Avionics, Inc.

 

 

Типы


 

Существует множество типов трансформаторов с форм-фактором, подходящим для установки на компьютерную плату. Некоторые из наиболее значимых типов перечислены здесь:

 

Аудиотрансформаторы идеально подходят для передачи голоса и данных. Частотная характеристика этих трансформаторов обычно находится в диапазоне от 300 Гц до 20 кГц.


Автотрансформаторы представляют собой особый тип силового трансформатора, который имеет только одну обмотку.Отводя или соединяя в определенных точках обмотки, можно получить разные напряжения. Автотрансформаторы обычно используются в маломощных устройствах.


Балунные трансформаторы используются для сопряжения симметричной линии (два проводника, по которым текут одинаковые токи в противоположных направлениях) и несимметричной линии (один проводник, по которому течет ток, и заземление). Его название происходит от терминов, применяемых к линиям BALanced to UNbalanced.


Трансформаторы тока обычно используются для обнаружения и измерения тока.Существует два основных типа трансформаторов тока: те, которые разработаны и используются для точного измерения тока в точных измерительных приборах, и другие, которые разработаны и используются в приложениях типа импульсных преобразователей мощности.


Трансформаторы обратного хода (FBT) или Линейные выходные трансформаторы (LOPT) — это трансформаторы, предназначенные для получения очень высокого выходного напряжения (обычно порядка киловольт) при относительно низком входном напряжении. Обратный ход — это топология, в которой используется обратный ход, также известный как отдача, катушки индуктивности для преобразования входного напряжения трансформатора в желаемое выходное напряжение.Это делается путем накопления входной энергии (в катушке индуктивности), создаваемой входным напряжением (это называется зарядным циклом), а затем передачи этой энергии (это называется разрядным циклом) на выходе. Они обычно используются для генерации высокого напряжения для управления ЭЛТ.


Интерфейсные преобразователи используются в приложениях связи, где сигнал изолирован.


Осветительные трансформаторы используются для обеспечения необходимой мощности осветительных приборов и систем освещения.


Медицинские трансформаторы используются в медицинских целях, таких как биомедицинское оборудование в больницах. Существует множество строгих правил безопасности, руководств и законов, регулирующих проектирование, изготовление и использование этих трансформаторов.

 

Силовые трансформаторы преобразуют одно напряжение в другое на высоком уровне мощности. Силовые трансформаторы используются в электронных схемах и бывают разных типов и приложений. Силовыми трансформаторами иногда считаются трансформаторы с номиналом 300 вольт-ампер и ниже.Эти трансформаторы обычно обеспечивают питание блока питания электронного устройства, например, усилителей мощности в аудиоприемниках.


ВЧ трансформаторы представляют собой маломощные устройства, обычно используемые для согласования импедансов, которые работают в радиочастотном или микроволновом спектре.


Резонансные трансформаторы работают на резонансной частоте одной из его катушек (первичной или вторичной). Они используются для дуговой сварки, газоразрядных ламп и т. д.


Импульсные трансформаторы или Импульсные трансформаторы используются в импульсных источниках питания и преобразователях постоянного тока. Эти трансформаторы служат элементом накопления энергии для передачи энергии от входа к выходу дискретными пакетами, что требуется в импульсных источниках питания, регуляторах или преобразователях.


Каталожные номера

Руководство покупателя EEM — Трансформаторы

Учебники по электронике — Основы трансформаторов

 

 

 


.

Добавить комментарий

Ваш адрес email не будет опубликован.