Лампа накаливания схема: Плавное включение ламп накаливания на 220 В: схема, видео

Содержание

Плавное включение ламп накаливания на 220 В: схема, видео

Лампочки Ильича до сих пор остаются лидерами по популярности, благодаря своей цене, но у них есть очень большой недостаток — малый срок работы, обусловленный разрушением нити накала во время включения. В настоящее время разработаны электронные устройства для плавного включения ламп накаливания, которые осуществляют подачу напряжения на спираль с нуля и до максимума в несколько секунд. Постепенный прогрев нити накала позволяет продлить ресурс лампочки в несколько раз, вместо заявленных 1000 часов. Разработанные схемы для самостоятельной сборки имеют немного деталей и обычно не требуют наладки. В это статье мы рассмотрим, как сделать плавное включение ламп накаливания на 220 В своими руками.

Внимание! Рассматриваемые устройства имеют на элементах сетевое напряжение и требуют особой осторожности при сборке и наладке.

Тиристорная схема

Данную схемку можно рекомендовать для повторения. Она состоит из распространенных элементов, пылящихся на чердаках и в кладовках.

В цепи выпрямительного моста VD1, VD2, VD3, VD4 в качестве нагрузки и ограничителя тока стоит лампа накаливания EL1. В плечах выпрямителя установлен тиристор VS1 и сдвигающая цепочка R1 и R2, C1. Установка диодного моста обусловлена спецификой работы тиристора.

После подачи напряжения на схему, ток протекает через нить накала и попадает на выпрямительный мост, далее через резистор происходит зарядка емкости электролита. При достижении напряжения порога открывания тиристора, он открывается, и пропускает через себя ток лампочки накаливания. Получается постепенный, плавный разогрев вольфрамовой спирали. Время разогрева зависит от емкости конденсатора и резистора.

Симисторная схема

Симисторная схема одержит меньше деталей, благодаря использованию симистора VS1 в качестве силового ключа. Элемент L1 дроссель для подавления помех, возникающих при открывании силового ключа, можно исключить из цепи. Резистор R1 ограничивает ток на управляющий электрод VS1. Время задающая цепочка выполнена на резисторе R2 и емкости C1, которые питаются через диод VD1. Схема работы аналогична предыдущей, при заряде конденсатора до напряжения открывания симистора, он открывается и через него и лампу начинает протекать ток.

На фото ниже предоставлен симисторный регулятор. Он кроме регулирования мощности в нагрузке, также производит плавную подачу тока на лампу накаливания во время включения.

Схема на специализированной микросхеме

Микросхема кр1182пм1 специально разработана для построения всевозможных фазовых регуляторов.

В данном случае, силами самой микросхемы регулируется напряжение на лампочке накаливания мощностью до 150 ватт. Если нужно управление более мощной нагрузкой, большим количеством осветителей одновременно, в цепь управления добавляется силовой симистор. Как это выполнить смотрите на следующем рисунке:

Использование данных устройств плавного включения не ограничиваются только лампами накаливания, их так же рекомендуется устанавливать совместно с галогеновыми на 220 в. Аналогичные по принципу действия устройства устанавливаются в электроинструменты, запускающие плавно якорь двигателя, также продлевая срок службы прибора в несколько раз.

Важно! С люминесцентными и светодиодными источниками устанавливать данное устройство категорически не рекомендуется. Это связано с разной схемотехникой, принципом действия, и наличием у каждого устройства собственного источника плавного разогрева для компактных люминесцентных ламп или отсутствии потребности в данном регулировании для LED.

Напоследок рекомендуем просмотреть видео, в котором наглядно рассматривается еще одна популярная схема сборки прибора — на полевых транзисторах:

Самоделка на транзисторах

Теперь вы знаете, как сделать устройство плавного включения ламп накаливания на 220 В своими руками. Надеемся, схемы и видео в статье были для вас полезными!

Рекомендуем также прочитать:

ВКЛЮЧЕНИЕ ЛАМП

   В настоящее время, с переходом на энергосберегающие технологии и уменьшении доли атомной электроэнергии, обострилась проблема бережливого расходования электричества для освещения. Одна из проблем – продление срока эксплуатации электрических ламп накаливания и ламп дневного света, ведь новые светодиодные лампы пока являются экзотикой, причём довольно дорогостоящей. Качество наших электрических ламп желает быть значительно лучше, да и напряжение в сети не бывает стабильным – то понижается до 180 В в расходные пиковые периоды, то повышается до 250 В в ночное время, что способствует быстрому выходу из строя ламп накаливания. Поэтому был рассмотрен ряд схем, которые продлевают срок службы электрических ламп в несколько раз и снижают нагрузку на нить накала лампы в момент её включения, когда лампы перегорают особенного часто.


   Последовательное соединение двух ламп (рис.1). Такое соединение ламп накаливания снижает их светосилу, однако значительно продлевает срок их службы. Одно из таких соединений – (две лампы по 150 Вт) горело 10 лет без дополнительных выключений. Особенно удобно было его применение в двухламповых потолочных светильниках, где просто переделывалась монтажная схема. 

   Использование балластного конденсатора (рис.2). В этой схеме последовательно с лампой включается балластный конденсатор, который гасит часть электрического тока и сглаживает скачки напряжения. В схеме используются конденсаторы типа МБГП, МБМ, КБМ, КГГ-И и другие с напряжением больше 220 В. Емкость их подбирается практически к лампам разной мощности.

   Использование диода (рис.3). Это широко известная схема часто меняется в бытовых условиях (в подъездах, вспомогательных помещениях, подвалах). Так как через лампу идёт выпрямленный полупериодный ток, то лампа светит слабее, но значительно продлевается срок её службы. В схеме используются диоды, рассчитанные на ток не меньше 1 А и с напряжением 400 В (IN4007).

   Поэтапное включение лампы (рис.4). Это одна из хорошо зарекомендовавших себя схем. В ней напряжение на спираль лампы подаётся сначала через диод, а затем, когда нить лампы разогреется, то напрямую. Это уменьшает начальный ток лампы и значительно увеличивает её ресурс.


   Использование балластного резистора (рис.5). Эта простейшая схема использования балластного сопротивления, где нагрузка на лампу регулируется проволочным потенциометром (керамическим). Недостатком схемы является нагрев сопротивления и бесполезный расход электрического тока. Однако сопротивлением можно регулировать накал лампы в целях продления срока её службы и для других нужд.


VD1-VD4 — КД105Б (для 100 Вт) и КД202Ж, КД202С (для 200 Вт)
VD5 — КУ201К, КУ202К-Н
VD6
 -Д220 (для 100 Вт) и кремниевый маломощный (для 200 Вт)
VD7-A814A
VT1, VT2 — КТ315Б (для 100 Вт) и любой кремниевый мало¬мощный соответствующей структуры со статическим коэффи¬циентом передачи тока не менее 50 (для 200 Вт)

R1 — 1кОм
R2, R3- 10 кОм
R4 – 100 кОм
R5 — 2,7 мОм
R6 — 160 кОм
С1 -2,0 мкФ

L1 – до 150 ватт
R1-10 к
VD1 — КД 105 Б, КД 105 В, КД 105 Г.
УВ2-Д226В,Д 226 Г, Д 226 Д.
VS — КУ — 202 Н, КУ 202 М, КУ 201 Л.

   Схемы питания ламп накаливания со ступенчатым бесконтактным включением тока в момент включения (рис.6, 7). Эти устройства ставятся и умещаются в выключателе или рядом с ним. Они позволяют плавно включать электрическую лампу, т.е. до номинального значения увеличить ток через спираль лампы в течение 1 сек после её включения. Это позволяет значительно увеличить срок службы электрических ламп до 10-15 и более лет. Схемы позволяют работать с электрическими лампами накаливания мощностью 100-200 Ватт. Все вышеперечисленные методы включения ламп, позволяют серьёзно экономить расход осветительных элементов и следовательно уменьшить время, необходимое на их замену.

   Форум по осветительным лампам

   Форум по обсуждению материала ВКЛЮЧЕНИЕ ЛАМП



SMD ПРЕДОХРАНИТЕЛИ

Приводятся основные сведения о планарных предохранителях, включая их технические характеристики и применение.


Плавное включение ламп накаливания 220в: схема, подключение

Вольфрамовая нить лампы накаливания быстро изнашивается, истончается от частых включений и выключений, не каждый может себе позволить часто менять лампы. Решается эта проблема двумя способами. Можно просто реже выключать светильник (наибольший износ происходит при повторном включении лампы накаливания), а можно купить или собрать самостоятельно устройство плавного включения по схеме. О таком самодельном аппарате и пойдёт речь в этой статье.

Принцип действия

Внешне такой регулятор (его ещё называют диммер) выглядит очень просто, пользоваться им легко – вы крутите регулятор в одну сторону – напряжение повышается, лампа накаливания потихоньку разгорается; крутите в другую сторону – регулятор пропускает больше вольт, свет становится ещё ярче.

Главные детали в такой мини-конструкции чаще всего – это так называемые полупроводники, тиристор или симистор.

Рассмотрим несложную схему:

Резисторы R1 и R2. Между ними подключен динистор DB3. Когда напряжение на конденсаторе C1 доходит до предела открытия динистора, на симистор VS1 поступает импульс, и через него идёт ток на лампу.

Вторая схема регулятора напряжения для лампы накаливания. Схема сложней, менее популярна среди радиолюбителей и выглядит, например, так:

Питание из сети 220в по одному проводу поступает на предохранитель (на схеме FU1 5А), по второму на тиристоры VS1 и VS2. Резистор переменного напряжения и тока R2 регулирует выходной сигнал. Через диоды VD1 и VD2 сигнал поступает на электрод одного тиристора, и он становится открытым.

В первой схеме используется симистор, во второй два тиристора.

Такой регулятор включения не подойдёт для люминесцентных и светодиодных ламп; у них внутри есть собственные регулирующие аппараты, автоматически понижающие напряжение, и они будут препятствовать сторонним преобразователям. Для люминесцентных и светодиодных систем изготовляются другие аппараты.

Делаем своими руками устройство плавного включения

Ничего сложного в сборке нет. Даже человек, далёкий от работы с электричеством, сможет собрать регулятор самостоятельно. Главное строго следовать инструкциям и не торопиться.

Подготовительные работы

Для того, чтобы сделать плавное включение ламп накаливания на напряжение 220в, нужно, во-первых, держать перед глазами схему регулятора. Во-вторых, приготовить необходимые детали, которые можно поискать в ненужной аппаратуре, выпаять из схем. Тиристоры и симисторы встречаются в такой технике, как:

  • Старые телевизоры.
  • Дрели и перфораторы.
  • Платы новогодней гирлянды.
  • Бытовые и производственные фены.
  • Зарядные автомобильные устройства.

Тиристоры и симисторы могут пропускать токи как высокой, так и низкой частоты. Потому их можно использовать, например, для трансформатора сварочного аппарата.

Сборка регулятора

Наиболее популярны регуляторы с использованием симистора.

Он имеет пять так называемых p-n переходов и может пропускать ток в обоих направлениях. Когда он открывается, то пропускает через себя часть номинальной мощности. Это своего рода электронный ключ, при большем открытии которого потребитель получает больше мощности.

Итак, начнём по порядку. Нам дополнительно понадобятся:

  • Резистор мощностью на 10 кОм.
  • Динистор.
  • Постоянный резистор на 100 кОм.

Сам симистор нужно выбирать под нагрузку, на которую будет подключено устройство для плавного включения ламп накаливания. Кроме этого, советуем предусмотреть в схеме радиатор, чтобы симистор не перегревался (а греться он может в самом деле сильно).

Делаем в таком порядке:

  • Один провод питающей сети присоединяется к лампочке накаливания, другой – к выводу симистора.
  • От этого же вывода сим-ра – к выводу переменного рез-ра.
  • Второй вывод переменного рез-ра через динистор и потом рез-р (на 10 кОм) идёт на второй вывод сим-ра.
  • Третий контакт сим-ра идёт на второй контакт лампочки.
  • Третий контакт постоянного рез-ра (100 кОм) тоже на второй контакт лампочки.

Меняя положение регулятора, стоящего на переменном резисторе, мы меняем выходное напряжение, и лампочка накаливания разгорается пропорционально этой регулировке.

Таким простым способом мы собрали регулятор яркости лампы накаливания.

Перечисленные пункты можно использовать как краткую инструкцию. Но сначала рекомендуем ознакомиться с видео, из него мы и подготовили для вас выдержки, которые можно выписать, как напоминалку.

Советуем посмотреть видео:

Можно придать регулятору более фирменный вид, заводской, сделать его полноценным.

Рекомендуем посмотреть данное видео:

Применение устройства плавного включения

Встречается во многих сферах энергетики и электротехники.

Применяется:

  • На вентиляторном оборудовании.
  • На конвейерах.
  • В центрифугах.
  • Поршневых компрессорах.
  • И в другой технике.

Схема плавного включения чаще всего применяются для работы освещения или двигателей. Как правило, двигателей асинхронных, переменного тока, с короткозамкнутым ротором.

В заключение

Каждая часть электрического аппарата должна, на наш взгляд, использоваться по максимуму. Ведь лампы могут служить дольше, старые схемы из сломанной аппаратуры могут применяться как запчасти.  Отработавшую технику принимают также в специальные пункты приёма электроники и электроаппаратуры.

Ждём ваших комментариев! Делитесь статьёй в социальных сетях, чтобы больше людей заинтересовались повторным использованием электроники и не только электроники!

Плавный пуск ламп накаливания

Схемы

Для того чтобы правильно использовать блоки плавного включения ЛК необходимо использовать специальные электросхемы. Благодаря таким схемам можно легко понять, как работает данный прибор и устроен изнутри, а также как его необходимо эксплуатировать.

Схема плавного включения лампы накаливания

Обычно при подключении такого устройства специалисты пользуются наиболее простым и лёгким вариантом схемы. Иногда используют специальную схему с внедрением симистеров. Также, кроме блоков данного вида можно брать полевые транзисторы, которые работают аналогично приборам плавного включения.

Вторая схема плавного включения ламп накаливания

Также того чтобы можно было контролировать напряжение в приборе плавного включения можно использовать автоматические приборы.

Что собой представляет тиристорная схема

Тиристорную схему специалисты рекомендуют использовать для повторения. Состоит она из обычных элементов, которые можно найти в каждом доме. Такую схему можно легко сделать в домашних условиях своими руками.

Тиристорная схема плавного включения лампы

Цепь моста выпрямления (рис.VD1, VD2, VD3, VD4) использует лампочку (рис. EL1) как нагрузку и токоограничитель. Плечи выпрямителя оснащены тиристором (рис. VS1) и сдвигающейся цепью (рис. R1, R2 и C1). Также диодный мост устанавливается за счёт спецификации работы прибора тиристора.

После того как напряжение подаётся на схему, электроток начинает идти через спираль накала и поступает на мост, а затем посредством резистора осуществляется зарядка электролита. Когда достигается предел напряжения открытия тиристора, он начинает открываться и тогда через него проходит ток от лампочки. В результате этого вольфрамовая нить разогревается постепенно и плавно. Период ее разогрева будет зависеть от ёмкости находящегося в схеме устройства конденсатора и резистора.

Чем примечательна симисторная

Такая схема имеет меньшее количество деталей за счёт применения симистора (рис. VS1), который служит силовым ключом.

Симисторная схема плавного включенияламп

Такой элемент, как дроссель (рис. L1), который предназначен для удаления различных помех, появляющихся во время открытия силового ключа, разрешено убрать из общей цепи. (рис. R1)Резистор является ограничителем тока, который поступает на главный электрод (рис. VS1). Цепь, которая задаёт время, исполнена на резисторе (рис. R2) и ёмкости (рис. С1), питающимися посредством диода (рис. VD1). Данная схема работает также как и предыдущая. Когда конденсатор заряжается до уровня напряжения открытия симистора, он начинает открываться, а затем через него и лампочку поступает электрический ток.

Схема плавного включения ламп накаливания

На фотографии внизу мы можем увидеть симисторный регулятор. Такое устройство кроме регулировки мощности в нагрузке, также осуществляет плавное поступление электротока на лампочку, когда её включают.

Устройство плавного включения ламп накаливания

Схема работы блока на специализированной микросхеме

Микросхема типа кр1182пм1 была специально создана специалистами для построения различных фазовых регуляторов.

Схема плавного включения на специализированной микросхеме

В этом случае происходит так, что с помощью самой микросхемы происходит регулирование напряжения на источнике, который обладает мощностью до 150 ватт. А если понадобится управлять более сильной системой нагрузки и десятками осветительных приборов одновременно, то в управленческую цепь просто включается дополнительно силовой симистр. На рисунке внизу мы можем увидеть, как это происходит.

Схема плавного включения с силовым симистром

Применение блоков плавного включения не заканчивается только на обычных лампах, так как специалисты рекомендуют использовать их вместе с галогеновыми лампами, мощностью в 220 В.

Важно знать! С люминесцентными и LED лампами (светодиодными) такие блоки устанавливать нельзя. Это связано с тем, что здесь присутствует различная техника разработки схем, а также принцип действия и присутствие у каждого осветительного прибора своего источника размеренного нагрева для люминесцентных ламп или нет потребности в таком регулировании ламп LED

Перспективы использования ламп

Традиционные лампочки, которые запрещены сегодня к использованию во многих странах, могут вернуться на рынок благодаря технологическому прорыву. Лампы накаливания, разработанные Томасом Эдисоном, дают освещение путем нагревания тонкой вольфрамовой нити до температуры 2700 градусов по Цельсию. Эта раскаленная проволока излучает энергию, известную как излучение черного тела, которая представляет очень широкий спектр света, обеспечивает не просто теплый свет, но и максимально точное воспроизведение всех известных цветов мироздания. Однако они всегда страдали от одной серьезной проблемы: более 95 % энергии, которая поступает в них, тратится впустую в виде тепловой энергии.

Теперь исследователи из Массачусетского технологического института и Университета Пердью, нашли способ вернуть их былую популярность и обещают создать новые лампы MIT с эффективностью светодиода. Она будет работать путем размещения нано-зеркал вокруг обычного элемента, которые будут возвращать потраченное впустую тепло обратно для получения света в диапазоне эффективности светодиодных и флуоресцентных светильников.

Элемент лампы окружен системой нано-фотонных зеркал с холодной стороны, которые пропускают видимый свет. Но отражают тепло от инфракрасного излучения. Это тепло затем поглощается ее элементом, заставляя излучать больше света. Этот оригинальный трюк очень простой и жизнеспособный. Вольфрамовый элемент тоже был изменен – MIT использует ленту вместо нити, что лучше для поглощения отраженного тепла. Эксперимент, который выполнили физики Огнин Илик, Марин Сольячич и Джон Джоаннопулос, уже сумел утроить ее эффективность до 6,6 %.

Ученые уверены, что могут достичь 40 % эффективности, которая находится на верхнем пределе возможности для любого источника света. Современные светодиоды пока достигают уровня 15 %.

Разновидности бытовых выключателей

Применяемых в современном домашнем интерьере выключателей разнообразное множество. Подробно с классификацией устройств управления светом знакомит одна из популярных статей, размещенных на нашем сайте.

При выборе домашнего выключателя уделяйте больше внимания не его дизайну, а функциональности, прочности креплений и надежности электрических контактов

По различию их функциональных возможностей выделяются следующие наиболее распространенные разновидности:

  1. Выключатель одноклавишный – его миссия проста: «вкл/выкл».
  2. Выключатель двухклавишный позволяет руководить одномоментно двумя независимыми цепями освещения.
  3. Выключатель трехклавишный, соответственно, координирует работу в трех направлениях.
  4. Выключатель-регулятор (диммер) не только включает-выключает, но и нажатием клавиши или поворотом круглой ручки, ее заменяющей, регулирует плавно яркость света ламп.
  5. Выключатель с регулятором – двух-, трехклавишный выключатель, который ступенчато, переключением клавиш, управляет накалом всех лампочек одновременно.
  6. Одинарный проходной выключатель. Единственной клавишей перекидывает фазу меж двух проводов. Если на один напряжение подается, то от другого отключается, и наоборот.
  7. Перекрестный одинарный выключатель. Изменением положения клавиши синхронно меняет прямое подключение двух линий на перекрестное.
  8. Сенсорный выключатель. Не имеет рычажков – он начинает и прекращает подачу электричества прикосновением пальцев к его поверхности.

Выключатель с датчиком движения зажигает светильник автоматически, реагируя на прохождение мимо человека.

Нюансы формирования скрутки

При скручивании двух проводов, их обнаженные концы складываются буквой «Х» так, чтобы пересечение находилось у начала изоляции. Затем кончики жил зажимаются пальцами и перекручиваются, сколько возможно. Далее процессу помогают плоскогубцами.

Таким же образом соединяются три провода и более. Если соединение выходит одновременно длинным и гибким, его складывают пополам, поджимая пассатижами. Укороченной скрутке требуется меньше изоленты.


Чем больше длина очищенных хвостиков проводов, тем легче будет делать скрутки, и надежней получится контакт – а лишнее всегда можно подрезать

Изолента начинает накладываться с заводской изоляции проводов скрутки на ширину ленты. После прохода одним слоем до окончания оголенных хвостиков, делается еще пара оборотов, как бы заматывающих воздух. Эта «пустота» загибается обратно на скрутку – получается защищенный торец, и доматывается второй ряд с обязательным заходом на основную изоляцию жил.

Принцип действия

Внешне такой регулятор (его ещё называют диммер) выглядит очень просто, пользоваться им легко – вы крутите регулятор в одну сторону – напряжение повышается, лампа накаливания потихоньку разгорается; крутите в другую сторону – регулятор пропускает больше вольт, свет становится ещё ярче.

Главные детали в такой мини-конструкции чаще всего – это так называемые полупроводники, тиристор или симистор.

Рассмотрим несложную схему:

Резисторы R1 и R2. Между ними подключен динистор DB3. Когда напряжение на конденсаторе C1 доходит до предела открытия динистора, на симистор VS1 поступает импульс, и через него идёт ток на лампу.

Вторая схема регулятора напряжения для лампы накаливания. Схема сложней, менее популярна среди радиолюбителей и выглядит, например, так:

Питание из сети 220в по одному проводу поступает на предохранитель (на схеме FU1 5А), по второму на тиристоры VS1 и VS2. Резистор переменного напряжения и тока R2 регулирует выходной сигнал. Через диоды VD1 и VD2 сигнал поступает на электрод одного тиристора, и он становится открытым.

В первой схеме используется симистор, во второй два тиристора.

Конструкция и детали.

В первом варианте исполнения схемы запуска, она была собрана на круглой плате, диаметром 50 мм. Плата эта устанавливалась в круглую нишу самого выключателя под ним. Подсоединялась схема на место выключателя, а сам выключатель (его контакты) подсоединялись по схеме на место SA1. То есть сам выключатель исполнял свою же и роль — включал и выключал люстру. Двухамперный диодный мост от компьютерного БП (KBP206), и тиристор Т10-20-У2 установленные на плате без каких либо радиаторов, вот уже несколько лет исправно пашут на люстру, общей мощностью 300 Вт.
Вначале у меня стояли вместо моста просто четыре одноамперных диода, работали на пределе, два из которых потом пробились, ну и видно от них немного поджарилась плата.

Схема не имеет каких либо особо дефицитных деталей. Тиристоры здесь можно ставить любые, соответствующие только необходимой мощности (току) и напряжению, например ВТ-152, Т106-10-4 и др. Стабилитрон можно применить любой на 10-14 Вольт. Транзисторы так же можно ставить абсолютно любые, лишь бы соответствовали необходимой структуре. Я ставил КТ315 и КТ361, благо ещё имеется их запас.

Мощность схемы, ну и соответственно мощность коммутируемых галогенных ламп, зависит только от примененных в схеме диодного моста и тиристора.
Например, если применить диодный мост на 10 Ампер и тиристор ВТ-152 поставить на небольшой радиатор, то такой схемой запуска можно будет запускать нагрузку до 2-х кВатт, то есть четыре галогенных прожектора по 500 ватт, в несколько раз увеличив ресурс работы их галогенных ламп.
Падение напряжения на самой схеме запуска при выходе её на рабочий режим не превышает единиц Вольт, что абсолютно никак не отражается на яркости ламп, и мощность рассеиваемая на силовых элементах схемы, диодном мосту и тиристоре, будет минимальной.
В следующем варианте схема запуска собрана на плате, размером 40 на 40 мм. Эту плату так же свободно можно устанавливать в нишу обычного выключателя в квартире.

До мощности запускаемых ламп 300-500 Вт, ни тиристор, ни мост нет необходимости ставить на радиатор, так как мощность на них рассеивается только в момент запуска ламп и в момент их выключения. Для запуска нескольких галогенных прожекторов, или галогенного прожектора с лампой мощностью 1000 Вт и более, тиристор и диодный мост нужно выбирать соответствующей мощности, и может быть потребуется установить на небольшой радиатор.
Схема запуска в этом случае подключается, как и было сказано выше, параллельно контактам пакетника, а в качестве выключателя прожекторов можно использовать любой малогабаритный выключатель, устанавливаемый в любое удобное место.Рисунок печатной платы в формате Sprint-Layout прилагается.Печатная плата.Используемая литература;
Д. Приймак. Сенсорный выключатель освещения // В помощь радиолюбителю выпуск 88, с.63.

Принципиальна схема устройства защиты

Схема УПВЛ состоит из следующего:

  • DA1 – регулятор фаз;
  • С1, С2, С3 – конденсаторы;
  • VS1 – симистор;
  • R1 – резистор;
  • SA1 – ключ;
  • VS1 – электрод;
  • EL1 – лампа;
  • ВТА12 – симистор.

Как же создается плавное включение света? DA1 – тиристорная микросхема со схемой управления из С1 и С2, VS1. R1 ограничивает ток через VS1. Устройство работает, когда SA1 разомкнут, С3 заряжается и запускает схему управления тиристорами. На выходе из него ток будет увеличиваться, пока не достигнет своего номинального значения. В EL1 напряжение также растет медленно с 6 В до 230 В. Время до полного включения лампы зависит от С3. При выключении SA1, С3 разряжается на R2, а напряжение постепенно падает от 230 В до 0. Период полного погашения лампы прямо пропорционально зависит от значения R2. С4 и R4 выполняют функцию защиты схемы от помех, а HL1 и R3 выполняют подсветку выключателя.

Значения С3 мкФ и времени срабатывания EL1:

  • 47 мкФ – 1 сек;
  • 100 мкф – 3 сек;
  • 220 мкФ – 7 сек;
  • 470 мкФ – 10 сек.

Принцип работы УПВЛ

Датчик блока позволяет нити разогреться до определенной температуры, поддерживая уровень напряжения, установленного пользователем (примерно 170 В). Работа лампы в щадящем режиме увеличивает ее срок службы. При этом устройство имеет существенный недостаток. При вышеуказанном напряжении освещение уменьшается примерно на две трети. Специалисты советуют устанавливать более мощные лампы в паре с УПВЛ, чтобы избежать этого нежелательного эффекта.

Защитное устройство обеспечивает плавное включение и выключение элемента за счет того, что напряжение подается постепенно за короткий период. Спираль осветительного прибора в начале пуска имеет сопротивление в 10 раз меньшее, поэтому ток для лампы в 100 Вт составляет примерно 8 А. Защитное действие выражается в том, что фазовый угол растет в период запуска, аналогично разогревается и ее спираль. Напряжение увеличивается в ней за доли секунды от 5 В до 230 В. Это позволяет сгладить скачок тока во время пуска.

Место установки защитного блока

Плавное включение света в квартире достигается при правильном выборе места установки. Защиту для каждого светильника устанавливают в зависимости от его места расположения. Если имеется техническая возможность, то лучше поместить его в полость под люстрой. Достоинство устройства – его компактность. Поэтому оно устанавливается в любом доступном месте рядом с осветительным прибором.

С блоком поставляется подробная инструкция. Поэтому его можно установить самостоятельно, не прибегая к услугам электрика. Если позволяет мощность УПВЛ – возможен монтаж для группы из нескольких ламп. В этом случае лучшее место размещения — распределительная коробка. Если в защитной схеме присутствует осветительный трансформатор для понижения мощности, то блок должен находиться первым по ходу тока. Напряжение 220 В должно первым поступать на него, а далее по цепи на всю сеть освещения.

При монтаже устройства плавного включения света необходимо придерживаться строгих правил:

  1. Доступность для ремонта.
  2. Запрещено заклеивать УПВЛ обоями, закрывать гипсокартоном и заделывать штукатуркой.

Пара ламп и один дроссель

  Обогрев теплицы: виды отопления, пошаговые рекомендации обустройства своими руками (20 Фото & Видео) +Отзывы

Схема с одним дросселем

Стартеров здесь понадобится два, а вот дорогостоящий ПРА вполне можно использовать один. Схема подключения в этом случае будет чуть сложней:

Подсоединяем провод от держателя стартера к одному из разъемов источника света
Второй провод (он будет подлиней) должен проходить от второго держателя стартера к другому концу источника света (лампе)

Обратите внимание, что гнезд у него с обеих сторон два. Оба провода должны попасть в параллельные (одинаковые) гнезда, расположенные с одной стороны
Берем провод и вставляем его вначале в свободное гнездо первой, а затем второй лампы
Во второе гнездо первой подсоединяем провод с подключенной к нему розеткой
Раздвоенный второй конец этого провода подключаем к дросселю
Осталось подключить к следующему стартеру второй источник света

Подсоединяем провод в свободное отверстие гнезда второй лампы
Последним проводом соединяем противоположную сторону второго источника света к дросселю

Установочные работы

На самом деле технология установки диммера не отличается от монтажа обыкновенного выключателя света. 

Если у Вас уже есть готовая штроба, к которой подведены провода от распределительной коробки и светильника, самостоятельно подключить диммер можно следующим образом:

  1. Отключаем электроэнергию в квартире.
  2. Устанавливаем монтажную коробку в углубление.
  3. Закрепляем жилы в соответствующих клеммах корпуса.
  4. Помещаем корпус в штробу.
  5. Откручиваем боковые винтики, чтобы прижимные лапки расперлись в стенках монтажной коробки.
  6. Крепим декоративную рамку, закручиваем гайку и накручиваем колесико — конструкция собрана.
  7. Включаем электроэнергию и проверяем правильность электромонтажных работ.

Вот по такой технологии производится подключение диммера и установка своими руками. Как Вы видите, ничего сложного в данном мероприятии нет, главное правильно выбрать тип ламп и модель устройства! С монтажом запросто справятся даже чайники в электрике, но если возникли какие-то трудности, лучше просмотреть видео инструкцию, предоставленную ниже.

Инструкция по правильной замене клавишного выключателя на светорегулятор

Похожие материалы:

  • Что такое диммируемые светодиодные лампы
  • Как отремонтировать диммер в домашних условиях
  • Схема подключения двухклавишного выключателя

Предыстория.

Светодиодные лампы, которые сейчас появляются почти в каждом доме и учреждении, обещают нам экологичность и очень долгий срок службы, как бы большую экономию.
То есть, если старые добрые лампы накаливания служили нам, или должны были служить 1000 часов, то светодиодные должны работать не менее 20 тысяч часов – в 20 раз больше (отсюда и вытекает их высокая стоимость).

Но человечество напрасно разочаровалось в лампах накаливания. В их недолгом сроке службы виновата не технология, а заговор их же производителей.
Как известно из истории, первый сговор между производителями ламп накаливания состоялся в 1924 году. Они решили, что слишком хорошие лампы – это плохо. Лампа будет долго гореть, и новые будут реже покупать.
Поэтому было решено искусственно занизить срок их службы ещё в процессе изготовления. Уменьшили длину спирали, уменьшили диаметр подводящих медных проводников внутри колбы лампы, которые идут от держателей спирали до контактов патрона.
Всё, лампы стали работать с перекалом, часто перегорать от небольшого перепада напряжения, особенно в момент их включения. Очень часто даже перегорал тоненький медный проводник внутри лампы, а сама спираль умудрялась оставаться целой.
Этот заговор, в свою очередь, не только позволил бизнесменам продавать худший продукт, чтобы больше заработать, но и стал основой всей современной экономики потребления.
Поэтому я очень сильно сомневаюсь в том, что светодиодные лампы, как им положено, отработают свои 20 000 часов. Они так же «летят» ничуть не реже своих накальных собратьев, и если с экологией ещё понятно, то какой либо экономией тут и не пахнет.
Но вернёмся к лампам накаливания и к галогенным лампам.

Хорошо известно, что галогенные лампы и лампы накаливания в основном перегорают в момент их включения, когда нихромовая спираль находится в холодном состоянии и имеет наименьшее активное сопротивление. В этот момент через неё будет протекать максимальный ток, особенно тогда, когда включение лампы происходит на пике синусоидальной волны переменного напряжения.
Но можно намного продлить срок службы такой лампы, если нить накаливания разогревать постепенно, в течении нескольких секунд.

Удаление изоляции с проводки

Для снятия части внешней изоляции кабеля ВВГнг требуется нож. Он должен быть таким острым, что даже неопытный домашний мастер смог бы совершать уверенные надрезы.

Первый разрез делается от конца вдоль оболочки на 3-4 см. После этого одной рукой берутся за пучок высвободившихся оконечностей проводов, а второй – тянут за надрезанную рубашку. Далее она надрывается сама.

Глубина надрыва выполняется таковой, чтобы освобожденные хвостики проводов были максимальной длины, которую позволяют уложить разветвительная коробка, подрозетник или корпус осветительного прибора. Запас сослужит верную службу в дальнейшем при подгорании ослабших контактов.

Надорванная рубашка кабеля выворачивается наизнанку и аккуратно, дабы не повредить изоляцию проводов, обрезается вкруговую.

Жилы легче всего зачищаются, конечно, инструментом для удаления изоляции – стриппером или хотя бы кусачками-бокорезами с прорезями. При отсутствии оных так же, как и ранее используется нож. Допускается применение простых бокорезов. На крайний случай, употребляются кусающие кромки пассатижей.

Снимая с кабеля участок внешней оболочки

важно не порезать изоляцию проводов, а зачищая изоляцию проводов – не повредить металлическую поверхность жил. Легкими движениями инструмента по кругу неглубоко врезаются в изоляцию и стягивают ее

Главное, не прорезать металл проводника, иначе там, где повреждение, он обязательно обломится. Хорошо, ежели сразу, а не после монтажа

Легкими движениями инструмента по кругу неглубоко врезаются в изоляцию и стягивают ее. Главное, не прорезать металл проводника, иначе там, где повреждение, он обязательно обломится. Хорошо, ежели сразу, а не после монтажа.

Размер оголяемого участка определяется способом подключения. Когда это винтовые зажимы клемм коробки, выключателя, люстры или бра, может быть достаточно 0,5-1 см. Для скручивания с проводками светильника потребуется 2-3 см.

Если скрутки располагаются в разветвительной коробке, действует правило, чем больше, тем лучше, особенно без пайки или сварки. Обычно 3-5 см.

При использовании навинчивающихся изолирующих зажимов, зажимных клемм к длине зачистки подходят индивидуально.

Правильная установка выключателя

По исполнению выключатели бывают внутренней и наружной установки. Современные наружные выключатели подходят для крепления на любые поверхности без дополнительных изолирующих подставок. Выключатели внутренние прячутся в круглые гнезда в стене, оборудованные специальными стаканчиками, называемыми подрозетниками.

О том, как установить эту монтажную коробку в бетонную стену или в конструкцию из гипсокартона, подробно написано здесь. Советуем почитать предложенную статью перед началом работ.

Подрозетники – стандартный электромонтажный узел. Они используются также для оборудования розеток, потому так называются. «Подвыключательники» звучало бы не очень.

Правильным считается расположение выключателя, при котором включение происходит нажатием верхней части клавиши, выключение – нижней. Даже невысокорослому человеку это дает возможность отреагировать в экстренной ситуации и оперативно обесточить электроприбор ударом пальцев по клавише сверху вниз.


Располагайте выключатели на стенах так, чтобы их не нужно было «искать, шаря рукой в потемках», и ими легко могли пользоваться все члены семьи

При грамотном подключении на выключатель от разветвительной коробки приходит фазный провод. Прерывать цепь фазного провода, чтобы в отключенном состоянии светильник находился без напряжения – основная задача выключателя.

Следующая фото-подборка представляет процесс подключения наглядно:

Если позволяет конструкция прибора, внутри самого выключателя фазный провод подключается на верхние клеммы, а все отходящие жилы присоединяются к нижним контактам. Это правило применяется для обустройства всякой электроустановки.

Из-за конструктивных особенностей исключение из общих правил составляют проходные и перекрестные выключатели, о которых речь ниже.

Диммеры или светорегуляторы

Экономически выгодно и рационально использовать приборы, создающие плавное включение ламп, а также обеспечивающие процесс регулирования их степени яркости. Диммеры различных моделей могут:

  • Задавать программы работы осветительных приборов;
  • Плавно включать и выключать лампы;
  • Управляться пультом, голосовыми командами или хлопками.

Приобретая данное устройство необходимо сразу определиться с выбором, чтобы знать какие требуются функции, и не покупать дорогостоящий прибор за большие деньги.

Перед установкой диммера необходимо определиться со способом и местом управления осветительными приборами. Для этого надо будет смонтировать электропроводку соответствующего вида.

Схемы подключения могут быть различной степени сложности. В любом случае вначале необходимо отключить напряжение с определённого участка.

На рисунке мы показали самую простую схему подключения. Здесь вместо простого выключателя можно сделать светорегулятор.

Схема подключения диммера в разры питания лампы

Прибор подключается в разрыв L— провода с фазой, а не N — нулевого. Между нулевкой и диммером находится осветительный прибор. Соединение с ним выходит последовательным.

Рисунок (Б) представляет схему с выключателем. Процесс подключения остаётся таким же, но здесь прибавляется простой выключатель. Его обычно устанавливают возле двери в определённый разрыв между фазой и самим диммером. Возле кровати находится светорегулятор, который позволяет управлять освещением лёжа. Когда человек выходит из помещения, свет выключается, а когда входит обратно осуществляется пуск лампы с такой же степенью яркости.

Для того чтобы управлять люстрой или другим осветительным прибором можно взять два диммера, которые будут находиться в разных углах помещения (рис.А). Между собой два прибора подключаются посредством распределительной коробки.

Схема управления лампой накаливания: а — с двумя диммерами, б — с двумя проходными выключателями и диммером

Благодаря такой системе подключения можно регулировать степень яркости с различных мест независимо друг от друга, но проводов надо будет монтировать больше.

Проходные выключатели используются для включения ламп с различных мест в помещении (рис.Б). Также при этом надо включить диммер, в противном случае светильники не будут реагировать на выключатели.

Характеристики диммеров:

  • Диммер экономит электроэнергию всего лишь на 15%, а остальная часть используется регулятором.
  • Приборы имеют большую степень чувствительности к увеличению температуры. Поэтому их нельзя эксплуатировать при температуре выше 27°С.
  • Степень нагрузки не должна быть меньше 40 Вт, так как срок эксплуатации регулятора существенно снижается.
  • Диммеры необходимо использовать только для тех видов устройств, которые рекомендуются производителем и написаны в паспорте.

Схемы подключения

Чтобы плавное зажигание лампочки было эффективным, необходима специальная электросхема. С ее помощью можно понять, как функционирует УПВЛ и каково его внутреннее строение.

Обычно при подсоединении такого прибора используют самые простые схемы на тиристорах. Несколько реже применяется специальная схема с интегрированным симистором. Кроме данных блоков можно использовать полевые транзисторы, которые функционируют аналогично устройствам постепенного включения.

Плавное включение ламп 220 В: схема на тиристоре

Тиристорная схема

Тиристорная схема проста и её нетрудно сделать самостоятельно.

Цепь выпрямительного моста использует лампу в качестве нагрузки и токоограничителя. На плечи выпрямителя устанавливают цепь сдвигающегося типа и тиристор. Установка диодного моста обуславливается спецификацией функционирования тиристора.

После подачи напряжения на схему ток начинает проходить сквозь нить накала и приходит на мост, а электролит тем временем заряжается при помощи резистора. Он начинает открываться при достижении предела напряжения тиристора, после чего сквозь него проходит ток от лампы. В итоге нить из вольфрама разогревается плавно. Время её разогрева напрямую зависит от ёмкости конденсатора и встроенного в схему резистора.

Плавное включение ламп 220 В: схема на симисторе

Прибор на симисторе

В данной схеме меньше компонентов, благодаря применению симистора в качестве силового ключа.

Дроссель, предназначающийся для ликвидации разнообразных помех при открытии силового ключа, из общей сети можно убрать. Поступающий на главный электрод ток ограничивается посредством резистора. Задающая время цепь реализована на ёмкости и резисторе, которые питаются с помощью диода.

Функционирует представленная схема аналогично предыдущей. Конденсатор открывается когда заряжается до величины напряжения открытия симистора, а после сквозь него ток поступает на лампу.

Схема на специализированной микросхеме

Микросхема кр1182пм1

Для создания регулятора плавного зажигания ламп можно использовать специальную микросхему маркировки кр1182пм1.

В такой конструкции сама микросхема выполняет регулировку напряжения на лампе с нитью накала мощностью до 150Вт. Для управления более высокой нагрузкой, большей численностью осветительных приборов синхронно в цепочку управления нужно включить вспомогательный силовой симистор.

Данные устройства способны плавно включать не только лампочки накаливания, но и галогеновые на 220 В. Фазовые регуляторы также устанавливают в электрический инструмент, они плавно запускают якорь мотора, в разы продлевая эксплуатационный срок приборов.

Схема и принцип ее работы

Рассмотрим один из наиболее простых вариантов схемы плавного включения и выключения светодиодов с управлением по плюсовому проводу. Помимо простоты исполнения, данная простейшая схема имеет высокую надежность и невысокую себестоимость. В начальный момент времени при подаче напряжения питания через резистор R2 начинает протекать ток, и заряжается конденсатор С1. Напряжение на конденсаторе не может измениться мгновенно, что способствует плавному открытию транзистора VT1. Нарастающий ток затвора (вывод 1) проходит через R1 и приводит к росту положительного потенциала на стоке полевого транзистора (вывод 2). В результате происходит плавное включение нагрузки из светодиодов.

В момент отключения питания происходит разрыв электрической цепи по «управляющему плюсу». Конденсатор начинает разряжаться, отдавая энергию резисторам R3 и R1. Скорость разряда определяется номиналом резистора R3. Чем больше его сопротивление, тем больше накопленной энергии уйдет в транзистор, а значит, дольше будет длиться процесс затухания.

Для возможности настройки времени полного включения и выключения нагрузки, в схему можно добавить подстроечные резисторы R4 и R5. При этом, для корректности работы, схему рекомендуется использовать с резисторами R2 и R3 небольшого номинала. Любую из схем можно самостоятельно собрать на плате небольшого размера.

Плавное включение ламп накаливания. Алгоритм, схема подключения

Плавное включение продлевает жизнь лампочке, если кратко. Постараюсь кратко объяснить для чего нужно плавное включение. Лампы накаливания по востребованности лидируют на нашем рынке до сих пор.

Основном так происходит из-за низкой цены, но у них есть существенный недостаток — годность, которая держится совсем недолго по сравнению с другими лампочками. Причина тому — быстрое разрушение нити накала во время включения.

Когда происходит включение, ток с определенной интенсивностью поступает на нить накаливания, когда это происходит слишком резко, что невозможно контролировать только нажатием пальца, нить не выдерживает и разрывается. В результате лапочка оказывается нерабочей.

Несколько слов об устройствах для плавного включения

Существуют различные устройства плавного включения ламп (УПВЛ), которые можно купить и установить, не мучаясь. Но сейчас их все чаще применяют для других целей, например для дополнительного освещения автомобиля.

Такое устройство ламп накаливания просто монтируется, для этого понадобятся всего лишь выход устройства 12В и вход на 12В. Использование менее 12В не рекомендуется. Однако купить специально такое устройство для плавного включения ламп только чтобы продлить их срок службы — оказать медвежью услугу самому себе. Здесь разумнее всего обратиться к специально разработанным схемам.

Схема включения.

В наше время придуманы и разработаны специальные схемы, обеспечивающие постепенный ход тока к нити накаливания. Такая схема для плавного включения ламп накаливания осуществляет постепенную подачу напряжения на спираль, растягивая его время на несколько секунд.

Эти устройства помогают продлить срок службы лампочки несколько раз и увеличивают заявленные 1000 еще на несколько тысяч. Новоразработанные методы оптимизации доступны даже для самостоятельной сборки, не требуют какой-то специальной наладки и состоят из небольшого количества деталей.

В этой статье попытаемся рассмотреть, каким образом можно самостоятельно осуществить плавное включение ламп накаливания к сети.

Пошаговый алгоритм одной из схем.

Она работает по определенному принципу.

  • При замыкании выключателя SA1, после чего открывается диод VD1. Вследствие этого лампа начинает гореть в полнакала, поскольку электричество через нее проходит лишь в процессе одного из полупериодов напряжения в сети.
  • Далее конденсатор С1 в процессе второго полупериода заряжается через VD2 и также резистор R1.
  • В тот момент, когда напряжение на конденсаторе доходит до величины, достаточной для срабатывания тиристора VS1, тот раскрывается, и с этого момента лампа начинает выдавать свою максимальную яркость.

Эту схему можно использовать во многих видах техники, приходящей в рабочее состояние посредством электрического тока (например, нагревателей). При этом его ни в коем случае не употребляют для запуска электродвигателей или трансформаторов — то есть приборов, имеющих нагрузки индуктивного характера.

Детали для сборки схемы.

Нам понадобятся:

  • Диод VD1 — подойдет любой выпрямительный, способный выдержать обратное максимальное напряжение не менее чем 350 В, а также средний прямой ток на 250 мА (указано для лампы в 100 Вт). При использование лампы с большей мощностью разумно выбрать диод, имеющий большее допустимое значение прямого тока.
  • Необходимо проследить, чтобы параметры тиристора VS1 являлись сходными. Также в схеме допустимо использование тиристоров КУ201К, Л. Тогда диод VD2 нужно учитывать на мощность тока не менее чем в 350 В и средний ток, мощностью не менее 20 мА.
  • Конденсатор С1 подойдет любой из электролитических, таких как К50-3 — К50-6. Резистор R1 — будет уместен двухваттный, к примеру МЛТ-2. Также возможно употреблять резисторы малой мощности, но тогда их должно быть несколько и они должны быть соединены параллельно или последовательно.

Рекомендации к указанной схеме.

Указанная конструкция, как было уже замечено, не требует отладки. Для оптимизации процесса можно соблюсти следующие рекомендации:

  • Когда лампа регулярно горит вполнакала, то можно слегка снизить сопротивление резистора R1. Он же отвечает за интенсивность свечения: если нужно, чтобы свет был более мягкий или интенсивный — это регулируется через R1.
  • Если длительность срабатывания указанного устройства будет недостаточной, то рекомендуется повысить емкость конденсатора С1.
  • Не будет страшно, если использовать параллельно несколько соединенных конденсаторов.

Экспериментируя и тестирую схемы в целях электробезопасности рекомендуется подключать ее к сети в 220В через временный разделительный трансформатор. Нужно проследить, чтобы его мощность была не менее мощности лампы.

И последний совет. Перед началом сборки устройства необходимо подсчитать свой бюджет и ответить себе на вопрос: что обойдется дешевле — само устройство или замена периодически перегорающих ламп накаливания.

Тиристорные устройства.

В радио- и техлитературе много раз описывались схемы тиристорные устройств, позволяющие сделать включение лампы плавным. Но в них встречаются несколько существенных недостатков, и их достаточно дабы не рекомендовать их использование:

  • эти устройства при подключении создают серьезные помехи в сети, в результате чего постепенное включение ламп накаливания будет достигнуто, но зато пострадает вся остальная сеть
  • при их применении интенсивность свечения лампы получается недостаточной, мерцание ламп делается заметно, что быстро утомляет глаза всех, кто находится в помещении, освещенном лампами накаливания, а это вредно для сетчатки

Перечисленные недочеты возникают вследствие того, что тиристорная схема включения управляющий электрод тиристора включает поочередно с лампой. Чтобы произошло открывание тиристора, в цепи его управляющего электрода нужно подавать достаточно сильное напряжение.

Иначе говоря, электричество просто «отбирается» от самой лампы. Более того, данная схема включения и тиристор коммутируется с задержкой, а не когда сетевое напряжение проходит через ноль. Это и ведет к возникновению электропомех и миганию лампы.

Впрочем, все эти недочеты возможно устранить. Для этого необходимо перейти к схеме двухполюсника от двухполюсника. Опыт говорит о том, что четырехполюсник вставить в имеющуюся электросеть ненамного сложнее, чем двухполюсник. Существует ряд устройств данного типа, которые за пару лет эксплуатирования ни разу не сломались.

Уникальная статья на нашем сайте — electricity220.ru.

Плавное включение ламп накаливания на 220В

В век энергосберегающих и светодиодных ламп многие подзабыли уже, как пользовались простейшими лампами накаливания для освещения жилья. Но есть еще те, кто не отказался от такого вида световых приборов. Конечно, они не столь высокотехнологичны и экономичны как КЛЛ или LED, однако добиться увеличения их долговечности и уменьшения энергопотребления все же можно. Возможен вариант включения в схему устройства плавного включения ламп накаливания (УПВЛ) или установка диммера.

Проблема в том, что при щелчке выключателя (резкой подаче напряжения) нить накаливания сильно изнашивается, т. к. сопротивление остывшей спирали значительно ниже, а значит и ток, поступающий на нее в момент нагрева, будет высоким (до 8 ампер). Попробуем разобраться, каков принцип работы таких устройств, помогающих прибавить жизни лампе накаливания, и как они устроены.

Принцип работы

Блок питания

Для меньшего износа нити накаливания необходимо сгладить скачок, т. е. обеспечить плавное включение и выключение ламп накаливания. Значит, нужно оптимальное соотношение температуры спирали и напряжения, что приведет к нормализации режима и, как следствие, сохранению работоспособности светового прибора на более долгий срок. Помочь может схема плавного включения ламп накаливания, если конкретно – нужно использовать специальный блок питания. В течение короткого времени нить накала разогреется до необходимого предела как температуры, так и напряжения, установленного человеком.

Блок питания для плавного запуска

Если выставить уровень питания на 180 В, то, естественно, сила светового потока уменьшится на две трети, но при установке более мощных потребителей возможно добиться нужного уровня освещенности, обеспечивая плавный пуск ламп накаливания, при этом будет и экономия энергии, и продление срока эксплуатации самого светового прибора.

При приобретении такого блока плавного включения лампочек с нитью накаливания нужно уточнить, устойчиво ли устройство к высоким скачкам напряжения в сети. В идеале предельный запас по этому параметру должен превышать 25–30 %. И чем выше уровень этого показателя, тем больших размеров будет устройство. Необходимо учитывать этот факт, ведь блок плавного включения нужно где-то расположить.

Устройство плавного включения

Алгоритм работы устройства плавного включения лампы накаливания 220 В тот же, что и у блока питания, но УПВЛ имеет значительно меньшие размеры, благодаря чему его можно поместить и под колпак потолочного светильника, и непосредственно за выключатель (в тот же подрозетник), а также в соединительную коробку.

Подключать это устройство к сети 220 В нужно последовательно, соединив на фазный провод. А при условии, что напряжение на лампу подается в 12 В или 24 В, УПВЛ требуется его последовательное включение в схему до понижающего трансформатора.

Схема и внешний вид устройства плавного запуска лампы

Диммирование

Широко распространено использование в быту светорегуляторов или диммеров. Эти устройства также монтируются в схемы включения ламп накаливания и управляют уровнем подачи напряжения на светильник либо механическим (посредством вращения ручки), либо автоматическим способом. В цепь они чаще всего введены на место штатного выключателя (хотя есть более сложные модели, устанавливающиеся и на ввод напряжения в квартиру).

Самые простейшие диммеры – с поворотным механизмом регулировки. В таком устройстве возможна регулировка подачи от нуля до максимального напряжения в сети. Существуют такие приборы с дистанционным, сенсорным, звуковым и автоматическим (при помощи таймера) управлением.

Собственноручное изготовление УПВЛ

Конечно, все подобные устройства для плавного включения ламп накаливания легко приобрести в любом магазине электротехники, но для кого-то будет интереснее и познавательнее собрать его своими руками. Это вполне возможно и не потребует огромных знаний физики и электроники. Наиболее простая схема включения УПВЛ – на основе симметричных триодных тиристоров (симисторов). Также несложны в изготовлении устройства на основе специализированной микросхемы.

Схема на основе симистора

Схема УПВЛ с применением симистора

Такая схема прибора для плавного включения ламп накаливания содержит мало элементов благодаря тому, что силовым ключом в ней выступает симистор (к примеру, КУ208Г). В ней хотя и желательно, но не принципиально присутствие дросселя (в отличие от более сложной схемы на основе простого тиристора). Резистором R1 (на схеме выше) обеспечивается ограничение тока на симистор. Время накала задается цепочкой из резистора R2 и конденсатора в 500 мкФ, питание на которые идет от диода.

Когда напряжение в конденсаторе достигает уровня открытия симистора, ток проходит через него, производя запуск потребителя (источника света). Таким образом, создаются условия для постепенного розжига нити накаливания, т. е. плавное включение света. В момент отключения питания происходит медленный разряд конденсатора, в результате чего плавно выключается лампа.

На основе микросхемы

Разработанная для изготовления различных регуляторов микросхема КР1182ПМ1 как нельзя лучше подходит для сборки своими руками устройства плавного включения и выключения ламп накаливания. В случае использования такой схемы практически никаких усилий прилагать не придется, т. к. КР1182ПМ1 будет сама регулировать плавную подачу напряжения на осветительный прибор до 150 Вт. Если же мощность потребителей выше, в схему включается симистор. Неплохо подойдет для этой цели ВТА 16-600.

УПВЛ с использованием микросхемы КР1182ПМ1

Имеет смысл использование подобных устройств не только с лампочками накаливания, но и с галогенными лампами на 220 В. Допускается также подключение к электроинструменту для более плавного раскручивания ротора. А вот с лампами дневного света, как и с энергосберегающими (КЛЛ), использование УПВЛ не допускается. В их схеме подключения подобное устройство присутствует. Также не нужно устройство плавного включения и при монтаже светодиодов – потребность в нем у LED-ламп отсутствует по причине того, что нити накала в них нет, независимо от того, 24-вольтовый светильник, на 220 или 12 вольт.

Устанавливать или нет?

Кто-то скажет, что раньше жили без подобных устройств и даже не думали о подобном, и все было в порядке. Но ведь раньше и об экономии как-то не задумывались.

Конечно, возникает много вопросов по поводу УПВЛ. Стоит или нет тратить время и деньги на установку или изготовление своими руками подобного устройства, будет ли какая-либо экономия, а если да, то через какое время прибор оправдает свою покупку? Здесь каждый решает сам. Но то, что значительно экономится электроэнергия, и к тому же срок службы ламп при использовании УПВЛ увеличивается многократно – доказанный временем факт. А потому, если есть возможность установить подобное устройство, то нужно это сделать.

Плавное включение ламп накаливания (cхемы, устройство)

Лампы накаливания светят около 1000 часов, но если их часто включают и выключают – срок службы становится еще ниже. Продлить срок службы можно, установив устройство плавного включения ламп накаливания, а описанный метод подходит и для защиты галогеновых ламп.

Причины преждевременного перегорания

Лампы накаливания – старый источник света, его конструкция предельно проста – в герметичной стеклянной колбе установлена спираль из вольфрама, когда через нее течет ток, она нагревается и начинает светиться.

Однако такая простота не значит долговечность и надежность. Их срок службы порядка 1000 часов, а часто и того меньше. Причиной перегорания могут стать:

  • скачки напряжения в питающей сети;
  • частые включения и выключения;
  • другие причины типа перепадов температуры, механических повреждений и вибраций.

В этой статье мы рассмотрим, как минимизировать вред от частых включений лампы. Когда лампочка выключена, ее спираль холодная. Ее сопротивление в 10 раз ниже, чем у горячей спирали. Основным режимом работы является горячее состояние лампы. Из закона Ома известно, что ток зависит от сопротивления, чем оно ниже, тем выше ток.

Когда вы включаете лампу, через холодную спираль протекает большой ток, но по мере ее нагрева он начинает снижаться. Первоначальный высокий ток оказывает разрушительное воздействие на спираль. Для того чтобы этого избежать нужно организовать плавное включение ламп накаливания.

Диммер для плавного включения

Принцип работы

Чтобы ограничить ток включения лампы накаливания можно понизить начальное напряжение и постепенно повысить его до номинальной величины. Для этого используют устройство плавного включения ламп накаливания.

Прибор включается в разрыв питающего провода между выключателем и светильником. Когда вы подаете напряжение, в первый момент времени оно близко к нулю, схема плавного розжига постепенно повышает его. Обычно они собраны по схеме фазоимпульсного регулятора на тиристорах, симисторе или полевых транзисторах.

Скорость нарастания напряжения зависит от схемотехники устройства, обычно 2–3 секунды от 0 до 220 В.

Основной характеристикой блока защиты является допустимая мощность подключенной нагрузки. Обычно лежит в пределах 100–1500 Вт.

к содержанию ↑

Готовые решения

Блоки защиты для светильников продаются практически в каждом магазине бытовых и электротоваров. Такой блок может называться иначе, чем было сказано выше, например: «Устройство защиты галогеновых ламп и ламп накаливания» или другое подобное название. Как уже отмечалось, при покупке, главное, на что следует обратить внимание – это мощность блока розжига.

Широкую линейку таких устройств выпускают под торговой маркой «Гранит».

Предложение от “Гранит”

Есть и миниатюрные блоки Navigator их можно удобно спрятать в распредкоробку, если она не набита проводами доверху. Также поместится внутрь большинства светильников, например, в основание настольной лампы, или между потолком и люстрой, если есть такая возможность.

Компактный блок защитык содержанию ↑

Схемы

Так как устройство плавного включения ламп накаливания и галогенных ламп не представляет особой сложности с точки зрения схемотехники, его можно собрать своими руками. Процесс сборки может быть осуществлен:

  • навесным монтажом;
  • на макетной плате;
  • на печатной плате.

И зависит от ваших навыков и возможностей самым надежным будет вариант на печатной плате, от навесного монтажа в этом случае лучше держаться подальше, если вы не владеете особенностями такого монтажа в цепях 220 В.

Плавное включение ламп 220 В: схема на тиристоре

Схема первая представлена на рисунке ниже. Основным ее функциональным элементом является тиристор, включенный в плечах диодного моста. Номиналы всех элементов подписаны. Если использовать ее в качестве плавного розжига для торшера, настольной лампы или другого переносного светильника – удобно заключить ее в корпус, подойдет распредкоробка для наружного монтажа. На выходе установить розетку для подключения светильника. По сути – это обычный диммер, и плавного пуска как такового здесь нет. Вы просто поворачиваете ручку потенциометра, плавно увеличивая напряжение на лампе. Кстати, такая приставка подойдет и для регулировки мощности паяльника или других электроприборов (плиты, коллекторного двигателя и т. д.).

Вариант реализации схемы

Плавное включение ламп 220 В: схема на симисторе

Можно уменьшить количество деталей и собрать такую же схему, которая установлена в фирменные блоки защиты. Она изображена на рисунке ниже.

Схема с симистором

Чем больше постоянная времени R2С1 цепочки, тем дольше происходит розжиг. Для увеличения времени нужно увеличить емкость C1, обратите внимание – это полярный или электролитический конденсатор. Конденсатор C2 должен выдерживать напряжение не менее 400 В – это неполярный конденсатор.

Чтобы увеличить мощность подключенных ламп – измените симистор VS1 на любой подходящий по току к вашей нагрузке.

Дроссель L1 – это фильтрующий элемент, он нужен для уменьшения помех в сети от включения симистора. Его использовать необязательно, на работу схемы не влияет.

Когда включается SA1 (выключатель), ток начинает течь через лампу, дроссель и конденсатор С2. За счет реактивного сопротивления конденсатора, ток через лампу течет маленький. Когда напряжение до которого зарядится С1 достигнет порога открытия симистора – ток потечет через него, лампа включится в полный накал.

Плавное включение ламп 220 В: схема на ИМС КР1182ПМ1

Есть вариант и плавного включения с помощью микросхемы КР1182ПМ1, она обеспечивает плавный пуск ламп и другой нагрузки мощностью до 150 Вт. Подробное описание этой микросхемы вы найдете здесь:

Схема

а ниже изображена схема устройства, она предельно проста:

Простая схема

Или вот ее модернизированный вариант для включения мощной нагрузки:

Проработанная схема

Дополнительно установлен тиристор BTA 16–600, он рассчитан на ток до 16 А и напряжение до 600 В, это видно из маркировки, но можно взять и любой другой. Таким образом, вы можете включать нагрузку мощностью до 3,5 кВт.

к содержанию ↑

Плавное включение ламп 12 В

Часто для точечных светильников используются лампы с напряжением 12 В. Для преобразования 220 в 12 В в настоящее время используют электронные трансформаторы. Тогда устройство плавного включения нужно подключать в разрыв питающего провода электронного трансформатора.

Плавное включение ламп в автомобиле

Если стоит задача организовать плавное включение автомобильных ламп 12 V, то здесь такие схемы не подойдут. В электроцепи автомобиля используется напряжение 24 или 12 V постоянного тока. Здесь можно применить линейные или импульсные схемы так называемые ШИМ-регуляторы.

Простейшим вариантом будет использование двухступенчатой схемы включения.

Двухступенчатая схема включение

Эта схема устанавливается параллельно включаемым лампам. Сначала ток течет через резистор, а лампы горят тускло. Через небольшое время, порядка полсекунды, включается реле, и ток течет через его силовые контакты, они в свою очередь шунтируют резистор и лампы зажигаются на полную яркость.

Номинал резистора от 0,1 до 0,5 Ом, он должен быть большой мощности – около 5 Вт, например, в керамическом корпусе.

Второй вариант – собрать импульсный блок для плавного розжига. Его схема сложнее:

Более сложный для реализации вариант

Список компонентов:

  1. Резисторы:
  • R1=2 k.
  • R2=36 k.
  • R3=0,22.
  • R4=180.
  • R5, 7=2,7 k.
  • R6=1 M.
  1. Конденсаторы:
  • C1=100 n.
  • C2=22×25 B.
  • C3=1500 p.
  • C4=22×50 B.
  • C5=2 мкф.
  1. Микросхема MC34063A или МС34063А, или КР1156ЕУ5.
  2. Полевой транзистор IRF1405 (или любой N-канальный с похожими параметрами: IRF3205, IRF3808, IRFP4004, IRFP3206, IRFP3077).
  3. Дроссель 100 мкГн, на ток не менее 500 мА.
  4. Светодиоды.
  5. Диоды 1N5819.

Время включения регулируется цепью R6C5. Увеличьте емкость, чтобы увеличить время.

Если вам сложно сделать такую схему, можете купить готовую сборку, типа автоконтроллера ЭКСЭ-2А-1 (25 А/IP54) или любой другой подходящий. В конкретно этой модели есть 2 канала, под каждую фару, 8 программ работы. Он основан на микроконтроллере PIC.

Готовое решение без лишних хлопотк содержанию ↑

Подводим итоги

Плавное включение галогенных ламп и ламп накаливания значительно продлевает их срок службы – до 5–7 раз. С другой стороны – добавление в схему лишних элементов снижает ее надежность. В любом случае стоит попробовать использовать блоки плавного розжига независимо идет речь о лампах для домашних светильников или автомобильных.

Предыдущая

НакаливанияЛампа накаливания и её особенности

Следующая

НакаливанияКакой световой поток выдают лампы накаливания

Спасибо, помогло!Не помогло1

лампы накаливания | Лампы накаливания Philips

| Philips

Теперь вы посещаете веб-сайт Philips, посвященный освещению. Вам доступна локализованная версия.

Продолжать

Сортировать по:

По умолчанию A-ZZ-ANewest

{{/ if_checkFilterType}} {{#if_checkFilterType displayType «checkbox»}}

{{показать имя}}

{{#each filterKeys}} {{/каждый}}

b2b-li.d77v2-фильтры-развернуть

b2b-li.d77v2-фильтры-коллапс

{{/ if_checkFilterType}}

Закрывать Показать фильтры

Показать больше фильтров

Показать меньше фильтров

Выбранные критерии фильтрации не дали никаких результатов.Пожалуйста, настройте свои фильтры.

{{/если}} {{#if valueLadder}}

{{valueLadder.label}}

{{/если}} {{название}} {{totalProducts}} {{#if_compare 1 totalProducts}} продукты {{еще}} продукт {{/ if_compare}} {{#if wow}} {{ух ты}} {{/если}}

Сортировать по:

По умолчанию A-ZZ-ANewest

Выбранные критерии фильтрации не дали никаких результатов.Пожалуйста, настройте свои фильтры.

  • Отметьте продукт, чтобы добавить

  • Отметьте продукт, чтобы добавить

  • Отметьте продукт, чтобы добавить

Отметьте продукт, чтобы добавить

© 2018-2022 Сигнифай Холдинг.Все права защищены.

Томас Эдисон демонстрирует лампу накаливания

Во время первой публичной демонстрации своей лампы накаливания американский изобретатель Томас Алва Эдисон освещает улицу в Менло-Парке, штат Нью-Джерси. Железнодорожная компания Пенсильвании отправила специальные поезда в Менло-Парк в день демонстрации в ответ на общественный энтузиазм по поводу этого события.

Хотя первая лампа накаливания была произведена 40 годами ранее, ни один изобретатель не смог придумать практичный дизайн, пока Эдисон не принял эту задачу в конце 1870-х годов. После бесчисленных испытаний он разработал высокопрочную углеродную нить накала, которая непрерывно горела в течение нескольких часов, и электрический генератор, достаточно сложный, чтобы питать большую систему освещения.

Эдисон родился в Милане, штат Огайо, в 1847 году. Он мало получил формальное образование, что было обычным для большинства американцев в то время.В раннем возрасте у него развились серьезные проблемы со слухом, и эта инвалидность послужила мотивацией для многих его изобретений. В 16 лет он устроился на работу телеграфистом и вскоре посвятил большую часть своей энергии и естественной изобретательности совершенствованию самой телеграфной системы. К 1869 году он постоянно занимался изобретением, а в 1876 году перешел в лабораторию и механический цех в Менло-Парке, штат Нью-Джерси.

Эксперименты Эдисона руководствовались его замечательной интуицией, но он также позаботился о том, чтобы нанять помощников, которые обеспечили бы математические и технические знания, которых ему не хватало.В Менло-парке Эдисон продолжил свою работу над телеграфом, а в 1877 году он наткнулся на одно из своих великих изобретений — фонограф — во время работы над способом записи телефонных разговоров. Публичные демонстрации фонографа сделали изобретателя-янки всемирно известным, и его окрестили «Волшебником Менло-Парка».

Хотя открытие способа записи и воспроизведения звука обеспечило ему место в анналах истории, фонограф был лишь первым из нескольких творений Эдисона, которые изменили жизнь конца 19 века.Среди других заметных изобретений Эдисон и его помощники разработали первую практичную лампу накаливания в 1879 году и предшественницу кинокамеры и проектора в конце 1880-х годов. В 1887 году он открыл первую в мире промышленную исследовательскую лабораторию в Вест-Ориндж, штат Нью-Джерси, где нанял десятки рабочих для систематического исследования заданного предмета.

Возможно, его наибольший вклад в современный индустриальный мир внесла работа в области электричества. Он разработал полную систему распределения электроэнергии для света и энергии, построил первую в мире электростанцию ​​в Нью-Йорке и изобрел щелочную батарею, первую электрическую железную дорогу и множество других изобретений, которые легли в основу современного электрического мира. .Один из самых плодовитых изобретателей в истории, он продолжал работать до 80 лет и за свою жизнь получил 1093 патента. Он умер в 1931 году в возрасте 84 лет.

Учебник по микроскопии молекулярных выражений: физика света и цвета


Интерактивные учебные пособия
Нити накаливания лампы

Почти каждый источник света зависит, на фундаментальном уровне, от выделения энергии атомами, которые каким-либо образом были возбуждены.Стандартные лампы накаливания, заимствованные непосредственно из ранних моделей 1800-х годов, теперь обычно используют вольфрамовую нить в атмосфере инертного газа и излучают свет за счет резистивного эффекта, который возникает, когда температура нити накаливания увеличивается при пропускании электрического тока. Это интерактивное руководство демонстрирует субатомную активность в проводящей нити накаливания лампы накаливания, которая приводит к сопротивлению току и, в конечном итоге, к испусканию фотонов инфракрасного и видимого света.

После инициализации в обучающем окне отображается спиральная нить накала, аналогичная той, что используется в обычной лампе накаливания или лампочке. Ниже спиральной нити накала представлен сильно увеличенный продольный разрез нити накала, иллюстрирующий идеализированные детали атомов, составляющих проводящий материал. Чтобы функционировать как источник света в лампе, концы спиральной нити накала должны быть подключены к противоположным сторонам (положительной и отрицательной) электрической цепи для подачи энергии.При достаточном напряжении, приложенном к цепи, ток будет течь в виде массового движения свободных электронов от отрицательной стороны цепи к положительной. Учебное пособие позволяет посетителю произвести этот эффект, перемещая ползунок Voltage из его начального левого положения (ноль вольт) вправо, что приведет к тому, что нить накала будет излучать свет. Эмиссия увеличивается по мере того, как ползунок перемещается дальше вправо (максимум до 12 вольт), функционируя аналогично переключателю диммера домашних ламп.В реальной лампе накаливания нить накаливания сильно нагревается из-за сопротивления движению электронов, и излучаемый свет сопровождается выделением значительного количества тепла.

Атомная структура материала нити представлена ​​на диаграмме поперечного сечения шарами бронзового цвета, причем более крупные версии иллюстрируют атомные ядра проводящего металла и расположены в правильном геометрическом узоре, типичном для структурированной твердой атомной решетки.Быстро движущиеся более мелкие частицы представляют собой электроны внешних атомных энергетических уровней, которые свободно перемещаются в проводящих металлических материалах. Эти свободные электроны характерны для проводников и обычно беспорядочно перемещаются от одного атома к другому. Когда к системе прикладывается электрический потенциал (напряжение), часть свободных электронов перемещается от одного полюса нити к другому (слева направо в учебнике). Массовое движение свободных электронов под приложенным потенциалом представляет собой протекание тока и представлено в учебном пособии желтыми электронами, движущимися через проволочную нить.Рядом с ползунком Voltage находится прямоугольное желтое поле, которое отображает приблизительную цветовую температуру света, излучаемого нитью накала.

Обратите внимание, что увеличение напряжения с помощью ползунка соответствует большему количеству электронов, движущихся или «протекающих» через проводник. В процессе движения по нити протекающие электроны сталкиваются с другими связанными электронами атомов металла, а в некоторых случаях и с ядрами.Часть столкновений приводит к возбуждению металлических электронов на более высокие энергетические уровни, что может вызвать излучение света при возврате на более низкий стабильный энергетический уровень. Непрерывные столкновения между электронами создают сопротивление потоку подвижных электронов, и атомы нити накала вынуждены колебаться за счет взаимодействия с движущимися электронами. Колебательная энергия приводит к выделению значительного количества тепла, и характерной чертой резистивных ламп накаливания является то, что только около десяти процентов их подводимой энергии превращается в свет, а большая часть остальной части выделяется в виде тепла (инфракрасное электромагнитное излучение). ).Электроны могут легче проходить через более крупную нить, и, следовательно, сопротивление становится выше по мере уменьшения диаметра нити накала, если подается такая же энергия.

Основной механизм, который приводит к высвобождению фотонов света, аналогичен для большинства типов источников света и включает возбуждение электронов с более низкого энергетического уровня на более высокий уровень с последующим высвобождением избыточной энергии, когда возбужденный электрон возвращается на свой исходное ( основной уровень ) энергетическое состояние.Основное различие в источниках света заключается в процессе возбуждения. Для обычных ламп накаливания возбуждение зависит от нагрева и колебательного движения, которое может временно возбуждать связанные электроны до более высоких уровней энергии. Хотя большая часть энергии, выделяемой металлической нитью, находится в форме тепла и инфракрасного света, если ее нагреть до достаточно высокой температуры, также будут производиться волны видимого света. Энергия излучаемого света и, следовательно, его длина волны и цветовая температура зависят от конкретных уровней энергии атомов, которые участвуют в начальном возбуждении и последующем высвобождении фотонов.Для получения достаточного количества видимого света для использования типичная нить накала лампы должна быть нагрета до чрезвычайно высоких температур (более 2000 градусов по Цельсию), и только несколько обычных материалов могут быть использованы без быстрого плавления или испарения. Вольфрам имеет почти идеальные свойства для этого применения и является наиболее часто используемым металлом для производства ламп накаливания.

Соавторы

Мэтью Дж. Парри-Хилл , Томас Дж.Fellers и Майкл В. Дэвидсон — Национальная лаборатория сильного магнитного поля, 1800 г. Ист. Пол Дирак, доктор философии, Государственный университет Флориды, Таллахасси, Флорида, 32310.


НАЗАД К ИСТОЧНИКАМ ВИДИМОГО СВЕТА

НАЗАД К ЦВЕТОВОЙ ТЕМПЕРАТУРЕ

Вопросы или комментарии? Отправить нам письмо.
© 1998-2021, автор — Майкл В. Дэвидсон и Государственный университет Флориды.Все права защищены. Никакие изображения, графика, сценарии или апплеты не могут быть воспроизведены или использованы каким-либо образом без разрешения правообладателей. Использование этого веб-сайта означает, что вы соглашаетесь со всеми юридическими положениями и условиями, изложенными владельцами.
Этот веб-сайт поддерживается командой

Graphics & Web Programming Team
в сотрудничестве с оптической микроскопией в Национальной лаборатории сильного магнитного поля
.
Последнее изменение: суббота, 27 февраля 2016 г., 14:22
Количество обращений с 7 марта 2003 г .: 44826
Для получения дополнительной информации о производителях микроскопов

используйте кнопки ниже для перехода на их веб-сайты:

светодиодов Осторожно! Возрождение лампы накаливания

Лампа накаливания, впервые реализованная Томасом Эдисоном в 1879 году, была выдающимся изобретением для своего времени. Эдисон обнаружил, что когда электрический ток пропускается через углеродную нить, нить накаляется или накаляется. Лампа накаливания была усовершенствована в течение следующих трех четвертей века за счет использования различных материалов накаливания и добавления инертного газа внутрь внешней оболочки. Ее массово производили сотни миллионов людей в бесконечном множестве форм, размеров и мощности, но основная технология ламп накаливания практически не изменилась.

Рис. 1. Характеристики ранних гибридных галогенных ламп.

В 1959 году была представлена ​​первая галогенная лампа накаливания. Когда вольфрамовая нить горит, небольшое количество вольфрама испаряется с нити на стенку лампы. В конце концов, на стенку колбы откладывается достаточно вольфрама, который заметно почернеет, и лампа выйдет из строя. В галогенной осветительной технике газообразный галоген внутри колбы удаляет вольфрам, который откладывается на стенках колбы. Эта очистка от вольфрама называется «галогенным циклом».Добавление газообразного галогена позволяет нити накала работать при высокой температуре, создавая более яркий свет. Поскольку галогенный цикл предотвращает почернение лампы, срок ее службы увеличивается. Хотя галогенная лампа накаливания была ярче, это не было значительным изменением в технологии лампы накаливания. Электрический ток по-прежнему используется для нагрева нити до температуры, при которой возникает свет.

В 1990 году была представлена ​​галогенная лампа накаливания, в которой использовалась новая технология.Оптическое покрытие, отражающее инфракрасное (ИК) излучение, пропускающее видимый свет, называемое горячим зеркалом, было нанесено на внешнюю поверхность внутренней кварцевой оболочки галогенной лампы накаливания. Это горячее зеркальное покрытие отражает часть тепла обратно к нити накала, где оно повторно нагревает нить. Эта рециркуляция бывшего отработанного тепла позволяет нити накаливания достигать нужной температуры с меньшим потреблением электроэнергии по сравнению с галогенной лампой накаливания без покрытия (рис. 1). Эти первые «гибридные» галогенные лампы накаливания достигли эффективности более 18 LpW (люмен на ватт) для лампы мощностью 70 Вт.Это дало 70-ваттной гибридной галогенной лампе накаливания такой же световой поток, что и 100-ваттная лампа накаливания.

Рис. 2. Применяя закон Бартоломея, график показывает фактический выход LpW и прогнозируемые результаты выхода LpW (с течением времени).

Гибридная галогенная лампа накаливания — это более энергоэффективная прямая замена лампы накаливания. Он имеет все те же характеристики, что и лампа накаливания. Цвет может быть от теплого белого до холодного белого.Гибридная галогенная лампа накаливания излучает непрерывный полный спектр с индексом цветопередачи (CRI)> 97%. Его можно затемнить обычными диммерами. Его можно многократно включать и выключать без ущерба для срока службы лампы, что позволяет использовать его с датчиками присутствия, которые обеспечивают освещение при срабатывании триггера. Гибридная галогенная лампа накаливания не содержит ртути или других токсичных веществ, поэтому соответствует требованиям RoHS.

С момента своего появления в 1990 году гибридная галогенная лампа накаливания продолжала улучшаться в LpW, а стоимость горячего зеркального покрытия снизилась.Скорость улучшения LpW и снижение стоимости оптического покрытия происходили по повторяющейся схеме, которая называется законом Бартоломея. Подобно теперь известному закону Мура, закон Бартоломея гласит: «Каждые 4 года скорость нанесения ИК-покрытий на галогенные лампы удваивается, а производительность горелки с покрытием (люмен на ватт) увеличивается на 20%». Улучшение LpW в гибридной галогенной лампе накаливания показано на графике на рисунке 2.

1,5X на рисунке 2 — это гибридная галогенная лампа мощностью 70 Вт, которая равна светоотдаче 100-ваттной лампы накаливания (18 ЛпВт). 2.X на рис. 2 — это гибридная галогенная лампа накаливания мощностью 50 Вт, которая имеет такой же световой поток, как лампа накаливания мощностью 100 Вт (33 ЛпВт). Эта 2-кратная гибридная галогенная лампа накаливания проходила ограниченные испытания в 2012 году и была запущена для коммерциализации компанией Venture Lighting International (VLI) в 2013 году. 3-кратное увеличение на рисунке 2 представляет лабораторные результаты, продемонстрированные VLI и DSI (45LpW).

Рисунок 3. Сравнение КПД лампочек.

Лампа накаливания вырабатывает 8% энергии в видимом спектре и 92% энергии за пределами видимого спектра в виде тепла. На рисунке 3 показано, как эффективность, выраженная в LpW, увеличивается с увеличением доли рециркулируемой тепловой энергии. Обратите внимание, что по мере продвижения вверх по кривой эффективности небольшой выигрыш в возвращаемой энергии дает пропорционально больший выигрыш в эффективности. Закон Бартоломея предсказывает, что к 2018 году эффективность гибридной галогенной лампы накаливания превысит эффективность нынешних компактных люминесцентных ламп (CFL) и аналогичных светодиодов (LED), представленных на рынке к 2023 году.

Одним из ключевых факторов, способствующих повышению эффективности гибридной галогенной лампы накаливания, является работа, которая проводится для увеличения количества тепла, возвращаемого в нить накаливания. Это увеличение количества рециркулируемого тепла является результатом разработок Deposition Sciences, Inc., которые увеличили отражение инфракрасного излучения от тонкопленочного покрытия, нанесенного на галогеновую капсулу. На рис. 4 показана эволюция дизайна гибридного галогенового покрытия и характеристик покрытия в DSI.

Каждый прогресс в тонкопленочном покрытии увеличивал инфракрасное отражение тонкопленочного покрытия, тем самым увеличивая эффективность гибридных галогенных ламп накаливания с 1,5X до 2X, а в последнее время до 3X.

Рис. 4. Эволюция конструкции и характеристик гибридного галогенового покрытия.

Лампа накаливания была коммерциализирована Томасом Эдисоном более 133 лет назад. На протяжении всего этого периода это был световой выбор для большинства промышленно развитых стран. Лампа накаливания (похожая на гибридную галогеновую лампу, о которой говорилось ранее) излучает свет от теплого белого до холодного белого.Они оба излучают непрерывный полный спектр с индексом цветопередачи> 97%, подходят к одному и тому же разъему и могут регулироваться обычными диммерами. Лампу накаливания и гибридную галогенную лампу можно включать и выключать много раз без ущерба для срока службы лампы, что позволяет использовать их с датчиками присутствия. И лампы накаливания, и гибридные галогенные лампы не содержат ртути или других токсичных веществ, что делает их совместимыми с RoHS. Однако недостатком лампы накаливания является ее недостаточная энергоэффективность.Новая технология гибридных галогенных ламп накаливания устранила этот недостаток — 1,5X присутствует на рынке, 2X выходит на рынок, 3X было продемонстрировано в лаборатории, а 4X находится в разработке.

Потребовалось 110 лет, чтобы эффективность лампы накаливания достигла 18 LpW, и всего 21 год, чтобы повысить эффективность до 45 LpW с помощью гибридной технологии. Лампа накаливания не погасла; на самом деле она жива и здорова. Для получения дополнительной информации щелкните здесь


Дополнительная информация от SAE Media Group

Журнал «Световые технологии»

Эта статья впервые появилась в выпуске журнала «Световые технологии » за январь 2013 года.

Читать статьи в этом выпуске здесь.

Другие статьи из архивов читайте здесь.

ПОДПИСАТЬСЯ

Светодиодная лампа и лампа накаливания

Как работает светодиод?

LED означает «светоизлучающий диод». Диод — это электрический компонент с двумя электродами, который позволяет электричеству свободно проходить только в одном направлении. Благодаря постоянному движению электронов в полупроводнике генерируется свет.

Каковы преимущества светодиода?

  • Низкое энергопотребление — поскольку нет необходимости нагревать нить накала, основным преимуществом светодиодных ламп является энергоэффективность. Энергия не тратится зря, и можно сэкономить до 80%.
    • Длительный срок службы — Средний срок службы светодиодной лампы составляет от 35 000 до 50 000 часов. Лампы накаливания наоборот всего 1000 часов. Долговечность светодиодных продуктов приводит к низким затратам на замену и энергию, поэтому обычно гарантируется быстрая окупаемость в течение одного года.
    • Экологичность — В отличие от традиционных лампочек, светодиодные лампы не содержат токсичных химикатов. Например, сломанная энергосберегающая лампочка вредит не только вашему здоровью (пары ртути), но и окружающей среде. Кроме того, это особые отходы, которые нелегко утилизировать.
    • Идеально подходит для акцентного освещения — светодиодные лампы доступны с различной цветовой температурой и цветными дисплеями.Световой луч светодиодной лампы обычно составляет от 8 ° до 360 °. Это имеет то преимущество, что для каждой возможной ситуации доступна подходящая светодиодная лампа. Это позволяет создать специфическое акцентное освещение, а также имитировать внешний вид традиционной лампочки.

В чем недостаток светодиода?

  • Высокие затраты на приобретение — Первоначальные вложения выше, чем на лампы накаливания. Благодаря длительному сроку службы и высокой энергоэффективности светодиодных ламп возможна быстрая «окупаемость инвестиций».



Как работает лампа накаливания?

Обычная лампочка излучает свет через нить в стеклянной колбе с низким содержанием кислорода. Как только лампочка подключается к источнику напряжения, нить накаливания нагревается так сильно, что излучает свет.

В чем преимущество лампы накаливания?

    • Низкие затраты на приобретение — Цены на традиционные лампочки очень низкие и часто уже доступны за 1 евро.
    • Идеальная цветопередача — Обычные лампочки имеют индекс цветопередачи 100 и гарантируют идеальные яркие цвета

Какие недостатки лампы накаливания?

    • Высокое энергопотребление — Лампочки имеют худшую энергоэффективность среди всех типов освещения. 90% энергии, необходимой для нагрева нити лампы, теряется.
    • Короткий срок службы — Срок службы лампы накаливания составляет в среднем 1000 часов.Это означает, что вам придется регулярно заменять обычные лампочки.

Где использовались традиционные лампочки?

Обычно лампы накаливания применялись для внутреннего освещения жилых помещений. Как правило, они не используются в компаниях из-за короткого срока службы и низкой энергоэффективности.


No. 1330: Electric Lights до Edison

Сегодня мы ищем первые электрические фонари.Инженерный колледж Хьюстонского университета представляет эту серию о машинах, которые делают наша цивилизация бежит, а люди, чьи изобретательность создала их.

Скажите «лампочка» и На ум приходит имя Эдисона — одного Эдисона. Пока что электрическое освещение намного старше. Это действительно получилось прокатился сразу после 1800 — почти восемьдесят лет до изобретения Эдисона.

Два вида электрических ламп соревновались в 19-го века. Одна из них — лампа накаливания, свет создается путем прохождения электрического тока через нить накала. Другой был дуговым светом, создается электрической дугой, перепрыгивающей зазор между два электрода.

Электрохимик Хамфри Дэви продемонстрировал огни обоих видов в начало 1800-х годов.В возрасте всего двадцати двух лет Дэви был назначен лектором в новом Королевском институте в г. Лондон. Он был великолепным оратором, лекции-демонстрации вскоре стали крупными социальными мероприятия в Лондоне как для женщин, так и для мужчин.

В лекции 1802 года он показал, как можно проливать свет пропуская электрический ток через платиновый полоска.В 1809 году он продемонстрировал, как наложить большое напряжение в воздушном зазоре между двумя углами электроды для создания яркого света.

Коммерческое дуговое освещение последовало три десятилетия позже в Англии. Долгое время дуговое освещение было больше эффектно, чем практично. Действительно становилось жизнеспособным примерно в то время, когда Эдисон создал свою систему.

Но еще в 1820 году французский изобретатель де Ла Рю сделал успешную лампу накаливания, поставив дорогая платиновая катушка в вакуумированной стеклянной трубке. В 1840 году английский изобретатель Гроув использовал подобные лампы для освещения всего театра. В освещение было тусклым, и его стоимость доходила до нескольких сто фунтов стерлингов за киловатт-час.Все еще, это было общественное использование ламп накаливания, на сорок лет впереди Эдисона.

Затем последовали многие другие лампы накаливания. В 1878 г. Джозеф Свон сделал лампу с вакуумной угольной нитью. Он также успел получить патентную защиту раньше. Эдисон повторил подвиг.

Эдисон наконец-то установил полное освещение система на пароходе Columbia в г. 1880 г.Он создал более дешевые и долговечные лампы, чем кто-то еще. Но он также предоставил публике система электроснабжения. Он создал полную готовая к использованию система освещения. Конечно, Эдисону пришлось обойти Лебедь. Для этого он взял Свон в качестве бизнес партнер.

Вклад Эдисона в электрическое освещение не был его изобретение, но его развитие.Он цепко вывел идею на рынок. И нам остается только гадать, почему Эдисон получил признание. Во-первых, он был самим себе политтехнологом. Он соткал его миф , когда он ткал свои машины . Но он же соткал и саму технологию: полная и полномасштабный.

Нет ни одного изобретателя какого-либо великого технологии.Идеи возникают из всего сообщества. Но люди, которые могут собрать воедино полноценные системы редки. И в этом смысле, может быть, было бы справедливо говорят, что Эдисон изобрел лампочку, в конце концов.

Я Джон Линхард из Хьюстонского университета, где нас интересуют изобретательные умы Работа.

(Музыкальная тема)

Лампа накаливания | Электротехнические уроки | Повязки Mepits

Лампа накаливания

Лампа накаливания, широко известная как шар накаливания или лампа накаливания — это просто электрический свет, используемый для выработки световой энергии.Производство света происходит с помощью вольфрамовой нити, нагреваемой проходящим через нее электрическим током. Для защиты нити от окисления используется кварцевая или стеклянная колба. Также колба заполнена инертным газом. Сегодня лампы накаливания бывают разных размеров, номиналов и мощности. Хотя эти лампы менее эффективны, чем другие типы электрических ламп, такие как CFL , LED , люминесцентные лампы и т. Д., Даже сейчас они считаются не просто устройством для создания света, а элементом комфорта и дизайна.

Конструкция лампы накаливания

Лампа накаливания была изобретена Томасом Эдисоном в 1879 году. Она имеет очень простую конструкцию. Здесь цоколь лампы имеет металлические контакты, которые подключаются к концам цепи. Металлические контакты, в свою очередь, подключаются к проводам, прикрепленным к нити накала. Вольфрамовая нить накаливания лежит в центре лампы накаливания с помощью стеклянной оправы. Колба из кварца или стекла содержит нити, проволоку и инертные газы, такие как аргон и азот.Когда лампа накаливания получает питание, ток течет через нити и провода от контакта к контакту, и лампа светится. Это происходит из-за возбуждения атомов внутри и проскальзывания крошечных частиц через нить накала, заставляющего атомы отдавать энергию в виде тепла и света. Нить лампы накаливания сделана из вольфрама. Вольфрам сделан в виде двойной катушки, чтобы уместить ее в небольшом пространстве. В большинстве ламп накаливания используются нити на основе вольфрама.

Основные типы ламп накаливания

  • Стандартные лампы накаливания

Обычно используется в домах в качестве источника света.Он производит необходимый свет, просто нагревая катушку электрическим током. Также известна как ввинчиваемая лампа типа «А».

  • Энергосберегающие лампы накаливания

Это простой тип лампы накаливания с капсулой, состоящей из газообразного галогена вокруг вольфрамовой нити. Это используется для увеличения эффективности лампы. Высокая стоимость — главный недостаток, но с точки зрения эффективности — отличный.Внутреннее покрытие колбы отражает тепло к капсуле и помогает утилизировать потерянную тепловую энергию.

Отражатель лампы рассеянного и прямого света. Используется для прожекторного и точечного освещения, а также для внутреннего и наружного освещения.

Формы ламп накаливания

Они бывают разных размеров и форм. Каждая лампочка обозначается буквой, за которой следует номер. Буква обозначает форму лампочки; число представляет собой диаметр в восьмых долях дюйма.

Преимущества и недостатки ламп накаливания

Преимущества

  • Подходит для освещения небольших площадей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *