Радиоприемник схема: Радиоприемники в каталоге схем и документации на QRZ.RU

Содержание

Радиоприемники

В серии К174 имеется микросхема К174ХА10, содержащая все узлы стандартного супергетеродинного радиоприемника: преобразователь частоты, УПЧ и УЗЧ с выходной мощностью до 0,5 Вт. Микросхема К174ХА10 работоспособна при напряжении питания от 3 до 9 В и потребляет (при малой громкости) 8 -10 мА. Используя часть ее узлов, можно собрать и простой приемник прямого усиления . Преобразователь частоты в этой схеме не используется, УПЧ служит как УРЧ, а детектор и УЗЧ работают по прямому назначению.

Схема радиоприемника на К174ХА10 представлена на рис. 1.

Входной контур с магнитной антенной могут быть выполнены так же, как и в предыдущей конструкции. Для повышения чувствительности использован истоковый повторитель на транзисторе VT1, если же очень высокая чувствительность не нужна, его допустимо исключить, подсоединив катушку связи между общим проводом и левым (по схеме) выводом конденсатора С2.

УПЧ в этой МС выполнен на дифференциальных каскадах и подсоединен к симметричному входу детектора, поэтому оказался необходим симметрирующий широкополосный трансформатор Т1. Он наматывается на кольце диаметром 7-10 мм из феррита с магнитной проницаемостью 1000-1500 и содержит 100-200 витков любого тонкого провода. Наматывать трансформатор целесообразно двумя сложенными вместе проводами; затем начало одного провода соединяется с концом другого, образуя средний вывод. При нежелании заниматься этой работой, достаточно несколько изменить схему: вывод 14 МС соединить с проводом питания непосредственно, а вывод 15 — через подстроечный резистор сопротивлением 100 кОм. Он регулируется по минимальным искажениям при детектировании, которые получаются несколько выше, а коэффициент передачи примерно вдвое ниже, чем с трансформатором.

Продетектированный сигнал ЗЧ подается через фильтрующую цепочку С8 — R3 — С9 на регулятор громкости R4 и далее, на вход УЗЧ. Динамическая головка может иметь сопротивление от 6 до 50 Ом, но оптимальным следует считать 8 Ом.

Магнитная антенна приёмника — плоский стержень из феррита 400НН 4х16х60 мм. Катушка индуктивности L1 содержит 250 витков провода ПЭВ-2 0,1÷0,15 мм, а L2 — 83 витка провода ПЭВ 0,21мм.

Налаживание радиоприёмника производят подбором номинала резистора R2 добиваются максимальной чувствительности устройства. При самовозбуждении между выводами 9 и 11 микросхемы следует включить конденсатор ёмкостью 4700÷10000 пф. Окончательную настройку выполняют подгонкой диапазона принимаемых частот.

Нечаев И.А.

Радиоприёмник на многофункциональной микросхеме

Радио.- 1994 №7 — с18.

Схема — радиоприемник — Большая Энциклопедия Нефти и Газа, статья, страница 1

Схема — радиоприемник

Cтраница 1

Схема радиоприемника выполнена по функционально-блочному принципу и состоит из четырех блоков: УКВ, КСДВ, ВЧ-ПЧ и УНЧ.  [1]

Схема радиоприемника ( рис. 13.1) представляет собой современный аналог прежнего детекторного приемника прямого усиления.  [2]

Схемы радиоприемников, не имеющих существенных отличий от схем радиол, не приводятся. В отдельных случаях, когда несколько типов радиоприемников и радиол разных названий имеют общую типовую принципиальную схему, в книге приводится схема основной разработки с указанием названий радиоаппаратов, дублирующих схему.  [3]

Схема радиоприемника радиолы Вега-312 состоит из шести блоков: У1 — УКВ, У2 — КСДВ-ПЧ, УЗ-стереодекодер, У4 — ЭПУ.  [4]

Для схемы радиоприемника нужна емкость С 600 пф. Радиомонтажник располагает конденсаторами емкостью 200, 100, 500 и 300 пф. Какие можно выбрать конденсаторы и как их следует соединить, чтобы получить необходимую емкость.  [5]

Большинство схем радиоприемников 4-го класса как крупногабаритных, так и малогабаритных построено на семи транзисторах.  [7]

На схемах радиоприемников и кассетных магнитол звездочкой () отмечены элементы, точные номинальные значения которых подбираются при заводской регулировке. Режимы работы транзисторов и микросхем измерены при номинальном значении напряжения источника питания при отсутствии сигнала на входе приемника и неработающем гетеродине. Вследствие сравнительно большого разброса параметров транзисторов и микросхем значения напряжений, характеризующих режим по постоянному току, могут колебаться в пределах 20 % относительно значений, указанных в таблицах режимов.  [8]

В схемах УВЧ радиоприемников обычно применяют высокочастотные пентоды, которые для получения достаточно большого и устойчивого усиления должны иметь возможно большую крутизну при возможно меньшей проходной емкости Спр. Кроме того, в современных приемниках используется автоматическая регулировка усиления сигнала. Поэтому лампа УВЧ должна иметь удлиненную характеристику. На основании приведенных соображений выбираем по табл. XVIII высокочастотный пентод типа 6К4П с параметрами: 5 4 4 ма / в; U3 250 в; / а 10 ма; U3 — 100 в; 1Э 3 7 ма; Rf 850 ком; сопротивление автоматического смещения RK — 68 ом; Спр 0 0035 пф.  [9]

Для защиты схемы радиоприемника от воздействия влаги на его металлические части наносят антикоррозийное покрытие, печатные платы покрывают влагоизолирующим лаком, контурные катушки пропитывают влагозащитной пропиткой и даже покрывают лаком.  [10]

Кроме того, схема радиоприемника Этюд-603 имеет ряд следующих особенностей.  [12]

Общий принцип построения схем радиоприемников

и магнитол 2-го класса с УКВ диапазоном такой же, как и аналогичных моделей 3-го класса, а построение тракта AM аналогично построению схем радиоприемников 2-го класса без УКВ диапазона, рассмотренных в § 6.1, за исключением некоторых особенностей.  [13]

Необходимость введения в схему радиоприемника видеоусилителя возникает при приеме импульсных сигналов в радиолокационной технике и технике современного высококачественного телевидения с большим числом элементов разложения передаваемого изображения. В радиолокационных приемниках видеоусилитель включается между детектором и трубкой индикатора, в приемниках же телевизионных сигналов — между детектором и трубкой, воспроизводящей полезные сигналы изображения.  [14]

Необходимость введения в схему радиоприемника видеоусилителя возникает при приеме импульсных сигналов в радиолокационной технике и технике современного высококачественного телевидения с большим числом элементов разложения передаваемого изображения. В радиолокационных приемниках видеоусилитель включается между детектором и трубкой индикатора, в приемниках телевизионных сигналов — между детектором и трубкой, воспроизводящей полезные сигналы изображения.  [15]

Страницы:      1    2    3    4

радиоприёмник — это… Что такое радиоприёмник?

устройство для преобразования электрических сигналов с выхода антенны в электрические сигналы, соответствующие подаваемым, на вход радиоканала. Радиоприёмник усиливает принимаемые сигналы до необходимых значений (независимо от величины входных сигналов, т. к. условия распространения радиоволн нестабильны и требуется автоматическая регулировка усиления до 10 000 раз), производит необходимую селекцию по частоте, а в некоторых случаях по фазе приходящего сигнала, по виду модуляции соответствующим передаваемым передатчиком радиосигналам. Основные характеристики радиоприёмника: чувствительность, избирательность, динамический диапазон.

Чувствительность радиоприёмников определяется минимальным значением сигналов от антенны, при которых радиоприёмник ещё может восстанавливать исходный сигнал с необходимой точностью. Зависит от вида сигнала – напр., при приёме телефонии чувствительность может доходить до 0.2 мкВ, телеграфии – до 0.1 мкВ, что очень близко к теоретически возможным значениям (близкие к уровню шумов, возникающих от теплового движения молекул). Для повышения чувствительности входные каскады специальных радиоприёмников, напр. предназначенных для дальней космической связи, охлаждают жидким гелием.

Избирательность, селективность – способность приёмника отделять полезный сигнал от мешающих. Основная часть приёмников реализует частотную селективность – уменьшение мешающего действия сигналов, выходящих за полосу пропускания приёмника. Напр., при отклонении частоты сигнала от частоты настройки на 10 кГц он ослабляется в 100 раз, при этом спектр основного сигнала (до 5 кГц) практически не должен исказиться. Кроме избирательности по соседнему каналу, обычно оговаривается избирательность по другим побочным каналам приёма (она выше – 1000—10 000 раз).

Динамический диапазон – отношение напряжений максимального и минимального сигналов, воспроизводимых с допустимыми искажениями; для коммерче-ской телефонии динамический диапазон – 100, для звукового вещания – 1000.

Различают радиоприёмники прямого усиления и супергетеродинные. Радиоприёмники прямого усиления состоят из избирательного высокочастотного тракта, осуществляющего усиление сигнала и основную селективность от мешающих сигналов, детектора, выделяющего соответствующий исходному сигнал из высокочастотного радиосигнала, и оконечного усилителя для доведения мощности принятого сигнала до требуемого и согласования выхода приёмника с громкоговорителем, соединительной линией и т. д.

Перестраиваемые по частоте радиоприёмники обычно выполняют по супергетеродинной схеме: после упрощённого входного тракта следует преобразователь спектра принимаемого сигнала, переносящий его в область промежуточной частоты, на которой производятся основные усиление и частотная селекция сигнала. Кажущееся усложнение схемы в действительности приводит к значительному удешевлению всего устройства.

Схема радиоприёмника прямого усиления

Схема супергетеродинного радиоприёмника

Элементная база радиоприёмников претерпела несколько изменений: радиолампы, транзисторы и, наконец, микросхемы, причём частотно-зависимые элементы (катушки индуктивности и конденсаторы) заменены на интегральные микросхемы, вначале аналоговые, а теперь цифровые. Современный радиоприёмник может быть выполнен на одном цифровом микропроцессоре, не требует налаживания во время производства и обеспечивает потребителю ряд услуг, предоставление которых без использования цифровых методов обработки сигналов практически невозможно. Напр., неограниченная память на частоты настройки, время автоматического включения и выключения, опознавание речь – музыка (приёмник по заданию хозяина может формировать программу), автоматическое изменение громкости для различных отрывков речи и музыки, их тембра.

Энциклопедия «Техника». — М.: Росмэн. 2006.

Радиосхемы. — Радиоприемник без батареек

категория
Схемы радиоприемников
материалы в категории

Левша 1996 №9

Решил поделиться с читателями журнала результатами своих изысканий. Мне удалось построить приёмник с питанием от энергии передающей радиостанции. И думаю, он заинтересует многих радиолюбителей. Меня же подтолкнул на конструирование один мой хороший знакомый. Он получил участок земли недалеко от Красноярска. И поскольку электричество туда ещё век не подведут, а зарплаты порой не хватает даже на питание транзистора, то он попросил меня изготовить простенький детекторный приёмник, чтобы быть в курсе новостей.

Собрав материалы, относящиеся к этому виду аппаратуры, я принялся за дело. И оказалось, что предлагаемые в массовой литературе и журналах схемы составлены, мягко говоря, непродуманно. В особенности это относится к схемам детекторных приёмников, использующих дополнительные усилительные каскады на транзисторах.

Вот для примера одна из рекомендуемых схем. Выпрямляющий диод устанавливается последовательно от антенны на питаемый транзисторный каскад. В результате для нормальной работы приёмника понадобится напряжение, равное сумме напряжений падения на диоде и требуемого усилителю.

Этот недостаток можно устранить, установив выпрямляющий диод параллельно питаемому каскаду. Но тут возникает вопрос избирательности. В связи с шунтированием резонансного контура эквивалентным сопротивлением усилительного каскада приёмник начинает ловить программы всех работающих станций и весьма реагирует на настройку. Напрашивается решение отделить контур от усилительного каскада. Это оказалось возможным, если применить контур с последовательным резонансом и питанием усилительного каскада- При этом резко повысилась избирательность при точной настройке на передающую станцию.

У такого приёмника можно также увеличить количество усилительных каскадов. Введением рефлексной схемы, когда одни и те же транзисторы используются в режиме усиления ВЧ и НЧ, мне удалось значительно повысить громкость звучания принимаемых станций.

Принципиальная электрическая схема рефлексного приёмника 3-V-3.

Предлагаемая схема представляет собой рефлексный приёмник 3-V-3, позволяющий с удовлетворительной громкостью принимать радиостанции в диапазоне длинных и средних волн.

Аппарат включает в себя резонансный контур с последовательным резонансом (C1, L1), трёхкаскадный рефлексный усилитель (VT1-VТ3), детектор ВЧ-сигнала (VD1-VD3), выпрямитель питания транзисторов (VD4).

Конструкция приёмника зависит от типа и размеров применяемых деталей. В качестве катушки индуктивности годятся контуры, намотанные на цилиндрические, квадратные каркасы, а также на ферритовый стержень. Транзисторы подходят германиевые 400-й и 300-й серий с h31B не ниже 40. Диоды — германиевые типа Д2 или Д9.

Телефонный капсюль — типа ДЭМ-Ш или ему подобный с сопротивлением 60-100 Ом.

Мой приёмник ловит радиостанции на расстоянии 40 км от Красноярска с антенной длиной 20 м, высотой подвеса 10 м.

Ю. БОНДАРЕНКО

ИСТОЧНИК ПИТАНИЯ — РАДИОВОЛНЫ

Моделист-конструктор 1997 №9

Один мой хороший знакомый стал владельцем шести соток неподалёку от Красноярска. В связи с тем, что электричество туда обещают подвести лишь к началу какого-то тысячелетия, а батареек к карманному приёмнику, учитывая их низкое качество, малый срок службы и непомерно высокую стоимость, не напасешься, новоиспечённый садовод-огородник попросил смастерить ему «детекторный, чтобы знать хотя бы новости и точное время».

Собрав материалы по этому виду приёмников, я начал проверять схемы на работоспособность. Оказалось, что рекламируемые в популярных брошюрах и журналах конструкции оставляют, мягко говоря, желать лучшего. В особенности это относится к детекторным приёмникам, использующим дополнительные усилительные каскады на транзисторах.

Взять, к примеру, рекомендуемую в ряде публикаций схему получения питания транзисторного каскада. Выпрямляющий диод в ней устанавливается последовательно — от антенны к транзисторному каскаду. Но для обеспечения нормальной работы требуется напряжение, равное суммарному: Uдиода+Uтранз.каскада.

Выявленный недостаток можно, конечно, устранить, установив выпрямляющий диод параллельно питаемому каскаду. Однако появится проблема с таким параметром, как избирательность. Ведь в связи с шунтированием резонансного контура эквивалентным сопротивлением усилительного каскада приёмник начнёт воспроизводить программы всех работающих станций, но почти перестанет реагировать на настройку.

Напрашивалось решение об отделении контура от усилительного каскада. Реализация его вполне возможна благодаря удачному применению контура с последовательным резонансом и питанием усилительного каскада. Более того, резко повышается избирательность при точной настройке на передающую станцию.

Дальнейшие эксперименты позволили увеличить и количество усилительных каскадов. Как? Переходом к рефлексной схеме, когда одни и те же транзисторы используются в режиме усиления высоких и низких частот. При этом сразу намного возросла громкость звучания радиостанций, «вылавливаемых» из волн эфира.

Выкристаллизовавшуюся в результате экспериментов принципиальную электрическую схему, для обеспечения работы которой не нужны ни батарейки, ни любой другой источник питания, кроме энергии пронизывающих пространство электромагнитных полей, выношу на суд читателей любимого мною журнала. Сборка её занимает совсем немного времени. А в результате получается надёжный рефлексный приёмник 3-V-3, позволяющий с довольно-таки приличной громкостью принимать радиостанции в диапазоне длинных и средних волн.

Предлагаемая конструкция включает в себя резонансный контур с последовательным резонансом (C1, L1), трёхкаскадный рефлексный усилитель (VT1…VT3), детектор высокочастотного сигнала (VD1…VD3), выпрямитель питания транзисторов (VD4). Естественно, что её внешний вид и габариты зависят от типа и размеров применяемых деталей.

В качестве катушки индуктивности опробованы несколько типов контуров, намотанных на цилиндрические, квадратные каркасы, а также на ферритовый стержень. Значительного преимущества одних над другими, откровенно говоря, не наблюдалось.

Транзисторы опробовались германиевые 400-й и 300-й серий с коэффициентом усиления по току не ниже 40. Выяснилось, что все они работают в данной схеме неплохо. Как, впрочем, и германиевые диоды типа Д2 или Д9. А вот для использования в качестве телефонного капсюля лучшими оказываются ДЭМШ или ему подобные сопротивлением 60…100 Ом.

Результаты проверки собранной конструкции показали, что приём радиостанций на антенну длиной 20 м и высотой подвеса 10 м при наличии добротно выполненного заземления возможен на 40-километровом удалении от Красноярска.

Ю.БОНДАРЕНКО

ЛИТЕРАТУРА:
1. Детекторный радиоприёмник // Радиолюбитель, 1994, № 2, с. 36.
2. Неужели всё — детектор? // Моделист-конструктор, 1996, №11, с. 14 — 15.
3. Приёмник без источника питания // Радио, 1993, № 11, с. 14
4. Простой радиоприёмник // Моделист-конструктор, 1982, № 7, с. 40.

Page not found — Персональный сайт Виктора Лучанского RK3BX

Unfortunately the page you’re looking doesn’t exist (anymore) or there was an error in the link you followed or typed. This way to the home page.

  • Главная
  • Мои проекты
  • Xiegu X108G
  • RK3BX LOGs
  • Гостевая книга
  • Мои путешествия
  • Полезная информация
  • Интернет-магазин
  • Проект Киржач
    • История зарождения проекта
    • Архив проекта
      • 15 марта 2016 года — RU3DNN, RK3BX,
      • 26 марта 2016 года — RU3DNN, RM5M, RD2A
      • 10 апреля 2016 года — RU3DNN, RM5M, RK3BX
      • 7-9 мая 2016 года — RU3DNN, RK3BX, RM5M
      • 31 мая 2016 года — RU3DNN, RK3BX, RM5M, Дамир Шабакаев
      • 11-12 июня 2016 года — RU3DNN, RK3BX, RM5M
      • 25-26 июня 2016 года — RU3DNN, RK3BX, RM5M
      • 16-17 июля 2016 года — RU3DNN, RK3BX, RM5M
      • 5-6 августа 2016 года — RK3BX, RU3DNN, RM5M, Макс Шелопин
      • 20-21 августа 2016 года — RU3DNN, RK3BX
      • 27-28 августа 2016 года — RM5M, RU3DNN, RD2A, RK3BX, RV3FW
      • 3-5 сентября 2016 года — RM5M, RD2A, RK3BX
      • 10-11 сентября 2016 года — RM5M, RK3BX
      • 17-18 Сентября 2016 года — RK3BX, RU3DNN, RM5M
      • 24-25 Сентября 2016 года — RU3DNN, RK3BX
      • 1-2 Октября 2016 года — RU3DNN, RK3BX, RM5M
      • 8-9 Октября 2016 года — RU3DNN, RK3BX
      • 15-16 Октября 2016 года — RU3DNN, RK3BX, RM5M
      • 29-30 Октября 2016 года — RU3DNN, RK3BX, RM5M
      • 4-6 Ноября 2016 года — RU3DNN, RK3BX, RM5M
      • 12-13 Ноября 2016 года — RU3DNN, RK3BX
      • 26-28 Ноября 2016 года — RU3DNN, RK3BX
      • 3-4 Декабря 2016 года — RU3DNN, RK3BX, RM5M
      • 10-11 Декабря 2016 года — RU3DNN, RK3BX, RM5M
      • 16-17 Декабря 2016 года — RU3DNN, RK3BX, RM5M
      • 2-4 января 2017 года — RU3DNN, RK3BX, RM5M, NT2X, 1U4UN
      • 14-15 января 2017 года — RU3DNN, RK3BX
      • 21-22 января 2017 года — RU3DNN, RK3BX
      • 4-5 февраля 2017 года — RU3DNN, RK3BX
      • 4-5 марта 2017 года — RU3DNN, RK3BX, RM5M

⚡️Схема приемника fm | radiochipi.ru

На чтение 8 мин Опубликовано Обновлено

Этот приёмник назван дачным, поскольку позволяет принимать радиостанции не только в привычном многим диапазоне УКВ, но и в диапазоне СВ. Следует отметить, что в диапазоне СВ в сумерки и тёмное время суток работают много радиостанций. Но приём большинства из них возможен только за городом в дачной местности, где уровень индустриальных помех существенно меньше, чем в городе, особенно крупном.

К сожалению, вещание отечественных радиостанций в этом диапазоне почти полностью прекращено. Дополнительно приёмник снабжён солнечными батареями, которые могут обеспечить часть потребностей в питании во время его работы или подзарядку аккумулятора, если он выключен.

Схема FM приемника показана на сайте www.radiochipi.ru В диапазоне СВ с целью упрощения радиоприемный тракт собран по схеме прямого усиления. Прием осуществляется на магнитную антенну WA2. которая представляет собой контурную катушку L2, размещенную на ферритовом стержне. Частоту приёма перестраивают конденсатором переменной емкости С 1.1. Поскольку приёмник собран по схеме прямого усиления, его избирательность полностью определяется добротностью магнитной антенны. С катушки связи L3 сигнал поступает на AM-тракт приёмника, собранный на специализированной микросхеме ТА7642 (ОА1). которая содержит усилитель ВЧ.

AMдетектор и систему АРУ. В справочных данных на эту микросхему указано, что ее входное сопротивление — 3 МОм, поэтому, на первый взгляд, к ее входу можно подключать контурную катушку непосредственно. Но такой вариант приводит к тому, что добротность антенны уменьшается и. как результат, ухудшаются чувствительность и избирательность. Поэтому и была применена катушка связи L3. Продетектированный сигнал амплитудой несколько десятков милливольт через резистор R3 и переключатель SA1.1 поступает на регулятор громкости R6 и далее на УЗЧ. собранный на микросхеме DA3 Конденсаторы С14 и С19 подавляют высокочастотную составляющую продетектированного сигнала. После усиления сигнал ЗЧ поступает на динамическую головку ВА1.

УКВ тракт собран на специализированной микросхеме YD9088 (DA2). которая представляет собой супергетеродин с низкой ПЧ. Все основные узлы входят в состав этой микросхемы. Входной не перестраиваемый контур образован катушкой индуктивности L1 и конденсаторами С2, С4. В гетеродинный контур входят катушка индуктивности L4 и конденсаторы С15. С17, С1.3. С 1.4. Настраиваются на частоту радиостанции с помощью конденсатора переменной емкости С1.3. Выходной сигнал ЗЧ поступает на регулятор громкости через резистор R4 и переключатель SА 1.1.Для повышения стабильности работы в диапазоне УКВ напряжение питания микросхемы DA2 (3 В) стабилизировано с помощью интегрального стабилизатора напряжения DA4 — микросхемы КР1158ЕНЗА с малым значением минимально допустимого падения напряжения.

Питание ФМ приемника осуществляется от литийионного аккумулятора G1 напряжением 3.7 В (со встроенным узлом защиты) от сотового телефона, а также внешнего источника питания напряжением 5 В. От этого же источника заряжается аккумулятор. В качестве дополнительного источника питания применены шесть солнечных батарей (каждая размерами 25×25 мм) от светодиодных газонных светильников. Они включены в три параллельные группы, по две батареи в каждой. В яркий солнечный день батареи обеспечивают напряжение 4,8…5 В при максимальном токе нагрузки 40…50 мА, что обеспечивает работу FM приемника на небольшой громкости или подзарядку аккумулятора, которая осуществляется и при выключенном радиоприемнике.

FM приемник собран в корпусе одной колонки от малогабаритной активной стереофонической акустической системы Bine 1322 Lite (рис. 2) для персонального компьютера. Поэтому качество звучания приёмника лучше, чем карманного. Была использована “активная’ колонка, в которой, кроме динамической головки ВА1 (мощность — 2 Вт. сопротивление катушки — 4 Ом), находились кнопочный выключатель питания (SB1), регулятор громкости (R6). индикаторный светодиод (HL1) с резистором R9 и гнездо (XS1) для подключения головных телефонов. Это гнездо использовано для подключения внешнего стабилизированного источника питания напряжением 5 В. Для зарядки аккумулятора можно применить зарядное устройство для сотовых телефонов.

В диапазоне СВ такое зарядное устройство может создавать помехи, поэтому для питания лучше применить блок питания с сетевым понижающим трансформатором и стабилизатором напряжения на микросхеме серии 7805. Кроме того, на корпусе приемника установлены переключатель SA1, солнечные батареи и штыревая антенна (рис. 2). Для защиты от порезов об острые края солнечных батарей по их краю нанесён валик из термоклея. Диод VD1 защищает аккумулятор и приемник от неправильной полярности внешнего источника питания, а диод VD2 не допускает разрядку аккумулятора через солнечную батарею. Светодиод сигнализирует о подключении внешнего источника питания.

Печатная плата дачного FM приемника

Остальные элементы, кроме магнитной антенны, конденсаторов С18, С19, резистора R4, установлены на печатной плате, чертеж которой показан на рис. 3. Печатная плата — двух сторонняя. одна из сторон оставлена металлизированной и использована в качестве общего провода. На второй смонтированы радиоэлементы. Через отверстия в плате печатные проводники второй стороны соединены с первой отрезками лужёного провода. Плату прикрепляют к верхней части корпуса с помощью винтов, которыми одновременно закреплён и блок конденсаторов переменной ёмкости (рис. 4). Для ручки настройки сделано круглое отверстие соответствующего диаметра, а для движка переключателя SA1 — прямоугольное. Сам переключатель закреплён клеем В FM приемнике применены импортные низкопрофильные оксидные конденсаторы.

В С8тракте можно применить как элементы для поверхностного монтажа (резисторы PH 112. конденсаторы К10 17в). так и выводные (резисторы Р14, С223, конденсаторы К1017). В УКВ тракте применены элементы для поверхностного монтажа. Светодиод можно применить маломощный любого цвета свечения с диаметром корпуса 3 мм. Переключатель — любой малогабаритный на два положения и два направления. Микросхему YD9088 можно заменить на CD9088CB Для диапазона УКВ применена штыревая телескопическая антенна длиной около 600 мм (рис. 5). Она составлена из двух телескопических держателей от малогабаритной настольной лампы, которые скреплены с помощью шпильки. Благодаря этому она не выходит за габариты радиоприёмника, а её положение и форму можно изменять в широких пределах.

Заменить телескопическую антенну можно изолированным проводом длиной около 700 мм Следует отметить, что в покупных дешёвых карманных радиоприемниках с диапазоном СВ обычно применена малогабаритная магнитная антенна длиной всего несколько сантиметров. Как результат — такие приёмники в этом диапазоне имеют низкую чувствительность. И конечно, такая антенна не подойдёт для приёмника прямого усиления. Поэтому для магнитной антенны применён магнитопровод от магнитной антенны радиоприёмника “ВЭФ202” — стержень диаметром 10 и длиной 200 мм из феррита 400НН.

Его размещают вдоль длинной стороны корпуса подальше от динамической головки и укорачивают так. чтобы он плотно входил между стенками и надежно фиксировался. Предварительно на нем размещают контурную катушку и катушку связи. При необходимости магнитопровод дополнительно закрепляют клеем. Чем длиннее будет ферритовый стержень, тем лучше. Для повышения добротности контурная катушка L2 намотана виток к витку литцендратом ЛЭШО 10×0.07 на бумажном каркасе, свободно перемещающемся по магнитопроводу, и содержит 80 витков.

Они размещены в четырех секциях, расстояние между соседними — 2. 3 мм. С худшим результатом можно применить провод ПЭВ2 0.4…0,6. Катушка связи L3 намотана проводом ПЭВ2 0.2 на отдельном каркасе и содержит 15 витков. Поскольку магнитная антенна размещена вдоль длинной стороны корпуса, правильное положение приёмника при работе в диа паэоне СВ — горизонтальное (см рис. 2). В УКВ-диапазоне положение корпуса может быть любым (см. рис. 4). Катушки УКВ-тракта намотаны на оправке диаметром 3 мм проводом ПЭВ2 0.4 и содержат по шесть витков. Налаживание сводится к установке диапазона перестройки 87… 108 МГц с запасом по 10…20% с каждого края. Этого добиваются подборкой конденсатора С17, подстроечным конденсатором С 1.4, а также сдвигая и раздвигая витки катушки L4. Уменьшение ёмкости конденсатора С17 уменьшает диапазон перестройки и сдвигает его вверх по частоте.

Увеличение ёмкости конденсатора С1.4 также уменьшает диапазон перестройки, но сдвигает его вниз. Расстоянием между витками катушки L4 можно изменять центральную частоту диапазона перестройки. При раздвигании витков частота увеличивается. Сдвигая или раздвигая витки катушки L1, добиваются наилучшего качества приёма самых слабых станций. Применен блок конденсаторов переменной ёмкости СВМ223 (буквы латинского алфавита), в который входят секция А — конденсатор переменной ёмкости 10… 150 пф и включённый параллельно ему подстроечный конденсатор. а также секция В — конденсатор переменной ёмкости 10…70 пФ и такой же подстроечный конденсатор. Секция В хорошо подходит для применения в диапазоне УКВ, а вот максимальная ёмкость секции А маловата для перекрытия всего СВ-диапазона.

Поэтому надо выбрать тот участок, на котором работают самые мощные вещательные радиостанции, и установить его подборкой числа витков катушки L2. Налаживание в диапазоне СВ сводится к укладке границ диапазонов. Для этого перемещают контурную катушку по стержню, а в случае необходимости изменяют число её витков. Расстояние между контурной и катушкой связи — 20…30 мм. Затем при максимальном напряжении питания подборкой резистора R8 устанавливают максимальный коэффициент усиления микросхемы DA1. при котором сохраняется её устойчивая работа. Сделать это можно на слух при приёме слабой радиостанции в верхнем участке диапазона.

При этом на практике оказалось, что на устойчивость влияет взаимная фазировка катушек L2 и L3. Меняют её, переворачивая катушку L3. Расширить СВ-диапазон можно, если сделать контурную катушку переключаемой (рис. 6), для этого её разбивают на две части (по 55 витков литцендрата) и переключают с помощью малогабаритного переключателя, установленного на задней стенке корпуса рядом с контурной катушкой. В этом случае верхняя граница принимаемого диапазона частот достигнет 3 МГц и станет возможен приём “радиохулиганского” диапазона. Если не устанавливать элементы СВ или УКВ-тракта, приёмник станет однодиапазонным. Ручку конденсатора переменной ёмкости можно снабдить шкалой.

описание. Старые радиоприемники Размещение элементов на плате

Всего одна микросхема понадобится вам, чтобы построить простой и полноценный FM приемник, который способен принимать радиостанции в диапазоне 75-120 МГц. FM приемник содержит минимум деталей, а его настройка, после сборки, сводится к минимуму. Так же обладает хорошей чувствительностью для приема УКВ ЧМ радиостанций.
Все это благодаря микросхеме фирмы «Philips» TDA7000, которую можно купить без проблем на нашем любимом Али экспресс – .

Схема приемника

Вот сама схема приемника. В неё добавлены ещё две микросхемы, чтобы в конце получилось полностью законченное устройство. Начнем рассматривать схему справа налево. На ходовой микросхеме LM386 собран, уже ставший классическим, усилитель низкой частоты для небольшой динамической головки. Тут, думаю, все ясно. Переменным резистором регулируется громкость приемника. Далее, выше добавлен стабилизатор 7805, преобразующий и стабилизирующий питающее напряжение до 5 В. Которое нужно для питания микросхемы самого приемника. И наконец, сам приемник собран на TDA7000. Обе катушки содержит 4,5 витка провода ПЭВ-2 0,5 при диаметре обмотки 5 мм. Вторая катушка наматывается на каркас с подстроечником из феррита. Приемник настраивается на частоту переменным резистором. Напряжение, с которого идет на варикап, которой в свою очередь меняет свою емкость.
При желании от варикапа и электронного управления можно отказаться. А на частоту можно настраиваться либо подстроечным сердечником, либо переменным конденсатором.

Плата FM приемника

Монтажную плату для приемника я начертил таким образом, чтобы не сверить в ней отверстия, а чтобы как с SMD компонентами напаивать все с верху.

Размещение элементов на плате


Использовал классическую технологию ЛУТ для производства платы.


Распечатал, прогрел утюгом, протравил и смыл тонер.


Напаял все элементы.

Настройка приемника

После включения, если все собрано правильно, вы должны услышать шипение в динамической головке. Это означает что все пока работает нормально. Вся настройка сводится к настройке контура и выбора диапазона для приема. Я произвожу настройку вращая сердечник катушки. Как диапазон приема настроен, каналы в нем можно искать переменным резистором.

Заключение

Микросхема имеет хорошую чувствительность, и на полуметровый отрезок провода, вместо антенны, ловится большое количество радиостанций. Звук чистый, без искажений. Такую схему можно применить в простой радиостанции, вместо приемника на сверхгенеративном детекторе.

Уважаемые посетители!!!

Если сравнивать устаревшие и современные модели радиоприемников, они конечно же имеют свое различие как в конструкции так и в электрических схемах. Но основной принцип приема сигнала радиоприемником — не изменчив. Для современных моделей радиоприемников, изменяется лишь сама конструкция и вносятся незначительные изменения в электрических схемах.

Что касается настройки радиоприемника на волну, то прием передач в диапазонах для:

  • длинных волн \ДВ\;
  • средних волн \СВ\,

— обычно осуществляется на магнитную антенну. В диапазонах:

— прием звука радиоприемника принимается на телескопическую \наружную\ антенну.

На рисунке №1 показан внешний вид и графическое обозначение приемных антенн:

    телескопической;

    магнитной \антенны ДВ и СВ\.

Прием-на магнитную антенну

На рисунке №2 дано наглядное изображение огибания радиоволнами препятствий \для гористой местности\. Область радиотени представляется как зона недосягаемости радиоволн приемником.

Что из себя представляет магнитная антенна? — Магнитная антенна состоит из ферритового стержня, а катушки магнитной антенны намотаны на отдельных \изолированных\ каркасах. Ферритовый стержень магнитной антенны для разных радиоприемников — имеет свой диаметр и длину. Намоточные данные катушек, соответственно, имеют также свое определенное количество витков и свою индуктивность — для каждой из таких контуров магнитной антенны.

Как Вы поняли, такие понятия в радиотехнике, как каждый отдельный контур магнитной антенны и катушка магнитной антенны , — имеют одинаковые значения, то-есть, можно сформулировать свое предложение тем или иным способом.

В радиоприемниках, в верхней его части монтируется магнитная антенна ДВ и СВ. На фотоснимке, магнитная антенна выглядит в виде продолговатого, цилиндрического стержня \выполненного из феррита\.

Если каждая катушка \контур\ магнитной антенны обладает своей индуктивностью, соответственно, она рассчитана на прием отдельных диапазонов радиоволн. К примеру, по электрической схеме радиоприемника Вы наблюдаете, что магнитная антенна состоит из пяти отдельных контуров \L1, L2, L3, L4, L5\, два из которых, необходимы для принимаемого диапазона:

Другие контуры L1 L3 L5, — представляют из себя катушки связи, одна из которых, допустим L5 соединяется с внешней антенной. Это пояснение дается не конкретно для каждых схем, потому что значения обозначений в схемах могут поменяться, а дается общее понятие о магнитной антенне.

Прием-на телескопическую антенну

телескопическая антенна радиоприемника

В зависимости от схемы радиоприемника, телескопическая \штыревая антенна\ может быть подключена как к входным контурам диапазонов длинных и средних волн через резистор и катушку связи, либо к входным контурам диапазона коротких волн — через разделительный конденсатор. С отводов катушек контуров ДВ, СВ или КВ — напряжение сигнала подается на вход усилителя ВЧ.

Намоточные данные-антенны

Обмотка на контурах выполняется одинарным либо двойным проводом. Каждый контур обладает своей индуктивностью. Величина индуктивности контура измеряется в генри . Чтобы самостоятельно выполнить перемотку контура, неоходимо знать намоточные данные этого контура. То-есть, нужно знать:

  • количество витков провода;
  • сечение провода.

Все необходимые технические данные на устаревшие модели радиоприемников найти можно было в справочниках. На данное время, подобной литературы для современных моделей радиоприемников — не встречается.

К примеру, для приемников:

  • Альпинист-405;
  • Гиала-404,

— намоточные данные катушек между собой совпадали. То-есть, допустим катушку связи \а их несколько — в схеме\ с ее обозначением, можно было заменить с одной схемы приемника на другую схему.

Неисправность контура, чаще бывает связана с механическими повреждениями провода \нечаянно задет провод отверткой и далее\. При ремонте контура \его перемотке\, обычно учитывается, берется во внимание количество витков старого провода и затем, такое же количество витков выполняется новым проводом, где также учитывается его сечение.

В этой статье, мы частично получили представление о приеме звука радиоприемником. Следите за рубрикой, дальше будет еще интересней.

Настройки на определенную частоту есть у каждого радиоприемника, у большинства из них они даже фиксированные, что очень удобно. Если приемник цифровой, то есть у него есть электронная настройка, то зафиксировать ту или иную радиостанцию на определенном канале не составит большого труда. Немного сложнее будет этот процесс происходить на приемниках с обычной шкалой настройки. Но, в любом случае в инструкции пользователя подробно написано, как настроить радиоприемник и сколько станций вы можете сохранить в его памяти. Однако все это можно проделать только после покупки этого самого радиоприемника. С проблемой выбора в наши дни сталкиваются многие люди, потому что всевозможных моделей в магазинах представлено очень много.

Для желающих слушать все радиостанции оптимальным вариантом будет всеволновый приемник. А если у него будет возможность принимать УКВ волны, то это будет просто счастье, потому что такие приемники могут ловить и переговоры по рации. Поэтому стоит задуматься, как выбрать радиоприемник, для каких целей он будет использоваться и каким он должен быть? Если это будет «кабинетный» приемник, то для него вполне хватит стандартных FMи АМ диапазонов. Для «переносных» и «походных» приемников лучше иметь возможность «прослушивать» все частоты, поскольку походы могут быть и в незнакомые местности, где радио может вещать на любых частотах. «Переносными» же можно просто баловаться и подслушивать переговоры других людей, если они используют рации.

Если купить такой приемник не получится, то стоит задуматься, как собрать радиоприемник, чтобы он мог «слышать» в нужном диапазоне. Для этого надо быть радиолюбителем, либо иметь одного из них в очень близких друзьях. Можно, конечно, покопаться в Интернете и поискать пошаговую инструкцию по сборке радиоприемника. Но там тоже есть подводные камни, потому что не все необходимые детали можно купить, некоторые приходится делать самому. Поэтому если есть друг-радиолюбитель, то можно спросить у него, как работает радиоприемник, какие детали можно купить, а какие и как надо делать самому, а главное из чего? После того, как ответы на вопросы будут получены, можно приступать к поиску необходимых деталей, как для приемника, так и деталей для деталей к своему радио.

Придется немало побегать по магазинам, поискать в кладовой старую технику и поковыряться в ней в поисках нужных деталей. После этого придется много времени провести с паяльником в руках и израсходовать несколько грамм олова и проводов. И вот, когда все детали будут готовы, надо будет обратиться к другу с вопросом, как сделать радиоприемник, чтобы он работал надежно и долго. Каким будет радиоприемник, значения большого не имеет. И самодельный и покупной приемник принимает радиоволны. Если он будет приносить удовольствие своему хозяину, значит, он выполнит свое предназначение.

С помощью магнитолы можно скоротать время в пути. Обычно водители предпочитают слушать музыку ненавязчивую, чтобы играла фоном и не мешала рулить. Для этого больше всего подходит авторадио, которое сперва нужно настроить. Но многие не знают, как правильно настроить радио на магнитоле в машине.

В основном настройка радио заключается в нескольких несложных этапах. Выбирается диапазон вещания и проводится поиск радиоканалов, которые сохраняются в памяти тюнера. Поиск радиостанций происходит либо в автоматическом, либо в ручном режиме. В первом случае радиоканалы сохраняются в порядке убывания качества вещания.

Рассмотрим более подробно, как провести настройку радио на распространенных автомагнитолах.

Пионер

Если вы задались вопросом, как настроить радио на магнитоле Pioneer, не переживайте, настройка происходит очень легко. При автоматической настройке Пионера нажимается FUNC, следом BSM. Для старта поиска радиоканалов нажимается кнопка вправо или вверх, после окончания включится музыка первой найденной радиостанции.

Для ручной установки в режиме BAND продолжительно нажимается >>|. Будет запущен поиск любой первой станции в этом радиусе. После чего аппарат перестанет сканировать и включит воспроизведение найденной станции. Затем нужно будет её сохранить, для этого долго держите клавишу с нужным номером. Если вам не нужна найденная станция, нужно нажать клавишу вправо и удерживать её. Сканирование продолжится до момента нахождения новой станции.

С помощью данной функции можно сохранить в памяти до 6 станций в первом банке. После данной манипуляции нажимаем на кнопку BAND и попадаем во второй банк, он на дисплее показывается надписью F2. Во втором банке можно аналогично записать в память до 6 станций, а также существует и третий банк. Чаще всего банков три, но их бывает и больше. В итоге при наличии трёх банков у вас будут активны и сохранены 18 станций. Теперь вы знаете, как настроить радио на магнитоле Пионер.

Сони

Настроить радио в магнитоле Sony также не составит проблем. Поиск станций осуществляется обычно двумя распространенными способами: вручную или автоматически. Автоматическое запоминание радиостанций:

  1. Включить магнитолу. Длительно нажав кнопку Source, дождаться появления на табло надписи ТЮНЕР.
  2. Смена диапазона происходит при нажатии кнопки Mode. В случае нажатия на регулятор-джойстик высветится меню опций.
  3. Крутить джойстик до появления надписи опции ВТМ. Радиоканалы стандартно закрепляются за клавишами с номером.

Для ручного сканирования и сохранения необходимо:

  1. Включить радио и начать поиск станций.
  2. После того как будет найдена нужная радиостанция, требуется нажать номерную клавишу от 1 до 6, после чего появится название «Mem». Примечание: при сохранении радиостанции на цифре, у которой уже есть радиостанция, предыдущая автоматически стирается.

Таким образом, настроить радио в магнитоле Сони можно за 5-10 минут.

Супра

После нажатия кнопки MODE выбираем функцию Радио, затем на экране высветится RADIO и сохранённый диапазон с частотой вещания. При нажатии BND выбирается нужный диапазон радиовещания.

Нажать и удержать кнопку >>||.

Потом нажмите кнопку >>|| для выбора нужной станции. Если эти клавиши не нажимать до десяти секунд, все вернётся в исходный режим работы.

Настройка в автоматическом режиме и осуществление сканирования выбранных радиостанций

Поиск существующих в памяти радиостанций:

Кратковременно нажав клавишу AS/PS, запустите поиск сохранённых радиоканалов. Любая станция может прослушиваться примерно пару секунд. Для автоматического сохранения радиоканалов удерживайте клавишу AS/PS. Приемник настроит шесть оптимальных станций, которые являются наиболее мощными в этом диапазоне вещания. Данная опция может быть применена в любом волновом диапазоне. После завершения автоматического сохранения станций приёмник прекратит их сканирование.

Для настройки определённой радиостанции нажмите кнопку >>||, так осуществится сканирование и выбор радиоканалов с лучшим сигналом приёма. Нажав кнопку >>||, можно вручную выбрать нужную вам станцию. Удержите клавишу с номерами от 1 до 6 примерно пару секунд для запоминания канала под нужной клавишей.

JVS

При настройке станций есть возможность оставить в тюнере 30 радиоканалов FM и 15 каналов АМ.

Установка станций вручную:

  1. Выбираем полосу вещания, нажимая клавишу TUNER BAND.
  2. Кликните на кнопку 4 для осуществления установки станции.
  3. Удержите клавишу с любым выбранным номером на панели для запоминания станции в памяти магнитолы. Избранный номер начнёт моргать, после чего вы увидите станцию, сохранённую под выбранным номером. Например: Для настройки станции под цифрой 14 нажмите клавишу +10, а после этого клавишу 4 примерно на три секунды или более.
  4. Для сохранения в памяти устройства других радиостанций нужно повторить пункты с первого по третий. А для изменения настройки всей станции нужно повторить весь процесс сначала.

Настройка станций в автоматическом режиме:

Станциям будут даны номера путем повышения частоты радиуса действия.

  1. Выбрать радиус действия, нажав клавишу TUNER BAND.
  2. Нажать и удерживать кнопку AUTO PRESET на панели.
  3. Для установки другого радиуса действия нужно вновь пройти этапы с первого по второй.

Для замены выбранных станций в автоматическом режиме нужно использовать ручную установку.

Кенвуд

Магнитолы Кенвуд предлагают три вида настройки авторадио: автоматический (AUTO), локальный (LO.S.) и ручной.

  1. Нажмите SRC до появления надписи «TUnE».
  2. Нажмите FM или АМ для выбора диапазона.

При автоматической настройке жмите >>| или |.

В случае ручной настройки после всех вышеизложенных действий загорится ST, означающая найденную станцию.

Долгое время радиоприёмники возглавляли список самых значимых изобретений человечества. Первые такие устройства сейчас реконструированы и изменены под современный лад, однако в схеме их сборки мало что поменялось — та же антенна, то же заземление и колебательный контур для отсеивания ненужного сигнала. Бесспорно, схемы сильно усложнились со времён создателя радио — Попова. Его последователями были разработаны транзисторы и микросхемы для воспроизведения более качественного и энергозатратного сигнала.

Почему лучше начинать с простых схем?

Если вам понятна простая то можете быть уверены, что большая часть пути достижения успеха в сфере сборки и эксплуатации уже осилена. В этой статье мы разберём несколько схем таких приборов, историю их возникновения и основные характеристики: частоту, диапазон и т. д.

Историческая справка

7 мая 1895 года считается днём рождения радиоприёмника. В этот день российский учёный А. С. Попов продемонстрировал свой аппарат на заседании Русского физико-химического общества.

В 1899 году была построена первая линия радиосвязи длиной 45 км между и городом Котка. Во время Первой мировой войны получили распространение приёмник прямого усиления и электронные лампы. Во время военных действий наличие радио оказалось стратегически необходимым.

В 1918 году одновременно во Франции, Германии и США учёными Л. Левви, Л. Шоттки и Э. Армстронгом был разработан метод супергетеродинного приёма, но из-за слабых электронных ламп широкое распространение этот принцип получил только в 1930-х годах.

Транзисторные устройства появились и развивались в 50-х и 60-х годах. Первый широко используемый радиоприёмник на четырёх транзисторах Regency TR-1 был создан немецким физиком Гербертом Матаре при поддержке промышленника Якоба Михаэля. Он поступил в продажу в США в 1954 году. Все старые радиоприёмники работали на транзисторах.

В 70-х начинается изучение и внедрение интегральных микросхем. Сейчас приёмники развиваются с помощью большой интеграции узлов и цифровой обработки сигналов.

Характеристики приборов

Как старые радиоприёмники, так и современные обладают определёнными характеристиками:

  1. Чувствительность — способность принимать слабые сигналы.
  2. Динамический диапазон — измеряется в Герцах.
  3. Помехоустойчивость.
  4. Селективность (избирательность) — способность подавлять посторонние сигналы.
  5. Уровень собственных шумов.
  6. Стабильность.

Эти характеристики не меняются в новых поколениях приёмников и определяют их работоспособность и удобство эксплуатации.

Принцип работы радиоприёмников

В самом общем виде радиоприёмники СССР работали по следующей схеме:

  1. Из-за колебаний электромагнитного поля в антенне появляется переменный ток.
  2. Колебания фильтруются (селективность) для отделения информации от помех, т. е. из сигнала выделяется его важная составляющая.
  3. Полученный сигнал преобразуется в звук (в случае радиоприёмников).

По схожему принципу появляется изображение на телевизоре, передаются цифровые данные, работает радиоуправляемая техника (детские вертолёты, машинки).

Первый приёмник был больше похож на стеклянную трубку с двумя электродами и опилками внутри. Работа осуществлялась по принципу действия зарядов на металлический порошок. Приёмник обладал огромным по современным меркам сопротивлением (до 1000 Ом) из-за того, что опилки плохо контактировали между собой, и часть заряда проскакивала в воздушное пространство, где рассеивалась. Со временем эти опилки были заменены колебательным контуром и транзисторами для сохранения и передачи энергии.

В зависимости от индивидуальной схемы приёмника сигнал в нём может проходить дополнительную фильтрацию по амплитуде и частоте, усиление, оцифровку для дальнейшей программной обработки и т. д. Простая схема радиоприёмника предусматривает единичную обработку сигнала.

Терминология

Колебательным контуром в простейшем виде называются катушка и конденсатор, замкнутые в цепь. С помощью них из всех поступающих сигналов можно выделить нужный за счёт собственной частоты колебаний контура. Радиоприемники СССР, как, впрочем, и современные устройства, основаны на этом сегменте. Как все это функционирует?

Как правило, питание радиоприёмников происходит за счёт батареек, количество которых варьируется от 1 до 9. Для транзисторных аппаратов широко используются батареи 7Д-0.1 и типа «Крона» напряжением до 9 В. Чем больше батареек требует простая схема радиоприёмника, тем дольше он будет работать.

По частоте принимаемых сигналов устройства делятся на следующие типы:

  1. Длинноволновые (ДВ) — от 150 до 450 кГц (легко рассеиваются в ионосфере). Значение имеют приземлённые волны, интенсивность которых уменьшается с расстоянием.
  2. Средневолновые (СВ) — от 500 до 1500 кГц (легко рассеиваются в ионосфере днём, но ночью отражаются). В светлое время суток радиус действия определяется приземлёнными волнами, ночью — отражёнными.
  3. Коротковолновые (КВ) — от 3 до 30 МГц (не приземляются, исключительно отражаются ионосферой, поэтому вокруг приёмника существует зона радиомолчания). При малой мощности передатчика короткие волны могут распространяться на большие расстояния.
  4. Ультракоротковолновые (УКВ) — от 30 до 300 МГц (имеют высокую приникающую способность, как правило, отражаются ионосферой и легко огибают препятствия).
  5. — от 300 МГц до 3 ГГц (используются в сотовой связи и Wi-Fi, действуют в пределах видимости, не огибают препятствия и распространяются прямолинейно).
  6. Крайневысокочастотные (КВЧ) — от 3 до 30 ГГц (используются для спутниковой связи, отражаются от препятствий и действуют в пределах прямой видимости).
  7. Гипервысокочастотные (ГВЧ) — от 30 ГГц до 300 ГГц (не огибают препятствий и отражаются как свет, используются крайне ограниченно).

При использовании КВ, СВ и ДВ радиовещание можно вести, находясь далеко от станции. УКВ-диапазон принимает сигналы более специфично, но если станция поддерживает только его, то слушать на других частотах не получится. В приёмник можно внедрить плейер для прослушивания музыки, проектор для отображения на удалённые поверхности, часы и будильник. Описание схемы радиоприёмника с подобными дополнениями усложнится.

Внедрение в радиоприёмники микросхемы позволило значительно увеличить радиус приёма и частоту сигналов. Их главное преимущество в сравнительно малом потреблении энергии и маленьком размере, что удобно для переноса. Микросхема содержит все необходимые параметры для понижения дискретизации сигнала и удобства чтения выходных данных. Цифровая обработка сигнала доминирует в современных устройствах. были предназначены только для передачи аудиосигнала, лишь в последние десятилетия устройство приёмников развилось и усложнилось.

Схемы простейших приёмников

Схема простейшего радиоприёмника для сборки дома была разработана ещё во времена СССР. Тогда, как и сейчас, устройства разделялись на детекторные, прямого усиления, прямого преобразования, супергетеродинного типа, рефлексные, регенеративные и сверхрегенеративные. Наиболее простыми в восприятии и сборке считаются детекторные приёмники, с которых, можно считать, началось развитие радио в начале 20-ог века. Наиболее сложными в построении стали устройства на микросхемах и нескольких транзисторах. Однако если вы разберетесь в одной схеме, другие уже не будут представлять проблемы.

Простой детекторный приёмник

Схема простейшего радиоприёмника содержит в себе две детали: германиевый диод (подойдут Д8 и Д9) и главный телефон с высоким сопротивлением (ТОН1 или ТОН2). Так как в цепи не присутствует колебательный контур, ловить сигналы определённой радиостанции, транслирующиеся в данной местности, он не сможет, но со своей основной задачей справиться.

Для работы понадобится хорошая антенна, которую можно закинуть на дерево, и провод заземления. Для верности его достаточно присоединить к массивному металлическому обломку (например, к ведру) и закопать на несколько сантиметров в землю.

Вариант с колебательным контуром

В прошлую схему для внедрения избирательности можно добавить катушку индуктивности и конденсатор, создав колебательный контур. Теперь при желании можно поймать сигнал конкретной радиостанции и даже усилить его.

Ламповый регенеративный коротковолновой приёмник

Ламповые радиоприёмники, схема которых довольно проста, изготавливаются для приёма сигналов любительских станций на небольших расстояниях — на диапазоны от УКВ (ультракоротковолнового) до ДВ (длинноволнового). На этой схеме работают пальчиковые батарейные лампы. Они лучше всего генерируют на УКВ. А сопротивление анодной нагрузки снимает низкая частота. Все детали приведены на схеме, самодельными можно считать только катушки и дроссель. Если вы хотите принимать телевизионный сигналы, то катушка L2 (EBF11) составляется из 7 витков диаметром 15 мм и провода на 1,5 мм. Для подойдет 5 витков.

Радиоприёмник прямого усиления на двух транзисторах

Схема содержит и двухкаскадный усилитель НЧ — это настраиваемый входной колебательный контур радиоприёмника. Первый каскад — детектор ВЧ модулированного сигнала. Катушка индуктивности намотана в 80 витков проводом ПЭВ-0,25 (от шестого витка идёт отвод снизу по схеме) на ферритовом стержне диаметром 10 мм и длиной 40.

Подобная простая схема радиоприёмника рассчитана на распознавание мощных сигналов от недалёких станций.

Сверхгенеративное устройство на FM-диапазоны

FM-приёмник, собранный по модели Е. Солодовникова, несложен в сборке, но обладает высокой чувствительностью (до 1 мкВ). Такие устройства используют для высокочастотных сигналов (более 1МГЦ) с амплитудной модуляцией. Благодаря сильной положительной обратной связи коэффициент возрастает до бесконечности, и схема переходит в режим генерации. По этой причине происходит самовозбуждение. Чтобы его избежать и использовать приёмник как высокочастотный усилитель, установите уровень коэффициента и, когда дойдет до этого значения, резко снизьте до минимума. Для постоянного мониторинга усиления можно использовать генератор пилообразных импульсов, а можно сделать проще.

На практике нередко в качестве генератора выступает сам усилитель. С помощью фильтров (R6C7), выделяющих сигналы низких частот, ограничивается проход ультразвуковых колебаний на вход последующего каскада УНЧ. Для FM-сигналов 100-108 МГц катушка L1 преобразуется в полувиток с сечением 30 мм и линейной частью 20 мм при диаметре провода 1 мм. А катушка L2 содержит 2-3 витка диаметром 15 мм и провод с сечением 0,7 мм внутри полувитка. Возможно усиление приёмника для сигналов от 87,5 МГц.

Устройство на микросхеме

КВ-радиоприёмник, схема которого была разработана в 70-е годы, сейчас считают прототипом Интернета. Коротковолновые сигналы (3-30 МГц) путешествуют на огромные расстояния. Нетрудно настроить приёмник для прослушивания трансляции в другой стране. За это прототип получил название мирового радио.

Простой КВ-приёмник

Более простая схема радиоприёмника лишена микросхемы. Перекрывает диапазон от 4 до 13 МГц по частоте и до 75 метров по длине. Питание — 9 В от батареи «Крона». В качестве антенны может служить монтажный провод. Приёмник работает на наушники от плейера. Высокочастотный трактат построен на транзисторах VT1 и VT2. За счёт конденсатора С3 возникает положительный обратный заряд, регулируемый резистором R5.

Современные радиоприёмники

Современные аппараты очень похожи на радиоприёмники СССР: они используют ту же антенну, на которой возникают слабые электромагнитные колебания. В антенне появляются высокочастотные колебания от разных радиостанций. Они не используются непосредственно для передачи сигнала, но осуществляют работу последующей цепи. Сейчас такой эффект достигается с помощью полупроводниковых приборов.

Широкое развитие приёмники получили в середине 20-го века и с тех пор непрерывно улучшаются, несмотря на замену их мобильными телефонами, планшетами и телевизорами.

Общее устройство радиоприёмников со времён Попова изменилось незначительно. Можно сказать, что схемы сильно усложнились, добавились микросхемы и транзисторы, стало возможным принимать не только аудиосигнал, но и встраивать проектор. Так приёмники эволюционировали в телевизоры. Сейчас при желании в аппарат можно встроить всё, что душе угодно.

Поставщики и ресурсы RF Wireless

О RF Wireless World

Веб-сайт RF Wireless World является домом для поставщиков и ресурсов RF и Wireless. На сайте представлены статьи, учебные пособия, поставщики, терминология, исходный код (VHDL, Verilog, MATLAB, Labview), тесты и измерения, калькуляторы, новости, книги, загрузки и многое другое.

Сайт RF Wireless World охватывает ресурсы по различным темам, таким как RF, беспроводная связь, vsat, спутник, радар, оптоволокно, микроволновая печь, wimax, wlan, zigbee, LTE, 5G NR, GSM, GPRS, GPS, WCDMA, UMTS, TDSCDMA, Bluetooth, Lightwave RF, z-wave, Интернет вещей (IoT), M2M, Ethernet и т. д.Эти ресурсы основаны на стандартах IEEE и 3GPP. Он также имеет академический раздел, который охватывает колледжи и университеты по инженерным дисциплинам и дисциплинам MBA.

Статьи о системах на основе IoT

Система обнаружения падений для пожилых людей на основе IoT : В статье рассматривается архитектура системы обнаружения падений, используемой для пожилых людей. В нем упоминаются преимущества или преимущества системы обнаружения падения IoT. Подробнее➤
Также см. другие статьи о системах на основе IoT:
. • Система очистки туалетов AirCraft • Система измерения удара при столкновении • Система отслеживания скоропортящихся продуктов и овощей • Система помощи водителю • Система умной розничной торговли • Система мониторинга качества воды • Система интеллектуальной сети • Умная система освещения на основе Zigbee • Умная система парковки на базе Zigbee • Умная система парковки на базе LoRaWAN.


Радиочастотные беспроводные изделия

Этот раздел статей охватывает статьи о физическом уровне (PHY), уровне MAC, стеке протоколов и сетевой архитектуре на основе WLAN, WiMAX, zigbee, GSM, GPRS, TD-SCDMA, LTE, 5G NR, VSAT, Gigabit Ethernet на основе IEEE/3GPP и т. д. .стандарты. Он также охватывает статьи, связанные с испытаниями и измерениями, посвященные испытаниям на соответствие, используемым для испытаний устройств на соответствие RF/PHY. СМ. УКАЗАТЕЛЬ СТАТЕЙ >>.


Физический уровень 5G NR : Обработка физического уровня для канала 5G NR PDSCH и канала 5G NR PUSCH была рассмотрена поэтапно. Это описание физического уровня 5G соответствует спецификациям физического уровня 3GPP. Подробнее➤


Основные сведения о повторителях и типы повторителей : В нем объясняются функции различных типов повторителей, используемых в беспроводных технологиях.Подробнее➤


Основы и типы замираний : В этой статье рассматриваются мелкомасштабные замирания, крупномасштабные замирания, медленные замирания, быстрые замирания и т. д., используемые в беспроводной связи. Подробнее➤


Архитектура сотового телефона 5G : В этой статье рассматривается блок-схема сотового телефона 5G с внутренними модулями 5G. Архитектура сотового телефона. Подробнее➤


Основы интерференции и типы интерференции: В этой статье рассматриваются интерференция по соседнему каналу, Электромагнитные помехи, ICI, ISI, световые помехи, звуковые помехи и т. д.Подробнее➤


5G NR Раздел

В этом разделе рассматриваются функции 5G NR (новое радио), нумерология, диапазоны, архитектура, развертывание, стек протоколов (PHY, MAC, RLC, PDCP, RRC) и т. д. 5G NR Краткий справочный индекс >>
• Мини-слот 5G NR • Часть полосы пропускания 5G NR • БАЗОВЫЙ НАБОР 5G NR • Форматы 5G NR DCI • 5G NR UCI • Форматы слотов 5G NR • IE 5G NR RRC • 5G NR SSB, SS, PBCH • 5G NR PRACH • 5G NR PDCCH • 5G NR PUCCH • Опорные сигналы 5G NR • 5G NR m-Sequence • Золотая последовательность 5G NR • 5G NR Zadoff Chu Sequence • Физический уровень 5G NR • MAC-уровень 5G NR • Уровень 5G NR RLC • Уровень PDCP 5G NR


Руководства по беспроводным технологиям

В этом разделе рассматриваются учебные пособия по радиочастотам и беспроводным сетям.Он охватывает учебные пособия по таким темам, как сотовая связь, WLAN (11ac, 11ad), wimax, bluetooth, zigbee, zwave, LTE, DSP, GSM, GPRS, GPS, UMTS, CDMA, UWB, RFID, радар, VSAT, спутник, беспроводная сеть, волновод, антенна, фемтосота, тестирование и измерения, IoT и т. д. См. ИНДЕКС УЧЕБНЫХ ПОСОБИЙ >>


Учебное пособие по 5G . В этом учебном пособии по 5G также рассматриваются следующие подтемы, посвященные технологии 5G:
Учебное пособие по основам 5G. Диапазоны частот учебник по миллиметровым волнам Рамка волны 5G мм Зондирование канала миллиметровых волн 5G 4G против 5G Испытательное оборудование 5G Архитектура сети 5G Сетевые интерфейсы 5G NR звучание канала Типы каналов 5G FDD против TDD Нарезка сети 5G NR Что такое 5G NR Режимы развертывания 5G NR Что такое 5G ТФ


В этом учебнике GSM рассматриваются основы GSM, сетевая архитектура, сетевые элементы, системные спецификации, приложения, Типы пакетов GSM, структура кадров GSM или иерархия кадров, логические каналы, физические каналы, Физический уровень GSM или обработка речи, вход в сеть мобильного телефона GSM или настройка вызова или процедура включения питания, Вызов MO, вызов MT, модуляция VAMOS, AMR, MSK, GMSK, физический уровень, стек протоколов, основы мобильного телефона, Планирование RF, нисходящая линия связи PS и восходящая линия связи PS.
➤Читать дальше.

LTE Tutorial , описывающий архитектуру системы LTE, включая основы LTE EUTRAN и LTE Evolved Packet Core (EPC). Он предоставляет ссылку на обзор системы LTE, радиоинтерфейс LTE, терминологию LTE, категории LTE UE, структуру кадра LTE, физический уровень LTE, Стек протоколов LTE, каналы LTE (логические, транспортные, физические), пропускная способность LTE, агрегация несущих LTE, Voice Over LTE, расширенный LTE, Поставщики LTE и LTE vs LTE advanced.➤Читать дальше.


Радиочастотные технологии

На этой странице мира беспроводных радиочастот описывается пошаговое проектирование преобразователя частоты на примере повышающего преобразователя частоты 70 МГц в диапазон C. для микрополосковой платы с использованием дискретных радиочастотных компонентов, а именно. Смесители, гетеродин, MMIC, синтезатор, опорный генератор OCXO, амортизирующие прокладки. ➤Читать дальше.
➤ Проектирование и разработка радиочастотного трансивера ➤Дизайн радиочастотного фильтра ➤Система VSAT ➤Типы и основы микрополосковых ➤Основы волновода


Секция испытаний и измерений

В этом разделе рассматриваются ресурсы по контролю и измерению, контрольно-измерительное оборудование для тестирования тестируемых устройств на основе Стандарты WLAN, WiMAX, Zigbee, Bluetooth, GSM, UMTS, LTE.ИНДЕКС испытаний и измерений >>
➤Система PXI для контрольно-измерительных приборов. ➤ Генерация и анализ сигналов ➤ Измерения физического уровня ➤ Тестирование устройства WiMAX на соответствие ➤ Тест на соответствие Zigbee ➤ Тест на соответствие LTE UE ➤ Тест на соответствие TD-SCDMA


Волоконно-оптические технологии

Волоконно-оптический компонент основы, включая детектор, оптический соединитель, изолятор, циркулятор, переключатели, усилитель, фильтр, эквалайзер, мультиплексор, разъемы, демультиплексор и т. д.Эти компоненты используются в оптоволоконной связи. ИНДЕКС оптических компонентов >>
➤Учебное пособие по оптоволоконной связи ➤APS в SDH ➤Основы SONET ➤ Структура кадра SDH ➤ SONET против SDH


Поставщики беспроводных радиочастотных устройств, производители

Сайт RF Wireless World охватывает производителей и поставщиков различных радиочастотных компонентов, систем и подсистем для ярких приложений, см. ИНДЕКС поставщиков >>.

Поставщики ВЧ-компонентов, включая ВЧ-изолятор, ВЧ-циркулятор, ВЧ-смеситель, ВЧ-усилитель, ВЧ-адаптер, ВЧ-разъем, ВЧ-модулятор, ВЧ-трансивер, PLL, VCO, синтезатор, антенну, осциллятор, делитель мощности, сумматор мощности, фильтр, аттенюатор, диплексер, дуплексер, чип-резистор, чип-конденсатор, чип-индуктор, ответвитель, ЭМС, программное обеспечение RF Design, диэлектрический материал, диод и т. д.Поставщики радиочастотных компонентов >>
➤ Базовая станция LTE ➤ РЧ-циркулятор ➤РЧ-изолятор ➤Кристаллический осциллятор


MATLAB, Labview, Embedded Исходные коды

Раздел исходного кода RF Wireless World охватывает коды, связанные с языками программирования MATLAB, VHDL, VERILOG и LABVIEW. Эти коды полезны для новичков в этих языках. СМ. УКАЗАТЕЛЬ ИСТОЧНИКОВ >>
➤ Код VHDL декодера от 3 до 8 ➤Скремблер-дескремблер Код MATLAB ➤32-битный код ALU Verilog ➤ T, D, JK, SR триггер коды labview


*Общая медицинская информация*

Сделайте эти пять простых вещей, чтобы помочь остановить коронавирус (COVID-19).
СДЕЛАЙ ПЯТЬ
1. РУКИ: чаще мойте их
2. ЛОКОТЬ: Кашляй в него
3. ЛИЦО: Не трогай
4. НОГИ: держитесь на расстоянии более 1 метра друг от друга
5. ЧУВСТВУЙТЕ: заболели? Оставайтесь дома

Используйте технологию отслеживания контактов >> , следуйте рекомендациям по социальному дистанцированию >> и установить систему наблюдения за данными >> спасти сотни жизней. Использование концепции телемедицины стало очень популярным в таких стран, как США и Китай, чтобы остановить распространение COVID-19, поскольку это заразное заболевание.


Радиочастотные калькуляторы и преобразователи

Раздел «Калькуляторы и преобразователи» охватывает ВЧ-калькуляторы, беспроводные калькуляторы, а также преобразователи единиц измерения. Они охватывают беспроводные технологии, такие как GSM, UMTS, LTE, 5G NR и т. д. СМ. КАЛЬКУЛЯТОРЫ Указатель >>.
➤ Калькулятор пропускной способности 5G NR ➤ 5G NR ARFCN и преобразование частоты ➤ Калькулятор скорости передачи данных LoRa ➤ LTE EARFCN для преобразования частоты ➤ Калькулятор антенны Yagi ➤ Калькулятор времени выборки 5G NR


IoT-Интернет вещей Беспроводные технологии

В разделе, посвященном IoT, рассматриваются беспроводные технологии Интернета вещей, такие как WLAN, WiMAX, Zigbee, Z-wave, UMTS, LTE, GSM, GPRS, THREAD, EnOcean, LoRa, SIGFOX, WHDI, Ethernet, 6LoWPAN, RF4CE, Bluetooth, Bluetooth с низким энергопотреблением (BLE), NFC, RFID, INSTEON, X10, KNX, ANT+, Wavenis, Dash7, HomePlug и другие.Он также охватывает датчики IoT, компоненты IoT и компании IoT.
См. главную страницу IoT>> и следующие ссылки.
➤РЕЗЬБА ➤EnOcean ➤ Учебник LoRa ➤ Учебник по SIGFOX ➤ WHDI ➤6LoWPAN ➤Зигби RF4CE ➤NFC ➤Лонворкс ➤CEBus ➤УПБ



СВЯЗАННЫЕ ПОСТЫ


Учебники по беспроводным радиочастотам



Различные типы датчиков


Поделиться этой страницей

Перевести эту страницу

Блок-схема FM-приемника

, принцип работы легко понять


Привет, мы собираемся узнать о блок-схеме FM-приемника и принципе работы.Основная функция схемы FM-приемника — принимать радиосигнал и преобразовывать его в аудиосигнал. Схемы FM-приемника в основном используются на радиовещательных станциях. Хорошая схема FM-приемника должна иметь возможность правильно принимать сигналы, иметь широкую полосу пропускания, очень низкий уровень шума, очень низкие помехи и т. д. Здесь вы найдете блок-схему FM-приемника, которая поможет вам понять принцип работы FM-приемника.

Блок-схема FM-приемника


Здесь вы можете увидеть простую блок-схему FM-приемника.

Принцип работы FM-приемника


Чтобы легко понять принцип работы FM-приемника, см. блок-схему. Первый блок — Антенна.

Антенна используется для приема радиосигналов и их перехвата. Следующий блок — усилитель радиочастоты или радиочастотный усилитель. Радиочастотный усилитель используется для усиления радиочастотного сигнала, принимаемого антенной. Принимаемый радиочастотный сигнал очень слабый, поэтому его необходимо усилить. ВЧ-усилитель также отвечает за шумоподавление, согласование импеданса и т. д.

Следующим этапом является этап микшера. Схема смесителя принимает на вход два сигнала: один представляет собой усиленный ВЧ-сигнал, поступающий от ВЧ-усилителя, а другой представляет собой колебательный сигнал, поступающий от гетеродина. Комбинируя эти два сигнала, схема смесителя генерирует сигнал ПЧ.

Схема усилителя ПЧ принимает сигнал ПЧ или сигнал промежуточной частоты, поступающий от схемы микшера, и усиливает его.

Схема демодулятора ЧМ используется для демодуляции ЧМ-сигнала.Схема ЧМ-демодулятора восстанавливает фактический модулированный сигнал, поступающий от схемы передатчика в виде радиосигнала. Схема демодулятора выдает на выходе сигнал с ослаблением акцента.

После пропуска сигнала де-выделения (идущего от цепи демодулятора) через усилитель напряжения звуковой частоты или звуковой частоты мы получаем исходный звуковой сигнал, который был отправлен с отправляющей станции.

Наконец, звуковой сигнал подается на схему усилителя мощности для его усиления.Затем выход усилителя мощности подается на динамик.

Читайте также:


Благодарим Вас за посещение сайта. продолжайте посещать для получения дополнительных обновлений.

Создание FM-радиоприемника, использующего конденсатор в качестве резервного компонента.

Аннотация

Отправка и получение информации (коммуникация) является одним из неблагополучных предприятий, но жизненно важным в повседневной жизни. Среди различных средств связи наиболее распространенным и дешевым является радио, проникающее даже в отдаленные помещения с ограниченными помехами.В радиовещании у нас есть амплитудная модуляция (AM) и частотная модуляция (FM). Тем не менее, в этом исследовании основное внимание уделяется FM, анализируя FM-радиоприемник. Разработка схемы FM-радиоприемника, идентификация, затем включение резервного конденсатора в схему, а затем проверка их работоспособности были основными задачами исследования. В качестве резервного источника питания используется конденсатор 16 В/1 мФ. При подаче питания в цепь начинает работать приемник, а также заряжается конденсатор.Но в случае, если источник больше не может поддерживать работу схемы в какой-либо точке из-за колебаний входного напряжения, конденсатор берет на себя подачу своего напряжения, чтобы перекрыть разрыв в неравномерностях напряжения как способ процесса разрядки. . Когда источник получает усиление, конденсатор снимает опору, а затем обращается к процессу зарядки, чтобы сохранить напряжение, которое он, в свою очередь, подает в цепь в момент, когда колебание появляется снова. Также указаны графики, иллюстрирующие процесс зарядки и разрядки резервного конденсатора.Были проанализированы различные электронные компоненты, которые использовались в исследовании, это было сделано путем изучения их электрических характеристик, таких как сопротивление, емкость, емкостное реактивное сопротивление и индуктивность резистора, конденсатора и катушки индуктивности соответственно и т. д., рационально соединенные, а затем была разработана принципиальная схема, которая показывает процесс соединения в качестве предпочтительной методологии. Это помогло на этапе изготовления, когда компоненты были закреплены на постоянной печатной плате (печатной плате). Пайка компонентов на печатной плате производилась с использованием колбонагревателя.В конце исследования результаты, которые иллюстрируют режим работы теперь FM-радиоприемника, рекомендации, такие как необходимость использования генератора сигналов, если нет специального радиоприемника и т. д., а также выводы были сделаны и обсуждены автором. и куратор.

Схема FM-приемника с использованием CXA1019, работа от 3 В до 7 В, выходная мощность 500 мВт

CXA1019 Цепь FM-приемника

Здесь показана схема высококачественного FM-приемника на микросхеме CXA1019.CXA1019 — биполярный кремниевый монолитный FM/AM-радиоприемник от Sony. Встроенные схемы внутри CXA1019 включают ВЧ-усилитель, микшер, осциллятор, усилитель ПЧ, схему квадратурного обнаружения, электронный регулятор громкости настраивающего светодиодного драйвера, детектор и т. д. ЧМ-секция ИС используется только в этой схеме. Микросхема может питаться от любого напряжения от 3 до 7 В постоянного тока и может управлять громкоговорителем на 8 Ом.

Принципиальная схема.

Схема FM-приемника CXA1019

Описание схемы.

Катушки индуктивности L1, L2 и конденсаторы C4, C6, C7 образуют колебательную цепь для интегральных схем, встроенных в секцию генератора.Выход ПЧ, доступный на выводе 15, заземлен через резистор R1. C1 — это блокирующий конденсатор переменного тока для резистора R1. Конденсатор С16 предназначен для фильтрации пульсаций. Светодиод D1 является индикатором настройки. Выход встроенного каскада детектора (вывод 24) соединен с входом (вывод 25) встроенного каскада усилителя ЗЧ через конденсатор С19, потенциометр R2 и конденсатор С18. POT R2 можно использовать в качестве регулятора громкости, поскольку он управляет входом, подаваемым на каскад аудиоусилителя. Конденсатор C15 соединяет аудиовыход с динамиком, а C14 является шумоподавляющим конденсатором.C5 — это просто фильтр питания, а C20 соединяет антенну с входом FM RF (контакт 13) микросхемы. Выход промежуточной частоты FM, доступный на контакте 15, фильтруется с помощью керамического фильтра 10 МГц и подается на вход промежуточной частоты FM на контакте 18. Конденсатор C2 используется для обхода шума от секции усилителя мощности звука внутри ИС. Выходная мощность этой секции усилителя мощности составляет около 500 мВт. Конденсатор C1 и трансформатор T1 связаны со схемой частотного дискриминатора внутри микросхемы.Резистор R3 является конденсатором обратной связи для секции АРУ.

Примечания.

  • Соберите схему на печатной плате хорошего качества.
  • Для L1 сделайте 2,75 витка эмалированного медного провода 22 SWG на пластиковом шаблоне диаметром 5 мм.
  • Для L2 сделайте 3,75 витка эмалированного медного провода 22 SWG на пластиковом каркасе диаметром 5 мм.
  • T1 — преобразователь ЧМ ПЧ.
  • CF1 — керамический ЧМ-фильтр 10,7 МГц
  • C4 представляет собой двухканальный конденсатор для настройки FM-диапазона емкостью 30 пФ.
  • Схема может питаться от любого напряжения от 3 до 7 В постоянного тока.
  • Использование батареи для питания схемы уменьшит шум и улучшит производительность
  • Если вы используете выпрямитель батареи, то он должен быть хорошо отрегулирован и бесшумен.
  • K1 может быть громкоговорителем мощностью 3 Вт, сопротивлением 8 Ом.
  • A1 может быть штыревой антенной длиной 100 см.
Похожие сообщения

TEA5592 техническое описание — Цепь радиоприемника AM/FM

5962F9683001VPA : Радиационно-стойкий, высокоскоростной, маломощный, операционный видеоусилитель с обратной связью по току и отключенным выходом.

A5355CA : Ионизационный дымовой извещатель с межблочным соединением и защитой от переполюсовки батареи.

AD536A : Преобразователь среднеквадратичного значения в постоянный. Полная монолитная интегральная схема, выполняющая преобразование истинного среднеквадратичного значения в постоянное.

KF435V : Saw Filter (Полосовые фильтры для приемных радиочастотных цепей приемопередатчика).

LA4536M : . Микросхема питания наушников с низким уровнем шума и искажений, предназначенная для использования на портативных компакт-дисках. Меньший расход тока. Примите 16-нагрузочный диск. Отличные характеристики снижения напряжения. Отличное подавление пульсаций. Функция выключателя питания и встроенная схема отключения звука. Низкий уровень шума (7 В), низкое усиление (11 дБ). s Параметр Максимальное напряжение питания Допустимая рассеиваемая мощность.

LM6171 : LM6171 — Высокоскоростной маломощный усилитель с обратной связью по напряжению с малыми искажениями, упаковка: Soic Narrow, Pin Nb=8.

LM715 : Одноместный. Высокоскоростной операционный усилитель (снято с производства). Это быстродействующий монолитный операционный усилитель с высоким коэффициентом усиления, предназначенный для использования в различных приложениях, где требуется быстрое обнаружение сигнала или широкая полоса пропускания. демонстрирует отличную температурную стабильность и волю.

LMV324PW : Низковольтные операционные усилители с выходом Rail-to-rail.LMV321 SINGLE, LMV358 DUAL, LMV324 QUAD ОПЕРАЦИОННЫЕ УСИЛИТЕЛИ НИЗКОГО НАПРЯЖЕНИЯ RAIL-TO-RAIL Выходные характеристики 2,7 В и 5 В Без кроссоверных искажений Низкий потребляемый ток: 130 А, тип. 210 A, тип. 410 A, тип. Варианты упаковки включают в себя пластиковый малогабаритный (D), малогабаритный транзистор (SOT-23 DBV, SC-70 DCK) и тонкий термоусадочный малогабаритный.

LT1013 : LT1013, операционный усилитель двойной точности. 1014 — это первый прецизионный счетверенный операционный усилитель, в котором реализована прямая модернизация стандартных 14-контактных разъемов DIP LM324/LM348/OP-11/4156.больше нет необходимости идти на компромиссы, экономя место на плате и стоимость по сравнению с одиночными операционными усилителями. Низкое напряжение смещения LT1014 50 В, дрейф 0,3 В/Кл.

LV3403M : Фильтр работы 3 В для приема FM-мультиплексного вещания. Это ИС фильтра для приема FM мультиплексного вещания, которая используется в сочетании с ИС коррекции ошибок демодуляции (LC72703). Использование фильтра с переключаемыми конденсаторами (SCF) устраняет необходимость регулировки частоты и обеспечивает стабильную работу.. 76 кГц BPF (фильтр Гаусса). ФВЧ 54 кГц. ФНЧ 125 кГц. Сглаживающий фильтр. Схема ограничителя.

MAX4000 : Контроллеры с радиочастотным обнаружением 2,5 ГГц, 45 дБ. Недорогие маломощные логарифмические усилители MAX4000/MAX4001/MAX4002 предназначены для управления ВЧ-усилителями мощности (УМ), работающими в диапазоне частот до 2,5 ГГц. Типичный динамический диапазон 45 дБ делает это семейство логарифмических усилителей полезным в различных беспроводных приложениях, включая управление громкостью сотовых телефонов, измерение мощности передатчика и RSSI для терминала.

OPA2343EA/250 : ti OPA2343, однополярные, однополярные операционные усилители серии MicroAmplifier(TM).

TDA7220 : Очень низковольтное радио AM-FM. РАБОЧЕЕ НАПРЯЖЕНИЕ ПИТАНИЯ ДО 6В ВЫСОКАЯ ЧУВСТВИТЕЛЬНОСТЬ И НИЗКИЙ ШУМ НИЗКИЙ РАСХОД АККУМУЛЯТОРА ОЧЕНЬ НИЗКИЙ ТВИЧ ВЫСОКИЙ СИГНАЛ ОБРАЩЕНИЕ ОЧЕНЬ ПРОСТОЕ ПЕРЕКЛЮЧЕНИЕ ПОСТОЯННОГО ТОКА AM-FM АМ-СЕКЦИЯ РАБОТАЕТ НА ЧАСТОТЕ 30МГц для использования 3В, 4,5В и 6В портативных AM-FM радиоприемников.Встроенные функции.

TLC071A : . TLC075, TLC07xA СЕМЕЙСТВО ШИРОКОПОЛОСНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ С ВЫСОКИМ ВЫХОДОМ С ОДНИМ ПИТАНИЕМ Широкая полоса пропускания. 10 МГц High Output Drive IOH. мА на VDD V IOL. 0,5 В с высокой скоростью нарастания SR+. 16 В/с имп. 19 В/с Широкий диапазон питания. Ток питания 16 В. 1,9 мА/канал Режим отключения сверхнизкой мощности IDD. 125 А/канал, низкое входное шумовое напряжение. Вход 7 нВГц.

TLE2142AMFK : Малошумящие высокоскоростные прецизионные операционные усилители Excalibur.TLE214xA, TLE214xY EXCALIBUR МАЛОЗУМНЫЕ ВЫСОКОСКОРОСТНЫЕ ОПЕРАЦИОННЫЕ УСИЛИТЕЛИ Малошумящие 10 Гц. 15 нВ/Гц 1 кГц. 10,5 нВ/Гц Допустимая нагрузка 10 000 пФ Минимальный выходной ток короткого замыкания 20 мА Минимальная скорость нарастания 27 В/с Продукт с высоким коэффициентом усиления. 5,9 МГц Низкий VIO. 500 В Макс. при 25°C Одинарное или раздельное питание. 44 В Быстрое время установления до 0,01% восстановления насыщения.

UC2844B : Питание. Высокопроизводительный контроллер токового режима. Серии UC3844B, UC3845B представляют собой высокопроизводительные контроллеры тока с фиксированной частотой.Они специально разработаны для автономных приложений и преобразователей постоянного тока, предлагая разработчику экономичное решение с минимальным количеством внешних компонентов. Эти интегральные схемы имеют генератор, источник опорного напряжения с температурной компенсацией, высокую погрешность усиления.

MAX4999 : Высокоскоростной дифференциальный мультиплексор USB 2.0 8:1 Дифференциальный высокоскоростной аналоговый мультиплексор USB MAX4999 с низкой емкостью включения (CON), что делает его идеальным решением для рынка USB-серверов и запоминающих устройств.MAX4999 предназначен для низко-/полно-/высокоскоростных приложений USB 2.0 с возможностью поддержки скорости передачи данных до 480 Мбит/с.

ADV3221 : 800 МГц, АНАЛОГОВЫЙ МУЛЬТИПЛЕКС 4:1 ADV3221 и ADV3222 представляют собой высокоскоростные аналоговые мультиплексоры с высокой скоростью нарастания и буферизацией 4:1.

Добавить комментарий

Ваш адрес email не будет опубликован.