Схема однофазного электродвигателя: Упс… Кажется такой страницы нет на сайте

Содержание

Простая схема однофазного двигателя

Как подключить однофазный двигатель

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими

    Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Источник

Схема однофазного двигателя – советы электрика

Схемы подключения однофазных электродвигателей

Вопрос как подключить однофазный электродвигатель очень часто возникает на практике из-за высокой популярности применения подобных агрегатов для решения различных бытовых задач.

Схема подключения однофазного электродвигателя достаточно проста и требует учета всего одного принципиального момента: для обеспечения его работоспособности необходимо вращающееся магнитное поле. При наличии только однофазной сети переменного тока на момент запуска электродвигателя его приходится формировать искусственно через применение соответствующих схемных решений.

  • Обмотки электромотора
  • Особенности формирования вращающего момента
  • Конденсаторы
  • Косвенное включение
  • Особенности применения магнитного пускателя
  • Заключение

Обмотки электромотора

Укладка обмоток в статоре однофазного электродвигателя

Конструкция любого однофазного электродвигателя предполагает использование как минимум трех катушек. Две из них являются элементов конструкции статора,включены параллельно.

Одна из них является рабочей, а вторая выполняет функции пусковой. Их клеммы выведены на корпус двигателя и используются для подключения к сети. Обмотка ротора выполнена короткозамкнутой.

К сети подключатся две из них, остальные служат для коммутации.

Визуально идентифицировать рабочую и пусковую обмотку можно по сечению провода: у первой из них оно заметно больше. Можно замерить сопротивление тестером подключением его к клеммам: у рабочей обмотки его величина будет меньше. Как правило, сопротивления обмоток будет составлять не более нескольких десятков Ом.

Особенности формирования вращающего момента

Магнитное поле, создаваемое катушками электродвигателя, имеет фазовый сдвиг на 90 градусов. Это обычно достигается через конденсатор, который последовательно включается в цепь запуска. Возможные варианты соединения показаны на рисунке ниже.

Варианты создания сдвига фаз

Пусковая катушка может работать постоянно. Допустима также схема, основанная на ее отключении после достижения номинальной частоты вращения ротора. Постоянное подключение пусковой обмотки усложняет конструкцию двигателя, но улучшает его характеристики. На особенностях подключения к сети эти различия не сказываются.

Однофазный электромотор позволяет простыми средствами изменить направление вращения вала на противоположное. Для этого производится сдвиг фазы тока, поступающего от сети и протекающего через цепи запуска, меняется на противоположный. Данная процедура реализуется простым изменением порядка включения пусковой обмотки при ее соединении с рабочей обмоткой.

Конденсаторы

Подключение однофазного двигателя

Прежде чем приступить к подключению любого электродвигателя, необходимо быть полностью уверенным, что двигатель рабочий. Провести полную ревизию для проверки качества подшипников, отсутствия люфтов на посадочных местах ротора и в крышках двигателя. Провести проверку обмоток на замыкание между собой и на корпус.

Так-же при подключении необходимо соблюдать технику безопасности, быть предельно внимательным и работать без спешки.

Для подключения однофазного электродвигателя с пусковой обмоткой нам понадобится включатель с пусковым контактом – ПНВС. Число после букв означает силу тока на которую рассчитан данный выключатель.

В предыдущей статье я рассказал как определить тип двигателя, трёхфазный он или однофазный.

И если вы сомневаетесь в том, конденсаторный это двигатель или с пусковой обмоткой, то вам необходимо сначала подключить двигатель как с пусковой обмоткой и если он не запустится значит он конденсаторный.

Для того, чтобы узнать какая из двух обмоток является рабочей, необходимо измерить их сопротивление. Та катушка, которая будет иметь меньшее сопротивление является рабочей. Исключение составляет очень небольшой процент конденсаторных двигателей, у которых и рабочая обмотка и конденсаторная одинаковы и имеют одно сопротивление.

Пусковая обмотка подключается только для запуска двигателя и после того как двигатель набрал обороты – отключается. В работе остаётся только рабочая обмотка. Правильно намотанный двигатель, с проведённой ревизией без нагрузки на валу выходит на положенные обороты не больше чем за несколько секунд, но чаще – мгновенно. Поэтому при пробном пуске двигатель должен быть надёжно закреплён.

Чтобы запустить двигатель с пусковой обмоткой необходимо подключить его по такой схеме:

Один конец рабочей и пусковой соединяем вместе и подключаем к одной из крайних клейм кнопки. Это будет общий провод. Второй конец рабочей обмотки подключаем ко второй крайней клейме кнопки. А оставшийся провод пусковой катушки соединяем со средней клеймой кнопки.

При этом мы задействуем клеймы только с одной стороны кнопки. Три клеймы с другой стороны пока остаются свободными. К двум крайним из них подключаем сетевой шнур. А к центральной клейме подводим перемычку от той крайней клеймы, напротив которой подсоединён один рабочий провод.

Закрываем крышку кнопки, закрепляем двигатель, делаем пробное включение-выключение кнопки чтобы убедится в её работоспособности и знать что она находится в выключенном состоянии. Включаем вилку в розетку, нажимаем кнопку пуск и удерживаем до набора двигателем оборотов.

Но не более нескольких секунд. Затем кнопку отпускаем. Если двигатель гудит, но вращаться не начинает, значит двигатель конденсаторный и подключать его нужно по другой схеме.

Поэтому подойдёт любой подходящий по мощности пускатель, тумблер или выключатель который может смыкать и размыкать одновременно два контакта.

Соединяем один конец рабочей и один конец пусковой обмоток вместе и подводим к одной из клейм выключателя. Вторые концы обмоток подключаем к разным выводам конденсатора и при этом провод от рабочей катушки подводим ещё и к второй клейме выключателя. На противоположенные клеймы выключателя подключаем сетевой шнур.

Переключаем тумблер в положение выключено, проверяем надёжность закрепления двигателя, включаем вилку в розетку и включаем тумблер. Двигатель без нагрузки на валу должен запуститься мгновенно.

Для того, чтобы однофазный двигатель вращался в другую сторону, необходимо поменять выводы одной из обмоток местами.

Если нам необходимо чтобы двигатель вращался и в одну и в другую стороны, то необходимо поставить тумблер реверса. Причём поставить его так, чтоб мы не могли переключить его во время работы двигателя. Это касается конденсаторного двигателя. Тумблер должен быть на 2 или 3 положения и иметь шесть выводов.

В одном положении два средних вывода замыкаются с двумя крайними, а в другом с двумя другими крайними. Подключаем два провода одной из катушек двигателя к центральным клеймам переключателя, а крайнии клеймы соединяем по диагонали и отводим от них два провода которые подключаем туда, откуда отключили концы обмотки. Теперь при переключении тумблера двигатель будет запускаться в другую сторону.
Схема реверса однофазного двигателя с пусковой обмоткой и кнопкой ПНВ.

О том как подобрать конденсатор к конденсаторному двигателю я расскажу в одной из следующих статей.

Схема подключения однофазного двигателя с пусковой обмоткой

Как определить рабочую и пусковую обмотки у однофазного двигателя

Однофазные двигатели — это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.

Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.

У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.

У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.

Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

Рис. 1. Рабочая и пусковая обмотки однофазного двигателя

А теперь несколько примеров, с которыми вы можете столкнуться:

Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в.

И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку.

Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.

Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов.

Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет.

Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только.

В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя.

также осуществляется через конденсатор.

Схема подключения электродвигателя. Подключение однофазного электродвигателя

Технологии 14 октября 2017

Существует несколько схем подключения электродвигателей. Всё зависит от того, какой тип машины используется. В быту каждый человек использует множество электрических приборов, около 2/3 из общего числа имеют в своей конструкции электрические двигатели различной мощности с разными характеристиками.

Обычно, когда приборы выходят из строя, двигатели могут продолжать работать. Их можно использовать в других конструкциях: изготовить самодельные станки, электронасосы, газонокосилки, вентиляторы. Но вот нужно определиться с тем, какую схему использовать для подключения к бытовой сети.

Конструкция электродвигателей и подключение

Для того чтобы использовать электрические моторы для самодельных аппаратов, нужно произвести правильно подключение обмоток. В однофазную бытовую сеть 220 В можно включить следующие машины:

  1. Асинхронные трехфазные электрические двигатели. Производится к сети подключение электродвигателей “треугольником” или “звездой”.
  2. Асинхронные электромоторы, работающие от сети с одной фазой.
  3. Коллекторные двигатели, оснащенные щеточной конструкцией для питания ротора.

Все остальные электрические двигатели необходимо подключать при помощи сложных устройств, предназначенных для запуска. А вот шаговые моторы должны оснащаться специальными электронными схемами управления. Без знаний и умений, а также специальной аппаратуры, выполнить подключение невозможно. Приходится использовать сложные схемы подключения электродвигателей.

Одно- и трехфазная сеть

В бытовой сети одна фаза, напряжение в ней 220 В. Но можно подключить к ней и трехфазные электродвигатели, рассчитанные на напряжение 380 В.

Для этого используются специальные схемы, вот только выжать из устройства больше 3 кВт мощности практически нереально, так как увеличивается риск привести в негодность электропроводку в доме.

Поэтому если имеется необходимость установки сложного оборудования, в котором требуется применять электрические двигатели на 5 или 10 кВт, лучше провести в дом трехфазную сеть. Подключение электродвигателей “звездой” к такой сети произвести намного проще, нежели к однофазной.

Видео по теме

Что потребуется для подключения мотора

Принцип работы любого электрического двигателя знаком каждому, основан он на вращении магнитного потока. При подключении однофазных электродвигателей вам теория не очень нужна, поэтому хватит следующих знаний:

  1. Вы должны иметь представление о конструкции электрического двигателя, с которым производятся работы.
  2. Знать, для какой цели предназначены обмотки, а также уметь по схеме подключения электродвигателя осуществить монтаж.
  3. Уметь работать со вспомогательными устройствами – балластными сопротивлениями или пусковыми конденсаторами.
  4. Знать, как подключается электродвигатель при помощи магнитного пускателя.

Запрещается включать электрический двигатель, если не знаете его модель, а также назначение выводов. Обязательно проверьте, какое допускается соединение обмоток при работе в сети 220 и 380 В.

На всех электрических двигателях обязательно присутствует табличка из металла, которая прикреплена к корпусу. На ней указывается модель, тип, схема подключения, напряжение, а также другие параметры.

Если нет никаких данных, то необходимо при помощи мультиметра прозвонить все обмотки, после чего правильно соединить их.

Подключение коллекторного двигателя

Такие электродвигатели используются практически во всех бытовых электроприборах. Их можно встретить в стиральных машинках, кофемолках, мясорубках, шуруповертах, обогревателях и прочих приборах.

Электродвигатели рассчитаны на сравнительно небольшое время работы, включаются они на несколько секунд или минут. Но зато моторы очень компактные, высокооборотные и мощные.

А схема подключения электродвигателя очень простая.

Подключить такой электродвигатель к бытовой сети 220 В можно очень просто. Напряжение поступает от фазы к щетке, затем через обмотку ротора – к противоположной ламели. А вторая щетка снимает напряжение и передаёт его на обмотку статора. Она состоит из двух половин, соединенных последовательно. Второй вывод обмотки поступает на нулевой провод питания.

Особенности включения мотора

Для того чтобы включать и отключать электрический двигатель, применяется кнопка с фиксатором (или без него), но можно использовать и простой выключатель.

Если имеется необходимость, то обе обмотки разделяются и их можно подключать попеременно. Этим достигается изменение частоты вращения ротора.

Но имеется один недостаток у таких двигателей — относительно низкий ресурс, который напрямую зависит от качества щёток. Именно коллекторный узел является самым уязвимым местом двигателя.

Как подключить однофазный асинхронный мотор

В любом асинхронном электродвигателе, рассчитанном на питание от однофазной сети 220 В, имеется две обмотки — пусковая и рабочая.

В качестве «коллектора» используется цилиндрическая болванка из алюминия, которая насажена на валу. Можно даже отметить, что цилиндр на роторе является, по сути, короткозамкнутой обмоткой.

Существует множество схем для включения асинхронного мотора, но применяется на практике немного:

  1. С использованием балластного сопротивления, подключенного к обмотке пуска.
  2. С включенным конденсатором на обмотке запуска.
  3. При помощи кнопочного или релейного пускателя, стартового конденсатора, включенного в цепь обмотки пуска.

Очень часто применяется комбинация кнопочного или релейного пускателя, а также постоянно включенного рабочего конденсатора. Вместо реле очень часто используется электронный ключ на тиристоре. При помощи этого переключателя производится подключение однофазного электродвигателя с дополнительной группой конденсаторов.

Практические схемы

Асинхронные электрические двигатели обладают довольно маленьким на старте крутящим моментом.

Поэтому необходимо использовать дополнительные устройства, например, пусковые реле или балластные сопротивления, а также мощные конденсаторы для подключения однофазных электродвигателей.

Обмотки в моторах изготавливаются с разделением на несколько выводов. Если три вывода, то один из них общий. Но может быть четыре или два.

Для того чтобы понять, к каким конкретно контактам подключена та или иная обмотка, необходимо изучить схему мотора. Если ее нет, потребуется осуществить прозвонку с помощью мультиметра. Для этого переведите его в режим измерения сопротивления.

Если на паре выводов большое сопротивление, то это означает, что вы произвели замер одновременно двух обмоток. Обычно у рабочей обмотки асинхронных двигателей сопротивление не более 13 Ом.

У пусковой же оно практически в три раза выше — примерно 35 Ом.

Для того чтобы подключить при помощи пускателя однофазный асинхронный мотор, достаточно лишь правильно соединить все контакты проводами. Для того чтобы запустить асинхронник, необходимо кратковременно включить в цепи дополнительные элементы — конденсатор или балластное сопротивление. Чтобы выключить электрическую машину, достаточно просто обесточить все обмотки.

Трехфазные электродвигатели

В трехфазных электрических двигателях существенно большая мощность, а также крутящий момент во время запуска. Подключение трехфазного электродвигателя простое только в том случае, если имеется розетка с тремя фазами 380 В.

Но использовать в бытовых условиях такие моторы оказывается проблематично, так как трехфазная сеть есть далеко не у всех дома.

Обмотки соединяются по схеме «звезда» или «треугольник», это зависит от того, какое межфазное напряжение в сети.

Но вот в том случае, если вам потребуется подключить такой электрический двигатель в бытовую сеть, придётся использовать маленькую хитрость. По сути, у вас имеется в розетке ноль и фаза. При этом «0» можно считать как один из выводов источника питания, то есть фазу, у которой сдвиг равен нулю.

Чтобы сделать еще одну фазу, необходимо при помощи дополнительного конденсатора осуществить сдвиг фазы питания. Всего должно быть три фазы, каждая имеет сдвиг относительно соседних на 120 градусов.

Но чтобы сделать сдвиг правильно, необходимо рассчитать емкость конденсаторов. Так, на каждый киловатт мощности электродвигателя потребуется рабочая емкость около 70 мкФ, а также пусковая около 25 мкФ.

При этом они должны быть рассчитаны на напряжение от 600 В и выше.

Но лучше всего производить подключение электродвигателей 380 В трехфазного типа с помощью частотных преобразователей. Существуют модели, которые подключаются к однофазной сети, а при помощи специальных инверторных схем они преобразуют напряжение, в результате чего на выходе оказывается три фазы, которые необходимы для питания асинхронного мотора.

Схема подключения электродвигателя

Схема подключения электродвигателя во многом определяется условиями его эксплуатации. Например, подключение “звездой” обеспечивает большую плавность работы, но дает потерю мощности по сравнению с подключением “треугольником”.

Иногда бывает нужно подключить трехфазный двигатель в однофазную сеть. В любом случае рассматривать этот вопрос надо по порядку. (Здесь и далее разговор пойдет про асинхронный электродвигатель как наиболее часто встречающийся).

На рисунке 1 представлены две схемы соединения обмоток двигателя.

    Схема соединения “звездой”. Начала (или концы) всех обмоток соединяются в одной точке, оставшиеся концы (или начала) подключаются каждый к своей фазе (L1, L2, L3).

Эта схема не позволяет использовать электрический двигатель на полную мощность, но имеет меньший пусковой ток.

Соединение обмоток электродвигателя “треугольником”. При этом начало одной обмотки соединяется с концом другой. Вершины получившегося треугольника подключаются к цепи трехфазного тока.

В отличие от соединения “звездой” эта схема позволяет использовать всю паспортную мощность двигателя, но имеет больший пусковой ток.

  • Подключение двигателя к сети одинаково, вне зависимости от способа соединения обмоток, поэтому, рассказывая про различные его подключения я буду использовать приведенное здесь обозначение электродвигателя, чтобы лишний раз не затруднять восприятие схемы.
  • Подключение двигателя к сети производится через электромагнитный пускатель. Схемы таких подключений приведены здесь.

    Соединение обмоток двигателя в ту или иную схему производится соответствующей установкой перемычек в клеммной коробке. (См. на соответствующих рисунках под схемами соединений). Для тех, кто привык разбираться во всем досконально на нижней части рисунка 1.с приведена схема подключения обмоток электродвигателя к соответствующим клеммам.

    Следует заметить, что сказанное относится к двигателям не подвергавшимся переделкам (ремонту) и имеющим штатную маркировку обмоток.

    В противном случае нужно самостоятельно найти обмотки, их начала и концы. Как это сделать поясняет рисунок 2.

    1. Прозваниваем обмотки. Для этого один измерительный щуп мультиметра в режиме измерения сопротивления подсоединяем к любой клемме (выводу), другим последовательно проверяем остальные. Точки, сопротивление между которыми составляет единицы или доли ом (близко к нулю), являются выводами одной обмотки.
    2. Отмечаем найденную обмотку, аналогичным образом прозваниваем оставшиеся выводы, находим остальные.
    3. Определяем начала и концы обмоток электродвигателя. Для этого соединяем любые две последовательно, подаем на них переменное напряжение. Для безопасности лучше ограничиться его величиной 12-36 Вольт. К оставшейся подключаем мультиметр в режиме измерения переменного напряжения. Наличие напряжения свидетельствует, что обмотки соединены синфазно, то есть конец одной подключен к началу другой.

    Этот вариант как раз изображен на рисунке. Отсутствие напряжения говорит о том, что обмотки соединены концами (или началами). Маркируем их соответствующим образом. Повторяем указанные действия для оставшейся обмотки, соединенной с любой из первых двух.

    Подключение трехфазного двигателя в однофазную сеть

    Такая необходимость возникает достаточно часто. Сразу замечу – мощность электродвигателя при этом теряется.

    Схема подключения трехфазного электродвигателя в однофазную (220 В) сеть требует наличия фазосдвигающего конденсатора Ср. Значение его емкости в микрофарадах (мкФ) для двигателей мощностью до 2,5 кВт можно определить умножив мощность двигателя в кВт на 100. Конечно, для этого существует специальная формула, но описанным образом емкость можно получить с достаточной степенью приближения.

    Наиболее простая схема приведена на рисунке 3.

    В зависимости от положения переключателя SB1 будет меняться направление вращения электродвигателя. Подключение двигателя к сети производится выключателем F, в качестве которого лучше использовать автоматический выключатель.

    Сразу после его включения для старта (набора оборотов) нужно подключить дополнительный конденсатор Сдоп, емкостью в 2-3 раза большей, чем Сраб. Это достигается нажатием кнопки SB2, которая должна быть отпущена сразу после набора электродвигателем оборотов.

    Резистор R служит для разряда конденсатора Сдоп после его отключения. Значение этого резистора некритично и может быть порядка 100 – 500 кОм.

    По этой схеме можно подключать электродвигатели с по схеме как “треугольник” так и “звезда”.

    Следующая схема (рис.4) использует подключение электродвигателя через пускатель. Сделано это так, чтобы включение можно было производить одним нажатием. Давайте посмотрим как эта схема работает.

    При нажатии кнопки “пуск” срабатывает пускатель КМ1. Одними своими контактами он подключает дополнительный конденсатор Сдоп, другими – включает пускатель КМ2, который подает на электродвигатель напряжение (контактная группа КМ2.1) и одновременно блокирует контакты КМ1.1 первого пускателя.

    После набора оборотов кнопка пуск отпускается, пускатель КМ1 отключается, отключая Cдоп. Напряжение на пускатель КМ2 подается им самим, он находится в замкнутом состоянии до нажатия кнопки “стоп”, размыкающей цепь питания.

    Катушки пускателей должны быть рассчитана на напряжение 220В.

    © 2012-2019 г. Все права защищены.

    Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

    Источник

    Однофазный электродвигатель: схема правильного подключения

    Электродвигатели однофазные 220В широко используются в разнообразном промышленном и бытовом оборудовании: насосах, стиральных машинах, холодильниках, дрелях и обрабатывающих станках.

    Разновидности

    Существуют две наиболее востребованных разновидности этих устройств:

    • Коллекторные.
    • Асинхронные.

    Последние по своей конструкции более просты, однако обладают рядом недостатков, среди которых можно отметить трудности с изменением частоты и направления вращения ротора.

    Устройство асинхронного двигателя

    Мощность данного двигателя зависит от конструктивных особенностей и может варьироваться от 5 до 10 кВт. Его ротор представляет короткозамкнутую обмотку – алюминиевые или медные стержни, которые замкнуты с торцов.

    Как правило, электродвигатель асинхронный однофазный оборудован двумя смещенными на 90° относительно друг друга обмотками. При этом главная (рабочая) занимает существенную часть пазов, а вспомогательная (пусковая) – оставшуюся. Свое название электродвигатель асинхронный однофазный получил лишь потому, что он имеет только одну рабочую обмотку.

    Принцип работы

    Протекающий по главной обмотке переменный ток создает магнитное периодически меняющееся поле. Оно состоит из двух кругов одинаковой амплитуды, вращение которых происходит навстречу друг другу.

    В соответствии с законом электромагнитной индукции, меняющийся в замкнутых витках ротора магнитный поток образует индукционный ток, который взаимодействует с полем, порождающим его. Если ротор находится в неподвижном положении, моменты сил, действующих на него, одинаковы, в результате он остается неподвижным.

    При вращении ротора, нарушится равенство моментов сил, так как скольжение его витков по отношению к вращающимся магнитным полям станет разным. Таким образом, действующая на роторные витки от прямого магнитного поля сила Ампера будет существенно больше, чем со стороны обратного поля.

    В витках ротора индукционный ток может возникать только в результате пересечения ими силовых линий магнитного поля. Их вращение должно осуществляться со скоростью, чуть меньше частоты вращения поля. Собственно отсюда и пошло название асинхронный однофазный электродвигатель.

    Вследствие увеличения механической нагрузки уменьшается скорость вращения, возрастает индукционный ток в роторных витках. А также повышается механическая мощность двигателя и переменного тока, который он потребляет.

    Схема подключения и запуска

    Естественно, что вручную раскручивать при каждом запуске электродвигателя ротор неудобно. Поэтому для обеспечения первоначального пускового момента применяется пусковая обмотка. Так как она составляет прямой угол с рабочей обмоткой, для образования вращающегося магнитного поля на ней должен быть сдвинут по фазе ток относительно тока в рабочей обмотке на 90°.

    Этого добиться можно посредством включения в цепь фазосмещающего элемента. Дроссель или резистор не могут обеспечить сдвиг фазы на 90°, поэтому целесообразней в качестве фазосмещающего элемента использовать конденсатор. Такая схема однофазного электродвигателя обладает отличными пусковыми свойствами.

    Если в качестве фазовращающего элемента выступает конденсатор, электродвигатель конструктивно может быть представлен:

    • С рабочим конденсатором.
    • С пусковым конденсатором.
    • С рабочим и пусковым конденсатором.

    Наиболее распространенным является второй вариант. В таком случае предусмотрено недолгое подключение пусковой обмотки с конденсатором. Это происходит только на время пуска, затем они отключаются. Реализовать такой вариант можно при помощи реле времени или посредством замыкания цепи при нажатии пусковой кнопки.

    Подобная схема подключения однофазного электродвигателя характеризуется довольно невысоким пусковым током. Однако в номинальном режиме параметры низкие по причине того, что поле статора – эллиптическое (оно сильнее в направлении полюсов).

    Схема с постоянно включенным рабочим конденсатором в номинальном режиме работает лучше, при этом пусковые характеристики имеет посредственные. Вариант с рабочим и пусковым конденсатором, по сравнению с двумя предыдущими, является промежуточным.

    Коллекторный двигатель

    Рассмотрим однофазный электродвигатель коллекторного типа. Это универсальное оборудование может питаться от источников постоянного или переменного тока. Его часто используют в электрических инструментах, стиральных и швейных машинах, мясорубках – там, где требуется реверс, его вращение с частотой свыше 3000 оборотов в минуту или регулировка частоты.

    Обмотки ротора и статора электродвигателя соединяются последовательно. Ток подводится посредством щеток, соприкасающихся с пластинами коллектора, к которым подходят концы обмоток ротора.

    Осуществление реверса происходит за счет изменения полярности подключения ротора или статора в электрическую сеть, а скорость вращения регулируется посредством изменения в обмотках величины тока.

    Недостатки

    Коллекторный однофазный электродвигатель имеет следующие недостатки:

    • Создание радиопомех, трудное управление, значительный уровень шума.
    • Сложность оборудования, практически невозможно произвести его ремонт самостоятельно.
    • Высокая стоимость.

    Подключение

    Чтобы электродвигатель в однофазной сети был подключен должным образом, необходимо соблюдать определенные требования. Как уже было сказано, существует целый ряд двигателей, способных функционировать от однофазной сети.

    Перед подключением важно убедиться в том, что частота и напряжение сети, указанные на корпусе, соответствуют главным параметрам электрической сети. Все работы по подключению необходимо производить только при обесточенной схеме. Также следует избегать заряженных конденсаторов.

    Как подключить однофазный электродвигатель

    Для подключения двигателя необходимо соединить последовательно статор и якорь (ротор). Клеммы 2 и 3 соединяются, а две другие нужно подключить в цепь 220B.

    По причине того, что электродвигатели однофазные 220В функционируют в цепи переменного тока, в магнитных системах возникает магнитный переменный поток, что провоцирует образование вихревых токов. Именно поэтому магнитную систему статора и ротора выполняют из электротехнических стальных листов.

    Подключение без регулирующего блока с электроникой может привести к тому, что в момент запуска образуется значительный пусковой ток, и в коллекторе произойдет искрение. Изменение направления вращения якоря выполняется посредством нарушения последовательности подключения, когда меняются местами выводы якоря или ротора. Главным недостатком этих двигателей считается присутствие щеток, которые следует заменять после каждой длительной эксплуатации оборудования.

    Таких проблем в асинхронных электродвигателях не существует, так как в них отсутствует коллектор. Магнитное поле ротора образуется без электрических связей за счет внешнего магнитного поля статора.

    Подключение через магнитный пускатель

    Рассмотрим, как можно подключить однофазный электродвигатель через магнитный пускатель.

    1. Итак, в первую очередь необходимо выбрать магнитный пускатель по току таким образом, чтобы его контактная система выдерживала нагрузку электрического двигателя.

    2. Пускатели, к примеру, делятся на величину от 1 до 7, и чем больше данный показатель, тем больший ток выдерживает контактная система этих устройств.

    • 10A – 1.
    • 25A – 2.
    • 40A – 3.
    • 63A – 4.
    • 80A – 5.
    • 125A – 6.
    • 200A – 7.

    3. После того как была определена величина пускателя, необходимо обратить внимание на катушку управления. Она может быть на 36B, 380B и 220B. Желательно остановиться на последнем варианте.

    4. Далее, собирается схема магнитного пускателя, и подключается силовая часть. На разомкнутые контакты выполняется ввод 220B, на выход силовых контактов пускателя подключается электродвигатель.

    5. Подключаются кнопки «Стоп – Пуск». Их питание осуществляется от ввода силовых контактов пускателя. К примеру, фаза соединяется с кнопкой «Стоп» замкнутого контакта, затем с нее переходит на пусковую кнопку разомкнутого контакта, а с контакта кнопки «Пуск» – на один из контактов катушки магнитного пускателя.

    6. На второй вывод пускателя подключается «ноль». Чтобы зафиксировать включенное положение магнитного пускателя, необходимо шунтировать пусковую кнопку замкнутого контакта к блоку контактов пускателя, подающего питание с кнопки «Стоп» на катушку.

    Однофазные электродвигатели. Виды, принцип действия, схемы включения однофазных электродвигателей.


    Однофазные электродвигатели

    Зачастую основное внимание уделяется изучению трёхфазных электродвигателей, частично в связи с тем, что трёхфазные электродвигатели применяются чаще, чем однофазные. Однофазные электродвигатели имеют тот же принцип действия, что и трёхфазные электродвигатели, только с более низкими пусковыми моментами. Они подразделяются по типам в зависимости от способа пуска.


    Стандартный однофазный статор имеет две обмотки, расположенные под углом 90° по отношению друг к другу. Одна из них считается главной обмоткой, другая — вспомогательной, или пусковой. В соответствии с количеством полюсов каждая обмотка может делиться не несколько секций.

    На рисунке приведен пример двухполюсной однофазной обмотки с четырьмя секциями в главной обмотке и двумя секциями во вспомогательной.



    Следует помнить, что использование однофазного электродвигателя — это всегда, своего рода, компромисс. Конструкция того или иного двигателя зависит, прежде всего, от поставленной задачи. Это значит, что все электродвигатели разрабатываются в соответствии с тем, что наиболее важно в каждом конкретном случае: например, КПД, вращающий момент, рабочий цикл и т.д. Из-за пульсирующего поля однофазные электродвигатели CSIR и RSIR могут иметь более высокий уровень шума по сравнению с двухфазными электродвигателями PSC и CSCR, которые работают намного тише, так как в них используется пусковой конденсатор. Конденсатор, через который производится пуск электродвигателя, способствует его плавной работе.


    Основные типы однофазных индукционных электродвигателей

    Бытовая техника и приборы низкой мощности работают от однофазного переменного тока, кроме того, не везде может быть обеспечено трёхфазное электропитание. Поэтому однофазные электродвигатели переменного тока получили широкое распространение, особенно в США. Очень часто электродвигателям переменного тока отдают предпочтение, так как их отличает прочная конструкция, низкая стоимость, к тому же они не требуют технического обслуживания.

    Как видно из названия, однофазный индукционный электродвигатель работает по принципу индукции; тот же принцип действует и для трёхфазных электродвигателей. Однако между ними есть различия: однофазные электродвигатели, как правило, работают при переменном токе и напряжении 110 -240 В, поле статора этих двигателей не вращается. Вместо этого каждый раз при скачке синусоидального напряжения от отрицательного к положительному меняются полюса.

    В однофазных электродвигателях поле статора постоянно выравнивается в одном направлении, а полюса меняют своё положение один раз в каждом цикле. Это означает, что однофазный индукционный электродвигатель не может быть пущен самостоятельно.



    Теоретически, однофазный электродвигатель можно было бы запустить при помощи механического вращения двигателя с последующим немедленным подключением питания. Однако на практике пуск всех электродвигателей осуществляется автоматически.

    Выделяют четыре основных типа электродвигателей:

    • индукционный двигатель с пуском через конденсатор / работа через обмотку (индуктивность) (CSIR),

    • индукционный двигатель с пуском через конденсатор/работа через конденсатор (CSCR),

    • индукционный двигатель с реостатным пуском (RSIR) и

    • двигатель с постоянным разделением емкости (PSC).

    На приведённом ниже рисунке показаны типичные кривые соотношения вращающий момент/частота вращения для четырёх основных типов однофазных электродвигателей переменного тока.




    Однофазный электродвигатель с пуском через конденсатор/работа через обмотку (CSIR)

    Индукционные двигатели с пуском через конденсатор, которые также известны как электродвигатели CSIR, составляют самую большую группу однофазных электродвигателей.

    Двигатели CSIR представлены несколькими типоразмерами: от самых маломощных до 1,1 кВт. В электродвигателях CSIR конденсатор последовательно соединён с пусковой обмоткой. Конденсатор вызывает некоторое отставание между током в пусковой обмотке и в главной обмотке.



    Это способствует задержке намагничивания пусковой обмотки, что приводит к появлению вращающегося поля, которое влияет на возникновение вращающего момента. После того как электродвигатель наберёт скорость и приблизится к рабочей частоте вращения, открывается пускатель. Далее электродвигатель будет работать в обычном для индукционного электродвигателя режиме. Пускатель может быть центробежным или электронным.

    Двигатели CSIR имеют относительно высокий пусковой момент, в диапазоне от 50 до 250 процентов от вращающего момента при полной нагрузке. Поэтому из всех однофазных электродвигателей эти двигатели лучше всего подходят для случаев, когда пусковые нагрузки велики, например для конвейеров, воздушных компрессоров и холодильных компрессоров.



    Однофазный электродвигатель с пуском через конденсатор/ работа через конденсатор (CSCR)

    Этот тип двигателей, которые коротко называются «электродвигатели CSCR», сочетает в себе лучшие свойства индукционного двигателя с пуском через конденсатор и двигателя с постоянно подключённым конденсатором. Несмотря на то, что из-за своей конструкции эти двигатели несколько дороже других однофазных электродвигателей, они остаются наилучшим вариантом для применения в сложных условиях. Пусковой конденсатор электродвигателя CSCR последовательно соединён с пусковой обмоткой, как и в электродвигателе с пуском через конденсатор. Это обеспечивает высокий пусковой момент.



    Электродвигатели CSCR также имеют сходство с двигателями с постоянным разделением емкости (PSC), так как у них пуск тоже осуществляется через конденсатор, который последовательно соединён с пусковой обмоткой, если пусковой конденсатор отключен от сети. Это означает, что двигатель справляется с максимальной нагрузкой или перегрузкой.

    Электродвигатели CSCR могут использоваться для работы с низким током полной нагрузки и при более высоком КПД. Это даёт некоторые преимущества, в том числе обеспечивает работу двигателя с меньшими скачками температуры, в сравнении с другими подобными однофазными электродвигателями.

    Электродвигатели CSCR — самые мощные однофазные электродвигатели, которые могут использоваться в сложных условиях, например, в насосах для перекачивания воды под высоким давлением и в вакуумных насосах, а также в других высокомоментных процессах. Выходная мощность таких электродвигателей лежит в диапазоне от 1,1 до 11 кВт.




    Однофазный электродвигатель с пуском через сопротивление/работа через обмотку (индуктивность) (RSIR)

    Данный тип двигателей ещё известен как «электродвигатели с расщеплённой фазой». Они, как правило, дешевле однофазных электродвигателей других типов, используемых в промышленности, но у них также есть некоторые ограничения по производительности.

    Пусковое устройство электродвигателей RSIR включает в себя две отдельные обмотки статора. Одна из них используется исключительно для пуска, диаметр проволоки данной обмотки меньше, а электрическое сопротивление — выше, чем у главных обмоток. Это вызывает отставание вращающегося поля, что, в свою очередь, приводит в движение двигатель. Центробежный или электронный пускатель отсоединяет пусковую обмотку, когда частота вращения двигателя достигает, приблизительно, 75% от номинальной величины. После этого электродвигатель продолжит работу в соответствии со стандартными принципами действия индукционного электродвигателя.



    Как уже говорилось раньше, для электродвигателей RSIR есть некоторые ограничения. У них низкие пусковые моменты, часто в диапазоне от 50 до 150 процентов от номинальной нагрузки. Кроме того, электродвигатель создаёт высокие пусковые токи, приблизительно от 700 до 1000% от номинального тока. В результате продолжительное время пуска будет вызывать перегрев и разрушение пусковой обмотки. Это означает, что электродвигатели данного типа нельзя использовать там, где необходимы большие пусковые моменты.

    Электродвигатели RSIR рассчитаны на узкий диапазон напряжения питания, что, естественно, ограничивает области их применения. Их максимальные вращающие моменты варьируются в пределах от 100 до 250% от расчетной величины. Необходимо также отметить, что дополнительной трудностью является установка тепловой защиты, так как довольно сложно найти защитное устройство, которое срабатывало бы достаточно быстро, чтобы не допустить прогорания пусковой обмотки. Электродвигатели RSIR подходят для использования в небольших приборах для рубки и перемалывания, вентиляторах, а также для применения в других областях, в которых допускается низкий пусковой момент и требуемая выходная мощность на валу от 0,06 кВт до 0,25 кВт. Они не используются там, где должны быть высокие вращающие моменты или продолжительные циклы.




    Однофазный электродвигатель с постоянным разделение емкости (PSC)

    Как видно из названия, двигатели с постоянным разделением емкости (PSC) оснащены конденсатором, который во время работы постоянно включен и последовательно соединён с пусковой обмоткой. Это значит, что эти двигатели не имеют пускателя или конденсатора, который используется только для пуска. Таким образом, пусковая обмотка становится вспомогательной обмоткой, когда электродвигатель достигает рабочей частоты вращения.



    Конструкция электродвигателей PSC такова, что они не могут обеспечить такой же пусковой момент, как электродвигатели с пусковыми конденсаторами. Их пусковые моменты достаточно низкие: 30-90% от номинальной нагрузки, поэтому они не используются в системах с большой пусковой нагрузкой. Это компенсируется за счёт низких пусковых токов — обычно меньше 200% от номинального тока нагрузки, — что делает их наиболее подходящими двигателями для областей применения с продолжительным рабочим циклом.

    Двигатели с постоянным разделением емкости имеют ряд преимуществ. Рабочие параметры и частоту вращения таких двигателей можно подбирать в соответствии с поставленными задачами, к тому же они могут быть изготовлены для оптимального КПД и высокого коэффициента мощности при номинальной нагрузке. Так как они не требуют специального устройства пуска, их можно легко реверсировать (изменить направление вращения на обратное). В дополнение ко всему вышесказанному, они являются самыми надёжными из всех однофазных электродвигателей. Вот почему Grundfos использует однофазные электродвигатели PSC в стандартном исполнении для всех областей применения с мощностями до 2,2 кВт (2-полюсные) или 1,5 кВт (4-полюсные).

    Двигатели с постоянным разделением емкости могут использоваться для выполнения целого ряда различных задач в зависимости от их конструкции. Типичным примером являются низкоинерционные нагрузки, например вентиляторы и насосы.




    Двухпроводные однофазные электродвигатели

    Двухпроводные однофазные электродвигатели имеют две главные обмотки, пусковую обмотку и рабочий конденсатор. Они широко используются в США с однофазными источниками питания: 1 ½ 115 В / 60 Гц или 1 ½ 230 В / 60 Гц. При правильном подключении данный тип электродвигателей можно использовать для обоих видов электропитания.




    Ограничения однофазных электродвигателей

    В отличие от трёхфазных для однофазных электродвигателей существуют некоторые ограничения. Однофазные электродвигатели ни в коем случае не должны работать в режиме холостого хода, так как при малых нагрузках они сильно нагреваются, также рекомендуется эксплуатировать двигатель при нагрузке меньшей 25% от полной нагрузки.

    Электродвигатели PSC и CSCR имеют симметричное/ круговое вращающееся поле в одной точке приложения нагрузки; это значит, что во всех остальных точках приложения нагрузки вращающееся поле асимметричное/эллиптическое. Когда электродвигатель работает с асимметричным вращающимся полем, сила тока в одной или обеих обмотках может превышать силу тока в сети. Такие избыточные токи вызывают потери, в связи с этим одна или обе обмотки (что чаще происходит при полном отсутствии нагрузки) нагреваются, даже если ток в сети относительно небольшой. Смотрите примеры.





    О напряжении в однофазных электродвигателях

    Важно помнить о том, что напряжение на пусковой обмотке электродвигателя может быть выше сетевого напряжения питания электродвигателя. Это относится и к симметричному режиму работы. Смотрите пример.



    Изменение напряжения питания

    Нужно отметить, что однофазные электродвигатели обычно не используются для больших интервалов напряжения, в отличие от трёхфазных электродвигателей. В связи с этим может возникнуть потребность в двигателях, которые могут работать с другими видами напряжения. Для этого необходимо внести некоторые конструкционные изменения, например, нужна дополнительная обмотка и конденсаторы различной ёмкости. Теоретически, ёмкость конденсатора для различного сетевого напряжения (с одной и той же частотой) должна быть равна квадрату отношения напряжений:



    Таким образом, в электродвигателе, рассчитанном на питание от сети в 230 В, используется конденсатор 25µФ/400 В, для модели электродвигателя на 115 В необходим конденсатор ёмкостью 100µФ с маркировкой более низкого напряжения — например 200 В.



    Иногда выбирают конденсаторы меньшей ёмкости, например 60µФ. Они дешевле и занимают меньше места. В таких случаях обмотка должна подходить для определённого конденсатора. Нужно учитывать, что производительность электродвигателя при этом будет меньше, чем с конденсатором ёмкостью 100µФ — например, пусковой момент будет ниже.

    Заключение

    Однофазные электродвигатели работают по тому же принципу, что и трёхфазные. Однако у них более низкие пусковые моменты и значения напряжения питания (110-240В).

    Однофазные электродвигатели не должны работать в режиме холостого хода, многие из них не должны эксплуатироваться при нагрузке меньше 25 % от максимальной, так как это вызывает повышение температуры внутри электродвигателя, что может привести к его поломке.

    Схема однофазного двигателя — Всё о электрике

    Многоскоростные однофазные конденсаторные электродвигатели

    Однофазные асинхронные двигатели выпускаются для работы без регулирования частоты вращения. В тех же случаях, когда необходимо изменять частоту вращения, чаще всего используются двигатели с изменением числа пар полюсов.

    В целом, для изменения скорости однофазного двигателя можно применить 3 различных способа. Один состоит в том, что в статоре помещаются 2 полных комплекта обмоток, каждый для различного числа полюсов. Тогда согласно уравнению 2 различные скорости получаются при одной и той же частоте сети. Другие 2 способа состоят в изменении напряжения на зажимах двигателя или в изменении числа витков главной обмотки путем ответвлений от нее.

    Способ, основанный на использовании 2 комплектов обмоток, применяется главным образом для двигателей с расщепленной фазой и двигателей с конденсаторным пуском. Способы, основанные на изменении напряжения или использовании обмотки с ответвлениями, применяются главным образом для конденсаторных двигателей с постоянно включенной емкостью.

    В настоящее время для привода различных механизмов широкое распространение получили

    многоскоростные асинхронные конденсаторные электродвигатели (электродвигатели с одной постоянно включенной емкостью). Такой тип электродвигателей не требует дополнительных элементов, необходимых для включения в сеть, а также позволяет достаточно просто менять направление вращения вала. Для этого достаточно поменять в схеме местами концы главной или вспомогательной обмоток.

    В конденсаторных двигателях применяются основные схемы включения обмоток, показанные на рис. 1. Наибольшее распространение получила так называемая параллельная схема соединения обмоток (рис. 1, а). Как видно из рисунка, обмотки статора включаются в сеть питания параллельно. Фазосдвигающая емкость С включается последовательно со вспомогательной обмоткой.

    Величина емкости конденсатора выбирается из условий обеспечения требуемых характеристик электродвигателей. В основном в конденсаторных двигателях емкость выбирается такой, чтобы сдвиг фаз токов в главной и во вспомогательной обмотках в номинальном режиме был близок к 90°. В этом случае двигатель имеет наилучшие энергетические показатели в рабочей точке, но ухудшаются пусковые.

    Рис. 1. Схемы соединения обмоток асинхронных двигателей

    Изменение частоты вращения конденсаторных двигателей осуществляется, чаще всего за счет изменения числа пар полюсов. Для этого на статоре укладывается либо два комплекта обмоток с различным числом полюсов, либо один комплект, с переключением числа полюсов.

    В тех же случаях, когда не требуется значительного диапазона регулирования частоты вращения, используется наиболее простой способ – изменение числа витков рабочей обмотки. В этом случае при неизменности напряжения сети изменяется величина магнитного потока электродвигателя и, следовательно, электромагнитный момент и частота врашения ротора.

    Двухскоростные двигатели при обмотках с ответвлениями

    Ранее было указано, что скорость однофазного двигателя может быть изменена или путем изменения напряжения на его зажимах, или путем изменения числа витков его вторичнной обмотки. Первый способ делает необходимым примение автотрансформатора и используется главным образом для конденсаторных двигателей с постоянно включенной емкостью, имеющих на валу вентилятор.

    При автотрансформаторе можно получить и больше, чем 2 скорости. Изменение числа витков главной обмотки получается путем ответвлений от нее. Статор тогда имеет 3 обмотки: главную, промежуточную и вспомогательную. Первые 2 обмотки имеют одну и ту же магнитную ось, т. е. промежуточная обмотка наматывается в тех же пазах, что и главная обмотка (над ней).

    Практическая реализация этого способа осуществляется следующим образом. В пазах статоре помимо проводников рабочей (РО) и конденсаторной обмоток (КО), укладываются проводники дополнительной обмотки (ДО). В результате комбинации различных схем включения обмоток (рис. 2) удастся получить при неизменной величине питающего напряжения различные механические характеристики электродвигателя.

    Рис. 2. Схемы соединений статорных обмоток многоскоростного конденсаторного двигателя при минимальной (а), повышенной (б) и максимальной частоте вращения (в)

    В процессе регулирования частоты вращения в многоскоростных конденсаторных электродвигателях возникают переходные процессы, связанные с изменением схем включения обмоток статора. Эти процессы протекают, как правило, при незатухающих магнитных полях и могут вызнать значительные броски токов и перенапряжения в обмотках двигателя и фазосмещающем конденсаторе.

    Двухскоростные двигатели с 2 комплектами обмоток

    Размещение 2 комплектов обмоток, т. е. 2 главных обмоток и 2 вспомогательных обмоток, требует значительного увеличения размеров. Для того чтобы уменьшить эти размеры, часто применяется соединение для вспомогательной или низкоскоростной обмотки, при котором число катушечных групп получается меньше числа полюсов.

    На рис. 3 показана схема соединений обмоток для 4 и 6 полюсов (примерно 1435 а 950 об/мин при 50 гц). Внешняя обмотка — 4-полюсная главная обмотка. Следующая — 6-полюсная главная обмотка. Третья — 4-полюсная вспомогательная обмотка, имеющая только 2 катушечные группы. Внутренняя обмотка — 6-полюсная вспомогательная обмотка, имеющая также только 2 катушечные группы.

    Рис. 3. Схема соединений для 2-скоростного (4 и 6 полюсов) двигателя.

    На рис. 3 обе вспомогательные обмотки имеют уменьшенное число катушечных групп. Можно также и главную обмотку сделать такого же типа.

    Рассмотрим 2 примера. Статорная обмотка для 4 и 8 полюсов может иметь нормальную 4-полюсную главную обмотку и 3 другие обмотки с уменьшенным числом катушечных групп, т. е. 8-полюсную главную обмотку с 4 катушечными группами, 4-полюсную вспомогательную обмотку с 2 катушечными группами и 8-полюсную вспомогательную обмотку с 4 катушечными группами.

    Статорная обмотка для 6 и 8 полюсов может иметь нормальную 6-полюсную главную обмотку, две 8-полюсные обмотки с уменьшенным числом групп, т. е. 8-полюсную главную обмотку и 8-полюсную вспомогательную обмотку с 4 полюсными группами каждая, а 6-полюсную вспомогательную обмотку с 2 катушечными группами. 6-полюсная вспомогательная обмотка может быть также выполнена в виде нормальной обмотки, т. е. с 6 катушечными группами.

    На рис. 4 показана схема 2-скоростного двигателя с расщепленной фазой с 2 обмотками и здесь же показано присоединение его к сети. Соединения выполнены таким образом, что требуется только 1 пусковой выключатель. Этот пусковой выключатель должен выключаться при 75 – 80% синхронной скорости низкоскоростной обмотки.

    Рис. 4. Схема двухскоростного двигателя с расщепленной фазой

    Если схема, показанная на рис. 4, применяется для двигателя с конденсаторным пуском, то используется или 1 конденсатор, соединенный последовательно с пусковым выключателем, или 2 конденсатора, 1 из которых соединяется последовательно с выводом П2, а другой — с выводом П21.

    Если двигатель всегда можно пускать при соединении, соответствующем одной и той же скорости, то одна из вспомогательных обмоток может быть исключена. Пуск в этом случае частично или полностью автоматизируется.

    Многоскоростные асинхронные однофазные электродвигатели ДАСМ

    Для достижения больших частот вращения в бытовой технике часто необходимы электродвигатели с большим соотношением скоростей вращения ротора. Для этих целей применяются однофазные конденсаторные асинхронные двигатели с числами полюсов 2/12; 2/14; 2/16; 2/18; 2/24 и даже выше.

    Однако изготовление двигателей с большим соотношением полюсов технологически сложно, поэтому пользуются разного рода механическими преобразователями частоты вращения, а также полупроводниковыми преобразователями частоты питающего напряжения.

    Наиболее просто частота вращения в небольших пределах у этих двигателей регулируется изменением напряжения питания, для этого последовательно с обмоткой включаются дополнительные резисторы или дроссели.

    Еще в СССР для привода бытовых автоматических стиральных машин был разработан двухскоростные конденсаторные электродвигатели типа ДАСМ-2 и ДАСМ-4 с числом полюсов 16/2.

    Двигатель ДАСМ-2 был разработан для привода, автоматических стиральных машин емкостью 4 – 5 кг сухого белья. Первоначально он был рассчитан на номинальные мощности 75/400 Вт при частотах вращения 390/2750 об/мин.

    Рис. 5. Двухскоростной конденсаторный асинхронный электродвигатель типа ДАСМ-2

    На рис. 5 показаны схемы включения двигателей ДАСМ-2 и ДАСМ-4 в питающую сеть. Как видно из рисунка, двигатель ДАСМ-2 имеет на статоре четыре обмотки. Главная и вспомогательная обмотки соединены по параллельной схеме включения.

    Двигатель ДАСМ-4 на низкой частоте вращения выполнен с трехфазной схемой включения в звезду, а на высокой частоте вращения – с параллельным включением обмоток статора. На статоре двигателя укреплено температурное реле РК-1-00 для защиты обмоток при перегрузках и в режимах короткого замыкания. Нормально замкнутые контакты реле включены в общий вывод статора электродвигателя.

    Рис. 5. Схемы подключения двухскоростных электродвигателей к сети питания: а – электродвигателя ДАСМ-2; б – электродвигателя ДАСМ-4. Г.О. – главная обмотка; В.О, – вспомогательная обмотка; 1 – общий вывод обмоток малой и большой частоты вращения; 2 – конец вспомогательной обмотки большой частоты вращения; 3 – начало главной обмотки большой частоты вращения; 4 – начало вспомогательной обмотки низкой частоты вращения; 5 – начало главной обмотки низкой частоты вращения; Ср – рабочий конденсатор; Сп – пусковой конденсатор; РТ – реле тепловое защитное типа РК-1-00; РП – реле пусковое типа РТК-1-11; Р1, Р2 – контакты командоаппарата.

    Однофазный электродвигатель 220в. Схема, подключение, преимущества

    Однофазный двигатель представляет собой электрическое устройство, которое питается от сети. Его особенностями являются наличие 1-фазной обмотки и способность функционировать без преобразователя частот. Наиболее распространённый и популярный пример – это мотор на 220 В. Его используют преимущественно для оснащения оборудования бытового назначения небольшой мощности.

    Особенности конструкции и схема однофазного электродвигателя 220в.

    Основные элементы двигателя однофазного типа – это ротор и статор. Первая комплектующая во время эксплуатации подвижна, вторая находится в состоянии покоя. Статор оснащён двумя типами обмотки: основная и вспомогательная. Иначе их называют рабочая и пусковая. Оба вида расположены под углом в 90 градусов в сердечнике и надёжно закреплены в пазах.

    Основная обмотка составляет большую часть, а вспомогательной отводится всего 30–35%. Что касается конструкции ротора, он представляет собой стержни из цветных металлов. На торцах элементы замкнуты специальными кольцами. Свободное пространство между стержнями заполнено сплавом алюминия. Из-за своего полого вида специалисты и конструкторы назвали ротор 1-фазного мотора «беличьей клеткой».

    Преимущества механизма двигателя однофазного типа.

    Среди достоинств 1-фазных двигателей отмечают следующие:

    • простота конструкции;
    • долговечность – при своевременном техническом обслуживании двигатель способен служить годами;
    • надёжность;
    • экономичность – потребление небольшого количества энергии;
    • доступная стоимость;
    • ремонтопригодность – в случае выхода из строя можно легко заменить повреждённые или сгоревшие детали;
    • минимальный уход;
    • возможность работы от сети со стандартным напряжением 220 В без преобразователей энергии.

    Большинство современных бытовых приборов оснащены именно однофазными моторами. Причина объясняется их простотой и невысокой себестоимостью. Такими моторами оснащают крупную и мелкую бытовую технику. Кроме того, они нашли применение в создании оборудования для промышленных и производственных предприятий.

    Но есть ли недостатки у однофазного двигателя? Их немного. Практически все они обуславливаются простотой конструкции. Итак:

    • малый коэффициент мощности. По этой причине они используются для создания большинства бытовых приборов;
    • высокий показатель пускового тока;
    • возможность ограничения скорости движка при колебаниях в сети.

    Основным недостатком считается отсутствие пускового момента. Тем не менее, для бытовых приборов и несложных устройств этот минус не является существенным и не влияет на работу.

    Принцип работы однофазного электродвигателя 220 В.

    В статоре однофазного электродвигателя 220 В вырабатывается магнитное поле. Именно оно является импульсом, который приводит в работу ротор. Чтобы представить, как функционирует электродвигатель, стоит смоделировать следующую ситуацию.

    Например, в пусковой обмотке напряжения нет. Образование магнитного поля можно запустить, подключив основную обмотку к сети. Его работа основывается на пульсировании, при этом пространство остаётся в состоянии покоя. Магнитное поле разделяется на две части, каждая из которых вращается в стороны, противоположные друг другу, при одинаковой частоте. При задании ротору начального вращения двигатель со временем будет его наращивать. При этом частота элемента и самого магнитного поля различается. Разницу показателей определяют как скольжение.

    Из магнитных потоков возникает движущая сила. Это закон электромагнитной индукции. Движущая сила формирует два типа тока. Один из них обратный, второй – прямой. Частота вращения ротора прямо пропорциональна показателю скольжения. По закону Ампера, магнитное поле при взаимодействии с обратным током создаёт вращение.

    Особенности подключения однофазного электродвигателя 220 В.

    Для приведения асинхронного однофазного электродвигателя используется пусковое сопротивление. Такой метод задействован в устройствах с расщеплённой фазой. В электрической цепи мотора присутствуют ротор и статор. Обмотка второго смещена относительно основной. При этом рабочий элемент обладает меньшим сопротивлением, чем вспомогательный. Омический сдвиг фаз обеспечивается благодаря намотке бифилярным способом. Подключение без резистора невозможно.

    Особенностью однофазного двигателя является соединение вспомогательной обмотки с конденсатором. Работа начинается только после возникновения пускового момента. Конденсатор необходим для получения максимального значения. Благодаря ему и возникает пусковой момент, который приводит в работу все механизмы.

    Советы при покупке однофазного электродвигателя 220 В.

    При покупке однофазного электрического двигателя стоит учесть следующие характеристики оборудования:

    • частота;
    • мощность;
    • способ установки;
    • размер;
    • потребляемая энергия.

    Производители обычно предоставляют гарантию на бесперебойную работу моторов.

    Подключение однофазного двигателя. Видео урок.

    Как подключить однофазный двигатель

    Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.

    Асинхронный или коллекторный: как отличить

    Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

    Так выглядит новый однофазный конденсаторный двигатель

    Как устроены коллекторные движки

    Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

    Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

    Строение коллекторного двигателя

    Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

    Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

    Асинхронные

    Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

    Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

    Строение асинхронного двигателя

    Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

    Схемы подключения однофазных асинхронных двигателей

    С пусковой обмоткой

    Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

    Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

    Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

    Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

    Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

    • один с рабочей обмотки — рабочий;
    • с пусковой обмотки;
    • общий.

    С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

    Со всеми этими

      Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

    подключение однофазного двигателя

    Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.

    Конденсаторный

    При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

    Схемы подключения однофазного конденсаторного двигателя

    Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

    Схема с двумя конденсаторами

    Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

    При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

    Подбор конденсаторов

    Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

    • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
    • пусковой — в 2-3 раза больше.

    Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

    Изменение направления движения мотора

    Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

    {SOURCE}

    Схема включения однофазного электродвигателя

    Подключение однофазного электродвигателя к сети 220 вольт.

    Подключение трёхфазного электродвигателя к сети 220 вольт.

    Подключение однофазного электродвигателя к нажимному пускателю ПНВС.

    Подключение однофазного электродвигателя с бифилярными катушками в пусковой обмотке к нажимному пускателю ПНВС.

    Подключение трёхфазного электродвигателя к нажимному пускателю ПНВС.

    Подключение однофазного электродвигателя с центробежным выключателем пускового конденсатора.

    Подключение однофазного электродвигателя с центробежным выключателем пускового конденсатора.

    Подключение однофазного электродвигателя с центробежным выключателем пускового конденсатора.

    Подключение однофазного электродвигателя с центробежным выключателем пусковой обмотки.

    Изготовление самодельных станков и механизмов требует наличия источника крутящего момента, способного развивать высокую механическую мощность на валу привода при питании от сети 220 вольт.

    Для этих целей подходит электродвигатель от бетономешалки, стиральной машины, другого оборудования или просто приобретенный в продаже.

    В статье я рассказываю все про однофазный асинхронный двигатель, схема подключения которого зависит от внутренней конструкции и может быть выполнена с пусковой обмоткой или конденсаторным запуском.

    С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем

    Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.

    На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.

    Важное предупреждение

    Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.

    Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.

    В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).

    Как состояние подшипников влияет на работу двигателя

    Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.

    Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.

    Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.

    Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.

    Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.

    Что надо учитывать в конструкции статорных обмоток и как их подготовить

    Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.

    Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.

    Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.

    Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.

    Это позволяет первоначально оценивать их состояние обычным цифровым мультиметром в режиме омметра при отключенном напряжении.

    Однофазный асинхронный двигатель имеет две разные обмотки на статоре, разнесенные на 90 угловых градусов. Одна из них создана для длительного прохождения тока в номинальном режиме работы и поэтому называется основной, главной либо рабочей.

    Для уменьшения нагрева ее делают более толстым проводом, обладающим меньшим электрическим сопротивлением.

    Перпендикулярно ей смонтирована вторая обмотка большего сопротивления и меньшего диаметра, что позволяет различать ее визуально. Она создана для кратковременного протекания пусковых токов и отключается сразу при наборе ротором номинального числа оборотов.

    Пусковая или вспомогательная обмотка занимает примерно 1/3 пазов статора, а остальная часть отведена рабочим виткам.

    Однако, приведенное правило имеет исключения: на практике встречаются однофазные электродвигатели с двумя одинаковыми обмотками.

    Для подключения статора к питающей сети концы обмоток выводят наружу проводами. С учетом того, что одна обмотка имеет два конца, то у трехфазного электродвигателя может быть, как правило, шесть выводов, а у однофазного — четыре.

    Но из этого простого правила встречаются исключения, связанные с внутренней коммутацией выводов для упрощения монтажа на специальном оборудовании:

    • у трехфазных двигателей из статора могут выводиться:
    • три жилы при внутренней сборке схемы треугольника;
    • или четыре — для звезды;
  • однофазный электродвигатель может иметь:
  • три вывода при внутреннем объединении одного конца пусковой и рабочей обмоток;
    • или шесть концов для конструкции с пусковой обмоткой и встроенным контактом ее отключения от центробежного регулятора.

    Техническое состояние изоляции обмоток

    Где и в каких условиях хранился статор не всегда известно. Если он находился без защиты от атмосферных осадков или внутри влажных помещений, то его изоляция требует сушки.

    В домашней обстановке разобранный статор можно поместить в сухую комнату для просушки. Ускорить процесс допустимо обдувом вентилятора или нагревом обычными лампами накаливания.

    Обращайте внимание, чтобы разогретое стекло лампы не касалось провода обмоток, обеспечивайте воздушный зазор. Окончание процесса сушки связано с восстановлением свойств изоляции. Этот процесс необходимо контролировать замерами мегаомметром.

    Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице

    Привожу выдержку из книги Алиева И И про асинхронные двигатели, вернее таблицу основных электрических характеристик.

    Как видите, промышленностью массово выпущены модели с:

    • повышенным сопротивлением пусковой обмотки;
    • пусковым конденсатором;
    • рабочим конденсатором;
    • пусковым и рабочим конденсатором;
    • экранированными полюсами.

    А еще здесь не указаны более новые разработки, называемые АЭД — асинхронные энергосберегающие двигатели, обеспечивающие:

    • значительное снижение реактивной мощности;
    • повышение КПД;
    • уменьшение потребления полной мощности при той же нагрузке на вал, что и у обычных моделей.

    Их конструкторское отличие: внутри зубцов сердечника статора выполнены углубления. В них жестко вставлены постоянные магниты, взаимодействующие с вращающимся магнитным полем.

    Во всем этом многообразии вам предстоит разбираться самостоятельно с неизвестной конструкцией. Здесь большую помощь может оказать техническое описание или шильдик на корпусе.

    Я же дальше рассматриваю только две наиболее распространенные схемы запуска АД в работу.

    Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки

    Например, мы определили, что из статора выходят четыре или три провода. Вызваниваем между ними активное сопротивление омметром и определяем пусковую и рабочую обмотку.

    Допустим, что у четырех проводов между собой вызваниваются две пары с сопротивлением 6 и 12 Ом. Скрутим произвольно по одному проводу от каждой обмотки, обозначим это место, как «общий провод» и получим между тремя выводами замер 6, 12, 18 Ом.

    Точками на этой схеме я обозначил начала обмоток. Пока на этот вопрос не обращайте внимание. Но, к нему потребуется вернуться дальше, когда возникнет необходимость выполнять реверс.

    Цепочка между общим выводом и меньшим сопротивлением 6Ω будет главной, а большим 12Ω — вспомогательной, пусковой обмоткой. Последовательное их соединение покажет суммарный результат 18 Ом.

    Помечаем эти 3 конца уже понятной нам маркировкой:

    Дальше нам понадобиться кнопка ПНВС, специально созданная для запуска однофазных асинхронных двигателей. Ее электрическая схема представлена тремя замыкающими контактами.

    Но, она имеет важное отличие от кнопки запуска трехфазных электродвигателей ПНВ: ее средний контакт выполнен с самовозвратом, а не фиксацией при нажатии.

    Это означает, что при нажатии кнопки все три контакта замыкаются и удерживаются в этом положении. Но, при отпускании руки два крайних контакта остаются замкнутыми, а средний возвращается под действием пружины в разомкнутое состояние.

    Эту кнопку и клеммы вывода обмоток статора из электродвигателя соединяем трехжильным кабелем так, чтобы на средний контакт ПНВС выходил контакт пусковой обмотки. Выводы П и Р подключаем на ее крайние контакты и помечаем.

    С обратной стороны кнопки между контактами пусковой и рабочей обмоток жестко монтируем перемычку. На нее и второй крайний контакт подключаем кабель питания бытовой сети 220 вольт с вилкой для установки в розетку.

    При включении этой кнопки под напряжение все три контакта замкнутся, а рабочая и пусковая обмотка станут работать. Буквально через пару секунд двигатель закончит набирать обороты, выйдет на номинальный режим.

    Тогда кнопку запуска отпускают:

    • пусковая обмотка отключается самовозвратом среднего контакта;
    • главная обмотка двигателя продолжает раскручивать ротор от сети 220 В.

    Это самая доступная схема подключения асинхронного двигателя с пусковой обмоткой для домашнего мастера. Однако, она требует наличия кнопки ПНВС.

    Если ее нет, а электродвигатель требуется срочно запустить, то ее допустимо заменить комбинацией из двухполюсного автоматического выключателя и обычной электрической кнопки соответствующей мощности с самовозвратом.

    Придется включать их одновременно, а кнопку отпускать после раскрутки электродвигателя.

    С целью закрепления материала по этой теме рекомендую посмотреть видеоролик владельца Oleg pl. Он как раз показывает конструкцию встроенного центробежного регулятора, предназначенного для автоматического отключения вспомогательной обмотки.

    Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии

    Статор с обмотками для запуска от конденсаторов имеет примерно такую же конструкцию, что и рассмотренная выше. Отличить по внешнему виду и простыми замерами мультиметром его сложно, хотя обмотки могут иметь равное сопротивление.

    Ориентируйтесь по заводскому шильдику и таблице из книги Алиева. Такой электродвигатель можно попробовать подключить по схеме с кнопкой ПНВС, но он не станет раскручиваться.

    Ему не хватит пускового момента от вспомогательной обмотки. Он будет гудеть, дергаться, но на режим вращения так и не выйдет. Здесь нужно собирать иную схему конденсаторного запуска.

    2 конца разных обмоток подключают с общим выводом О. На него и второй конец рабочей обмотки подают через коммутационный аппарат АВ напряжение бытовой сети 220 вольт.

    Конденсатор подключают к выводам пусковой и рабочей обмоток.

    В качестве коммутационного аппарата можно использовать сдвоенный автоматический выключатель, рубильник, кнопки типа ПНВ или ПНВС.

    Здесь получается, что:

    • главная обмотка работает напрямую от 220 В;
    • вспомогательная — только через емкость конденсатора.

    Эта схема используется для легкого запуска конденсаторных электродвигателей, включаемых в работу без тяжелой нагрузки на привод, например, вентиляторы, наждаки.

    Если же в момент запуска необходимо одновременно раскручивать ременную передачу, шестеренчатый механизм редуктора или другой тяжелый привод, то в схему добавляют пусковой конденсатор, увеличивающий пусковой момент.

    Принцип работы такой схемы удобно приводить с помощью все той же кнопки ПНВС.

    Ее контакт с самовозвратом подключается на вспомогательную обмотку через дополнительный пусковой конденсатор Сп. Второй конец его обкладки соединяется с выводом П и рабочей емкостью Ср.

    Дополнительный конденсатор в момент запуска электродвигателя с тяжелым приводом помогает ему быстро выйти на номинальные обороты вращения, а затем просто отключается, чтобы не создавать перегрев статора.

    Эта схема таит в себе одну опасность, связанную с длительным хранением емкостного заряда пусковым конденсатором после снятия питания 220 при отключении электродвигателя.

    При неаккуратном обращении или потере внимательности работником ток разряда может пройти через тело человека. Поэтому заряженную емкость требуется разряжать.

    В рассматриваемой схеме после снятия напряжения и выдергивания вилки со шнуром питания из розетки это можно делать кратковременным включением кнопки ПНВС. Тогда емкость Сп станет разряжаться через пусковую обмотку двигателя.

    Однако не все люди так поступают по разным причинам. Поэтому рекомендуется в цепочку пуска монтировать два дополнительных резистора.

    Сопротивление Rр выбирается номиналом около 300÷500 Ом нескольких ватт. Его задача — после снятия напряжения питания осуществить разряд вспомогательной емкости Сп.

    Резистор Rо низкоомный и мощный выполняет роль токоограничивающего сопротивления.

    Где взять номиналы главного и вспомогательного конденсаторов?

    Дело в том, что величину пусковой и рабочей емкости для конденсаторного запуска однофазного АД завод определяет индивидуально для каждой модели и указывает это значение в паспорте.

    Отдельных формул для расчета, как это делается для конденсаторного запуска трехфазного двигателя в однофазную сеть по схемам звезды или треугольника просто нет.

    Вам потребуется искать заводские рекомендации или экспериментировать в процессе наладки с разными емкостями, выбирая наиболее оптимальный вариант.

    Владелец
    видеоролика “I V Мне интересно” показывает способы оптимальной настройки параметров схемы запуска конденсаторных двигателей.

    Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы

    Высока вероятность того, что АД запустили по одному из вышеперечисленных принципов, а он крутится не в ту сторону, что требуется для привода.

    Другой вариант: на станке необходимо обязательно выполнять реверс для обработки деталей. Оба эти случаи поможет реализовать очередная разработка.

    Возвращаю вас к начальной схеме, когда мы случайным образом объединяли концы главной и вспомогательной обмоток. Теперь нам надо сменить последовательность включения одной из них. Показываю на примере смены полярности пусковой обмотки.

    В принципе так можно поступить и с главной. Тогда ток по этой последовательно собранной цепочке изменит направление одного из магнитных потоков и направление вращения ротора.

    Для одноразового реверса этого переключения вполне достаточно. Но для станка с необходимостью периодической смены направления движения привода предлагается схема реверса с управлением тумблером.

    Этот переключатель можно выбрать с двумя или тремя фиксированными положениями и шестью выводами. Подбирать его конструкцию необходимо по току нагрузки и допустимому напряжению.

    Схема реверса однофазного АД с пусковой обмоткой через тумблер имеет такой вид.

    Пускать токи через тумблер лучше от вспомогательной обмотки, ибо она работает кратковременно. Это позволит продлить ресурс ее контактов.

    Реверс АД с конденсаторным запуском удобно выполнить по следующей схеме.

    Для условий тяжелого запуска параллельно основному конденсатору через средний контакт с самовозвратом кнопки ПНВС подключают дополнительный конденсатор. Эту схему не рисую, она показана раньше.

    Переключать положение тумблера реверса необходимо исключительно при остановленном роторе, а не во время его вращения. Случайная смена направления работы двигателя под напряжением связана с большими бросками токов, что ограничивает его ресурс.

    Если у вас еще остались неясные моменты про однофазный асинхронный двигатель и схему подключения, то задавайте их в комментариях. Обязательно обсудим.

    Работа асинхронных электрических двигателей основывается на создании вращающегося магнитного поля, приводящего в движение вал. Ключевым моментом является пространственное и временное смещение обмоток статора по отношению друг к другу. В однофазных асинхронных электродвигателях для создания необходимого сдвига по фазе используется последовательное включение в цепь фазозамещающего элемента, такого как, например, конденсатор.

    Отличие от трехфазных двигателей

    Использование асинхронных электродвигателей в чистом виде при стандартном подключении возможно только в трехфазных сетях с напряжением в 380 вольт, которые используются, как правило, в промышленности, производственных цехах и других помещениях с мощным оборудованием и большим энергопотреблением. В конструкции таких машин питающие фазы создают на каждой обмотке магнитные поля со смещением по времени и расположению (120˚ относительно друг друга), в результате чего возникает результирующее магнитное поле. Его вращение приводит в движение ротор.

    Однако нередко возникает необходимость подключения асинхронного двигателя в однофазную бытовую сеть с напряжением в 220 вольт (например в стиральных машинах). Если для подключения асинхронного двигателя будет использована не трехфазная сеть, а бытовая однофазная (то есть запитать через одну обмотку), он не заработает. Причиной тому переменный синусоидальный ток, протекающий через цепь. Он создает на обмотке пульсирующее поле, которое никак не может вращаться и, соответственно, двигать ротор. Для того, чтобы включить однофазный асинхронный двигатель необходимо:

    1. добавить на статор еще одну обмотку, расположив ее под 90˚ углом от той, к которой подключена фаза.
    2. для фазового смещения включить в цепь дополнительной обмотки фазосдвигающий элемент, которым чаще всего служит конденсатор.

    Редко для сдвига по фазе создается бифилярная катушка. Для этого несколько витков пусковой обмотки мотаются в обратную сторону. Это лишь один из вариантов бифиляров, которые имеют несколько другую сферу применения, поэтому, чтобы изучить их принцип действия, следует обратиться к отдельной статье.

    После подключения двух обмоток такой двигатель с конструкционной точки зрения является двухфазным, однако его принято называть однофазным из-за того что в качестве рабочей выступает лишь одна из них.

    Как это работает

    Пуск двигателя с двумя расположенными подобным образом обмотками приведет к созданию токов на короткозамкнутом роторе и кругового магнитного поля в пространстве двигателя. В результате их взаимодействия между собой ротор приводится в движение. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем.

    Несмотря на то, что функцию фаз определяет схема присоединения двигателя к сети, дополнительную обмотку нередко называют пусковой. Это обусловлено особенностью, на которой основывается действие однофазных асинхронных машин – крутящийся вал, имеющий вращающее магнитное поле, находясь во взаимодействии с пульсирующим магнитным полем может работать от одной рабочей фазы. Проще говоря, при некоторых условиях, не подсоединяя вторую фазу через конденсатор, мы могли бы запустить двигатель, раскрутив ротор вручную и поместив в статор. В реальных условиях для этого необходимо запустить двигатель с помощью пусковой обмотки (для смещения по фазе), а потом разорвать цепь, идущую через конденсатор. Несмотря на то, что поле на рабочей фазе пульсирующее, оно движется относительно ротора и, следовательно, наводит электродвижущую силу, свой магнитный поток и силу тока.

    Основные схемы подключения

    В качестве фазозамещающего элемента для подключения однофазного асинхронного двигателя можно использовать разные электромеханические элементы (катушка индуктивности, активный резистор и др.), однако конденсатор обеспечивает наилучший пусковой эффект, благодаря чему и применяется для этого чаще всего.

    Различают три основные способа запуска однофазного асинхронного двигателя через:

    • рабочий;
    • пусковой;
    • рабочий и пусковой конденсатор.

    В большинстве случаев применяется схема с пусковым конденсатором. Это связано с тем, что она используется как пускатель и работает только во время включения двигателя. Дальнейшее вращение ротора обеспечивается за счет пульсирующего магнитного поля рабочей фазы, как уже было описано в предыдущем абзаце. Для замыкания цепи пусковой цепи зачастую используют реле или кнопку.

    Поскольку обмотка пусковой фазы используется кратковременно, она не рассчитана на большие нагрузки, и изготавливается из более тонкой проволоки. Для предотвращения выхода её из строя в конструкцию двигателей включают термореле (размыкает цепь после нагрева до установленной температуры) или центробежный выключатель (отключает пусковую обмотку после разгона вала двигателя).

    Таким путем достигаются отличные пусковые характеристики. Однако данная схема обладает одним существенным недостатком – магнитное поле внутри двигателя, подключенного к однофазной сети, имеет не круговую, а эллиптическую форму. Это увеличивает потери при преобразовании электрической энергии в механическую и, как следствие, снижает КПД.

    Схема с рабочим конденсатором не предусматривает отключение дополнительной обмотки после запуска и разгона двигателя. В данном случае конденсатор позволяет компенсировать потери энергии, что приводит к закономерному увеличению КПД. Однако в пользу эффективности проходится жертвовать пусковыми характеристиками.

    Для работы схемы необходимо подбирать элемент с определенной ёмкостью, рассчитанной с учетом тока нагрузки. Неподходящий по емкости конденсатор приведет к тому, что вращающееся магнитное поле будет принимать эллиптическую форму.

    Своеобразной «золотой серединой» является схема подключения с использованием обоих конденсаторов – и пускового, и рабочего. При подключении двигателя таким способом его пусковые и рабочие характеристики принимают средние значения относительно описанных выше схем.

    На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации – вторая, с рабочим.

    Другие способы

    При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.

    С экранированными полюсами и расщепленной фазой

    В конструкции такого двигателя используется короткозамкнутая дополнительная обмотка, а на статоре присутствуют два полюса. Аксиальный паз делит каждый из них на две несимметричные половины, на меньшей из которых располагается короткозамкнутый виток.

    После включения двигателя в электрическую сеть пульсирующий магнитный поток разделяется на 2 части. Одна из них движется через экранированную часть полюса. В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Благодаря индуктивности появляется электродвижущая сила и сдвиг магнитных потоков по фазе и времени.

    Витки короткозамкнутой обмотки приводят к существенным потерям энергии, что и является главным недостатком схемы, однако она относительно часто используется в климатических и нагревательных приборах с вентилятором.

    С асимметричным магнитопроводом статора

    Особенностью двигателей с данной конструкцией заключается в несимметричной форме сердечника, из-за чего появляются явно выраженные полюса. Для работы схемы необходим короткозамкнутый ротор и обмотка в виде беличьей клетки. Характерным отличием этой конструкции является отсутствие необходимости в фазовом смещении. Улучшенный пуск двигателя осуществляется благодаря оснащению его магнитными шунтами.

    Среди недостатков этих моделей асинхронных электродвигателей выделяют низкий КПД, слабый пусковой момент, отсутствие реверса и сложность обслуживания магнитных шунтов. Но, несмотря на это, они имеют широкое применение в производстве бытовой техники.

    Подбор конденсатора

    Перед тем как подключить однофазный электродвигатель, необходимо произвести расчет необходимой ёмкости конденсатора. Это можно сделать самостоятельно или воспользоваться онлайн-калькуляторами. Как правило, для рабочего конденсатора на 1 кВт мощности должно приходиться примерно 0,7-0,8 мкФ емкости, и около 1,7-2 мкФ – для пускового. Стоит отметить, что напряжение последнего должно составлять не менее 400 В. Эта необходимость обусловлена возникновением 300-600 вольтного всплеска напряжения при старте и останове двигателя.

    Ввиду своих функциональных особенностей однофазные электродвигатели находят широкое применение в бытовой технике: пылесосах, холодильниках, газонокосилках и других приборов, для работы которых достаточно частоты вращения двигателя до 3000 об/мин. Большей скорости, при подключении к стандартной сети с частотой тока в 50 Гц, невозможно. Для развития большей скорости используют коллекторные однофазные двигатели.

    Схема соединения конденсатора однофазного двигателя

    Изготовление самодельных станков и механизмов требует наличия источника крутящего момента, способного развивать высокую механическую мощность на валу привода при питании от сети 220 вольт.

    Для этих целей подходит электродвигатель от бетономешалки, стиральной машины, другого оборудования или просто приобретенный в продаже.

    В статье я рассказываю все про однофазный асинхронный двигатель, схема подключения которого зависит от внутренней конструкции и может быть выполнена с пусковой обмоткой или конденсаторным запуском.

    С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем

    Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.

    На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.

    Важное предупреждение

    Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.

    Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.

    В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).

    Как состояние подшипников влияет на работу двигателя

    Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.

    Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.

    Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.

    Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.

    Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.

    Что надо учитывать в конструкции статорных обмоток и как их подготовить

    Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.

    Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.

    Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.

    Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.

    Это позволяет первоначально оценивать их состояние обычным цифровым мультиметром в режиме омметра при отключенном напряжении.

    Однофазный асинхронный двигатель имеет две разные обмотки на статоре, разнесенные на 90 угловых градусов. Одна из них создана для длительного прохождения тока в номинальном режиме работы и поэтому называется основной, главной либо рабочей.

    Для уменьшения нагрева ее делают более толстым проводом, обладающим меньшим электрическим сопротивлением.

    Перпендикулярно ей смонтирована вторая обмотка большего сопротивления и меньшего диаметра, что позволяет различать ее визуально. Она создана для кратковременного протекания пусковых токов и отключается сразу при наборе ротором номинального числа оборотов.

    Пусковая или вспомогательная обмотка занимает примерно 1/3 пазов статора, а остальная часть отведена рабочим виткам.

    Однако, приведенное правило имеет исключения: на практике встречаются однофазные электродвигатели с двумя одинаковыми обмотками.

    Для подключения статора к питающей сети концы обмоток выводят наружу проводами. С учетом того, что одна обмотка имеет два конца, то у трехфазного электродвигателя может быть, как правило, шесть выводов, а у однофазного — четыре.

    Но из этого простого правила встречаются исключения, связанные с внутренней коммутацией выводов для упрощения монтажа на специальном оборудовании:

    • у трехфазных двигателей из статора могут выводиться:
    • три жилы при внутренней сборке схемы треугольника;
    • или четыре — для звезды;
  • однофазный электродвигатель может иметь:
  • три вывода при внутреннем объединении одного конца пусковой и рабочей обмоток;
    • или шесть концов для конструкции с пусковой обмоткой и встроенным контактом ее отключения от центробежного регулятора.

    Техническое состояние изоляции обмоток

    Где и в каких условиях хранился статор не всегда известно. Если он находился без защиты от атмосферных осадков или внутри влажных помещений, то его изоляция требует сушки.

    В домашней обстановке разобранный статор можно поместить в сухую комнату для просушки. Ускорить процесс допустимо обдувом вентилятора или нагревом обычными лампами накаливания.

    Обращайте внимание, чтобы разогретое стекло лампы не касалось провода обмоток, обеспечивайте воздушный зазор. Окончание процесса сушки связано с восстановлением свойств изоляции. Этот процесс необходимо контролировать замерами мегаомметром.

    Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице

    Привожу выдержку из книги Алиева И И про асинхронные двигатели, вернее таблицу основных электрических характеристик.

    Как видите, промышленностью массово выпущены модели с:

    • повышенным сопротивлением пусковой обмотки;
    • пусковым конденсатором;
    • рабочим конденсатором;
    • пусковым и рабочим конденсатором;
    • экранированными полюсами.

    А еще здесь не указаны более новые разработки, называемые АЭД — асинхронные энергосберегающие двигатели, обеспечивающие:

    • значительное снижение реактивной мощности;
    • повышение КПД;
    • уменьшение потребления полной мощности при той же нагрузке на вал, что и у обычных моделей.

    Их конструкторское отличие: внутри зубцов сердечника статора выполнены углубления. В них жестко вставлены постоянные магниты, взаимодействующие с вращающимся магнитным полем.

    Во всем этом многообразии вам предстоит разбираться самостоятельно с неизвестной конструкцией. Здесь большую помощь может оказать техническое описание или шильдик на корпусе.

    Я же дальше рассматриваю только две наиболее распространенные схемы запуска АД в работу.

    Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки

    Например, мы определили, что из статора выходят четыре или три провода. Вызваниваем между ними активное сопротивление омметром и определяем пусковую и рабочую обмотку.

    Допустим, что у четырех проводов между собой вызваниваются две пары с сопротивлением 6 и 12 Ом. Скрутим произвольно по одному проводу от каждой обмотки, обозначим это место, как «общий провод» и получим между тремя выводами замер 6, 12, 18 Ом.

    Точками на этой схеме я обозначил начала обмоток. Пока на этот вопрос не обращайте внимание. Но, к нему потребуется вернуться дальше, когда возникнет необходимость выполнять реверс.

    Цепочка между общим выводом и меньшим сопротивлением 6Ω будет главной, а большим 12Ω — вспомогательной, пусковой обмоткой. Последовательное их соединение покажет суммарный результат 18 Ом.

    Помечаем эти 3 конца уже понятной нам маркировкой:

    Дальше нам понадобиться кнопка ПНВС, специально созданная для запуска однофазных асинхронных двигателей. Ее электрическая схема представлена тремя замыкающими контактами.

    Но, она имеет важное отличие от кнопки запуска трехфазных электродвигателей ПНВ: ее средний контакт выполнен с самовозвратом, а не фиксацией при нажатии.

    Это означает, что при нажатии кнопки все три контакта замыкаются и удерживаются в этом положении. Но, при отпускании руки два крайних контакта остаются замкнутыми, а средний возвращается под действием пружины в разомкнутое состояние.

    Эту кнопку и клеммы вывода обмоток статора из электродвигателя соединяем трехжильным кабелем так, чтобы на средний контакт ПНВС выходил контакт пусковой обмотки. Выводы П и Р подключаем на ее крайние контакты и помечаем.

    С обратной стороны кнопки между контактами пусковой и рабочей обмоток жестко монтируем перемычку. На нее и второй крайний контакт подключаем кабель питания бытовой сети 220 вольт с вилкой для установки в розетку.

    При включении этой кнопки под напряжение все три контакта замкнутся, а рабочая и пусковая обмотка станут работать. Буквально через пару секунд двигатель закончит набирать обороты, выйдет на номинальный режим.

    Тогда кнопку запуска отпускают:

    • пусковая обмотка отключается самовозвратом среднего контакта;
    • главная обмотка двигателя продолжает раскручивать ротор от сети 220 В.

    Это самая доступная схема подключения асинхронного двигателя с пусковой обмоткой для домашнего мастера. Однако, она требует наличия кнопки ПНВС.

    Если ее нет, а электродвигатель требуется срочно запустить, то ее допустимо заменить комбинацией из двухполюсного автоматического выключателя и обычной электрической кнопки соответствующей мощности с самовозвратом.

    Придется включать их одновременно, а кнопку отпускать после раскрутки электродвигателя.

    С целью закрепления материала по этой теме рекомендую посмотреть видеоролик владельца Oleg pl. Он как раз показывает конструкцию встроенного центробежного регулятора, предназначенного для автоматического отключения вспомогательной обмотки.

    Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии

    Статор с обмотками для запуска от конденсаторов имеет примерно такую же конструкцию, что и рассмотренная выше. Отличить по внешнему виду и простыми замерами мультиметром его сложно, хотя обмотки могут иметь равное сопротивление.

    Ориентируйтесь по заводскому шильдику и таблице из книги Алиева. Такой электродвигатель можно попробовать подключить по схеме с кнопкой ПНВС, но он не станет раскручиваться.

    Ему не хватит пускового момента от вспомогательной обмотки. Он будет гудеть, дергаться, но на режим вращения так и не выйдет. Здесь нужно собирать иную схему конденсаторного запуска.

    2 конца разных обмоток подключают с общим выводом О. На него и второй конец рабочей обмотки подают через коммутационный аппарат АВ напряжение бытовой сети 220 вольт.

    Конденсатор подключают к выводам пусковой и рабочей обмоток.

    В качестве коммутационного аппарата можно использовать сдвоенный автоматический выключатель, рубильник, кнопки типа ПНВ или ПНВС.

    Здесь получается, что:

    • главная обмотка работает напрямую от 220 В;
    • вспомогательная — только через емкость конденсатора.

    Эта схема используется для легкого запуска конденсаторных электродвигателей, включаемых в работу без тяжелой нагрузки на привод, например, вентиляторы, наждаки.

    Если же в момент запуска необходимо одновременно раскручивать ременную передачу, шестеренчатый механизм редуктора или другой тяжелый привод, то в схему добавляют пусковой конденсатор, увеличивающий пусковой момент.

    Принцип работы такой схемы удобно приводить с помощью все той же кнопки ПНВС.

    Ее контакт с самовозвратом подключается на вспомогательную обмотку через дополнительный пусковой конденсатор Сп. Второй конец его обкладки соединяется с выводом П и рабочей емкостью Ср.

    Дополнительный конденсатор в момент запуска электродвигателя с тяжелым приводом помогает ему быстро выйти на номинальные обороты вращения, а затем просто отключается, чтобы не создавать перегрев статора.

    Эта схема таит в себе одну опасность, связанную с длительным хранением емкостного заряда пусковым конденсатором после снятия питания 220 при отключении электродвигателя.

    При неаккуратном обращении или потере внимательности работником ток разряда может пройти через тело человека. Поэтому заряженную емкость требуется разряжать.

    В рассматриваемой схеме после снятия напряжения и выдергивания вилки со шнуром питания из розетки это можно делать кратковременным включением кнопки ПНВС. Тогда емкость Сп станет разряжаться через пусковую обмотку двигателя.

    Однако не все люди так поступают по разным причинам. Поэтому рекомендуется в цепочку пуска монтировать два дополнительных резистора.

    Сопротивление Rр выбирается номиналом около 300÷500 Ом нескольких ватт. Его задача — после снятия напряжения питания осуществить разряд вспомогательной емкости Сп.

    Резистор Rо низкоомный и мощный выполняет роль токоограничивающего сопротивления.

    Где взять номиналы главного и вспомогательного конденсаторов?

    Дело в том, что величину пусковой и рабочей емкости для конденсаторного запуска однофазного АД завод определяет индивидуально для каждой модели и указывает это значение в паспорте.

    Отдельных формул для расчета, как это делается для конденсаторного запуска трехфазного двигателя в однофазную сеть по схемам звезды или треугольника просто нет.

    Вам потребуется искать заводские рекомендации или экспериментировать в процессе наладки с разными емкостями, выбирая наиболее оптимальный вариант.

    Владелец
    видеоролика “I V Мне интересно” показывает способы оптимальной настройки параметров схемы запуска конденсаторных двигателей.

    Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы

    Высока вероятность того, что АД запустили по одному из вышеперечисленных принципов, а он крутится не в ту сторону, что требуется для привода.

    Другой вариант: на станке необходимо обязательно выполнять реверс для обработки деталей. Оба эти случаи поможет реализовать очередная разработка.

    Возвращаю вас к начальной схеме, когда мы случайным образом объединяли концы главной и вспомогательной обмоток. Теперь нам надо сменить последовательность включения одной из них. Показываю на примере смены полярности пусковой обмотки.

    В принципе так можно поступить и с главной. Тогда ток по этой последовательно собранной цепочке изменит направление одного из магнитных потоков и направление вращения ротора.

    Для одноразового реверса этого переключения вполне достаточно. Но для станка с необходимостью периодической смены направления движения привода предлагается схема реверса с управлением тумблером.

    Этот переключатель можно выбрать с двумя или тремя фиксированными положениями и шестью выводами. Подбирать его конструкцию необходимо по току нагрузки и допустимому напряжению.

    Схема реверса однофазного АД с пусковой обмоткой через тумблер имеет такой вид.

    Пускать токи через тумблер лучше от вспомогательной обмотки, ибо она работает кратковременно. Это позволит продлить ресурс ее контактов.

    Реверс АД с конденсаторным запуском удобно выполнить по следующей схеме.

    Для условий тяжелого запуска параллельно основному конденсатору через средний контакт с самовозвратом кнопки ПНВС подключают дополнительный конденсатор. Эту схему не рисую, она показана раньше.

    Переключать положение тумблера реверса необходимо исключительно при остановленном роторе, а не во время его вращения. Случайная смена направления работы двигателя под напряжением связана с большими бросками токов, что ограничивает его ресурс.

    Если у вас еще остались неясные моменты про однофазный асинхронный двигатель и схему подключения, то задавайте их в комментариях. Обязательно обсудим.

    Вопрос как подключить однофазный электродвигатель очень часто возникает на практике из-за высокой популярности применения подобных агрегатов для решения различных бытовых задач.

    Схема подключения однофазного электродвигателя достаточно проста и требует учета всего одного принципиального момента: для обеспечения его работоспособности необходимо вращающееся магнитное поле. При наличии только однофазной сети переменного тока на момент запуска электродвигателя его приходится формировать искусственно через применение соответствующих схемных решений.

    • Обмотки электромотора
    • Особенности формирования вращающего момента
    • Конденсаторы
    • Косвенное включение
    • Особенности применения магнитного пускателя
    • Заключение

    Обмотки электромотора

    Укладка обмоток в статоре однофазного электродвигателя

    Конструкция любого однофазного электродвигателя предполагает использование как минимум трех катушек. Две из них являются элементов конструкции статора,включены параллельно. Одна из них является рабочей, а вторая выполняет функции пусковой. Их клеммы выведены на корпус двигателя и используются для подключения к сети. Обмотка ротора выполнена короткозамкнутой. К сети подключатся две из них, остальные служат для коммутации.

    Для изменения мощности рабочая катушка может формироваться из двух частей, которые включаются последовательно.

    Визуально идентифицировать рабочую и пусковую обмотку можно по сечению провода: у первой из них оно заметно больше. Можно замерить сопротивление тестером подключением его к клеммам: у рабочей обмотки его величина будет меньше. Как правило, сопротивления обмоток будет составлять не более нескольких десятков Ом.

    Особенности формирования вращающего момента

    Магнитное поле, создаваемое катушками электродвигателя, имеет фазовый сдвиг на 90 градусов. Это обычно достигается через конденсатор, который последовательно включается в цепь запуска. Возможные варианты соединения показаны на рисунке ниже.

    Варианты создания сдвига фаз

    Пусковая катушка может работать постоянно. Допустима также схема, основанная на ее отключении после достижения номинальной частоты вращения ротора. Постоянное подключение пусковой обмотки усложняет конструкцию двигателя, но улучшает его характеристики. На особенностях подключения к сети эти различия не сказываются.

    Для упрощения запуска двигателя с рабочим конденсатором, перед подачей на него тока от сети параллельно ему подключают вспомогательную емкость.

    Однофазный электромотор позволяет простыми средствами изменить направление вращения вала на противоположное. Для этого производится сдвиг фазы тока, поступающего от сети и протекающего через цепи запуска, меняется на противоположный. Данная процедура реализуется простым изменением порядка включения пусковой обмотки при ее соединении с рабочей обмоткой.

    Конденсаторы

    Схема подключения однофазных конденсаторных двигателей: а – с рабочей емкостью Ср, б – с рабочей емкостью Ср и пусковой емкостью Сп.

    Электродвигатель может комплектоваться двумя разновидностями конденсаторов. Наличие емкости, включаемой последовательно спусковой обмоткой и пропускающей через себя ток для сдвига фазы, является обязательным. Ее значение заимствуется из паспортных данных электродвигателя и дублируется на его шильдике.

    При отсутствии конденсатора нужной емкости допустимо применять любой другой с близким номиналом. При слишком сильном отклонении в меньшую сторону двигатель может не начать вращаться без ручной прокрутки его вала, а затем не будет развивать нужную мощность. При значительном превышении емкости начнется сильный нагрев.

    Емкость дополнительного пускового компонента выбирается в два-три раза выше по сравнению с основным. Такая величина обеспечивает максимальный стартовый момент.

    Для включения пускового элемента может использоваться как обычная кнопка, так и более сложные схемы.

    Косвенное включение

    Подключение однофазного двигателя

    Основным компонентом схемы косвенного включения является магнитный пускатель, который включается в разрыв между выходом силовой сети и электродвигателем.

    Силовые контакты этого блока выполнены как нормально разомкнутые. Магнитный пускатель по величине максимального протекающего через него тока относится к одной из семи нормированных групп. Из-за небольшой мощности однофазных электродвигателей обычно достаточно устройства первой группы, максимальное значение коммутируемого тока которого составляет 10 А.

    Управляющая часть катушки предназначена для подключения к сетям с различным напряжением. Наиболее удобным является магнитный пускатель с управлением от 220в переменного тока.

    Особенности применения магнитного пускателя

    В управляющей части устройства предусмотрено несколько пар контактов, на которых собирается схема релейной автоматики. Один из них всегда является нормально замкнутым, а второй – нормально разомкнутым.

    У кнопки «Пуск» рабочим считается нормально разомкнутый контакт, а у кнопки «Стоп» задействован нормально замкнутый элемент.

    При выполнении подключения рассматриваемого устройства осуществляются соединения нескольких типов.

    Схема подключения однофазного двигателя

    Фаза, наряду с входной клеммой, подключается также к входу контакта кнопки «Стоп», а ноль соединяется с входной клеммой катушки, что обеспечивает протекание через нее управляющего тока.

    Активный контакт кнопки «Пуск» при работающем двигателе шунтируется аналогичным элементом катушки. Для формирования этой цепи выполняются два дополнительных соединения, схема которых показана на рисунке выше:

    • выход рабочего контакта кнопки «Стоп» параллельно соединяется с контактами выхода кнопки «Пуск» и входа управляющей катушки;
    • выход нормально разомкнутого контакта управляющей катушки параллельно соединяется с ее выходной клеммой и с входом рабочего контакта кнопки «Пуск».

    Заключение

    Процесс подключения однофазного электромотора к сети 220в не отличается большой сложностью и фактически требует только желания, минимального набора простейших инструментов, наличия схемы соединений и аккуратности в работе. Из расходных материалов нужны только провода. Из-за опасности короткого замыкания и больших величин токов, протекающих через обмотки двигателя, необходимо обязательно выполнять требования техники безопасности и не забывать про старое, но очень действенное правило: «Семь раз отмерь, один раз отрежь».

    Однофазные двигатели — это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.

    Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.

    У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.

    У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

    То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.

    Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

    Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

    Рис. 1. Рабочая и пусковая обмотки однофазного двигателя

    А теперь несколько примеров, с которыми вы можете столкнуться:

    Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.

    Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов. Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

    Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только. В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя, также осуществляется через конденсатор.

    Как подключать одно — и трехфазные электродвигателя?

    В домашнем хозяйстве часто приходится использовать электродвигатели в сети 220 или 380 вольт без паспортных данных. Вследствие этого падает КПД, но в целом оно того стоит. Давайте рассмотрим самые распространенные и доступные схемы подключения электродвигателя, как к трехфазной сети, так и однофазной.

    Однофазный двигатель

    Хоть двигатель и называется однофазным, в его состав входит две обмотки. При условии только одной обмотки поле создаваемое статором является пульсирующим, а не вращающимся, поэтому вал придется раскручивать механически вручную. Во избежание этого в конструкции однофазного двигателя предусмотрена еще и пусковая обмотка, которую, по сути, можно назвать второй фазой. Вращающее поле в статоре создается за счет смещения второй фазы на 90 градусов, которая и раскручивает ротор до номинальной скорости. Это пусковая обмотка. Ее время работы находится в пределах 3-5 секунд (не больше), в отличии от рабочей обмотки, которая включена в сеть на все время работы электродвигателя.

    Для того чтобы сместить вторую фазу можно использовать конденсаторы, катушки индуктивности и омические сопротивления. Последние могут быть не обязательно резистором. Это может быть часть пусковой обмотки, сделанной по бифилярной технологии. Для этого индуктивность катушки не изменяется, но сопротивление зависит от длины медного провода. На рисунке 1 приведены некоторые примеры схем подключения однофазных электродвигателей.

    Трехфазный электродвигатель

    Трехфазные моторы является намного эффективнее, чем однофазные или двухфазные, тем более что при включении в трехфазную цепь они запускаются без дополнительных пусковых устройств. Существует два основных способа пуска трехфазных электродвигателей: треугольник и звезда. При пуске по схеме звезда мощность мотора не будет максимальной, но будет происходить плавный пуск. При подключении электродвигателя по схеме треугольник мощность будет соответствовать паспортной. Но при запуске электродвигателя большой мощности ток будет настолько высок, что даже возможен перегрев проводки и ее повреждение. Поэтому существует еще один способ подключения, который называется звезда-треугольник. При использовании такой схемы пуск происходит в режиме звезды (плавный пуск), а номинальный режим работы электродвигателя уже по схеме треугольник. На рисунке 3 схема звезда соответствует включению пускателей МП1 и МП3, а схема треугольник МП1 и МП2.

    Как подключить в однофазную цепь

    трехфазный электродвигатель?

    Известно, что при данном способе пуска электродвигателя КПД падает до 50-70%. По факту электродвигатель становится двухфазным. Для того чтобы осуществить данный способ пуска мотора необходимо применить рабочие и пусковые конденсаторы, за счет которых и будет осуществляться сдвиг по фазе и разгон. Вот формулы расчета необходимой величины емкости конденсаторов:

    Для звезды: Ср = 2800 х I / U (мкФ).
    Для треугольника: Ср = 4800 х I / U (мкФ).
    Сп = Ср х (2…3).

    Ср – емкость рабочего конденсатора;
    Сп – емкость пускового конденсатора;
    I – номинальный ток электродвигателя;
    U – напряжение сети (220В).

    На рисунке 4 изображены схемы подключения трехфазного двигателя в однофазную сеть. Конденсаторы выбираются с номинальным рабочим напряжением в 1,5-1,7 раза больше, чтобы выдерживали скачки напряжения во время пуска электродвигателя.

    *** Защита силового трансформатора: кратко об основном
    *** Наиболее популярные поломки электрических счетчиков

    Лучшее сочетание вакуумных и          полупроводниковых характеристик — однотактный гибридный усилитель звука.

              Мы не создаём иллюзий,
              Мы делаем звук живым!

    Однофазные асинхронные двигатели — Подвал схем

    Ранее я уже писал о трехфазных асинхронных двигателях, повсеместно используемых в промышленности. Однако существует еще один класс асинхронных двигателей, с которым вы, скорее всего, столкнетесь в домашних условиях — однофазные асинхронные двигатели.

    Ранее мы видели, что обмотки статора в трехфазном двигателе создают плавно вращающийся вектор магнитного потока. Это индуцирует токи в обмотках ротора, которые создают собственное магнитное поле, взаимодействующее с полем статора и создающее крутящий момент.

    В однофазном двигателе обмотки статора могут создавать поле, пульсирующее только вдоль одной оси, как показано на рис. 1 . В положительном полупериоде поле указывает вправо и увеличивается от нуля до некоторого пика, прежде чем снова уменьшиться до нуля. В отрицательном полупериоде происходит то же самое, но в противоположном направлении. На неподвижном роторе не создается крутящий момент, поэтому двигатель не может запуститься сам по себе. Когда ротор движется, создается крутящий момент, и двигатель продолжает вращаться.Как мы увидим, доступно несколько методов для обеспечения некоторого начального крутящего момента, чтобы начать работу. Эти моторы могут работать в любом направлении, в зависимости от направления начального «толчка», который их запускает.

    РИСУНОК 1. Статор однофазного асинхронного двигателя создает пульсирующее магнитное поле, а не вращающееся, как в трехфазном двигателе. Это означает, что крутящий момент отсутствует, когда ротор неподвижен. Когда он движется, токи, индуцируемые в роторе, создают магнитное поле, которое взаимодействует с пульсирующим полем, создавая крутящий момент и, таким образом, вращение.РИСУНОК 2. Это типичный однофазный асинхронный двигатель с расщепленными полюсами. Основная обмотка находится внизу, а два закороченных витка, образующих экранирующую обмотку, видны вверху изображения. Эти двигатели очень неэффективны и поэтому используются только для очень маломощных приложений.

    В двигателе с расщепленными полюсами используется один из самых простых методов пуска. Типичный пример показан на рис. 2 . Один или два короткозамкнутых витка на одном (или обоих) полюсах, видимые в верхней части изображения, создают достаточно искажений в магнитном поле, чтобы создать небольшой пусковой момент, которого достаточно, чтобы заставить ротор двигаться.

    Этот тип двигателя, как правило, менее чем на 30% неэффективен и поэтому ограничивается очень маленькими двигателями, обычно не более пары сотен ватт.

    Другим распространенным типом однофазного асинхронного двигателя является двигатель с постоянным раздельным конденсатором (PSC). В этом двигателе используется вспомогательная обмотка, которая физически смещена от основной обмотки. Эта обмотка подключена к клеммам двигателя через конденсатор, как показано на рис. 3 . Вспомогательная обмотка создает слабое поле, которое создает пусковой момент.Этот крутящий момент относительно низок, так как ток через вспомогательную обмотку должен быть небольшим, чтобы уменьшить размер и стоимость конденсатора и максимизировать эффективность. Двигатели PSC обычно используются в приложениях, требующих низкого пускового момента, таких как вентиляторы и центробежные насосы мощностью до 2 кВт. Обычно их можно использовать с регуляторами скорости, если это необходимо.

    РИСУНОК 3. Асинхронный двигатель с постоянным раздельным конденсатором (PSC) имеет вспомогательную обмотку, подключенную через конденсатор. Эта обмотка обеспечивает небольшой пусковой момент для запуска двигателя.Двигатели PSC имеют номинальную мощность примерно до 2 кВт и часто используются для приложений с низким пусковым моментом, таких как вентиляторы и центробежные насосы. РИСУНОК 4. Двигатель с конденсаторным пуском преодолевает ограничения пускового момента двигателя PSC за счет использования большей вспомогательной обмотки и конденсатора для обеспечения большего пускового момента. Они потребляют много тока и не рассчитаны на постоянное использование, поэтому они отключаются центробежным выключателем, как только двигатель достигает примерно 70% своей номинальной скорости.

    Для лучшего пускового момента следует использовать двигатель с конденсаторным пуском. Рисунок 4 показывает, что, как и в двигателе PSC, присутствует вспомогательная обмотка, но в этом случае конденсатор больше, и вспомогательная обмотка потребляет значительный ток. Вспомогательная обмотка и пусковой конденсатор не рассчитаны на непрерывную работу, поэтому они отключаются центробежным выключателем при достижении двигателем примерно 70% номинальной скорости. На рис. 5 показан типичный центробежный переключатель.

    РИСУНОК 5. Центробежный переключатель состоит из двух частей: самого переключателя и его исполнительного механизма, закрепленных на статоре, и вращающейся части, закрепленной на валу ротора.Неподвижная часть состоит из желтого изолятора, удерживающего контакты, и серебряного привода. Когда вращающаяся часть достигает определенной скорости, центробежные грузы пружинят наружу, и переключатель срабатывает.

    Двигатели с конденсаторным пуском используются для конвейеров, редукторов или там, где требуется высокий пусковой крутящий момент. Они не подходят для использования с регулированием скорости, так как при низких скоростях пусковая обмотка будет включена на длительное время и может перегореть.

    РИСУНОК 6. Конденсаторные пусковые/рабочие двигатели представляют собой большие орудия однофазных асинхронных двигателей, с большим пусковым конденсатором, который отключается после запуска, и меньшим рабочим конденсатором, который постоянно подключен.Они оптимизированы для максимального крутящего момента в широком диапазоне скоростей и используются в тяжелых условиях, таких как компрессоры, бетономешалки и кирпичные пилы.

    Разновидностью этой темы является двигатель с конденсаторным пуском/работой, показанный на рис. 6 . В этом случае имеется пусковой конденсатор последовательно с центробежным выключателем и меньший рабочий конденсатор, который постоянно подключен к вспомогательной обмотке. Такое расположение обеспечивает наилучшую характеристику крутящего момента в самом широком диапазоне скоростей и хорошие характеристики при перегрузках.Конечно, это происходит за счет сложности и стоимости. Эти двигатели используются для очень требовательных приложений с частым пуском, таких как компрессоры, бетономешалки, кирпичные пилы и т.п.

    Каталожные номера
    Схема глобуса. «Что такое конденсаторный пусковой двигатель? – Его фазовая диаграмма и характеристики», 13 февраля 2016 г. https://circuitglobe.com/capacitor-start-capacitor-run-motor.html.

    «Электрические машины – однофазные асинхронные двигатели.По состоянию на 9 ноября 2021 г. https://people.ucalgary.ca/~aknigh/electrical_machines/other/spim.html.

    «Введение в двигатели PSC | Беккет Корп. По состоянию на 9 ноября 2021 г. https://www.beckettcorp.com/support/tech-bulletins/an-introduction-to-psc-motors/.

    «Двигатели с раздельными конденсаторами постоянного действия». По состоянию на 9 ноября 2021 г. https://www.industrial-electronics.com/AC-DC-motors/54_Permanent-Split-Capacitor-Motors.html.

    Спонсор этой статьи

    Андрей Левидо ([email protected]) получил степень бакалавра электротехники в Сиднее, Австралия, в 1986 году. Несколько лет он работал в области исследований и разработок в компаниях, занимающихся силовой электроникой и телекоммуникациями, прежде чем перейти на руководящие должности. В свободное время Эндрю проявлял практический интерес к электронике, особенно встраиваемым системам, силовой электронике и теории управления. На протяжении многих лет он написал ряд статей для различных изданий по электронике и время от времени оказывает консультационные услуги, если позволяет время.

    Типы однофазных асинхронных двигателей

    Однофазный асинхронный двигатель запускается некоторыми способами. Механические методы не очень практичны, поэтому двигатель временно запускается путем преобразования его в двухфазный двигатель.

    Однофазные асинхронные двигатели классифицируются в соответствии с вспомогательными средствами, используемыми для запуска двигателя. Они классифицируются следующим образом:

    1. Двухфазный двигатель
    2. Конденсатор пускового двигателя
    3. Электродвигатель с конденсаторным пуском
    4. Электродвигатель с делительным конденсатором (PSC)
    5. Электродвигатель с экранированными полюсами

    1.Двухфазный асинхронный двигатель:

    Асинхронный двигатель с расщепленной фазой также известен как двигатель с пусковым сопротивлением . Он состоит из ротора с одной клеткой, а его статор имеет две обмотки ? основная обмотка и пусковая (также известная как вспомогательная) обмотка. Обе обмотки смещены в пространстве на 90° подобно обмоткам двухфазного асинхронного двигателя. Основная обмотка асинхронного двигателя имеет очень низкое сопротивление и высокое индуктивное сопротивление.

    Рисунок: Двухфазный асинхронный двигатель (a) Принципиальная схема (b) Векторная диаграмма

    Характеристики двигателя:

    Пусковой момент асинхронного двигателя с пусковым сопротивлением составляет около 1.5-кратный крутящий момент при полной нагрузке. Максимальный или выдергивающий крутящий момент примерно в 2,5 раза превышает крутящий момент при полной нагрузке при примерно 75% синхронной скорости. Двухфазный двигатель имеет высокий пусковой ток, который обычно в 7-8 раз превышает значение полной нагрузки.

    Применений:

    Двигатели с расщепленной фазой

    наиболее подходят для легко запускаемых нагрузок, где частота пусков ограничена, и они очень дешевы.

    1. Эти двигатели используются в стиральных машинах.
    2. Используются в вентиляторах кондиционеров.
    3. Используется в миксерах, измельчителях, полировщиках полов, воздуходувках, центробежных насосах,
    4. Они используются в небольших дрелях, токарных станках, офисном оборудовании и т. д.
    5. Иногда они также используются для приводов мощностью более 1 кВт.

    Конденсаторные двигатели:

    Конденсаторные двигатели — это двигатели с конденсатором в цепи вспомогательной обмотки для создания большей разности фаз между током в основной и вспомогательной обмотках. Существует три типа конденсаторных двигателей.


    2. Двигатель с конденсаторным пуском:

    Двигатель с конденсаторным пуском развивает гораздо более высокий пусковой момент, т. е. в 3,0–4,5 раза больше крутящего момента при полной нагрузке. Для получения высокого пускового момента значение пускового конденсатора должно быть большим, а сопротивление пусковой обмотки должно быть низким. . Из-за высокого номинала ВАр требуемого конденсатора используются электролитические конденсаторы порядка 250 Ф. Конденсатор Cs рассчитан на короткое время.

    Эти двигатели дороже двигателей с расщепленной фазой из-за дополнительных затрат на конденсатор.

    Рисунок: Электродвигатель с конденсаторным пуском (a) принципиальная схема (b) векторная диаграмма

    Применений:

    1. Эти двигатели используются для тяжелых нагрузок, когда требуется частый пуск.
    2. Эти двигатели используются для насосов и компрессоров, поэтому они используются в качестве компрессора в холодильнике и кондиционере.
    3. Они также используются для конвейеров и некоторых станков.

    3. Конденсаторный двигатель с двумя значениями

    Этот двигатель имеет короткозамкнутый ротор, а его статор имеет две обмотки, а именно основную обмотку и вспомогательную обмотку.Две обмотки смещены в пространстве на 90°. В двигателе используются два конденсатора Cs и CR. На начальном этапе два конденсатора соединены параллельно.

    Рисунок: Двигатели с двумя конденсаторами

    Применений:

    1. Двигатели с двумя конденсаторами используются для нагрузок с более высокой инерцией, требующих частых пусков.
    2. Используются в насосном оборудовании.
    3. Они используются в холодильной технике, воздушных компрессорах и т. д.

    4.Двигатель с постоянно разделенным конденсатором (PSC):

    Эти двигатели имеют короткозамкнутый ротор, а его ротор состоит из двух обмоток, а именно основной обмотки и вспомогательной обмотки. Однофазный асинхронный двигатель имеет только один конденсатор С, включенный последовательно с пусковой обмоткой. Конденсатор С постоянно включен последовательно с пусковой обмоткой. Конденсатор C постоянно включен в цепь при пусковых и рабочих условиях.

    Преимущества

    Одномощный конденсаторный двигатель имеет следующие преимущества:

    1. Для двигателей этого типа центробежный выключатель не требуется.
    2. Этот двигатель имеет более высокий КПД.
    3. Имеет более высокий коэффициент мощности из-за постоянно подключенного конденсатора.
    4. Имеет более высокий крутящий момент на отрыв.

    Ограничения двигателя с постоянным конденсатором:

    1. Электролитические конденсаторы нельзя использовать для непрерывной работы. Поэтому следует использовать конденсаторы масляного типа с бумажными промежутками. Бумажные конденсаторы того же номинала больше по размеру и дороже.
    2. Однозначный конденсатор имеет низкий пусковой момент, обычно меньший, чем момент при полной нагрузке.

    Применение:

    1. Эти двигатели используются для вентиляторов и воздуходувок в обогревателях.
    2. Используется в кондиционерах.
    3. Используется для привода компрессоров холодильников.
    4. Также используется для управления офисной техникой.

    5. Двигатель с экранированными полюсами:

    Двигатель с расщепленными полюсами представляет собой простой тип самозапускающегося однофазного асинхронного двигателя. Он состоит из статора и ротора клеточного типа. Статор состоит из явно выраженных полюсов.Каждый полюс имеет прорези сбоку, а на меньшей части установлено медное кольцо. Эта часть называется заштрихованным полюсом. Кольцо обычно представляет собой одновитковую катушку и известно как затеняющая катушка.

    Рисунок: Двигатель с экранированными полюсами и двумя полюсами статора.

    Применений:

    1. Двигатели с экранированными полюсами используются для привода устройств, требующих низкого пускового момента.
    2. Эти двигатели очень подходят для небольших устройств, таких как реле, вентиляторы всех видов и т. д., из-за их низкой начальной стоимости и легкого запуска.
    3. Чаще всего эти двигатели применяются в настольных вентиляторах, вытяжных вентиляторах, фенах, вентиляторах для холодильного оборудования и кондиционеров, электронном оборудовании, охлаждающих вентиляторах и т. д.

    Однофазные двигатели

    Однофазные двигатели

    Однофазные электродвигатели вносят основной вклад в обеспечение нашего комфорта и удобства на рынке розничной торговли и в наших домах. Хотя они не так активно используются на промышленных и коммерческих рынках, это не значит, что они вообще не используются… просто не так сильно, как на рынке розничной торговли и жилья. И это в первую очередь связано с тем, что «однофазная мощность» является единственной электрической системой. доступна для 99% жилого рынка, в то время как «Трехфазная мощность» — это система, доступная для большинства коммерческих/промышленных рынков. Таким образом, использование однофазных двигателей требует большего внимания. с доступными источниками питания, чем что-либо еще.

    В целом, выбор доступных однофазных двигателей, из которых мы можем сделать выбор, безусловно, ограничен по сравнению с тем, что доступно на рынке трехфазных двигателей.И это связано с рынок, который необходимо обслуживать, и эффективность трехфазного питания по сравнению с однофазным питанием. В приведенной ниже таблице вы можете сравнить различные типы однофазных двигателей с точки зрения мощности, пусковой момент, пусковой ток, КПД и применение. Это, безусловно, должно дать вам представление о том, почему вы должны использовать определенный тип и какую пользу он вам принесет, когда вы это сделаете.

    от
    Рабочие характеристики однофазного двигателя
    Тип Размер — HP Момент пуска Пусковой ток Применение Эффективность
    Двухфазный 1/20 — 1/2 л.с. Низкий Высокий вентиляторы, воздуходувки, центробежные насосы, стиральные машины, шлифовальные машины, токарные станки, кондиционеры и вентиляторы печей Низкий
    Конденсатор Пуск-индукционный запуск от 1/3 до 10 л.с. Высокий Высокий конвейеры, измельчитель, кондиционеры, компрессор Умеренный
    Конденсатор Пуск-Конденсатор Работа от 1/3 до 10 л.с. Высокий Высокий конвейеры, кондиционеры, компрессоры, разгрузчики силосов для сельскохозяйственной промышленности Высокий
    Постоянный разделительный конденсатор от 1/20 до 3/4 л.с. Низкий Умеренный вентиляторы и воздуходувки в обогревателях и кондиционерах вентиляторы конденсатора Высокий
    Затененная стойка 1/300 — 1/20 л.с. Очень низкий Низкий небольшие инструменты, фены, игрушки, проигрыватели, маленькие вентиляторы, электрические часы Низкий
    Универсальный до 2500 Вт Низкий Умеренный Бытовая техника и электроинструменты. Низкий
    Отталкивающий пуск-индукционный прогон от 1/2 до 40 л.с. Очень высокая Умеренный Строгальные станки, деревообрабатывающие станки, разгрузчики силосов, холодильные компрессоры Умеренный

    Для этих однофазных двигателей доступен ряд опций, которые зависят от реальных потребностей применения.Большинство двигателей доступны в различных типы крепления, варианты корпуса и расположение валов.

    Например, варианты корпусов могут включать: ODP (открытая защита от капель), TEAO (полностью закрытый воздуховод), TENV (полностью закрытый, невентилируемый) и TEFC (полностью закрытый вентилятор). Охлажденный). Для типов крепления список включает: крепление на жестком основании, крепление на упругом основании, крепление на упругом кольце (только), крепление на сквозных болтах, крепление на поясе, крепление на пьедестале, и, вероятно, некоторые дополнительные опции, которые не так уж распространены.И вот еще один момент, о котором следует помнить при выборе одного из конкретных типов корпусов; т. е. TEAO (полностью закрытый Воздух закончился). Этот двигатель ПРЕДНАЗНАЧЕН для того, чтобы технологический воздух (воздух, который перемещается) проходил над двигателем и действовал как «охлаждающий» воздух. Если вы поместите этот тип двигателя в применение, когда двигатель находится «вне» воздушного потока, двигатель сгорит, так как ему не хватает охлаждающего воздуха.

    Варианты вала также различаются в зависимости от области применения и размера рамы.Например, некоторые двигатели могут иметь основание с пробитыми монтажными отверстиями для рамы 48 и 56. монтаж, но вал двигателя будет 1/2 дюйма с «плоской поверхностью». Также есть двигатели с «двусторонним валом» для установки 2 вентиляторов с короткозамкнутым ротором. В то время как нормальная длина вала составляет двигатель может иметь длину 2-1/2 дюйма или 3 дюйма, некоторые двигатели PSC или другие двигатели могут иметь вал длиной 8 дюймов или более, чтобы соответствовать длине, необходимой для установки вентилятора конденсатора при использовании в уличный тепловой насос.Поэтому убедитесь, что вы ЗНАЕТЕ, какой диаметр вала вам нужен и какой длины он должен быть для вашего применения.

    И последнее замечание, направление вращения… Вы должны сделать это правильно! Некоторые конструкции двигателей, в частности PSC, обычно имеют простую сборку типа «вилка и домкрат». которую вы отключаете, поверните ее на 180° и снова вставьте вилку, чтобы изменить направление вращения. Другие имеют дополнительные электрические соединительные контакты на клеммной колодке. подключить входящее питание.В этом типе вам нужно переместить определенный провод из исходного положения на этот другой контакт, чтобы изменить направление. И тогда НАСТОЯЩАЯ проблема…! Моторы которые просто НЕОБРАТИМО. С этими двигателями вы ДОЛЖНЫ знать, в каком направлении вам нужно вращать двигатель при его покупке. Трудно понять направление вращение? Вот определение «ротации», взятое с веб-сайта поддержки продуктов Siemens:

    .
    В соответствии с DIN EN 60034-8 направление вращения двигателя определяется следующим образом:
    • Направление вращения это направление, если смотреть со стороны привода.
      • Это означает, что нужно смотреть на «приводной» конец вала.

    • Приводной конец — это сторона с продолжением вала.
      • Для машин с двумя концами вала приводной конец:
        • а) конец с большим диаметром вала
          б) конец на противоположной стороне от вентилятора,
            1
              1
                1
                  1 , если оба конца вала имеют одинаковый диаметр.

          • Вращение по часовой стрелке
            • Поверните вал по часовой стрелке, если смотреть со стороны привода.
            • Направление взгляда от приводного конца к неприводному концу.

          • Вращение против часовой стрелки
            • Поверните вал против часовой стрелки, если смотреть со стороны привода.
            • Направление взгляда от приводного конца к неприводному концу.

          Типы однофазных двигателей

          Разделенная фаза

          Двигатели с расщепленной фазой имеют пусковой переключатель, но не имеют конденсатора или дополнительного пускового механизма.Их пусковая обмотка просто электрически смещена от рабочей обмотки на количество, достаточное для начала вращения элемента в определенном направлении. Поскольку нет «дополнительной» помощи при пуске, этот двигатель имеет средний или низкий пуск. крутящий момент…. в диапазоне от 100% до 125% крутящего момента при полной нагрузке. Кроме того, пусковой ток будет довольно высоким. Двигатели этого типа используются в приложениях, которые относительно легко запускается, но может увеличивать требования к мощности по мере увеличения скорости вращения.

          Типичными областями применения являются вентиляторы с ременным приводом и некоторые насосы.

          Конденсатор Пуск-Индукция Работа

          Это настоящая «рабочая лошадка» линейки однофазных двигателей. Эти двигатели включают пусковую обмотку, пусковой переключатель и электролитический конденсатор. Когда двигатель При запросе на запуск конденсатор разряжается в пусковую обмотку, давая ей «выстрел в руку», чтобы она заработала.Тогда, как и в других однофазных двигателях с пусковыми выключателями, при ротор достигает приблизительно от 75% до 80% полной скорости, пусковой переключатель ОТКЛЮЧАЕТСЯ, удаляя конденсатор и пусковую обмотку из цепи и разрешая ГЛАВНУЮ или работающую обмотки для завершения набора скорости до полных рабочих оборотов.

          Эти двигатели могут изготавливаться с пусковым моментом от среднего до высокого, в значительной степени в зависимости от номинала конденсатора и конструкции пусковой обмотки.Мотор также будет иметь высокую опрокидывающий момент, который удерживает двигатель «запертым» на рабочей скорости даже при высоких перегрузках. Эти двигатели с УМЕРЕННЫМ пусковым моментом 175% или меньше обычно используются на вентиляторы, воздуходувки и насосы. Двигатели с высоким пусковым моментом…. используемые при нагрузках, требующих крутящего момента полной нагрузки до 300 % и выше для пуска, могут использоваться на компрессорах и промышленное, торговое и сельскохозяйственное оборудование.На сельскохозяйственном рынке такие приложения, как разгрузчики силосов и другие нагрузки, которые трудно запустить, являются естественными для этих устройств.

          Конденсатор Пуск-Конденсатор Работа

          Эти двигатели аналогичны конструкции и применению двигателя с конденсаторным пуском, указанным выше, за исключением того, что они заполнены маслом, РАБОЧИЙ конденсатор в цепи с ОСНОВНОЙ или рабочей обмоткой.Этот конденсатор остается в цепи ВСЕ ВРЕМЯ и помогает улучшить эффективность работы и снизить полное рабочий ток нагрузки. Эти двигатели обычно имеют более высокие однофазные номинальные мощности … выше 2 л.с., причем сельскохозяйственная промышленность является основным потребителем этих двигателей.

          Постоянный разделительный конденсатор

          Двигатели этого типа используются во многих случаях, как и двигатели с расщепленными полюсами.Основные отличия заключаются в том, что двигатель PSC имеет гораздо более высокий КПД, ток (на 50% — 60% меньше) и более высокая выходная мощность. Двигатель PSC получил свое название из-за того, что в цепи двигателя вообще есть конденсатор «RUN». раз. Это устройство помогает поддерживать высокий КПД и коэффициент мощности, а также снижает количество потребляемой мощности при той же выходной мощности. Эти двигатели можно использовать для замените ЛЮБОЙ двигатель с экранированными полюсами, за исключением тех, где физический размер PSC не подходит…. то есть часовой двигатель или небольшой вентилятор охлаждения испарителя. Выходная мощность PSC двигатель будет находиться в диапазоне «долей л.с.», то есть от 1/20 л.с. до максимум 3/4 л.с. Односкоростные или многоскоростные двигатели могут быть спроектированы с максимальной скоростью 1625 об/мин и 1075 об / мин — самая популярная скорость. Несколько скоростей в одном двигателе достигаются либо «отводом» обмотки, либо «дроссельной» катушкой. Пусковой момент на этом двигателе тип также считается НИЗКИМ.

          Затененный столб

          Эти двигатели имеют низкий пусковой момент, низкий КПД, средний рабочий ток, низкую мощность, отсутствие конденсаторов, отсутствие пускового переключателя и низкую стоимость. Двигатели этот тип используется в небольших воздуходувках печей с прямым приводом, оконных вентиляторах и других вентиляторах, используемых в жилых районах.Двигатели с экранированными полюсами НЕ ДОЛЖНЫ использоваться для заменяют ДРУГИЕ ТИПЫ однофазных двигателей, в основном из-за низкого крутящего момента и КПД. Двигатели этого типа также используются в небольших бытовых приборах и таких предметах, как вытяжка для ванной комнаты. вентиляторы, двигатели часов и вентиляторы испарителя в холодильниках и морозильных камерах.

          Несмотря на низкий КПД и низкий пусковой крутящий момент, из-за присущей им НИЗКОЙ СТОИМОСТИ эти двигатели широко используются в жилых помещениях.Выходная мощность двигатель с экранированными полюсами будет варьироваться от «долевой доли л.с.», т.е. 1/30 л.с., до максимум 1/4 или 1/3 л.с. Скорости обычно бывают 2-полюсными (3000 об/мин), 4-полюсными (1550 об/мин) и 6-полюсными (1050 об/мин). об/мин).

          Универсальный двигатель

          Универсальный двигатель — это тип электродвигателя, который может работать от сети переменного или постоянного тока и использует электромагнит в качестве статора для создания магнитного поля.это коммутируемый двигатель с последовательным возбуждением, в котором катушки возбуждения статора соединены последовательно с обмотками ротора через коммутатор. Его часто называют серией AC. мотор. Универсальный двигатель очень похож на двигатель постоянного тока по конструкции, но немного изменен, чтобы двигатель мог правильно работать от сети переменного тока. Этот тип электродвигатель может хорошо работать на переменном токе, потому что ток как в катушках возбуждения, так и в якоре (и результирующие магнитные поля) будет чередоваться (обратная полярность) синхронно с подачей.Следовательно, результирующая механическая сила будет возникать в постоянном направлении вращения, независимо от направления приложенного напряжения, но определяется коммутатором и полярностью катушек возбуждения.

          Двигатели

          Universal имеют высокий пусковой крутящий момент, могут работать на высоких скоростях, легкие и компактные. Они обычно используются в портативных электроинструментах и ​​оборудовании, а также много бытовой техники. Ими также относительно легко управлять, электромеханически с помощью катушек с ответвлениями или электронно.Однако у коммутатора есть щетки, которые изнашиваются, поэтому они гораздо реже используются для оборудования, которое находится в постоянном использовании. Кроме того, отчасти из-за коллектора, универсальные двигатели обычно очень шумные, как акустически и электромагнитно.

          Отталкивающий пусковой индукционный двигатель

          Хотя этот двигатель упоминается здесь, мы считаем его скорее «особым» двигателем, и его можно найти более подробно на странице этой темы.Нажмите здесь, чтобы перейти на страницу Special Motor нашего сайта.

          Мы надеемся, что информация об этих типичных однофазных двигателях вас немного прояснила. Как всегда, вы можете поговорить с нашими сотрудниками по приложению по телефону или электронной почте. для получения дополнительной информации. Щелкните эту ссылку, чтобы получить номера телефонов и/или адреса электронной почты нашей команды.

          Как подключить трехфазный автоматический выключатель защиты двигателя к однофазному двигателю?

          2 минуты чтения

          Последнее обновление: 12 февраля 2022 г., автор Krunal Shah (Mod)

          Недавно один из подписчиков моего YouTube канала задал интересный вопрос.Он спросил меня, как он может подключить трехфазный автоматический выключатель защиты двигателя (MPCB) к однофазному двигателю?

          Объявление

          Можем ли мы это сделать, это возможно?

          Да, но с осторожностью.

          Внимание!

          Убедитесь, что для электрической цепи используется правильный тип прерывателя. Перед выполнением таких подключений прочтите инструкции производителя. Если в их руководстве/каталоге они упоминают о таких соединениях, то только вы можете не делать иначе.Подобно Schneider GV2 и GV3 позволяет подключать однофазную нагрузку, как указано на их официальном сайте.

          Если только не пытаться выполнять подключения, не зная внутренней схемы автоматического выключателя.

           

          Посмотрите это видео, чтобы понять и увидеть внутренний вид автоматического выключателя.

           

          Здесь. Я дам вам пошаговое руководство по подключению 3-фазного MPCB к однофазному двигателю.

          Как подключить автоматический выключатель защиты трехфазного двигателя к однофазному двигателю?

          Шаг 1: Сначала подключите провод под напряжением к L1.Посмотрите на изображение ниже.

          Шаг 2: Затем подключите нейтральный провод к L3.

          Шаг 3: Теперь подключите провода двигателя к клеммам T1 и T2 на MPCB.

          Шаг 4: Наконец, подключите провод от L2 к T3 на печатной плате.

          Пояснение

          В однофазной цепи нейтраль действует как обратный путь.

          Вы это знаете, верно?

          Итак, мы должны сделать такое подключение, чтобы все три полюса автомата защиты двигателя попали под шлейф.

          Взгляните на изображение ниже. Два полюса автоматического выключателя защиты двигателя соединены последовательно.

           

          Таким образом, вы можете запустить однофазный двигатель с трехфазным автоматическим выключателем.

          Убедитесь, что теперь вы настраиваете диапазон MPCB в соответствии с номинальным током двигателя, указанным на паспортной табличке.

          Объявление

          Наиболее часто используемые типы однофазных двигателей в мире

          10+ однофазных двигателей на дом

          Вы должны знать, что однофазные двигатели редко имеют номинальную мощность выше 5 кВт.Двигатели дробной киловаттной мощности, большинство из которых однофазные, составляют 80-90% от общего числа выпускаемых двигателей и 20-30% от общей товарной стоимости. Типичный современный дом может иметь 10 или более однофазных двигателей в своем бытовом электрооборудовании.

          Освоение однофазных двигателей (фото предоставлено repulsionmotor-repair.business.site)

          Это делает однофазные двигатели наиболее используемыми типами двигателей в мире. Давайте рассмотрим эти типы один за другим.

          Оглавление:

            1. Мотор серии
              1. Универсальный мотор
              2. Компенсационный мотор
              3. Компенсационный мотор
            2. Двигатель отталкивания
            3. Индукционные мотор
              1. Теория вращающегося поля
                1. Начало
                2. Затененный моторный мотор
                3. однофазный двигатель
                4. Конденсаторный двухфазный двигатель
                5. Репульсно-асинхронный двигатель
                  1. Репульсно-пусковой двигатель
                  2. Репульсно-асинхронный двигатель

              1.0065Серийный двигатель

              Поскольку направление вращения и крутящий момент в последовательном двигателе постоянного тока не зависят от полярности питания, такой двигатель может работать на переменном токе при условии, что все ферромагнитные части магнитной цепи ламинированы для минимизации потерь в сердечнике.


              1.1 Универсальный двигатель

              В дробных киловаттах серийный двигатель имеет преимущество, так как он несинхронный, и может работать со скоростями до 10 000 об/мин . Он очень хорошо приспособлен для привода пылесосов, дрелей, швейных машин и подобных маломощных вращающихся устройств.

              Его способность работать на постоянном и переменном токе сейчас не важна, но является источником термина « универсальный ».

              Машина имеет «серийную» скоростно-моментную характеристику , скорость холостого хода ограничена механическими потерями. Коэффициент мощности составляет от 0,7 до 0,9 (в основном из-за индуктивности якоря), но это не имеет значения для малых номиналов.

              Типовые характеристики двигателя для питания постоянным током и частотой 50 Гц с одинаковым номинальным напряжением показаны на рис. 1.

              Рисунок 1 – Характеристики универсального двигателя мощностью 75 Вт

              Во всех коллекторных двигателях переменного тока условия коммутации более обременительны, чем на постоянном токе, поскольку коммутируемые катушки связывают основной переменный поток и имеют ЭДС, индуцируемую частотой сети. ЭДС имеют короткозамкнутый путь через щетки и способствуют искрению на коммутаторе.

              Поскольку ЭДС пропорциональны основному потоку, частоте и количеству витков на катушку якоря, их необходимо ограничивать.Дополнительное ограничение тока в короткозамкнутой катушке обеспечивается угольными щетками с высоким сопротивлением.

              Вернуться к оглавлению ↑


              1.2 Двигатель с компенсатором

              Коллекторные двигатели переменного тока серии мощностью до 700±800 кВт используются в нескольких европейских железнодорожных тяговых системах. Для удовлетворительной коммутации частота должна быть низкой, обычно 16 2/3 гц, и напряжение также должно быть низким (400—500 В), что обеспечивается установленным на локомотиве трансформатором.

              Индуктивность обмотки якоря обязательно должна быть достаточно высокой, поэтому необходимо установить компенсирующую обмотку для нейтрализации реакции якоря , чтобы обеспечить приемлемый коэффициент мощности .

              Двигатели этого типа были созданы с ограниченной мощностью для работы в современных тяговых системах с частотой 50 Гц, но в настоящее время они заменены двигателями постоянного тока с выпрямительным или тиристорным питанием. См. рисунок 1а.

              Рисунок 1a – Коллекторный двигатель переменного тока серии

              Вернуться к оглавлению ↑


              2.Отталкивающий двигатель

              Отталкивающий двигатель представляет собой разновидность последовательного двигателя , в котором ротор питается индуктивно, а не кондуктивно . Обмотка ротора коллектора рассчитана на низкое рабочее напряжение. Щетки соединены коротким замыканием, а ось щетки смещена относительно оси однофазной обмотки статора (рис. 2, 3, 4).

              Для нереверсивных двигателей (рис. 2) достаточно одной обмотки статора.

              Рисунок 2 – Репульсный нереверсивный двигатель альтернативной формы

              Однако для реверсивных двигателей статор имеет дополнительную обмотку, включенную в том или ином направлении последовательно с первой обмоткой для обеспечения необходимого угла между рабочими осями ротора и статора для два направления вращения, как на рисунке 3.

              Рисунок 3 – Альтернативная форма репульсионного двигателя в двух направлениях получается N 1 sinα и N 1 cosα . Обмотки (b) напрямую дают обмотки двух осей, хотя здесь витки могут быть спроектированы для достижения оптимального эффекта.

              Коаксиальная обмотка индуцирует e.м.д.с. и токи в роторе, причем эти токи, лежащие в поле другой обмотки статора, развивают вращающий момент. Поскольку токи статора и ротора взаимосвязаны, двигатель имеет «последовательную» характеристику . Когда двигатель работает, прямой и квадратурный осевые потоки имеют сдвиг фаз, приближающийся к 90 °, поэтому создается поле бегущей волны эллиптической формы, которое становится почти однородным синхронно вращающимся полем на скоростях, близких к синхронным.

              Скорость близка к синхронной, поэтому потери в сердечнике ротора малы, а условия коммутации хорошие.

              Небольшие двигатели могут легко включаться напрямую для запуска, с 2,5-3-кратным током полной нагрузки и 3-4-кратным крутящим моментом полной нагрузки . Нормальная рабочая скорость при полной нагрузке выбирается близкой или немного ниже синхронной скорости, чтобы избежать чрезмерного искрения при малой нагрузке.

              Рисунок 4 – Пусковые характеристики репульсионного двигателя

              Репульсные двигатели используются там, где требуется высокий пусковой момент и где трехфазное питание недоступно. Для небольших подъемников, лебедок и компрессоров их мощность редко превышает примерно 5 кВт .

              Вернуться к оглавлению ↑


              3. Асинхронные двигатели

              Однофазный асинхронный двигатель иногда изготавливается для выходной мощности до 5 кВт , но обычно изготавливается с номиналами от 0,1 до 0,5 кВт для бытовых холодильников, вентиляторы и небольшие станки, где требуется по существу постоянная скорость. Поведение двигателя можно изучать с помощью теории вращающегося поля или теории поперечного поля.

              Первый вариант проще и дает более четкое физическое представление.

              Вернуться к оглавлению ↑


              3.1 Теория вращающегося поля

              Пульсирующая М.Д.С. обмотки статора разлагается на две «вращающиеся» МДС постоянной и равной величины , вращающиеся в противоположных направлениях. Предполагается, что эти МДС создают соответствующие потоки в зазоре, которые при неподвижном роторе имеют одинаковую величину и каждый равен половине пикового пульсирующего потока.

              Когда машина работает, составляющая прямого поля f, т.е.е. который движется в том же направлении, что и ротор, ведет себя как поле многофазной машины и дает кривую крутящего момента-скорости компонента , отмеченную «вперед» на рисунке 5. , а чистый крутящий момент представляет собой алгебраическую сумму. При нулевой скорости составляющие моменты компенсируются, так что двигатель не имеет собственного пускового момента, но если его запустить в любом направлении, возникает небольшой момент в том же направлении, и машина разгоняется почти до синхронной скорости при условии, что момент нагрузки может быть преодолен.

              Рисунок 5 – Составляющие крутящего момента в одиночной однофазной индукции

              Моменты составляющих на рисунке 5 фактически изменяются под действием тока ротора. По сравнению с трехфазным асинхронным двигателем, однофазная версия имеет крутящий момент, падающий до нуля при скорости немного ниже синхронной, а скольжение, как правило, больше.

              Также имеются потери в сердечнике ротора, вызванные обратным полем, что снижает эффективность. Кроме того, существует двухчастотная пульсация крутящего момента, создаваемая обратным полем, что может привести к возникновению шума.

              КПД находится между примерно 40 % для двигателя мощностью 60 Вт и примерно 70 % для двигателя мощностью 750 Вт , соответствующие коэффициенты мощности составляют приблизительно 0,45 и 0,65 .

              Рисунок 6 – Простой однофазный асинхронный двигатель: эквивалентная схема

              Эквивалентная схема на рисунке 6 основана на теории вращающегося поля с использованием параметров, в целом аналогичных параметрам для трехфазной машины. ЭДС E f и E b генерируются соответственно прямой и обратной компонентами поля и пропорциональны им.

              соответствующие компонентные моменты пропорциональны I 2F 2 × R 2 / 2S

              6 и I 2F 2 × R 2 / [2 (2 — S)] , следующий крутящий момент является их разницей.

              Вернуться к оглавлению ↑


              3.2 Пуск

              Для запуска однофазного асинхронного двигателя предусмотрены средства для первоначального создания некоторой формы поля бегущей волны. Обычно принятые компоновки приводят к терминам « с экранированным полюсом » и « с расщепленной фазой ».

              Вернуться к оглавлению ↑


              3.3 Электродвигатель с экранированными полюсами

              Статор имеет выступающие полюса, при этом около одной трети каждого полюсного башмака охватывает экранирующая катушка. Тот поток, который проходит через затеняющую катушку, задерживается по отношению к потоку в основной части полюса, так что получается грубый сдвигающий поток.

              Пусковой момент ограничен, КПД низкий (поскольку есть потери в теневой катушке), коэффициент мощности 0,5−0,6 и пусковой момент только 1−1.5-кратный крутящий момент при полной нагрузке .

              Приложения включают небольших вентиляторов мощностью не более 100 Вт .

              Вернуться к оглавлению ↑


              3.4 Двигатель с двухфазным сопротивлением

              Дополнительный поток обеспечивается вспомогательной пусковой обмоткой, пространственно расположенной под . Если соответствующие токи обмотки равны I м и I с с относительным фазовым углом α , крутящий момент приблизительно пропорционален I м I с

              8α.

              При запуске ток основной обмотки отстает от приложенного напряжения на 70−80° . Пусковая обмотка, включенная параллельно основной обмотке, выполнена с большим сопротивлением или имеет последовательно включенный резистор так, что I с отстает на 30−40° .

              Влияние этого сопротивления на пусковую характеристику показано на рис. 7(а). При заданном количестве витков на обмотку и заданном сопротивлении основной обмотки для заданного напряжения питания и частоты имеется конкретное значение сопротивления пусковой обмотки для максимального пускового момента.

              Рисунок 7 – Однофазный асинхронный двигатель: пуск с двухфазным сопротивлением

              Соотношение можно получить из векторной диаграммы. Рис. 7(б), где В 1 — напряжение питания, а I м при фазовом угле Φ м — ток основной обмотки. Геометрическим местом фазы пускового тока I s с изменением сопротивления является полуокружность диаметром OD (что соответствует нулевому сопротивлению). Крутящий момент пропорционален I м I с sin(Φ м − Φ с ) и является максимальным для наибольшей длины линии АС.

              Из геометрии диаграммы видно, что для этого условия Φ с = 1/2 Φ м .

              Прямое переключение обычно. Чтобы уменьшить потери, вспомогательная обмотка размыкается, как только двигатель достигает рабочей скорости. Пусковой момент для небольших двигателей мощностью до 250 Вт в 1,5-2 раза превышает момент полной нагрузки, а для более крупных двигателей несколько меньше, в каждом случае в 4-6 раз больше тока полной нагрузки.

              Рабочий КПД 55-65% и коэффициент мощности 0.6−0,7 .

              Вернуться к содержанию Таблица ↑


              3.5 Конденсатор Сплит-фазный мотор

              Большая разность фаз ( Φ M — φ S ) может быть получено, если конденсатор серии заменяет добавочный резистор вспомогательной обмотки. Максимальный крутящий момент возникает при такой емкости, что вспомогательный ток опережает основной ток на (1/2πα)/2.

              Размер конденсатора от 20−30 мФ для двигателя 100 Вт до 60−100 мФ для двигателя 750 Вт .По экономическим причинам размер конденсатора настолько мал, насколько это возможно для обеспечения адекватного пускового момента, и некоторые производители указывают альтернативные размеры для различных уровней пускового момента.

              Если конденсатор оставить в цепи постоянно (работа конденсатора), коэффициент мощности улучшится, и двигатель будет работать с меньшим шумом. В идеале, однако, значение емкости для запуска должно составлять примерно одну треть от значения для наилучшего запуска. Если для пуска и работы используется один конденсатор, пусковой момент равен 0.в 5-1 раз больше полной нагрузки, а коэффициент мощности в рабочем режиме близок к единице.

              Вернуться к таблице содержания ↑


              3.6 Репульсно-асинхронный двигатель

              Машины были разработаны для сочетания высокого пускового момента репульсионного двигателя с характеристикой работы при постоянной скорости асинхронного двигателя. .

              Вернуться к оглавлению ↑


              3.6.1 Двигатель с репульсным пуском

              Этот двигатель имеет обмотку статора, аналогичную обмотке репульсионного двигателя, и обмотку коленчатого коммутатора с добавлением устройства для короткого замыкания секторов коммутатора. вместе центробежным действием, когда скорость достигает примерно 75% от нормальной.Устройство может также освободить щетки сразу после этого.

              Таким образом, обмотка ротора коллектора фактически становится короткозамкнутой обмоткой «индукционного» типа для работы .

              Небольшие двигатели с прямым переключением обеспечивают в 3-4 раза больше крутящего момента при полной нагрузке и примерно в три раза больше тока при полной нагрузке. Меньший пусковой ток достигается путем последовательного включения градуированного резистора с обмоткой статора.

              Вернуться к оглавлению ↑


              3.6.2 Репульсно-асинхронный двигатель

              Машина имеет статорную обмотку репульсионного типа , но переход от режима отталкивания к режиму индукции происходит постепенно по мере набора скорости. Ротор имеет две обмотки в пазах, как у асинхронного двигателя с двойной клеткой. Внешние пазы содержат обмотку коммутатора с щеточным механизмом, внутренние пазы содержат низкоомную клетку с литыми алюминиевыми стержнями и концевыми кольцами, а ее глубокая посадка придает ей высокую индуктивность.

              При разгоне реактивное сопротивление клетки падает, а ее крутящий момент увеличивается, стремясь уравновесить падающий крутящий момент обмотки коммутатора . На скоростях выше синхронной крутящий момент клетки реверсируется, создавая тормозное действие, которое удерживает скорость холостого хода на уровне, лишь немного превышающем синхронную скорость.

              Коммутация лучше, чем у обычного репульсионного двигателя, и двигатель характеризуется хорошим коэффициентом мощности при полной нагрузке (например, отставание 0,85−0,9).

              При прямом переключении пусковой момент составляет 2,5−3 x , а текущий 3−3,5 x значение полной нагрузки.

              Вернуться к оглавлению ↑

              Источник: Справочник инженера-электрика М.

              Однофазные двигатели являются наиболее известными из всех электродвигателей, поскольку они широко используются в бытовой технике, магазинах, офисах и т. д.Это правда, что однофазные двигатели являются менее эффективной заменой трехфазным двигателям, но трехфазное питание обычно недоступно, за исключением крупных коммерческих и промышленных предприятий.

              Поскольку электроэнергия изначально производилась и распределялась только для освещения, миллионы домов получили однофазное питание. Это привело к разработке однофазных двигателей . Даже при наличии трехфазной сети однофазное питание может быть получено с использованием одной из трех линий и нейтрали.Здесь мы сосредоточим наше внимание на конструкции, работе и характеристиках широко используемых однофазных двигателей.

              Типы однофазных двигателей переменного тока

              Однофазные двигатели обычно изготавливаются в диапазоне мощности, равной дробным единицам мощности, и могут быть разделены на следующие типы:

              Асинхронные двигатели

              1. Асинхронный двигатель с расщепленной фазой
                1. Асинхронный двигатель с пусковым сопротивлением
                2. Асинхронный двигатель с пусковым конденсатором
                3. Пуск конденсатора, работа конденсатора
                4. Постоянный конденсатор
              2. Асинхронный двигатель с экранированными полюсами
              3. Асинхронный двигатель с репульсным пуском

              Коллекторные двигатели

              1. Электродвигатель переменного тока
              2. Универсальный мотор
              3. Двигатели отталкивающего типа
                1. Запуск индукции отталкивания
                2. Отталкивающий асинхронный двигатель

              Синхронные двигатели

              1. Реактивный двигатель
              2. Гистерезисный двигатель
              Типы однофазных двигателей переменного тока

              Однофазные и трехфазные двигатели – сравнение

              Краткое сравнение трехфазных и однофазных двигателей приведено ниже.

              1. Однофазные асинхронные двигатели просты по конструкции, надежны и экономичны при малой мощности по сравнению с трехфазными асинхронными двигателями.
              2. Коэффициент мощности однофазных асинхронных двигателей ниже, чем у трехфазных асинхронных двигателей.
              3. При одинаковом размере однофазные асинхронные двигатели развивают около 50 % выходной мощности по сравнению с трехфазными асинхронными двигателями.
              4. У асинхронных двигателей также низкий пусковой момент.
              5. КПД однофазных асинхронных двигателей меньше по сравнению с трехфазными асинхронными двигателями.

              Нужен ли однофазному двигателю стартер

              Однофазные двигатели обычно нуждаются в пусковой цепи, чтобы заставить их вращаться. Эта схема стартера отключается центробежным выключателем, как только двигатель достигает минимального числа оборотов в минуту. Трехфазные двигатели не требуют цепи стартера.

              Что такое пускатель однофазного двигателя?

              Электронные пускатели для однофазного асинхронного двигателя с защитой.Как правило, мы часто используем двигатели во многих электрических и электронных устройствах, таких как вентиляторы, охладители, смесители, измельчители, эскалаторы, лифты, краны и т. д. Например, мы используем электронный стартер для однофазного двигателя, чтобы обеспечить плавный пуск.

              Как запускается однофазный двигатель?

              Принцип пуска Однофазный асинхронный двигатель состоит из однофазной обмотки на статоре и короткозамкнутой обмотки на роторе. Когда 1-фазный источник питания подключен к обмотке статора, создается пульсирующее магнитное поле.В пульсирующем поле ротор не вращается по инерции.

              Нужен ли стартер для двигателя мощностью 1 л.с.?

              Двигатели мощностью менее 1 л.с. (0,7457) напрямую подключаются к источнику питания без пускателя, потому что их сопротивление якоря очень велико, и они могут позволить себе и пропускать более высокий ток из-за высокого сопротивления. На этом этапе двигатель не запустится.

              Что произойдет, если обойти конденсатор?

              Эти нежелательные возмущения (если их не контролировать) могут напрямую проникать в цепь и вызывать нестабильность или повреждение.В этом случае шунтирующий конденсатор является первой линией защиты. Он устраняет падение напряжения в источнике питания за счет накопления электрического заряда, который высвобождается при возникновении всплеска напряжения.

              Что такое устройство плавного пуска для асинхронных двигателей?

              Устройства плавного пуска

              размещают устройство, называемое пускателем пониженного напряжения или устройством плавного пуска, между двигателем и входной линией электроснабжения, чтобы регулировать величину тока, подаваемого на двигатель. Устройства плавного пуска позволяют асинхронному двигателю переменного тока разгоняться на меньшую скорость, что приводит к меньшему потребляемому току, чем с традиционным пускателем двигателя.

              Может ли однофазный двигатель работать без конденсатора?

              Однофазный двигатель, работающий от конденсатора, не сможет запуститься без конденсатора, так как отсутствует крутящий момент. Двигатель не предназначен для передачи полного крутящего момента без конденсатора. Таким образом, даже если бы он механически стартовал с усилием, он не достиг бы полной скорости и не смог бы выдержать нагрузки.

              Можно ли плавно запустить однофазный двигатель?

              Вы абсолютно МОЖЕТЕ выполнить плавный пуск одной фазы, но не используете частотно-регулируемый привод.То, что вы получаете, это ничья нижней линии в начале. Автотрансформатор (одна обмотка с отводом для более низкого напряжения) используется для выдачи около 50 или 60% напряжения и включается на короткое время при запуске.

              Как работает плавный пуск электродвигателя?

              По сути, устройство плавного пуска работает, контролируя величину напряжения, проходящего через цепи двигателя. Это достигается за счет ограничения крутящего момента двигателя. Это, в свою очередь, позволяет устройству плавного пуска снижать напряжение и постепенно прекращать снижение напряжения, чтобы обеспечить плавное изменение тока.

              Зачем моторам стартеры?

              Пускатели

              используются для защиты двигателей постоянного тока от повреждений, которые могут быть вызваны очень высоким током и крутящим моментом во время запуска. Они делают это, обеспечивая внешнее сопротивление двигателю, которое последовательно подключается к обмотке якоря двигателя и ограничивает ток до приемлемого уровня.

              Почему конденсатор используется в однофазном двигателе?

              Для некоторых однофазных электродвигателей переменного тока требуется «рабочий конденсатор» для питания обмотки второй фазы (вспомогательной катушки) для создания вращающегося магнитного поля во время работы двигателя.Пусковые конденсаторы кратковременно увеличивают пусковой момент двигателя и позволяют быстро включать и выключать двигатель.

              Всем ли двигателям нужны стартеры?

              Необходимость в пускателе диктуется типом двигателя. Вообще говоря, маломощные двигатели не требуют стартеров, хотя то, что считается малой мощностью, может быть спорным. Например, небольшие двигатели постоянного тока, работающие при низком напряжении (24 В или меньше), не требуют пускателей.

              Зачем нужны пускатели в двигателе переменного тока?

              Стартер необходим для трехфазного асинхронного двигателя, потому что во время запуска, если асинхронный двигатель запускается напрямую, он будет потреблять огромное количество тока, что может привести к повреждению соседнего оборудования.

              Как проверить однофазный двигатель?

              С помощью мультиметра измерьте сопротивление между корпусом двигателя (корпусом) и землей. Хороший двигатель должен показывать менее 0,5 Ом. Любое значение больше 0,5 Ом указывает на неисправность двигателя. Для однофазных двигателей ожидаемое напряжение составляет около 230 В или 208 В в зависимости от того, используете ли вы систему напряжения в Великобритании или Америке.

              Можно ли использовать частотно-регулируемый привод на однофазном двигателе?

              Обычно однофазные двигатели не могут работать с частотно-регулируемым приводом.Однако можно подать одну фазу на ЧРП и выдать переменное напряжение на трехфазный асинхронный двигатель.

              Как защитить однофазный двигатель?

              Как защитить двигатель от повреждения из-за однофазного включения?

              1. Устройство электромагнитной перегрузки. В этом устройстве все три фазы двигателя снабжены реле перегрузки.
              2. Термисторы. Кредит: Викимедиа.
              3. Биметаллическая полоса. Кредит: Викимедиа.
              4. Стандартная защита пускателя двигателя от перегрузки.

              Какие бывают типы однофазных двигателей?

              Типы

              : Существует несколько различных типов однофазных двигателей; некоторые из них представляют собой двухклапанный конденсатор, конденсаторный пуск, расщепленную фазу, постоянно разделенный конденсатор, двигатели с фазным ротором и двигатели с расщепленными полюсами. Каждый тип двигателя имеет свои уникальные преимущества и недостатки.

              Как проверить обмотки электродвигателя?

              Проверка обмоток двигателя с помощью мультиметра Для начала установите мультиметр на показания сопротивления, а затем проверьте провода и клемму двигателя.Следует проверить обмотки на предмет «короткого замыкания на землю» в цепи и обрыва или короткого замыкания в обмотках.

              Что произойдет, если использовать неправильный конденсатор?

              Если установлен неправильный рабочий конденсатор, магнитное поле двигателя будет неравномерным.

    Добавить комментарий

    Ваш адрес email не будет опубликован.