Схема выпрямителя на 12 вольт своими руками: Выпрямитель 12в своими руками — Морской флот

Содержание

Выпрямитель 12в своими руками — Морской флот

Автор admin На чтение 6 мин Просмотров 3 Опубликовано

Всем радиолюбителям привет, в этой статье хочу представить вам блок питания с регулировкой напряжения от 0 до 12 вольт. На нем очень легко выставить нужное напряжение, даже в милливольтах. Схема не содержит никаких покупных деталей – всё это можно вытащить из старой техники, как импортной, так и советской.


Принципиальная схема БП (уменьшенная)

Корпус изготовлен из дерева, в середине прикручен трансформатор на 12 вольт, конденсатор на 1000 мкФ х 25 вольт и плата, которая регулирует напряжение.

Конденсатор С2 нужно брать с большой емкостью, например чтобы подключать к блоку питания усилитель и чтобы напряжение не проваливалось на низких частотах.

Транзистор VT2 лучше установить на небольшой радиатор. Потому что при длительной работе он может нагреться и сгореть, у меня уже 2 штуки сгорело, пока не поставил приличный по размерам радиатор.

Резистор R1 можно ставить постоянный он большой роли не играет. Сверху на корпусе есть переменный резистор, которым регулируется напряжение, и красный светодиод, который показывает есть ли напряжение на выходе БП.

На выходе устройства, чтобы постоянно не прикручивать проводки к чему-нибудь, я припаял крокодильчики – с ними очень удобно. Схема не требует никаких настроек и работает надёжно и стабильно, ее действительно может сделать любой радиолюбитель. Спасибо за внимание, всем удачи! Автор: Игорь.

Обсудить статью САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ НА 12В

Во многих электронных приборах, работающих при переменном токе в 220 вольт устанавливаются диодные мосты. Схема диодного моста на 12 вольт позволяет эффективно выполнять функцию по выпрямлению переменного тока. Это связано с тем, что для работы большинства приборов используется постоянный ток.

Как работает диодный мост

Переменный ток, имеющий определенную меняющуюся частоту, подается на входные контакты моста. На выходах с положительным и отрицательным значением образуется однополярный ток, обладающий повышенной пульсацией, значительно превышающей частоту тока, подаваемого на вход.

Появляющиеся пульсации нужно обязательно убрать, иначе электронная схема не сможет нормально работать. Поэтому, в схеме присутствуют специальные фильтры, представляющие собой электролитические конденсаторы с большой емкостью.

Сама сборка моста состоит из четырех диодов с одинаковыми параметрами. Они соединены в общую схему и размещаются в общем корпусе.

Диодный мост имеет четыре вывода. К двум из них подключается переменное напряжение, а два остальных являются положительным и отрицательным выводом пульсирующего выпрямленного напряжения.

Выпрямительный мост в виде диодной сборки обладает существенными технологическими преимуществами. Таким образом, на печатную плату устанавливается сразу одна монолитная деталь. Во время эксплуатации, для всех диодов обеспечивается одинаковый тепловой режим. Стоимость общей сборки ниже четырех диодов в отдельности. Однако, данная деталь имеет серьезный недостаток. При выходе из строя хотя-бы одного диода, вся сборка подлежит замене. При желании, любая общая схема может быть заменена четырьмя отдельными деталями.

Применение диодных мостов

В любых приборах и электронике, для питания которых используется переменный электрический ток, присутствует схема диодного моста на 12 вольт. Ее используют не только в трансформаторных, но и в импульсных выпрямителях. Наиболее характерным импульсным блоком является блок питания компьютера.

Кроме того диодные мосты применяются в люминесцентных компактных лампах или в энергосберегающих лампах. Они дают очень хороший эффект при использовании их в пускорегулирующих электронных аппаратах. Широко применяются и во всех моделях современных сварочных аппаратов.

Как сделать диодный мост

Тема: как можно спаять источник питания на 12 вольт своими руками (схема).

Если вам нужен источник постоянного питания с напряжением 12 вольт, а его нет под рукой, то его можно и купить. Если брать дешёвый блок питания, то его качество будет оставлять желать лучшего. Обычно такие недорогие БП хороши только с виду. Когда их открываешь, то оказывается, что его характеристики (указанные на корпусе) по току завышены. В реальности он не способен обеспечить в полной мере ту мощность, что заявлена производителем (как правило). Можно купить и более дорогостоящий блок питания на 12 вольт, но собрать своими руками по частям выйдет гораздо дешевле, а по качеству ничуть не хуже.

Итак, как сделать хороший и простой блок питания на 12 вольт своими руками, что для этого нам понадобится? Нужен понижающий силовой трансформатор, выпрямительный диодный мост и фильтрующий конденсатор электролит. Трансформатор будет понижать сетевое напряжение (220 В) до нужного, а именно до 10 вольт. Почему до 10, а не 12. Потому, что есть такой эффект — переменное напряжение после диодного моста (имеющего конденсатор достаточной емкости) станет процентов примерно на 18 больше, чем без конденсатора. Это стоит учитывать при сборке любого блока питания.

Трансформатор нужен той мощности, которая вам нужна. То есть, изначально вы должны знать, какой именно максимальный ток должен выдавать данный блок питания. Зная ток и выходное напряжение можно найти электрическую мощность. Нужно просто ток (к примеру 3 ампера) перемножить на напряжение выхода (в нашем случае это 12 вольт). Стоит ещё добавить небольшой запас по мощности процентов 25. В итоге получим, что нужен трансформатор мощностью около 50 Вт.

С размерами (мощностью) трансформатора определились. Исходя из этого вторичная обмотка транса должна иметь нужное сечение, чтобы обеспечить нужную силу тока. Для 3 ампер (максимальное значение) на выходе нашего самодельного блока питания сечение вторичной обмотки трансформатора должно быть около 1,3 мм. Если на магнитопроводе достаточно места, то можно намотать провод большего диаметра (это только увеличит максимальную силу тока источника питания).

Итак, наш трансформатор на выходе вторичной обмотки будет выдавать переменное напряжение величиной 10 вольт. Это напряжение имеет форму синусоиды, которая меняет свои полюса с частотой 50 герц. Нам же нужен постоянный ток, который не имел этого периодического изменения полюсов. Для этого используется выпрямительный диодный мост. Его задача сводится к тому, что он все полупериоды делает однополюсными, хотя и скачкообразными (плавно возрастающими и убывающими). Диодный мост можно купить готовым, хотя его можно спаять и самому из 4х одинаковых диодов, которые должны быть также рассчитаны на нужный выходной ток. Для нашего самодельного блока питания с 3 амперами нужно взять диоды, рассчитанные на ток в 6 А (берём с учётом запаса).

Поскольку после диодов напряжение имеет скачкообразный вид, его нужно отфильтровать. Это делается обычным электролитическим конденсатором, соответствующей емкости. Значит достаем еще и конденсатор, рассчитанный на напряжение 25 вольт, с емкостью 2200 мкф (чем больше, тем лучше фильтрация, но при этом и размеры конденсатора будут увеличиваться). Вот и всё, теперь эти элементы нужно просто спаять между собой (трансформатор, выпрямительный диодный мост и конденсатор электролит).

Мощный выпрямитель на 12 вольт своими руками. Блок питания


Привет всем самоделкиным. Многие радиолюбители знают, что блок питания это дорогостоящая часть всей электроники и зачастую приобрести хороший блок питания нет возможности, но у каждого начинающего разбираться в радиоделе есть старый компьютерный блок, который уже давно завалялся и не используется. В этой статье я расскажу как сделать лабораторный блок питания для различных приспособлений, таких,например, как усилитель.

Для начала необходимо определиться, что понадобиться для сборки, это:
* Сам компьютерный блок, мощность моего была 350 ватт, чего хватит на все с запасом.
* Фанера, у меня таковой нашлось 4 отрезка.
* Электролобзик.
* Отвертки.
* Паяльник и паяльные принадлежности.
* Дрель.
* Наждачная бумага, зернистости покрупнее.
* Гвозди, я предпочел гвозди с мелкой шляпкой.
* Резиновые пробки, добытые из химических пробирок.


Когда все необходимое есть, можно приступать к разборке компьютерного блока питания.

Сначала открутим верхние болты, которые держат крышку.


Открутив их, переходим к четырем болтам на кулере.


После этого освободим плату от корпуса, там тоже есть болты, в моем же случае еще затаился один черный болтик по середине, который я поначалу и не заметил.



Но, как оказалось плату так не вытащить, нужно отпаять провода с подключения к входа питания 220В. Будьте осторожнее, рядом стоящие конденсаторы могут еще не разрядиться и выдать чуточку такого тока высокого напряжения.


Также отпаиваем провода с включателя.


Теперь плата блока легко вынимается, а
родной корпус нам уже не пригодиться.


Следующим, что мы уберем из блока будет куча проводов, поскольку нам нужны будут всего 3 из них, это желтый(12 В+) и синий(-) и зеленый для включения.



Для того чтобы блок включился зеленый проводок запаиваем к месту скопления черных проводов.



А теперь почистим все от пыли, кулер почистить так не удалось, его я разобрал и как следует промазал солидолом.


Все теперь чистенькое и можно уже переходить к изготовлению корпуса.
Вооружившись электролобзиком выпиливаем нижнюю сторону, я ее сделал на 8 мм больше в четыре стороны чем саму плату.


Посередине сделал отверстие для болта и немного наживил его, чтобы сделать резьбу, с помощью него и четырех болтов по краям будет крепиться плата.
Прикручиваем плату к фанере на центральный болт.
После этого примеряем другой кусок фанеры и отмеряем нужную нам длину и высоту. Высоту я сделал чуть больше самого кулера, чтобы блок питания был не таким громоздким.


Перед тем как отпилить переднюю часть отметим на ней место под наш кулер, будет он прямо по центру.


Обводим карандашом и просверливаем две дырки, расстояние между ними делаем около 2 мм, после этого расшатываем отверстие убирая тем самым перегородку, чтобы запустить пилку электролобзика.



Зашлифовываем посадочное место кулера.


Примеряем, сидит он там хорошо).


Мелким сверлом проделываем четыре отверстия под болты для закрепления кулера.
Вот теперь можно и отпилить заготовку передней части.


Передняя, так сказать самая главная часть блока готова, по аналогии вырезаем заднюю стенку.


Примеряем стенки, выглядит неплохо, дело за боковыми крышками.



Примерив под ровным углом боковую стенку, намечаем место распила уголком.
Боковая стенка готова, понадобиться еще одна такая же. Просто обведем предыдущую.



Под шнур 220 В делаем штекер, тот же, что и был в родном корпусе, его нам нужно разместить в передней части блока.


Выпиливаем тем же лобзиком, готово.


Затягиваем штекер-вилку двумя штатными болтами.


Проделав глубокие отверстия в передней панели под болты крепим кулер.



Посмотрим, как все это будет выглядеть, вроде неплохо выглядит, конечно я не дизайнер).



Прибиваем нижнюю и переднюю стороны нашего блока на два гвоздя с мелкой шляпкой.


Так как наш блок будет включаться и выключаться, то ему так же необходим включатель, его я разместил рядом с штекером под вилку.


Проделываем под включатель место, тут главное не переборщить, тогда он просто будет болтаться, что не очень хорошо.


Включатель сел плотно и не люфтит.


С установленным кулером передняя панель выглядит так.


Так как задняя панель должна иметь вентиляционных выход, то с помощью лобзика делаем овальный продув.


Для подключения различных устройств, которые будут использоваться с эти блоком нужны клеммники, их я нашел из школьного резистора.


С обратной стороны затягивается все с помощью гайки и прижимается с ее помощью пластинка с залуженным контактом.


Понадобилось два таких клеммника, один идет на плюс питания, другой на минус.


А так выглядит передняя панель с наружной стороны.


Приложив заднюю панель, прибиваем ее к задней части с уже закрепленной передней панелькой.


Так как изначально я не продумал то, что провода подключения 220 В в родном корпусе были короткие, поэтому пришлось по ходу дела заменить их на более длинные.


Один провод я припаял к штекеру, а другой через включатель.

Простой и надежный блок питания своими руками при нынешнем уровне развития элементной базы радиоэлектронных компонентов можно сделать очень быстро и легко. При этом не потребуются знания электроники и электротехники на высоком уровне. Вскоре вы в этом убедитесь.

Изготовление своего первого источника питания довольно интересное и запоминающееся событие. Поэтому важным критерием здесь является простота схемы, чтобы после сборки она сразу заработала без каких-либо дополнительных настроек и подстроек.

Следует заметить, что практически каждое электронное, электрическое устройство или прибор нуждаются в питании. Отличие состоит лишь в основных параметрах – величина напряжения и тока, произведение которых дают мощность.

Изготовить блок питания своими руками – это очень хороший первый опыт для начинающих электронщиков, поскольку позволяет прочувствовать (не на себе) различные величины токов, протекающих в устройствах.

Современный рынок источников питания разделен на две категории: трансформаторные и безтрансформаторные. Первые достаточно просты в изготовлении для начинающих радиолюбителей. Второе неоспоримое преимущество – это сравнительно низкий уровень электромагнитных излучений, а соответственно и помех. Существенным недостатком по современным меркам является значительная масса и габариты, вызванные наличием трансформатором – самого тяжелого и громоздкого элемента в схеме.

Безтрансформаторные блоки питания лишены последнего недостатка ввиду отсутствия трансформатора. Вернее он там есть, но не в классическом представлении, а работает с напряжением высокой частоты, что позволяет снизить число витков и размеры магнитопровода. В результате снижаются вцелом габариты трансформатора. Высокая частота формируется полупроводниковыми ключами, в процессе из включения и выключения по заданному алгоритму. Вследствие этого возникают сильные электромагнитные помехи, поэтому такие источник подлежат обязательному экранированию.

Мы будем собирать трансформаторный блок питания, который никогда не утратит своей актуальности, поскольку и поныне используется в аудиотехнике высокого класса, благодаря минимальному уровню создаваемых помех, что очень важно для получения качественного звука.

Устройство и принцип работы блока питания

Стремление получить как можно компактнее готовое устройство примело к появлению различных микросхем, внутри которых находятся сотни, тысячи и миллионы отдельных электронных элементов. Поэтому практически любой электронный прибор содержит микросхему, стандартная величина питания которой 3,3 В или 5 В. Вспомогательные элементы могут питаться от 9 В до 12 В постоянного тока. Однако мы хорошо знаем, что розетке переменное напряжение 220 В частотою 50 Гц. Если его подать непосредственно на микросхему или какой-либо другой низковольтный элемент, то они мгновенно выйдут из строя.

Отсюда становится понятным, что главная задача сетевого блока питания (БП) состоит в снижении величины напряжения до приемлемого уровня, а также преобразование (выпрямление) его из переменного в постоянное. Кроме того, его уровень должен оставаться постоянным независимо от колебаний входного (в розетке). Иначе устройство будет работать нестабильно. Следовательно, еще одна важнейшая функция БП – это стабилизация уровня напряжения.

В целом структура блока питания состоит из трансформатора, выпрямителя, фильтра и стабилизатора.

Помимо основных узлов еще используется ряд вспомогательных, например, индикаторные светодиоды, которые сигнализируют о наличие подведенного напряжения. А если в БП предусмотрена его регулировка, то естественно там будет вольтметр, а возможно еще и амперметр.

Трансформатор

В данной схеме трансформатор применяется для снижения напряжения в розетке 220 В до необходимого уровня, чаще всего 5 В, 9 В, 12 В или 15 В. При этом еще осуществляется гальваническая развязка высоковольтных с низковольтными цепями. Поэтому при любых внештатных ситуациях напряжение на электронном устройстве не превысит значение величины вторичной обмотки. Также гальваническая развязка повышает безопасность обслуживающего персонала. В случае прикосновения к прибору, человек не попадет под высокий потенциал 220 В.

Конструкция трансформатора довольно проста. Он состоит из сердечника, выполняющего функцию магнитопровода, который изготовляется из тонких, хорошо проводящих магнитный поток, пластин, разделенных диэлектриком, в качестве которого служит нетокопроводящий лак.

На стержень сердечника намотаны минимум две обмотки. Одна первичная (еще ее называют сетевая) – на нее подается 220 В, а вторая – вторичная – с нее снимается пониженное напряжение.

Принцип работы трансформатора заключается в следующем. Если к сетевой обмотке приложить напряжение, то, поскольку она замкнута, в ней начнет протекать переменный ток. Вокруг этого тока возникает переменное магнитное поле, которое собирается в сердечнике и протекает по нему в виде магнитного потока. Поскольку на сердечнике расположена еще одна обмотка – вторичная, то поде действием переменного магнитного потока в ней навидится электродвижущая сила (ЭДС). При замыкании этой обмотки на нагрузку, через нее будет протекать переменный ток.

Радиолюбители в своей практике чаще всего применяют два вида трансформаторов, которые главным образом отличатся типом сердечника – броневой и тороидальный. Последний удобнее в применении тем, что на него достаточно просто можно домотать нужное количество витков, тем самым получить необходимое вторичное напряжение, которое прямопропорционально зависит от количества витков.

Основными для нас являются два параметра трансформатора – напряжение и ток вторичной обмотки. Величину тока примем равной 1 А, поскольку на такое же значение мы возьмем стабилитроны. О чем немного далее.

Продолжаем собирать блок питания своими руками. И следующим порядковым элементом в схеме установлен диодный мост, он же полупроводниковый или диодный выпрямитель. Предназначен он для преобразования переменного напряжения вторичной обмотки трансформатора в постоянное, а точнее говоря, в выпрямленное пульсирующее. Отсюда и происходит название «выпрямитель».

Существуют различные схемы выпрямления, однако наибольшее применение получила мостовая схема. Принцип работы ее заключается в следующем. В первый полупериод переменного напряжения ток протекает по пути через диод VD1, резистор R1 и светодиод VD5. Далее ток возвращается к обмотке через открытый VD2.

К диодам VD3 и VD4 в этот момент приложено обратное напряжение, поэтому они заперты и ток через них не протекает (на самом деле протекает только в момент коммутации, но этим можно пренебречь).

В следующий полупериод, когда ток во вторичной обмотке изменит свое направление, произойдет все наоборот: VD1 и VD2 закроются, а VD3 и VD4 откроются. При этом направление протекания тока через резистор R1 и светодиод VD5 останется прежним.

Диодный мост можно спаять из четырех диодов, соединенных согласно схемы, приведенной выше. А можно купить готовый. Они бывают горизонтального и вертикального исполнения в разных корпусах. Но в любом случае имеют четыре вывода. На два вывода подается переменное напряжение, они обозначаются знаком «~», оба одинаковой длины и самые короткие.

С двух других выводов снимается выпрямленное напряжение. Обозначаются они «+» и «-». Вывод «+» имеет наибольшую длину среди остальных. А на некоторых корпусах возле него делается скос.

Конденсаторный фильтр

После диодного моста напряжение имеет пульсирующий характер и еще непригодно для питания микросхем и тем более микроконтроллеров, которые очень чувствительны к различного рода перепадам напряжения. Поэтому его необходимо сгладить. Для этого можно применяется дроссель либо конденсатор. В рассматриваемой схеме достаточно использовать конденсатор. Однако он должен иметь большую емкость, поэтому следует применять электролитический конденсатор. Такие конденсаторы зачастую имеют полярность, поэтому ее необходимо соблюдать при подключении в схему.

Отрицательный вывод короче положительного и на корпусе возле первого наносится знак «-».

Стабилизатор напряжения LM 7805, LM 7809, LM 7812

Вы наверное замечали, что величина напряжения в розетке не равна 220 В, а изменяется в некоторых пределах. Особенно это ощутимо при подключении мощной нагрузки. Если не применять специальных мер, то оно и на выходе блока питания будет изменяться в пропорциональном диапазоне. Однако такие колебания крайне не желательны, а иногда и недопустимы для многих электронных элементов. Поэтому напряжение после конденсаторного фильтра подлежит обязательной стабилизации. В зависимости от параметров питаемого устройства применяются два варианта стабилизации. В первом случае используются стабилитрон, а во втором – интегральный стабилизатор напряжения. Рассмотрим применение последнего.

В радиолюбительской практике широкое применение получили стабилизаторы напряжения серии LM78xx и LM79xx. Две буквы указывают на производителя. Поэтому вместо LM могут быть и другие буквы, например CM. Маркировка состоит из четырех цифр. Первые две – 78 или 79 означают соответственно положительно или отрицательное напряжение. Две последние цифры, в данном случае вместо них два икса: хх, обозначают величину выходного U. Например, если на позиции двух иксов будет 12, то данный стабилизатор выдает 12 В; 08 – 8 В и т.д.

Для примера расшифруем следующие маркировки:

LM7805 → 5 В, положительное напряжение

LM7912 → 12 В, отрицательное U

Интегральные стабилизаторы имеют три вывода: вход, общий и выход; рассчитаны на ток 1А.

Если выходное U значительно превышает входное и при этом потребляется предельный ток 1 А, то стабилизатор сильно нагревается, поэтому его следует устанавливать на радиатор. Конструкция корпуса предусматривает такую возможность.

Если ток нагрузки гораздо ниже предельного, то можно и не устанавливать радиатор.

Схема блока питания в классическом исполнении включает: сетевой трансформатор, диодный мост, конденсаторный фильтр, стабилизатор и светодиод. Последний выполняет роль индикатора и подключается через токоограничивающий резистор.

Поскольку в данной схеме лимитирующим по тока элементов является стабилизатор LM7805 (допустимое значение 1 А), то все остальные компоненты должны быть рассчитаны на ток не менее 1 А. Поэтому и вторичная обмотка трансформатора выбирается на ток от одного ампера. Напряжение ее должно быть не ниже стабилизированного значения. А по хорошему его следует выбирать из таких соображений, что после выпрямления и сглаживания U должно быть на 2 – 3 В выше, чем стабилизированное, т.е. на вход стабилизатора следует подавать на пару вольт больше его выходного значения. Иначе он будет работать некорректно. Например, для LM7805 входное U = 7 – 8 В; для LM7805 → 15 В. Однако следует учитывать, что при слишком завышенном значении U, микросхема будет сильно нагреваться, поскольку «лишнее» напряжение гасится на ее внутреннем сопротивлении.

Диодный мост можно сделать из диодов типа 1N4007, или взять готовый на ток не менее 1 А.

Сглаживающий конденсатор C1 должен иметь большую емкость 100 – 1000 мкФ и U = 16 В.

Конденсаторы C2 и C3 предназначены для сглаживания высокочастотных пульсаций, которые возникают при работе LM7805. Они устанавливаются для большей надежности и носят рекомендательный характер от производителей стабилизаторов подобных типов. Без таких конденсаторов схема также нормально работает, но поскольку они практически ничего не стоят, то лучше их поставить.

Блок питания своими руками на 78 L 05, 78 L 12, 79 L 05, 79 L 08

Часто необходимо питать только одну или пару микросхем или маломощных транзисторов. В таком случае применять мощный блок питания не рационально. Поэтому лучшим вариантом будет применение стабилизаторов серии 78L05, 78L12, 79L05, 79L08 и т.п. Они рассчитаны на максимальный ток 100 мА = 0,1 А, но при этом очень компактные и по размерам не больше обычного транзистора, а также не требует установки на радиатор.

Маркировка и схема подключения аналогичны, рассмотренной выше серии LM, только отличается расположением выводов.

Для примера изображена схема подключения стабилизатора 78L05. Она же подходит и для LM7805.

Схема включения стабилизаторов отрицательно напряжения приведена ниже. На вход подается -8 В, а на выходе получается -5 В.

Как видно, сделать блок питания своими руками очень просто. Любое напряжение можно получить путем установки соответствующего стабилизатора. Следует также помнить о параметрах трансформатора. Далее мы рассмотри, как сделать блок питания с регулировкой напряжения.


Эта схема мощного блока питания на 12 вольт вырабатывает ток нагрузки до 5 ампер. В схеме блока питания применен трех выводной .

Краткая характеристика Lm338:

  • Uвход: от 3 до 35 В.
  • Uвыход: от 1,2 до 32 В.
  • Iвых.: 5 А (max)
  • Рабочая температура: от 0 до 125 гр. C

Блок питания 12В 5А на интегральной микросхеме LM338

Напряжение от сети поступает к понижающему трансформатору через плавкий предохранитель FU1 на 7А. V1 на 240 вольт, используется для защиты схемы блока питания от выбросов напряжения в электросети. Трансформатор Tр1 понижающий с напряжение на вторичной обмотке не ниже 15 вольт с током нагрузки не менее 5 ампер.

Пониженное напряжение с вторичной обмотки поступает на диодный мост, состоящий из четырех выпрямительных диодов VD1-VD4. На выходе диодного моста установлен электролитический конденсатор С1 предназначенный для сглаживания пульсаций выпрямленного напряжения. Диоды VD5 и VD6 используются в качестве устройств защиты для предотвращения разряда конденсаторов C2 и C3 от незначительного тока утечки в регуляторе LM338. Конденсатор С4 используется для фильтрации высокочастотной составляющей блока питания.

Для нормальной работы блока питания на 12В, стабилизатор напряжения LM338 необходимо установить на радиатор. Вместо выпрямительных диодов VD1-VD4 можно использовать выпрямительную сборку на ток не менее 5 ампер, например, KBU810.

Блок питания на 12 вольт на стабилизаторе 7812

Следующая схема мощного блока питания на 12 вольт и 5 ампер нагрузки построена на интегральном 7812. Поскольку допустимый максимальный ток нагрузки данного стабилизатора ограничивается 1,5 ампер, в схему блока питания добавлен силовой транзистор VT1. Этот транзистор известен как обходной внешний транзистор.

Если ток нагрузки будет менее 600 мА, то он будет протекать через стабилизатор 7812. Если ток превысит 600 мА, то на резисторе R1 будет напряжение более 0,6 вольта, в результате чего силовой транзистор VT1 начинает проводить через себя дополнительный ток к нагрузке. Резистор R2 ограничивает чрезмерный базовый ток.

Силовой транзистор в данной схеме необходимо разместить на хорошем радиаторе. Минимальное входное напряжение должно быть на несколько вольт выше, чем напряжение на выходе регулятора. Резистор R1 должен быть рассчитан на 7 Вт. Резистор R2 может иметь мощность 0,5 Вт.

Портативный USB осциллограф, 2 канала, 40 МГц….

Выпрямитель — это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.

Определение

Выпрямителем называется устройство, предназначенное для преобразования переменного тока в постоянный. Слово «постоянный» не совсем корректно, дело в том, что на выходе выпрямителя, в цепи синусоидального переменного напряжения, в любом случае окажется нестабилизированное пульсирующие напряжение. Простыми словами: постоянное по знаку, но изменяющееся по величине.

Различают два типа выпрямителей:

    Однополупериодный . Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.

    Двухполупериодный . Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя — это две основных характеристики.

Что значит стабилизированное и нестабилизированное напряжение?

Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.

Нестабилизированное напряжение — изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.

Выходное напряжение

Основные величины переменного напряжения — амплитудное и действующее значение. Когда говорят «в сети 220В переменки» имеют в виду действующее напряжение.

Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.

Опустив теорию и ряд формул можно сказать, что в 1.41 раз меньше амплитудного. Или:

Амплитудное напряжение в сети 220В равняется:

Первая схема более распространена. Состоит из диодного моста — соединены между собой «квадратом», а в его плечи подключена нагрузка. Выпрямитель типа «мост» собирается по схеме приведенной ниже:

Её можно подключить напрямую к сети 220В, так сделано в , или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.

Вторая схема — выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.

По своей сути — это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым — к отводу от середины обмоток.

Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком — использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.

Сглаживание пульсаций

Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.

Для сглаживания пульсаций используют — параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…

Но самый распространенный и простой вариант — это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости — десятки тысяч микрофарад.

Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора — тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.

Простым словами: чем медленнее разряжается конденсатор — тем меньше пульсации.

Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:

где R — сопротивление нагрузки, а C — емкость сглаживающего конденсатора.

Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t. Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.

Отсюда следует — чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют , их еще называют полярными или поляризованными.

Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва — у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.

Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить. Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).

C=3200*Iн/Uн*Kп,

Где Iн — ток нагрузки, Uн — напряжение нагрузки, Kн — коэффициент пульсаций.

Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить как можно большей емкости, для фильтрации от высокочастотных помех.

Как сделать блок питания своими руками?

Простейший блок питания постоянного тока состоит из трёх элементов:

1. Трансформатор;

3. Конденсатор.

Это нестабилизированный блок питания постоянного тока со сглаживающим конденсатором. Напряжение на его выходе больше чем переменное напряжение вторичной обмотке. Это значит, что если у вас трансформатор 220/12 (первичная на 220В, а вторичная на 12В), то на выходе вы получите 15-17В постоянки. Эта величина зависит от емкости сглаживающего конденсатора. Эту схему можно использовать для питания любой нагрузки, если для нее неважно, то, что напряжение может «плавать» при изменениях напряжения питающей сети.

У конденсатора две основных характеристики — емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения — нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное — велика вероятность его выхода из строя.

Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем — и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.

Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант — использовать L78xx или другие , типа отечественного КРЕН.

Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1.5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:

Входное напряжение не должно превышать 35В, для стабилизаторов от 5 до 12В, и 40В для стабилизаторов на 20-24В.

Входное напряжение должно превышать выходное на 2-2.5В.

Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14.5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.

Но выходной ток достаточно скромный — всего 1.5А, его можно усилить с помощью проходного транзистора. Если у вас есть , можно использовать эту схему:

На ней изображено только подключение линейного стабилизатора «левая» часть схемы с трансформатором и выпрямителем опущена.

Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:

Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0.6В — это падение на переходе эмиттер база, подробнее об этом мы писали . Для компенсации этого падения в цепь был введен диод D1.

Можно и в параллель установить два линейных стабилизатора, но не нужно! Из-за возможных отклонений при изготовлении нагрузка будет распределяться неравномерно и один из них может из-за этого сгореть.

Установите и транзистор, и линейный стабилизатор на радиатор, желательно на разные радиаторы. Они сильно греются.

Регулируемые блоки питания

Простейший регулируемый блок питания можно сделать с регулируемым линейным стабилизатором LM317, её ток тоже до 1.5 А, вы можете усилить схему проходным транзистором, как было описано выше.

Вот более наглядная схема для сборки регулируемого блока питания.

С тиристорным регулятором в первичной обмотке, по сути такой же регулируемый блок питания.

Кстати похожей схемой регулируют и сварочный ток:

Заключение

Выпрямитель используется в источниках питания для получения постоянного тока из переменного. Без его участия не получится запитать нагрузку постоянного тока, например светодиодную ленту или радиоприемник.

Также используются в разнообразных зарядных устройствах для автомобильных аккумуляторов, есть ряд схем с использованием трансформатора с группой отводов от первичной обмотки, которые переключаются галетным переключателем, а во вторичной обмотке установлен только диодный мост. Переключатель устанавливают со стороны высокого напряжения, так как, там в разы ниже ток и его контакты не будут пригорать от этого.

По схемам из статьи вы можете собрать простейший блок питания как для постоянной работы с каким-то устройством, так и для тестирования своих электронных самоделок.

Схемы не отличаются высоким КПД, но выдают стабилизированное напряжение без особых пульсаций, следует проверить емкости конденсаторов и рассчитать под конкретную нагрузку. Они отлично подойдут для работы маломощных аудиоусилителей, и не создадут дополнительного фона. Регулируемый блок питания станет полезным автолюбителями и автоэлектрикам для проверки реле регулятора напряжения генератора.

Регулируемый блок питания используется во всех областях электроники, а если его улучшить защитой от КЗ или стабилизатором тока на двух транзисторах, то вы получите почти полноценный лабораторный блок питания.

Если вам нужен источник постоянного питания с напряжением 12 вольт, а его нет под рукой, то его можно и купить. Если брать дешёвый блок питания, то его качество будет оставлять желать лучшего. Обычно такие недорогие БП хороши только с виду. Когда их открываешь, то оказывается, что его характеристики (указанные на корпусе) по току завышены. В реальности он не способен обеспечить в полной мере ту мощность, что заявлена производителем (как правило). Можно купить и более дорогостоящий блок питания на 12 вольт, но собрать своими руками по частям выйдет гораздо дешевле, а по качеству ничуть не хуже.

Итак, как сделать хороший и простой блок питания на 12 вольт своими руками, что для этого нам понадобится? Нужен понижающий силовой трансформатор, выпрямительный диодный мост и фильтрующий конденсатор электролит. Трансформатор будет понижать сетевое напряжение (220 В) до нужного, а именно до 10 вольт. Почему до 10, а не 12. Потому, что есть такой эффект — переменное напряжение после диодного моста (имеющего конденсатор достаточной емкости) станет процентов примерно на 18 больше, чем без конденсатора. Это стоит учитывать при сборке любого блока питания.

Трансформатор нужен той мощности, которая вам нужна. То есть, изначально вы должны знать, какой именно максимальный ток должен выдавать данный блок питания. Зная ток и выходное напряжение можно найти электрическую мощность. Нужно просто ток (к примеру 3 ампера) перемножить на напряжение выхода (в нашем случае это 12 вольт). Стоит ещё добавить небольшой запас по мощности процентов 25. В итоге получим, что нужен трансформатор мощностью около 50 Вт.

С размерами (мощностью) трансформатора определились. Исходя из этого вторичная обмотка транса должна иметь нужное сечение, чтобы обеспечить нужную силу тока. Для 3 ампер (максимальное значение) на выходе нашего самодельного блока питания сечение вторичной обмотки трансформатора должно быть около 1,3 мм. Если на магнитопроводе достаточно места, то можно намотать провод большего диаметра (это только увеличит максимальную силу тока источника питания).

Итак, наш трансформатор на выходе вторичной обмотки будет выдавать переменное напряжение величиной 10 вольт. Это напряжение имеет форму синусоиды, которая меняет свои полюса с частотой 50 герц. Нам же нужен постоянный ток, который не имел этого периодического изменения полюсов. Для этого используется выпрямительный диодный мост. Его задача сводится к тому, что он все полупериоды делает однополюсными, хотя и скачкообразными (плавно возрастающими и убывающими). Диодный мост можно купить готовым, хотя его можно спаять и самому из 4х одинаковых диодов, которые должны быть также рассчитаны на нужный выходной ток. Для нашего самодельного блока питания с 3 амперами нужно взять диоды, рассчитанные на ток в 6 А (берём с учётом запаса).

Поскольку после диодов напряжение имеет скачкообразный вид, его нужно отфильтровать. Это делается обычным электролитическим конденсатором, соответствующей емкости. Значит достаем еще и конденсатор, рассчитанный на напряжение 25 вольт, с емкостью 2200 мкф (чем больше, тем лучше фильтрация, но при этом и размеры конденсатора будут увеличиваться). Вот и всё, теперь эти элементы нужно просто спаять между собой (трансформатор, выпрямительный диодный мост и конденсатор электролит).

P.S. Учтите, что ёмкость конденсатора электролита имеет полярность (плюс и минус), которую нужно соблюдать при подключении его к схеме нашего самодельного блока питания. В противном случае может произойти так, что конденсатор просто у вас взорвется, либо просто выйти из строя. Ну, а в целом, данная схема БП является наиболее простой. Она не имеет стабилизации, рассчитана на питания электроприборов, не нуждающихся в большой точности и стабильности напряжения.

Мощный выпрямитель на 12 вольт

Тема: как можно спаять источник питания на 12 вольт своими руками (схема).

Если вам нужен источник постоянного питания с напряжением 12 вольт, а его нет под рукой, то его можно и купить. Если брать дешёвый блок питания, то его качество будет оставлять желать лучшего. Обычно такие недорогие БП хороши только с виду. Когда их открываешь, то оказывается, что его характеристики (указанные на корпусе) по току завышены. В реальности он не способен обеспечить в полной мере ту мощность, что заявлена производителем (как правило). Можно купить и более дорогостоящий блок питания на 12 вольт, но собрать своими руками по частям выйдет гораздо дешевле, а по качеству ничуть не хуже.

Итак, как сделать хороший и простой блок питания на 12 вольт своими руками, что для этого нам понадобится? Нужен понижающий силовой трансформатор, выпрямительный диодный мост и фильтрующий конденсатор электролит. Трансформатор будет понижать сетевое напряжение (220 В) до нужного, а именно до 10 вольт. Почему до 10, а не 12. Потому, что есть такой эффект — переменное напряжение после диодного моста (имеющего конденсатор достаточной емкости) станет процентов примерно на 18 больше, чем без конденсатора. Это стоит учитывать при сборке любого блока питания.

Трансформатор нужен той мощности, которая вам нужна. То есть, изначально вы должны знать, какой именно максимальный ток должен выдавать данный блок питания. Зная ток и выходное напряжение можно найти электрическую мощность. Нужно просто ток (к примеру 3 ампера) перемножить на напряжение выхода (в нашем случае это 12 вольт). Стоит ещё добавить небольшой запас по мощности процентов 25. В итоге получим, что нужен трансформатор мощностью около 50 Вт.

С размерами (мощностью) трансформатора определились. Исходя из этого вторичная обмотка транса должна иметь нужное сечение, чтобы обеспечить нужную силу тока. Для 3 ампер (максимальное значение) на выходе нашего самодельного блока питания сечение вторичной обмотки трансформатора должно быть около 1,3 мм. Если на магнитопроводе достаточно места, то можно намотать провод большего диаметра (это только увеличит максимальную силу тока источника питания).

Итак, наш трансформатор на выходе вторичной обмотки будет выдавать переменное напряжение величиной 10 вольт. Это напряжение имеет форму синусоиды, которая меняет свои полюса с частотой 50 герц. Нам же нужен постоянный ток, который не имел этого периодического изменения полюсов. Для этого используется выпрямительный диодный мост. Его задача сводится к тому, что он все полупериоды делает однополюсными, хотя и скачкообразными (плавно возрастающими и убывающими). Диодный мост можно купить готовым, хотя его можно спаять и самому из 4х одинаковых диодов, которые должны быть также рассчитаны на нужный выходной ток. Для нашего самодельного блока питания с 3 амперами нужно взять диоды, рассчитанные на ток в 6 А (берём с учётом запаса).

Поскольку после диодов напряжение имеет скачкообразный вид, его нужно отфильтровать. Это делается обычным электролитическим конденсатором, соответствующей емкости. Значит достаем еще и конденсатор, рассчитанный на напряжение 25 вольт, с емкостью 2200 мкф (чем больше, тем лучше фильтрация, но при этом и размеры конденсатора будут увеличиваться). Вот и всё, теперь эти элементы нужно просто спаять между собой (трансформатор, выпрямительный диодный мост и конденсатор электролит).

Выпрямитель – это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.

Определение

Выпрямителем называется устройство, предназначенное для преобразования переменного тока в постоянный. Слово «постоянный» не совсем корректно, дело в том, что на выходе выпрямителя, в цепи синусоидального переменного напряжения, в любом случае окажется нестабилизированное пульсирующие напряжение. Простыми словами: постоянное по знаку, но изменяющееся по величине.

Различают два типа выпрямителей:

Однополупериодный. Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.

Двухполупериодный. Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя – это две основных характеристики.

Что значит стабилизированное и нестабилизированное напряжение?

Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.

Нестабилизированное напряжение – изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.

Выходное напряжение

Основные величины переменного напряжения – амплитудное и действующее значение. Когда говорят «в сети 220В переменки» имеют в виду действующее напряжение.

Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.

Опустив теорию и ряд формул можно сказать, что действующее напряжение в 1.41 раз меньше амплитудного. Или:

Амплитудное напряжение в сети 220В равняется:

Схемы

Однополупериодный выпрямитель состоит из одного диода. Он просто не пропускает обратную полуволну. На выходе получается напряжение с сильными пульсациями от нуля до амплитудного значения входного напряжения.

Если говорить совсем простым языком, то в этой схеме к нагрузке поступает половина от входного напряжения. Но это не совсем корректно.

Двухполупериодные схемы пропускают к нагрузке обе полуволны от входного. Выше в статье упоминалось об амплитудном значении напряжения, так вот напряжение на выходе выпрямителя то же ниже по величине, чем действующее переменное на входе.

Но, если сгладить пульсации с помощью конденсатора, то, чем меньшими будут пульсации, тем ближе напряжение будет к амплитудному.

О сглаживания пульсаций мы поговорим позже. А сейчас рассмотрим схемы диодных мостов.

1. Выпрямитель по схеме Гретца или диодный мост;

2. Выпрямитель со средней точкой.

Первая схема более распространена. Состоит из диодного моста – четыре диода соединены между собой «квадратом», а в его плечи подключена нагрузка. Выпрямитель типа «мост» собирается по схеме приведенной ниже:

Её можно подключить напрямую к сети 220В, так сделано в современных импульсных блоках питания, или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.

Вторая схема – выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.

По своей сути – это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым – к отводу от середины обмоток.

Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком – использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.

Сглаживание пульсаций

Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.

Для сглаживания пульсаций используют фильтры – параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…

Но самый распространенный и простой вариант – это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости – десятки тысяч микрофарад.

Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора – тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.

Простым словами: чем медленнее разряжается конденсатор – тем меньше пульсации.

Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:

где R – сопротивление нагрузки, а C – емкость сглаживающего конденсатора.

Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t. Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.

Отсюда следует – чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют электролитические конденсаторы, их еще называют полярными или поляризованными.

Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва – у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.

Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить. Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).

Чтобы посчитать емкость сглаживающего конденсатора можно использовать приближенную формулу:

Где Iн – ток нагрузки, Uн – напряжение нагрузки, Kн – коэффициент пульсаций.

Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить керамический конденсатор как можно большей емкости, для фильтрации от высокочастотных помех.

Как сделать блок питания своими руками?

Простейший блок питания постоянного тока состоит из трёх элементов:

Если нужно получить высокое напряжение, и вы пренебрегаете гальванической развязкой то можно исключить трансформатор из списка, тогда вы получите постоянное напряжение вплоть до 300-310В. Такая схема стоит на входе импульсных блоков питания, например, такого как у вас на компьютере. О них мы недавно писали большую статью – Как устроен компьютерный блок питания.

Это нестабилизированный блок питания постоянного тока со сглаживающим конденсатором. Напряжение на его выходе больше чем переменное напряжение вторичной обмотке. Это значит, что если у вас трансформатор 220/12 (первичная на 220В, а вторичная на 12В), то на выходе вы получите 15-17В постоянки. Эта величина зависит от емкости сглаживающего конденсатора. Эту схему можно использовать для питания любой нагрузки, если для нее неважно, то, что напряжение может «плавать» при изменениях напряжения питающей сети.

У конденсатора две основных характеристики – емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения – нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное – велика вероятность его выхода из строя.

Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем – и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.

Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант – использовать L78xx или другие линейные стабилизаторы, типа отечественного КРЕН.

Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1.5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:

Входное напряжение не должно превышать 35В, для стабилизаторов от 5 до 12В, и 40В для стабилизаторов на 20-24В.

Входное напряжение должно превышать выходное на 2-2.5В.

Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14.5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.

Но выходной ток достаточно скромный – всего 1.5А, его можно усилить с помощью проходного транзистора. Если у вас есть PNP-транзисторы, можно использовать эту схему:

На ней изображено только подключение линейного стабилизатора «левая» часть схемы с трансформатором и выпрямителем опущена.

Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:

Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0.6В – это падение на переходе эмиттер база, подробнее об этом мы писали в статье о биполярных транзисторах. Для компенсации этого падения в цепь был введен диод D1.

Можно и в параллель установить два линейных стабилизатора, но не нужно! Из-за возможных отклонений при изготовлении нагрузка будет распределяться неравномерно и один из них может из-за этого сгореть.

Установите и транзистор, и линейный стабилизатор на радиатор, желательно на разные радиаторы. Они сильно греются.

Регулируемые блоки питания

Простейший регулируемый блок питания можно сделать с регулируемым линейным стабилизатором LM317, её ток тоже до 1.5 А, вы можете усилить схему проходным транзистором, как было описано выше.

Вот более наглядная схема для сборки регулируемого блока питания.

Чтобы получить больший ток можно и использовать более мощный регулируемый стабилизатор LM350.

В последних двух схемах есть индикация включения, которая показывает наличие напряжения на выходе диодного моста, выключатель 220В, предохранитель первичной обмотки.

Вот пример регулируемого зарядного устройства для аккумулятора с тиристорным регулятором в первичной обмотке, по сути такой же регулируемый блок питания.

Кстати похожей схемой регулируют и сварочный ток:

Заключение

Выпрямитель используется в источниках питания для получения постоянного тока из переменного. Без его участия не получится запитать нагрузку постоянного тока, например светодиодную ленту или радиоприемник.

Также используются в разнообразных зарядных устройствах для автомобильных аккумуляторов, есть ряд схем с использованием трансформатора с группой отводов от первичной обмотки, которые переключаются галетным переключателем, а во вторичной обмотке установлен только диодный мост. Переключатель устанавливают со стороны высокого напряжения, так как, там в разы ниже ток и его контакты не будут пригорать от этого.

По схемам из статьи вы можете собрать простейший блок питания как для постоянной работы с каким-то устройством, так и для тестирования своих электронных самоделок.

Схемы не отличаются высоким КПД, но выдают стабилизированное напряжение без особых пульсаций, следует проверить емкости конденсаторов и рассчитать под конкретную нагрузку. Они отлично подойдут для работы маломощных аудиоусилителей, и не создадут дополнительного фона. Регулируемый блок питания станет полезным автолюбителями и автоэлектрикам для проверки реле регулятора напряжения генератора.

Регулируемый блок питания используется во всех областях электроники, а если его улучшить защитой от КЗ или стабилизатором тока на двух транзисторах, то вы получите почти полноценный лабораторный блок питания.

Подпишитесь на автора

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

Отписаться от уведомлений вы всегда сможете в профиле автора.

Попал ко мне в руки блок питания с пассивным охлаждением и на привычные многим пользователям 12 Вольт, потому надеюсь, что обзор будет полезен пользователям принтеров и граверов.

Почему мне нравится ковырять блоки питания особо расписывать смысла нет, а вот почему именно 12 Вольт, напишу.

Так уж сложилось, но блоки питания с выходным напряжением в 12 Вольт являются одними из самых популярных наряду с 5 Вольт и 19 Вольт.

5 Вольт используется для питания небольших устройств, но больше популярности добавило то, что такое же напряжение дает порт USB, потому и начали ‘плодиться’ такие БП.

19 Вольт используются в ноутбуках, а также такие БП используются энтузиастами радиолюбителями для разного рода паяльных станций и усилителей, в основном из-за приемлемой мощности и компактности.

Ну а 12 Вольт просто для начала является безопасным напряжением и при этом позволяет передавать довольно большую мощность. Конечно на мой взгляд зачастую его можно (а иногда и нужно) на 24 Вольта, но это напряжение больше используется в промышленных устройствах.

В быту же от 12 Вольт можно питать получившие распространение светодиодные ленты для декоративной подсветки и освещения, от 12 Вольт питаются также системы видеонаблюдения, иногда небольшие компьютеры, а также разные граверы, 3D принтеры и т.п.

Вообще у меня в планах сделать несколько обзоров подобных БП, но с разной мощностью и сегодня ко мне на стол попал блок питания на 240 Ватт с пассивной системой охлаждения.

На данный момент распространенные безвентиляторные БП имеют мощность до 240-300 Ватт, причем вторые встречаются куда реже и я бы скорее сказал, что 240 Ватт это уже почти максимум.

На этом я закончу краткое вступление и перейду к предмету обзора. Блок питания был куплен здесь, вышел в итоге около 17 долларов.

БП в привычном металлическом корпусе, думаю многие видели подобные решения в продаже.

Упакован был в обычную белую коробку, на фото она не попала, да и не особо там есть на что смотреть.

Справа от клеммника приютился подстроечный резистор и светодиод индикации включения блока питания.

Заявленные параметры – 12 Вольт 20 Ампер, реальный производитель неизвестен, маркировка стандартна для многих недорогих БП – S-240-12

Сбоку находится переключатель входного напряжения 110/200 Вольт, лучше перед первым включением проверить что он находится в правильном положении.

Дата выпуска конец 2016 года, так что БП можно сказать, свежий.

Для начала измеряем что на выходе у БП настроено.

Выставлено 12.3 Вольта, диапазон регулировки 10-14.5 Вольта. после проверки выставил что-то близкое к 12 Вольт.

А внутри блок питания ничем не отличается от других, подобных недорогих блоков.

Мне он сходу напомнил блок питания на 48 Вольт 240 Ватт я бы даже сказал что они один в один.

Даже наверное не так, фактически это тот же БП, просто на другое напряжение, потому я в самом начале и написал, что реальный производитель неизвестен.

Классический осмотр начинки.

1. Входной фильтр, присутствует, хотя и не в полном объеме, отсутствует конденсатор после дросселя и варистор. К сожалению это черта подавляющего большинства китайских БП.

2. Помехоподавляющие конденсаторы в опасной цепи – Y1, в менее опасной, обычный высоковольтный, можно сказать что нормально.

3. Входной диодный мост установлен с запасом, 8 Ампер 1000 Вольт, но радиатор отсутствует. В предыдущем варианте диодный мост был на 20 Ампер.

Также рядом видны два термистора, включенные параллельно.

4. Входные конденсаторы Rubicong закос под Rubicon, если бы еще параметры соответствовали заявленным, но об этом позже.

5. Пара высоковольтных транзисторов прижатых к алюминиевому корпусу, который работает как радиатор.

6. Силовой трансформатор явно промаркирован как 240 Ватт 12 Вольт. На вид довольно неплох, видны следы пропитки лаком.

Китайские производители продолжают штамповать свои блоки питания на классической элементной базе. Я не скажу что это плохо, но более именитые производители уже гораздо реже делают БП на базе TL494.

По своему это имеет свои плюсы, ремонт такого БП довольно прост, комплектующие есть везде, да и документации по ним очень много.

1. Выходной дроссель при вполне нормальных габаритах намотан всего в два провода, причем сечение провода сопоставимо с тем, что использовалось в БП 48 Вольт.

2. Выходные конденсаторы имеют заявленную емкость в 2200мкФ, производитель также неизвестен, впрочем я и не ожидал здесь увидеть конденсаторы от Nichicon или хотя бы Samwha.

3,4. А вот момент с прижимом силовых элементов я проверил отдельно, так как в прошлый раз у меня были большие нарекания по поводу крепежа диодной сборки. В данном случае все в принципе нормально. Можно немного попридираться к прижиму транзисторов (слева), но практика показала, что все в порядке.

Высоковольтные транзисторы применены с запасом, можно не беспокоиться. К тому же корпус TO247, в котором они выполнены, улучшает отвод тепла на радиатор.

Выходная диодная сборка MBR30200 представляет собой два высоковольтных диода Шоттки. Я немного скептически отношусь к применению высоковольтных диодов Шоттки, так как у них уже нет преимущества перед обычными в плане падения напряжения, но остается преимущество в большей скорости переключения, т.е. динамические потери меньше.

Но один неприятный момент я все таки нашел. Один из силовых контактов не очень хорошо пропаян. Можно конечно сказать, что там по три контакта на полюс, но ведь может так попасть, что он как раз окажется нагруженным. Собственно потому я всегда советую при покупке блоков питания проверять как они собраны. Хотя нет, корректнее сказать – при покупке недорогих блоков питания всегда проверять качество сборки.

На плате присутствует не совсем понятная мне маркировка, очень похоже, что плата рассчитана под БП мощностью до 365 Ватт, но это уже скорее с активным охлаждением (на плате есть место под разъем вентилятора, но сам разъем и необходимые компоненты отсутствуют).

Попутно измерил емкость конденсаторов.

Входные имеют суммарную емкость 166мкФ (два по 330 соединенные последовательно), хотя указано 470мкФ (соответственно суммарная 235), маловато для мощности в 240 Ватт.

Выходные в сумме дают около 6600, соответственно как указано 2200х3. Здесь вопросов нет, для блоков питания с подобными характеристиками это нормально, даже для фирменных. Правда в фирменных блоках питания стоит более качественные конденсаторы.

Вот теперь можно проводить тесты.

В качестве тестового стенда использовались

1. Режим холостого хода.

2. Нагрузка 5 Ампер, пульсации около 50мВ

1. Нагрузка 10 Ампер, напряжение лишь немного просело, пульсации остались на прежнем уровне

2. Нагрузка 15 Ампер, практически без изменений

1. 20 Ампер, напряжение просело всего на 70мВ, уровень пульсация практически не отличается от предыдущих тестов и составляет 60мВ

2. В качестве дополнительного теста на нагрев я решил поднять выходное напряжение до 12.55 Вольта и погонять БП еще минут 15. Выходная мощность БП при этом была около 250 Ватт.

Как видно по фото, это практически никак не сказалось на результате.

В прошлом обзоре я был так удивлен качеством работы блока питания, что даже проводил тесты с полуторакратной перегрузкой. С БП мощностью 240 Ватт я снял 360 и только тогда начал откровенно волноваться по поводу перегрева.

Но в данном случае все немного печальнее. Для начала фото с тепловизора, снятое в самом конце теста при мощности 250 Ватт.

Самый горячий элемент – выходной дроссель, впрочем такая же картина была и при тесте БП 48 Вольт. Но как я тогда писал, на самом деле материал из которого изготовлен этот дроссель, не боится таких температур, ограничением является стойкость изоляции провода, которым он намотан.

Для компании сфотографировал нагрузочные резисторы, на которых рассеивалось всего около 50 Ватт. Электронная нагрузка при этом брала на себя около 200 Ватт, у нее температура радиаторов была 61 градус.

Как и раньше, я свел все данные в одну табличку.

Тестирование проходило при комнатной температуре, БП лежал горизонтально на столе, что несколько ухудшало тепловой режим, в вертикальном положении он охлаждался бы лучше.

Каждый этап длился 20 минут, затем шел замер температуры и повышение тока на одну ступень.

Последний этап был проведен как дополнительный и занял 15 минут, итого в сумме 20+20+20+20+15= 1ч 35мин.

Результаты заметно выше чем у БП на 48 Вольт, но я бы сказал что вполне терпимые. Самый нежный элемент – силовой трансформатор, не перегревается.

Как-то в комментариях затронули тему низкого КПД таких блоков питания и мне реально стало интересно, какой же КПД у них в реальности.

Конечно я не претендую на высокую точность , так как в процессе участвует много измерительных приборов и каждый имеет свою погрешность, но я постарался измерить максимально корректно.

И так. Я измерил потребляемую мощность БП без нагрузки, с нагрузкой 33, 66 и 100%, при этом у меня вышло:

Вход – Выход – КПД.

Говорили, что КПД подобных БП около 60-70%, честно, мне не верилось. Но до этого я судил по количеству выделяемого тепла, потому как не заметить ‘лишние’ 100 Ватт тепла тяжело, вот и решил провести этот тест, думаю что не зря.

Конечно в комментариях могут начать писать – а как же MeanWell, почему не MeanWell? Да, я очень хорошо отношусь к блокам питания этой фирмы, и очень часто их использую, потому решил ради интереса сравнить обозреваемый БП и БП фирмы MeanWell. Но стоит отметить, что сравнивал я с БП серии RS, а точнее – RS-150-12, т.е. 12 Вольт 150 Ватт. На данный момент стоимость этого БП составляет около 36 долларов – [leech=http://www.kosmodrom.com.ua/el.php?name=RS-150-12]ссылка[/leech].

Блоки питания этой серии отличные, надежность действительно на высоком уровне, БП который вы видите, отработал в составе системы видеонаблюдения около 3 лет при нагрузке близкой к 90% и был заменен планово на новый.

Производитель же заявляет что –

Долговечные 105°C электролитические конденсаторы

Комплекс защит от короткого замыкания, перегрузки, перенапряжения

Электромагнитная совместимость: EN50082-2/EN61000-6-2 для тяжелой промышленности

Высокая рабочая температура до 70°C

Малые размеры, высокая удельная мощность

Высокие КПД, долговечность и надежность

Все модули проходят 100% прогон[/quote]

Но это относится именно к RS серии, обычные же БП MenWell серий S-ххх-хх немного проще, правда и стоят меньше.

1. Термистор упакован в термоусадку, но что интересно, уже когда разбирал фото, то заметил, что термисторов два, причем второй ‘голый’, он стоит справа от переключателя.

2. Входные конденсаторы Rubicon, а не RubiconG. Суммарная емкость 165мкФ при выходной мощности в 150 Ватт.

3. Высоковольтный транзистор имеет дополнительную изоляцию. ШИМ контроллер применен другой, потому рядом совсем пусто.

4. Выходных диодных сборок две, причем у обоих на выводах присутствуют ферритовые бусины, что практически никогда не встречается в недорогих китайских БП. Такие же бусины есть и на некоторых конденсаторах.

5. А вот выходной дроссель изготовлен в лучших традициях Китая 🙂 Намотка кривая, закатали в какой то клей.

6. Выходные конденсаторы фирменные, емкость 1000х3 мкФ, напряжение 35 Вольт, что весьма правильно. У обозреваемого конденсаторы на 25 Вольт, но в двухтактной схеме это нормально (в компьютерных БП вообще на 16).

Сегодня не буду выделять плюсы и минусы, а просто опишу мое впечатление о блоке питания.

На мой взгляд это типичный ‘среднестатистический’ китайский блок питания. Нагрев в пределах допуска, среднее качество сборки, но при этом низкий уровень пульсаций и отсутствие ‘дрейфа’ выходного напряжения от прогрева (это довольно важно). Производитель не особо волнуется насчет комплектующих, об этом говорят непонятные конденсаторы на входе, если судить по маркировке, то емкость достаточна, если измерить, то занижена. Я в подобной ситуации просто добавил один конденсатор 100мкФх400В выпаянный из платы монитора.

Самые критичные элементы, которые в данном БП будут влиять на срок службы – выходные конденсаторы.

В остальном вполне нормальный блок питания, все тесты прошел без проблем, но получить такие результаты как с его 48 Вольт вариантом, я увы не смог. На мой взгляд средний блок питания за вполне приемлемые деньги.

Надеюсь что обзор был полезен, старался дать максимум информации.

Как я писал в самом начале, в планах сделать обзоры блоков питания 12 Вольт на другую мощность, но пока не знаю, какой мощности БП наиболее интересны.

Подпишитесь на автора

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

Отписаться от уведомлений вы всегда сможете в профиле автора.

Самодельный блок питания на 12 вольт

Блок питания достаточно прост в изготовлении, если немножко разобраться с теоретической частью и понять, как он работает. Все не так сложно, как кажется. Из чего состоит блок питания на 12 вольт, с фото и примерами, а также описание его элементов и принцип работы – далее в статье.

Краткое содержимое статьи:

Основные элементы и принцип действия блоков питания

Главной частью является понижающий трансформатор, причем при отсутствии его с необходимыми параметрами, то вторичная обмотка перематывается вручную и получается необходимое выходное напряжение. Посредством трансформатора происходит уменьшение напряжения сети 220 вольт до 12, идущих дальше к потребителю.

Принципиальной разницы между штатными устройствами и с перемотанной вторичной обмоткой нет, главное – правильно рассчитать сечение провода и количество его витков на обмотке.

Далее ток идет на выпрямитель. Состоит из полупроводников, например, диодов. Диодный мост, в разных схемах, может состоять из одного, двух или четырех диодов. После выпрямителя ток поступает на конденсатор, также в схеме для выдачи стабильного напряжения желательно включение стабилитрона с соответствующими характеристиками.

Трансформатор

Состоит трансформатор из сердечника, изготовленного из ферромагнетика, а также первичной и вторичной обмоток. На первичную обмотку приходит 220 вольт, а со вторичной, в данном случае, снимается 12, идущие на выпрямитель. Сердечники в данном типе блоков питания по большей части изготавливают Ш-образной и U-образной формы.

Расположение обмоток допускается как одна на другой на общей катушке, так и по отдельности. К примеру, у U-образного сердечника пара катушек, на каждую из которых намотано по половине обмоток. Выводы при подсоединении трансформатора подключают последовательно.

Как правильно рассчитать число витков

При перемотке вторичной катушки, нужно знать, какому напряжению соответствует виток. Если перематывать первичную обмотку не планируется, нет нужды рассчитывать ни сечение провода, ни его свойства. Проблема с первичной обмоткой заключается в большом количестве витков тонкой проволоки, из которой он состоит.

Для расчета вторичной обмотки, делают 10 витков и подключают трансформатор в сеть. Измеряют напряжение на выводах, после чего делят его на 10, после чего 12 делится на полученное число.  Результат и будет необходимым количеством витков, причем рекомендуется увеличить его на 10% для компенсации падения напряжения.

Диоды

Выбор диодов определяется силой тока на вторичной обмотке. Для данных целей подойдут кремниевые полупроводники, только не высокочастотные, поскольку те предназначены для выполнения других задач.

Для того чтобы устройство получилось компактным, хорошим решением будет применение диодных сборок из четырех элементов. На два вывода подается питание с трансформатора, с двух других снимают выпрямленный ток.

После диодного моста настоятельно рекомендуется в схеме предусмотреть стабилитрон с подходящими параметрами, поскольку в течение дня далеко не факт, что входное напряжение будет стабильно 220 вольт. Если подать на первичную обмотку большее напряжение, то выходное тоже будет больше чем 12 вольт.

Корпус

Корпус для блока питания очень удобно делать из алюминия. Сперва собирается каркас из уголков, который затем обшивают алюминиевыми пластинками. Плюсов такого решения как минимум два – во-первых, с алюминием легко работать, во-вторых, он очень хорошо проводит тепло, что предохранит блок питания от перегрева.

Если нет желания собирать каркас самостоятельно, можно позаимствовать его от старой микроволновки. Определенные плюсы у такого решения есть – малый вес, эстетичный вид и вместительность.

Печатная плата для блока питания

Изготавливается из фольгированного текстолита, для чего производят обработку металла соляной кислотой либо аккумуляторным электролитом.

Работы проводятся в резиновых перчатках с соблюдением мер предосторожности. Металл промывают содовым раствором и наносят изображение печатной платы. Существуют специальные компьютерные программы для создания таких изображений.

Протравливают плату, опуская ее в раствор хлорного железа, либо смеси медного купороса с солью.

Монтаж элементов

По окончании протравливания, плату ополаскивают, снимают с дорожек защиту и обезжиривают. Очень тонким сверлом сверлятся отверстия в плате под элементы. Затем элементы вставляют в отверстия и подпаивают к дорожкам, после чего дорожки лудят с помощью олова.

Фото самодельного блока питания на 12 вольт

Вам понравилась статья? Поделитесь 😉  

топ-лучших производителей + инструкция как сделать в домашних условиях

Параметры блока питания

Самые главные параметры любого блока питания – это выходное напряжение и ток. Зависят их значения от одного – от используемого провода во вторичной обмотке трансформатора. О том, как провести выбор его, будет рассказано немного ниже. Для себя вы должны заранее решить, для каких целей планируется использовать блок питания 12 Вольт. Если необходимо запитывать маломощную аппаратуру – навигаторы, светодиоды, и прочее, то вполне достаточно на выходе 2-3 Ампер. И то этого будет много.

Но если вы планируете с его помощью осуществлять более серьезные действия – например, заряжать аккумуляторную батарею автомобиля, то потребуется на выходе 6-8 Ампер. Ток зарядки должен быть в десять раз меньше емкости АКБ – это требование обязательно учитывается. Если же возникает необходимость в подключении приборов, напряжение питания которых существенно отличается от 12 Вольт, то разумнее установить регулировку.

Схема блока питания

Схема блока питания в классическом исполнении включает: сетевой трансформатор, диодный мост, конденсаторный фильтр, стабилизатор и светодиод. Последний выполняет роль индикатора и подключается через токоограничивающий резистор.

Поскольку в данной схеме лимитирующим по тока элементов является стабилизатор LM7805 (допустимое значение 1 А), то все остальные компоненты должны быть рассчитаны на ток не менее 1 А. Поэтому и вторичная обмотка трансформатора выбирается на ток от одного ампера. Напряжение ее должно быть не ниже стабилизированного значения. А по хорошему его следует выбирать из таких соображений, что после выпрямления и сглаживания U должно быть на 2 – 3 В выше, чем стабилизированное, т.е. на вход стабилизатора следует подавать на пару вольт больше его выходного значения. Иначе он будет работать некорректно. Например, для LM7805 входное U = 7 – 8 В; для LM7805 → 15 В. Однако следует учитывать, что при слишком завышенном значении U, микросхема будет сильно нагреваться, поскольку «лишнее» напряжение гасится на ее внутреннем сопротивлении.

Диодный мост можно сделать из диодов типа 1N4007, или взять готовый на ток не менее 1 А.

Сглаживающий конденсатор C1 должен иметь большую емкость 100 – 1000 мкФ и U = 16 В.

Конденсаторы C2 и C3 предназначены для сглаживания высокочастотных пульсаций, которые возникают при работе LM7805. Они устанавливаются для большей надежности и носят рекомендательный характер от производителей стабилизаторов подобных типов. Без таких конденсаторов схема также нормально работает, но поскольку они практически ничего не стоят, то лучше их поставить.

Стабилизатор напряжения LM7805, LM7809, LM7812

Вы наверное замечали, что величина напряжения в розетке не равна 220 В, а изменяется в некоторых пределах. Особенно это ощутимо при подключении мощной нагрузки. Если не применять специальных мер, то оно и на выходе блока питания будет изменяться в пропорциональном диапазоне. Однако такие колебания крайне не желательны, а иногда и недопустимы для многих электронных элементов. Поэтому напряжение после конденсаторного фильтра подлежит обязательной стабилизации. В зависимости от параметров питаемого устройства применяются два варианта стабилизации. В первом случае используются стабилитрон, а во втором – интегральный стабилизатор напряжения. Рассмотрим применение последнего.

В радиолюбительской практике широкое применение получили стабилизаторы напряжения серии LM78xx и LM79xx. Две буквы указывают на производителя. Поэтому вместо LM могут быть и другие буквы, например CM. Маркировка состоит из четырех цифр. Первые две – 78 или 79 означают соответственно положительно или отрицательное напряжение. Две последние цифры, в данном случае вместо них два икса: хх, обозначают величину выходного U. Например, если на позиции двух иксов будет 12, то данный стабилизатор выдает 12 В; 08 – 8 В и т.д.

Для примера расшифруем следующие маркировки:

LM7805 → 5 В, положительное напряжение

LM7912 → 12 В, отрицательное U

Интегральные стабилизаторы имеют три вывода: вход, общий и выход; рассчитаны на ток 1А.

Если выходное U значительно превышает входное и при этом потребляется предельный ток 1 А, то стабилизатор сильно нагревается, поэтому его следует устанавливать на радиатор. Конструкция корпуса предусматривает такую возможность.

Если ток нагрузки гораздо ниже предельного, то можно и не устанавливать радиатор.

Схема диодного моста

Более совершенной является двухполупериодная схема выпрямления, когда используются и положительный, и отрицательный полупериод. Существует несколько разновидностей таких схем, но чаще всего используется мостовая. Схема диодного моста приведена на рис. 3в. На ней красная линия показывает, как протекает ток через нагрузку во время положительных, а синяя – отрицательных полупериодов.

Рисунок 4. Схема выпрямителя на 12 вольт с использованием диодного моста.

И первую, и вторую половину периода ток через нагрузку протекает в одном и том же направлении (рис. 3б). Количество пульсации в течение одной секунды не 50, как при однополупериодном выпрямлении, а 100. Соответственно, при той же емкости конденсатора фильтра эффект сглаживания будет более ярко выражен.

Как видно, для построения диодного моста необходимо 4 диода – VD1-VD4. Раньше диодные мосты на принципиальных схемах изображали именно так, как на рис. 3в. Ныне общепринятым считается изображение, показанное на рис. 3г. Хотя на ней только одно изображение диода, не следует забывать, что мост состоит из четырех диодов.

Мостовая схема чаще всего собирается из отдельных диодов, но иногда применяются и монолитные диодные сборки. Их проще монтировать на плате, но зато при выходе из строя одного плеча моста, заменяется вся сборка. Выбирают диоды, из которых монтируется мост, исходя из величины протекающего через них тока и величины допустимого обратного напряжения. Эти данные позволяет получить инструкция к диодам или справочники.

Полная схема выпрямителя на 12 вольт с использованием диодного моста приведена на рис. 4. Т1 – понижающий трансформатор, вторичная обмотка которого обеспечивает напряжение 10-12 В. Предохранитель FU1 – нелишняя деталь с точки зрения техники безопасности и пренебрегать им не стоит. Марка диодов VD1-VD4, как уже говорилось, определяется величиной тока, который будет потребляться от выпрямителя. Конденсатор С1 – электролитический, емкостью 1000,0 мкФ или выше на напряжение не ниже 16 В.

Напряжение на выходе – фиксированное, величина его зависит от нагрузки. Чем больше ток, тем меньше величина этого напряжения. Для получения регулируемого и стабильного выходного напряжения требуется более сложная схема. Получить регулируемое напряжение от схемы, приведенной на рис. 4 можно двумя способами:

Подавая на первичную обмотку трансформатора Т1 регулируемое напряжение, например, от ЛАТРа.
Сделав от вторичной обмотки трансформатора несколько отводов и поставив, соответственно, переключатель.

Остается надеяться, что описания и схемы, приведенные выше, окажут практическую помощь в сборке простого выпрямителя для практических нужд.

Выпрямитель напряжения 12 вольт своими руками. Диодный мост

Во многих электронных приборах, работающих при переменном токе в 220 вольт устанавливаются диодные мосты. Схема диодного моста на 12 вольт позволяет эффективно выполнять функцию по выпрямлению переменного тока. Это связано с тем, что для работы большинства приборов используется постоянный ток.

Как работает диодный мост

Переменный ток, имеющий определенную меняющуюся частоту, подается на входные контакты моста. На выходах с положительным и отрицательным значением образуется однополярный ток, обладающий повышенной пульсацией, значительно превышающей частоту тока, подаваемого на вход.

Поэтому необходимо немного изменить соединение. Однако этот выпрямительный модуль скрывает один обман

Обратите внимание на дроссели общественного освещения. Щелкните значок столбца

большой дроссель. Статьи о выпрямителях все равно будут так много! На этот раз мы публикуем ссылку и дизайн выпрямителя с так называемыми «Все статьи» в столбце: для просмотра всех статей в этом разделе. Но прежде он обратился к нам с этим письмом: Дополнительный выпрямитель для измельчителя траффика.

Это уже очень опасно. В результате коэффициент фильтрации обычно составляет 90%. Почему этот тип выпрямителя? Это устройство с дросселем, проходящим через весь сварочный ток. Может быть, еще немного. сварки легированных и различных материалов или тонких листов. Далее следует описание каждого компонента. молчит. так что г-н Томан попытался подготовить такое руководство. конечно, за счет мобильности. Согласно различным форумам, этот тип всегда заинтересован, и, к сожалению, ответы на эти вопросы иногда вводят в заблуждение.

Появляющиеся пульсации нужно обязательно убрать, иначе электронная схема не сможет нормально работать. Поэтому, в схеме присутствуют специальные фильтры, представляющие собой электролитические с большой емкостью.

Сама сборка моста состоит из четырех диодов с одинаковыми параметрами. Они соединены в общую схему и размещаются в общем корпусе.

Выпрямитель имеет значительно лучшие сварочные свойства. На следующем рисунке показана схема подключения выпрямителя. Этот тип выпрямителя предназначен в первую очередь для промышленной сферы и предполагается. что в интересах объективности было бы целесообразно опубликовать инструкции по строительству выпрямителя с реактором с полным дросселем. Выпрямитель 130А с «большим» дросселем. Необходимо использовать только неповрежденные держатели электродов и предписанные защитные перчатки. У устройства также есть одна неисправность: сварка создает пики напряжения с амплитудой в сотни вольт и энергией более 70 Дж.

Диодный мост имеет четыре вывода. К двум из них подключается переменное напряжение, а два остальных являются положительным и отрицательным выводом пульсирующего выпрямленного напряжения.

Выпрямительный мост в виде диодной сборки обладает существенными технологическими преимуществами. Таким образом, на печатную плату устанавливается сразу одна монолитная деталь. Во время эксплуатации, для всех диодов обеспечивается одинаковый тепловой режим. Стоимость общей сборки ниже четырех диодов в отдельности. Однако, данная деталь имеет серьезный недостаток. При выходе из строя хотя-бы одного диода, вся сборка подлежит замене. При желании, любая общая схема может быть заменена четырьмя отдельными деталями.

Это действительно отличный дизайн. Судите сами. что в некотором роде свойства коммерческих инверторов перевешивают. устойчиво и приятно эластично. таких как хардкорный ремонт, если не вашей собственной энергией. В некоторых отношениях сборка с высококачественными компонентами может опережать коммерческие инверторы. вследствие травмы или травмы. которые мы сейчас представляем читателям. Превосходные свойства сварки будут особенно выделяться в незначительной и конкретной работе. Все работы будут нановидными для более высокого класса тепла. для указанного поперечного сечения железа и индуктивности около 2-3 мГн составляет около 60, от этого зависит поперечное сечение обмотки. потому что алюминиевая обмотка с необходимым большим поперечным сечением просто не подходит для скелета.

Двухполупериодный выпрямитель, мостовая схема

Схема двухполупериодный выпрямитель мостовая схема

И наконец, рассмотрим схему мостового выпрямителя, самую распространенную схему, по которой сделана большая часть всех выпущенных трансформаторных блоков питания. Сейчас объясню принцип работы диодного моста:

Диодный мост рисунок

Ток у нас на выходе с трансформатора переменный, а переменный ток, как известно, в течение периода дважды меняет свое направление. Говоря другими словам, конечно же упрощенно, при переменном токе с частотой 50 герц, ток у нас 100 раз в секунду меняет свое направление. То есть сначала он течет от вывода диодного моста под цифрой один, ко второму, потом в течение другой полуволны он течет от вывода под номером два к первому.

Объяснение работы диодного моста

Рассмотрим, что происходит с диодным мостом при подаче напряжения, мы видим, на рисунке обозначен красным путь тока, напрямую пройти к выводу диодного моста соединенного с переменным током не позволит диод, который получается у нас включенный в обратном включении, а в обратном включении, как мы помним, диоды не пропускают ток. Току остается только один путь (выделено на рисунке синим), через нагрузку и через диод уйти в провод соединенный с выводом переменного тока. Когда у нас ток меняет свое направление, то вступает в действие вторая часть диодного моста, которая действует аналогично той, что описал выше. В итоге у нас получается на выходе такой же график напряжения, как и у двухполупериодного выпрямителя со средней точкой:

График мостого выпрямителя

При сборке выпрямителя нужно учитывать полярность на выходе диодного моста, если мы подключим электролитический конденсатор неправильно, то рискуем испортить конденсатор и можно считать, что повезло, если этим все ограничится

Поэтому при сборке диодного моста важно помнить одно правило, плюс на выходе с моста всегда будет в точке соединения 2 катодов диодов, а минус в точке соединения анодов. Встречается и такое обозначение на схемах диодного моста:

Еще одно изображение диодного моста

Диодный мост можно собрать как из отдельных диодов, так и взять специальную сборку из 4 диодов, уже соединенных по мостовой схеме, и имеющий 4 вывода. В таком случае остается только подать переменный ток, идущий обычно с вторичной обмотки трансформатора на два вывода моста, а с оставшихся двух выводов снимать плюс и минус. Обычно на самой детали бывает обозначено, где какой вывод у моста. Так выглядит импортный диодный мост:

Фото импортного диодного моста

На фото далее изображен отечественный диодный мост КЦ405.

Фото диодный мост кц405

Схема выпрямителя тока на 12 вольт

Далее решил не усложнять дело всякими хитроумными зарядными на микросхемах, а собрать простой и надежный выпрямитель на диодах. Взял диоды Д242. Они очень надежные, но немного греются, следует установить на радиаторы.

Спаял по стандартной схеме диодного моста. Подключил — все отлично работало, на выходе теперь было 13.7В. Как и должно быть, немного увеличилось напряжение после выпрямления. Но ничего страшного. Для аккумуляторов ведь надо не строго 12, а примерно 14 вольт для нормального заряда.

Все аккуратно вместил в новый корпус. Сделал выход на выпрямитель. Подключаю и с удовольствием пользуюсь. Сделал еще индикатор наличия электроэнергии — просто подключил к сети 220В обычный светодиод через резистор. Получился простой и надёжный выпрямитель для ЗУ на 12 вольт .

Блок питания достаточно прост в изготовлении, если немножко разобраться с теоретической частью и понять, как он работает. Все не так сложно, как кажется. Из чего состоит блок питания на 12 вольт, с фото и примерами, а также описание его элементов и принцип работы – далее в статье.

Краткое содержимое статьи:

Стабилизация напряжения

После изготовления трансформатора обязательно проведите замер напряжения на выводах его вторичной обмотки. Если оно превышает значение 12 Вольт, то необходимо провести стабилизацию. Даже самый простой блок питания 12В плохо будет работать без этого. Следует учесть, что в питающей сети величина напряжения непостоянна. Подключите вольтметр к розетке и проведите замеры в разное время. Так, например, днем оно может подскочить до 240 Вольт, а вечером опуститься даже до 180. Все зависит от нагрузки на линию электропередач.

Если у вас в первичной обмотке трансформатора изменяется напряжение, то оно будет нестабильно и во вторичной. Чтобы компенсировать это, нужно применить устройства, называемые стабилизаторами напряжения. В нашем случае можно использовать стабилитроны с подходящей величиной параметров (тока и напряжения). Стабилитронов множество, подберите необходимые элементы до того, как делать 12В блок питания.

Существуют и более «продвинутые» элементы (типа КР142ЕН12), которые представляют собой комплект из нескольких стабилитронов и пассивных элементов. Их характеристики намного лучше. Также встречаются и зарубежные аналоги подобных устройств. Необходимо познакомиться с этими элементами до того, как сделать 12В блок питания вы решите самостоятельно.

Особенности импульсных блоков питания

Блоки питания такого типа нашли широкое применение в персональных компьютерах. У них на выходе имеется два значения напряжения: 12 Вольт — для питания приводов дисководов, 5 Вольт — для функционирования микропроцессоров и иных устройств. Отличие от простых блоков питания состоит в том, что на выходе сигнал не постоянный, а импульсный – по форме похож на прямоугольники. В первый период времени сигнал появляется, во второй он равен нулю.

Также имеются отличия и в схеме устройства. Для нормального функционирования самодельный импульсный блок питания нуждается в выпрямлении сетевого напряжения без предварительного понижения его значения (на входе отсутствует трансформатор). Использовать импульсные блоки питания можно как самостоятельные устройства, так и их модернизированные аналоги – аккумуляторные батареи. В итоге можно получить простейший бесперебойник, причем его мощность будет зависеть от параметров блока питания и типа используемых батарей.

Как правильно рассчитать число витков

При перемотке вторичной катушки, нужно знать, какому напряжению соответствует виток. Если перематывать первичную обмотку не планируется, нет нужды рассчитывать ни сечение провода, ни его свойства. Проблема с первичной обмоткой заключается в большом количестве витков тонкой проволоки, из которой он состоит.

Для расчета вторичной обмотки, делают 10 витков и подключают трансформатор в сеть. Измеряют напряжение на выводах, после чего делят его на 10, после чего 12 делится на полученное число.  Результат и будет необходимым количеством витков, причем рекомендуется увеличить его на 10% для компенсации падения напряжения.

Процесс сборки блока питания

У вас есть в наличии светодиодная лента, расчет блока питания произведен и подобраны элементы, теперь можно приступить к сборке. Допускается использование как печатного, так и навесного монтажа.

Конечно, на печатной плате вся конструкция будет смотреться намного привлекательнее. Процесс изготовления выглядит таким образом:

  1. Соединяются диоды между собой по мостовой схеме. Обязательно соблюдайте полярность, на всех диодах со стороны полоски на корпусе находится анод (положительный вывод).
  2. Подключаете к диодному мосту вторичную обмотку трансформатора.
  3. К выходу моста нужно подключить электролитический конденсатор. При соединении нужно соблюдать полярность! Иначе конденсатор может взорваться!
  4. В разрыв плюсового вывода включается дроссель.
  5. Далее, между плюсом и минусом включается стабилитрон. После него также желательно установить еще один конденсатор.

В завершение все устройство собирается в один корпус, элементы надежно закрепляются и делается два отвода. Красным проводом нужно обозначить плюсовой вывод, черным или синим минусовой. На этом изготовление блока питания для светодиодных лент 12 Вольт завершено, можно пользоваться устройством.

Изготовление печатной платы

Подготовьте фольгированный текстолит, для этого обработайте металлический слой раствором соляной кислоты. Если такового нет, то можно использовать электролит, заливаемый в аккумуляторные батареи автомобилей. Эта процедура позволит обезжирить поверхность. Работайте в резиновых перчатках, чтобы исключить попадание растворов на кожу, ведь можно получить сильнейший ожог. После этого промойте водой с добавлением соды (можно мыла, чтобы нейтрализовать кислоту). И можно наносить рисунок печатной платы.

Сделать рисунок можно как с помощью специальной программы для компьютеров, так и вручную. Если вы изготовляете обычный блок питания 12В 2А, а не импульсный, то количество элементов минимально. Тогда при нанесении рисунка можно обойтись без программ для моделирования, достаточно нанести его на поверхность фольги перманентным маркером. Желательно сделать два-три слоя, дав предыдущему высохнуть. Неплохие результаты может дать применение лака (например, для ногтей). Правда, рисунок может выйти неровным из-за кисти.

Компоненты блока питания

Основной элемент любого блока питания – это понижающий трансформатор. При его помощи происходит снижение напряжения в сети (220 Вольт) до 12 В. В конструкциях, рассмотренных ниже, можно использовать как самодельные трансформаторы с перемотанной вторичной обмоткой, так и готовые изделия, без модернизации. Нужно только учитывать все особенности и проводить правильный расчет сечения провода и количества витков.

Второй элемент по важности – это выпрямитель. Изготовляется он из одного, двух либо четырех полупроводниковых диодов

Все зависит от типа схемы, по которой собирается самодельный блок питания. Например, для реализации удвоения напряжения нужно использовать два полупроводника. Для выпрямления без увеличения достаточно одного, но лучше применить мостовую схему (все пульсации тока сглаживаются). После выпрямителя обязательно наличие электролитического конденсатора. Желательна установка стабилитрона с подходящими параметрами, он позволяет на выходе сделать стабильное напряжение.

Схема выпрямителя тока на 12 вольт

Далее решил не усложнять дело всякими хитроумными зарядными на микросхемах, а собрать простой и надежный выпрямитель на диодах. Взял диоды Д242. Они очень надежные, но немного греются, следует установить на радиаторы.

Спаял по стандартной схеме диодного моста. Подключил — все отлично работало, на выходе теперь было 13.7В. Как и должно быть, немного увеличилось напряжение после выпрямления. Но ничего страшного. Для аккумуляторов ведь надо не строго 12, а примерно 14 вольт для нормального заряда.

Все аккуратно вместил в новый корпус. Сделал выход на выпрямитель. Подключаю и с удовольствием пользуюсь. Сделал еще индикатор наличия электроэнергии — просто подключил к сети 220В обычный светодиод через резистор. Получился простой и надёжный выпрямитель для ЗУ на 12 вольт .

Как самому собрать простой блок питания и мощный источник напряжения. Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории. Блок питания 12в Каждый, кто захочет сможет изготовить 12 – ти вольтовый блок самостоятельно, без особых затруднений. Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник . Шаг 1: Какие детали необходимы для сборки блока питания . Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок . -Монтажная плата. -Четыре диода 1N4001, или подобные. Мост диодный. -Стабилизатор напряжения LM7812. -Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В – 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе. -Электролитический конденсатор емкостью 1000мкФ – 4700мкФ. -Конденсатор емкостью 1uF. -Два конденсатора емкостью 100nF. -Обрезки монтажного провода. -Радиатор, при необходимости. Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы. Шаг 2: Инструменты . Для изготовления блока необходимы инструменты для монтажа: -Паяльник или паяльная станция -Кусачки -Монтажный пинцет -Кусачки для зачистки проводов -Устройство для отсоса припоя. -Отвертка. И другие инструменты, которые могут оказаться полезными. Шаг 3: Схема и другие . Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805. Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева. Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным. Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

Как произвести расчет трансформатора

Допустим, вы решили намотать вторичную обмотку трансформатора самостоятельно. Для этого вам надо будет узнать величину главного параметра – напряжения, которое можно будет снять с одного витка. Это самый простой способ, которым можно воспользоваться при изготовлении трансформатора. Намного сложнее вычислить все параметры, если требуется намотка не только вторичной, но и первичной обмотки. Необходимо для этого знать сечение магнитопровода, его проницаемость и свойства. Если рассчитывать блок питания 12В 5А самому, то этот вариант получается более точным, нежели подстраиваться под готовые параметры.

Первичную обмотку наматывать сложнее, чем вторичную, так как в ней может быть несколько тысяч витков тонкого провода. Можно упростить задачу и самодельный блок питания изготовить при помощи специального станка.

Чтобы рассчитать вторичную обмотку, нужно намотать 10 витков тем проводом, который планируете использовать. Соберите трансформатор и, соблюдая технику безопасности, подключите его первичную обмотку к сети. Проведите замер напряжения на выводах вторичной обмотки, полученное значение разделите на 10. Теперь число 12 разделите на полученное значение. И получаете количество витков, необходимое для вырабатывания 12 Вольт. Можно добавить немного, чтобы компенсировать падение напряжения (достаточно увеличить на 10%).

Оцените статью:

Стабилизатор тока для светодиодов своими руками

Автор: Виктор

В настоящее время трудно представить тюнинг автомобиля без светодиодных ламп. Но порой их установка осложнена тем, что они перегорают. Чтобы избежать этой ситуации, в сеть можно включить стабилизатор тока для светодиодов своими руками. В статье приводятся примеры микросхем, по которым можно его сделать.

Содержание

Открытьполное содержание

[ Скрыть]

Схемы стабилизаторов и регуляторов тока

Всем известно, что светодиодным лампочкам необходимо питание двенадцать вольт. В сети авто это значение может доходить до 15 В. Светодиодные элементы очень чувствительны, на них такие скачки отражаются отрицательно. Светодиодные лампы могут перегореть либо некачественно светить (мигать, терять яркость и т.д.).

Чтобы светодиоды служили дольше, в электросеть автомобиля включаются драйвера (резисторы). При нестабильности в сети устанавливаются устройства, которые поддерживают постоянное значение. Существует несколько простых микросхем, по которым можно сделать стабилизатор напряжения своими руками. Все компоненты, входящие в цепь, можно приобрести в специализированных магазинах. Обладая начальными знаниями по электротехнике сделать приборы будет несложно.

На КРЕНке

Для того, чтобы сконструировать простейший стабилизатор напряжения 12 вольт своими руками, понадобится микросхема с потреблением 12 В. В этом случае подойдет регулируемый стабилизатор напряжения 12 В LM317. Он может функционировать в электросети, где входной параметр составляет до 40 В. Чтобы прибор стабильно работал, необходимого обеспечивать охлаждение.

Крены для микросхем

Стабилизатор тока на LM317требует для работы небольшой ток до 8 мА, и данное значение обычно остается неизменным, даже при большом токе, протекающем через крен LM317, или при изменении входного значения. Это реализуется с помощью компоненты R3.

Можно применять элемент R2, но пределы при этом будут небольшими. При неизменном сопротивлении LM317 ток, идущий через прибор, будет также стабильным (автор видео — Создано в Гараже).

Входное значение для кренки LM317 может составлять до 8 мА и выше. Пользуясь этой микросхемой, можно придумать стабилизатор тока для ДХО. Это устройство может выступать нагрузкой в бортовой сети или источником электричества при подзарядке аккумуляторной батареи. Сделать простой стабилизатор напряжения LM317 не составляет труда.

На двух транзисторах

На сегодняшний момент пользуются популярностью стабилизирующие устройства для бортовой сети машины на 12 В, разработанные с использованием двух транзисторов. Данную микросхему используют как стабилизатор напряжения для ДХО.

Резистор R2 является токораздающим элементом. При возрастании тока в сети увеличивается напряжение. Если оно достигает значения от 0,5 до 0,6 В, открывается элемент VT1. Открытие компонента VT1 закрывает элемент VT2. В итоге, ток, проходящий через VT2, начинает снижаться. Можно вместе с VT2 применять полевой транзистор Мосфет.

Элемент VD1 включается в цепь, когда значения находится в пределах от 8 до 15 В и настолько велики, что транзистор может выйти из строя. При мощном транзисторе допустимы показания в бортовой сети около 20 В. Не стоит забывать о том, что транзистор Мосфет откроется, если показания на затворе будут 2 В.

Если применять универсальный выпрямитель как зарядку для АКБ или других задач, то достаточно использовать резистора R1 и транзистор.

На операционном усилителе (на ОУ)

Стабилизатор напряжения для светодиодов на основе ОУ собирается при необходимости создания устройства, которое будет работать в расширенном диапазоне. В рассматриваемом случае в качестве элемента, который будет задавать выпрямляемый ток, является R7. С помощью операционного усилителя DA2.2 можно увеличить уровень напряжения в токозадающем компоненте. Задачей компонента DA 2.1 является контроль опорного напряжения.

При создании схемы следует учесть, что она рассчитана на 3А, поэтому необходим больший ток, который должен поступать на разъем ХР2. Кроме того, следует обеспечивать работоспособность всех составляющих данного устройства.

Сделанный стабилизирующий прибор для автомобиля должен иметь генератор, роль которого выполняет REF198. Чтобы правильно настроить прибор, ползунок резистора R1 нужно установить в верхнее положение, а резистором R3 задавать необходимое значение выпрямленного тока 3А. Для погашения возможных возбуждений, используются элементы R,2 R4 и C2.

На микросхеме импульсного стабилизатора

Если выпрямитель для автомобиля должен обеспечивать высокий КПД в сети, целесообразно использовать импульсные компоненты, создавая импульсный стабилизатор напряжения. Популярной является схема МАХ771.

Схема выпрямителя с импульсным выпрямителем

Импульсный стабилизатор тока характеризуется выходной мощностью 15 Вт. Элементы R1 и R2 делят показатели схемы на выходе. Если делимое напряжение превышает по показателям опорное, выпрямитель автоматически уменьшает выходное значение. В противном случае устройство будет увеличивать выходной параметр.

Сборка данного устройства целесообразна, если уровень превышает 16 В. Компоненты R3 являются токовыми. Для устранения высокого падения нагрузки на данном резисторе в схему следует включить ОУ.

Заключение

Нами были рассмотрены стабилизаторы напряжения на различных компонентах. Эти схемы можно усложнять, повышая быстродействие, улучшая другие показатели. Можно использовать готовые микросхемы, которые всегда можно усовершенствовать своими руками, создавая устройства, предназначенные для выполнения конкретных задач.

Фотогалерея «Микросхемы для самодельных выпрямителей»

1. Прибор на КРЕНке
2. На двух транзисторах
3. С операционным усилителем

Разработка микросхем для светодиодов в авто – трудоемкое и сложное дело, которое требует специальных знаний и опыта. При их отсутствии трудно будет достичь необходимого результата.

Но опыт можно приобрести, внимательно собирая несложный стабилизатор тока для светодиодов согласно приведенным схемам. Его можно использовать для дневных ходовых огней в своем автомобиле с установленными светодиодными лампами.

 Загрузка …

Видео «Выпрямитель для светодиодов своими руками»

Видео о том, как изготовить устройство, которое защитит светодиоды от перегорания (автор ролика — Яков TANK_OFF).

Схема выпрямителя 12 вольт после трансформатора

Какие бывают выпрямители?

Ещё в начале ХХ века имел место очень принципиальный спор между корифеями электротехники. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всём мире и успешно эксплуатируется до сих пор.

Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод.

Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель.

Однополупериодный выпрямитель.

Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Вот схема.

Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.

Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети – 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 – 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц). На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.

Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.

К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

Двухполупериодные выпрямители.

Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.

Далее на рисунке показана типовая схема двухполупериодного выпрямителя со средней точкой.

Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.

Как видим, на выходе выпрямителя уже в два раза меньше «провалов» напряжения – тех самых пульсаций.

Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК. Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов – общий (как правило катод). По виду сдвоенный диод очень похож на транзистор.

Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема. Взгляните.

Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.

О данной схеме уже рассказывалось на странице про диодный мост. Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage dropVF). Для обычных выпрямительных диодов оно может быть 1 – 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x VF, т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.

Большой интерес вызывает выпрямитель с удвоением напряжения.

Выпрямитель с удвоением напряжения.

Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочерёдном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)

Стоит отметить, что данная схема применяется в блоках питания нечасто. Но её можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора. Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придётся наматывать вторичную обмотку с вдвое большим числом витков). Так что, если не удалось найти подходящий трансформатор – смело применяем данную схему.

Развитием схемы стало создание умножителя на полупроводниковых диодах.

Умножитель напряжения.

Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.

На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.

Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение, как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.

Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.

Трёхфазные выпрямители.

Устройства, которые используются для получения постоянного тока из переменного трёхфазного тока, называются трёхфазными выпрямителями. Трёхфазные выпрямители в бытовой технике, конечно, не используются. Единственный прибор, который может использоваться в быту это сварочный аппарат. В качестве трёхфазных выпрямителей используются наработки двух известных электротехников Миткевича и Ларионова. Самая простая схема Миткевича называется «три четверти моста параллельно», что означает три силовых диода включенных параллельно через вторичные обмотки трёхфазного трансформатора. Схема.

Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой ёмкости и малых габаритов.

Более сложной является схема Ларионова, которая называется «три полумоста параллельно», что это такое хорошо видно из рисунка.

В схеме используется уже шесть диодов и немного другая схема включения. Вообще схем трёхфазных выпрямителей достаточно много и наиболее совершенной, хотя редко употребляемой является схема «шесть мостов параллельно», а это уже 24 диода! Зато эта схема может выдавать высокое напряжение при большой мощности.

Трёхфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трёхфазные выпрямители.

Теперь вы знаете, какие бывают выпрямители переменного тока и сможете легко обнаружить их на принципиальной схеме или печатной плате любого прибора. А для тех, кто хочет знать больше, рекомендуем ознакомиться с книгой «Полупроводниковые выпрямители».

Итак, дорогие мои, мы собрали нашу схемку и пришло время ее проверить, испытать и нарадоваться сему счастью. На очереди у нас – подключение схемы к источнику питания. Приступим. На батарейках, аккумуляторах и прочих прибамбасах питания мы останавливаться не будем, перейдем сразу к сетевым источникам питания. Здесь рассмотрим существующие схемы выпрямления, как они работают и что умеют. Для опытов нам потребуется однофазное (дома из розетки) напряжение и соответствующие детальки. Трехфазные выпрямители используются в промышленности, мы их рассматривать также не будем. Вот электриками вырастете – тогда пожалуйста.

Источник питания состоит из нескольких самых важных деталей: Сетевой трансформатор – на схеме обозначается похожим как на рисунке,

Выпрямитель – его обозначение может быть различным. Выпрямитель состоит из одного, двух или четырех диодов, смотря какой выпрямитель. Сейчас будем разбираться.

а) – простой диод.
б) – диодный мост. Состоит из четырех диодов, включенных как на рисунке.
в) – тот же диодный мост, только для краткости нарисован попроще. Назначения контактов такие же, как у моста под буквой б).

Конденсатор фильтра. Эта штука неизменна и во времени, и в пространстве, обозначается так:

Обозначений у конденсатора много, столько же, сколько в мире систем обозначений. Но в общем они все похожи. Не запутаемся. И для понятности нарисуем нагрузку, обозначим ее как Rl – сопротивление нагрузки. Это и есть наша схема. Также будем обрисовывать контакты источника питания, к которым эту нагрузку мы будем подключать.

Далее – пара-тройка постулатов.
– Выходное напряжение определяется как Uпост = U*1.41. То есть если на обмотке мы имеем 10вольт переменного напряжения, то на конденсаторе и на нагрузке мы получим 14,1В. Примерно так.
– Под нагрузкой напряжение немного проседает, а насколько – зависит от конструкции трансформатора, его мощности и емкости конденсатора.
– Выпрямительные диоды должны быть на ток в 1,5-2 раза больше необходимого. Для запаса. Если диод предназначен для установки на радиатор (с гайкой или отверстие под болт), то на токе более 2-3А его нужно ставить на радиатор.

Так же напомню, что же такое двуполярное напряжение. Если кто-то подзабыл. Берем две батарейки и соединяем их последовательно. Среднюю точку, то есть точку соединения батареек, назовем общей точкой. В народе она известна так же как масса, земля, корпус, общий провод. Буржуи ее называют GND (ground – земля), часто ее обозначают как 0V (ноль вольт). К этому проводу подключаются вольтметры и осциллографы, относительно нее на схемы подаются входные сигналы и снимаются выходные. Потому и название ее – общий провод. Так вот, если подключим тестер черным проводом в эту точку и будем мерить напряжение на батарейках, то на одной батарейке тестер покажет плюс1,5вольта, а на другой – минус1,5вольта. Вот это напряжение +/-1,5В и называется двуполярным. Обе полярности, то есть и плюс, и минус, обязательно должны быть равными. То есть +/-12, +/-36В, +/-50 и т.д. Признак двуполярного напряжения – если от схемы к блоку питания идут три провода (плюс, общий, минус). Но не всегда так – если мы видим, что схема питается напряжением +12 и -5, то такое питание называется двухуровневым, но проводов к блоку питания будет все равно три. Ну и если на схему идут целых четыре напряжения, например +/-15 и +/-36, то это питание назовем просто – двуполярным двухуровневым.

Ну а теперь к делу.

1. Мостовая схема выпрямления.
Самая распространенная схема. Позволяет получить однополярное напряжение с одной обмотки трансформатора. Схема обладает минимальными пульсациями напряжения и несложная в конструкции.

2. Однополупериодная схема.
Так же, как и мостовая, готовит нам однополярное напряжение с одной обмотки трансформатора. Разница лишь в том, что у этой схемы удвоенные пульсации по сравнению с мостовой, но один диод вместо четырех сильно упрощает схему. Используется при небольших токах нагрузки, и только с трансформатором, намного большим мощности нагрузки, т.к. такой выпрямитель вызывает одностороннее перемагничивание трансформатора.

3. Двухполупериодная со средней точкой.
Два диода и две обмотки (или одна обмотка со средней точкой) будут питать нас малопульсирующим напряжением, плюс ко всему мы получим меньшие потери в сравнении с мостовой схемой, потому что у нас 2 диода вместо четырех.

4. Мостовая схема двуполярного выпрямителя.
Для многих – наболевшая тема. У нас есть две обмотки (или одна со средней точкой), мы с них снимаем два одинаковых напряжения. Они будут равны, пульсации будут малыми, так как схема мостовая, напряжения на каждом конденсаторе считается как напряжение на каждой обмотке помножить на корень из двух – всё, как обычно. Провод от средней точки обмоток выравнивает напряжения на конденсаторах, если нагрузки по плюсу и по минусу будут разными.

5. Схема с удвоением напряжения.
Это две однополупериодные схемы, но с диодами, включенными по разному. Применяется, если нам надо получить удвоенное напряжение. Напряжение на каждом конденсаторе будет определяться по нашей формуле, а суммарное напряжение на них будет удвоенным. Как и у однополупериодной схемы, у этой так же большие пульсации. В ней можно усмотреть двуполярный выход – если среднюю точку конденсаторов назвать землей, то получается как в случае с батарейками, присмотритесь. Но много мощности с такой схемы не снять.

6. Получение разнополярного напряжения из двух выпрямителей.
Совсем не обязательно, чтобы это были одинаковые блоки питания – они могут быть как разными по напряжению, так и разными по мощности. Например, если наша схема по +12вольтам потребляет 1А, а по -5вольтам – 0,5А, то нам и нужны два блока питания – +12В 1А и -5В 0,5А. Так же можно соединить два одинаковых выпрямителя, чтобы получить двуполярное напряжение, например, для питания усилителя.

7. Параллельное соединение одинаковых выпрямителей.
Оно нам дает то же самое напряжение, только с удвоенным током. Если мы соединим два выпрямителя, то у нас будет двойное увеличение тока, три – тройное и т.д.

Ну а если вам, дорогие мои, всё понятно, то задам, пожалуй, домашнее задание. Формула для расчета емкости конденсатора фильтра для двухполупериодного выпрямителя:

Для однополупериодного выпрямителя формула несколько отличается:

Двойка в знаменателе – число «тактов» выпрямления. Для трехфазного выпрямителя в знаменателе будет стоять тройка.

Во всех формулах переменные обзываются так:
Cф – емкость конденсатора фильтра, мкФ
Ро – выходная мощность, Вт
U – выходное выпрямленное напряжение, В
f – частота переменного напряжения, Гц
dU – размах пульсаций, В

Для справки – допустимые пульсации:
Микрофонные усилители – 0,001. 0,01%
Цифровая техника – пульсации 0,1. 1%
Усилители мощности – пульсации нагруженного блока питания 1. 10% в зависимости от качества усилителя.

Эти две формулы справедливы для выпрямителей напряжения частотой до 30кГц. На бОльших частотах электролитические конденсаторы теряют свою эффективность, и выпрямитель рассчитывается немного не так. Но это уже другая тема.

Блок питания 12 Вольт позволит осуществить питание практически любой бытовой техники, включая даже ноутбук. Обратите внимание на то, что на вход ноутбука подается напряжение до 19 Вольт. Но он прекрасно будет работать, если провести запитку от 12. Правда, максимальный ток составляет 10 Ампер. Только до такого значения потребление доходит очень редко, среднее держится на уровне 2-4 Ампер. Единственное, что следует учесть – при замене стандартного источника питания на самодельный использовать встроенную батарею не получится. Но все равно блок питания на 12 вольт идеально подходит даже для такого устройства.

Параметры блока питания

Самые главные параметры любого блока питания – это выходное напряжение и ток. Зависят их значения от одного – от используемого провода во вторичной обмотке трансформатора. О том, как провести выбор его, будет рассказано немного ниже. Для себя вы должны заранее решить, для каких целей планируется использовать блок питания 12 Вольт. Если необходимо запитывать маломощную аппаратуру – навигаторы, светодиоды, и прочее, то вполне достаточно на выходе 2-3 Ампер. И то этого будет много.

Но если вы планируете с его помощью осуществлять более серьезные действия – например, заряжать аккумуляторную батарею автомобиля, то потребуется на выходе 6-8 Ампер. Ток зарядки должен быть в десять раз меньше емкости АКБ – это требование обязательно учитывается. Если же возникает необходимость в подключении приборов, напряжение питания которых существенно отличается от 12 Вольт, то разумнее установить регулировку.

Как выбрать трансформатор

Первый элемент – это преобразователь напряжения. Трансформатор способствует преобразованию переменного напряжения 220 Вольт в такое же по амплитуде, только со значением, намного меньше. По крайней мере, вам нужно меньшее значение. Для мощных блоков питания за основу можно взять трансформатор типа ТС-270. У него высокая мощность, даже имеются 4 обмотки, которые выдают по 6,3 Вольт каждая. Они использовались для питания накала радиоламп. Без особого труда из него можно сделать блок питания 12 Вольт 12 Ампер, который сможет даже АКБ автомобиля заряжать.

Но если вас полностью не устраивают его обмотки, то можно вторичные все убрать, оставить только сетевую. И провести намотку провода. Проблема в том, как посчитать необходимое количество витков. Для этого можно воспользоваться простой схемой вычисления – посчитайте, сколько витков содержит вторичная обмотка, которая выдает 6,3 Вольт. Теперь просто разделите 6,3 на число витков. И вы получите величину напряжения, которое можно снять с одного витка провода. Осталось только высчитать, сколько нужно намотать витков, чтобы на выходе получить 12,5-13 Вольт. Будет даже лучше, если на выходе окажется на 1-2 Вольт напряжение выше требуемого.

Изготовление выпрямителя

Что такое выпрямитель и для чего он нужен? Это устройство на полупроводниковых диодах, которое является преобразователем. С его помощью переменный ток превращается в постоянный. Для анализа работы выпрямительного каскада нагляднее использовать осциллограф. Если на перед диодами вы увидите синусоиду, то после них окажется практически ровная линия. Но мелкие куски от синусоиды все равно останутся. От них избавитесь после.

К выбору диодов стоит отнестись с максимальной серьезностью. Если блок питания на 12 Вольт будет использоваться в качестве зарядчика аккумулятора, то потребуется использовать элементы, у которых величина обратного тока до 10 Ампер. Если же намерены осуществлять питание слаботочных потребителей, то вполне достаточно окажется мостовой сборки. Вот тут стоит остановиться. Предпочтение стоит отдавать схеме выпрямителя, собранного по типу мост – из четырех диодов. Если применить на одном полупроводнике (однополупериодная схема), то КПД блока питания уменьшается практически вдвое.

Блок фильтров

Теперь, когда на выходе имеется постоянное напряжение, то необходимо, чтобы схема блока питания на 12 Вольт была немного усовершенствована. Для этой цели нужно использовать фильтры. Для питания бытовой техники достаточно применить LC-цепочку. О ней стоит рассказать более подробно. К плюсовому выходу выпрямительного каскада подключается индуктивность – дроссель. Ток должен проходить через него, это первая ступень фильтрации. Далее идет вторая – электролитический конденсатор с большой емкостью (несколько тысяч микрофарад).

После дросселя к плюсу подключается электролитический конденсатор. Второй его вывод соединяется с общим проводом (минусом). Суть работы электролитического конденсатора в том, что он позволяет избавиться от всей переменной составляющей тока. Помните, на выходе выпрямителя оставались небольшие кусочки синусоиды? Вот, именно от нее нужно избавиться, иначе блок питания 12 Вольт 12 Ампер будет создавать помеху для устройства, подключаемого к нему. Например, магнитола или радиоприемник будет издавать сильный гул.

Стабилизация напряжения на выходе

Для осуществления стабилизации выходного напряжения можно воспользоваться одним всего полупроводниковым элементом. Это может быть как стабилитрон с напряжением рабочим 12 Вольт, так и более современные и совершенные сборки типа LM317, LM7812. Последние рассчитаны на стабилизацию напряжения на уровне 12 Вольт. Следовательно, даже при условии, что на выходе выпрямительного каскада 15 Вольт, после стабилизации останется всего 12. Все остальное уходит в тепло. А это значит, что крайне важно устанавливать стабилизатор на радиатор.

Регулировка напряжения 0-12 Вольт

Для большей универсальности прибора стоит воспользоваться несложной схемой, которую можно соорудить за несколько минут. Такое можно воплотить при помощи ранее упомянутой сборки LM317. Только отличие от схемы включения в режиме стабилизации будет небольшое. В разрыв провода, который идет на минус, включается переменный резистор 5 кОм. Между выходом сборки и переменным резистором включено сопротивление около 220 Ом. А между входом и выходом стабилизатора защита от обратного напряжения – полупроводниковый диод. Таким образом, блок питания 12 Вольт, своими руками собранный, превращается в многофункциональное устройство. Теперь остается только произвести сборку его и градуировку шкалы. А можно и вовсе на выходе поставить электронный вольтметр, по которому и смотреть текущее значение напряжения.

Цепь выпрямителя / фильтра

| Дискретные полупроводниковые схемы

ДЕТАЛИ И МАТЕРИАЛЫ

  • Блок питания переменного тока низкого напряжения
  • Блок мостового выпрямителя (каталожный номер Radio Shack 276-1185 или аналог)
  • Электролитический конденсатор, 1000 мкФ, не менее 25 Вт постоянного тока (каталог Radio Shack № 272-1047 или аналог)
  • Четыре клеммы типа «банан» или другое оконечное оборудование для подключения к цепи потенциометра (каталог Radio Shack № 274-662 или аналог)
  • Металлический ящик
  • Лампочка 12 В, 25 Вт
  • Патрон лампы

ПРИМЕЧАНИЯ К ДЕТАЛЯМ И МАТЕРИАЛАМ

«Блок» мостового выпрямителя настоятельно рекомендуется вместо построения схемы мостового выпрямителя из отдельных диодов, потому что такие «блоки» крепятся болтами к металлическому радиатору.Рекомендуется использовать металлический ящик вместо пластикового, поскольку он может служить радиатором для выпрямителя.

В этом эксперименте можно использовать конденсатор большей емкости, если его рабочее напряжение достаточно высокое. На всякий случай выберите конденсатор с номинальным рабочим напряжением, по крайней мере, в два раза превышающим выходное среднеквадратичное значение переменного напряжения низковольтного источника переменного тока.

Мощные 12-вольтовые лампы можно приобрести в магазине транспортных средств для отдыха или лодок. Обычные размеры — 25 Вт и 50 Вт.Эта лампа будет использоваться в качестве «тяжелой» нагрузки для блока питания.

ССЫЛКИ

Уроки электрических цепей , том 2, глава 8: «Фильтры»

ЦЕЛИ ОБУЧЕНИЯ

  • Функция емкостного фильтра в источниках питания переменного / постоянного тока
  • Значение радиаторов для силовых полупроводников

СХЕМА

ИЛЛЮСТРАЦИЯ

ИНСТРУКЦИЯ

Этот эксперимент включает создание схемы выпрямителя и фильтра для подключения к ранее построенному низковольтному источнику переменного тока.С этим устройством у вас будет источник низкого напряжения постоянного тока, подходящий для замены батареи в экспериментах с батарейным питанием.

Если вы хотите сделать это устройство своим собственным автономным источником питания 120 В переменного / постоянного тока, вы можете добавить все компоненты низковольтного источника переменного тока к стороне «вход переменного тока» этой схемы: трансформатор, шнур питания. , и подключите. Даже если вы этого не сделаете, я рекомендую использовать металлический ящик большего размера, чем необходимо, чтобы обеспечить место для дополнительных схем регулирования напряжения, которые вы можете добавить в этот проект позже.

СОЗДАНИЕ ДЕТАЛИ ВЫПРЯМИТЕЛЯ

Мостовой выпрямитель должен быть рассчитан на ток, по крайней мере, такой, на который рассчитана вторичная обмотка трансформатора, и на напряжение, по крайней мере, в два раза превышающее среднеквадратичное напряжение на выходе трансформатора (это позволяет получить пиковое напряжение, а также дополнительный запас прочности). Выпрямитель Radio Shack, указанный в списке деталей, рассчитан на 25 ампер и 50 вольт, что более чем достаточно для выхода низковольтного источника питания переменного тока, указанного в главе «Эксперименты с переменным током».

Выпрямительные блоки такого размера часто оснащены клеммами «быстрого отключения». Предлагаются бесплатные наконечники «быстроразъемные», которые обжимаются на оголенных концах провода.

Это предпочтительный метод подключения терминала. Вы можете припаять провода непосредственно к ушкам выпрямителя, но я рекомендую не паять напрямую к любому полупроводниковому компоненту по двум причинам: возможное тепловое повреждение во время пайки и сложность замены компонента в случае выхода из строя.

Полупроводниковые устройства более склонны к сбоям, чем большинство компонентов, рассмотренных в этих экспериментах до сих пор, поэтому, если у вас есть какое-либо намерение сделать схему постоянной, вы должны построить ее для обслуживания. «Ремонтопригодная конструкция» включает, среди прочего, возможность замены всех хрупких компонентов.

Это также означает обеспечение доступа к «контрольным точкам» для измерительных щупов по всей цепи, чтобы устранение неисправностей могло выполняться с минимальными неудобствами.Клеммные колодки по своей сути служат точками измерения для измерения напряжения, а также позволяют легко отсоединять провода без ущерба для прочности соединения.

Прикрутите выпрямительный блок к внутренней части металлического корпуса. Поверхность коробки будет действовать как радиатор, охлаждая выпрямительный блок, поскольку он пропускает большие токи.

Любая металлическая поверхность радиатора, предназначенная для снижения рабочей температуры электронного компонента, называется радиатором .Полупроводниковые устройства, как правило, склонны к повреждению из-за перегрева, поэтому обеспечение пути для передачи тепла от устройства (устройств) к окружающему воздуху очень важно, когда рассматриваемая схема может обрабатывать большие количества энергии.

СОЗДАНИЕ ЧАСТИ ФИЛЬТРА

В схему включен конденсатор, который действует как фильтр для уменьшения пульсаций напряжения. Убедитесь, что вы правильно подключили конденсатор к выходным клеммам постоянного тока выпрямителя, чтобы полярности совпадали.

Являясь электролитическим конденсатором, он чувствителен к повреждению при изменении полярности. Особенно в этой схеме, где внутреннее сопротивление трансформатора и выпрямителя низкое и, следовательно, высокий ток короткого замыкания, велика вероятность повреждения.

Предупреждение: вышедший из строя конденсатор в этой цепи, скорее всего, взорвется с угрожающей силой!

ТЕСТИРОВАНИЕ ЦЕПИ

После того, как схема выпрямителя / фильтра построена, подключите ее к низковольтному источнику переменного тока следующим образом:

Измерьте выходное напряжение переменного тока от низковольтного источника питания.Ваш измеритель должен показывать приблизительно 6 вольт, если цепь подключена, как показано.

Это измерение напряжения представляет собой действующее значение напряжения источника переменного тока. Теперь переключите мультиметр на функцию напряжения постоянного тока и измерьте выходное напряжение постоянного тока с помощью схемы выпрямителя / фильтра.

Показание должно быть значительно выше, чем измеренное ранее действующее значение напряжения на входе переменного тока. Фильтрующее действие конденсатора обеспечивает выходное напряжение постоянного тока, равное пиковому напряжению переменного тока , следовательно, большее значение напряжения:

Измерьте величину пульсаций переменного напряжения с помощью цифрового вольтметра, установленного на переменное напряжение (или переменное милливольт).Вы должны заметить гораздо меньшее пульсирующее напряжение в этой цепи, чем то, что было измерено в любой из ранее построенных схем нефильтрованного выпрямителя.

Не стесняйтесь использовать свой аудиодетектор для «прослушивания» пульсаций переменного напряжения на выходе блока выпрямителя / фильтра. Как обычно, подключите небольшой «соединительный» конденсатор последовательно к детектору, чтобы он не реагировал на постоянное напряжение, а только на колебания переменного тока.

Должен быть слышен очень тихий звук. После измерения пульсаций напряжения переменного тока без нагрузки подключите лампочку мощностью 25 Вт к выходу схемы выпрямителя / фильтра следующим образом:

Еще раз измерьте пульсирующее напряжение между клеммами «DC out» блока выпрямителя / фильтра.При большой нагрузке конденсатор фильтра разряжается между пиками выпрямленного напряжения, что приводит к большей пульсации, чем раньше:

СНИЖЕНИЕ ПУФИ

Если требуется меньшая пульсация в условиях большой нагрузки, можно использовать конденсатор большего размера или можно построить более сложную схему фильтра с использованием двух конденсаторов и катушки индуктивности:

Если вы решите построить такую ​​схему фильтра, обязательно используйте индуктор с железным сердечником для максимальной индуктивности и один с достаточно толстым проводом, чтобы безопасно выдерживать полный номинальный ток источника питания.Катушки индуктивности, используемые для фильтрации, иногда называют дросселями , , потому что они «дросселируют» пульсации переменного напряжения от попадания на нагрузку.

Если подходящий дроссель не может быть получен, можно использовать вторичную обмотку понижающего силового трансформатора, подобного тому, который используется для понижения напряжения 120 В переменного тока до 12 или 6 В переменного тока в низковольтном источнике питания. Оставьте первичную (120 В) обмотку открытой:

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ

Схема с номерами узлов SPICE:

Netlist (создайте текстовый файл, содержащий следующий текст, дословно):

Полноволновый мостовой выпрямитель v1 1 0 sin (0 8.485 60 0 0) rload 2 3 10k c1 2 3 1000u ic = 0 d1 3 1 mod1 d2 1 2 mod1 d3 3 0 mod1 d4 0 2 mod1 .model mod1 d .tran .5m 25m .plot tran v (1,0) v (2,3). конец 

Вы можете уменьшить значение нагрузки R в моделировании с 10 кОм до некоторого более низкого значения, чтобы исследовать влияние нагрузки на пульсации напряжения. Как и в случае с нагрузочным резистором 10 кОм, пульсации не обнаруживаются на форме волны, построенной SPICE.

СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

Modular Synth — двойной блок питания 12 В

Самое первое, что нужно решить при создании синтезатора, сделанного своими руками, — это как все это будет получать питание? Традиционно синтезаторам требуются как положительные, так и отрицательные напряжения, что делает создание подходящего источника питания несколько сложнее, чем может показаться на первый взгляд.По соглашению, аудиосигналы, генерируемые генератором, должны иметь амплитуду около 10 В с центром на земле (-5 В в самой низкой точке, + 5 В в самой высокой). Следовательно, блок питания должен обеспечивать напряжение выше ± 5 В. Наиболее распространенные напряжения питания составляют ± 9 В (для систем с батарейным питанием), ± 12 В (для модулей Eurorack) и ± 15 В. В этом руководстве я расскажу о трех наиболее распространенных схемах, используемых для питания модульных синтезаторов.

Примечание: Некоторые схемы, описанные в этом посте, используют сетевое питание и могут быть опасны при неправильной конструкции.Поскольку все остальные схемы в синтезаторе зависят от стабильного источника питания, ошибка в источнике питания может вызвать множество проблем для любых подключенных модулей. Если у вас нет опыта или оборудования для создания собственного блока питания с нуля, я бы посоветовал вам вместо этого приобрести предварительно собранный блок или комплект печатной платы!

Изображение, показывающее мой двойной блок питания DIY, используемый для питания базового модуля генератора.

1. Метод батареи серии

Один из самых простых способов создать двойной источник питания — использовать два набора батарей.Батареи соединены последовательно, так что положительный полюс одной батареи присоединяется к отрицательной клемме второй батареи. Когда это среднее соединение используется в качестве опорного заземления для схемы, вы сможете получать положительное и отрицательное напряжение от батарей, как показано на принципиальной схеме ниже. Для небольших и портативных синтезаторов это часто делается с использованием двух батарей 9 В, как я продемонстрировал на макете на изображении ниже. Поскольку напряжение обеих батарей будет падать по мере разряда питания, нам также необходимо включить регуляторы напряжения, которые обеспечат стабильное напряжение на синтезаторе.На изображении ниже вы можете видеть, что батареи, которые я использую, почти разряжены, так как напряжение, измеренное моим мультиметром, составляет всего -7,11 В.

Этот метод работает только в том случае, если один или оба источника напряжения считаются «плавающими». Это означает, что источник питания не подключен к какому-либо абсолютному опорному напряжению, например к заземлению. Все батареи являются плавающими источниками питания, но часто не используются проводные источники питания. Например, если отрицательная клемма обоих источников напряжения подключена к земле, то соединение положительной и отрицательной клемм обоих источников вместе просто вызовет короткое замыкание; я бы посоветовал вам избегать этого!

  • Преимущества:
    • Очень простое внедрение и устранение неисправностей.
    • Относительно портативный.
    • Напряжение может быть увеличено путем последовательного добавления дополнительных батарей.
    • Срок службы батарей и максимальный выходной ток можно увеличить за счет параллельного подключения дополнительных батарей.
  • Недостатки:
    • Аккумуляторы постоянно нужно менять!
    • Напряжение батарей будет падать по мере их разрядки (как показано на изображении), поэтому по-прежнему потребуется дополнительная микросхема регулятора мощности.

2.Двойное выпрямление переменного тока в постоянный

Электроэнергия, подаваемая в сетевую розетку, меняется с положительного на отрицательное напряжение много раз в секунду (230 В, 50 Гц в Европе, 120 В, 60 Гц в США). Что мы хотим сделать, так это снизить это напряжение до более низкого и более управляемого напряжения, взяв положительную половину сигнала переменного тока для обеспечения положительного выхода, а отрицательную половину — для отрицательного выхода. Этот процесс требует следующих шагов:

  • Понизьте высокое напряжение, подаваемое от сети, до более низкого напряжения с помощью трансформатора.
  • Преобразуйте сигнал переменного тока в положительный и отрицательный сигнал с помощью диодов.
  • Сгладьте напряжение с помощью конденсаторов.
  • Сгенерируйте стабильное выходное напряжение с помощью регуляторов мощности.

а. Схема однополупериодного выпрямителя

Это конструкция блока питания, которую я использовал в своем синтезаторе, и, вероятно, это наиболее распространенная конструкция, используемая сборщиками синтезаторов своими руками. Эта конструкция часто предпочтительнее, чем двухполупериодный выпрямитель , так как вы можете использовать имеющийся в продаже трансформатор с розеткой, чтобы преобразовать сетевую мощность до 12 В переменного тока, которая используется источником питания.Это означает, что ваша схема не контактирует напрямую с сетью питания, что делает работу с ней немного безопаснее (но вам все равно нужно быть осторожным!).

Важно: Вам необходимо убедиться, что в розетке трансформатора вы используете выходы 12В переменного тока , а не 12В постоянного тока. Штепсельные вилки 12 В постоянного тока встречаются гораздо чаще, поэтому может потребоваться некоторое время, чтобы найти правильный тип штепсельной вилки 12 В переменного тока. Также убедитесь, что вилка, которую вы приобретаете, рассчитана на ток не менее 1000 мА или выше, а номинальное входное напряжение сети соответствует стране, в которой вы находитесь.

Пример схемы однополупериодного выпрямителя показан ниже на схеме Схема 2 . Схема принимает сигнал 12 В переменного тока от сетевой розетки и преобразует его в стабильный положительный и отрицательный выход 12 В. Я видел много вариантов этой схемы, в которых использовались конденсаторы различной емкости.

Схема 2: Схема однополупериодного выпрямления
Как это работает?
  1. Схема принимает сигнал переменного тока 12 В от трансформатора сетевой розетки.12 В переменного тока относится к среднеквадратичному значению сигнала. Этот сигнал имеет пиковое напряжение ± 17 В, как показано на диаграмме формы сигнала ниже.
  2. Диод D1 пропускает только положительную половину сигнала переменного тока, а D2 пропускает отрицательное напряжение. Этот процесс известен как полуволновое выпрямление или полумостовое выпрямление , поскольку только половина формы волны переменного тока используется для питания каждого из выходов напряжения. В результате каждый выход теоретически может выводить только половину мощности (и, следовательно, тока), передаваемой трансформатором с настенной розеткой.Пиковое напряжение выпрямленных сигналов составляет 16,3 В, поскольку диоды вносят в схему падение 0,7 В.
  3. Конденсаторы сглаживают форму волны, обеспечивая подачу более непрерывного напряжения на регуляторы напряжения. Обоснование выбора этого конкретного значения емкости обсуждается в следующем разделе.
  4. Стабилизаторы напряжения LM7812 и LM7912 обеспечивают стабильное выходное напряжение источника питания +12 В и -12 В соответственно.Если вместо этого вы хотите получить выходы +15 В и -15 В, вы можете использовать вилку питания переменного тока 15 В и заменить их регуляторами LM7815 и LM7915. Если вы собираете свою собственную схему, следите за тем, чтобы контакты входа, выхода и заземления располагались в разном порядке на регуляторах положительного и отрицательного напряжения.
  5. Конденсаторы C3 и C4 в основном включены для улучшения переходной характеристики источника питания; конденсатор может обеспечивать кратковременные всплески высокого тока при резких изменениях нагрузки, прилагаемой к источнику питания.Согласно паспорту стабилизатора отрицательного напряжения LM7912, для стабильности конденсатор C4 должен быть не менее 1 мкФ (при использовании танталового конденсатора) или 10 мкФ (при использовании электролитического конденсатора). Было выбрано более высокое значение 100 мкФ, чтобы обеспечить дополнительный коэффициент безопасности по сравнению с этим минимальным значением.
  6. Два светодиода указывают на наличие питания на выходах. Некоторые регуляторы отрицательной мощности также требуют, чтобы на выходе была приложена минимальная нагрузка перед запуском, поэтому светодиоды помогают обеспечить эту нагрузку.
  7. Согласно паспорту LM7912, диод D4 требуется, когда на входе используются большие конденсаторы, такие как C10 . Диод предотвращает кратковременные входные короткие замыкания, которые могут возникнуть при включении или выключении цепи. LM7812 не обязательно в этом нуждается, но я поставил D6 на всякий случай.
  8. В технических данных для LM7812 и LM7912 указано, что D5 и D3 должны присутствовать для предотвращения проблем с фиксацией .Эти компоненты действуют как ограничивающие диоды, помогая защитить регуляторы от обратной полярности на выходах. Если один регулятор запускается раньше другого, такие устройства, как операционные усилители (операционные усилители), могут заблокироваться и вызвать короткое замыкание между обеими шинами питания. Это может помешать запуску второго регулятора. Диоды (предпочтительно Шоттки) не позволяют положительному выходу опускаться ниже -0,3 В, а отрицательному выходу — выше 0,3 В, позволяя обоим регуляторам запускаться и отключаться от фиксации.
Схема, показывающая основные этапы процесса полуволнового выпрямления
Как выбрать номинал конденсатора?

Почему на входе каждой шины питания (C1 и C7, C2 и C10) два конденсатора? Как были выбраны номиналы этих конденсаторов? Я просмотрел несколько схем однополупериодных выпрямителей, и, похоже, есть много различий в том, какое значение емкости должно быть.

Обычно есть один небольшой неэлектролитический конденсатор рядом со входом каждого регулятора мощности, который помогает стабилизировать, фильтровать и сглаживать вход (C1 и C2).Обычно это от 100 нФ до 1 мкФ. Маленькие конденсаторы (керамические, полиэфирные, танталовые и т. Д.) Лучше, чем большие электролитические пленочные конденсаторы, отфильтровывают высокочастотный шум из сигнала.

Затем имеется батарея больших электролитических конденсаторов, подключенных параллельно (C7 и C10; при необходимости можно подключить больше конденсаторов), гарантируя, что существует относительно постоянный резервуар мощности, даже когда входной сигнал переменного тока находится в противоположной половине волна и никакой новой энергии не подается.Эти конденсаторы хорошо удаляют низкочастотный шум и стабилизируют колебания постоянного напряжения. Общая емкость этого резервуара зависит от ожидаемой нагрузки на источник питания. Вот как можно рассчитать, какая емкость вам может понадобиться:

Согласно техническому описанию, стабилизаторам на 12 В требуется минимальное входное напряжение 14,5 В для обеспечения стабильного выходного напряжения 12 В. Поскольку 16,3 В — это максимальное напряжение, обеспечиваемое нашим трансформатором и схемой выпрямления, при полной нагрузке мы стремимся к среднему входному напряжению постоянного тока (V DC ) 15.4 В и максимальная пульсация напряжения (p % ) 5,8%.

 В_ {DC} = \ frac {16,3 + 14,5} {2} = 15,4 В 
 \ rho _ \% = \ frac {15.4-14.5} {15.4} \ times100 = 5.8 \% 

Далее нам нужно рассчитать эффективное сопротивление нагрузки. Поскольку регулятор может выдавать максимальный ток (I DC ) около 1 А, это означает, что эквивалентное сопротивление нагрузки (R L ) составляет 15,4 Ом. Мощность, рассеиваемая (P D ) через регулятор (в виде тепла), составляет 3,4 Вт.Регулятор сам по себе может рассеивать только ~ 1 Вт, поэтому нам обязательно нужно прикрепить к нему радиатор, чтобы отвести лишнее тепло.

 R_L = \ frac {V_ {DC}} {I_ {DC}} = \ frac {15.4} {1} = 15.4 \ Omega 
 P_D = (V_ {DC} -V_O) (I_ {DC}) \ newline = (15.4-12) (1) = 3.4 Вт 

Затем мы можем вычислить минимальное значение емкости (C s ), которое может обеспечить желаемую пульсацию напряжения. Формула, которую я использую, предполагает, что разряд конденсатора приблизительно линейный, а частота переменного тока составляет 50 Гц. Значение оказывается около 11000 мкФ! Теоретически нам потребуется соединить 3 больших конденсатора емкостью 4700 мкФ вместе параллельно, чтобы стабилизатор мощности мог достичь максимального выходного тока 1А. При наличии только одного конденсатора емкостью 4700 мкФ максимальный выходной ток, вероятно, составляет около 0,4 А на шину.

 C_s = \ frac {1} {\ rho _ \% R_L} = \ frac {1} {5,8 \ times 15.4} = 0,011F 
 \ text {If} \ quad C_s = 0.0047F \ quad \ text {then:} 
 R_L = \ frac {1} {5,8 \ times 0,0047} = 36,7 \ Omega 
 I_ {DC} = \ frac {15.4} {36.7} = 0,42A 

Итак, чтобы подвести итог … если мы хотим получить полный выходной ток 1А от нашего источника питания, суммарное значение емкости на входе регулятора должно быть не менее 11000 мкФ.

Полумостовой выпрямитель: дополнительная информация
Тестирование полумостового выпрямителя на макетной плате.

г. Схема двухполупериодного выпрямителя

В схеме полного мостового или двухполупериодного выпрямления для питания обоих выходов используются как положительная, так и отрицательная части переменного сигнала.Это означает, что схема теоретически может управлять вдвое большей нагрузкой по сравнению с полумостовым выпрямителем. Как видно из Схема 3 , большая часть схемы идентична полумостовому выпрямителю. Единственное отличие состоит в том, что были добавлены два дополнительных выпрямительных диода и использован трансформатор с тремя выходами (называемый «трансформатор с центральным отводом»). Центральный выход трансформатора используется в качестве опорного заземления, в то время как два других соединения выдают идентичный сигнал 12 В переменного тока, но сдвинут по фазе на 180 °.Это означает, что когда один из выходов находится в положительной части переменного сигнала, другой — в отрицательной, и наоборот.

Этот тип схемы часто используется в профессиональном оборудовании, но не так часто используется разработчиками самодельных синтезаторов. Трансформаторы с центральным отводом недоступны в виде готовых розеток, поэтому вам придется подключать собственные провода. Поскольку один конец трансформатора подключен к электросети, создание этой схемы сопряжено с немного большим риском, и ее следует предпринимать только в том случае, если у вас есть подходящее оборудование и вы знаете, что делаете! При покупке трансформатора убедитесь, что номинальное входное напряжение сети соответствует стране, в которой вы находитесь.

Схема 3: Двухполупериодная схема выпрямления
Как это работает?
  1. Трансформатор принимает переменный сигнал сети и снижает напряжение, выдавая два сигнала переменного тока 12 В, которые сдвинуты по фазе на 180 °.
  2. Четыре диода используются для разделения положительной и отрицательной частей переменного сигнала, направляя положительную половину на регулятор + 12В, а отрицательную — на регулятор -12В. Поскольку оба сигнала переменного тока не совпадают по фазе, это приводит к непрерывной подаче питания для обеих полярностей.
  3. Остальная часть схемы идентична «полумостовому выпрямителю», поэтому вы можете обратиться к моему описанию выше, чтобы увидеть, как он работает и что делает каждый компонент.
Схема, показывающая основные этапы процесса двухполупериодного выпрямления
Полномостовой выпрямитель: дополнительная информация

3. Инвертирующий нагнетательный насос постоянного тока в постоянный

Также возможно получение двойного источника питания 12 В только от одной вилки питания +12 В постоянного тока. Это полезно, поскольку вилки питания постоянного тока гораздо более распространены, и поэтому их дешевле покупать.Также проще найти штекеры 12 В постоянного тока, которые имеют высокий номинальный ток, что позволяет запитать больше модулей синтезатора от одного источника. Блоки питания такого типа часто используются в портативных модульных синтезаторах и небольших модулях питания, совместимых с Eurorack. Поскольку трансформатор и схема выпрямления (большие конденсаторы) содержатся во внешнем штекере, занимаемая площадь электроники, используемой в этой конструкции, может быть намного меньше, чем в схемах Dual AC-DC выпрямления .

а. Как это работает?

В своей наиболее простой форме инвертирующий зарядный насос использует «плавающий» конденсатор для переноса заряда со стороны +12 В на сторону -12 В. Конденсатор заряжается от входа +12 В, обеспечиваемого сетевой розеткой. После заполнения конденсатор отключается от входа +12 В, а положительный вывод подключается к земле. Поскольку заряд (и, следовательно, падение напряжения) на конденсаторе остается прежним, это означает, что отрицательный вывод конденсатора теперь находится под напряжением -12 В.Затем конденсатор начинает разряжаться, и он используется для питания отрицательной шины. В нашем источнике питания этот процесс зарядки и разрядки повторяется много раз в секунду. Схема 4 показывает эквивалентную схему, демонстрирующую, как работает эта система. В реальной схеме переключение конденсатора выполняется с помощью микросхемы IC.

Схема 4: GIF, показывающий, как работает подкачка заряда; схема основана на учебнике Maxim Integrated.
  1. Первоначально переключатели S1 и S3 замкнуты, а переключатели S2 и S4 разомкнуты.Конденсатор C1 подключен к Vin и к земле , в результате чего заряд в конденсаторе увеличивается.
  2. Через определенный интервал переключатели S1 и S3 снова открываются, а S2 и S4 закрываются. Верхняя ветвь конденсатора теперь подключена к земле вместо Vin . Поскольку заряд конденсатора не изменился, падение напряжения на конденсаторе осталось прежним.В результате на нижней ножке конденсатора присутствует напряжение -Vin .
  3. Этот механизм переключения непрерывно повторяется, заряжая конденсатор C1 положительным входным напряжением и снова разряжая его на инвертированном выходе. Конденсатор, по сути, перекачивает заряд с положительного входа на инвертированный выход.
  4. Конденсатор C2 действует как буфер / накопитель мощности, сглаживая напряжение на выходе и обеспечивая непрерывное питание на инвертированном выходе.

г. Реализация на практике

Схема 5: LTspice Тестовая схема для инвертирующего зарядового насоса с использованием LTC1144 IC

В примере схемы, показанной на Схема 5 , мы используем микросхему LTC1144 производства Analog Devices для переключения для инвертирования. зарядный насос. Конденсатор C6 используется для инвертирования заряда, а C5 действует как резервуар, так что отрицательный выход имеет более стабильный выход.Графики показывают, как цепь реагирует на запуск. Ток через конденсатор C6 чередуется с положительного на отрицательный через равные промежутки времени по мере того, как он заряжается от положительного источника питания и разряжается на отрицательный выход. Напряжение отрицательного выхода быстро уменьшается по мере зарядки накопительного конденсатора C5 , со временем выравниваясь до -12 В.

В микросхеме LTC1144 частоту сигнала переключения можно увеличить или уменьшить, изменив значение конденсатора, подключенного к входному выводу OSC.Зарядные насосы могут работать в широком диапазоне частот переключения, обычно от 1 кГц до 200 кГц.

Примечание. У меня не было возможности опробовать эту схему на практике, поэтому значения конденсаторов на схеме Схема 5 , вероятно, придется изменить, чтобы сделать ее пригодной для использования в качестве источника питания синтезатора. Моделирование схем было выполнено в бесплатной программе LTspice, разработанной Analog Devices.

Нагнетательные насосы: дополнительная информация

Если у вас есть какие-либо вопросы или предложения, пожалуйста, оставьте комментарий ниже!

Сильноточный 12В-13.8 В при 30 А, 25 А, 20 А, 15 А Источник питания

Вот схема сильноточного источника питания 13,8 В. Зачем? Тем, кто хочет использовать в доме автомобильный радиопередатчик. Вы должны использовать источник питания для радиолюбителей 12 В / 13,8 В.

Лучше всего иметь высокую мощность от 5 до 30 А в зависимости от размера передатчика.

И я очень рекомендую эту сильноточную схему питания. Из-за хорошей производительности выходное напряжение от 13 В до 14 В в зависимости от нагрузки.

Также вы можете изменить / добавить компоненты, чтобы установить выходной ток 5A, 10A, 15A, 20A, 25A, 30A.Согласно реальному использованию. Итак, помогите сэкономить и проще построить.

Чем интересна эта схема

Конечно, вы можете купить столь простой и эффективный блок питания самых разных размеров. Но если вы построите их со своими или с друзьями. Это будет прекрасное время для создания этого проекта. И по завершении запускает свою функцию. Будет очень горд.

Кроме того, данная схема питания полезна еще и в большом количестве. Такие как большой двигатель постоянного тока, автомобильная аудиосистема и другие.Что вы можете применить, изменив напряжение и ток по мере необходимости. Эта схема очень гибкая.

Сильноточный источник питания 13,8 В схема

Концепция выбора схемы

Нам нужна схема, в которой используются обычные детали. Так просто купить в местных магазинах рядом с нами, да и дешевле.

Иногда эти компоненты могут быть у вас дома.

Представьте, у вас много силовых транзисторов, 2N3055. Потому что он популярен в транзисторных усилителях мощности.

Линейная схема питания — лучший выбор. Потому что это настолько простая схема.

Мы часто используем микросхему трехконтактного регулятора, например 78xx, 7812 или 7815.

Но это большой размер с большими компонентами.

Например, трансформатор, если вам нужен выходной ток 30А. Значит, вам понадобится трансформатор на 30А минимум. Он такой большой.

Кстати.

Его размер для вас не проблема. Предположим, вы получили от дедушки большой трансформатор.

Да, можно попробовать.

Люблю линейную схему.

Примечание: Если вы новичок, эта схема может вам не подойти. Вы можете использовать схемы ниже.

Принцип работы схемы сильноточного источника питания 13,8 В

Должен быть качественный чек-лист!

Нам это нужно.

  • Хорошая схема защиты — при коротком замыкании или перегрузке на выходе.
  • Вы также можете построить схему с выходными токами по своему усмотрению.Вы можете увеличивать ток поэтапно, каждый шаг на 5А. Начните с минимального значения силы тока 5А. А дальше шаг 10А, 15А, 20А, 25А и максимум 30А.

Что еще? См. Части схемы.

Нерегулируемый источник питания

Для этой цепи требуется высокое постоянное напряжение. См. Схему ниже — это нерегулируемая цепь источника питания 21V 30A.

Это гибкий. Вы можете выбрать множество устройств по своему усмотрению, выполните следующие действия.

1.C1 и F1 с использованием этой таблицы.

0 9057 9057 0 9057 9057 9057 9057 9057 905 построить выходной ток 15А.С выходным напряжением 13,8В.

Следует выбрать C1-22000 мкФ 25В.

Конденсаторы аналог

Но может и не продается. Мы можем использовать пять конденсаторов по 4700 мкФ 25 В для параллельного соединения. Итак, у нас общая емкость 4700 мкФ x 5 составляет 23 500 мкФ. Достаточно использовать.

На выходе 30А, если вы не можете купить электролитический конденсатор на 68000 мкФ 25В. Вы можете использовать 10 000 мкФ 25 В x 6, соединенных параллельно. Это экономит деньги и просто.

Например, вы хотите 20 000 мкФ, вы можете использовать 2x 10 000 мкФ.

Используйте плавкий предохранитель номиналом 5А или плавкий предохранитель с задержкой срабатывания.

Регулятор постоянного напряжения

В этой цепи источника питания 13,8 В используется микросхема стабилизатора , LM340T-15. Он поддерживает уровень постоянного напряжения 15В. Внутри этой микросхемы есть защита от короткого замыкания и предотвращает перегрев.


CR: LM340-15 на mouser.com

В результате эта схема также может поддерживать уровень выходного напряжения. И, если есть перегрузка или короткое замыкание. Это тоже не повредит.

Примечание:
Теперь мы должны использовать LM7815, потому что он более популярен, чем этот.

Как ток выше

В нормальном состоянии 7812 может запитать только 1А. Нужна помощь от силовых транзисторов 2N3055.

Сначала посмотрите эту схему. Это стабилитрон и транзисторный стабилизатор, с которыми мы хорошо знакомы.

Представьте, что мы используем 7815 вместо стабилитрона.
И используйте силовой транзистор, чтобы еще больше увеличить выходной ток.

Learn: принцип работы стабилизатора напряжения

Вы тоже можете это увидеть.

Выходное напряжение 14,4 В. Потому что падение напряжения 0,6 В. на BE транзистора.

Затем снова посмотрите на полную принципиальную схему. К выходу IC1 будет подключен эмиттерный повторитель Дарлингтона с транзистором Q1. Затем Q1 управляет шестью транзисторами Q2-Q7 параллельно.

Почему транзистор подключается параллельно

Для увеличения тока вверх. Когда подключить эти 7 транзисторов Q1-Q7 в комплекте. Он может нагнетать до 30А.

Параллельно транзистору Q2, начиная с Q3.Каждый транзистор может увеличивать ток на 5А.

Резистор 0,15 Ом на эмиттере каждого транзистора имеет два действия:

  1. Проверьте ток, протекающий через транзистор. Потому что на них есть падение напряжения, пропорциональное току, протекающему через каждый транзистор.
  2. Установите одинаковый ток через транзистор.

Подробнее: Токоограничивающий резистор

Примечание: Q1-Q7 — это силовой транзистор 2N3055 NPN. Также вы можете использовать в ТО-247 мощные транзисторы TIP35.Но дороже 2N3055.

Лучшая защита

LM340-15 или LM7815 имеют прекрасную систему защиты.

  • Короткое замыкание или перегрузка по току,
    Этот источник питания исправен. IC1 очень хорошо предотвращает перегрузку. Даже при длительном коротком замыкании в течение дня. Он все еще в хорошем состоянии.
  • Горячий не работает.
    Когда температура очень необычная. Система защиты от перегрева прикажет ему временно перестать реагировать.Пока не упадет температура. Запускается как обычно.

С преимуществами данной ИС. Его следует установить на радиаторе рядом с транзистором.

Когда IC1 нагревается выше определенного транзистора. Это останавливается! Конечно, на транзистор нет тока. Итак, он постепенно снижает тепло. IC1 снова вернется к работе.

Продолжайте читать: символы электронных схем

SCR Максимальная токовая защита


В условиях короткого замыкания.Или перегрузка, или использование слишком большого тока. Q2 тянется током 5А. До падения напряжения 0,75В на R5 — 0,15 Ом. (вывод эмиттера Q2). Затем это напряжение подается на вывод затвора SCR1. Далее достаточно, чтобы триггер SCR1 сработал сразу.

IC1 временно не отвечает. Потому что он перегружен. Ранее ток 1А протекал через IC1 и SCR1 загружался напрямую. Не на всех транзисторах.

SCR1 работает на удержание. Пока не отключили питание.Который автоматически перезагружается таким образом, называется электронным автоматическим выключателем.

Сколько выходного напряжения

Выходное напряжение сильноточной силовой цепи 13,8 В равно выходному напряжению IC1 (15 В) за вычетом падения напряжения на базе (B) — эмиттере (E) драйвера транзистора (Q1) и транзистор через (Q2) и падение напряжения на эмиттере R5 Q2.

Vout = vIC — vbeQ1 — vbeQ2
= 15 В — 0,6 В — 0,6 В
= 13,8 В

Однако, поскольку падение напряжения на R5 может быть изменено током, протекающим через него.

Таким образом, напряжение на выходе этой схемы немного изменилось: переключение с 14 В (без нагрузки) может составлять 13 В в условиях полной нагрузки (регулирование).

На этом уровне будет поддерживаться напряжение лучше, чем на электромобиле автомобиля. Его выходное напряжение может быть изменено с 11 В до 16 В.

И передатчик, обычно используемый в автомобиле с аккумулятором 12 В, рассчитан на совместимость с существующим напряжением 13-14 В.

Как он строится

Поскольку компоненты, используемые в этом 13.Цепи питания на 8В там не много. И большинство из них большие. Который необходимо установить на радиатор.

Эксплуатация данного проекта, поэтому не нужно использовать печатную плату. Можно использовать точечное подключение шнура питания, затянуть гайку на радиаторе. Затем подключите провода к другим частям радиатора.

Выберите детали по своему усмотрению

2. Выберите мостовой диодный выпрямитель и трансформатор T1 в соответствии с использованием.

Потому что LM7815 требует низкого входного напряжения до 17 В.Таким образом, входное постоянное напряжение от нерегулируемого к выходному падению на C1 должно быть от 18 до 20 В.

Если менее 17В может оказаться недостаточно для использования схемы. Причем, если более 20В превышает 20%.

Он может иметь больше потерь энергии в транзисторах и ИС. При изготовлении необходимо использовать радиатор большего размера. Это тоже потребляет больше энергии, чем необходимо.

Вы можете выбрать трансформатор номиналом 15А. Мои друзья ходят на стальной сердечник EI в антикварный магазин, а потом идут на прокат, сделали новый трансформатор.Это прочно и недорого.

Силовой транзистор — Вы можете использовать 2N3055, который легче купить. Или используйте TIP3055, такой же, как 2N3055. Зато удерживать теплоотвод с ТО-3П несложно. Самый лучший, TIP35 — это мощный ток более 25А коллекционного тока.

Вы можете выбрать любое число SCR1 — 200 В, 5 А, такое как 2N4441, C122, C106 и т.д.

Примечание:

Если вам не нравится эта схема, вы можете посмотреть другие схемы ниже.

  1. 0-30V 20A Схема сильноточного регулируемого регулятора напряжения
  2. Блок питания для аудиоусилителя, несколько выходов 12В, 15В, 35В
  3. Повышение токов регулятора для IC-78xx
  4. LM Технический паспорт | Регулируемый источник питания 5A и 10A

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Изготовление выпрямителя для гальванических покрытий своими руками


образование … веселье … дух алоха

Звоните прямо! (сайт «без регистрации»)

——

Продолжающееся обсуждение, начавшееся еще в 2003 году …

2003 г.

В. Приветствую, я хотел бы начать с благодарности всех вас за ваши немедленные и информативные ответы на все мои вопросы за последние несколько месяцев. Я всегда стараюсь прочитать ранее отправленные письма, прежде чем писать свои собственные, просто потому, что знаю, что становится утомительно отвечать на одни и те же вопросы снова и снова.Я не нашел то, что искал, ни в одном опубликованном письме, так что вот оно.

Я пытаюсь построить выпрямитель постоянного тока для какого-то хобби. Я хотел бы преобразовать обычные бытовые 120 В переменного тока в выпрямитель постоянного тока с переменным регулированием, способный выдавать 15 В с выходом не менее 20 ампер. Я видел несколько прототипов анодизаторов и гальванических выпрямителей, однако я не встречал никаких планов относительно одного с достаточной силой тока (> 15 ампер). Если есть какие-либо опубликованные письма или сайты электроники, которые я мог бы изучить, это было бы большим подспорьем.


2004

В. У меня два вопроса:

Есть ли у кого-нибудь схема для создания гальванического выпрямителя, способного покрыть детали до прибл. 100 / кв дюйм

Следующий вопрос: можно ли использовать выходной сигнал высококлассной фрезерной машины для сварки TIG постоянным током либо прямо, либо с модификацией для уменьшения пульсации?

Я знаю, что получу ответ: «Почему бы тебе просто не передать это профессионалу?» У меня есть две причины, одна из которых состоит в том, что мне любопытно научиться делать это самому, чего я не могу сделать, если Я передаю это кому-то другому.И причина, по которой я это делаю, заключается в том, что у меня есть целый механический цех, полный приобретенного мной оборудования, которое сидело и начало ржаветь, я хочу медленно в свободное время разбирать машины, перекрашивать их, полировать и покрывать ржавые детали, чтобы они не будут быстро ржаветь.


2004

А.Привет, Фрэнк; привет Генри. Этот вопрос здесь задавали несколько раз, и он остается в основном без ответа — вероятно, не столько потому, что кто-то что-то скрывает, сколько потому, что не было рынка для журнала по хобби-электронике, чтобы разработать статью о том, как спроектировать и построить что-то, что Немногие любители электроники будут заинтересованы в приобретении запчастей и у них не будет легкого доступа к ним. Лучшим выбором для схемы может быть продавец бывшего в употреблении оборудования для нанесения покрытий, который, вероятно, накопит коробки с инструкциями по эксплуатации, отсоединенные от выпрямителей, с которыми они идут; они будут включать в себя схематические диаграммы, которые вы ищете.

Другая причина, по которой выпрямители сложнее построить, чем другие электронные проекты, заключается в том, что цепи управления не являются главной проблемой; скорее, большая штука есть. Создание выпрямителя — это в первую очередь не схема управления, это большие вещи, которые сложно построить самостоятельно и которые нельзя купить в радиобазах — например, большие трансформаторы, дроссели, тяжелые переключатели ответвлений, сильноточные диоды и т. Д. если вы можете выдержать его до 20 ампер, возможно, вам поможет буква 12200 . Удачи!

Он работает в обоих направлениях, промышленность многим обязана любителям — все гальванические выпрямители работали на частоте 60 Гц до недавнего времени, но мы узнали из индустрии персональных компьютеров, созданной любителями, что гораздо меньшие и более легкие блоки питания могут быть построены путем «измельчения». «(тем или иным образом прерывая ток для генерации более 60 Гц).


2004

В. Я, конечно, понимаю, что обычный журнал по электронике не публиковал бы эту схему, однако я определенно верю, что, учитывая количество веб-сайтов, посвященных расходным материалам для домашнего покрытия и тому подобному, есть большое количество мастеров, которые будут заинтересованы, я думаю, я бы сказал на данном этапе, если кто-то проявляет такой интерес и игнорирует ответственность за использование и утилизацию химических отходов должным образом, забудьте об этом. Что касается получения «больших» компонентов, то у меня уже есть исходники для них из сети, их легче найти, чем базовую схему выпрямителя.


2005 г.

A. Я читал несколько запросов о домашних любителях, желающих построить выпрямители, и их причины убедительны (в конце концов, гальваника — это весело). Но я должен согласиться с Тедом; Создание полезного выпрямителя было бы большим и сложным делом, не подходящим для большинства домашних любителей. К тому же он вам и не нужен!

Выпрямитель только преобразует переменный ток в постоянный, предпочтительно 12 В постоянного тока. Хорошим источником постоянного тока 12 В являются морские батареи глубокого разряда. Хотя батареи не являются практичным вариантом для гальванических мастерских, они отлично подходят для гальваники деталей в гараже.Теперь, имея рекомендованные батареи, необходимо знать несколько технических вопросов и вопросов безопасности:

Во-первых: не используйте соединительные кабели, они искры! Морские аккумуляторы идут с винтовыми клеммами, используйте их.

Секунда: Емкость аккумулятора имеет решающее значение, используйте два или три параллельно, чтобы увеличить время покрытия и / или детали большего размера. Также вам понадобится хорошее автомобильное зарядное устройство [affil. ссылка на информацию / продукт на Amazon], чтобы зарядить батареи между циклами.

Третий: вам нужно будет контролировать ток (посмотрите на пусковую способность автомобильного аккумулятора, он огромен!).


22 марта 2009 г.

A. Привет, Майк Преториус. Просто сравните гальванику и электросварку —
Оба работают по одному и тому же принципу «Низкое напряжение и высокая сила тока». Сила тока — это средство, которое наносит металлический наполнитель на катод (коллектор).
Для создания гальванического блока вам потребуются: —
(a) Понижающий трансформатор высокой мощности 220 В / 12 В
(b) Variac для управления входным напряжением питания
(c) Высокоамперный мостовой выпрямитель для переключения переменного тока на постоянный диодный выпрямитель

Питание 220 В —> Вариак —> Трансформатор —> Диодный выпрямитель —> Полож. / В —> Анод, отриц. / В —> Катод.



6 февраля 2014

В. Относительно ответа Йохана Лутса:
Может кто-нибудь сказать мне, зачем вам нужен трансформатор?
Как я понял, мостовой выпрямитель преобразует переменный ток в постоянный.
Я тоже не понимаю, зачем вариак ставят перед трансформатором?

Признаюсь, я мало что знаю о выпрямителях, но я смотрю спецификации выпрямителя RS 605, который я извлек из блока питания компьютера (http://pdf.datasheetcatalog.com/datasheet/RECTRON/RS604.pdf )
Там написано от 50 до 1000 вольт и 6 ампер.


Февраль 2014

А. Привет, Гэри. Я не знаю, как сделать гальванический выпрямитель, но могу попытаться ответить на пару ваших вопросов.

Ток в доме составляет 110 или 220 вольт, тогда как напряжение покрытия больше похоже на 3–12 В, поэтому трансформатор — это то, что снижает напряжение до полезного диапазона, а также увеличивает доступный ток. Если оставить в стороне и исключить неэффективность трансформатора, он преобразует, скажем, 5 А при 220 В в 50 А при 22 В. Хотя фраза «изолирующий трансформатор» была немного разбавлена ​​до того места, где она не является хорошей спецификацией, есть еще один важный момент. действие трансформатора состоит в том, чтобы отделить выход от источника, чтобы уменьшить скачки высокого напряжения.

Мостовой выпрямитель — это просто 4 диода для преобразования переменного напряжения в серию «верблюжьих горбов», а не в плавный постоянный ток. Хотя профессионалы не будут пытаться использовать этот выход, потому что это вызывает определенные проблемы, поэтому они будут использовать индукционный / емкостной «дроссель», чтобы сгладить его, любитель может попробовать без дросселя, но с мостовым выпрямителем, подключенным так, как описывает Йохан. . Подключите проводку, подключив мостовой выпрямитель к розетке, напряжение будет слишком высоким, и не будет никакой изоляции, а вероятность порезаться электрическим током будет очень высока!

Фактически, Variac — это переменный трансформатор.


9 октября 2015

A. Я разработал линейный источник питания постоянного тока с переменным напряжением для питания любительского радиооборудования, который может соответствовать требованиям примерно до 35 ампер, как я построил свой, но с линейными регуляторами, которые я использовал, его можно масштабировать, используя более или менее регуляторы с максимумом до 9 ампер на микросхему регулятора. Я еще не пробовал использовать его для гальваники, но могу принести в магазин, когда в следующий раз выйдет из строя наш цинковый выпрямитель.

** Обратите внимание, что в современных источниках питания и выпрямителях предусмотрены определенные меры безопасности, которые не предусмотрены в этой конструкции, поэтому используйте их на свой страх и риск.


29 января 2018

Стив Г. написал: «Я разработал линейный источник питания постоянного тока с переменным напряжением для питания оборудования для любительской радиосвязи, который может соответствовать требованиям примерно до 35 ампер, как я построил свой, но с линейными регуляторами, которые я использовал, его можно масштабировать. используя большее или меньшее количество регуляторов с максимумом до 9 ампер на каждую микросхему регулятора. Я еще не пробовал использовать это для гальваники, но я могу принести его в магазин, когда в следующий раз наш цинковый выпрямитель выйдет из строя ».

Я хотел бы спросить Стива Горзо, был ли у него шанс опробовать свой линейный источник питания на гальванике, и если да, то сработал ли он? Кроме того, я был бы признателен за помощь в создании своего собственного.


finish.com стало возможным благодаря …
этот текст заменен на bannerText

Заявление об ограничении ответственности: на этих страницах невозможно полностью диагностировать проблему отделки или опасности операции. Вся представленная информация предназначена для общего ознакомления и не отражает профессионального мнения или политики работодателя автора. Интернет в основном анонимный и непроверенный; некоторые имена могут быть вымышленными, а некоторые рекомендации могут быть вредными.

Если вы ищете продукт или услугу, связанную с отделкой металлов, посетите следующие каталоги:

О нас / Контакты — Политика конфиденциальности — © 1995-2021 finish.com, Pine Beach, New Jersey, USA

Что такое схема выпрямителя?

Что такое схема выпрямителя?
Далее: Задачи Вверх: lab8b Предыдущая статья: Что такое трансформатор?

Теперь, когда мы снизили напряжение переменного тока на до уровень, который больше соответствует требованиям напряжения Stamp11, остаётся проблема преобразование 12-вольтового сигнала переменного тока в желаемый 5-вольтовый постоянный ток. источник питания.Мы подойдем к этому в два этапа. Первый преобразуем переменное напряжение в постоянное через процесс, известный как ректификация . Тогда мы уйдем это 12 вольт постоянного напряжения до 5 вольт с помощью регулятор напряжения . В этом разделе кратко рассказывается о процесс исправления.

Простейшая возможная схема преобразования переменного тока в постоянный — это полуволновой выпрямитель . Эта схема состоит из один диод, который пропускает ток только через один направление.Возможная схема показана ниже на рисунке. 4. На этом рисунке вы найдете мощность переменного тока. источник подключен к первичной обмотке трансформатора. Примечание символ, который мы используем для трансформатора. Вторичный клеммы этого трансформатора затем подключаются к диоду и резистор последовательно.

Выходной ток C1 F1
5 A 10,000 мкФ 2A
10 A 15,000 мкФ
15000 мкФ
9057 6A
20 A 33000 мкФ 8A
25 A 47000 мкФ 10A
30 A 68000579
30 A 68000579 12359
Рисунок 4: Однополупериодный выпрямитель

Работа этой схемы проста. Когда находится в положительной части своего цикла, положительный напряжение создается на вторичной стороне трансформатор.Это напряжение смещает диод в прямом направлении и диод начинает пропускать ток. В результате большая часть падение напряжения на нагрузке. Когда отрицательно, тогда вторичная сторона также имеет отрицательное напряжение. В Затем диод смещается в обратном направлении и перестает пропускать ток. В виде в результате падение напряжения на нагрузке равно нулю. В осциллограмма напряжения на нагрузочном резисторе выглядит как показано на рисунке 4. Только положительная сторона синусоидального цикла присутствует и отрицательная сторона был зажат диодом.

Глядя на выходное напряжение, следует отметить что это похоже на выход батареи в том, что это всегда позитивный. К сожалению, этот положительный сигнал довольно «ухабистая», и нам нужно найти способ сгладить ее. RC схема, показанная на рисунке 5, используется для сгладьте эти неровности. В этой схеме мы добавили большой конденсатор параллельно с сопротивлением нагрузки. В конденсатор может накапливать энергию в то время, когда напряжение на нагрузке положительное.Когда напряжение нагрузки зажимается до нуля, наш конденсатор может медленно высвобождаться накопленная энергия, тем самым сглаживая напряжение Загрузка.

Рисунок 5: Однополупериодный выпрямитель с конденсатором

Что происходит в этой схеме, так это то, что диод включается при напряжении на крышке около 0,7 вольт ( пороговое напряжение для диода) ниже выходящего из трансформатор. Между тем загрузка разгружает крышку с нашей стандартной постоянной времени RC.Схема должна быть тщательно спроектирован так, чтобы постоянная времени была намного больше чем время цикла переменного тока. Даже в этом случае шапка, вероятно, будет теряют некоторое напряжение во время простоя между импульсами и эта потеря приведет к пульсации напряжения . В результирующие формы сигналов показаны ниже на рисунке. 5.

В этой схеме есть еще кое-что новое. Обратите внимание, как нижняя пластина конденсатора показана кривой и верхняя пластина отмечена знаком плюс.Это потому что для получения большой емкости требуются специальные конденсаторы в небольшом пространстве. В частности, вы будете использовать конденсаторы электролитические . Такие конденсаторы построены с помощью бумаги, смоченной электролитом. Эта фабрикация метод дает огромные емкости в очень маленьком объеме. Но это также приводит к тому, что конденсатор имеет поляризацию . Другими словами, конденсатор работает только с одной полярностью. напряжения. Если поменять полярность, водород может отсоединяется от внутреннего анода конденсатора и этот водород может взорваться.Электролитические конденсаторы всегда имеют четко обозначенную полярность, часто с множеством отрицательные знаки указывали на отрицательную клемму. Ты должны иметь конденсатор 1000 Ф в ваших наборах деталей, которые вы можете использовать в своей цепи питания.

Хотя однополупериодный выпрямитель обладает достоинством простоты, ему не хватает эффективности, потому что мы выбрасываем отрицательная сторона формы волны. Лучшим решением было бы использовать мощность на обеих сторонах сигнала.Схемы которые делают это, называются двухполупериодными выпрямителями . В в частности, вы можете использовать следующую схему, показанную на рисунок 6 для построения двухполупериодного выпрямителя. Левая часть этой схемы — это двухполупериодный мост. Эта часть схемы состоит из четырех специально устроили диоды. Выход двухполупериодного выпрямителя По сути, это источник постоянного тока на 12 В. Будет небольшой рябь на этом источнике, но вы действительно не сможете заметьте это, даже если вы посмотрите на форму волны с помощью осциллограф.

Рисунок 6: Двухполупериодный выпрямитель

Схема, показанная на рисунке 6, генерирует постоянный ток. напряжение 12 В и заземление на двух клеммах отмечены и. Однако ваш MicroStamp11 требуется питание 5 вольт. Мы можем понизить это напряжение на 12 напряжение до напряжения 5 вольт несколькими способами. Один метод заключается в использовании стабилитрона для ограничения напряжения на уровне 5 вольт. А стабилитрон — это диод, пробивное напряжение которого было предназначены для работы с определенным уровнем напряжения.Схема показанный на рисунке 7 выполняет это функция. Резистор, включенный последовательно с диодом, используется для ограничить выходной ток, типовые значения указаны в заказе 100-500 Ом.

Стабилитрон
Рисунок 7: Стабилитрон

Другой способ понизить напряжение питания 12 — использовать специальное трехконтактное устройство под названием регулятор напряжения . Регулятор напряжения — это особый полупроводниковое устройство, специально разработанное для действовать как идеальный аккумулятор.Подключения регулятора напряжения показаны в правой части рисунка 8. Как видите, регулятор напряжения имеет 3 контакта. Пин 3 (VIN) подключен к положительной клемме аккумуляторной батареи. Пин 2 (GND) подключен к земле (отрицательный вывод вашего аккумулятор), а контакт 1 — это регулируемый выход на 5 В. В вашей В лабораторном комплекте вы найдете регулятор напряжения LM7805. Ты сможешь используйте это для создания источника питания с регулируемым приводом для ваша система.

При подключении регулятора напряжения обязательно ставьте 0.1 Конденсатор F на выходе вашего источника питания. Этот конденсатор помогает устранить скачки напряжения в вашей сети. питания, так как если у вас есть ступенчатое изменение напряжения, конденсатор действует как короткое замыкание на землю.

Рисунок 8: LM7805 Цепь регулирования Votlage


Далее: Задачи Вверх: lab8b Предыдущая статья: Что такое трансформатор?
Майкл Леммон 2009-02-01

Как сделать мостовой выпрямитель на трансформаторе 12-0-12 вольт.

Как сделать мостовой выпрямитель на трансформаторе 12-0-12 вольт.

Сначала вы хотите 1 шт. Трансформатор 12-0-12 вольт

Это необходимо для изготовления ……….

* 👉 Трансформатор 12-0-12 вольт ……….. https: //amzn.to/ 2Ae0X0F

[Мостовой выпрямитель]

* 👉 Для трансформатора на 5 А …………

1.👉 4 шт. SR5100 ……… https: // amzn. к / 2Rk2Ena

2.👉 1 шт. 4700 мкФ конденсатор 16-25 В ………. https: //amzn.to/2Abnv24

* 👉 Для трансформатора на 2-3 А …………

1.👉 4 диода IN5408 ………. https: //amzn.to/2V84fLy

2.👉 1 шт 3330 мкФ 16-25 В конденсатор ……… ..https: //amzn.to/2AeIPnf

* 👉 Для трансформатора 500 мА -1 А ……….

1.👉 4 диода IN4007 …….. https: //amzn.to/2RandCk

2.👉 1 шт. 2220 мкФ конденсатор 16-25 В ………. https: //amzn.to/2RebB0V

Как это сделать……… ??

Посмотрите это видео, чтобы лучше понять.

Принципиальная схема

* Посмотрите эту принципиальную схему и следуйте моим инструкциям по ее изготовлению.

* Я использую здесь трансформатор на 1 ампер, но вы можете использовать этот мостовой выпрямитель для подключения любого трансформатора тока. [Необходимо заменить диод и конденсатор при увеличении тока на трансформаторе]

* Тогда вам понадобится 4 диода IN4007 (на трансформатор на 1 ампер.необходимо заменить диод при увеличении тока на трансформаторе).

* Держите диоды с одной стороны [+].


* Затем держите диоды так же, как на этой картинке. 2 диода [+] с одной стороны и 2 диода [-] с одной стороны.

* Затем соединительный штифт диодов, а также рисунок.

* смотрите картинку.

* Где 2 диода [+] подключили выход DC 12 вольт [-].

* Где 2 диода [-] подключили выход DC 12 вольт [+].

* А где 1 диод [+] и где 1 диод [-] подключен там вход переменного тока 12 вольт.


* Затем аккуратно припаяйте штырь диодов.
* Тогда вам понадобится 2 конденсатора 1000 мкФ. (для трансформатора на 1 ампер. необходимо заменить конденсатор при увеличении тока на трансформаторе).

* Посмотрите это изображение о конденсаторах [+] и [-]. Синяя часть конденсатора является положительной, а белая часть конденсатора — отрицательной.


* Затем соедините один конденсатор [+] с одним конденсатором [-], как показано на рисунке.

* Затем посмотрите на эту картинку, слева, где конденсатор [-], вход и выход постоянного тока 12 вольт [-].Справа где конденсатор [+] там вход и выход DC 12 вольт [+]. А где соединен один конденсатор [+] с одним конденсатором [-], там вход и выход GND.

* Затем соедините мостовой выпрямитель с трансформатором. [где 1 диод [+] и где 1 диод [-] подключен к входу переменного тока 12 вольт].

* Тогда посмотрите картинку, где 2 диода [+] подключили к нему выход DC 12 вольт [-]. Куда 2 диода [-] подключили выход DC 12 вольт [+]. И подключите средний контакт заземляющего провода трансформатора.

* Затем соедините конденсаторы с трансформатором, как показано на рисунке. подключите выпрямитель [+] к конденсатору [+], подключите выпрямитель [-] к конденсатору [-], а GND подключите к тому месту, где подключены один конденсатор [+] с одним конденсатором [-].

* Затем подключите 3-миллиметровый светодиод с резистором 1 кОм. резистор подключаем к выводу [+] светодиода.

* А затем светодиод подключить выпрямитель моста. подключите резистор к выходу постоянного тока [+] 12 вольт. И подключите вывод светодиода [-] к GND.

* Затем проверьте напряжение мультиметром.

Выпрямители и блоки питания постоянного тока | 12 В постоянного тока | 24 В постоянного тока | 48V DC | 150 — 1000 Вт | Крепление в стойку | Настенное крепление | Настольное крепление

AC-DC

Напряжение / мощность :
Вход 120/240 В переменного тока
Выход 12, 24, 48 В постоянного тока
150-1000 Вт

Компоненты:
Выпрямители
Зарядные устройства
Модули питания
Управление питанием
Источники питания

Конфигурации:
Крепление в стойку
Настенное крепление
Настольное



Выпрямители для монтажа в стойку и компоненты управления


Силовой модуль

Вход: 120/230 В переменного тока
Выход: 12, 24 или 48 В постоянного тока, 560 — 2200 Вт

Эти универсальные модули выпрямителей работают как источники питания или как зарядные устройства для систем на 12, 24 или 48 вольт; положительная, отрицательная или плавающая земля.Их можно использовать по отдельности или в комбинации, что позволяет установщику масштабировать систему от 500 до 10 000 Вт на стойку. Блоки могут быть подключены параллельно для резервирования N + 1, а контакты аварийной сигнализации позволяют осуществлять локальный или удаленный мониторинг. Дополнительный комплект проводки для быстрого подключения постоянного тока позволяет легко заменять модули без отключения системы.

Подробнее о силовых модулях серии



Менеджер функций питания

Вход: 12, 24 или 48 В постоянного тока
Общая токовая нагрузка: 500A

Power Function Manager — это системный интегрирующий компонент, который преобразует обычные источники питания (или силовые модули) в полностью интегрированную и многофункциональную систему питания.Устройство обеспечивает управление, мониторинг, параллельное соединение и защиту источников питания 12, 24 или 48 В постоянного тока, положительного отрицательного полюса или заземления с плавающей точкой.

Подробнее о Power Function Manager



Интегрированные энергосистемы

Вход: 115/230 В переменного тока
Выход: 12, 24 или 48 В постоянного тока
11-40 А с внутренней батареей

The Integrated Power System (IPS) — это уникальный многофункциональный источник питания, который включает в себя встроенную резервную батарею и множество аксессуаров питания в одном корпусе 2RU (3.5 ″), что исключает трудоемкую интеграцию системы, поиск компонентов и установку, а также экономит драгоценное место в стойке — идеально подходит для любого приложения с низким и средним энергопотреблением, требующего отказоустойчивой работы переменного тока.

Подробнее об интегрированной энергосистеме Серия



Мобильные, настенные и настольные блоки питания


Источники питания — серия для тяжелых условий эксплуатации

Вход: 115/230 В переменного тока
Выход: 12 или 24 В постоянного тока, 5-35 А

Эти сверхпрочные источники постоянного тока идеально подходят для питания оборудования связи 12 и 24 В на базовых станциях, удаленных объектах и ​​в приложениях мобильной связи, где надежность имеет решающее значение.Проверенная конструкция линейной схемы обеспечивает чистый бесшумный выход и длительный срок службы.

Узнать больше Источники питания для тяжелых условий эксплуатации серии



Power-Pac серии

Вход: 115/230 В переменного тока
Выход: 12 В постоянного тока, 5 А
Резервная батарея: 7–14 А / ч

Этот блок питания на 12 В, 10 А имеет встроенные резервные батареи, которые заряжаются во время нормальной работы, а затем продолжают питать радиостанции при отключении переменного тока.Выберите аккумулятор емкостью 7 или 14 ампер-часов.

Узнайте больше о серии Power-Pac





Система электроснабжения площадки

Вход: 115/230 В переменного тока
Выход: 12, 24 или 48 В, 250-500 Вт

Серия Site Power System (SPS) представляет собой законченное решение для питания постоянного тока, которое быстро интегрируется с батареями, нагрузками и мониторами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *