Схемы включения стабилитронов: 1.10.1. Схемы включения стабилитронов

Содержание

1.10.1. Схемы включения стабилитронов

Простейшая схема включения стабилитрона в режиме стабилизации напряжения представлена на рис. 18. В этом режиме напряжение на стабилитроне

Рис. 18

остается практически постоянным, поэтому и напряжение на нагрузке постоянно UН = Uст – const. При этом уравнение для всей цепи имеет вид: E = Uст + Rст (Iст – IН).

Наиболее часто стабилитрон работает в режиме, когда напряжение Е не стабильно, а RН – const. Для поддержания режима стабилизации следует правильно выбрать RСТ. Обычно RСТ рассчитывают для средней точки А характеристики стабилитрона (рис. 19). Если предположить, что Emin  E  Emax, то

Если напряжение Е изменяется в какую либо сторону, то будет, и изменятся ток стабилитрона, но напряжение на нем U

CT, а, следовательно, и на нагрузке остается практически неизменным.

Рис. 19

Все изменения напряжения поглощаются RCT, поэтому должно выполнится условие:

Второй режим стабилизации: входное напряжение постоянно, а RН изменяется в пределах от RНmin до RНmax, в этом случае: ,;.

Так как RCT постоянно, то падение напряжения на нем равное Е−UCT также постоянно, то и ток через RCT ICP+IНCP должен быть постоянным. Это возможно, когда ток стабилизации ICP и IН изменяются в одинаковой степени, но в противоположны стороны (т.е. сумма постоянна).

Из приведенных выражений следует, что для стабилизации в более широком диапазоне изменений входного напряжения Е, R

CT нужно увеличивать, а для стабилизации в режиме изменения тока нагрузки, RCTнеобходимо уменьшать (уменьшать RCT– не выгодно, тратится лишняя энергия источника).

Если необходимо получить стабильное напряжение более низкое, чем дает стабилитрон, возможно включение добавочного сопротивления последовательно с нагрузкой (рис. 20). Значение Rдоб рассчитывают по закону Ома. Однако, в этом случае сопротивление нагрузки RCTдолжно быть постоянным.

UН=UCT─IНRдоб

Рис. 20

Для получения более высоких стабильных напряжений применяется последовательное включение стабилитронов, с одинаковыми токами стабилизации (рис. 21).

UCT=UCT

1+UCT2

Рис. 21

Для компенсации температурного дрейфа UCT последовательно со стабилитроном возможно включение термозависимого сопротивления RT, имеющее ТКRТ обратный по закону ТКUCT.

Рис. 22

Для стабилитронов с ТКUCT>0 в качестве RT можно использовать p-n-переход дополнительного диода, включенного в прямом направлении.

Для стабилизации с термокомпенсацией выпускаются специальные двух-анодные стабилитроны, которые включаются в цепь произвольно, причем один диод включен в обратном направлении – обеспечивает режим стабилизации, а другой в прямом – режим термокомпенсации (рис. 22).

1.10.2. Стабисторы

ВАХ стабистора мало отличается от ВАХ выпрямительных диодов.

Однако для того чтобы обеспечить наибольшую крутизну прямой ветви ВАХ, стабисторы изготавливаются из высоколегированных полупроводников. Это обеспечивает малое r

б и малое значение Rдиф. Слабая зависимость UПР от IПР на

Рис. 23

рабочем участке (рис. 23) позволяет использовать стабисторы для стабилизации малых напряжений порядка 0,7В. Последовательным включением стабисторов можно подобрать требуемое напряжение стабилизации.

Схема — включение — стабилитрон

Схема — включение — стабилитрон

Cтраница 1

Схема включения стабилитрона показана на фиг. Балластное сопротивление R6 служит для гашения избытка напряжения источника питания.  [1]

Схема включения стабилитрона приведена на рис. 10 — б8 а.  [3]

Схема включения стабилитрона изображена на рис. 30, а. Сопротивление Ддоб подбирают таким, чтобы при номинальном напряжении источника С / ном ток соответствовал примерно средней точке рабочего участка характеристики стабилитрона.  [4]

Схема включения стабилитрона представлена на рис. 36, где. RH, Re — балластное сопротивление, включенное последовательно со стабилитроном и ограничивающее его ток. Если балластное сопротивление RQ слишком мало, через стабилитрон идет чрезмерно большой ток и прибор выходит из строя.  [5]

Схема включения стабилитрона изображена на рис. 8.9. Стабилитрон включается параллельно нагрузке RH, на которой необходимо поддерживать постоянное напряжение.  [6]

Схема включения стабилитрона изображена на рис. 19, а.  [7]

Схемы включения стабилитронов в обратном и прямом направлениях приведены на фиг.  [8]

Схемы включения стабилитронов, удовлетворительные в других отношениях, часто не обеспечивают надежного зажигания лампы.  [9]

На рис. 3.3, б показана схема включения стабилитрона. К источнику напряжения Uex диод VD подключен в обратном направлении через резистор R с большим сопротивлением.  [10]

На рис. 2.37, б показана схема включения стабилитрона. К источнику напряжения U а диод Д подключен в обратном направлении через резистор R с большим опротивлением. Напряжение UQ всегда превышает напряжение t / проб, но изме-шется в некоторых пределах. Напряжение t / вых на нагрузке Ra остается практи — [ ески постоянным.  [12]

На рис. 3.1, б показана схема включения стабилитрона. К источнику напряжения U № диод VD подключен в обратном направлении через резистор R с большим сопротивлением.  [14]

На рис. 3.3, б показана схема включения стабилитрона. К источнику напряжения UBI диод VD подключен в обратном направлении через резистор R с большим сопротивлением. Прб, но изменяется в некоторых пределах.  [15]

Страницы:      1    2

Стабилитрон — что это — и для чего он нужен?

Стабилитрон — это полупроводниковый диод с уникальными свойствами. Если обычный полупроводник при обратном включении является изолятором, то он выполняет эту функцию до определенного роста величины приложенного напряжения, после чего происходит лавинообразный обратимый пробой. При дальнейшем увеличении протекающего через стабилитрон обратного тока напряжение продолжает оставаться постоянным за счет пропорционального уменьшения сопротивления. Таким путем удается добиться режима стабилизации.

В закрытом состоянии через стабилитрон сначала проходит небольшой ток утечки. Элемент ведет себя как резистор, величина сопротивления которого велика. При пробое сопротивление стабилитрона становится незначительным. Если дальше продолжать повышать напряжение на входе, элемент начинает греться и при превышении током допустимой величины происходит необратимый тепловой пробой. Если дело не доводить до него, при изменении напряжения от нуля до верхнего предела рабочей области свойства стабилитрона сохраняются.

Когда напрямую включается стабилитрон, характеристики не отличаются от диода. При подключении плюса к p-области, а минуса — к n-области сопротивление перехода мало и ток через него свободно протекает. Он нарастает с увеличением входного напряжения.

Стабилитрон — это особый диод, подключаемый большей частью в обратном направлении. Элемент сначала находится в закрытом состоянии. При возникновении электрического пробоя стабилитрон напряжения поддерживает его постоянным в большом диапазоне тока.

На анод подается минус, а на катод — плюс. За пределами стабилизации (ниже точки 2) происходит перегрев и повышается вероятность выхода элемента из строя.

Характеристики

Параметры стабилитронов следующие:

  • Uст — напряжение стабилизации при номинальном токе Iст;
  • Iст min — минимальный ток начала электрического пробоя;
  • Iст max — максимальный допустимый ток;
  • ТКН — температурный коэффициент.

В отличие от обычного диода, стабилитрон — это полупроводниковое устройство, у которого на вольт-амперной характеристике области электрического и теплового пробоя достаточно далеко расположены друг от друга.

С максимально допустимым током связан параметр, часто указываемый в таблицах — мощность рассеивания:

Pmax = Iст max∙ Uст.

Зависимость работы стабилитрона от температуры может быть как с положительным ТКН, так и отрицательным. При последовательном подключении элементов с разными по знакам коэффициентами создаются прецизионные стабилитроны, не зависящие от нагрева или охлаждения.

Схемы включения

Типовая схема простого стабилизатора, состоит из балластного сопротивления Rб и стабилитрона, шунтирующего нагрузку.

В некоторых случаях происходит нарушение стабилизации.

  1. Подача на стабилизатор большого напряжения от источника питания при наличии на выходе фильтрующего конденсатора. Броски тока при его зарядке могут вызвать выход из строя стабилитрона или разрушение резистора Rб.
  2. Отключение нагрузки. При подаче на вход максимального напряжения ток стабилитрона может превысить допустимый, что приведет к его разогреву и разрушению. Здесь важно соблюдать паспортную область безопасной работы.
  3. Сопротивление Rб подбирается небольшим, чтобы при минимально возможной величине напряжения питания и максимально допустимом токе на нагрузке стабилитрон находился в рабочей зоне регулирования.

Для защиты стабилизатора применяются тиристорные схемы защиты или плавкие предохранители.

Резистор Rб рассчитывается по формуле:

Rб = (Uпит — Uном )(Iст + Iн).

Ток стабилитрона Iст выбирается между допустимыми максимальным и минимальным значениями, в зависимости от напряжения на входе Uпит и тока нагрузки Iн.

Выбор стабилитронов

Элементы имеют большой разброс по напряжению стабилизации. Чтобы получить точное значение Uн, стабилитроны подбираются из одной партии. Есть типы с более узким диапазоном параметров. При большой мощности рассеивания элементы устанавливают на радиаторы.

Для расчета параметров стабилитрона необходимы исходные данные, например, такие:

  • Uпит = 12-15 В — напряжение входа;
  • Uст = 9 В — стабилизированное напряжение;
  • Rн = 50-100 мА — нагрузка.

Параметры характерны для устройств с небольшим потреблением энергии.

Для минимального входного напряжения 12 В ток на нагрузке выбирается по максимуму — 100 мА. По закону Ома можно найти суммарную нагрузку цепи:

R = 12 В / 0,1 А = 120 Ом.

На стабилитроне падение напряжения составляет 9 В. Для тока 0,1 А эквивалентная нагрузка составит:

Rэкв = 9 В / 0,1 А = 90 Ом.

Теперь можно определить сопротивление балласта:

Rб = 120 Ом — 90 Ом = 30 Ом.

Оно выбирается из стандартного ряда, где значение совпадает с расчетным.

Максимальный ток через стабилитрон определяется с учетом отключения нагрузки, чтобы он не вышел из строя в случае, если какой-либо провод отпаяется. Падение напряжения на резисторе составит:

UR = 15 — 9 = 6 В.

Затем определяется ток через резистор:

IR = 6/30 = 0,2 А.

Поскольку стабилитрон подключен к нему последовательно, Ic = IR = 0,2 А.

Мощность рассеивания составит P = 0,2∙9 = 1,8 Вт.

По полученным параметрам подбирается подходящий стабилитрон Д815В.

Симметричный стабилитрон

Симметричный диодный тиристор представляет собой переключающий прибор, проводящий переменный ток. Особенностью его работы является падение напряжения до нескольких вольт при включении в диапазоне 30-50 В. Его можно заменить двумя встречно включенными обычными стабилитронами. Устройства применяют в качестве переключающих элементов.

Аналог стабилитрона

Когда не удается подобрать подходящий элемент, используют аналог стабилитрона на транзисторах. Их преимуществом является возможность регулирования напряжения. Для этого можно применять усилители постоянного тока с несколькими ступенями.

На входе устанавливают делитель напряжения с подстроечным резистором R1. Если входное напряжение возрастает, на базе транзистора VT1 оно также увеличивается. При этом растет ток через транзистор VT2, который компенсирует увеличение напряжения, поддерживая тем самым его стабильным на выходе.

Маркировка стабилитронов

Выпускаются стеклянные стабилитроны и стабилитроны в пластиковых корпусах. В первом случае на них наносятся 2 цифры, между которыми располагается буква V. Надпись 9V1 обозначает, что Uст = 9,1 В.

На пластиковом корпусе надписи расшифровываются с помощью даташита, где также можно узнать другие параметры.

Темным кольцом на корпусе обозначается катод, к которому подключается плюс.

Заключение

Стабилитрон — это диод с особыми свойствами. Достоинством стабилитронов является высокий уровень стабилизации напряжения при широком диапазоне изменения рабочего тока, а также простые схемы подключения. Для стабилизации малого напряжения приборы включают в прямом направлении, и они начинают работать как обычные диоды.

Стабилитрон газоразрядный — Справочник химика 21


    Простейшими стабилизаторами параметрического типа на постоянном токе являются схемы, использующие для стабилизации нелинейные характеристики газоразрядных и полупроводниковых стабилитронов. Вольт-амперная характеристика полупроводникового стабилитрона приведена на рис. 1-24,а, стабилитрона тлеющего разряда показана на рис. 1-36. Схема включения газоразрядного стабилитрона показана на рис. 1-37,а, такая же схема включения полупроводникового стабилитрона приведена на рис. 1-37,6. Для приведенных простых схем включения стабилитронов (рис. 1-37,а, б) коэффициент 
[c.82]

    Выпрямленное напряжение можно стабилизировать с помощью газоразрядных стабилитронов (рис. 12 и 44). Например, устройства на лампах МТХ90 могут работать при питании через стабилитроны типов СГШ и СГ4С. Следует заметить, что лампу МТХ90 можно питать переменным сетевым напряжением. Однако для этого нуж- [c.51]

    При стабилизации переменного тока в принципе используются те же стабилитроны, что и при стабилизации постоянных токов и напряжений. Однако при этом следует учитывать, что в случае газоразрядных стабилитронов и опорных диодов при достижении номинального напряжения верхняя часть полуволны синусоидального напряжения срезается. Выходное напряжение при этом будет трапецеидальным, и его амплитуда при колебаниях входного напряжения остается неизменной. Однако крутизна боковых участков полуволны и вследствие этого действующее значение напряжения изменяются. Это устраняется включением особых компенсационных схем [А.2.9, А.2.10]. Включая их непосредственно после ограничителей, можно вновь получить практически синусоидальное напряжение. 

[c.442]

    Однокаскадная схема на газоразрядном стабилитроне обеспечивает стабильность питающего напряжения в пределах 0,5% при токе нагрузки до 10—15 ма. Двухкаскадная схема обеспечивает стабильность около 0,2%. Недостатком стабилизаторов на газоразрядных стабилитронах является высокое рабочее напряжение (не менее 70 в), что вызывает необходимость гасить излишек напряжения и сильно понижать к. п. д. схемы. Кроме того, в некоторых случаях оказывается недостаточной величина отдаваемого тока, а параллельное включение стабилитронов недопустимо. Поэтому в последнее время для питания измерительных схем чаще применяют стабилизаторы на кремниевых стабилитронах. Они имеют низкое рабочее напряжение (единицы вольт) и очень малые размеры. 

[c.153]

    Л2—электрометрические лампы первого балансного каскада Л3, Л4—электронные лампы выходного балансного каскада Л5—газоразрядный стабилитрон реохорд компенсационной схемы йа—сопротивление коррекции шкалы iia—регулировка нуля (точно) R4—регулировка нуля (грубо)  [c.158]

    В схеме рис. 97 измерительной компенсационной схемой является цепь, включающая сопротивления Ri и R . Она питается напряжением, стабилизированным газоразрядным стабилитроном Jls. Переменное сопротивление Ri является реохордом, с которого снимается компенсирующее напряжение. Угол поворота реохорда фиксируется по шкале, имеющей градуировку в милливольтах и единицах pH. Сопротивление R2 служит для коррекции диапазона шкалы. В рабочей схеме прибора (см рис. 108) кроме того имеются переменные сопротивления для коррекции шкалы pH по буферным растворам. [c.160]


    Газоразрядные стабилизаторы. Газоразрядный стабилизатор (стабилитрон) представляет собою лампу с двумя холодными электродами, заполненную аргоном или неоном. При определенном напряжении на электродах стабилитрона в лампе возникает тлеющий разряд, и часть катода начинает светиться. Прп увеличении напряжения площадь свечения возрастает, сопротивление лампы падает и ток, проходящий через нее, увеличивается. Вследствие этого напряжение на стабилитроне, включенном по схеме, изображенной на рис, II.9, остается относительно постоянным при изменениях подводимого напряжения или сопротивления нагрузки в значительных пределах. Допустимые пределы изменения входного напряжения зависят от допустимых пределов изменения тока в стабилитроне, величину которых указывают в паспорте. 
[c.57]

    В измерительных схемах, питаемых от сети, стабилизация анодного напряжения ламп обычно осуществляется при помощи газоразрядного стабилитрона. При этом питание накала ламп производится нестабилизированным током, что в ряде случаев снижает общую стабильность работы прибора. [c.74]

    Газоразрядные стабилизаторы напряжения, или стабилитроны, по своей конструкции и технологии изготовления подобны неоновым лампам. Они имеют увеличенные размеры катода с целью увеличения рабочего тока. Для обеспечения большей стабильности при изготовлении стабилитронов проводятся лучшая очистка исходных материалов и удлиненная до нескольких суток тренировка. [c.21]

    Схема (рис. 36,а) может работать также на стабилитронах любого типа или на многоэлектродных газоразрядных лампах в диодном включении. [c.62]

    Из газоразрядных ламп наиболее широкое применение в реле времени находят неоновые лампы. Кроме них, могут быть использованы стабилитроны и тиратроны. [c.70]

    На рис. 94 показана измерительная схема мостового типа, польз уЯсь которой, можно получить шкалу с пределами разных знаков, т. е. с нулем в середине шкалы, что часто необходимо. Измерительную схему настраивают так же, как и в предыдущем случае,— при помощи сдвоенного переключателя Я (скачками) и переменного сопротивления Я (плавно). Схема питается от стабилизированного выпрямителя на полупроводниковых диодах, а стабилизация выпрямленного напряжения — газоразрядным стабилитроном Л. [c.153]

    Ех—входной сигнал 2—напряжение в аноде первого каскада Я3—напряжение на сетке второго каскада (первая производная входного сигнала) 4—напряжение в аноде второго каскада 5—напряжение на сетке тиратрона (вторая производная входного сигнала) Лх—двойной триод Л2—тиратрон Л ,. Д4—газоразрядные стабилитроны Сх, С2—конденсаторы дифференцнр> ющих контуров Й1, сопротивления дифференцируюищх контуров Рх—электромагнитное реле Рг. КЗ Сз, В—детали схемы, предотвращающей ложные срабатывания сигнализатора. [c.166]

    Поэтому для получения наибольшей чувствительности ускоряюшее напряжение для электронов обычно выбирают порядка 100 в и стабилизируют с помощью газоразрядных стабилитронов с точностью 0,5—1%. [c.94]

    Для определения полной вольт-амперной характеристики газоразрядной лампы ее подключают согласно схеме, представленной на рис. 60. При повышении напряжения источника питания Уа достигается определенное значение Уз, и амперметр покажет наличие тока в цепи (рис. 61). Падение напряжения на лампе будет почти равно напряжению источника питания. С увеличением Ус будет только возрастать ток разряда напряжение на электродах лампы изменяется незначительно. Это — область тихого разряда. При достижении определенной величины тока разряда (точка а) дальнейшее увеличение напряжения питания приведет к падению напряжения на электродах лампы и возрастанию его на балластном сопротивлении. Ток в цепи возрастает. Так будет продолжаться, пока не установится определенная для данной лампы величина тока (точка Ь), соответствующая возникновению тлеющего разряда. Если продолжать повышение напряжения питания, то это приведет лишь к увеличению тока разряда и возрастанию падения напряжения на балластном сопротивлении. Напряжение на электродах лампы будет оставаться почти неизменным. Это свойство тлеющего газового разряда используется в радиотехнике для стабилизации напряжения с помощью стабилитронов (СГ1П, СГ-2С и т. п.). Как только ток разряда достигнет величины, соответствующей точке перегиба с, увеличение Ус приводит к возрастанию и напряжения на электродах лампы, и тока разряда. Наступает аномальный тлеющий разряд, который в точке й скачком переходит в дуговой. При дуговом разряде увеличение напряжения питания приводит к уменьшению падения напряжения на лампе и возрастанию тока разряда (падающая [c.149]

    Полупроводниковые стабилизаторы. Для стабилизации напряжения низковольтных источников тока удобно применять полупроводниковые стабилизаторы. Простейшая схема стабилизацрш с использованием опорного диода (стабилитрона) приведена на рис. И. 15, а. Напряжение к стабилитрону прикладывается в запирающем направлении, поэтому он включается в схему полярностью, обратной по отношению к указанной на корпусе диода. При повышении запирающего напряжения неосновные носители в иоле перехода диода приобретают такую энергию, что могут вызывать лавинообразную ионизацию. Поэтому прп повышении напряжения сила тока через диод резко возрастает и напряжение на диоде, включенном по схеме, показанной на рпс. И.15, а, остается практически постоянным. Такая схема стабилизации работает аналогично схеме с газоразрядным стабилитроном и обеспечивает стабильность выходного напряжения при колебаниях входного напряжения и тока нагрузки. [c.60]


    Применение лампы СГ1П стабилизирует выпрямленное напряжение, подаваемое на конденсатор i. Вместо этого стабилитрона можно также использовать стабилитроны СГ5Б и СГ4С. Неоновую лампу МН5 можно тоже заменить любым газоразрядным диодом [c.71]

ЗАПРЕЩЕННАЯ СХЕМА СТАБИЛИЗАЦИИ | Дмитрий Компанец

Схема стабилизации с помощью неоновых лампочек

Схема стабилизации с помощью неоновых лампочек

Стабилизация напряжения с помощью стабилитронов хорошо знакома многим и основным элементом стабилизации в схемах является стабилитрон. В качестве стабилитрона могут выступать разные радиоэлементы имеющие пороговые свойства. Хотя иногда стабилизаторами становятся и компоненты для этого изначально не предназначенные,- к примеру транзисторы и неоновые лампочки.

Стабилизация напряжения стабилитроном

Стабилизация напряжения стабилитроном

Суть стабилизации пороговыми элементами сводится к пропусканию ими тока при достижении критического напряжения. Именно ток протекающий через стабилитрон стабилизирует напряжение в схеме.
Вот тут как раз и кроется причина возникновения парадоксов и запретных загадок. Слабый стабилитрон пропуская через себя большие токи может легко выйти из строя, а вот увеличить ток и мощность стабилизации можно применив схему с транзистором рассчитанным на пороговые токи стабилизации.

Для увеличения стабилизируемого напряжения применяется последовательное включение стабилитронов

Последовательно включенные стабилитроны

Последовательно включенные стабилитроны

Очень часто я встречаю решение по увеличению мощности тока стабилизации в схемах опубликованных и рассказанных на радиолюбительских сайтах в виде параллельно поставленных стабилитронов. Логически параллельное соединение увеличивает мощность схемы стабилизации, НО практически это в корне не верно.

Да , ставить стабилитроны ПОСЛЕДОВАТЕЛЬНО можно тем самым увеличивая напряжение стабилизации, но паралельно НЕЛЬЗЯ!

В этой схеме ток протекает через обе лампочки

В этой схеме ток протекает через обе лампочки

Простой опыт с неоновыми лампочками включенными по упрощенной схеме ПАРАЛЕЛЬНОГО включения показывает, что ток при превышении заданного напряжения стабилизации будет протекать только через один пороговый элемент в то время как второй просто будет «отдыхать».

В этой схеме будет гореть только одна неоновая лампа

В этой схеме будет гореть только одна неоновая лампа

В результате схема будет работать до поры до времени, но в определенный момент один из стабилитронов просто выйдет из строя сгорев и замкнув цепь питания.

Вывод: Параллельное включение стабилитронов категорически ЗАПРЕЩЕНО!

Выбор стабилитрона

Чтобы подобрать стабилитрон для схемы, показанной на рис. 3, нужно знать диапазон входных напряжений U1 и диапазон изменения нагрузки RН.

Рис. 3. Схема включения стабилитрона.

Для примера рассчитаем сопротивление R и подберём стабилитрон для схемы на рис. 3 со следующими требованиями:

Диапазон входных напряжений, В U1 11…15
Выходное напряжение, В U2 9
Диапазон нагрузок, мА IН 50…100

Такая схема может потребоваться, например, для питания какого-либо устройства с небольшим потреблением от бортовой сети автомобиля.

Один из посетителей сайта нашёл в этой статье ошибку, за что я ему благодарен. Сейчас эта статья исправлена и содержит правильные расчёты.

Итак, для начала рассчитаем значение сопротивления R. Минимальное напряжение на входе равно 11 В. При таком напряжении мы должны обеспечить ток на нагрузке не менее 100 мА (или 0,1 А). Закон Ома позволяет определить сопротивление резистора:

RЦ = U1МИН / IН.МАКС = 11 / 0,1 = 110 Ом
То есть цепь для обеспечения заданного тока на нагрузке должна иметь сопротивление не более 110 Ом.

На стабилитроне падает напряжение 9 В (в нашем случае). Тогда при токе 0,1 А эквивалент нагрузки:

RЭ = U2 / IН.МАКС = 9 / 0,1 = 90 Ом
Тогда, для того чтобы обеспечить на нагрузке ток 0,1 А, гасящий резистор должен иметь сопротивление:
R = RЦ – RЭ = 110 – 90 = 20 Ом
С учётом того, что сам стабилитрон тоже потребляет ток, можно выбрать несколько меньшее сопротивление из стандартного ряда Е24 статью о резисторах). Но, так как стабилитрон потребляет небольшой ток, этим значением в большинстве случаев можно пренебречь.

Теперь определим максимальный ток через стабилитрон при максимальном входном напряжении и отключенной нагрузке. Расчёт нужно выполнять именно при отключенной нагрузке, так как даже если у вас нагрузка будет всегда подключена, нельзя исключить вероятность того, что какой-нибудь проводок отпаяется и нагрузка отключится.

Итак, вычислим падение напряжения на резисторе R при максимальном входном напряжении:

UR.МАКС = U1МАКС – U2 = 15 – 9 = 6 В
А теперь определим ток через резистор R из того же закона Ома:
IR.МАКС = UR.МАКС / R = 6 / 20 = 0,3 А = 300 мА
Так как резистор R и стабилитрон VD включены последовательно, то максимальный ток через резистор будет равен максимальному току через стабилитрон (при отключенной нагрузке), то есть
IR.МАКС = IVD.МАКС = 0,3 А = 300 мА
Нужно ещё рассчитать мощность рассеивания резистора R. Но здесь это мы делать не будем, поскольку данная тема подробно описана в статье Резисторы.

А вот мощность рассеяния стабилитрона рассчитаем:

PМАКС = IVD.МАКС * UСТ = 0,3 * 9 = 2,7 Вт = 2700 мВт
Мощность рассеяния – очень важный параметр, который часто забывают учесть. Если окажется, что мощность рассеяния на стабилитроне превысит максимально допустимую, то это приведёт к перегреву стабилитрона и выходу его из строя. Хотя при этом ток может быть в пределах нормы. Поэтому мощность рассеяния как для гасящего резистора R, так и для стабилитрона VD нужно всегда рассчитывать.

Осталось подобрать стабилитрон по полученным параметрам:

UСТ = 9 В – номинальное напряжение стабилизации
IСТ.МАКС = 300 мА – максимально допустимый ток через стабилитрон
РМАКС = 2700 мВт – мощность рассеяния стабилитрона при IСТ.МАКС

По этим параметрам в справочнике находим подходящий стабилитрон. Для наших целей подойдёт, например, стабилитрон Д815В.

Надо сказать, что этот расчет довольно грубый, так как он не учитывает некоторые параметры, такие, например, как температурные погрешности. Однако в большинстве практических случаев описанный здесь способ подбора стабилитрона вполне подходит.

Стабилитроны серии Д815 имеют разброс напряжений стабилизации. Например, диапазон напряжений Д815В – 7,4…9,1 В. Поэтому, если нужно получить точное напряжение на нагрузке (например, ровно 9 В), то придётся опытным путём подобрать стабилитрон из партии нескольких однотипных. Если нет желания возиться с подбором «методом тыка», то можно выбрать стабилитроны другой серии, например серии КС190. Правда, для нашего случая они не подойдут, поскольку имеют мощность рассеивания не более 150 мВт. Для повышения выходной мощности стабилизатора напряжения можно использовать транзистор. Но об этом как-нибудь в другой раз…

И ещё. В нашем случае получилась довольная большая мощность рассеивания стабилитрона. И хотя по характеристикам для Д815В максимальная мощность 8000 мВт, рекомендуется устанавливать стабилитрон на радиатор, особенно если он работает в сложных условиях (высокая температура окружающей среды, плохая вентиляция и т.п.).

Если необходимо, то ниже вы можете выполнить описанные выше рассчёты для вашего случая

Параметр Значение Единица измерения
Минимальное входное напряжение, U1МИН = В
Максимальное входное напряжение, U1МАКС = В
Выходное напряжение, U2 = В
Минимальный ток нагрузки, IН.МИН = мА
Максимальный ток нагрузки, IН.МАКС = мА
Сопротивление резистора, Ом, R =
Максимальный ток через стабилитрон, IVD.МАКС = мА
Мощность рассеяния R, PR >= мВт
Мощность рассеяния VD, PVD >= мВт

Стабилитрон принцип работы

Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон.

Иногда его еще называют диодом Зенера. На схемах стабилитроны обозначаются примерно так:

Вывод с “кепочкой” называется также как и у диода – катод, а другой вывод – анод.

Стабилитроны выглядят также, как и диоды. На фото ниже, слева  популярный вид современного стабилитрона, а справа один из  образцов Советского Союза.

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:

Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.

Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:

5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта.  Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой

Как проверить стабилитрон

Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого PN-перехода.

Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.

Ну что же, настало время опытов.  В схемах стабилитрон включается последовательно с резистором:

где Uвх – входное напряжение, Uвых.ст.  – выходное стабилизированное напряжение

Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения.  Здесь все элементарно и просто:

Uвх=Uвых.стаб +Uрезистора

Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.

Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл 😉

Итак, собираем схемку.  Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем Блок питания, а справа замеряем мультиметром полученное напряжение:

Теперь внимательно следим за показаниями мультиметра и блока питания:

Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт!  Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.

Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне  5,17 Вольт! Изумительно!

Еще добавляем… Входное напряжение 20 Вольт,  а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт  – это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.

Вольт-амперная характеристика стабилитрона

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:

где

Iпр – прямой ток, А

Uпр  – прямое напряжение, В

Эти два параметра в стабилитроне не используются

Uобр – обратное напряжение, В

Uст – номинальное напряжение стабилизации, В

Iст – номинальный ток стабилизации, А

Номинальный – это значит нормальный параметр, при котором  возможна долгосрочная работа радиоэлемента.

Imax – максимальный ток стабилитрона, А

Imin – минимальный ток стабилитрона, А

Iст, Imax, Iminэто  сила тока, которая течет через стабилитрон при его работе.

Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а  диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.

Как мы видим, при каком-то напряжении Uобр  у нас график начинает падать вниз. В это время в стабилитроне происходит  такая интересная штука,  как пробой. Короче говоря,  он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока  в стабилитроне. Самое  главное – не переборщить силу тока, больше чем Imax, иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим,  при котором сила тока через стабилитрон  находится где-то в середине между максимальным и минимальным его значением.  На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).

Заключение

Раньше, во времена дефицитных деталей и начала расцвета электроники, стабилитрон часто использовался, как ни странно, для стабилизации выходного напряжения блока питания. В старых советских книгах по электронике можно увидеть вот такой участок цепи различных источников питания:

Слева, в красной рамке, я пометил знакомый вам участок цепи блока питания. Здесь мы получаем постоянное напряжение из переменного. Справа же, в зеленой рамке, схема стабилизации ;-).

В настоящее время трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, так как они в разы лучше стабилизируют напряжение и обладают хорошей мощностью рассеивания.

На Али можно взять сразу целый набор стабилитронов, начиная от 3,3 Вольт и до 30 Вольт.  Выбирайте на ваш вкус и цвет.

— изображение 1″ src=»https://yandex.ru/turbo/avatars/get-snippets_images/1064939/386728c1968baee2f787c79506bb6f4f/828×620″>

 

Вывод с “кепочкой” называется также как и у диода – катод, а другой вывод – анод.

Стабилитроны выглядят также, как и диоды. На фото ниже, слева  популярный вид современного стабилитрона, а справа один из  образцов Советского Союза

Если присмотреться поближе к советскому стабилитрону, то можно  увидеть это схематическое обозначение на нем самом, указывающее, где у него находится  катод, а где анод.

Напряжение стабилизации

Самый главный параметр стабилитрона – это конечно же, напряжение стабилизации. Что это за параметр?

Давайте возьмем стакан и будем наполнять его водой…

Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана. Думаю, это  понятно и дошкольнику.

Теперь  по аналогии с электроникой. Стакан – это стабилитрон. Уровень воды в полном до краев стакане – это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом  большой кувшин с водой. Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один – лить воду из кувшина, пробив отверстие в самом кувшине. Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан. Если объяснить языком электроники – кувшин обладает “напряжением” больше, чем “напряжение” стакана.

Так  вот, дорогие читатели,  в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо обязательно сверху. Это значит,  напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:

Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.

Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:

5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта.  Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой

Как проверить стабилитрон

Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого PN-перехода.

Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.

Ну что же, настало время опытов.  В схемах стабилитрон включается последовательно с резистором:

где Uвх – входное напряжение, Uвых.ст.  – выходное стабилизированное напряжение

Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения.  Здесь все элементарно и просто:

Uвх=Uвых.стаб +Uрезистора

Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.

Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл 😉

Итак, собираем схемку.  Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем Блок питания, а справа замеряем мультиметром полученное напряжение:

Теперь внимательно следим за показаниями мультиметра и блока питания:

Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт!  Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.

Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне  5,17 Вольт! Изумительно!

Еще добавляем… Входное напряжение 20 Вольт,  а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт  – это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.

Вольт-амперная характеристика стабилитрона

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:

где

Iпр – прямой ток, А

Uпр  – прямое напряжение, В

Эти два параметра в стабилитроне не используются

Uобр – обратное напряжение, В

Uст – номинальное напряжение стабилизации, В

Iст – номинальный ток стабилизации, А

Номинальный – это значит нормальный параметр, при котором  возможна долгосрочная работа радиоэлемента.

Imax – максимальный ток стабилитрона, А

Imin – минимальный ток стабилитрона, А

Iст, Imax, Iminэто  сила тока, которая течет через стабилитрон при его работе.

Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а  диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.

Как мы видим, при каком-то напряжении Uобр  у нас график начинает падать вниз. В это время в стабилитроне происходит  такая интересная штука,  как пробой. Короче говоря,  он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока  в стабилитроне. Самое  главное – не переборщить силу тока, больше чем Imax, иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим,  при котором сила тока через стабилитрон  находится где-то в середине между максимальным и минимальным его значением.  На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).

Заключение

Раньше, во времена дефицитных деталей и начала расцвета электроники, стабилитрон часто использовался, как ни странно, для стабилизации выходного напряжения блока питания. В старых советских книгах по электронике можно увидеть вот такой участок цепи различных источников питания:

Слева, в красной рамке, я пометил знакомый вам участок цепи блока питания. Здесь мы получаем постоянное напряжение из переменного. Справа же, в зеленой рамке, схема стабилизации ;-).

В настоящее время трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, так как они в разы лучше стабилизируют напряжение и обладают хорошей мощностью рассеивания.

Стабилитрон (диод Зенера)

Принцип работы

Полупроводниковый диод блокирует ток в обратном направлении, но будет страдать от преждевременного пробоя или повреждения, если обратное напряжение, приложенное к нему, станет слишком высоким.

Тем не менее, стабилитрон или «пробойный диод», как их иногда называют, в основном совпадают со стандартным PN-переходным диодом, но они специально разработаны для того, чтобы иметь низкое и заданное обратное напряжение пробоя, которое использует любое подаваемое обратное напряжение к этому.

Стабилитрон ведет себя так же, как обычный общего назначения диод, состоящий из кремния PN — перехода, и, когда смещены в прямом направлении, то есть анод положительный по отношению к его катоду, он ведет себя так же , как обычный диод сигнал, проводящий номинальный ток.

Однако, в отличие от обычного диода, который блокирует любой поток тока через себя при обратном смещении, то есть катод становится более положительным, чем анод, как только обратное напряжение достигает заранее определенного значения, стабилитрон начинает проводить в обратное направление.

Это связано с тем, что когда обратное напряжение, подаваемое на стабилитрон, превышает номинальное напряжение устройства, в полупроводниковом обедненном слое происходит процесс, называемый лавинным пробоем, и через диод начинает течь ток, чтобы ограничить это увеличение напряжения.

Ток, текущий в настоящее время через стабилитрон, резко возрастает до максимального значения схемы (которое обычно ограничивается последовательным резистором), и после достижения этого ток обратного насыщения остается довольно постоянным в широком диапазоне обратных напряжений. Точка напряжения, в которой напряжение на стабилитроне становится стабильным, называется «напряжением стабилитрона» ( Vz ), а для стабилитронов это напряжение может составлять от менее одного вольт до нескольких сотен вольт.

Точка, в которой напряжение стабилитрона запускает ток, протекающий через диод, может очень точно контролироваться (с допустимым отклонением менее 1%) на стадии легирования полупроводниковой конструкции диодов, давая диоду определенное напряжение пробоя стабилитрона Vz например, 4,3 В или 7,5 В. Это напряжение пробоя стабилитрона на кривой IV представляет собой почти вертикальную прямую линию.

Характеристики стабилитрона I-V

Стабилитрон используется в его «обратном смещении» или обратном режиме пробоя, т.е. анод диода подключается к отрицательному питанию. Из приведенной выше кривой характеристик I-V видно, что стабилитрон имеет область обратного смещения почти постоянного отрицательного напряжения независимо от величины тока, протекающего через диод, и остается почти постоянной даже при больших изменениях тока, пока ток стабилитронов остается между током пробоя I Z (мин) и максимальным номинальным током I Z (макс.) .

Эта способность к самоконтролю может быть в значительной степени использована для регулирования или стабилизации источника напряжения от изменений напряжения или нагрузки. Тот факт, что напряжение на диоде в области пробоя практически постоянное, оказывается важной характеристикой стабилитрона, так как его можно использовать в простейших типах устройств с регулятором напряжения.

Функция регулятора состоит в том, чтобы обеспечивать постоянное выходное напряжение для нагрузки, подключенной параллельно с ним, несмотря на пульсацию в напряжении питания или изменение тока нагрузки, стабилитрон продолжит регулировать напряжение до тех пор, пока ток диода не будет падать ниже минимального значения I Z (min) в области обратного пробоя.

Диодный стабилитрон

Стабилитроны могут использоваться для получения стабилизированного выходного напряжения с низкой пульсацией в условиях переменного тока нагрузки. Пропуская небольшой ток через диод от источника напряжения через подходящий резистор ограничения тока R S, стабилитрон будет проводить ток, достаточный для поддержания падения напряжения V out .

Мы помним из предыдущих уроков, что выходное напряжение постоянного тока от полу- или двухполупериодных выпрямителей содержит пульсации, наложенные на напряжение постоянного тока, и что при изменении значения нагрузки изменяется и среднее выходное напряжение. Подключив простую схему стабилитрона, как показано ниже, к выходу выпрямителя, можно получить более стабильное выходное напряжение.

Резистор R S соединен последовательно с стабилитроном для ограничения тока, протекающего через диод с источником напряжения, при этом V S подключается через комбинацию. Стабилизированное выходное напряжение V out берется через стабилитрон. Стабилитрон соединен с его катодной клеммой, подключенной к положительной шине источника постоянного тока, поэтому он имеет обратное смещение и будет работать в своем состоянии пробоя. Резистор R S выбран таким образом, чтобы ограничить максимальный ток, протекающий в цепи.

При отсутствии нагрузки, подключенной к цепи, ток нагрузки будет равен нулю I L  = 0 , и весь ток цепи проходит через стабилитрон, который, в свою очередь, рассеивает свою максимальную мощность. Также небольшое значение последовательного резистора RS приведет к большему току диода, когда сопротивление нагрузки R L подключено, и будет большим, так как это увеличит требования к рассеиваемой мощности диода, поэтому следует соблюдать осторожность при выборе подходящего значения серии сопротивление, чтобы максимальная номинальная мощность стабилитрона не превышалась в условиях отсутствия нагрузки или высокого импеданса.

Нагрузка подключается параллельно с стабилитроном, поэтому напряжение на R L всегда совпадает с напряжением на стабилитроне V R  = V Z. Существует минимальный ток стабилитрона, для которого эффективна стабилизация напряжения, и ток стабилитрона должен всегда оставаться выше этого значения, работающего под нагрузкой в ​​пределах его области пробоя. Верхний предел тока, конечно, зависит от номинальной мощности устройства. Напряжение питания V S должно быть больше, чем V Z .

Одна небольшая проблема с цепями стабилизатора стабилитрона состоит в том, что диод может иногда генерировать электрический шум в верхней части источника постоянного тока, когда он пытается стабилизировать напряжение. Обычно это не является проблемой для большинства устройств, но может потребоваться добавление развязывающего конденсатора большого значения на выходе стабилитрона, чтобы обеспечить дополнительное сглаживание.

Подведем небольшой итог. Стабилитрон всегда работает в обратном смещенном состоянии. Схема регулятора напряжения может быть разработана с использованием стабилитрона для поддержания постоянного выходного напряжения постоянного тока на нагрузке, несмотря на изменения входного напряжения или изменения тока нагрузки. Стабилизатор напряжения Зенера состоит из токоограничивающего резистора R S, соединенного последовательно с входным напряжением V S, с стабилитроном, подключенным параллельно с нагрузкой R L в этом состоянии с обратным смещением. Стабилизированное выходное напряжение всегда выбирается равным напряжению пробоя V Z диода.

Напряжение стабилитрона

Помимо создания единого стабилизированного выходного напряжения, стабилитроны могут также быть соединены друг с другом последовательно, наряду с обычными диодами сигнала кремния для получения множества различных выходных значений опорного напряжения, как показано ниже.

Стабилитроны, соединенные последовательно

Значения отдельных стабилитронов могут быть выбраны в соответствии с применением, в то время как кремниевый диод всегда будет падать примерно на 0,6 — 0,7 вольт в режиме прямого смещения. Напряжение питания V > IN следует, конечно, выше , чем наибольший выход опорного напряжения , а в нашем примере выше, это 19v.

Типичный стабилитрон для общих электронных схем — 500 мВт серии BZX55 или более крупный 1,3 Вт серии BZX85, в которой напряжение стабилитрона задается, например, как C7V5 для диода 7,5 В, что дает эталонный номер диода BZX55C7V5 .

Стабилитроны серии 500 МВт доступны в диапазоне от 2,4 до 100 Вольт и обычно имеют ту же последовательность значений, что и для серии резисторов 5% (E24), а индивидуальные номинальные напряжения для этих небольших, но очень полезных диодов приведены в таблица ниже.

Стандартные напряжения стабилитрона

Мощность стабилитрона BZX55 500 мВт

2.4V 2.7V 3.0V 3.3V 3.6V 3.9V 4.3V 4.7V
5.1V 5.6V 6.2V 6,8 В 7.5V 8.2V 9.1V 10V
11V 12V 13V 15V 16V 18V 20V 22V
24V 27В 30V 33V 36V 39V 43V 47V

Мощность стабилитрона BZX85 1,3 Вт

3.3V 3.6V 3.9V 4.3V 4.7V 5.1V 5,6 6.2V
6,8 В 7.5V 8.2V 9.1V 10V 11V 12V 13V
15V 16V 18V 20V 22V 24V 27В 30V
33V 36V 39V 43V 47V 51V 56V 62V

Схемы стабилитрона

До сих пор мы рассматривали, как стабилитрон можно использовать для регулирования источника постоянного тока, но что если бы входной сигнал был не постоянный ток, а переменный сигнал переменного тока, как бы стабилитрон реагировал на постоянно меняющийся сигнал?

Цепи диодного ограничения и зажима — это схемы, которые используются для формирования или изменения формы входного сигнала переменного тока (или любой синусоиды), создавая выходной сигнал различной формы в зависимости от схемы расположения. Цепи диодного ограничителя также называют ограничителями, поскольку они ограничивают или отсекают положительную (или отрицательную) часть входного сигнала переменного тока. Поскольку схемы ограничителя Зенера ограничивают или обрезают часть формы волны через них, они в основном используются для защиты схемы или в схемах формирования формы волны.

Например, если бы мы хотели обрезать выходной сигнал при + 7,5 В, мы бы использовали стабилитрон 7,5 В. Если выходной сигнал пытается превысить предел 7,5 В, стабилитрон «обрезает» избыточное напряжение на входе, создавая сигнал с плоским верхом, сохраняя при этом выходную постоянную на уровне + 7,5 В. Обратите внимание, что в состоянии прямого смещения стабилитрон все еще является диодом, и когда выходной сигнал переменного тока становится отрицательным ниже -0,7 В, стабилитрон включается, как и любой нормальный кремниевый диод, и обрезает выход при -0,7 В, как показано ниже.

Прямоугольная волна

Подключенные друг к другу стабилитроны могут быть использованы в качестве регулятора переменного тока, производящего то, что в шутку называют «генератор прямоугольной волны бедняка». Используя эту схему, мы можем обрезать осциллограмму между положительным значением + 8,2 В и отрицательным значением -8,2 В для стабилитрона 7,5 В.

Так, например, если бы мы хотели обрезать выходной сигнал между двумя различными минимальными и максимальными значениями, скажем, + 8 В и -6 В, мы просто использовали бы два стабилитрона с разными номиналами. Обратите внимание, что выход фактически обрезает сигнал переменного тока между + 8,7 В и -6,7 В из-за добавления напряжения прямого диода смещения.

Другими словами, пиковое напряжение составляет 15,4 вольт вместо ожидаемых 14 вольт, поскольку прямое падение напряжения смещения на диоде добавляет еще 0,7 вольт в каждом направлении.

Этот тип конфигурации ограничителя довольно распространен для защиты электронной схемы от перенапряжения. Два стабилитрона, как правило, размещаются на входных клеммах источника питания, и во время нормальной работы один из стабилитронов имеет значение «ВЫКЛ», и эти диоды практически не влияют. Однако, если форма сигнала входного напряжения превышает его предел, тогда стабилитрон включается и включает вход для защиты схемы.

Характеристики, маркировка и принцип работы стабилитрона

Полупроводниковый стабилитрон, или диод Зенера, представляет собой диод особого типа. При прямом включении обычный диод и стабилитрон ведут себя аналогично. Разница между ними проявляется при обратном включении. Обычный диод при подаче обратного напряжения и превышении его номинального значения просто выходит из строя. А  для стабилитрона подключение обратного напряжения и его рост до установленной точки является штатным режимом. При достижении определенной точки обратного напряжения в стабилитроне возникает обратимый пробой. Через устройство начинает течь ток. До наступления пробоя стабилитрон находится в нерабочем состоянии и через него протекает только малый ток утечки.  На электросхемах стабилитрон обозначается как стрелка-указатель, на конце которой имеет черточка, обозначающая запирание. Стрелка указывает направление тока. Буквенное обозначение на схемах – VD.

Устройство

Полупроводниковые стабилитроны пришли на смену морально устаревшим стабилитронам тлеющего разряда – ионным газоразрядным электровакуумным приборам. Для изготовления стабилитронов используются кремниевые или германиевые кристаллы (таблетки) с проводимостью n-типа, в которые добавляют примеси сплавным или диффузно-сплавным способом. Для получения электронно-дырочного p-n перехода используются акцепторные примеси, в основном алюминий. Кристаллы заключают в корпуса из полимерных материалов, металла или стекла.

Кремниевые сплавные стабилитроны Д815 (А-И) выпускаются в металлическом герметичном корпусе, который является положительным электродом. Такие элементы имеют широкий интервал рабочих температур – от -60°C до +100°C. Кремниевые сплавные двуханодные стабилизирующие диоды КС175А, КС182А, КС191А, КС210Б, КС213Б выпускают в пластмассовом корпусе. Кремниевые сплавные термокомпенсированные детали КС211 (Б-Д), используемые в качестве источников опорного напряжения, имеют пластмассовый корпус.

SMD стабилитроны, то есть миниатюрные компоненты, предназначенные для поверхностного монтажа, изготавливаются в основном в стеклянных и пластиковых корпусах. Такие элементы могут выпускаться с двумя и тремя выводами. В последнем случае третий вывод является «пустышкой», никакой смысловой нагрузки не несет и предназначается только для надежной фиксации детали на печатной плате.

Принцип действия

Стабилитрон был открыт американским физиком Кларенсом Мелвином Зенером, именем которого его и назвали. Электрический пробой p-n перехода может быть обусловлен туннельным пробоем (в этом случае пробой носит название Зенеровского), лавинным пробоем, пробоем в результате тепловой неустойчивости, который наступает из-за разрушительного саморазогрева токами утечки.

И инженеры конструируют эти элементы таким образом, чтобы возникновение туннельного и/или лавинного пробоя произошло задолго до того, как в них возникнет вероятность теплового пробоя.

Величина напряжения пробоя зависит от концентрации примесей и способа легирования p-n-перехода. Чем больше концентрация примесей и чем выше их градиент в переходе, тем ниже обратное напряжение, при котором образуется пробой.

  • Туннельный (зенеровский) пробой появляется в полупроводнике в тех случаях, когда напряженность электрического поля в p-n зоне равна 106 В/см. Такая высокая напряженность может возникнуть только в высоколегированных диодах. При напряжениях пробоя, находящихся в диапазоне 4,5…6,7 В, сосуществуют туннельный и лавинный эффекты, а вот при напряжении пробоя менее 4,5 В остается только туннельный эффект.
  • В стабилитронах с небольшими уровнями легирования или меньшими градиентами легирующих добавок присутствует только лавинный механизм пробоя, который появляется при напряжении пробоя примерно 4,5 В. А при напряжении выше 7,2 В остается только лавинный эффект, а туннельный полностью исчезает.

Как было сказано ранее, при прямом подключении стабилитрон при прямом включении ведет себя так же, как и обычный диод, – он пропускает ток. Различия между ними возникают при обратном подключении.

Обычный диод при обратном подключении запирает ток, а стабилитрон при достижении обратным напряжением величины, которая называется напряжением стабилизации, начинает пропускать ток в обратном направлении. Это объясняется тем, что при подаче на стабилитрон напряжения, которое превышает U ном. устройства, в полупроводнике возникает процесс, называемый пробоем. Пробой может быть туннельным, лавинным, тепловым. В результате пробоя ток, протекающий через стабилитрон, возрастает до максимального значения, ограниченного резистором. После достижения напряжения пробоя ток остается примерно постоянным в широком диапазоне обратных напряжений. Точка, в которой напряжение запускает ток, может очень точно устанавливаться в процессе производства легированием. Поэтому каждому элементу присваивают определенное напряжение пробоя (стабилизации).

Стабилитрон используется только в режиме «обратного смещения», то есть его анод подключается к «-» источника питания. Способность стабилитрона запускать обратный ток при достижении напряжения пробоя применяется для регулирования и стабилизации напряжения при изменении напряжения питания или подключенной нагрузки. Использование стабилитрона позволяет обеспечить постоянное выходное напряжение для подключенного потребителя при перепадах напряжения ИП или меняющемся токе потребителя.

Вольт-амперная характеристика

ВАХ стабилитрона, как и обычного диода, имеет две ветви – прямую и обратную. Прямая ветвь является рабочим режимом для традиционного диода, а обратная характеризует работу стабилитрона. Стабилитрон называют опорным диодом, а источник напряжения, в схеме которого есть стабилитрон, называют опорным.

На рабочей обратной ветви опорного диода выделяют три основные значения обратного тока:

  • Минимальное. При силе тока, которая меньше минимального значения, стабилитрон остается закрытым.
  • Оптимальное. При изменении тока в широких пределах между точками 1 и 3 значение напряжения меняется несущественно.
  • Максимальное. При подаче тока выше максимальной величины опорный диод перегреется и выйдет из строя. Максимальное значение тока ограничивается максимально допустимой рассеиваемой мощностью, которая очень зависит от внешних температурных условий.

Области применения

Основная область применения этих элементов – стабилизация постоянного напряжения в маломощных ИП или в отдельных узлах, мощность которых не более десятков ватт. С помощью опорных диодов обеспечивают нормальный рабочий режим транзисторов, микросхем, микроконтроллеров.

В стабилизаторах простой конструкции стабилитрон является одновременно источником опорного напряжения и регулятором. В более сложных конструкциях стабилитрон служит только источником опорного напряжения, а для силового регулирования применяется внешний силовой транзистор.

Термокомпенсированные стабилитроны и детали со скрытой структурой востребованы в качестве дискретных и интегральных источников опорного напряжения. Для защиты электрической аппаратуры от перенапряжений разработаны импульсные лавинные стабилитроны. Для защиты входов электрических приборов и затворов полевых транзисторов в схему устанавливают рядовые маломощные стабилитроны. Полевые транзисторы с изолированным затвором (МДП) изготавливаются с одним кристаллом, на котором расположены: защитный стабилитрон и силовой транзистор.

Основные характеристики

В паспорте стабилизирующего диода указывают следующие параметры:

  • Номинальное напряжение стабилизации Uст. Этот параметр выбирает производитель устройства.
  • Диапазон рабочих токов. Минимальный ток – величина тока, при которой начинается процесс стабилизации. Максимальный ток – значение, выше которого устройство разрушается.
  • Максимальная мощность рассеивания. В маломощных элементах это паспортная величина. В паспортах мощных стабилитронов для расчета условий охлаждения производитель указывает: максимально допустимую температуру полупроводника и коэффициент теплового сопротивления корпуса.

Помимо параметров, указываемых в паспорте, стабилитроны характеризуются и другими величинами, среди которых:

  • Дифференциальное сопротивление. Это свойство определяет нестабильность устройства по напряжению питания и по току нагрузки. Первый недостаток устраняется запитыванием стабилизирующего диода от источника постоянного тока, а второй – включением между стабилитроном и нагрузкой буферного усилителя постоянного тока с эмиттерным повторителем.
  • Температурный коэффициент напряжения. В соответствии со стандартом эта величина равна отношению относительного изменения напряжения стабилизации к абсолютному изменению наружной температуры. В нетермостабилизированных стабилитронах при нагреве от +25°C до +125°C напряжение стабилизации сдвигается на 5-10% от первоначального значения.
  • Дрейф и шум. Эти характеристики для обычных стабилитронов не определяются. Для прецизионных устройств они являются очень важными свойствами. В обычных (непрецизионных) стабилитронах шум создают: большое количество посторонних примесей и дефекты кристаллической решетки в области p-n перехода. Способы снижения шума (если в этом есть необходимость): защитная пассивация оксидом или стеклом (примеси направляются вглубь кристалла) или перемещением вглубь кристалла самого p-n-перехода. Второй способ является более радикальным. Он востребован в диодах с низким уровнем шума со скрытой структурой.

Способы включения – последовательное и параллельное

На детали импортного производства в сопроводительных документах ситуации, при которых возможно последовательное или параллельное соединение, не регламентируются. В документации на отечественные опорные диоды можно встретить два указания:

  • В приборах маленькой и средней мощности можно последовательно или параллельно подсоединять любое количество односерийных стабилитронов.
  • В приборах средней и значительной мощности можно последовательно соединять любое число стабилизирующих диодов единой серии. При параллельном соединении необходимо произвести расчеты. Общая мощность рассеивания всех параллельно подсоединенных стабилитронов не должна быть выше аналогичного показателя одной детали.

Допускается последовательное подключение опорных диодов разных серий в том случае, если рабочие токи созданной цепи не превышают паспортные токи стабилизации для каждой серии, установленной в схеме.

На практике для умножения напряжения стабилизации чаще всего применяют последовательное соединение двух-трех стабилитронов. К этой мере прибегают в том случае, если не удалось достать деталь на нужное напряжение или необходимо создать высоковольтный стабилитрон. При последовательном соединении напряжение отдельных элементов суммируется. В основном этот вид соединения используется при сборке высоковольтных стабилизаторов.

Параллельное соединение деталей служит для того, чтобы повышать ток и мощность. Однако на практике этот вид соединения применяется редко, поскольку различные экземпляры опорных диодов даже одного типа не имеют совершенно одинаковых напряжений стабилизации. Поэтому при параллельном соединении разряд возникнет только в детали с наименьшим напряжением стабилизации, а в остальных пробой не произойдет. Если пробой и возникает, то одни стабилитроны в такой цепи будут работать с недогрузкой, а другие с перегрузкой.

Для стабилизации переменного напряжения стабилитроны соединяются последовательно и встречно. В первый полупериод синусоиды переменного тока один элемент работает как обычный диод, а второй выполняет функции стабилитрона. Во втором полупериоде элементы меняются функциями. Форма выходного напряжения отличается от входного. Ее конфигурация напоминает трапецию. Это связано с тем, что напряжение, превышающее напряжение стабилизации, будет отсекаться и верхушки синусоиды будут срезаны. Последовательное и встречное соединение стабилитронов может применяться в термостабилизированном стабилитроне.

Составные стабилитроны

Составной стабилитрон – устройство, применяемой в ситуациях, когда необходимы токи и мощность большего значения, чем это допускают технические условия. В этом случае между стабилизирующим диодом и нагрузкой подсоединяют буферный усилитель постоянного тока. В схеме коллекторный переход транзистора включен параллельно стабилизирующему диоду, а эммиттерный переход – последовательно.

Схема обычного составного стабилитрона не предназначена для применения на прямом токе. Но добавление диодного моста превращает составной стабилитрон в систему двойного действия, которая может работать и при прямом, и при обратном токе. Такие стабилитроны еще называют двойными или двуханодными. Стабилитроны, которые могут работать с напряжением только одной полярности, называют несимметричными. А составные стабилитроны, дееспособные при любом направлении тока, называют симметричными.

Виды стабилитронов

На современном рынке электроники имеется широкий ассортимент стабилитронов, адаптированных к определенным условиям применения.

Прецизионные

Эти устройства обеспечивают высокую стабильность напряжения на выходе. К ним предъявляются дополнительные требования к временной нестабильности напряжения и температурного коэффициента напряжения. К прецизионным относятся устройства:

  • Термокомпенсированные. В схему термокомпенсированного стабилитрона входят последовательно соединенные: стабилитрон номинальным напряжением 5,6 В (с плюсовым значением температурного коэффициента) и прямоосвещенный диод (с минусовым коэффициентом). При последовательном соединении этих элементов происходит взаимная компенсация температурных коэффициентов. Вместо диода в схеме может использоваться второй стабилитрон, включаемый последовательно и встречно.
  • Со скрытой структурой. Ток пробоя в обычном стабилитроне сосредотачивается в приповерхностном кремниевом слое, где находится максимальное количество посторонних примесей и дефектов кристаллической решетки. Эти несовершенства конструкции провоцируют шум и нестабильную работу. В деталях со скрытой структурой ток пробоя «загоняют» внутрь кристалла путем формирования глубокого островка p-типа проводимости.   

Быстродействующие

Для них характерны: низкое значение барьерной емкости, всего десятки пикофарад, и краткий период переходного процесса (наносекунды). Такие особенности позволяют опорному диоду ограничивать и стабилизировать кратковременные импульсы напряжения.

Стабилизирующие диоды могут быть рассчитаны на напряжение стабилизации от нескольких вольт до нескольких сотен вольт. Высоковольтные стабилитроны устанавливаются на специальные охладители, способные обеспечить нужный теплообмен и уберечь элемент от перегрева и последующего разрушения.

Регулируемые стабилитроны

При изготовлении стабилизированных блоков питания необходимый стабилитрон может отсутствовать. В этом случае собирают схему регулируемого стабилитрона.

Нужное напряжение стабилизирующего диода подбирают при помощи резистора R1. Для настройки схемы на место резистора R1 подключают переменный резистор номиналом 10 кОм. После получения нужного значения напряжения определяют полученное сопротивление и устанавливают на постоянное место резистор нужного номинала. Для этой схемы можно применить транзисторы КТ342А, КТ3102А.

Способы маркировки

На корпусе детали имеется буквенная или буквенно-цифровая маркировка, которая характеризует электрические свойства и назначение устройства. Различают два типа маркировки. Детали в стеклянном корпусе маркируются привычным образом. На поверхности элемента пишут напряжение стабилизации с использованием буквы V, которая выполняет функцию десятичной запятой. Маркировка из четырех цифр и буквы в конце менее понятна. Расшифровать ее можно только с помощью даташита.

Еще один способ обозначения стабилизирующих диодов – цветовая маркировка. Часто применяется японский вариант, который представляет собой два или три цветных кольца. При наличии двух колец, каждое из них обозначает определенную цифру. Если второе кольцо нанесено в удвоенном варианте, то это означает, что между первой и второй цифрой надо поставить запятую.

Как отличить стабилитрон от обычного диода

Оба эти элемента имеют схожее обозначение на схеме. На практике отличить стабилитрон от обычного диода  и даже узнать его номинал, если оно не более 35 В, можно с помощью приставки к мультиметру.

Схема приставки к мультиметру

Для выполнения генератора с широтно-импульсной модуляцией используется специализированная микросхема MC34063. Чтобы обеспечить гальваническую развязку между ИП и измерительной частью схемы напряжение контролируют на первичной обмотке трансформатора. Это позволяет сделать выпрямитель на VD2. Точка стабилизации выходного напряжения устанавливается с помощью резистора R3. Напряжение на конденсаторе С4 – примерно 40 В. Стабилизатор тока А2 и проверяемый опорный диод составляют параметрический стабилизатор, а мультиметр, подключенный к выводам схемы, позволяет определить напряжение стабилитрона.

Если диод подключить в обратной полярности (анод к «-», а катод к «+»), то мультиметр для обычного диода покажет 40 В, а для стабилитрона – напряжение стабилизации.

Для определения работоспособности стабилитрона с известным номиналом используют простую схему, состоящую из источника питания и токоограничительного резистора на 300…500 Ом. В этом случае с помощью мультиметра определяют не сопротивление перехода, а напряжение. Включают элементы, как показано на схеме, и меряют напряжение на стабилитроне.

Медленно поднимают напряжение блока питания. На значении напряжения стабилизации напряжение на стабилитроне должно прекратить свой рост. Если это произошло, значит, элемент исправен. Если при последующем увеличении напряжения ИП диод не начинает стабилизировать, значит, он не исправен.

Как правильно подобрать стабилитрон?

Стабилитроны относятся к стабилизаторам небольшой мощности. Поэтому их необходимо подбирать так, чтобы через них без перегрева мог проходить весь ток нагрузки плюс минимальный ток стабилизации.

Для правильного выбора стабилитрона для электрической схемы необходимо знать следующие параметры: минимальное и максимальное входное напряжение, напряжение на выходе, минимальный и максимальный ток нагрузки. Напряжение стабилизации стабилитрона равно выходному напряжению. А рассчитать максимальный ток, который может пройти через стабилитрон в конкретной схеме, и мощность рассеивания при максимальном токе, лучше всего с помощью онлайн-калькулятора. 

Содержание драгоценных металлов в стабилитронах

В стабилитронах, как и в других полупроводниках – обычных диодах, тиристорах, варикапах, из драгоценных металлов содержится, в основном, серебро, в некоторых – золото. Конкретное количество указывается в специальных таблицах. Содержание палладия и платины, даже если они и присутствуют в полупроводниках, обычно не указывается, поскольку их концентрация ничтожно мала.

Стабилитрон — это что такое и для чего он нужен?

Стабилитрон — это полупроводниковый диод с уникальными свойствами. Если обычный полупроводник при обратном включении является изолятором, то он выполняет эту функцию до определенного роста величины приложенного напряжения, после чего происходит лавинообразный обратимый пробой. При дальнейшем увеличении протекающего через стабилитрон обратного тока напряжение продолжает оставаться постоянным за счет пропорционального уменьшения сопротивления. Таким путем удается добиться режима стабилизации.

В закрытом состоянии через стабилитрон сначала проходит небольшой ток утечки. Элемент ведет себя как резистор, величина сопротивления которого велика. При пробое сопротивление стабилитрона становится незначительным. Если дальше продолжать повышать напряжение на входе, элемент начинает греться и при превышении током допустимой величины происходит необратимый тепловой пробой. Если дело не доводить до него, при изменении напряжения от нуля до верхнего предела рабочей области свойства стабилитрона сохраняются.

Когда напрямую включается стабилитрон, характеристики не отличаются от диода. При подключении плюса к p-области, а минуса — к n-области сопротивление перехода мало и ток через него свободно протекает. Он нарастает с увеличением входного напряжения.

Стабилитрон — это особый диод, подключаемый большей частью в обратном направлении. Элемент сначала находится в закрытом состоянии. При возникновении электрического пробоя стабилитрон напряжения поддерживает его постоянным в большом диапазоне тока.

На анод подается минус, а на катод — плюс. За пределами стабилизации (ниже точки 2) происходит перегрев и повышается вероятность выхода элемента из строя.

Характеристики

Параметры стабилитронов следующие:

  • Uст — напряжение стабилизации при номинальном токе Iст;
  • Iст min — минимальный ток начала электрического пробоя;
  • Iст max — максимальный допустимый ток;
  • ТКН — температурный коэффициент.

В отличие от обычного диода, стабилитрон — это полупроводниковое устройство, у которого на вольт-амперной характеристике области электрического и теплового пробоя достаточно далеко расположены друг от друга.

С максимально допустимым током связан параметр, часто указываемый в таблицах — мощность рассеивания:

Pmax = Iст max∙ Uст.

Зависимость работы стабилитрона от температуры может быть как с положительным ТКН, так и отрицательным. При последовательном подключении элементов с разными по знакам коэффициентами создаются прецизионные стабилитроны, не зависящие от нагрева или охлаждения.

Схемы включения

Типовая схема простого стабилизатора, состоит из балластного сопротивления Rб и стабилитрона, шунтирующего нагрузку.

В некоторых случаях происходит нарушение стабилизации.

  1. Подача на стабилизатор большого напряжения от источника питания при наличии на выходе фильтрующего конденсатора. Броски тока при его зарядке могут вызвать выход из строя стабилитрона или разрушение резистора Rб.
  2. Отключение нагрузки. При подаче на вход максимального напряжения ток стабилитрона может превысить допустимый, что приведет к его разогреву и разрушению. Здесь важно соблюдать паспортную область безопасной работы.
  3. Сопротивление Rб подбирается небольшим, чтобы при минимально возможной величине напряжения питания и максимально допустимом токе на нагрузке стабилитрон находился в рабочей зоне регулирования.

Для защиты стабилизатора применяются тиристорные схемы защиты или плавкие предохранители.

Резистор Rб рассчитывается по формуле:

Rб = (Uпит — Uном )(Iст + Iн).

Ток стабилитрона Iст выбирается между допустимыми максимальным и минимальным значениями, в зависимости от напряжения на входе Uпит и тока нагрузки Iн.

Выбор стабилитронов

Элементы имеют большой разброс по напряжению стабилизации. Чтобы получить точное значение Uн, стабилитроны подбираются из одной партии. Есть типы с более узким диапазоном параметров. При большой мощности рассеивания элементы устанавливают на радиаторы.

Для расчета параметров стабилитрона необходимы исходные данные, например, такие:

  • Uпит = 12-15 В — напряжение входа;
  • Uст = 9 В — стабилизированное напряжение;
  • Rн = 50-100 мА — нагрузка.

Параметры характерны для устройств с небольшим потреблением энергии.

Для минимального входного напряжения 12 В ток на нагрузке выбирается по максимуму — 100 мА. По закону Ома можно найти суммарную нагрузку цепи:

R∑ = 12 В / 0,1 А = 120 Ом.

На стабилитроне падение напряжения составляет 9 В. Для тока 0,1 А эквивалентная нагрузка составит:

Rэкв = 9 В / 0,1 А = 90 Ом.

Теперь можно определить сопротивление балласта:

Rб = 120 Ом — 90 Ом = 30 Ом.

Оно выбирается из стандартного ряда, где значение совпадает с расчетным.

Максимальный ток через стабилитрон определяется с учетом отключения нагрузки, чтобы он не вышел из строя в случае, если какой-либо провод отпаяется. Падение напряжения на резисторе составит:

UR = 15 — 9 = 6 В.

Затем определяется ток через резистор:

IR = 6/30 = 0,2 А.

Поскольку стабилитрон подключен к нему последовательно, Ic = IR = 0,2 А.

Мощность рассеивания составит P = 0,2∙9 = 1,8 Вт.

По полученным параметрам подбирается подходящий стабилитрон Д815В.

Симметричный стабилитрон

Симметричный диодный тиристор представляет собой переключающий прибор, проводящий переменный ток. Особенностью его работы является падение напряжения до нескольких вольт при включении в диапазоне 30-50 В. Его можно заменить двумя встречно включенными обычными стабилитронами. Устройства применяют в качестве переключающих элементов.

Аналог стабилитрона

Когда не удается подобрать подходящий элемент, используют аналог стабилитрона на транзисторах. Их преимуществом является возможность регулирования напряжения. Для этого можно применять усилители постоянного тока с несколькими ступенями.

На входе устанавливают делитель напряжения с подстроечным резистором R1. Если входное напряжение возрастает, на базе транзистора VT1 оно также увеличивается. При этом растет ток через транзистор VT2, который компенсирует увеличение напряжения, поддерживая тем самым его стабильным на выходе.

Маркировка стабилитронов

Выпускаются стеклянные стабилитроны и стабилитроны в пластиковых корпусах. В первом случае на них наносятся 2 цифры, между которыми располагается буква V. Надпись 9V1 обозначает, что Uст = 9,1 В.

На пластиковом корпусе надписи расшифровываются с помощью даташита, где также можно узнать другие параметры.

Темным кольцом на корпусе обозначается катод, к которому подключается плюс.

Диод является одной из разновидностей приборов, сконструированных на полупроводниковой основе. Обладает одним p-n переходом, а также анодным и катодным выводом. В большинстве случаев он предназначен для модуляции, выпрямления, преобразования и иных действий с поступающими электрическими сигналами.

Принцип работы:

  1. Электрический ток воздействует на катод, подогреватель начинает накаливаться, а электрод испускать электроны.
  2. Между двумя электродами происходит образование электрического поля.
  3. Если анод обладает положительным потенциалом, то он начинает притягивать электроны к себе, а возникшее поле является катализатором данного процесса. При этом, происходит образование эмиссионного тока.
  4. Между электродами происходит образование пространственного отрицательного заряда, способного помешать движению электронов. Это происходит, если потенциал анода оказывается слишком слабым. В таком случае, частям электронов не удается преодолеть воздействие отрицательного заряда, и они начинают двигаться в обратном направлении, снова возвращаясь к катоду.
  5. Все электроны, которые достигли анода и не вернулись к катоду, определяют параметры катодного тока. Поэтому данный показатель напрямую зависит от положительного анодного потенциала.
  6. Поток всех электронов, которые смогли попасть на анод, имеет название анодный ток, показатели которого в диоде всегда соответствуют параметрам катодного тока. Иногда оба показателя могут быть нулевыми, это происходит в ситуациях, когда анод обладает отрицательным зарядом. В таком случае, возникшее между электродами поле не ускоряет частицы, а, наоборот, тормозит их и возвращает на катод. Диод в таком случае остается в запертом состоянии, что приводит к размыканию цепи.

//www.youtube.com/embed/NqCaJhS0HGU?feature=oembed&wmode=opaque

Устройство

Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

  1. Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
  2. Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
  3. Внутри катода косвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
  4. Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
  5. Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
  6. Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

Назначение

Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:

  1. Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
  2. Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
  3. Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
  4. Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
  5. Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.

Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.

Прямое включение диода

На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.

Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:

  1. Под воздействием напряжения от внешнего источника, в p-n-переходе сформируется электрическое поле, при этом его направление будет противоположным относительно внутреннего диффузионного поля.
  2. Напряжение поля значительно снизится, что вызовет резкое сужение запирающего слоя.
  3. Под воздействием этих процессов значительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
  4. Показатели тока дрейфа во время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
  5. Электроны обладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
  6. Отсутствие равновесия и повышенное число неосновных носителей заставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
  7. Полупроводник при этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.

Обратное включение диода

Теперь будет рассмотрен другой способ включения, во время которого изменяется полярность внешнего источника, от которого происходит передача напряжения:

  1. Главное отличие от прямого включения заключается в том, что создаваемое электрическое поле будет обладать направлением, полностью совпадающим с направлением внутреннего диффузионного поля. Соответственно, запирающий слой будет уже не сужаться, а, наоборот, расширяться.
  2. Поле, находящееся в p-n-переходе, будет оказывать ускоряющий эффект на целый ряд неосновных носителей заряда, по этой причине, показатели дрейфового тока останутся без изменений. Он будет определять параметры результирующего тока, который проходит через p-n-переход.
  3. По мере роста обратного напряжения, электрический ток, протекающий через переход, будет стремиться достичь максимальных показателей. Он имеет специальное название – ток насыщения.
  4. В соответствии с экспоненциальным законом, с постепенным увеличением температуры будут увеличиваться и показатели тока насыщения.

Прямое и обратное напряжение

Напряжение, которое оказывает воздействие на диод, разделяют по двум критериям:

  1. Прямое напряжение – это то, при котором происходит открытие диода и начинается прохождение через него прямого тока, при этом показатели сопротивления прибора являются крайне низкими.
  2. Обратное напряжение – это то, которое обладает обратной полярностью и обеспечивает закрытие диода с прохождением через него обратного тока. Показатели сопротивления прибора при этом начинают резко и значительно расти.

Сопротивление p-n-перехода является постоянно меняющимся показателем, в первую очередь на него оказывает влияние прямое напряжение, подающееся непосредственно на диод. Если напряжение увеличивается, то показатели сопротивления перехода будут пропорционально уменьшаться.

Это приводит к росту параметров прямого тока, проходящего через диод. Когда данный прибор закрыт, то на него воздействует фактически все напряжение, по этой причине показатели проходящего через диод обратного тока являются незначительными, а сопротивление перехода при этом достигает пиковых параметров.

Работа диода и его вольт-амперная характеристика

Под вольт-амперной характеристикой данных приборов понимается кривая линия, которая показывает то, в какой зависимости находится электрический ток, протекающий через p-n-переход, от объемов и полярности напряжения, воздействующего на него.

Подобный график можно описать следующим образом:

  1. Ось, расположенная по вертикали: верхняя область соответствует значениям прямого тока, нижняя область параметрам обратного тока.
  2. Ось, расположенная по горизонтали: область, находящаяся справа, предназначена для значений прямого напряжения; область слева для параметров обратного напряжения.
  3. Прямая ветвь вольт-амперной характеристики отражает пропускной электрический ток через диод. Она направлена вверх и проходит в непосредственной близости от вертикальной оси, поскольку отображает увеличение прямого электрического тока, которое происходит при увеличении соответствующего напряжения.
  4. Вторая (обратная) ветвь соответствует и отображает состояние закрытого электрического тока, который также проходит через прибор. Положение у нее такое, что она проходит фактически параллельно относительно горизонтальной оси. Чем круче эта ветвь подходит к вертикали, тем выше выпрямительные возможности конкретного диода.
  5. По графику можно наблюдать, что после роста прямого напряжения, протекающего через p-n-переход, происходит медленное увеличение показателей электрического тока. Однако постепенно, кривая достигает области, в которой заметен скачок, после которого происходит ускоренное нарастание его показателей. Это объясняется открытием диода и проведением тока при прямом напряжении. Для приборов, изготовленных из германия, это происходит при напряжении равном от 0,1В до 0,2В (максимальное значение 1В), а для кремниевых элементов требуется более высокий показатель от 0,5В до 0,6В (максимальное значение 1,5В).
  6. Показанное увеличение показателей тока может привести к перегреву полупроводниковых молекул. Если отведение тепла, происходящее благодаря естественным процессам и работе радиаторов, будет меньше уровня его выделения, то структура молекул может быть разрушена, и этот процесс будет иметь уже необратимый характер. По этой причине, необходимо ограничивать параметры прямого тока, чтобы не допустить перегрева полупроводникового материала. Для этого, в схему добавляются специальные резисторы, имеющие последовательное подключение с диодами.
  7. Исследуя обратную ветвь можно заметить, что если начинает увеличиваться обратное напряжение, которое приложено к p-n-переходу, то фактически незаметен рост параметров тока. Однако в случаях, когда напряжение достигает параметров, превосходящих допустимые нормы, может произойти внезапный скачок показателей обратного тока, что перегреет полупроводник и будет способствовать последующему пробою p-n-перехода.
Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Цепи переключения диодов

| Диоды и выпрямители

Диоды могут выполнять коммутационные и цифровые логические операции. Прямое и обратное смещение переключают диод между состояниями низкого и высокого импеданса соответственно. Таким образом, он служит переключателем.

Логика

Диоды могут выполнять функции цифровой логики: И и ИЛИ. Диодная логика использовалась в первых цифровых компьютерах. Сегодня он находит ограниченное применение. Иногда бывает удобно собрать один логический вентиль из нескольких диодов.

И Выход

Диод И вентиль

Логический элемент И показан на рисунке выше. Логические ворота имеют входы и выход (Y), который является функцией входов. На входе логического элемента высокий уровень (логическая 1), скажем, 10 В, или низкий уровень, 0 В (логический 0).

На рисунке логические уровни генерируются переключателями. Если переключатель в верхнем положении, входной сигнал фактически высокий (1). Если переключатель находится в нижнем положении, он подключает катод диода к земле, которая имеет низкий уровень (0). Выход зависит от комбинации входов A и B.Входные и выходные данные обычно записываются в «таблицу истинности» в пункте (c) для описания логики вентиля. В (а) все входы высокие (1). Это записано в последней строке таблицы истинности в (c).

Выход Y высокий (1) из-за напряжения V + на верхней части резистора. На него не влияют открытые переключатели. В точке (b) переключатель A подтягивает катод подключенного диода к низкому уровню, а выход Y — к низкому уровню (0,7 В). Это записано в третьей строке таблицы истинности.

Вторая строка таблицы истинности описывает выход с переключателями, перевернутыми от (b).Переключатель B подтягивает диод и выводит низкий уровень. В первой строке таблицы истинности записано значение Output = 0 для обоих входов low (0).

Таблица истинности описывает функцию логического И. Резюме: оба входа A и B high дают высокий (1) выход.

OR ворота

Логический элемент ИЛИ с двумя входами, состоящий из пары диодов, показан на рисунке ниже. Если оба входа имеют низкий логический уровень в точке (a), как имитируется обоими переключателями «вниз», резистор подтягивает выход Y к низкому уровню. Этот логический ноль записан в первой строке таблицы истинности в (c).Если на одном из входов высокий уровень, как на (b), или на другом входе высокий уровень, или на обоих входах высокий уровень, диод (ы) проводит (-ы), подтягивая выход Y к высокому уровню.

Эти результаты переупорядочены во второй-четвертой строках таблицы истинности. Резюме: любой вход «высокий» — это максимум на уровне

юаней.

Элемент ИЛИ: (a) Первая строка таблицы истинности (TT). (б) Третья строка ТТ. (d) Логическое ИЛИ источника питания и резервного аккумулятора.

Приложения логики OR

Резервная батарея может быть подключена по ИЛИ к источнику постоянного тока, работающему от сети, как показано на рисунке выше (d), для питания нагрузки даже во время сбоя питания.При наличии переменного тока сетевое питание питает нагрузку, предполагая, что оно имеет более высокое напряжение, чем батарея. В случае сбоя питания напряжение в сети падает до 0 В; батарея питает нагрузку.

Диоды должны быть включены последовательно с источниками питания, чтобы предотвратить истощение аккумулятора из-за сбоя сетевого питания и перезарядку аккумулятора при наличии сетевого питания. Сохраняет ли ваш компьютер настройки BIOS при выключении? Сохраняет ли ваш видеомагнитофон (кассетный видеомагнитофон) настройки часов после сбоя питания? (ПК да, старый видеомагнитофон нет, новый видеомагнитофон да.)

Аналоговый переключатель

Диоды могут переключать аналоговые сигналы. Обратно смещенный диод выглядит как разомкнутая цепь. Диод с прямым смещением — это провод с низким сопротивлением. Единственная проблема — изолировать переключаемый сигнал переменного тока от управляющего сигнала постоянного тока.

Схема на рисунке ниже представляет собой параллельную резонансную сеть: резонансная настраивающая катушка индуктивности соединена параллельно с одним (или несколькими) переключаемыми конденсаторами резонатора. Этот параллельный LC-резонансный контур может быть фильтром предварительного выбора для радиоприемника.Это может быть частотно-определяющая сеть генератора (не показан). Линии цифрового управления могут управляться микропроцессорным интерфейсом.

Переключатель диодов: Цифровой управляющий сигнал (низкий) выбирает конденсатор резонатора путем прямого смещения переключающего диода.

Блокирующий конденсатор постоянного тока большой емкости заземляет резонансную индуктивность настройки для переменного тока, блокируя постоянный ток. Он будет иметь низкое реактивное сопротивление по сравнению с реактивными сопротивлениями параллельных ЖК. Это предотвращает замыкание анодного постоянного напряжения на землю резонансным настраивающим дросселем.Переключаемый конденсатор резонатора выбирается путем подтягивания соответствующего низкого уровня цифрового управления. Это прямое смещение переключающего диода.

Путь постоянного тока проходит от +5 В через высокочастотный дроссель (RFC), переключающий диод и RFC на землю через цифровое управление. Назначение RFC на +5 В — защитить переменный ток от источника +5 В. RFC, соединенный с цифровым управлением, предназначен для предотвращения попадания переменного тока во внешнюю линию управления. Конденсатор развязки замыкает небольшую утечку переменного тока через RFC на землю, минуя внешнюю цифровую линию управления.

Когда все три линии цифрового управления имеют высокий уровень (≥ + 5 В), переключаемые конденсаторы резонатора не выбираются из-за обратного смещения диода. При понижении уровня одной или нескольких линий выбирается один или несколько переключаемых конденсаторов резонатора соответственно. Чем больше конденсаторов подключается параллельно резонансной настраивающей катушке индуктивности, тем меньше резонансная частота.

Емкость диода с обратным смещением может быть значительной по сравнению с цепями с очень высокой или сверхвысокой частотой. PIN-диоды могут использоваться в качестве переключателей для снижения емкости.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

диодов: выключатель, о котором вы даже не подозревали

Vishay использует технический паспорт 1N4148 (PDF), описывая его как переключающий диод.

Глядя на отдельные компоненты своего электронного арсенала, легко не заметить скромный диод. В конце концов, можно простить вывод, что повседневная версия этого компонента мало что делает с . У них нет особых навыков, которые вы найдете в туннелях, ганнах, варикапе, стабилитронах, лавинных диодах или даже светодиодах, вместо этого они просто односторонние клапаны для электрического тока.Соедините их в одну сторону, и ток течет, а в другую — нет. Они преобразуют переменный ток в постоянный, их полно в источниках питания. Возможно, вы также использовали их для создания стабильного падения напряжения, потому что они имеют довольно постоянное напряжение при протекании тока, но это все. Диоды: самая короткая статья на Hackaday.

Но не так быстро с отключением диода. У них есть еще одна хитрость, которая прячет рукава: они также могут действовать как переключатель. Это не должно вызывать излишнего шока, в конце концов, беглый взгляд на многие спецификации диодов общего назначения должен раскрыть их описание как переключающие диоды.

Так как же работает диодный переключатель? Ключ кроется в этом одностороннем клапане, о котором мы упоминали ранее. Когда диод смещен в прямом направлении и проводит электричество, он будет проходить через любые изменения подаваемого на них напряжения, но когда он смещен в обратном направлении и не проводит электричество, он не будет. Таким образом, сигнал можно включить, пропустив его через диод в прямом смещении, а затем выключить, переведя диод в обратное смещение.

Основные сведения о диодном переключателе

Упрощенный диодный переключатель в обратном смещенном положении Off.

Чтобы проиллюстрировать базовый диодный переключатель, мы подготовили пару упрощенных принципиальных схем. На первом изображен анод, подключенный к земле через R1, и катод, подключенный к шине питания Vcc. Диод имеет обратное смещение, и ток через него не течет. Напряжение переменного тока, приложенное к C1, появится на аноде, но не будет появляться на катоде и на выходе через C2. Переключатель в этом случае выключен.

На второй схеме показана очень похожая схема, но с резисторами, подключенными к противоположным линиям питания.Анод теперь связан с шиной Vcc, а катод — с землей. Через диод протекает ток, и он смещен в прямом направлении. Таким образом, переменное напряжение, приложенное к C1, появится как на аноде, так и на катоде диода и будет проходить через C2 на выход. Переключатель был включен.

Упрощенный диодный переключатель в положении «Вкл.» С прямым смещением.

Это упрощенная схема, но ненамного. Практический диодный переключатель обычно работает, поддерживая одну сторону диода в точке смещения, так что, когда логический уровень применяется к другой точке, он переключает диод с прямого на обратное смещение, чтобы позволить переключателю управляться электроникой.Другими словами, удерживайте один конец диода посередине, покачивайте другой конец высоко или низко.

В частности, для ВЧ-цепей вы также найдете ВЧ-дроссели в линиях смещения, чтобы предотвратить попадание ВЧ-сигнала в силовые и логические цепи. Но суть в схемах, диодные переключатели действительно такие простые.

Итак, теперь вы знаете, как диоды можно использовать в качестве простых выключателей. Вы даже можете сделать многоходовые переключатели, подключив одиночные диодные переключатели параллельно к одной точке смещения.Но это не предел возможностей скромного диода, когда дело доходит до переключения, поэтому мы рассмотрим еще пару вариантов применения.

Диоды: они только логические

Первые электронные цифровые компьютеры, подобные тем, которые вы могли найти на военных объектах или в университетах в 1940-х годах, использовали электронные лампы, иногда в сочетании с реле или другими электромеханическими компонентами. По мере того, как компьютеры развивались в начале 1950-х годов и находили свое применение в гражданских приложениях, они начали производиться с использованием гораздо меньших по размеру и менее энергоемких полупроводников, которые тогда были новинкой на рынке.Проблема с транзисторами 1950-х годов заключалась в том, что они были дорогими и ненадежными, в отличие от сверхнадежных планарных кремниевых транзисторов, к которым мы привыкли сегодня. В начале 1950-х годов конструктору приходилось работать с германиевыми точечными транзисторами. Эти устройства, помимо их хрупкости, обладали неудачной характеристикой фиксации в состоянии высокого логического уровня и требовали обновления источника питания после изменения состояния. Ясно, что любая схема, которая могла бы уменьшить зависимость от них, представляла большой интерес.

Диодный вентиль ИЛИ. Thingmaker [CC BY-SA 4.0], через Wikimedia Commons. На помощь дизайнерам 1950-х годов пришел скромный диод. Они были дешевле и намного надежнее, чем транзисторы с точечным контактом, и могли формировать логические элементы И и ИЛИ, используя только резисторы для компании. Эта так называемая диодно-резисторная логика, или DRL, использовалась в твердотельных компьютерах везде, где это было возможно в этот период, а транзисторы использовались только там, где требовался инвертор.

Оба диодных затвора используют диоды на своих входных линиях, соединяя другие концы диодов вместе в выходной точке с помощью подтягивающего или понижающего резистора.

Диодный затвор ИЛИ имеет аноды, обращенные ко входам, и подтягивающий резистор на выходе, в то время как затвор И имеет катоды, обращенные ко входам, и подтягивающий резистор на выходе.

Диодный вентиль И. Thingmaker [CC BY-SA 4.0], через Wikimedia Commons. Помимо необходимости использования транзистора всякий раз, когда требуется логическая инверсия, эти вентили страдают от проблемы, связанной с падением напряжения на каждом вентиле. Таким образом, если вы последовательно подключите серию диодных вентилей, вы обнаружите, что с каждым уровнем логические уровни падают, в конечном итоге до точки, в которой их перехода недостаточно для работы последовательных вентилей.

Тем не менее, все же стоит иметь диодную логику в вашем запасе доступных схем, поскольку иногда вам может потребоваться одно И или ИЛИ в проекте, и может иметь смысл быстро собрать одну, используя несколько диодов, а не другой 74 чип серии.

Смешиваем с диодами

Диодный смеситель или кольцевой модулятор (исправленная схема, спасибо комментаторам!) Через Wikimedia Commons.

Есть еще одно место, где вы встретите диодный переключатель, особенно если вы интересуетесь радио или электронной музыкой.Смеситель на диодном мосту или кольцевой модулятор представляет собой схему, использующую четыре диода в конфигурации, внешне аналогичной той, что вы найдете в мостовом выпрямителе, и она функционирует как смеситель частот, в котором сигнал переменного тока и выход генератора смешиваются для создают их сумму и свою разницу. Четыре диода действуют как переключатели между входом и выходом сбалансированного сигнала и меняют полярность пути между ними на каждом цикле гетеродина. Он используется в синтезаторах и гитарных педалях, а также в радиосхемах везде, где требуется переход между частотами.

Мы надеемся, что теперь вы с новым уважением посмотрите на эти диоды в своем мусорном ящике, теперь вы знаете, что они также могут хорошо переключаться. Возможно, вы никогда не будете использовать диод в качестве переключателя на практике, но хорошо знать эту концепцию. И если диоды вызвали ваш интерес, почему бы не продолжить изучение нашей недавно опубликованной истории диодов?

Диод в качестве переключателя: Диод в качестве переключателя

Диод — это полупроводниковое устройство, состоящее из комбинации двух полупроводниковых материалов с P-N переходом, они имеют основное применение в цепях выпрямителя переменного тока в постоянный.

Но в электронной схеме они использовались как электрические переключатели, свойство смещения диода здесь используется для работы диода как переключателя.

Почти все типы диодов могут функционировать как переключатель, но в этом посте мы попытаемся объяснить диод как переключатель. Типы диодов, такие как штыревой диод и стабилитроны, используются в качестве переключателя в некоторых схемах, но работа за ним отличается от работы диода с p-n переходом.

Мы включаем операции по переключению типов диодов и факторы, которые отвечают за быстрое переключение диодов в схемах.

P-N переходной диод в качестве переключателя

Диоды с p-n-переходом считаются одним из основных типов диодов во всей электронике, мы называем это p-n-переходом, потому что комбинация полупроводниковых материалов P-типа и N-типа соединяется вместе, образуя p-n переход.

Процедура подключения диода называется прямым смещением и обратным смещением диода, то есть, когда батареи + VE подключены к p-типу, а –VE подключены к n-типу, называется прямым смещением диода, а + VE подключается к n-тип и –VE связан с p-типом, это называется обратным смещением.

Диод — это электрическое переключение, которое происходит между прямым и обратным смещением диода.

Диод как схема переключателя Схема переключателя диода

На приведенном выше рисунке мы видим, что диод подключается между цепью прямого и обратного смещения, эта схема — лучший способ объяснить операцию переключения диода в цепи.

Первая половина схемы — это цепь прямого смещения, поэтому в это время схема будет действовать как замкнутая цепь.

Вторая половина схемы — это цепь с обратным смещением, тогда цепь будет действовать как разомкнутая цепь.

Таким образом, при переключении между прямым смещением и обратным смещением диод работает как переключатель.

Объясните работу диода как переключателя работа диода как переключателя
  • Переключение с прямого на обратное и наоборот будет происходить на диоде, когда при прохождении определенного напряжения сопротивление при увеличении диода заставит диод смещаться в обратном направлении и действовать как разомкнутый выключатель.
  • В то же время напряжение может быть ниже значения опорного напряжения, сопротивление диода уменьшается, и это переводит диод в режим прямого смещения, который будет действовать как замкнутый переключатель.

Диод как переключатель теории

Основная теория, лежащая в основе работы диода в качестве переключателя, — это переходная характеристика, так как, когда мы меняем условие смещения на диоде, устройство меняет положение равновесия, это называется переходной характеристикой.

Переходное время отклика будет отвечать за скорость переключения типов диодов.

Кроме этого, переключение диода зависит от многих других факторов.

Пин диод как переключатель Пин-диод в качестве переключателя

На рисунке выше показаны ВЧ-переключатели с использованием пин-диода, пин-диод считается элементом быстрого переключения, это свойство быстрого переключения диода обусловлено расположением слоев полупроводникового материала.

Пин-диод имеет + p, собственный слой «I», слой –N, когда мы использовали его в приложениях для переключения ВЧ, pin-диод смещен с высоким или низким импедансным состоянием устройства, а также в зависимости от уровня накопленных зарядов в i-регион.

Стабилитрон как переключатель

Работа за стабилитроном в качестве переключателя почти такая же, как у диода с p-n переходом, но технические характеристики стабилитрона сильно отличаются от обычного диода.

Нормальная работа стабилитрона — это состояние с обратным смещением, конструкция требует, чтобы стабилитрон имел узкую ширину обедненного слоя, и это заставит стабилитрон работать в режиме более быстрого переключения.

Стабилитрон имеет более узкий обедняющий слой, чем лавинный диод, поэтому стабилитрон является лучшим электрическим переключателем.

Факторы, влияющие на переключение диодов
  • Емкость диода
  • Сопротивление диода
  • Концентрация допинга
  • Ширина истощения

Диод в качестве переключателя использует
  • Высокоскоростной выпрямительный выключатель
  • Цепи быстрого переключения
  • Радиоприемник
  • Применение в автомобильной промышленности
  • Реле приводное
  • Приложения связи
  • Защита от обратного тока и разряда
  • ИМПС
  • Логические вентили
  • Цепи клипсатора
  • Цепи фиксаторов

flyback — Может ли стабилитрон, который защищает переключатель от индуктивности при размыкании переключателя, влиять на скорость включения клапана, когда вы его снова закрываете?

Немного предварительной теории.

Как вы, вероятно, знаете, без любого обратного диода , будь то выпрямитель или стабилитрон, у вас будет (теоретически бесконечное) напряжение отдачи от индуктора (катушки клапана, обмотки реле или чего-то еще) всякий раз, когда вы пытаетесь прервать его тока круто. На самом деле отдача не будет бесконечной, потому что выброс вызовет любые неприятные эффекты в цепи, к которой он подключен: он будет генерировать электрические дуги, он приведет к разрушительному пробою полупроводников, он поджарит резисторы или пробьет диэлектрик конденсаторов, и Т. Д.2 \ $

, где \ $ I_L \ $ — мгновенный ток в момент времени непосредственно перед (попыткой) выключения.

Как вы знаете, включение выпрямителя параллельно катушке — это стандартная мера низкоскоростного противодействия. Предполагая, что диод может выдержать импульс пускового тока, генерируемый отдачей, он будет ограничивать напряжение на катушке до безопасного уровня ~ 0,7 В. Почему это медленно? Поскольку при этом уровне напряжения (прямое падение на диоде) и при обычных значениях прямого сопротивления рассеиваемая мощность мала, поэтому для преобразования \ $ E_L \ $ в тепло требуется больше времени.

Использование стабилитрона происходит быстрее, по сути, потому что он позволяет обратному напряжению повышаться еще до его фиксации. Конечно, напряжение стабилитрона должно быть выбрано таким, чтобы оно не было опасным для остальной части схемы. Поскольку зажим происходит при более высоком напряжении, а динамическое сопротивление пробоя стабилитрона также может быть ниже, рассеиваемая мощность больше, следовательно, требуется меньше времени для преобразования \ $ E_L \ $ в тепло.

Если вам интересно, что происходит, когда действие фиксации прекращается из-за того, что тока недостаточно, чтобы удерживать стабилитрон (или фиксирующий диод) в пробивном состоянии (проводимости), то ответ таков, что он, вероятно, будет колебаться, потому что энергия ДОЛЖНА быть преобразована, поскольку источник питания катушки отключен, и запасенная энергия зависит от тока в катушке.Катушка не будет «удерживать энергию», как конденсатор, потому что для этого ток должен течь в саму катушку. Следовательно, оставшаяся энергия найдет другие способы преобразования: паразитная емкость и ток утечки диодов и паразитная емкость самой катушки (например). Это своего рода неидеальный нелинейный контур резервуара, который будет демонстрировать затухающие колебания до тех пор, пока энергия полностью не преобразуется в тепло.

ИЗМЕНИТЬ

(в ответ на комментарий @supercat)

Вот некоторые результаты поспешно задуманного моделирования схемы с использованием LTspice, показывающие затухающие колебания, которые могут возникнуть в ситуации, аналогичной описанной выше.

Переходный анализ дает следующие графики:

Если увеличить интересующие части, то получим:

На следующем сильно увеличенном графике вы можете заметить расчетную частоту колебаний (я улучшил изображение, чтобы показать, где расположены курсоры LTspice).

Стабилитрон — что это такое, как работает и это история

Что такое диод и как он работает?

Диод — это компонент схемы, который позволяет току течь только в одном направлении.Диоды бывают разных размеров и обычно имеют черный цилиндрический корпус с двумя выводами, идущими по бокам (анод и катод), и полосой на конце катода. Диоды похожи на улицы с односторонним движением. Ток может двигаться только от конца катода к концу анода через диод. Это происходит потому, что диод предотвращает протекание тока в противоположном направлении от анодной стороны. Диод смещен в обратном направлении, когда он действует как изолятор, и смещен в прямом направлении, когда он пропускает ток. Анод и катод диода — это два его вывода.Диоды используются в цепях для ограничения напряжения и преобразования переменного тока в постоянный. Полупроводники, такие как кремний и германий, используются для получения максимальной отдачи от диодов. Несмотря на то, что они оба передают власть в одном направлении, они делают это по-разному. Диоды бывают разных форм и размеров, каждый со своим набором приложений, таких как стабилитроны. Переключатели, модуляторы сигналов, смесители сигналов, выпрямители, ограничители сигналов, регуляторы напряжения и т. Д. — все это примеры применения диодов.

Чем стабилитрон отличается от обычного диода?

Стабилитрон

— это один из диодов, используемых в определенных целях.За исключением одного ключевого различия, стабилитроны работают так же, как обычные диоды. Напряжение обратного пробоя стабилитронов известно как «напряжение стабилитрона». Это означает, что стабилитроны могут только остановить прохождение тока через цепь до определенного напряжения. Если напряжение обратного пробоя стабилитрона составляет 10 В, а ток составляет всего 5 В, стабилитрон блокирует прохождение тока. В другом сценарии, если ток в цепи составляет 11 В, стабилитрон пропускает ток.

Какая точка диода проводит в обоих направлениях? вы можете задаться вопросом. Стабилитрон пригодится при создании стабилизаторов напряжения, схем защиты от перенапряжения и других схем. Его можно использовать для перемещения частичного протекания тока в другом направлении в цепи. Конструкция стабилитронов также отличается от конструкции обычных диодов. Эти диоды изготавливаются из сильно легированных полупроводников N и P-типа с различным количеством легирования для достижения различных напряжений пробоя.В результате разные уровни напряжения стабилитронов имеют разную емкость напряжения.

Таким образом, стабилитроны предназначены для использования в режиме обратного смещения с низким постоянным напряжением пробоя или стабилитроном. Они начинают проводить значительные обратные токи. Стабилитрон может работать как регулятор напряжения, работая как вспомогательная нагрузка, отбирая больший ток от источника, когда напряжение слишком высокое, и меньший ток, когда напряжение слишком низкое.

Ранняя история стабилитрона

Кларенс Мелвин Зинер был первым, кто описал преимущества этого диода.Кларенс Зинер был профессором факультета физики Университета Карнеги-Меллона. Его исследовательские интересы были в области физики твердого тела. Он окончил Стэнфордский университет в 1926 году и получил докторскую степень в том же институте в 1929 году. В 1950 году он изобрел стабилитрон, который сейчас используется в современных компьютерных схемах. В 1934 году Кларенс Зенер опубликовал статью о пробое электрического изолятора. Он был известен во всем мире как пионер в области науки, называемой «внутреннее трение», которая была в центре большинства его исследований.

Как защитить вашу схему от повреждения при перенапряжении с помощью стабилитрона?

Вы можете столкнуться с неизвестными или загадочными сбоями в своих проектах при использовании в цепи двигателей, чувствительных к напряжению, или других компонентов. Компоненты, чувствительные к напряжению, иногда могут гореть, потому что они просто не могут справиться с величиной напряжения в токе. Давайте посмотрим на схемы. Схема 1 имеет источник питания 12 В с обратным смещением стабилитрона. Напряжение стабилитрона 10 Вольт; Следовательно, напряжение пробоя было превышено источником питания 12 В и не допускает превышения напряжения более 10 Вольт на вольтметре.Если мы увеличим напряжение источника питания до 90 В, как показано на схеме 2, то стабилитрон все равно позволит току проходить мимо него. Однако ток, который идет на вольтметр, по-прежнему составляет около 10 вольт. Следовательно, стабилитрон можно использовать для создания стабилизатора напряжения, использующего эту логику в схеме.

Характеристики стабилитронов

Номинальное напряжение, рассеиваемая мощность, прямой ток возбуждения, прямое напряжение, тип корпуса и максимальный обратный ток — это атрибуты, которые используются для классификации различных стабилитронов.Давайте познакомимся с некоторыми из этих атрибутов.

Номинальное напряжение

Напряжение пробоя стабилитрона также называется номинальным рабочим напряжением. Это один из важных параметров при выборе стабилитрона.

Рассеиваемая мощность

Наибольшее количество энергии, которое может разрядить ток Зенера, представлено этим значением. Превышение этой номинальной мощности приводит к перегреву стабилитрона, потенциально повреждая его и вызывая выход из строя компонентов, подключенных к нему в цепи.В результате при выборе диода для конкретного применения следует учитывать этот элемент.

Максимальный ток стабилитрона

При напряжении стабилитрона это максимальный ток, который может пройти через стабилитрон, не повредив его.

Минимальный ток стабилитрона

Это минимальный ток, необходимый стабилитрону для входа в зону пробоя и начала работы.

Другие параметры, которые действуют как характеристики диодов, должны быть тщательно изучены, прежде чем принимать решение о типе стабилитрона, необходимого для какой-либо конкретной конструкции.

Магазинные переменные резисторы

Ознакомьтесь с другими статьями в нашем блоге

Разница между диодом, стабилитроном и диодом Шоттки

Диод — это пассивное устройство, которое пропускает ток только в одном направлении. Но поскольку существует очень много типов диодов, важно различать их. И знать, какой из них использовать в соответствии с его требованиями в нашей цепи. Ниже приводится подробное различие между диодом, стабилитроном и диодом Шоттки.

Итак, в этом посте мы увидим основное различие между тремя наиболее широко используемыми диодами: выпрямительным, Шоттки и стабилитроном, а также когда их использовать.

Посмотрите это видео для быстрой справки:

Прежде чем перейти к конкретному типу диода, давайте рассмотрим некоторые из основных характеристик диода.

Основные характеристики диода: —

Свойство диода Определение
V f Указывает на прямое падение напряжения , когда ток течет от вывода P к N диода.
I f Это максимальный ток в прямом направлении , который может выдержать диод
В R Это обратное напряжение пробоя , когда ток течет от клеммы N к клемме P.
I R Величина тока, протекающего при обратном смещении диода.
т RR Когда диод внезапно выключается, прямому току, протекающему через диод, требуется небольшое время, чтобы утихнуть, и это время называется Время обратного восстановления .

Характеристики диода

ВРЕМЯ ВОССТАНОВЛЕНИЯ Диода:

Когда диод внезапно выключается, прямому току, протекающему через диод, требуется небольшое время, чтобы погаснуть. Это время называется временем обратного восстановления.

Разница между диодом, стабилитроном и диодом Шоттки:

А теперь рассмотрим тип диода по порядку:

1. Выпрямительный диод:
  • Выпрямительный диод — это простейший диод с p-n переходом, который в основном используется для выпрямления в полумостовых и полномостовых выпрямителях.И это из-за высокого напряжения пробоя, обычно порядка 200–1000 вольт, что очевидно.
  • Прямое падение напряжения (Vf) выпрямительного диода составляет от 0,7 до 0,9 В.
Выпрямительный диод
  • В качестве примера предположим, что вы хотите разработать мостовой выпрямитель для своего проекта преобразователя переменного тока в постоянный. Для этого мостового выпрямителя диод выпрямительной серии 1N4 является оптимальным выбором.
Схема мостового выпрямителя

2.Диод Шоттки
  • В отличие от выпрямительного диода, диод Шоттки находится между полупроводником n-типа и металлической пластиной.
  • Диод Шоттки, также известный как барьерный диод, в основном используется в цепях низкого напряжения, потому что прямое падение напряжения диода Шоттки (Vf) меньше, чем у выпрямительного диода. Обычно в диапазоне от 0,25 до 0,5 против
Диод Шоттки
  • В диоде Шоттки электроны являются основными носителями заряда с обеих сторон перехода.Таким образом, это униполярное устройство.
  • Он в основном используется в высокочастотных приложениях, таких как SMPS. И это из-за меньшего повышения температуры и высокой скорости переключения, связанной с малым временем восстановления.
Диод Шоттки в ИИП

  • Одним из недостатков диода Шоттки является его низкое напряжение пробоя (от 20 до 40 В), что делает его непригодным для выпрямительной схемы.

Примечание: По сравнению с обычным выпрямительным диодом время обратного восстановления диода Шоттки намного меньше.Это делает его пригодным для использования в схемах с быстрым переключением.

Недостаток диода Шоттки
  • В качестве примера предположим, что мы разрабатываем понижающий преобразователь, как мы это делали в одном из видеороликов проекта: «Понижающий преобразователь с использованием Arduino».
  • Поскольку Mosfet в этой схеме переключается с очень высокой частотой, диод, который вам нужен в этой схеме, должен иметь высокую скорость переключения. Таким образом, диод Шоттки — оптимальный выбор.

3.Стабилитрон:
  • Стабилитрон состоит из p-n перехода, но сильно легирован по сравнению с обычным диодом. В результате он может выйти из строя, не повредившись.
  • И только благодаря этому свойству стабилитрон используется как регулятор напряжения в электронных схемах.
  • На самом деле стабилитроны никогда не используются для выпрямления.
Сильнолегированный стабилитрон

Что такое регулятор напряжения

  • Вот схема, в которой стабилитрон используется для предотвращения разрушения затвора полевого МОП-транзистора из-за ограничения входного напряжения.Напряжение пробоя этого стабилитрона 5,1 В.
схема регулятора напряжения 1
  • Теперь, если случайно напряжение на затворе полевого МОП-транзистора превышает 5 В, происходит пробой диода, и весь ток течет через диод на землю. Таким образом предотвращается любое разрушение полевого МОП-транзистора.
  • Вот еще одна схема, в которой два диода подключены лицом к контакту p друг друга. Если на входе подается сигнал переменного тока, один диод ограничивает напряжение в положительной половине, а другой — в отрицательной.Таким образом, мы получаем напряжение ниже указанного предела в обоих полупериодах переменного тока.
схема регулятора напряжения 2
  • В качестве примера я использовал стабилитрон 5 В в проекте «Цифровой вольтметр с использованием Arduino», в котором он подключается через конденсатор, чтобы предотвратить Arduino в случае, если напряжение на его аналоговом выводе превышает 5 В.
  • Цифровой вольтметр
с использованием Arduino

Теперь вы знаете все основные различия между выпрямительным диодом, стабилитроном и диодом Шоттки, а также когда использовать выпрямитель, диод Шоттки или стабилитрон в зависимости от области применения.

Конфигурация контактов

, характеристики и применение

Стабилитрон или пробойный диод — это полупроводниковый прибор, работающий в обратном направлении. Как только напряжение на его выводах повышается, потенциал достигает напряжения стабилитрона, и соединение разрывается, позволяя току течь в обратном направлении, поэтому этот эффект называется эффектом стабилитрона. В этой статье обсуждается обзор стабилитрона 1N4732A и его работы.

Ток в стабилитроне течет не только от вывода анода к катоду, но и в обратном направлении при достижении напряжения стабилитрона. Таким образом, из-за этой функциональности эти полупроводниковые диоды чаще всего используются в различных приложениях.

Что такое стабилитрон 1N4732A?

Стабилитрон 1N4732A доступен в сквозном корпусе. Этот вид диодов применим в различных схемах, таких как грубый регулятор напряжения и схема защиты.Однако очень важно иметь в виду, что этот диод должен быть всегда подключен к резистору Зенера в любом приложении.

1N4732A Стабилитрон

Рабочее напряжение стабилитрона 1N4732A 4,7 В составляет 4,7 В, и по сравнению с другими типами стабилитронов он используется в качестве опорного элемента при регулировании напряжения. Таким образом, он используется в схемах переключения и ограничителя.

Конфигурация контактов

1N4732A Конфигурация выводов стабилитрона показана ниже.Этот диод включает в себя два контакта, каждый из которых и его функция описаны ниже.

1N4732A Конфигурация выводов
  • Вывод1 (анод): ток всегда проходит через анод
  • Pin2 (катод): ток всегда проходит через катод

Характеристики и характеристики

Характеристики и спецификации стабилитрона 1N4732A включают следующее.

  • Пакет со сквозным отверстием
  • Надежность высокая
  • Требуемое напряжение для работы диода — 4.7В
  • Тип корпуса стеклянный До-41
  • Допуск ± 5%
  • Масса 0,35 г
  • Рассеиваемая мощность 1,0 Вт
  • Диапазон температур хранения от -65 ° C до 175 ° C
  • Характеристики очень резкие реверс
  • Ток стабилитрона 10 мкА
  • Импеданс стабилитрона 8 Ом
  • Диапазон рабочих температур от -65 C до + 200 C
  • Осевой тип концевой заделки
  • Одиночная конфигурация
  • 310 мг Масса единицы
  • Испытательный ток 53 мА
  • 5.Длина 2 мм
  • Массовая упаковка
  • Обратный ток 10 мкА
  • 1Н4732А серии
  • 2,72 мм Диаметр

Альтернативные стабилитроны: стабилитрон 5,1 В, стабилитрон 7,5 В, стабилитрон 6,8 В и стабилитрон 15 В

Как выбрать стабилитрон?

По сравнению с обычными выпрямительными диодами стабилитрон — это один из видов диодов, однако он используется для совершенно другой цели. Эти диоды используются в различных схемах, таких как грубые регуляторы напряжения и защиты.

Прежде чем выбрать стабилитрон, нам необходимо рассмотреть различные параметры для вашего приложения. Как рассеиваемая мощность и напряжение стабилитрона. Напряжения стабилитрона в основном видны на диоде, когда на него подается высокое обратное потенциальное напряжение.

Напряжение стабилитрона в схемах регулятора будет отрегулировано, тогда как в схемах защиты это напряжение будет высоким по сравнению с защищенной схемой. Рассеивание мощности будет определять количество тока, протекающего через диод.Когда рассеиваемая мощность высока, ток будет большим.

Как использовать стабилитрон 1N4732A

Мы уже обсуждали, что стабилитрон в основном используется в различных схемах, таких как защита и простая схема регулятора напряжения, но этот диод должен использоваться с резистором Зенера в цепи.

Здесь резистор Зенера — это обычный резистор, используемый для ограничения подачи тока в цепи. Основная функция этого резистора — определять количество тока, подаваемого через диод, в противном случае нагрузка, подключенная к этому диоду.Таким образом, этот диод будет защищен от сильного тока. Если стабилитрон не используется с стабилитроном, диод может выйти из строя. Схема цепи стабилитрона


1N4732A

Схема применения стабилитрона 1N4732A показана ниже. Схема применения, такая как адаптер постоянного тока, использующая стабилитрон 1N4732A, показана выше. Источник питания, используемый для этой схемы, взят от автомобильного аккумулятора.

Схема автомобильного адаптера постоянного тока с стабилитроном 1N4732A

Эта схема работает от регулятора напряжения стабилитрона.Выход, обеспечиваемый этой схемой, стабилен, как 4,7 В. Необходимые компоненты этой схемы в основном включают TIP 122, 1N4007, 1N4732A, 470 Ом, 1 Вт — 1, 100 мкФ, 470 мкФ и предохранитель на 2 А.

Питание этой цепи может осуществляться от автомобильного аккумулятора. Но емкости и номиналы аккумуляторов у разных автомобилей могут отличаться. Таким образом, предохранитель на 2 А в основном используется для ограничения максимального протекания тока в цепи.

Здесь питание от батареи подается непосредственно на вывод коллектора транзистора TIP122, а также на вывод катода диода через резистор Зенера.Здесь к выводу эмиттера транзистора подключен диод, чтобы получить выходной сигнал.

Схема работы автомобильного адаптера постоянного тока

Схема простого автомобильного адаптера постоянного тока предназначена для зарядки телефонов от автомобильного аккумулятора. По схеме, показанной выше, даны подключения. Диапазон напряжения o / p от аккумулятора составляет от 12 В до 13,5 В.

Защитное устройство в виде плавкого предохранителя ограничивает максимальный ток нагрузки 2А. В этой схеме используется стабилитрон 1N4732A, имеющий 4 Ом.7В обратного напряжения пробоя.

Следовательно, напряжение на диоде будет стабильным. После того, как это напряжение будет подано на базовый вывод транзистора TIP122, оно будет активировано, и выходное напряжение будет постоянным 4,7 В.

В приведенной выше схеме ток составляет примерно 15 мА, что очень мало. Так что для зарядки аккумулятора мобильного телефона этого недостаточно. Для увеличения протекания тока в цепи нам необходимо проанализировать номинальную мощность стабилитрона и стабилитрона.

Таким образом, простой расчет может быть выполнен с использованием некоторых значений, таких как входное напряжение 12 В и выход 4,7 В. Если требуемый нам выходной ток составляет 300 мА, ток в цепи должен быть примерно 330 мА.
Сопротивление стабилитрона можно рассчитать как Zr = (12–4,7) В / 330 мА = 22,1 Ом. Поэтому следует выбрать стабилитрон на 22 Ом. Для номинальной мощности стабилитрона напряжение пробоя диода составляет 4,7 В, а максимальный ток в цепи составляет примерно 330 мА.

Здесь номинальная мощность стабилитрона может быть измерена как напряжение пробоя, умноженное на максимальный ток.Таким образом, номинальная мощность стабилитрона составляет 4,7 В x 330 мА = 1,55 Вт. Поэтому для защиты лучше использовать стабилитрон мощностью 2 Вт.

Когда ток в цепи увеличивается, падение напряжения на резисторе также увеличивается. Номинальная мощность резистора также чрезвычайно важна.

Если напряжение, приложенное к цепи, составляет 12 В, а напряжение пробоя диода составляет 4,7 В, то падение напряжения на резисторе составляет около 7,3 В. Максимальный допустимый ток в цепи составляет приблизительно 330 мА.В результате номинальная мощность резистора измеряется следующим образом.

Номинальная мощность стабилитрона: 7,3 В x 330 мА => 2,4 Вт. Поэтому следует выбрать резистор мощностью 3 Вт.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *