Зарядка аккумулятора схема: Восстановление и зарядка аккумулятора

Содержание

Зарядка аккумулятора схема и принцип действия. Зарядное устройство. Виды и работа. Применение и как выбрать Как работают зарядные устройства для аккумуляторов

Зарядные устройства предназначены для восполнения потери электроэнергии аккумуляторами. Принцип действия аккумуляторов заключается в обратимой химической реакции.

Отдача электрической энергии аккумулятором должна затем компенсироваться зарядкой, чтобы восстановить первоначальную емкость. Функция зарядного устройства заключается именно в восстановлении емкости аккумулятора.

Существует множество методов зарядки аккумуляторов. Одни из них реализуются очень просто и имеют минимальную стоимость. Некоторые модели управляют процессом зарядки аккумулятора при помощи встроенного микроконтроллера и реализуют сложный алгоритм процесса зарядки.

В общих чертах принцип заряда заключается в подаче напряжения, которое превосходит значение ЭДС разряженного аккумулятора. В соответствии с этим можно выделить такие основные методики заряда аккумуляторов:

  • постоянным током;
  • постоянным напряжением;
  • комбинированные методы.

Вне зависимости от метода основные характеристики зарядных устройств таковы:

  • максимальный ток заряда;
  • значение выходного напряжения.

УНИВЕРСАЛЬНЫЕ ЗАРЯДНЫЕ УСТРОЙСТВА

Сразу нужно предупредить – совершенно универсальных зарядных устройств не существует и, скорее всего, не будет существовать никогда.

С определенной натяжкой некоторые типы можно отнести к универсальным, но это только в том случае, если не обращать внимание на некоторые отклонения от рекомендуемых параметров. Далее будет рассмотрена справедливость данного утверждения.

В первую очередь, нужно знать, что различные типы аккумуляторов имеют различное напряжение и емкость, а если учесть, что обычно аккумуляторы собираются в батареи, то эта разница между этими параметрами возрастает многократно.

Различные виды аккумуляторов требуют индивидуального подхода к процессу заряда.

Изначально первые типы аккумуляторов – свинцово-кислотные, требовали зарядки постоянным током в течении всего времени зарядки (примерно 8-12 часов). Щелочные заряжались таким же образом, но другими величинами тока.

Данная методика проста, но имела серьезный недостаток – в конце заряда наблюдалось интенсивное газовыделение из электролита (кипение), что требовало постоянного контроля за процессом зарядки, особенно в его конце.

Заряд постоянным напряжением свободен от указанного недостатка, но требует более длительного времени. Его применяют, в основном для восстановления аккумуляторов, потерявших начальную емкость по различным причинам.

Более совершенные модели используют комбинированную методику. В начале заряда аккумулятор заряжается номинальным током зарядки, а когда напряжение на его клеммах достигнет уровня близкого к максимальному значению, напряжения на выходе зарядного устройства понижают до такой степени, чтобы оно лишь слегка превосходило напряжение аккумулятора.

Ток заряда при этом падает и аккумулятор продолжает заряжаться при минимальном токе. Таким образом, кипения электролита не происходит, а время заряда лишь немного превосходит время при постоянном токе.

Первые два типа вполне можно назвать универсальными в отношении стартерных аккумуляторов автомобилей. Такие устройства до сих пор широко распространены, в особенности, среди любителей, благодаря простоте, надежности и минимальной стоимости.

Совершенствование технологии изготовления аккумуляторов привело, с одной стороны, к увеличению удельной емкости, а с другой, повысило требования к параметрам оборудования для их подзарядки.

Сейчас производством аккумуляторных батарей различных типов занимается огромное число производителей, но большинство из них не выкладывает в открытый доступ необходимую технологию заряда, которая является оптимальной для определенной модели батареи.

Поэтому потребителям приходится либо приобретать дорогое фирменное изделие, либо подбирать недорогое, подходящее к усредненным параметрам аккумуляторных батарей сравнимых технологий производства.

Производители мобильных телефонов и прочих малогабаритных гаджетов пошли другим путем. Контроль заряда осуществляется микроконтроллером, встроенным в «зарядку», а также непосредственно в аккумуляторную батарею.

Такой подход привел к появлению, по-настоящему универсальных зарядных устройств, которые одинаково подходят для зарядки любых аккумуляторных батарей, отвечающих единому стандарту.

Наиболее яркий пример – смартфоны, планшеты, работающие под управлением ОС Андроид. Все эти гаджеты имеют вход для подзарядки, выполненный по стандарту Micro USB.

Отдельный класс изделий для автомобильных аккумуляторов составляют пуско-зарядные устройства. Как следует из названия, они могут обеспечить пуск автомобиля, причем мощные приборы в состоянии это сделать даже без аккумулятора.

Как известно, пусковой ток стартера, особенно в зимнее время на замерзшем двигателе, достигает нескольких сотен ампер. Таким образом, выходные параметры пуско-зарядного устройства очень близки к характеристикам сварочных аппаратов.

Габариты и масса пуско-зарядного устройства с традиционным, трансформаторным питанием велики, но при использовании инверторного способа преобразования энергии снижаются во много раз.

АВТОМАТИЧЕСКОЕ ЗАРЯДНОЕ УСТРОЙСТВО

Упростить процесс заряда может применение автоматических зарядных устройств. Простейшие зарядные автоматы контролируют напряжение на клеммах аккумуляторной батареи и прекращают процесс заряда при достижении определенной величины.

Недостатком подобных устройств является то, что аккумулятор не набирает полной емкости или, наоборот, происходит его перезаряд.

И тот и другой вариант приводят к сокращению срока службы аккумуляторной батареи.

Более совершенные исполнения при достижении порогового напряжения переводят заряд аккумулятора в буферный режим, когда выходной ток лишь немного превышает ток саморазряда батареи. Такие зарядные устройства можно надолго оставлять без присмотра без риска повредить заряжаемый аккумулятор.

Определенный тип устройств позволяет не только заряжать батареи, но и, некоторым образом, производить восстановление потерянной емкости. При этом процесс заряда чередуется с промежутками нулевого зарядного тока или с небольшим разрядом.

Данная методика тренировки показывает удовлетворительные результаты при восстановлении свинцово-кислотных аккумуляторных батарей из-за снижения эффекта сульфатации пластин.

Зарядные устройства для малогабаритных аккумуляторов и батарей сегодня также в подавляющем случае работают в автоматическом режиме.

Такое стало возможным, благодаря встроенному микроконтроллеру, которые не только автоматизирует процесс зарядки, но и производит ее по специально заложенному алгоритму. Такие изделия обычно выпускают производители аккумуляторов, поэтому они оптимальны для определенного типа батарей.

Частые короткие поездки с постоянными циклами запуска и остановки двигателя машины делают очень трудной работу заряженного аккумулятора, особенно, зимой, когда бóльшую часть времени работают печка, фары, разного рода подогревы: окон, зеркал, сидения, руля и т.п. Всё это потому, что последние очень прожорливы, и сильно разряжают его, в то время как генератор попросту не успевает зарядить аккумулятор, а стартер, запускающий двигатель, ставит последнюю точку, особенно, в случае, если используется слишком часто, и не оставляет практически никаких шансов такому разряженному аккумулятору выжить в таком небольшом частном мире прожорливых потребителей. Это мы, конечно, утрируем! Тем не менее, зимой (но и летом тоже) есть большой риск того, что однажды аккумулятору просто не хватит сил, чтобы в очередной раз запитать самый прожорливый к электричеству элемент машины — стартер, и машина не заведётся, в результате чего Вам придётся его «прикуривать» .

Но таких случаев можно избежать, если у Вас есть специальное зарядное устройство для аккумулятора — относительно дешёвый, но очень полезный аксессуар, который позволяет восполнить то, что не досталось аккумулятору от генератора — зарядить его. Но как зарядное устройство заряжает аккумулятор?

Так выглядит типичное зарядное устройство для аккумулятора

На самом деле, всё очень просто — оно использует электричество из розетки, чтобы зарядить аккумулятор с помощью положительного и отрицательного выводов, которые присоединяются на соответствующие клеммы аккумулятора, заряжая его. Средний автомобильный аккумулятор имеет ёмкость около 48 ампер/часов (А ч), и это означает, что полностью заряженный аккумулятор обеспечивает 1 ампер тока в течение 48 часов, 2 ампера в течение 24 часов, 8 ампер в течение 6 часов и так далее. И работа зарядного устройства заключается в передаче аккумулятору на хранение этих амперов, чтобы тот впоследствии отдавал их компонентам нашего автомобиля.

Обычно зарядное устройство заряжает аккумулятор на отметке 2 ампера, соответственно, тот же аккумулятор заряжается в течение 24 часов, чтобы пресытиться положенным ему 48 амперами, необходимыми для полной зарядки аккумулятора. Но существует также широкий спектр зарядных устройств с различными регулируемыми скоростями заряда на рынке — от 2 до 10 ампер. Чем выше заряд, тем быстрее аккумулятор зарядится. Быстрая зарядка, однако, чаще всего нежелательна, так как это может попросту сжечь пластины аккумулятора (Вы знаете, что это за пластины, если читали ).

Нагрузки, которые налагаются на аккумулятор, можно определить по количеству тока, используемого в различных электрических компонентах машины: например, фары с включенным ближним светом потребляют в среднем от 8 до 10 ампер, а обогрев заднего стекла примерно столько же.

Теоретически, полностью заряженный аккумулятор, не принимая ток от генератора, должен крутить стартер примерно в течение 10 минут, обеспечить работу фар в течение восьми часов, а обогрева заднего стекла в течение 12 часов. Однако, по мере разрядки аккумулятора это время значительно падает.

Среднестатистическое бытовое зарядное устройство для аккумулятора включает в себя трансформатор и выпрямитель, которые позволяют изменить 220 Вольт переменного тока из розетки в 12 Вольт постоянного тока, а также позволяют сети питания обеспечить зарядку с такой скоростью, которая определяется самим состоянием батареи. В случае, когда аккумулятора ещё достаточно новый, зарядное устройство может повысить силу тока до 3-6 Ампер, и, таким образом, такой аккумулятор зарядиться гораздо быстрее. А вот аккумулятор, который своё отработал, попросту не будет держать заряд вообще и потому даже не будет принимать зарядку от з/у.

Итак, как заряжать аккумулятор — инструкция по порядку

Прежде всего, аккумулятор необходимо снять с автомобиля, отсоединив 2 провода с отрицательным и положительным зарядом от соответствующих клемм аккумулятора (можно заряжать аккумулятор и непосредственно на месте под капотом, главное — отсоединить провода автомобиля от клемм, иначе можно лишиться генератора). Убедитесь, что все электрические приборы в автомобиле выключены (в том числе и ключ зажигания повёрнут в положение «Off», когда не горит ни одна лампочка на приборной паенли и не работает магнитола) — в противном случае при снятии и последующем соединении заряженного аккумулятора с проводами питания автомобиля, место контакта будет сильно искрить.

После снятия зачистите контакты клемм аккумулятора и проводов для лучшего контакта.

Подключение зарядного устройства

Перед процессом зарядки аккумулятора всегда проверяйте уровень электролита посредством специального мерного окошка на аккумуляторе. При необходимости долейте электролит и почистите и протрите клеммы аккумулятора.

Желательно помимо самого зарядного устройства иметь также такой прибор как ареометр — специальный несложный прибор для измерения плотности электролита. Так Вы сможете определить, когда аккумулятор зарядится (электролит перестанет изменять (повышать) свою плотность), хотя, скорее всего, Ваше зарядное устройство покажет Вам, когда аккумулятор будет полностью заряжен.

У большинства аккумуляторов как раз для процесса зарядки установлены специальные вентиляционные отверстия с крышками, закрывающими их. Эти крышки желательно удалить перед зарядкой.

Установите зажим (или любой другой способ крепления провода зарядного устройства к клеммам аккумулятора) положительного (+) провода от зарядного устройства — он, как правило, окрашен в красный цвет — на положительную клемму аккумулятора — она, как правило заметно больше, чем отрицательная. Таким же образом соедините отрицательный провод с отрицательной клеммой.

Подключите зарядное устройство к сети и включите его. Индикатор или датчик (амперметр) покажет, что аккумулятор на данный момент заряжается. Датчик вначале может показывать высокую скорость зарядки, но она должна постепенно падать в процессе, пока аккумулятор заряжается. Если на Вашем зарядном устройстве нет автоматического изменения силы тока, то Вам необходимо установить его вручную — максимальная его величина должна составлять 10% от его номинальной ёмкости, а оптимальная для зарядки — 5% — так, при ёмкости аккумулятора 60 А ч сила тока на з/у при зарядке должна быть выставлена в 3 Ампера, а если эта величина будет выставлена превышающей 6 Ампер, то это более вероятно повредит аккумулятор. Помните, что чем ниже сила тока, тем дольше будет заряжаться аккумулятор, но тем дольше будет срок его службы при периодических циклах зарядки-разрядки.

Как происходит зарядка аккумулятора? Схема этого устройства сложна или нет, для того чтобы сделать устройство своими руками? Отличается ли принципиально от того, что применяется для мобильных телефонов? На все поставленные вопросы мы попытаемся ответить далее в статье.

Общие сведения

Аккумулятор играет очень важную роль в функционировании устройств, агрегатов и механизмов, для работы которых необходимо электричество. Так, в транспортных средствах он помогает запустить двигатель машины. А в мобильных телефонах батареи позволяют нам совершать звонки.

Зарядка аккумулятора, схема и принципы работы данного устройства рассматриваются даже в школьном курсе физики. Но, увы, уже к выпуску многие эти знания успевают позабыть. Поэтому спешим напомнить, что в основу работы аккумулятора положен принцип возникновения разности напряжения (потенциалов) между двумя пластинами, которые специально погружаются в раствор электролита.

Первые батареи были медно-цинковыми. Но с того времени они существенно улучшились и модернизировались.

Как устроена аккумуляторная батарея

Единственный видимый элемент любого устройства — корпус. Он обеспечивает общность и целостность конструкции. Следует отметить, что наименование «аккумулятор» может быть полноценно применено только к одной ячейке батареи (их ещё называют банками), а том же стандартном автомобильном аккумуляторе на 12 В их всего шесть.

Возвращаемся к корпусу. К нему выдвигают жесткие требования. Так, он должен быть:

  • стойким к агрессивным химическим реагентам;
  • способным переносить значительные колебания температуры;
  • обладающим хорошими показателями вибростойкости.

Всем этим требованиям отвечает современный синтетический материал — полипропилен. Более детальные различия следует выделять только при работе с конкретными образцами.

Принцип работы

В качестве примера мы рассмотрим свинцово-кислотные батареи.

Когда есть нагрузка на клемму, то начинает происходить химическая реакция, которая сопровождается выделением электричества. Со временем батарея будет разряжаться. А как она восстанавливается? Есть ли простая схема?

Зарядка аккумулятора не является чем-то сложным. Необходимо осуществлять обратный процесс — подаётся электричество на клеммы, вновь происходят химические реакции (восстанавливается чистый свинец), которые в будущем позволят использовать аккумулятор.

Также во время зарядки происходит повышение плотности электролита. Таким образом батарея восстанавливает свои начальные свойства. Чем лучше были технология и материалы, которые применялись при изготовлении, тем больше циклов заряда/разряда может выдержать аккумулятор.

Какие электрические схемы зарядки аккумуляторов существуют

Классическое устройство делают из выпрямителя и трансформатора. Если рассматривать все те же автомобильные батареи с напряжением в 12 В, то зарядки для них обладают постоянным током примерно на 14 В.

Почему именно так? Такое напряжение необходимо для того, чтобы ток мог идти через разряженный автомобильный аккумулятор. Если он сам имеет 12 В, то устройство той же мощности ему помочь не сможет, поэтому и берут более высокие значения. Но во всём необходимо знать меру: если слишком завысить напряжение, то это пагубно скажется на сроке службы устройства.

Поэтому при желании сделать прибор своими руками, необходимо для машин искать подходящие схемы зарядки автомобильных аккумуляторов. Это же относится и к другой технике. Если необходима схема зарядки то тут необходимо устройство на 4 В и не больше.

Процесс восстановления

Допустим, у вас есть схема зарядки аккумулятора от генератора, по которой было собрано устройство. Батарея подключается и сразу же начинается процесс восстановления. По мере его протекания будет расти устройства. Вместе с ним будет падать зарядный ток.

Когда напряжение приблизится к максимально возможному значению, то этот процесс вообще практически не протекает. А это свидетельствует о том, что устройство успешно зарядилось и его можно отключать.

Необходимо следить, чтобы ток аккумулятора составлял только 10% от его емкости. Причем не рекомендовано ни превышать этот показатель, ни уменьшать его. Так, если вы пойдёте по первому пути, то начнёт испаряться электролит, что значительно повлияет на максимальную емкость и время работы аккумулятора. На втором пути необходимые процессы не будут происходить в требуемой интенсивности, из-за чего негативные процессы продолжатся, хотя и в несколько меньшей мере.

Зарядка

Описываемое устройство можно купить или собрать своими руками. Для второго варианта нам понадобятся электрические схемы зарядки аккумуляторов. Выбор технологии, по которой она будет делаться, должен происходить зависимо от того, какие батареи являются целевыми. Понадобятся такие составляющие:

  1. (конструируется на балластных конденсаторах и трансформаторе). Чем большего показателя удастся достичь, тем значительней будет величина тока. В целом, для работы зарядки этого должно хватить. Но вот надёжность данного устройства весьма низкая. Так, если нарушить контакты или что-то перепутать, то и трансформатор, и конденсаторы выйдут из строя.
  2. Защита на случай подключения «не тех» полюсов. Для этого можно сконструировать реле. Так, условная завязка базируется на диоде. Если перепутать плюс и минус, то он не будет пропускать ток. А поскольку на нём завязано реле, то оно будет обесточенным. Причем использовать данную схему можно с устройством, в основе которого и тиристоры, и транзисторы. Подключать её необходимо в разрыв проводов, с помощью которых сама зарядка соединяется с аккумулятором.
  3. Автоматика, которой должна обладать зарядка аккумулятора. Схема в данном случае должна гарантировать, что устройство будет работать только тогда, когда в этом действительно есть потребность. Для этого с помощью резисторов меняется порог срабатывания контролирующего диода. Считается, что аккумуляторы на 12 В являются полностью, когда их напряжение находится в рамках 12,8 В. Поэтому этот показатель является желанным для данной схемы.

Заключение

Вот мы и рассмотрели, что собой представляет зарядка аккумулятора. Схема данного устройства может быть выполнена и на одной плате, но следует отметить, что это довольно сложно. Поэтому их делают многослойными.

В рамках статьи вашему вниманию были представлены различные принципиальные схемы, которые дают понять, как же, собственно, происходит зарядка аккумуляторов. Но необходимо понимать, что это только общие изображения, а более детальные, имеющие указания протекающих химических реакций, являются особенными для каждого типа батареи.

Проблемы с аккумуляторами — не такое уж редкое явление. Для восстановления работоспособности необходима дозарядка, но нормальная зарядка стоит приличных денег, а сделать ее можно из подручного «хлама». Самое главное — найти трансформатор с нужными характеристиками, а сделать зарядное устройство для автомобильного аккумулятора своими руками — дело буквально пары часов (при наличии всех необходимых деталей).

Процесс заряда аккумуляторов должен проходить по определенным правилам. Причем процесс заряда зависит от вида батареи. Нарушения этих правил приводит к уменьшению емкости и срока эксплуатации. Потому параметры зарядного устройства для автомобильного аккумулятора подбираются для каждого конкретного случая. Такую возможность предоставляет сложное ЗУ с регулируемыми параметрами или купленное специально под эту батарею. Есть и более практичный вариант — сделать зарядное устройство для автомобильного аккумулятора своими руками. Чтобы знать, какие параметры должны быть, немного теории.

Виды зарядных устройств для аккумуляторных батарей

Заряд аккумулятора — процесс восстановления израсходованной емкости. Для этого на клеммы аккумулятора подается напряжение, немного превышающее рабочие показатели АБ. Подаваться может:

  • Постоянный ток. Время заряда — не менее 10 часов, в течении всего этого времени подается фиксированный ток, напряжение изменяется от 13,8-14,4 В в начале процесса до 12,8 В в самом конце. При таком виде заряд накапливается постепенно, держится дольше. Недостаток этого способа — необходимо контролировать процесс, вовремя отключить зарядное устройство, так как при перезаряде электролит может закипеть, что существенно снизит его рабочий ресурс.
  • Постоянное напряжение. При заряде постоянным напряжением, ЗУ выдает все время напряжение 14,4 В, а ток изменяется от больших значений в первые часы заряда, до очень небольших — в последние. Потому перезаряда АБ не будет (разве что вы оставите его на несколько суток). Положительный момент этого способа — время заряда уменьшается (90-95% можно набрать за 7-8 часов) и заряжаемый аккумулятор можно оставить без присмотра. Но такой «экстренный» режим восстановления заряда плохо влияет на срок службы. При частом использовании постоянным напряжением АБ быстрее разряжается.

В общем, если нет необходимости спешить, лучше использовать заряд постоянным током. Если надо за короткое время восстановить работоспособность аккумулятора — подавайте постоянное напряжение. Если говорить о том, какое лучше сделать зарядное устройство для автомобильного аккумулятора своими руками, ответ однозначен — подающее постоянный ток. Схемы будут простые, состоящие из доступных элементов.

Как определить нужные параметры при зарядке постоянным током

Опытным путем установлено, что заряжать автомобильные свинцовые кислотные аккумуляторы (их большинство) необходимо током, который не превышает 10% от емкости батарей . Если емкость заряжаемой АБ 55 А/ч, максимальный ток заряда будет 5,5 А; при емкости 70 А/ч — 7 А и т.д. При этом можно ставить чуть меньший ток. Заряд будет идти, но медленнее. Он будет накапливаться даже если ток заряда будет 0,1 А. Просто для восстановления емкости потребуется очень много времени.

Так как в расчетах принимают, что ток заряда составляет 10%, получаем минимальное время заряда — 10 часов. Но это — при полном разряде аккумулятора, а его допускать нельзя. Потому фактическое время заряда зависит от «глубины» разряда. Определить глубину разряда можно, замерив вольтаж на АБ до начала заряда:


Чтобы рассчитать примерное время заряда АБ , надо узнать разницу между максимальным зарядом батареи (12,8 В) и текущим ее вольтажом. Умножив цифру на 10 получим время в часах. Например, напряжение на аккумуляторе перед зарядом 11,9 В. Находим разницу: 12,8 В — 11,9 В = 0,8 В. Умножив эту цифру на 10, получаем что время заряда будет около 8 часов. Это при условии, что подавать будем ток, который составляет 10% от емкости батареи.

Схемы зарядного устройства для авто АБ

Для заряда аккумуляторов обычно используется бытовая сеть 220 В, которая преобразуется в пониженное напряжение при помощи преобразователя.

Простые схемы

Наиболее простой и эффективный способ — использование понижающего трансформатора. Именно он понижает 220 В до требуемых 13-15 В. Такие трансформаторы можно найти в старых ламповых телевизорах (ТС-180-2), компьютерных блоках питания, найти на «развалах» блошиного рынка.

Но на выходе трансформатора получается переменное напряжение, которое необходимо выпрямить. Делают это при помощи:


В приведенных схемах присутствуют также предохранители (1 А) и измерительные приборы. Они дают возможность контролировать процесс заряда. Их из схемы можно исключить, но придется периодически использовать для контроля мультиметр. С контролем напряжения это еще терпимо (просто приставлять к клеммам щупы), то контролировать ток сложно — в этом режиме измерительный прибор включают в разрыв цепи. То есть, придется каждый раз выключать питание, ставить мультиметр в режиме измерения тока, включать питание. разбирать измерительную цепь в обратном порядке. Потому, использование хотя-бы амперметра на 10 А — очень желательно.

Недостатки этих схем очевидны — нет возможности регулировать параметры заряда. То есть, при выборе элементной базы выбирайте параметры так, чтобы на выходе сила тока была те самые 10% от емкости вашего аккумулятора (или чуть меньше). Напряжение вы знаете — желательно в пределах 13,2-14,4 В. Что делать, если ток получается больше желаемого? Добавить в схему резистор. Его ставят на плюсовом выходе диодного моста перед амперметром. Сопротивление подбираете «по месту», ориентируясь на ток, мощность резистора — побольше, так как на них будет рассеиваться лишний заряд (10-20 ВТ или около того).

И еще один момент: зарядное устройство для автомобильного аккумулятора своими руками, сделанное по этим схемам, скорее всего, будет сильно греться. Потому желательно добавить куллер. Его можно вставить в схему после диодного моста.

Схемы с возможностью регулировки

Как уже говорили, недостаток всех этих схем — в невозможности регулировки тока. Единственная возможность — менять сопротивления. Кстати, можно поставить тут переменный подстроечный резистор. Это будет самый простой выход. Но более надежно реализована ручная регулировка тока в схеме с двумя транзисторами и подстроечным резистором.

Ток заряда изменяется переменным резистором. Он стоит уже после составного транзистора VT1-VT2, так что ток через него протекает небольшой. Потому мощность может быть порядка 0,5-1 Вт. Его номинал зависит от выбранных транзисторов, подбирается опытным путем (1-4,7 кОм).

Трансформатор мощностью 250-500 Вт, вторичная обмотка 15-17 В. Диодный мост собирается на диодах с рабочим током 5А и выше.

Транзистор VT1 — П210, VT2 выбирается из нескольких вариантов: германиевые П13 — П17; кремниевые КТ814, КТ 816. Для отвода тепла устанавливать на металлической пластине или радиаторе (не менее 300 см2).

Предохранители: на входе ПР1 — на 1 А, на выходе ПР2 — на 5 А. Также в схеме есть сигнальные лампы — наличия напряжения 220 В (HI1) и тока заряда (HI2). Тут можно ставить любые лампы на 24 В (в том числе и светодиоды).

Видео по теме

Зарядное устройство для автомобильного аккумулятора своими руками — популярная тема для автолюбителей. Откуда только не извлекают трансформаторы — из блоков питания, микроволновок.. даже мотают сами. Схемы реализуются не самые сложные. Так что даже без навыков в электротехнике можно справиться самостоятельно.

Интересно, из чего же состоит зарядное устройство (блок питания) Сименса и возможно ли его починить самостоятельно в случае поломки.

Для начала блок нужно разобрать. Судя по швам на корпусе этот блок не предназначен для разборки, следовательно вещь одноразовая и больших надежд в случае поломки можно не возлагать.

Мне пришлось в прямом смысле раскурочить корпус зарядного устройства, оно состоит из двух плотно склеенных частей.

Внутри примитивная плата и несколько деталей. Интересно то, что плата не припаяна к вилке 220в., а крепится к ней при помощи пары контактов. В редких случаях эти контакты могут окислиться и потерять контакт, а вы подумаете, что блок сломался. А вот толщина проводов, идущих к разъему на мобильный телефон, приятно порадовала, не часто встретишь в одноразовых приборах нормальный провод, обычно он такой тонкий, что даже дотрагиваться до него страшно).

На тыльной стороне платы оказалось несколько деталей, схема оказалась не такой простой, но все равно она не такая и сложная, чтобы не починить ее самостоятельно.

Ниже на фото контакты внутки корпуса.

В схеме зарядного устройства нет понижающего трансформатора, его роль играет обычный резистор. Далее как обычно парочка выпрямляющих диодов, пара конденсаторов для выпрямления тока, после идет дроссель и наконец стабилитрон с конденсатором завершают цепочку и выводят пониженное напряжение на провод с разъемом к мобильному телефону.

В разъеме всего два контакта.

Зарядка аккумулятора схема и принцип действия

Как происходит зарядка аккумулятора? Схема этого устройства сложна или нет, для того чтобы сделать устройство своими руками? Отличается ли принципиально зарядное устройство для автомобильного аккумулятора от того, что применяется для мобильных телефонов? На все поставленные вопросы мы попытаемся ответить далее в статье.

Общие сведения

Аккумулятор играет очень важную роль в функционировании устройств, агрегатов и механизмов, для работы которых необходимо электричество. Так, в транспортных средствах он помогает запустить двигатель машины. А в мобильных телефонах батареи позволяют нам совершать звонки.

Зарядка аккумулятора, схема и принципы работы данного устройства рассматриваются даже в школьном курсе физики. Но, увы, уже к выпуску многие эти знания успевают позабыть. Поэтому спешим напомнить, что в основу работы аккумулятора положен принцип возникновения разности напряжения (потенциалов) между двумя пластинами, которые специально погружаются в раствор электролита.

Первые батареи были медно-цинковыми. Но с того времени они существенно улучшились и модернизировались.

Как устроена аккумуляторная батарея

Единственный видимый элемент любого устройства – корпус. Он обеспечивает общность и целостность конструкции. Следует отметить, что наименование «аккумулятор» может быть полноценно применено только к одной ячейке батареи (их ещё называют банками), а том же стандартном автомобильном аккумуляторе на 12 В их всего шесть.

Возвращаемся к корпусу. К нему выдвигают жесткие требования. Так, он должен быть:

  • стойким к агрессивным химическим реагентам;
  • способным переносить значительные колебания температуры;
  • обладающим хорошими показателями вибростойкости.

Всем этим требованиям отвечает современный синтетический материал – полипропилен. Более детальные различия следует выделять только при работе с конкретными образцами.

Принцип работы

В качестве примера мы рассмотрим свинцово-кислотные батареи.

Когда есть нагрузка на клемму, то начинает происходить химическая реакция, которая сопровождается выделением электричества. Со временем батарея будет разряжаться. А как она восстанавливается? Есть ли простая схема?

Зарядка аккумулятора не является чем-то сложным. Необходимо осуществлять обратный процесс – подаётся электричество на клеммы, вновь происходят химические реакции (восстанавливается чистый свинец), которые в будущем позволят использовать аккумулятор.

Также во время зарядки происходит повышение плотности электролита. Таким образом батарея восстанавливает свои начальные свойства. Чем лучше были технология и материалы, которые применялись при изготовлении, тем больше циклов заряда/разряда может выдержать аккумулятор.

Какие электрические схемы зарядки аккумуляторов существуют

Классическое устройство делают из выпрямителя и трансформатора. Если рассматривать все те же автомобильные батареи с напряжением в 12 В, то зарядки для них обладают постоянным током примерно на 14 В.

Почему именно так? Такое напряжение необходимо для того, чтобы ток мог идти через разряженный автомобильный аккумулятор. Если он сам имеет 12 В, то устройство той же мощности ему помочь не сможет, поэтому и берут более высокие значения. Но во всём необходимо знать меру: если слишком завысить напряжение, то это пагубно скажется на сроке службы устройства.

Поэтому при желании сделать прибор своими руками, необходимо для машин искать подходящие схемы зарядки автомобильных аккумуляторов. Это же относится и к другой технике. Если необходима схема зарядки аккумулятора литий-ионного, то тут необходимо устройство на 4 В и не больше.

Процесс восстановления

Допустим, у вас есть схема зарядки аккумулятора от генератора, по которой было собрано устройство. Батарея подключается и сразу же начинается процесс восстановления. По мере его протекания будет расти внутреннее сопротивление устройства. Вместе с ним будет падать зарядный ток.

Когда напряжение приблизится к максимально возможному значению, то этот процесс вообще практически не протекает. А это свидетельствует о том, что устройство успешно зарядилось и его можно отключать.

Технологические рекомендации

Необходимо следить, чтобы ток аккумулятора составлял только 10% от его емкости. Причем не рекомендовано ни превышать этот показатель, ни уменьшать его. Так, если вы пойдёте по первому пути, то начнёт испаряться электролит, что значительно повлияет на максимальную емкость и время работы аккумулятора. На втором пути необходимые процессы не будут происходить в требуемой интенсивности, из-за чего негативные процессы продолжатся, хотя и в несколько меньшей мере.

Зарядка

Описываемое устройство можно купить или собрать своими руками. Для второго варианта нам понадобятся электрические схемы зарядки аккумуляторов. Выбор технологии, по которой она будет делаться, должен происходить зависимо от того, какие батареи являются целевыми. Понадобятся такие составляющие:

  1. Ограничитель тока (конструируется на балластных конденсаторах и трансформаторе). Чем большего показателя удастся достичь, тем значительней будет величина тока. В целом, для работы зарядки этого должно хватить. Но вот надёжность данного устройства весьма низкая. Так, если нарушить контакты или что-то перепутать, то и трансформатор, и конденсаторы выйдут из строя.
  2. Защита на случай подключения «не тех» полюсов. Для этого можно сконструировать реле. Так, условная завязка базируется на диоде. Если перепутать плюс и минус, то он не будет пропускать ток. А поскольку на нём завязано реле, то оно будет обесточенным. Причем использовать данную схему можно с устройством, в основе которого и тиристоры, и транзисторы. Подключать её необходимо в разрыв проводов, с помощью которых сама зарядка соединяется с аккумулятором.
  3. Автоматика, которой должна обладать зарядка аккумулятора. Схема в данном случае должна гарантировать, что устройство будет работать только тогда, когда в этом действительно есть потребность. Для этого с помощью резисторов меняется порог срабатывания контролирующего диода. Считается, что аккумуляторы на 12 В являются полностью, когда их напряжение находится в рамках 12,8 В. Поэтому этот показатель является желанным для данной схемы.

Заключение

Вот мы и рассмотрели, что собой представляет зарядка аккумулятора. Схема данного устройства может быть выполнена и на одной плате, но следует отметить, что это довольно сложно. Поэтому их делают многослойными.

В рамках статьи вашему вниманию были представлены различные принципиальные схемы, которые дают понять, как же, собственно, происходит зарядка аккумуляторов. Но необходимо понимать, что это только общие изображения, а более детальные, имеющие указания протекающих химических реакций, являются особенными для каждого типа батареи.

Схема китайского зарядного устройства для автомобильного аккумулятора

Автор admin На чтение 18 мин Просмотров 1 Опубликовано

Разбор больше 11 схем для изготовления ЗУ своими руками в домашних условиях, новые схемы 2017 и 2018 года, как собрать принципиальную схему за час.

  1. По каким основным причинам происходит разрядка автомобильного аккумулятора на дороге?

А) Автомобилист вышел из транспорта и забыл выключить фары.

Б) Аккумуляторная батарея слишком нагрелась под воздействием солнечных лучей.

  1. Может ли аккумулятор выйти из строя, если автомобилем не пользуются долгое время (стоит в гараже без запуска)?

А) При долгом простое аккумуляторная батарея выйдет из строя.

Б) Нет, батарея не испортится, ее потребуется только зарядить и она снова будет функционировать.

  1. Какой источник тока используется для подзарядки АКБ?

А) Есть только один вариант — сеть с напряжением в 220 вольт.

Б) Сеть на 180 Вольт.

  1. Обязательно снимать аккумуляторную батарею при подключении самодельного устройства?

А) Желательно производить демонтаж батареи с установленного места, иначе возникнет риск повредить электронику поступлением большого напряжения.

Б) Необязательно снимать АКБ с установленного места.

  1. Если перепутать «минус» и «плюс» при подключении ЗУ, то аккумуляторная батарея выйдет из строя?

А) Да, при неправильном подключении, аппаратура сгорит.

Б) Зарядное устройство просто не включится, потребуется переместить на положенные места необходимые контакты.

Ответы:

  1. А) Не выключенные фары при остановке и минусовая температура – наиболее распространенные причины разряда АКБ на дороге.
  2. А) АКБ выходит из строя, если долго не подзаряжать ее при простое автомобиля.
  3. А) Для подзарядки применяется напряжение сети в 220 В.
  4. А) Не желательно производить зарядку батареи самодельным устройством, если она не снята с автомобиля.
  5. А) Не следует путать клеммы, иначе самодельный аппарат перегорит.

Аккумулятор на автотранспорте требуют периодической зарядки. Причины разряжения могут быть разные — начиная от фар, что хозяин забыл выключить, и до отрицательных температур в зимний период на улице. Для подпитки АКБ потребуется хорошее зарядное устройство. Такое приспособление в больших разновидностях представлено в магазинах автозапчастей. Но если нет возможности или желания покупки, то ЗУ можно сделать своими руками в домашних условиях. Имеется также большое количество схем — их желательно все изучить, чтобы выбрать наиболее подходящий вариант.

Определение: Зарядное устройство для автомобиля предназначается для передачи электрического тока с заданным напряжением напрямую в АКБ.

Ответы на 5 часто задаваемых вопросов

  1. Потребуется ли производить какие-то дополнительные меры, перед тем как приступать к зарядке аккумуляторной батареи на своём автомобиле? – Да, потребуется почистить клеммы, поскольку во время работы на них появляются кислотные отложения. Контакты очень хорошо нужно почистить, чтобы ток без трудностей поступал к батарее. Иногда автомобилисты используют смазку для обработки клемм, ее тоже следует убрать.
  2. Чем протереть клеммы зарядных устройств? — Специализированное средство можно купить в магазине или приготовить самостоятельно. В качестве самостоятельно изготовленного раствора используют воду и соду. Компоненты смешиваются и перемешиваются. Это отличный вариант для обработки всех поверхностей. Когда кислота соприкоснется с содой, то произойдет реакция и автомобилист обязательно ее заметит. Это место и потребуется тщательно протереть, чтобы избавиться от всей кислоты. Если клеммы ранее обрабатывались смазкой, то она убирается любой чистой тряпкой.
  3. Если на аккумуляторе стоят крышки, то их нужно вскрывать перед началом зарядки? — Если крышки имеются на корпусе, то их обязательно снимают.
  4. По какой причине необходимо откручивать крышечки с аккумуляторной батареи? — Это нужно, чтобы газы, образующиеся в процессе зарядки, беспрепятственно выходили из корпуса.
  5. Есть необходимость обращать внимание на уровень электролита в аккумуляторной батарее? – Это делается в обязательном порядке. Если уровень ниже требуемого, то необходимо добавить дистиллированную воду внутрь аккумулятора. Уровень определить не составит труда – пластины должны быть полностью покрыты жидкостью.

Ещё важно знать: 3 нюанса об эксплуатации

Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции, помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при эксплуатации.

  1. Зарядное устройство, собранное своими руками не будет отключаться при полной зарядке аккумулятора. Именно поэтому необходимо периодически следить за оборудованием и подключать к нему мультиметр – для контроля заряда.
  2. Нужно быть очень аккуратным, не путать «плюс» и «минус», иначе зарядное устройство сгорит.
  3. Оборудование должна быть выключено, когда происходит соединение с зарядным устройством.

Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.

Топ-3 производителей зарядных устройств

Если нет желания или возможности своими руками собрать ЗУ, то обратите внимание на следующих производителей:

Фирмы хорошо зарекомендовали себя на рынке, а потому о надежности и функциональности переживать при покупке не следует.

Как избежать 2-х ошибок при зарядке аккумуляторной батареи

Необходимо соблюдать основные правила, чтобы правильно подпитать батарею на автомобиле.

  1. Напрямую к электросети аккумуляторную батарею запрещено подключать. Для этой цели и предназначается зарядные устройства.
  2. Даже если устройство изготавливается качественно и из хороших материалов, всё равно потребуется периодически наблюдать за процессом зарядки, чтобы не произошли неприятности.

Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования. Гораздо проще следить за агрегатом, чем после тратиться на составляющие для ремонта.

Самое простое зарядное устройство для АКБ

Схема 100% рабочего ЗУ на 12 вольт


Посмотрите на картинке на схему ЗУ на 12 В. Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт. Максимальный ток, получаемый при заряде составляет 6 А. Но аппарат также подходит и для других аккумуляторов – литий-ионных, поскольку напряжение и выходной ток можно отрегулировать. Все основные компоненты для сборки устройства можно найти на сайте Aliexpress.

  1. dc-dc понижающий преобразователь.
  2. Амперметр.
  3. Диодный мост КВРС 5010.
  4. Концентраторы 2200 мкФ на 50 вольт.
  5. трансформатор ТС 180-2.
  6. Предохранители.
  7. Вилка для подключения к сети.
  8. «Крокодилы» для подключения клемм.
  9. Радиатор для диодного моста.

Трансформатор используется любой, по собственному усмотрению Главное, чтобы его мощность была не ниже 150 Вт (при зарядном токе в 6 А). Необходимо установить на оборудование толстые и короткие провода. Диодный мост фиксируется на большом радиаторе.

Схема ЗУ Рассвет 2

Посмотрите на картинке на схему зарядного устройства Рассвет 2. Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца. Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий. На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах. Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.

1 схема умного ЗУ

Посмотрите на картинке принципиальную схему умного зарядного устройства. Приспособление необходимо для подключения к свинцово-кислотным аккумуляторам, имеющим емкость — 45 ампер в час или больше. Подключают такой вид аппарата не только к аккумуляторам, что ежедневно используются, но также к дежурным или находящимся в резерве. Это довольно бюджетная версия оборудования. В ней не предусмотрен индикатор, а микроконтроллер можно купить самый дешевый.

Если имеется необходимый опыт, то трансформатор собирается своими руками. Нет необходимости устанавливать также и звуковые сигналы оповещения — если аккумулятор подключится неправильно, то загоревшаяся лампочка разряда будет уведомлять об ошибке. На оборудование необходимо поставить импульсный блок питания на 12 вольт — 10 ампер.

1 схема промышленного ЗУ


Посмотрите на схему промышленного зарядного устройства от оборудования Барс 8А. Трансформаторы используются с одной силовой обмоткой на 16 Вольт, добавляется несколько диодов vd-7 и vd-8. Это необходимо для того, чтобы обеспечить мостовую схему выпрямителя от одной обмотки.

1 схема инверторного устройства

Посмотрите на картинке схему инверторного зарядного устройства. Это приспособление перед началом зарядки разряжает аккумуляторную батарею до 10,5 Вольт. Ток используется с величиной С/20: «C» обозначает ёмкость установленного аккумулятора. После этого процесса напряжение повышается до 14,5 Вольт, при помощи разрядно-зарядного цикла. Соотношение величины заряда и разряда составляет десять к одному.

1 электросхема ЗУ электроника

1 схема мощного ЗУ


Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора. Приспособление применяется для кислотных АКБ, имеющих высокую емкость. Устройство с легкостью заряжает автомобильный аккумулятор, имеющий емкость в 120 А. Выходное напряжение устройство регулируется самостоятельно. Оно составляет от 0 до 24 вольт. Схема примечательна тем, что в ней установлено мало компонентов, но дополнительные настройки при работе она не требует.

2 схемы советского ЗУ

Многие уже могли видеть советское зарядное устройство. Оно похоже на небольшую коробку из металла, и может показаться совсем ненадежной. Но это вовсе не так. Главное отличие советского образца от современных моделей — надежность. Оборудование обладает конструктивной мощностью. В том случае, если к старому устройству подсоединить электронный контроллер, то зарядник получится оживить. Но если под рукой такого уже нет, но есть желание его собрать, необходимо изучить схему.

К особенностям их оборудования относят мощный трансформатор и выпрямитель, с помощью которых получается быстро зарядить даже сильно разряженную батарею. Многие современные аппараты не смогут повторить этот эффект.

Итак, хочу рассказать о конструкции самого простого и самого надежного зарядного устройства для кислотных аккумуляторов. По сути, данное устройство может использоваться для зарядки буквально любых типов аккумуляторов. Я заряжал даже литий-полимерные и литий-ионные, в этом случае емкость конденсаторов нужна в разы меньше.

Представленная схема ЗУ для автомобильного аккумулятора не новая, известна достаточно давно, но мало кому приходило в голову создать на такой основе зарядное устройство для автомобильного аккумулятора.

Схема настолько компактная, что ее можно засунуть даже в корпус от китайского ночника. К слову ЗУ было собранно для преподавателя (ему огромное спасибо и низкий поклон, мало сейчас таких людей как он).

Схема не содержит никаких трансформаторов, не боится замыканий (можно замкнуть и оставить часами, ничего не перегорит), компактная и может работать месяцами, при этом не греется ни капли. Думаете сказка? А вот и нет! Зарядное устройство можно реализовать из подручного хлама всего за 10-15 минут.

Схема зарядного устройства для автомобильных аккумуляторов

Основа — бестрансформаторная зарядка, которую можно увидеть в китайских фонариках для зарядки встроенного кислотного аккумулятора (герметичный свинцово-гелиевый аккумулятор). Благодаря повышенной емкости аккумуляторов удалось на выходе получить ток в 1 Ампер. В моем варианте я использовал 4 конденсатора, все они рассчитаны на напряжение 250 Вольт, хотя желательно подобрать на 400 или 630 Вольт. Конденсаторы подключены параллельно, суммарная емкость составила порядка 8 мкФ.

Резистор подключенный параллельно конденсаторам нужен для разряжения последних, поскольку после выключения схемы на конденсаторах остается напряжение.

Диодный мост — был взят готовый из компьютерного блока питания, обратное напряжение 600 Вольт, максимально допустимый ток 6 Ампер, в ходе работы остается ледяным.

Светодиодный индикатор сообщает о наличии напряжения в сети.

Сейчас некоторые подумают, что 1Ампер зарядного тока слишком мало для автомобильного аккумулятора, но это не так и аккумулятор заряжается достаточно быстро. Напряжение на выходе такого зарядного устройства составляет 180-200 Вольт. Схема не вредит аккумулятору, такая зарядка даже полезна для него.

Не прикасайтесь выходных проводов включенного ЗУ, в противном случае получите поражение током, хотя и не смертельное.

Вот такое простое зарядное устройство можно использовать для зарядки кислотных аккумуляторов с емкостью от 0,5 до 120 Ампер.

Творите, радуйтесь и наслаждайтесь жизнью, поскольку она дана нам лишь раз, а я с вами прощаюсь.

Зарядное устройство (ЗУ) для аккумулятора необходимо каждому автолюбителю, но стоит оно немало, а регулярные профилактические поездки в автосервис не выход. Обслуживание батареи в СТО требует времени и денег. Кроме того, на разряженном аккумуляторе до сервиса ещё нужно доехать. Собрать своими руками работоспособное зарядное устройство для автомобильного аккумулятора своими руками сможет каждый, кто умеет пользоваться паяльником.

Немного теории об аккумуляторах

Любой аккумулятор (АКБ) — накопитель электрической энергии. При подаче на него напряжения энергия накапливается, благодаря химическим изменениям внутри батареи. При подключении потребителя происходит противоположный процесс: обратное химическое изменение создаёт напряжение на клеммах устройства, через нагрузку течёт ток. Таким образом, чтобы получить от батареи напряжение, его сначала нужно «положить», т. е. зарядить аккумулятор.

Практически любой автомобиль имеет собственный генератор, который при запущенном двигателе обеспечивает электроснабжение бортового оборудования и заряжает аккумулятор, пополняя энергию, потраченную на пуск мотора. Но в некоторых случаях (частый или тяжёлый запуск двигателя, короткие поездки и пр.) энергия аккумулятора не успевает восстанавливаться, батарея постепенно разряжается. Выход из создавшегося положения один — зарядка внешним зарядным устройством.

Как узнать состояние батареи

Чтобы принимать решение о необходимости зарядки, нужно определить, в каком состоянии находится АКБ. Самый простой вариант — «крутит/не крутит» — в то же время является и неудачным. Если батарея «не крутит», к примеру, утром в гараже, то вы вообще никуда не поедете. Состояние «не крутит» является критическим, а последствия для аккумулятора могут быть печальными.

Оптимальный и надёжный метод проверки состояния аккумуляторной батареи — измерение напряжения на ней обычным тестером. При температуре воздуха около 20 градусов зависимость степени зарядки от напряжения на клеммах отключённой от нагрузки (!) батареи следующая:

  • 12.6…12.7 В — полностью заряжена;
  • 12.3…12.4 В — 75%;
  • 12.0…12.1 В — 50%;
  • 11.8…11.9 В — 25%;
  • 11.6…11.7 В — разряжена;
  • ниже 11.6 В — глубокий разряд.

Нужно отметить, что напряжение 10.6 вольт — критическое. Если оно опустится ниже, то «автомобильная батарейка» (особенно необслуживаемая) выйдет из строя.

Правильная зарядка

Существует два метода зарядки автомобильной батареи — постоянным напряжением и постоянным током. У каждого свои особенности и недостатки:

  • Зарядка постоянным напряжением — годится для восстановления заряда не полностью разряженных батарей, напряжение на клеммах которых не ниже 12.3 В. Процесс заключается в следующем: к клеммам батареи подключают источник постоянного тока напряжением 14.2–14.7 В. Окончание процесса контролируют по току потребления: когда он упадёт до нуля, зарядка считается оконченной. Недостаток такого способа — возможно большой начальный зарядный ток; чем сильнее батарея разряжена, тем выше ток. Преимущества метода очевидны — вам не нужно постоянно регулировать ток зарядки, аккумулятору не грозит перезарядка, если вы про него забудете.
  • Зарядка постоянным током — самый распространённый и надёжный способ. В этом режиме ЗУ выдаёт постоянный ток, равный 1/10 ёмкости батареи. Окончание процесса зарядки определяется по напряжению на батарее — когда оно достигнет 14.7 В, заряжать батарею прекращают. Недостаток такого метода — батарею можно испортить, не сняв вовремя с зарядки.

Самодельные зарядки для АКБ

Собрать своими руками зарядное устройство для автомобильного аккумулятора реально и не особо сложно. Для этого нужно иметь начальные знания по электротехнике и уметь держать в руках паяльник.

Простое устройство на 6 и 12 В

Такая схема самая элементарная и бюджетная. При помощи этого ЗУ вы сможете качественно зарядить любой свинцовый аккумулятор с рабочим напряжением 12 или 6 В и электрической ёмкостью от 10 до 120 А/ч.

Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5. Установка зарядного тока производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы C1-C4. Благодаря кратному «весу» каждого переключателя, различные комбинации позволяют ступенчато регулировать ток зарядки в пределах 1–15 А с шагом 1 А. Этого достаточно для выбора оптимального тока зарядки.

К примеру, если необходим ток в 5 А, то понадобится включить тумблеры S4 и S2. Замкнутые S5, S3 и S2 дадут в сумме 11 А. Для контроля напряжения на АКБ служит вольтметр PU1, за зарядным током следят при помощи амперметра PА1.

В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать на вторичной обмотке напряжение 22–24 В при токе до 10–15 А. На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242. Их следует установить через изолирующие прокладки на радиатор с площадью рассеяния не менее 300 см. кв.

Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН, МБГО, МБГП, МБМ, МБГЧ. Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В. PA1 — амперметр того же типа с пределом измерения 30 А.

Схема проста, если собрать её из исправных деталей, то в налаживании не нуждается. Это устройство подойдёт и для зарядки шестивольтовых батарей, но «вес» каждого из переключателей S2-S5 будет иным. Поэтому ориентироваться в зарядных токах придётся по амперметру.

С плавной регулировкой тока

По этой схеме собрать зарядник для аккумулятора автомобиля своими руками сложнее, но она возможна в повторении и тоже не содержит дефицитных деталей. С её помощью допустимо заряжать 12-вольтовые аккумуляторы ёмкостью до 120 А/ч, ток заряда плавно регулируется.

Зарядка батареи производится импульсным током, в качестве регулирующего элемента используется тиристор. Помимо ручки плавной регулировки тока, эта конструкция имеет и переключатель режима, при включении которого зарядный ток увеличивается вдвое.

Режим зарядки контролируется визуально по стрелочному прибору RA1. Резистор R1 самодельный, выполненный из нихромовой или медной проволоки диаметром не менее 0.8 мм. Он служит ограничителем тока. Лампа EL1 — индикаторная. На её месте подойдёт любая малогабаритная индикаторная лампа с напряжением 24–36 В.

Понижающий трансформатор можно применить готовый с выходным напряжением по вторичной обмотке 18–24 В при токе до 15 А. Если подходящего прибора под рукой не оказалось, то можно сделать самому из любого сетевого трансформатора мощностью 250–300 Вт. Для этого с трансформатора сматывают все обмотки, кроме сетевой, и наматывают одну вторичную обмотку любым изолированным проводом с сечением 6 мм. кв. Количество витков в обмотке — 42.

Тиристор VD2 может быть любым из серии КУ202 с буквами В-Н. Его устанавливают на радиатор с площадью рассеивания не менее 200 см. кв. Силовой монтаж устройства делают проводами минимальной длины и с сечением не менее 4 мм. кв. На месте VD1 будет работать любой выпрямительный диод с обратным напряжением не ниже 20 В и выдерживающий ток не менее 200 мА.

Налаживание устройства сводится к калибровке амперметра RA1. Сделать это можно, подключив вместо аккумулятора несколько 12-вольтовых ламп общей мощностью до 250 Вт, контролируя ток по заведомо исправному эталонному амперметру.

Из компьютерного блока питания

Чтобы собрать это простое зарядное устройство своими руками, понадобится обычный блок питания от старого компьютера АТХ и знания по радиотехнике. Но зато и характеристики прибора получатся приличными. С его помощью заряжают батареи током до 10 А, регулируя ток и напряжение заряда. Единственное условие — БП желателен на контроллере TL494.

Для создания автомобильной зарядки своими руками из блока питания компьютера придётся собрать схему, приведённую на рисунке.

Пошагово необходимые для доработки операции будут выглядеть следующим образом:

  1. Откусить все провода шин питания, за исключением жёлтых и чёрных.
  2. Соединить между собой жёлтые и отдельно чёрные провода — это будут соответственно «+» и «-» ЗУ (см. схему).
  3. Перерезать все дорожки, ведущие к выводам 1, 14, 15 и 16 контроллера TL494.
  4. Установить на кожух БП переменные резисторы номиналом 10 и 4,4 кОм — это органы регулировки напряжения и тока зарядки соответственно.
  5. Навесным монтажом собрать схему, приведённую на рисунке выше.

Если монтаж выполнен правильно, то доработку закончена. Осталось оснастить новое ЗУ вольтметром, амперметром и проводами с «крокодилами» для подключения к АКБ.

В конструкции возможно использовать любые переменные и постоянные резисторы, кроме токового (нижний по схеме номиналом 0.1 Ом). Его рассеиваемая мощность — не менее 10 Вт. Сделать такой резистор можно самостоятельно из нихромового или медного провода соответствующей длины, но реально найти и готовый, к примеру, шунт от китайского цифрового тестера на 10 А или резистор С5−16МВ. Ещё один вариант — два резистора 5WR2J, включённые параллельно. Такие резисторы есть в импульсных блоках питаниях ПК или телевизоров.

Что необходимо знать при зарядке АКБ

Заряжая автомобильный аккумулятор, важно соблюдать ряд правил. Это поможет вам продлить срок службы аккумулятора и сохранить своё здоровье:

  1. Все свинцовые аккумуляторы заряжают током не выше одной десятой от ёмкости батареи. Если у вас в авто стоит АКБ ёмкостью 60 А/ч, то расчёт зарядного тока выглядит так: 60/10=6 А.
  2. В процессе зарядки могут выделяться взрывоопасные газы. Особенно это касается обслуживаемых аккумуляторов. Достаточно одной искры, чтобы скопившийся в гараже или другом помещении водород взорвался. Поэтому заряжать аккумуляторы нужно в хорошо проветриваемом помещении или на балконе.
  3. Зарядка батареи сопровождается выделением тепла, поэтому постоянно контролируйте температуру корпуса АКБ на ощупь. Если батарея заметно нагрелась, то немедленно уменьшите зарядный ток или вообще прекратите зарядку.
  4. Если батарея обслуживаемая, постоянно контролируйте уровень электролита в банках и его плотность. В процессе заряда электролит «выкипает», а плотность повышается. Если пластины в банке оголились или плотность поднялась выше 1.29, а зарядка ещё не закончена, добавьте в электролит дистиллированной воды.
  5. Не допускайте перезарядки батареи. Максимальное напряжение на ней при подключённом ЗУ — 14.7 В.
  6. Не допускайте глубокой разрядки батареи, подзаряжайте её периодически. Если напряжение на батарее при отключённой нагрузке опустится ниже 10.7, АКБ придётся выбросить.

Вопрос о создании простого зарядного устройство для аккумулятора своими руками выяснен. Все достаточно просто, осталось запастись необходимым инструментом и можно смело приступать к работе.

Зарядка Автомобильного Аккумулятора, Схема Импульсного Зарядного Устройства, Какое Напряжение, Цикл Зу, Сколько Часов, Батарейки и Лампочки

В процессе эксплуатации автомобиля может возникнуть необходимость самостоятельно восполнить запас энергии. В этом случае, зарядка аккумулятора станет крайне важна и следует знать, как правильно провести такую операцию.

Регулярность зарядки

Процесс подзарядки аккумулятора в автомобиле выполняет генератор и обычно этого достаточно для поддержания работоспособности батареи. Для снижения риска интенсивного выделения газов в акб устанавливается защитное реле ограничивающее напряжение до 14,1 В. Такие требования безопасности не позволят осуществить полный цикл зарядки, для которого необходимы показатели тока 14.5 В. Интенсивное использование кондиционера и других устройств, требующих большое количество электроэнергии способно истощить батарею. Для её восстановления потребуется зарядка аккумулятора автомобиля, которую легко провести самостоятельно.

Исправный аккумулятор обычно не вызывает проблем при положительной температуре воздуха. Для обеспечения запуска двигателя и функционирования приборов будет достаточно половины ресурсов такого устройства. Работа акб в зимнее время более осложнена, и отрицательные температуры способны снизить в два раза показатели ёмкости батареи. Наступление холодов также требует высоких пусковых токов, так как густеет моторное масло и необходимо больше энергии для включения двигателя. В качестве экстренной меры можно использовать провода от прикуривателя другой машины, но это не избавит от необходимости полностью зарядить автомобильный аккумулятор.

Интенсивная нагрузка на аккумулятор приводит к тому, что генератор не успевает компенсировать электроэнергию. Такая ситуация является стандартной, и отрицательная температура окружающей среды требует повышенного внимания к батарее. Оптимальным решением будет ежегодная зарядка аккумулятора автомобиля, которую следует проводить до наступления морозов.

Проверка заряда АКБ

Оценка уровня заряда аккумулятора может помочь в спорных ситуациях и определить необходимость проведения полного цикла зарядки. Стационарное измерение напряжения следует проводить не менее чем через 6 часов после отсоединения батареи от системы автомобиля или пуско-зарядного устройства. Существует несколько методов для определения таких показателей, имеющих некоторую погрешность в точности.

  • Снятие показателей напряжения на выходах акб предоставляет относительную оценку состояния батареи. Для получения таких данных можно воспользоваться мультиметром и сравнить показатели напряжения с соответствующей им ёмкостью;
    Соотношение напряжения к остаточному заряду
    Напряжение на клеммах аккумулятора (B) 12,8 12,6 12,2 12,0 < 11,8
    Уровень заряда аккумулятора (%) 100 75 50 25 Разрядка
  • Измерение напряжения под нагрузкой не требует длительного отстоя аккумулятора. Для таких изысканий используют вольтметр и нагрузочные вилки с подключенным сопротивлением в 0,018-0,020 Ом. После подключения устройства к клемам акб выдерживается пауза в 5 секунд, и снимаются показания. Данные, полученные с помощью вольтметра и нагрузочной вилки необходимо сравнить с таблицей, позволяющей определить состояние батареи;
    Соотношение напряжения к остаточному заряду
    Напряжение на клеммах аккумулятора (B) 10,5 9,9 9,3 8,7 < 8,18
    Уровень заряда аккумулятора (%) 100 75 50 25 Разрядка
  • Для обслуживаемых аккумуляторов проверку можно выполнить с помощью замера плотности электролита. Для таких целей используется ареометр, который легко приобрести на авторынке или в магазине. Проведённые замеры, следует сопоставить с таблицей, которая покажет степень заряда батареи;
  • Получение данных состояния батареи во время запуска двигателя. Такая методика требует исправного стартера и заключается в измерении напряжения во время пуска силовой установки. При условии, что автомобиль оснащён исправным стартером, напряжение не должно быть ниже 9,5 вольт. Меньшие показатели будут свидетельствовать о необходимости зарядки или неисправности стартера;
  • Без снятия батареи можно выполнить замеры путём создания нагрузки с помощью включения габаритов и дальнего света. Учитывая, что лампы автомобиля имеют мощность в 50 Вт нагрузка должна составлять 10 ампер. При таком условии напряжение заряженного аккумулятора должно быть на уровне 11.2 вольт, а более низкие показатели свидетельствуют о необходимости провести дозарядку устройства.

Некоторые модели имеют встроенный гидрометрический индикатор зарядки аккумулятора, позволяющий без использования специальных устройств определить состояние акб. Зелёный глазок такого прибора свидетельствует о зарядке не менее 60%, а чёрный индикатор сигнализирует о небольшом запасе энергии, и зарядка аккумулятора автомобиля будет необходима. Кроме показателей степени заряда такой датчик может принять светлый оттенок, что означает недостачу  дистиллированной воды.

Виды зарядных устройств

Для достижения полной зарядки аккумуляторных батарей необходимо использовать специальное оборудование. Так схема зарядного устройства для автомобильного аккумулятора представляет собой простой преобразователь электроэнергии, обеспечивающий на выходе постоянное напряжение тока. Для большего удобства используются дополнительные датчики и специальные алгоритмы зарядки. Такие приборы могут требовать ручной настройки или работать в автоматическом режиме, самостоятельно определяя характеристики акб.

Определить, как зарядить аккумулятор способен каждый водитель, а использовать можно любое зарядное устройство, выбор которого зависит от собственных предпочтений. Первым признаком нехватки заряда может стать горящая лампочка на приборной панели, что потребует принятия более решительных мер. Полный цикл зарядки длится несколько часов и эти работы удобнее проводить в помещении. Все зарядные приборы независимо от настроек имеют обязательную защиту от неправильного подключения клем и перегрева.

Типы аккумуляторных батарей

Для автомобильных аккумуляторов используются источники тока, основанные на применении различных технологий. Если ранее были востребованны щелочные элементы, то современный рынок представлен кислотными аккумуляторами. Такая технология позволяет в качестве электролита использовать кислоту, помещённую между свинцовых пластин. Особенности этого исполнения предполагают обслуживание акб, которое заключается в доливе дистиллированной воды.

Не менее популярны и гелевые батареи, использование которых не требует обслуживания. Такая технология имеет большую стоимость, а процесс зарядки не отличается от других акб. Существуют и литий-ионные батареи,  но такие устройства не всегда имеют пусковой ток достаточной мощности, что ограничивает их применение.

Самостоятельная зарядка акб

Полная зарядка аккумулятора потребует не менее 10 часов для выполнения всех технических условий. При проведении таких операций потребуется снять аккумулятор с автомобиля и стереть с него грязь или остатки кислоты. Зарядку следует проводить в сухом помещении, обязательно соблюдая полярность электрической цепи. Для исключения появления искр следует сначала подсоединить отрицательный контакт, а затем положительный. Трансформаторное или  импульсное зарядное устройство для автомобильного аккумулятора подключается последним, после чего можно настроить параметры тока.

В обслуживаемых типах батарей следует проверить уровень электролита и обязательно открутить пробки на банках. В зависимости от типа пуско-зарядного устройства такая процедура будет требовать корректировки или выполняться в автоматическом режиме. Обычно батарею оставляют восполнять запас энергии на всю ночь, а падение стрелки тока на нулевое значение будет свидетельствовать о завершении зарядки.

Методика зарядки батареи

Правильная зарядка аккумулятора автомобиля предполагает подачу тока недостающего батареи до заполнения 100%  её ёмкости. Для устройств, не поддерживающих автоматический режим несложно провести самостоятельную настройку параметров тока. Такие действия потребуют периодического контроля и некоторой корректировки характеристик зарядного устройства. Чтобы понять, как заряжать автомобильный аккумулятор, следует рассмотреть способы зарядки, которые могут быть:

  • На основе постоянного тока;
  • На основе постоянного напряжения.

При зарядке постоянным током следует задать силу тока, равную 10% от её ёмкости. Следовательно, для акб с ёмкостью  80А/ч потребуется сила тока в 8 ампер. Эти показатели необходимо выдерживать на протяжении всего цикла восстановления, что потребует периодической проверки и корректировки напряжения зарядки. Для обслуживаемых моделей признаком завершения первого этапа зарядки будет газообразование, а показатель тока гелевых акб должен достигнуть 14 вольт. Далее следует вдвое снизить силу тока и продолжить зарядку пока напряжение не поднимется до 15 вольт. После чего сила тока опять снижается вдвое.

Удостовериться в правильности зарядки аккумулятора автомобиля и достижения показателя в 100% не представляет сложностей. Для такого контроля в течение 2 часов отслеживаются параметры напряжения и силы тока. Их неизменное значение и будет свидетельствовать о завершении зарядки.

Если ток зарядки автомобильного аккумулятора имеет постоянное значение, то придётся определить, сколько времени необходимо для завершения таких процедур. Следует учесть, что чем меньше будет ток, тем лучше восполнится батарея. Чтобы рассчитать зарядку аккумулятора необходимо знать его ёмкость. Производители источников питания рекомендуют устанавливать силу тока в размере 0,1 от ёмкости акб. Следовательно, батарея 80А/ч будет заряжаться током в 8 ампер, а продолжительность зарядки составит стандартные 15 часов.

Глубокий разряд аккумулятора

Невнимательность или простой автомобиля с включенными электроприборами способен привести к ситуации, в которой аккумулятор получит глубокий разряд. К сожалению, такая ошибка может повлиять на работоспособность источника питания. Восстановление батареи необходимо начинать с показателей силы тока не более 0.1, от её номинальной ёмкости. Следует использовать по возможности меньшую силу тока, увеличив время зарядки устройства до 24 часов.

Такие нормы отчасти касаются и нового аккумулятора, только зарядка акб проводится минимальными токами в течении 2-4 часов. При выполнении полного цикла восстановления будет гореть зелёный индикатор зарядки аккумулятора, а напряжение на клеммах составит 16,2 вольт.

Выбор зарядного устройства

Среди различных моделей зарядных приборов определяющим остаётся их принцип работы. Всем знакомы трансформаторные устройства, которые характеризуются большим весом и габаритами. На смену им пришили импульсные приборы, которые лишены громоздких деталей. Для гелевых батарей импульсная технология является более щадящей, хотя они хорошо работают с любым зарядным устройством.

При восстановлении показателей тока кислотной батареи можно заметить, как аккумулятор кипит при зарядке и такое его состояние вполне допустимо. Кипение электролита может происходить при использовании зу любого типа и является признаком работоспособности банок. Появление пузырьков газа должно быть во всех банках, что будет свидетельствовать о завершении зарядки.

Любое зарядное устройство позволяет восполнить запас электроэнергии аккумулятора независимо от его типа и мощности. Для упрощения этого процесса существуют автоматические приборы, способные точно вычислить время и эффективный метод зарядки. Такие устройства позволяют исключить все расчёты, и провести обычную или форсированную зарядку. Бережное отношение к аккумуляторной батарее и своевременная подзарядка продлят её срок службы, что позволит сосредоточиться на вождении.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

12 вольт, li ion (литий ионные)

Аккумуляторный инструмент удобен на природе, местах, лишенных стабильного постоянного доступа к электропитанию. Отсутствие кабеля позволяет избежать неудобств с удлинителями, страха перегрузить сеть, запутывания проводами, невозможности подлезть к труднодоступным участкам.

Эксплуатация аккумуляторного инструмента имеет свои особенности. Как правильно зарядить аккумулятор, не испортив? Из чего состоят, чем отличаются? Ответы – в статье.

Устройство аккумулятора шуруповерта

Основные элементы конструкции:

  • Корпус, на котором размещены контакты (соединяют с з/у или электроинструментом).
  • «Банки» (как правило, их несколько), объединенные общей цепью.
  • Для безопасной эксплуатации есть температурный датчик, предотвращающий перегрев.

Характеристики АКБ для шуруповертов:

  • Напряжение (В) – это показатель, характеризующий возможности инструмента. Оно влияет на то, насколько сложные задачи получится выполнить с его помощью. Напряжение можно охарактеризовать как эквивалент мощности сетевых приборов. Показатель непостоянен: достигает пика при полностью заряженной батарее, постепенно снижается в процессе разрядки. Именно поэтому есть смысл выполнять работы, требующие высокой силы удара, вначале.
  • Емкость характеризует, какое количество энергии накапливает устройство. Влияет на продолжительность работы на одном заряде. Надо помнить – одно устройство с одной батареей будет работать разное время (зависит от сложности задач).
  • Масса и габариты влияют на то, насколько комфортно использовать их с инструментом. Устройство с тяжелой батареей продолжительно удерживать на весу будет неудобно, что скажется на производительности и качестве выполняемых работ.
  • Дополнительный функционал. Индикатор отражает, какое количество энергии осталось до полной разрядки. Полезен, чтобы распланировать рабочее время. Некоторые производители выпускают батареи, совместимые с рядом разнообразных инструментов: триммерами, шуруповертами, электропилами, лобзиками.

Какие типы аккумуляторов существуют?

Какие разновидности АКБ используются дрелями-шуруповертами?

  • Никель-кадмиевые (NiCd). Первый тип устройств, долго держит зарядку, оснащен достаточной емкостью. Есть эффект памяти, который запрещает ставить на зарядку при неполном разряде батареи. Поэтому частая подзарядка недопустима, это ведет к сокращению емкости АКБ. Перед первым использованием сначала полностью зарядите блок, потом начинайте работу с инструментом. Никель-кадмиевые используются шуруповертами бюджетного класса. Они дешевые. Подойдут для нечастого использования.
  • Никель-металл-гидридные (NiMH). Пришли на смену никель-кадмиевым. Более экологичны и меньше весят. Хуже сохраняют зарядку в режиме бездействия, за счет чего может быстро снизиться емкость батареи. Желательно подзаряжать перед каждым применением, всегда брать с собой зарядное устройство.
  • Литий-ионные (Li-Ion). Характерны достаточной емкостью батареи. Лишены эффекта памяти, рассчитаны на интенсивное и регулярное применение. Быстро заряжаются, циклов насчитывают до 1000. Отличаются сравнительно высокой стоимостью. Быстрее разряжаются, когда работают при низких температурах, давая нестабильный поток энергии. Хранить такие батареи нужно разряженными наполовину, периодически восполняя емкость.

Особенности и правила зарядки АКБ шуруповертов

Батареи произведены из разных материалов. Это влияет на размеры, вес, возможность сверлить при минусовых температурах, напряжение, емкость, подверженность эффекту памяти. Последний особенно влияет на принцип зарядки шуруповерта.


Эффект памяти – это потеря емкости, достигаемая неполной разрядкой аккумуляторной батареи. Если прекратить использование инструмента до того, как он разрядится полностью, устройство “запомнит” это и не будет использовать ресурс в полном объеме. Несоблюдение правил эксплуатации батареи сокращает емкость.


Сколько времени нужно заряжать аккумулятор шуруповерта?

Перед тем, как зарядить аккумуляторную дрель или шуруповерт, нужно определить, сколько времени потребуется для этой процедуры. Период прописан в инструкции, прилагающейся к инструменту. Некоторые модели имеют световую индикацию – она отобразит, когда прибор полностью заряжен. После завершения зарядки сразу отсоедините батарею от з/у.

Обычно время заряда составляет от получаса до 7 часов, в зависимости от типа батареи и зарядного устройства. Дольше всего подпитываются энергией никель-кадмиевые – 3-7 ч.

Правила хранения аккумулятора шуруповерта

Литий-ионные

Лишены эффекта памяти: можно подзаряжать на любой стадии. Не стоит допускать полного разряда – приводит к выключению защитных контроллеров, предотвращающих перегрузки. В результате этого устройство может не выдержать интенсивную эксплуатацию, выйти из строя.

Никель-кадмиевые

Аккумулятор перед хранением разряжают практически полностью (до состояния нерабочего инструмента). Чтобы убрать устройство на долгое хранение (более 6 месяцев), выполните от 3 до 5 полных курсов заряда-разрядки.

Никель-металл-гидридные

Больше остальных типов подвержены быстрому саморазряду. После длинного срока хранения нужно поставить АКБ на зарядное устройство минимум на сутки, чтобы восполнить запасы энергии. Отмечается снижение емкости после 300 циклов заряда-разрядки.

Заряжать аккумулятор перед хранением?

Как с прошлым пунктом, зависит от типа, есть ли смысл зарядка АКБ перед хранением.

Li-Ion

На хранение литий-ионный аккумулятор нужно убирать с зарядом в 50%, периодически (1 раз / 1-2 мес.) доставать и подзаряжать.

NiCd

Хранить в разряженном состоянии.

NiMH

Постоянно поддерживать уровень зарядки, периодически восполнять.

Проверка состояния АКБ при помощи мультиметра

Будет полезно, чтобы определить причину, по которой батарея не заряжается. Процедура выявит работоспособность аккумуляторов. Приведем простые в реализации методы, которые можно использовать в домашних условиях. Подготовьте оборудование: помимо мультиметра потребуются инструменты для разборки АКБ (плоскогубцы, паяльник, отвертка, нож.

  1. Проверьте батарею на зарядке, снимая показания с интервалом 30 минут. Вольтаж должен стабильно возрастать до полной зарядки.
  2. Быстрый метод проверки состояния АКБ. Замеряем U вхолостую. Сопоставляем результат с реальным напряжением и количеством элементов Показатели разнятся – АКБ имеет нерабочие части, которые требуется заменить.

Способы зарядки без использования зарядного устройства (нестандартные методы)


НАДО ЗНАТЬ! Не рекомендуем применять на практике информацию из данного пункта. Приводим в ознакомительных целях.


Существуют нестандартные методы, как заряжать аккумулятор шуруповерта без зарядного устройства:

  • зарядка от автомобиля,
  • универсального з/у,
  • внешнего источника энергии.

Эффективность таких действий может быть оправдана, если нет фирменной зарядки. Безопасность сомнительна – возможна перезарядка. Не советуем использовать эти методы – они могут привести к выходу из строя, поломке аккумуляторной батареи и опасны для пользователя. Приобретите фирменный АКБ аналогичной шуруповерту марки или подходящий по характеристикам.

Что делать, если АКБ шуруповерта не заряжается?

Условия хранения и эксплуатации выполнялись, экзотические способы зарядки не использовались, а АКБ перестал заряжаться. Что делать?

  1. Осмотрите контакты между клеммами аккумуляторного блока и з/у. Причина неработоспособности может оказаться в недостаточно высоком контакте. В этом случае рекомендуем разобрать зарядное устройство, после чего подогнуть клеммы.
  2. В корпус з/у могли попасть грязь, мелкие частицы пыли. Чтобы этого избежать, своевременно протирайте контактную группу. Признаки загрязнения – это уменьшенное время работы дрели-шуруповерта, восполнение заряда проходит быстрее.

НАДО ЗНАТЬ! Попытка самостоятельно разобрать инструмент и сопутствующие детали, отремонтировать лишит гарантии. Сомневаетесь в технических навыках – отнесите неработающее оборудование в сервис.


Что делать, если аккумулятор не держит заряд?

  • Заказать новый. Если аккумулятор не держит заряд, его циклы закончились. Нормально, что АКБ со временем изнашиваются.
  • Обратить внимание на условиях эксплуатации. Li-Ion для дрели-шуруповерта не держат при низкой температуре.
  • NiCd, NiMH подвержены эффекту памяти. Возможно, вы ставили заряжать аккумулятор шуруповерта до полной разрядки. Это становится причиной того, что аккумулятор не держит заряд – купите новый.
  • Инструмент куплен недавно, а аккумулятор не держит заряд? Возможно, попался бракованный экземпляр. Обратитесь в сервисный центр.

СХЕМЫ и ИНСТРУКЦИИ по сборке простой электроники своими руками

Автоматическое зарядное устройство для автомобильного аккумулятора состоит из источника электропитания и схем защиты. Собрать его самостоятельно можно, владея навыками электромонтажных работ. При сборке используют как сложные электросхемы, так и конструируют более простые варианты устройства.

Содержание

Открытьполное содержание

[ Скрыть]

Требования к самодельным зарядным устройствам

Чтобы зарядка автоматически могла восстановить АКБ автомобиля, к ней предъявляются жесткие требования:

  1. Любое простое современное ЗУ должно быть автономным. Благодаря этому за работой оборудования не придется следить, в частности, если оно функционирует ночью. Устройство будет самостоятельно контролировать рабочие параметры напряжения и тока заряда. Этот режим называется автоматом.
  2. Зарядное оборудование должно самостоятельно обеспечивать стабильный уровень напряжения 14,4 вольта. Этот параметр необходим для восстановления любых батарей, работающих в 12-вольтной сети.
  3. Зарядное оборудование должно обеспечить необратимое выключение батареи от прибора при двух условиях. В частности если ток заряда или напряжение увеличится более, чем на 15,6 вольт. Оборудование должно иметь функцию самоблокировки. Пользователю, чтобы сбросить рабочие параметры, придется отключить и активировать прибор.
  4. Оборудование обязательно должно быть защищено от переплюсовки, иначе АКБ может выйти из строя. Если потребитель спутает полярность и неверно подключит минусовой и плюсовой контакт, произойдет замыкание. Важно, чтобы зарядное оборудование обеспечивало защиту. Схема дополняется предохранительным устройством.
  5. Для подключения ЗУ к аккумуляторной батарее потребуется два провода, каждый из которых должно иметь сечение 1 мм2. На один конец каждого проводника требуется установить зажим типа крокодил. С другой стороны устанавливаются разрезные наконечники. Положительный контакт должен быть выполнен в красной оболочке, а отрицательный — в синей. Для бытовой сети используется универсальный кабель, оснащенный вилкой.

Если аппарат полностью сделать своими руками, несоблюдение требований навредит не только зарядному прибору, но и аккумулятору.

Владимир Кальченко подробно рассказал о переделке ЗУ и об использовании подходящих для этой цели проводов.

Конструкция автоматического зарядного устройства

Простейший образец зарядного приспособления конструктивно включает в себя главную деталь — понижающее трансформаторное устройство. В этом элементе производится снижение параметра напряжения с 220 до 13,8 вольт, которое требуется для восстановления заряда аккумулятора. Но трансформаторное устройство может снижать только эту величину. А преобразование переменного тока на постоянный осуществляется специальным элементом — диодным мостом.

Каждое зарядное устройство должно быть оборудовано диодным мостом, поскольку эта деталь выпрямляет значение тока и позволяет разделить его на плюсовой и минусовой полюса.

В любой схеме за этой деталью обычно устанавливается амперметр. Компонент предназначен для демонстрации силы тока.

Простейшие конструкции зарядных приборов оборудуются стрелочными датчиками. В более усовершенствованных и дорогих версиях используются цифровые амперметры, а кроме них электроника может дополняться и вольтметрами.

Некоторые модели приборов позволяют потребителю изменять уровень напряжения. То есть появляется возможность заряда не только 12-вольтных аккумуляторов, но и батарей, рассчитанных на работу в 6- и 24-вольтных сетях.

От диодного моста отходят провода с положительным и отрицательным клеммным зажимом. С их помощью выполняется подключение оборудования к батарее. Вся конструкция заключается в пластиковый либо металлический корпус, от которого отходит кабель с вилкой для подключения к электросети. Также из устройства выводятся два провода с минусовым и плюсовым клеммным зажимом. Для обеспечения более безопасной работы зарядного оборудования схема дополняется плавким предохранительным устройством.

Пользователь Артем Квантов наглядно разобрал фирменный прибор для подзарядки и рассказал о его конструктивных особенностях.

Схемы автоматических зарядных устройств

При наличии навыка работы с электрооборудованием можно произвести сборку прибора самостоятельно.

Простые схемы

Такие варианты приборов делятся на:

  • устройства с одним диодным элементом;
  • оборудование с диодным мостом;
  • прибора, оснащенные сглаживающими конденсаторами.
Схема с одним диодом

Здесь есть два варианта:

  1. Можно собрать схему с трансформаторным устройством и установить диодный элемент после него. На выходе зарядного оборудования ток будет пульсирующим. Его биения будут серьезными, поскольку фактически срезывается одна полуволна.
  2. Можно собрать схему, используя блок питания от ноутбука. При его используется мощный выпрямительный диодный элемент с обратным напряжением больше 1000 вольт. Его ток должен составить не менее 3 ампер. Внешний вывод штекера питания будет отрицательным, а внутренний — положительным. Такую схему обязательно надо дополнить ограничительным сопротивлением, в качестве которого допускается применение лампочки для освещения салона.

Допускается применение более мощного осветительного устройства от указателя поворота, габаритных огней либо стоповых сигналов. При использовании блока питания от ноутбука, это может привести к его перегрузке. Если используется диод, то в качестве ограничителя надо установить лампу накаливания на 220 вольт и 100 ватт.

При применении диодного элемента выполняется сборка простой схемы:

  1. Сначала идет клемма от бытовой розетки на 220 вольт.
  2. Затем — отрицательный контакт диодного элемента.
  3. Следующим будет положительный вывод диода.
  4. Затем подключается ограничительная нагрузка — источник освещения.
  5. Следующим будет отрицательный контакт аккумулятора.
  6. Затем положительный вывод батареи.
  7. И вторая клемма для подключения к 220-вольтной сети.

При применении источника освещения на 100 ватт параметр тока заряда будет примерно 0,5 ампер. Так за одну ночь устройство сможет отдать аккумуляторной батарее 5 А/ч. Этого хватит, чтобы покрутить стартерный механизм транспортного средства.

Чтобы увеличить показатель, можно соединить параллельно три источника освещения по 100 ватт, за ночь это позволит восполнить половину емкости батареи. Некоторые пользователи вместо ламп используют электроплиты, но этого делать нельзя, поскольку из строя выйдет не только диодный элемент, но и аккумулятор.

Простейшая схема с одним диодом
Электросхема подключения АКБ к сети
Схема с диодным мостом

Этот компонент предназначен для «заворачивания» отрицательной волны наверх. Сам ток будет также пульсирующим, но его биения значительно меньше. Данный вариант схемы используется чаще остальных, но не является самым эффективным.

Диодный мост можно сделать самому, используя выпрямляющие элемент, или приобрести готовую деталь.

Электросхема ЗУ с диодным мостом

Схема со сглаживающим конденсатором

Эта деталь должна быть рассчитана на 4000-5000 мкФ и 25 вольт. На выходе полученной электросхемы образуется постоянный ток. Устройство обязательно дополняется предохранительными элементами на 1 ампер, а также измерительным оборудованием. Эти детали позволяют контролировать процесс восстановления аккумулятора. Можно их не использовать, но тогда периодически потребуется подключать мультиметр.

Если производить мониторинг напряжения удобно (путем подключения клемм к щупам), то с током будет сложнее. В данном режиме функционирования измерительное устройство придется подключать в разрыв электроцепи. Пользователю понадобится каждый раз отключать питание от сети, ставить тестер в режим замера тока. Затем активировать питание и разбирать электроцепь. Поэтому рекомендуется добавить в схему как минимум один амперметр на 10 ампер.

Основной минус простых электросхем заключается в отсутствии возможности регулировки параметров заряда.

При подборе элементной базы следует выбирать рабочие параметры так, чтобы на выходе величина силы тока составила 10% от общей емкости АКБ. Возможно незначительное снижение этой величины.

Если полученный параметр тока будет больше, чем требуется, схему можно дополнитель резисторным элементом. Он устанавливается на положительном выходе диодного моста, непосредственно перед амперметром. Уровень сопротивления подбирается в соответствии с использующимся мостом с учетом показателя тока, а мощность резистора должна быть более высокой.

Электросхема со сглаживающим конденсаторным устройством

Схема с возможностью ручной регулировки тока заряда для 12 В

Чтобы обеспечить возможность изменения параметра тока, необходимо поменять сопротивление. Простой способ решить эту проблему — поставить переменный подстроечный резистор. Но этот метод нельзя назвать самым надежным. Чтобы обеспечить более высокую надежность, требуется реализовать ручную регулировку с двумя транзисторными элементами и подстроечным резистором.

С помощью переменного резисторного компонента будет меняться ток зарядки. Эта деталь устанавливается после составного транзистора VT1-VT2. Поэтому ток через данный элемент будет проходить невысокий. Соответственно, небольшой будет и мощность, она составит около 0,5-1 Вт. Рабочий номинал зависит от использующихся транзисторных элементов и выбирается опытным путем, детали рассчитаны на 1-4,7 кОм.

В схеме используется трансформаторное устройство на 250-500 Вт, а также вторичная обмотка на 15-17 вольт. Сборка диодного моста осуществляется на деталях, рабочий ток которых составляет от 5 ампер и больше. Транзисторные элементы подбираются из двух вариантов. Это могут быть германиевые детали П13-П17 либо кремниевые устройства КТ814 и КТ816. Чтобы обеспечить качественный отвод тепла, схема должна быть размещена на радиаторном устройстве (не меньше 300 см3) либо стальной пластине.

На выходе оборудования устанавливается предохранительное устройство ПР2, рассчитанное на 5 ампер, а на входе — ПР1 на 1 А. Схема оснащается сигнальными световыми индикаторами. Один из них используется для определения напряжения в сети 220 вольт, второй — для тока заряда. Допускается использование любых источников освещения, рассчитанных на 24 вольта, в том числе диодов.

Электросхема для зарядного прибора с функцией ручной регулировки

Схема защиты от переплюсовки

Есть два варианта реализации такого ЗУ:

  • с использованием реле Р3;
  • путем сборки ЗУ с интегральной защитой, но не только от переплюсовки, но и от перенапряжения и перезаряда.
С реле Р3

Данный вариант схемы может применяться с любым зарядным оборудованием, как тиристорным, так и транзисторным. Ее необходимо включить в разрыв кабелей, посредством которых производится подключение батареи к ЗУ.

Схема защиты оборудования от переплюсовки на реле Р3

Если аккумуляторная батарея подключена к сети некорректно, диодный элемент VD13 не будет пропускать ток. Реле электросхемы обесточено, а его контакты разомкнуты. Соответственно, ток не сможет поступать на клеммы батареи. Если подключение выполнено правильно, то реле активируется и его контактные элементы замыкаются, поэтому АКБ заряжается.

С интегрированной защитой от переплюсовки, перезаряда и перенапряжения

Данный вариант электросхемы можно встроить в уже использующийся самодельный источник питания. В ней применяется медленный отклик аккумулятора на скачок напряжения, а также гистерезис реле. Напряжение с током отпускания будет в 304 раза меньше данного параметра при срабатывании.

Применяется реле переменного тока на напряжение активации 24 вольта, а ток величиной 6 ампер идет через контакты. При активации зарядного прибора включается реле, происходит замыкание контактных элементов и начинается зарядка.

Параметр напряжения на выходе трансформаторного устройства снижается ниже 24 вольт, но на выходе зарядного прибора будет 14,4 В. Реле должно удерживать это значение, но при появлении экстратока первичная величина напряжения еще больше просядет. Это приведет к отключению реле и разрыву электроцепи заряда.

Использование диодов Шоттки в этом случае нецелесообразно, поскольку данный тип схемы будет иметь серьезные недостатки:

  1. Отсутствует защита от скачка напряжения по контакту от переплюсовки, если аккумулятор полностью разряжен.
  2. Нет самоблокировки оборудования. В результате воздействия экстратока реле будет отключаться, пока не выйдут из строя контактные элементы.
  3. Нечеткое срабатывание оборудования.

Из-за этого добавить в данную схему устройство для регулировки тока срабатывания не имеет смысла. Реле и трансформаторное устройство точно подбираются друг к другу, чтобы повторяемость элементов была близка к нулю. Ток заряда проходит через замкнутые контакты реле К1, в результате чего снижается вероятность их выхода из строя из-за обгорания.

Обмотка К1 должна подключаться по логической электросхеме:

  • к модулю защиты от экстратока, это VD1, VT1 и R1;
  • к устройству защиты от перенапряжения, это элементы VD2, VT2, R2-R4;
  • а также к электроцепи самоблокировки К1.2 и VD3.

Схема с интегрированной защитой от переплюсовки, перезаряда и перенапряжения

Основной минус состоит в необходимости налаживания схемы с применением балластной нагрузки, а также мультиметра:

  1. Производится выпаивание элементов К1, VD2 и VD3. Либо при сборке их можно не запаивать.
  2. Выполняется активация мультиметра, который надо заранее настроить на замер напряжения в 20 вольт. Его надо подключить вместо обмотки К1.
  3. Аккумулятор пока не подключается, вместо него устанавливается резисторное устройство. Оно должно обладать сопротивлением в 2,4 Ома для тока заряда 6 А или 1,6 Ом для 9 ампер. Для 12 А резистор должен быть рассчитан на 1,2 Ом и не меньше, чем на 25 Вт. Резисторный элемент можно накрутить из аналогичной проволоки, которая использовалась для R1.
  4. На вход от зарядного оборудования подается напряжение 15,6 вольт.
  5. Должна сработать токовая защита. Мультиметр покажет напряжение, поскольку элемент сопротивления R1 выбран с небольшим избытком.
  6. Производится уменьшение параметра напряжения, пока тестер не покажет 0. Значение выходного напряжения надо записать.
  7. Затем производится выпайка детали VT1, а VD2 и К1 устанавливаются на место. R3 необходимо поставить в крайнее нижнее положение в соответствии с электросхемой.
  8. Величина напряжения зарядного оборудования увеличивается, пока на нагрузке не будет 15,6 вольт.
  9. Элемент R3 плавно вращается, пока не сработает К1.
  10. Выполняется снижение напряжения зарядного прибора до значения, которое было записано ранее.
  11. Обратно устанавливаются и припаиваются элементы VT1 и VD3. После этого электросхему можно проверять на работоспособность.
  12. Через амперметр выполняется подключение рабочего, но севшего или недозаряженного аккумулятора. К батарее надо подсоединить тестер, который заранее настроен на измерение напряжения.
  13. Пробный заряд необходимо провести с непрерывным контролем. В момент, когда тестер покажет 14,4 вольта на аккумуляторе, необходимо засечь ток содержания. Этот параметр должен быть в норме или близким к нижнему пределу.
  14. Если величина тока содержания высокая, то напряжение зарядного прибора следует снизить.

Схема автоматического отключения при полной зарядке аккумулятора

Автоматика должна представлять собой электросхему, оснащенную системой питания операционного усилительного устройства и опорного напряжения. Для этого используется плата стабилизатора DA1 класса 142ЕН8Г для 9 вольт. Данную схему необходимо предназначать, чтобы уровень выходного напряжения при измерении температуры платы на 10 градусов практически не менялся. Изменение составит не больше, чем сотые доли вольта.

В соответствии с описанием схемы, система автоматической деактивации при увеличении напряжения на 15,6 вольт делается на половине платы А1.1. Четвертый ее вывод соединяется с делителем напряжения R7 и R8, с которого подается опорная величина, составляющая 4,5В. Рабочим параметром резисторного устройства задается порог активации зарядного приспособления 12,54 В. В результате использования диодного элемента VD7 и детали R9 можно обеспечить нужный гистерезис между величиной напряжения активации и отключения заряда батареи.

Электросхема ЗУ с автоматической деактивацией при заряженной батарее

Описание действия схемы такой:

  1. Когда происходит подключение батареи, уровень напряжения на клеммах которого меньше 16,5 вольт, на втором выводе схема А1.1 устанавливается параметр. Данное значение достаточно, чтобы транзисторный элемент VT1 открылся.
  2. Происходит открытие этой детали.
  3. Активируется реле Р1. В результате к сети через блок конденсаторных механизмов посредством контактных элементов подключается первичная обмотка трансформаторного устройства.
  4. Начинается процесс восполнения заряда АКБ.
  5. Когда уровень напряжения увеличится до 16,5 вольт, это значение на выходе А1.1 снизится. Уменьшение происходит до величины, которой недостаточно для поддержания транзисторного устройства VT1 в открытом состоянии.
  6. Происходит отключение реле и контактные элементы К1.1 подключать трансформаторный узел через конденсаторное устройство С4. При нем величина тока заряда будет 0,5 А. В этом состоянии схема оборудования будет работать, пока величина напряжения на батарее не снизится до 12,54 вольт.
  7. После того, как это произойдет, выполняется активация реле. Продолжается зарядка АКБ заданным пользователем током. В данной схеме реализована возможность отключения системы автоматической регулировки. Для этого используется переключательное устройство S2.

Данный порядок работы автоматического зарядного устройства для автомобильного аккумулятора позволяет предотвратить его разряд. Пользователь может оставить включенным оборудование хоть на неделю, это не навредит батарее. Если в бытовой сети пропадет напряжение, при его появлении ЗУ продолжит заряжать аккумулятор.

Если говорить о принципе действия схемы, собранной на второй половине платы А1.2, то он идентичен. Но уровень полной деактивации зарядного оборудования от сети питания составит 19 вольт. Если величина напряжения меньше, на восьмом выход платы А1.2 оно будет достаточным, чтобы удержать транзисторное устройство VT2 в открытом положении. При нем ток будет подаваться на реле Р2. Но если величина напряжения составит более 19 вольт, то транзисторное устройство закроется и контактные элементы К2.1 разомкнутся.

Необходимые материалы и инструменты

Описание деталей и элементов, которые потребуются для сборки:

  1. Силовой трансформаторное устройство Т1 класса ТН61-220. Его вторичные обмотки должны быть подключены последовательно. Можно использовать любой трансформатор, мощность которого не больше 150 ватт, поскольку ток заряда обычно составляет не более 6А. Вторичная обмотка устройства при воздействии электротока до 8 ампер должна обеспечить напряжение в диапазоне 18-20 вольт. При отсутствии готового трансформатора допускается применение деталей аналогичной мощности, но потребуется перемотать вторичную обмотку.
  2. Конденсаторные элементы С4-С9 должны соответствовать классу МГБЧ и иметь напряжение не ниже 350 вольт. Допускается применение устройств любого типа. Главное, чтобы они предназначались для функционирования в цепях переменного тока.
  3. Диодные элементы VD2-VD5 можно использовать любые, но они должны быть рассчитаны на ток 10 ампер.
  4. Детали VD7 и VD11 — кремневые импульсные.
  5. Диодные элементы VD6, VD8, VD10, VD5, VD12, VD13 должны выдерживать ток величиной 1 ампер.
  6. Светодиодный элемент VD1 — любой.
  7. В качестве детали VD9 допускается использование устройства класса КИПД29. Основная особенность данного источника освещения заключается в возможности изменения цвета, если меняется полярность соединения. Для переключения лампочки применяются контактные элементы К1.2 реле Р1. Если на аккумулятор идет зарядка основным током, светодиод горит желтым, а если включается режим подзарядки, то зеленым. Допускается применение двух одноцветных устройств, но их надо правильно подключить.
  8. Операционный усилитель КР1005УД1. Можно взять устройство из старого видеоплейера. Основная особенность заключается в том, что этой детали не требуется два полярных питания, она сможет работать при напряжении 5-12 вольт. Можно использовать любые аналогичные запчасти. Но из-за разной нумерации выводов надо будет изменить рисунок печатной схемы.
  9. Реле Р1 и Р2 должны быть рассчитаны на напряжения 9-12 вольт. А их контакты — на работу с током величиной 1 ампер. Если устройства оснащаются несколькими контактными группами, их рекомендуется запаять параллельным образом.
  10. Реле Р3 — на 9-12 вольт, но величина тока коммутации будет 10 ампер.
  11. Переключательное устройство S1, должно быть предназначено для работы с напряжением 250 вольт. Важно, чтобы в этом элементе было достаточно коммутирующих контактных компонентов. Если шаг регулировки в 1 ампер неважен, то можно поставить несколько переключателей и выставить ток заряда 5-8 А.
  12. Выключатель S2, предназначен для деактивации системы контроля уровня заряда.
  13. Также потребуется электромагнитная головка для измерителя тока и напряжения. Допускается применение любого типа устройств, главное, чтобы ток полного отклонения составит 100 мкА. Если будет замеряться не напряжение, а только ток, то в схему можно установить готовый амперметр. Он должен быть рассчитан на работу с максимальным постоянным током 10 ампер.

Пользователь Артем Квантов в теории рассказал о схеме зарядного оборудования, а также о подготовке материалов и деталей для ее сборки.

Порядок подключения аккумулятора к зарядным устройствам

Инструкция по включению ЗУ состоит из нескольких этапов:

  1. Очистка поверхности аккумулятора.
  2. Удаление пробок для заливки жидкости и контроль уровня электролита в банках.
  3. Выставление значения тока на зарядном оборудовании.
  4. Подключение клемм к аккумулятору с соблюдением полярности.

Очистка поверхности

Руководство по выполнению задачи:

  1. В автомобиле отключается зажигание.
  2. Открывается капот машины. Используя гаечные ключи соответствующего размера, от клемм аккумуляторной батареи надо отключить зажимы. Для этого гайки выкручивать не нужно, их можно ослабить.
  3. Выполняется демонтаж фиксирующей пластины, которая крепит батарею. Для этого может потребоваться ключ-головка либо звездочка.
  4. АКБ демонтируется.
  5. Производится очистка его корпуса чистой ветошью. Впоследствии будут откручиваться крышки банок для залива электролита, поэтому нельзя допустить попадания грузи внутрь.
  6. Выполняется визуальная диагностика целостности корпуса батареи. При наличии трещин, через которые вытекает электролит, заряжать АКБ нецелесообразно.

Пользователь Аккумуляторщик рассказал о выполнении очистки и промывки корпуса аккумуляторной батареи перед ее обслуживанием.

Удаление пробок заливки кислоты

Если аккумуляторная батарея обслуживаемая, в ней надо открутить крышки на пробках. Они могут быть скрыты под специальной защитной пластиной, ее нужно демонтировать. Для выкручивания пробок можно использовать отвертку или любую металлическую пластину соответствующего размера. После демонтажа надо оценить уровень электролита, жидкость должна полностью покрывать все банки внутри конструкции. Если ее недостаточно, то требуется долить дистиллированной воды.

Установка величины тока заряда на зарядном устройстве

Выставляется параметр тока для подзарядки АКБ. Если эта величина будет больше номинальной в 2-3 раза, то процедура заряда произойдет в быстрее. Но этот метод приведет к снижению ресурса эксплуатации батареи. Поэтому выставлять такой ток можно, если аккумулятор надо подзарядить быстро.

Рекомендуется выставить значение, соответствующее 50-60% от номинального. Это увеличит время подзарядки устройства, но данный вариант более щадящий для аккумулятора.

Подключение аккумулятора с соблюдением полярности

Процедура выполняется так:

  1. К клеммам АКБ подключаются зажимы от ЗУ. Сначала выполняется соединение положительного контакта, это красный провод.
  2. Отрицательный кабель можно не подключать, если АКБ остался в автомобиле и не демонтировался. Подсоединение данного контакта возможно к кузову транспортного средства либо к блоку цилиндров.
  3. Вилка от зарядного оборудования вставляется в розетку. Аккумулятор начинает заряжаться. Время заряда зависит от степени разряда устройства и его состояния. При выполнении задачи не рекомендуется использование удлинителей. Такой провод обязательно должен иметь заземление. Его величина будет достаточной, чтобы выдержать нагрузку силы тока.

Канал «VseInstrumenti» рассказал об особенностях подключения АКБ к зарядному прибору и соблюдении полярности при выполнении этой задачи.

Как определить степень разрядки аккумулятора

Для выполнения задачи потребуется мультиметр:

  1. Производится замер величины напряжения на автомобиле с отключенным двигателем. Электросеть транспортного средства в таком режиме будет потреблять часть энергии. Значение напряжения при замере должно соответствовать 12,5-13 вольтам. Выводы тестера подключаются с соблюдением полярности к контактам АКБ.
  2. Производится запуск силового агрегата, все электрооборудование должно быть выключено. Процедура измерения повторяется. Рабочая величина должна составить в диапазоне 13,5-14 вольт. Если полученное значение больше или меньше, это говорит о разряде аккумулятора и функционировании генераторного устройства не в штатном режиме. Увеличение данного параметра при низкой отрицательной температуре воздуха не может сообщить о разряде аккумулятора. Возможно, сначала полученный показатель будет больше, но если со временем он придет в норму, это говорит о работоспособности.
  3. Выполняется включение основных потребителей энергии — отопителя, магнитолы, оптики, системы обогрева заднего стекла. В таком режиме уровень напряжения составит в диапазоне от 12,8 до 13 вольт.

Величину разряда можно определить в соответствии с данными, приведенными в таблице.

Уровень заряженности АКБЗначение плотности рабочей жидкости, г/см3Параметр напряжения разомкнутой цепи для 12-вольтной батареиЗначение НРЦ для 1 банки аккумулятора
100%1,28больше 12,7больше 2,117
80%21,24512,52,083
60%1,2112,32,05
40%1,17512,12,017
20%1,1411,91,983
0%1,111,71,95

Как рассчитать примерное время зарядки аккумулятора

Для определения приблизительного времени подзарядки потребителю необходимо знать разницу между максимальным значением заряда (12,8 В) и вольтажом в данный момент. Эта величина умножается на 10, в итоге получается время заряда в часах. Если уровень напряжения перед выполнением подзарядки составляет 11,9 вольт, то 12,8-11,9=0,8. Умножив это значение на 10 можно определить, что время подзарядки составит примерно 8 часов. Но это при условии, что будет осуществляться подача тока в размере 10% от емкости аккумулятора.

 Загрузка …

Видео «Руководство по перебелке ИБП в ЗУ»

Пользователь Артем Квантов подробно рассказал, как полностью переделать источник бесперебойного питания в зарядное оборудование для аккумулятора машины.

простая схема. С интегрированной защитой от переплюсовки, перезаряда и перенапряжения

При нормальных условиях эксплуатации, электрическая система автомобиля самодостаточна. Речь идет об энергоснабжении – связка из генератора, регулятора напряжения, и аккумуляторной батареи, работает синхронно и обеспечивает бесперебойное питание всех систем.

Это в теории. На практике, владельцы автомобилей вносят поправки в эту стройную систему. Или же оборудование отказывается работать в соответствии с установленными параметрами.

Например:

  1. Эксплуатация аккумуляторной батареи, которая исчерпала свой ресурс. Элемент питания «не держит» заряд
  2. Нерегулярные поездки. Длительный простой автомобиля (особенно в период «зимней спячки») приводит к саморазряду АКБ
  3. Автомобиль используется в режиме коротких поездок, с частым глушением и запуском мотора. АКБ просто не успевает подзарядиться
  4. Подключение дополнительного оборудования увеличивает нагрузку на АКБ. Зачастую приводит к повышенному току саморазряда при выключенном двигателе
  5. Экстремально низкая температура ускоряет саморазряд
  6. Неисправная топливная система приводит к повышенной нагрузке: автомобиль заводится не сразу, приходится долго крутить стартер
  7. Неисправный генератор или регулятор напряжения не позволяет нормально заряжать аккумулятор. К этой проблеме относятся изношенные силовые провода и плохой контакт в цепи заряда
  8. И наконец, вы забыли выключить головной свет, габариты или музыку в автомобиле. Для полного разряда аккумулятора за одну ночь в гараже, иногда достаточно неплотно закрыть дверь. Освещение салона потребляет достаточно много энергии.

Любая из перечисленных причин приводит к неприятной ситуации: вам надо ехать, а батарея не в силах провернуть стартер. Проблема решается внешней подпиткой : то есть, зарядным устройством.

Во вкладке четыре проверенных и надежных схем зарядных устройств для автомобиля от простой до самой сложной. Выбирай любую и она будет работать.

Простая схема зарядного устройства на 12В.

Зарядное устройство с регулировкой тока зарядки.

Регулировка от 0 до 10А осуществляется изменением задержки открывания тринистора.

Схема зарядного устройства для аккумулятора с самоотключением после зарядки.

Для заряда аккумуляторов емкостью 45 ампер.

Схема умного зарядного устройства, которое предупредит о не правильном подключении.

Его совершенно несложно собрать своими руками. Пример зарядного устройства сделанного из бесперебойника.

Это очень простая схема приставки к вашему уже имеющемуся зарядному устройству. Которая будет контролировать напряжение заряда аккумуляторной батареи и при достижении выставленного уровня — отключать его от зарядника, тем самым предотвращая перезарядку аккумулятора.
Это устройство не имеет абсолютно никаких дефицитных деталей. Вся схема построена всего на одном транзисторе. Имеет светодиодные индикаторы, отображающие состояние: идет зарядка или батарея заряжена.

Кому пригодятся это устройство?

Такое устройство обязательно пригодится автомобилистам. Тем у кого есть не автоматическое зарядное устройство. Это приспособление сделает из вашего обычного зарядного устройства — полностью автоматический зарядник. Вам больше не придется постоянного контролировать зарядку вашей батареи. Все что нужно будет сделать, это поставить аккумулятор заряжаться, а его отключение произойдет автоматически, только после полной зарядки.

Схема автоматического зарядного устройства


Вот собственно и сама схема автомата. Фактически это пороговое реле, которое срабатывает при превышении определенного напряжения. Порог срабатывания устанавливается переменным резистором R2. Для полностью заряженного автомобильного аккумулятора он обычно равен — 14,4 В.
Схему можете скачать здесь —

Печатная плата


Как делать печатную плату, решать Вам. Она не сложная и поэтому ее запросто можно накидать на макетной плате. Ну или можно заморочиться и сделать на текстолите с травлением.

Настройка

Если все детали исправные настройка автомата сводиться только к выставлению порогового напряжения резистором R2. Для этого подключаем схему к зарядному устройству, но аккумулятор пока не подключаем. Переводим резистор R2 в крайнее нижнее положение по схеме. Устанавливаем выходное напряжение на заряднике 14,4 В. Затем медленно вращаем переменный резистор до тех пор, пока не сработает реле. Все настроено.
Поиграемся с напряжением, чтобы убедиться что приставка надежно срабатывает при 14,4 В. После этого ваш автоматический зарядник готов к работе.
В этом видео вы можете подробно посмотреть процесс всей сборки, регулировки и испытания в работе.

Многие автолюбители отлично знают, что для продления срока службы аккумуляторной батареи требуется периодическая ее именно от зарядного устройства, а не от генератора автомобиля.

И чем больше срок службы аккумулятора, тем чаще его нужно заряжать, чтобы восстанавливать заряд.

Без зарядных устройств не обойтись

Для выполнения данной операции, как уже отмечено, используются зарядные устройства, работающие от сети 220 В. Таких устройств на автомобильном рынке очень много, они могут обладать различными полезными дополнительными функциями.

Однако все они выполняют одну работу – преобразуют переменное напряжение 220 В в постоянное – 13,8-14,4 В.

В некоторых моделях сила тока при зарядке регулируется вручную, но есть и модели с полностью автоматической работой.

Из всех недостатков покупных зарядных устройств можно отметить высокую их стоимость, и чем «навороченней» прибор, тем цена на него выше.

А ведь у многих под рукой есть большое количество электроприборов, составные части которых вполне могут подойти для создания самодельного зарядного устройства.

Да, самодельный прибор выглядеть будет не так презентабельно, как покупной, но ведь его задача – заряжать АКБ, а не «красоваться» на полке.

Одними из важнейших условий при создании зарядного устройства – это хоть начальное знание электротехники и радиоэлектроники, а также умение держать в руках паяльник и уметь правильно им пользоваться.

ЗУ из лампового телевизора

Первой будет схема, пожалуй, самая простейшая, и справиться с ней сможет практически любой автолюбитель.

Для изготовления простейшего зарядного устройства понадобиться всего лишь две составные части – трансформатор и выпрямитель.

Главное условие, которым должно соответствовать зарядное устройство – это сила тока на выходе из прибора должна составлять 10% от емкости АКБ.

То есть, зачастую на легковых авто применяется батарея на 60 Ач, исходя из этого, на выходе из прибора сила тока должна быть на уровне 6 А. При этом напряжение 13,8-14,2 В.

Если у кого-то стоит старый ненужный ламповый советский телевизор, то лучше трансформатора, чем из него не найти.

Принципиальная схема зарядного устройства из телевизора имеет такой вид.

Зачастую на таких телевизорах устанавливался трансформатор ТС-180. Особенностью его являлось наличие двух вторичных обмоток, по 6,4 В и силой тока 4,7 А. Первичная обмотка тоже состоит из двух частей.

Вначале потребуется выполнить последовательное подключение обмоток. Удобство работ с таким трансформатором в том, что каждый из выводов обмотки имеет свое обозначение.

Для последовательного соединения вторичной обмотки нужно соединить между собой выводы 9 и 9\’.

А к выводам 10 и 10\’ – припаять два отрезка медного провода. Все провода, которые припаиваются к выводам должны иметь сечение не менее 2,5 мм. кв.

Что касается первичной обмотки, то для последовательного соединения нужно соединить между собой выводы 1 и 1\’. Провода с вилкой для подключения к сети нужно припаять к выводам 2 и 2\’. На этом с трансформатором работы завершены.

На схеме указано, как должно производится подключение диодов – к диодному мосту припаиваются провода, идущие от выводов 10 и 10\’, а также провода, которые будут идти к АКБ.

Не стоит забывать и о предохранителях. Один из них рекомендуется установить на «плюсовом» выводе с диодного моста. Этот предохранитель должен быть рассчитан на ток не более 10 А. Второй предохранитель (на 0,5 А) нужно установить на выводе 2 трансформатора.

Перед началом зарядки лучше проверить работоспособность устройства и проверить его выходные параметры при помощи амперметра и вольтметра.

Иногда бывает, что сила тока несколько больше, чем требуется, поэтому некоторые в цепь установить 12-вольтовую лампу накаливания с мощностью от 21 до 60 Ватт. Эта лампа «заберет» на себя излишки силы тока.

ЗУ из микроволновой печи

Некоторые автолюбители используют трансформатор от сломанной микроволновой печи. Но этот трансформатор нужно будет переделывать, поскольку он является повышающим, а не понижающим.

Необязательно, чтобы трансформатор был исправен, поскольку в нем зачастую сгорает вторичная обмотка, которую в процессе создания устройства все равно придется удалять.

Переделка трансформатора сводится к полному удалению вторичной обмотки, и намотки новой.

В качестве новой обмотки используется изолированный провод сечением не менее 2,0 мм. кв.

При намотке нужно определиться с количеством витков. Можно сделать это экспериментально – намотать на сердечник 10 витков нового провода, после чего к его концам подсоединить вольтметр и запитать трансформатор.

По показаниям вольтметра определяется, какое напряжение на выходе обеспечивают эти 10 витков.

К примеру, замеры показали, что на выходе есть 2,0 В. Значит, 12В на выходе обеспечат 60 витков, а 13 В – 65 витков. Как вы поняли, 5 витков добавляет 1 вольт.

Стоит указать, что сборку такого зарядного устройства лучше производить качественно, затем все составные части поместить в корпус, который можно изготовить из подручных материалов. Или смонтировать на основу.

Обязательно следует пометить где «плюсовой» провод, а где — «минусовой», чтобы не «переплюсовать», и не вывести из строя прибор.

ЗУ из блока питания АТХ (для подготовленных)

Более сложную схему имеет зарядное устройство, изготовленное из компьютерного блока питания.

Для изготовления устройства подойдут блоки мощностью не менее 200 Ватт моделей АТ или АТХ, которые управляются контроллером TL494 или КА7500. Важно, чтобы блок питания был полностью исправен. Не плохо себя показала модель ST-230WHF из старых ПК.

Фрагмент схемы такого зарядного устройства представлена ниже, по ней и будем работать.

Помимо блока питания также потребуется наличие потенциометра-регулятора, подстроечный резистор на 27 кОм, два резистора мощностью 5 Вт (5WR2J) и сопротивлением 0,2 Ом или один С5-16МВ.

Начальный этап работ сводится к отключению всего ненужного, которыми являются провода «-5 В», «+5 В», «-12 В» и «+12 В».

Резистор, указанный на схеме как R1 (он обеспечивает подачу напряжения +5 В на вывод 1 контроллера TL494) нужно выпаять, а на его место впаять подготовленный подстроечный резистор на 27 кОм. На верхний вывод этого резистора нужно подвести шину +12 В.

Вывод 16 контроллера следует отсоединить от общего провода, а также нужно перерезать соединения выводов 14 и 15.

В заднюю стенку корпуса блока питания нужно установить потенциометр-регулятор (на схеме – R10). Устанавливать его нужно на изоляционную пластину, чтобы он не касался корпуса блока.

Через эту стенку следует также вывести проводку для подключения к сети, а также провода для подключения АКБ.

Чтобы обеспечить удобство регулировки прибора из имеющихся двух резисторов на 5 Вт на отдельной плате нужно сделать блок резисторов, подключенных параллельно, что обеспечит на выходе 10 Вт с сопротивлением 0,1 Ом.

Затем следует проверить правильность соединения всех выводов и работоспособность прибора.

Финальной работой перед завершением сборки является калибровка устройства.

Для этого ручку потенциометра следует установить в среднее положение. После этого на подстроечном резисторе следует установить напряжение холостого хода на уровне 13,8-14,2 В.

Если все правильно выполнить, то при начале зарядки батареи на нее будет подаваться напряжение в 12,4 В с силой тока в 5,5 А.

По мере зарядки АКБ напряжение будет возрастать до значения, установленного на подстроечном резисторе. Как только напряжения достигнет этого значения, сила тока начнет снижаться.

Если все рабочие параметры сходятся и прибор работает нормально, остается только закрыть корпус для предотвращения повреждения внутренних элементов.

Данное устройство из блока АТХ очень удобно, поскольку при достижении полного заряда батареи, автоматически перейдет в режим стабилизации напряжения. То есть перезарядка АКБ полностью исключается.

Для удобства работ можно дополнительно прибор оснастить вольтметром и амперметром.

Итог

Это только несколько видов зарядных устройств, которые можно изготовить в домашних условиях из подручных средств, хотя вариантов их значительно больше.

Особенно это касается зарядных устройств, которые изготавливаются из блоков питания компьютера.

Если у вас есть опыт в изготовлении таких устройств делитесь им в комментариях, многие буду очень признательны за это.

На фотографии представлено самодельное автоматическое зарядное устройство для зарядки автомобильных аккумуляторов на 12 В током величиной до 8 А, собранного в корпусе от милливольтметра В3-38.

Почему нужно заряжать аккумулятор автомобиля


зарядным устройством

АКБ в автомобиле заряжается с помощью электрического генератора. Для защиты электрооборудования и приборов от повышенного напряжения, которое вырабатывает автомобильным генератором, после него устанавливают реле-регулятор, который ограничивает напряжение в бортовой сети автомобиля до 14,1±0,2 В. Для полной же зарядки аккумулятора требуется напряжение не менее 14,5 В.

Таким образом, полностью зарядить АКБ от генератора невозможно и перед наступлением холодов необходимо подзаряжать аккумулятор от зарядного устройства.

Анализ схем зарядных устройств

Привлекательной выглядит схема изготовления зарядного устройства из блока питания компьютера. Структурные схемы компьютерных блоков питания одинаковые, но электрические разные, и для доработки требуется высокая радиотехническая квалификация.

Интерес у меня вызвала конденсаторная схема зарядного устройства, КПД высокий, тепла не выделяет, обеспечивает стабильный ток заряда вне зависимости от степени заряда аккумулятора и колебаний питающей сети, не боится коротких замыканий выхода. Но тоже имеет недостаток. Если в процессе заряда пропадет контакт с аккумулятором, то напряжение на конденсаторах возрастает в несколько раз, (конденсаторы и трансформатор образуют резонансный колебательный контур с частотой электросети), и они пробиваются. Надо было устранить только этот единственный недостаток, что мне и удалось сделать.

В результате получилась схема зарядного устройства без выше перечисленных недостатков. Более 16 лет заряжаю ним любые кислотные аккумуляторы на 12 В. Устройство работает безотказно.

Принципиальная схема автомобильного зарядного устройства

При кажущейся сложности, схема самодельного зарядного устройства простая и состоит всего из нескольких законченных функциональных узлов.


Если схема для повторения Вам показалась сложной, то можно собрать более , работающую на таком же принципе, но без функции автоматического отключения при полной зарядке аккумулятора.

Схема ограничителя тока на балластных конденсаторах

В конденсаторном автомобильном зарядном устройстве регулировка величины и стабилизация силы тока заряда аккумулятора обеспечивается за счет включения последовательно с первичной обмоткой силового трансформатора Т1 балластных конденсаторов С4-С9. Чем больше емкость конденсатора, тем больше будет ток заряда аккумулятора.


Практически это законченный вариант зарядного устройства, можно подключить после диодного моста аккумулятор и зарядить его, но надежность такой схемы низкая. Если нарушится контакт с клеммами аккумулятора, то конденсаторы могут выйти из строя.

Емкость конденсаторов, которая зависит от величины тока и напряжения на вторичной обмотке трансформатора, можно приблизительно определить по формуле, но легче ориентироваться по данным таблицы.

Для регулировки тока, чтобы сократить количество конденсаторов, их можно подключать параллельно группами. У меня переключение осуществляется с помощью двух галетного переключателя, но можно поставить несколько тумблеров.

Схема защиты


от ошибочного подключения полюсов аккумулятора

Схема защиты от переполюсовки зарядного устройства при неправильном подключении аккумулятора к выводам выполнена на реле Р3. Если аккумулятор подключен неправильно, диод VD13 не пропускает ток, реле обесточено, контакты реле К3.1 разомкнуты и ток не поступает на клеммы аккумулятора. При правильном подключении реле срабатывает, контакты К3.1 замыкаются, и аккумулятор подключается к схеме зарядки. Такую схему защиты от переполюсовки можно использовать с любым зарядным устройством, как транзисторным, так и тиристорным. Ее достаточно включить в разрыв проводов, с помощью которых аккумулятор подключается к зарядному устройству.

Схема измерения тока и напряжения зарядки аккумулятора

Благодаря наличию переключателя S3 на схеме выше, при зарядке аккумулятора есть возможность контролировать не только величину тока зарядки, но и напряжение . При верхнем положении S3, измеряется ток, при нижнем – напряжение. Если зарядное устройство не подключено к электросети, то вольтметр покажет напряжение аккумулятора, а когда идет зарядка аккумулятора, то напряжение зарядки. В качестве головки применен микроамперметр М24 с электромагнитной системой. R17 шунтирует головку в режиме измерения тока, а R18 служит делителем при измерении напряжения.

Схема автоматического отключения ЗУ


при полной зарядке аккумулятора

Для питания операционного усилителя и создания опорного напряжения применена микросхема стабилизатора DA1 типа 142ЕН8Г на 9В. Микросхема это выбрана не случайно. При изменении температуры корпуса микросхемы на 10º, выходное напряжение изменяется не более чем на сотые доли вольта.

Система автоматического отключения зарядки при достижении напряжения 15,6 В выполнена на половинке микросхемы А1.1. Вывод 4 микросхемы подключен к делителю напряжения R7, R8 с которого на него подается опорное напряжение 4,5 В. Вывод 4 микросхемы подключен к другому делителю на резисторах R4-R6, резистор R5 подстроечный для установки порога срабатывания автомата. Величиной резистора R9 задается порог включения зарядного устройства 12,54 В. Благодаря применению диода VD7 и резистора R9, обеспечивается необходимый гистерезис между напряжением включения и отключения заряда аккумулятора.


Работает схема следующим образом. При подключении к зарядному устройству автомобильного аккумулятора, напряжение на клеммах которого меньше 16,5 В, на выводе 2 микросхемы А1.1 устанавливается напряжение достаточное для открывания транзистора VT1, транзистор открывается и реле P1 срабатывает, подключая контактами К1.1 к электросети через блок конденсаторов первичную обмотку трансформатора и начинается зарядка аккумулятора.

Как только напряжение заряда достигнет 16,5 В, напряжение на выходе А1.1 уменьшится до величины, недостаточной для поддержания транзистора VT1 в открытом состоянии. Реле отключится и контакты К1.1 подключат трансформатор через конденсатор дежурного режима С4, при котором ток заряда будет равен 0,5 А. В таком состоянии схема зарядного устройства будет находиться, пока напряжение на аккумуляторе не уменьшится до 12,54 В. Как только напряжение установится равным 12,54 В, опять включится реле и зарядка пойдет заданным током. Предусмотрена возможность, в случае необходимости, переключателем S2 отключить систему автоматического регулирования.

Таким образом, система автоматического слежения за зарядкой аккумулятора, исключит возможность перезаряда аккумулятора. Аккумулятор можно оставить подключенным к включенному зарядному устройству хоть на целый год. Такой режим актуален для автолюбителей, которые ездят только в летнее время. После окончания сезона автопробега можно подключить аккумулятор к зарядному устройству и выключить только весной. Даже если в электросети пропадет напряжение, при его появлении зарядное устройство продолжит заряжать аккумулятор в штатном режиме

Принцип работы схемы автоматического отключения зарядного устройства в случае превышения напряжения из-за отсутствия нагрузки, собранной на второй половинке операционного усилителя А1.2, такой же. Только порог полного отключения зарядного устройства от питающей сети выбран 19 В. Если напряжение зарядки менее 19 В, на выходе 8 микросхемы А1.2 напряжение достаточное, для удержания транзистора VT2 в открытом состоянии, при котором на реле P2 подано напряжение. Как только напряжение зарядки превысит 19 В, транзистор закроется, реле отпустит контакты К2.1 и подача напряжения на зарядное устройство полностью прекратится. Как только будет подключен аккумулятор, он запитает схему автоматики, и зарядное устройство сразу вернется в рабочее состояние.

Конструкция автоматического зарядного устройства

Все детали зарядного устройства размещены в корпусе миллиамперметра В3-38, из которого удалено все его содержимое, кроме стрелочного прибора. Монтаж элементов, кроме схемы автоматики, выполнен навесным способом.


Конструкция корпуса миллиамперметра, представляет собой две прямоугольные рамки, соединенные четырьмя уголками. В уголках с равным шагом сделаны отверстия, к которым удобно крепить детали.


Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. На этой пластине установлен и С1. На фото вид зарядного устройства снизу.

К верхним уголкам корпуса закреплена тоже пластина из стеклотекстолита толщиной 2 мм, а к ней винтами конденсаторы С4-С9 и реле Р1 и Р2. К этим уголкам также прикручена печатная плата, на которой спаяна схема автоматического управления зарядкой аккумулятора. Реально количество конденсаторов не шесть, как по схеме, а 14, так как для получения конденсатора нужного номинала приходилось соединять их параллельно. Конденсаторы и реле подключены к остальной схеме зарядного устройства через разъем (на фото выше голубой), что облегчило доступ к другим элементам при монтаже.

На внешней стороне задней стенки установлен ребристый алюминиевый радиатор для охлаждения силовых диодов VD2-VD5. Тут так же установлен предохранитель Пр1 на 1 А и вилка, (взята от блока питания компьютера) для подачи питающего напряжения.

Силовые диоды зарядного устройства закреплены с помощью двух прижимных планок к радиатору внутри корпуса. Для этого в задней стенке корпуса сделано прямоугольное отверстие. Такое техническое решение позволило к минимуму свести количество выделяемого тепла внутри корпуса и экономии места. Выводы диодов и подводящие провода распаяны на не закрепленную планку из фольгированного стеклотекстолита.

На фотографии вид самодельного зарядного устройства с правой стороны. Монтаж электрической схемы выполнен цветными проводами, переменного напряжения – коричневым, плюсовые – красным, минусовые – проводами синего цвета. Сечение проводов , идущих от вторичной обмотки трансформатора к клеммам для подключения аккумулятора должно быть не менее 1 мм 2 .

Шунт амперметра представляет собой отрезок высокоомного провода константана длиной около сантиметра, концы которого запаяны в медные полоски. Длина провода шунта подбирается при калибровке амперметра. Провод я взял от шунта сгоревшего стрелочного тестера. Один конец из медных полосок припаян непосредственно к выходной клемме плюса, ко второй полоске припаян толстый проводник, идущий от контактов реле Р3. На стрелочный прибор от шунта идут желтый и красный провод.

Печатная плата блока автоматики зарядного устройства

Схема автоматического регулирования и защиты от неправильного подключения аккумулятора к зарядному устройству спаяна на печатной плате из фольгированного стеклотекстолита.


На фотографии представлен внешний вид собранной схемы. Рисунок печатной платы схемы автоматического регулирования и защиты простой, отверстия выполнены с шагом 2,5 мм.


На фотографии выше вид печатной платы со стороны установки деталей с нанесенной красным цветом маркировкой деталей. Такой чертеж удобен при сборке печатной платы.


Чертеж печатной платы выше пригодится при ее изготовлении с помощью технологии с применением лазерного принтера.


А этот чертеж печатной платы пригодится при нанесении токоведущих дорожек печатной платы ручным способом.

Шкала стрелочного прибора милливольтметра В3-38 не подходила под требуемые измерения, пришлось начертить на компьютере свой вариант, напечатал на плотной белой бумаге и клеем момент приклеил сверху на штатную шкалу.

Благодаря большему размеру шкалы и калибровки прибора в зоне измерения, точность отсчета напряжения получилась 0,2 В.

Провода для подключения АЗУ к клеммам аккумулятора и сети

На провода для подключения автомобильного аккумулятора к зарядному устройству с одной стороны установлены зажимы типа крокодил, с другой стороны разрезные наконечники. Для подключения плюсового вывода аккумулятора выбран красный провод, для подключения минусового – синий. Сечение проводов для подключения к устройству аккумулятора должно быть не менее 1 мм 2 .


К электрической сети зарядное устройство подключается с помощью универсального шнура с вилкой и розеткой, как применяется для подключения компьютеров, оргтехники и других электроприборов.

О деталях зарядного устройства

Силовой трансформатор Т1 применен типа ТН61-220, вторичные обмотки которого соединены последовательно, как показано на схеме. Так как КПД зарядного устройства не менее 0,8 и ток заряда обычно не превышает 6 А, то подойдет любой трансформатор мощностью 150 ватт. Вторичная обмотка трансформатора должна обеспечить напряжение 18-20 В при токе нагрузки до 8 А. Если нет готового трансформатора, то можно взять любой подходящий по мощности и перемотать вторичную обмотку. Рассчитать число витков вторичной обмотки трансформатора можно с помощью специального калькулятора .

Конденсаторы С4-С9 типа МБГЧ на напряжение не менее 350 В. Можно использовать конденсаторы любого типа, рассчитанные на работу в цепях переменного тока.

Диоды VD2-VD5 подойдут любого типа, рассчитанные на ток 10 А. VD7, VD11 — любые импульсные кремневые. VD6, VD8, VD10, VD5, VD12 и VD13 любые, выдерживающие ток 1 А. Светодиод VD1 – любой, VD9 я применил типа КИПД29. Отличительная особенность этого светодиода, что он меняет цвет свечения при смене полярности подключения. Для его переключения использованы контакты К1.2 реле Р1. Когда идет зарядка основным током светодиод светит желтым светом, а при переключении в режим подзарядки аккумулятора – зеленым. Вместо бинарного светодиода можно установить любых два одноцветных, подключив их по ниже приведенной схеме.

В качестве операционного усилителя выбран КР1005УД1, аналог зарубежного AN6551. Такие усилители применяли в блоке звука и видео в видеомагнитофоне ВМ-12. Усилитель хорош тем, что не требует двух полярного питания, цепей коррекции и сохраняет работоспособность при питающем напряжении от 5 до 12 В. Заменить его можно практически любым аналогичным. Хорошо подойдут для замены микросхемы, например, LM358, LM258, LM158, но нумерация выводов у них другая, и потребуется внести изменения в рисунок печатной платы.

Реле Р1 и Р2 любые на напряжение 9-12 В и контактами, рассчитанными на коммутируемый ток 1 А. Р3 на напряжение 9-12 В и ток коммутации 10 А, например РП-21-003. Если в реле несколько контактных групп, то их желательно запаять параллельно.

Переключатель S1 любого типа, рассчитанный на работу при напряжении 250 В и имеющий достаточное количество коммутирующих контактов. Если не нужен шаг регулирования тока в 1 А, то можно поставить несколько тумблеров и устанавливать ток заряда, допустим, 5 А и 8 А. Если заряжать только автомобильные аккумуляторы, то такое решение вполне оправдано. Переключатель S2 служит для отключения системы контроля уровня зарядки. В случае заряда аккумулятора большим током, возможно срабатывание системы раньше, чем аккумулятор зарядится полностью. В таком случае можно систему отключить и продолжить зарядку в ручном режиме.

Электромагнитная головка для измерителя тока и напряжения подойдет любая, с током полного отклонения 100 мкА, например типа М24. Если нет необходимости измерять напряжение, а только ток, то можно установить готовый амперметр, рассчитанный на максимальный постоянный ток измерения 10 А, а напряжение контролировать внешним стрелочным тестером или мультиметром, подключив их к контактам аккумулятора.

Настройка блока автоматической регулировки и защиты АЗУ

При безошибочной сборке платы и исправности всех радиоэлементов, схема заработает сразу. Останется только установить порог напряжения резистором R5, при достижении которого зарядка аккумулятора будет переведена в режим зарядки малым током.

Регулировку можно выполнить непосредственно при зарядке аккумулятора. Но все, же лучше подстраховаться и перед установкой в корпус, схему автоматического регулирования и защиты АЗУ проверить и настроить. Для этого понадобится блок питания постоянного тока, у которого есть возможность регулировать выходное напряжение в пределах от 10 до 20 В, рассчитанного на выходной ток величиной 0,5-1 А. Из измерительных приборов понадобится любой вольтметр, стрелочный тестер или мультиметр рассчитанный на измерение постоянного напряжения, с пределом измерения от 0 до 20 В.

Проверка стабилизатора напряжения

После монтажа всех деталей на печатную плату нужно подать от блока питания питающее напряжение величиной 12-15 В на общий провод (минус) и вывод 17 микросхемы DA1 (плюс). Изменяя напряжение на выходе блока питания от 12 до 20 В, нужно с помощью вольтметра убедиться, что величина напряжения на выходе 2 микросхемы стабилизатора напряжения DA1 равна 9 В. Если напряжение отличается или изменяется, то DA1 неисправна.

Микросхемы серии К142ЕН и аналоги имеют защиту от короткого замыкания по выходу и если закоротить ее выход на общий провод, то микросхема войдет в режим защиты и из строя не выйдет. Если проверка показала, что напряжение на выходе микросхемы равно 0, то это не всегда означает о ее неисправности. Вполне возможно наличие КЗ между дорожками печатной платы или неисправен один из радиоэлементов остальной части схемы. Для проверки микросхемы достаточно отсоединить от платы ее вывод 2 и если на нем появится 9 В, значит, микросхема исправна, и необходимо найти и устранить КЗ.

Проверка системы защиты от перенапряжения

Описание принципа работы схемы решил начать с более простой части схемы, к которой не предъявляются строгие нормы по напряжению срабатывания.

Функцию отключения АЗУ от электросети в случае отсоединения аккумулятора выполняет часть схемы, собранная на операционном дифференциальном усилителе А1.2 (далее ОУ).

Принцип работы операционного дифференциального усилителя

Без знания принципа работы ОУ разобраться в работе схемы сложно, поэтому приведу краткое описание. ОУ имеет два входа и один выход. Один из входов, который обозначается на схеме знаком «+», называется не инвертирующим, а второй вход, который обозначается знаком «–» или кружком, называется инвертирующим. Слово дифференциальный ОУ означает, что напряжение на выходе усилителя зависит от разности напряжений на его входах. В данной схеме операционный усилитель включен без обратной связи, в режиме компаратора – сравнения входных напряжений.

Таким образом, если напряжение на одном из входов будет неизменным, а на втором изменятся, то в момент перехода через точку равенства напряжений на входах, напряжение на выходе усилителя скачкообразно изменится.

Проверка схемы защиты от перенапряжения

Вернемся к схеме. Не инвертирующий вход усилителя А1.2 (вывод 6) подключен к делителю напряжения, собранного на резисторах R13 и R14. Этот делитель подключен к стабилизированному напряжению 9 В и поэтому напряжение в точке соединения резисторов, никогда не изменяется и составляет 6,75 В. Второй вход ОУ (вывод 7) подключен ко второму делителю напряжения, собранному на резисторах R11 и R12. Этот делитель напряжения подключен к шине, по которой идет зарядный ток, и напряжение на нем меняется в зависимости от величины тока и степени заряда аккумулятора. Поэтому и величина напряжения на выводе 7 тоже будет, соответственно изменятся. Сопротивления делителя подобраны таким образом, что при изменении напряжения зарядки аккумулятора от 9 до 19 В напряжение на выводе 7 будет меньше, чем на выводе 6 и напряжение на выходе ОУ (вывод 8) будет больше 0,8 В и близко к напряжению питания ОУ. Транзистор будет открыт, на обмотку реле Р2 будет поступать напряжение и оно замкнет контакты К2.1. Напряжение на выходе также закроет диод VD11 и резистор R15 в работе схемы участвовать не будет.

Как только напряжение зарядки превысит 19 В (это может случится только в случае, если от выхода АЗУ будет отключен аккумулятор), напряжение на выводе 7 станет больше, чем на выводе 6. В этом случае на выходе ОУ напряжение скачкообразно уменьшится до нуля. Транзистор закроется, реле обесточится и контакты К2.1 разомкнутся. Подача питающего напряжения на ОЗУ будет прекращена. В момент, когда напряжение на выходе ОУ станет равно нулю, откроется диод VD11 и, таким образом, параллельно к R14 делителя подключится R15. Напряжение на 6 выводе мгновенно уменьшится, что исключит ложные срабатывания в момент равенства напряжений на входах ОУ из-за пульсаций и помех. Изменяя величину R15 можно менять гистерезис компаратора, то есть напряжение, при котором схема вернется в исходное состояние.

При подключения аккумулятора к ОЗУ напряжения на выводе 6 опять установится равным 6,75 В, а на выводе 7 будет меньше и схема начнет работать в штатном режиме.

Для проверки работы схемы достаточно изменять напряжение на блоке питания от 12 до 20 В и подключив вольтметр вместо реле Р2 наблюдать его показания. При напряжении меньше 19 В, вольтметр должен показывать напряжение, величиной 17-18 В (часть напряжения упадет на транзисторе), а при большем – ноль. Желательно все же подключить к схеме обмотку реле, тогда будет проверена не только работа схемы, но и его работоспособность, а по щелчкам реле можно будет контролировать работу автоматики без вольтметра.

Если схема не работает, то нужно проверить напряжения на входах 6 и 7, выходе ОУ. При отличии напряжений от указанных выше, нужно проверить номиналы резисторов соответствующих делителей. Если резисторы делителей и диод VD11 исправны, то, следовательно, неисправен ОУ.

Для проверки цепи R15, D11 достаточно отключить одни из выводов этих элементов, схема будет работать, только без гистерезиса, то есть включаться и отключаться при одном и том же подаваемом с блока питания напряжении. Транзистор VT12 легко проверить, отсоединив один из выводов R16 и контролируя напряжение на выходе ОУ. Если на выходе ОУ напряжение изменяется правильно, а реле все время включено, значит, имеет место пробой между коллектором и эмиттером транзистора.

Проверка схемы отключения аккумулятора при полной его зарядке

Принцип работы ОУ А1.1 ничем не отличается от работы А1.2, за исключением возможности изменять порог отключения напряжения с помощью подстроечного резистора R5.

Для проверки работы А1.1, питающее напряжение, поданное с блока питания плавно увеличивается и уменьшается в пределах 12-18 В. При достижении напряжения 15,6 В должно отключиться реле Р1 и контактами К1.1 переключить АЗУ в режим зарядки малым током через конденсатор С4. При снижении уровня напряжения ниже 12,54 В реле должно включится и переключить АЗУ в режим зарядки током заданной величины.

Напряжение порога включения 12,54 В можно регулировать изменением номинала резистора R9, но в этом нет необходимости.

С помощью переключателя S2 имеется возможность отключать автоматический режим работы, включив реле Р1 напрямую.

Схема зарядного устройства на конденсаторах


без автоматического отключения

Для тех, кто не имеет достаточного опыта по сборке электронных схем или не нуждается в автоматическом отключении ЗУ по окончании зарядки аккумулятора, предлагаю упрощенней вариант схемы устройства для зарядки кислотных автомобильных аккумуляторов. Отличительная особенность схемы в ее простоте для повторения, надежности, высоком КПД и стабильным током заряда, наличие защиты от неправильного подключения аккумулятора, автоматическое продолжение зарядки в случае пропадания питающего напряжения.


Принцип стабилизации зарядного тока остался неизменным и обеспечивается включением последовательно с сетевым трансформатором блока конденсаторов С1-С6. Для защиты от перенапряжения на входной обмотке и конденсаторах используется одна из пар нормально разомкнутых контактов реле Р1.

Когда аккумулятор не подключен, контакты реле Р1 К1.1 и К1.2 разомкнуты и даже если зарядное устройство подключено к питающей сети ток не поступает на схему. Тоже самое происходит, если подключить ошибочно аккумулятор по полярности. При правильном подключении аккумулятора ток с него поступает через диод VD8 на обмотку реле Р1, реле срабатывает и замыкаются его контакты К1.1 и К1.2. Через замкнутые контакты К1.1 сетевое напряжение поступает на зарядное устройство, а через К1.2 на аккумулятор поступает зарядный ток.

На первый взгляд кажется, что контакты реле К1.2 не нужны, но если их не будет, то при ошибочном подключении аккумулятора, ток потечет с плюсового вывода аккумулятора через минусовую клемму ЗУ, далее через диодный мост и далее непосредственно на минусовой вывод аккумулятора и диоды моста ЗУ выйдут из строя.

Предложенная простая схема для зарядки аккумуляторов легко адаптируется для зарядки аккумуляторов на напряжение 6 В или 24 В. Достаточно заменить реле Р1 на соответствующее напряжение. Для зарядки 24 вольтовых аккумуляторов необходимо обеспечить выходное напряжение с вторичной обмотки трансформатора Т1 не менее 36 В.

При желании схему простого зарядного устройства можно дополнить прибором индикации зарядного тока и напряжения, включив его как в схеме автоматического зарядного устройства.

Порядок зарядки автомобильного аккумулятора


автоматическим самодельным ЗУ

Перед зарядкой снятый с автомобиля аккумулятор необходимо очистить от грязи и протереть его поверхности, для удаления кислотных остатков, водным раствором соды. Если кислота на поверхности есть, то водный раствор соды пенится.

Если аккумулятор имеет пробки для заливки кислоты, то все пробки нужно выкрутить, для того, чтобы образующиеся при зарядке в аккумуляторе газы могли свободно выходить. Обязательно нужно проверить уровень электролита, и если он меньше требуемого, долить дистиллированной воды.

Далее нужно переключателем S1 на зарядном устройстве выставить величину тока заряда и подключить аккумулятор соблюдая полярность (плюсовой вывод аккумулятора нужно подсоединить к плюсовому выводу зарядного устройства) к его клеммам. Если переключатель S3 находится в нижнем положении, то стрелка прибора на зарядном устройстве сразу покажет напряжение, которое выдает аккумулятор. Осталось вставить вилку сетевого шнура в розетку и процесс зарядки аккумулятора начнется. Вольтметр уже начнет показывать напряжение зарядки.

Использование симулятора аккумулятора для стресс-тестирования систем зарядки

Современные батареи с высокой плотностью энергии, такие как литий-ионные, потенциально опасны, если не используются или не заряжаются должным образом. Безопасность аккумулятора имеет первостепенное значение. Чтобы убедиться, что устройство безопасно и надежно, критически важной задачей является тщательное стресс-тестирование схемы зарядки. Безопасность жидкого теста имеет решающее значение во многих системах, начиная от потребительских мобильных устройств и заканчивая самолетами, тракторами и сельскохозяйственными транспортными средствами. Слабо заряженные батареи могут сильно нагреться и даже загореться, что усиливает необходимость проведения стресс-тестирования с высокой надежностью.Устройства с батарейным питанием нуждаются в зарядном устройстве для регулярной подзарядки аккумулятора, и это зарядное устройство должно быть тщательно протестировано, чтобы гарантировать его надежность во многих ситуациях использования, от нормальных до экстремальных, при безопасном обращении во всех возможных условиях. Кроме того, если зарядное устройство питается от порта USB, оно также должно соответствовать всем спецификациям USB.

К сожалению, использование настоящих батарей для инженеров-проектировщиков может быть трудным для проверки работоспособности системы. Например, для зарядки аккумулятора требуется несколько часов, а тщательное тестирование зарядного устройства в течение многих циклов зарядки является обременительным.Добавьте к этому необходимость тестирования при разных температурах и в различных условиях использования, поэтому тестирование с настоящими батареями может занять очень много времени. Имитатор батареи (или эмулятор) ускорит эти тесты и выполнит другие, которые невозможно использовать с настоящими батареями. Симулятор может быть очень полезным оборудованием для экономии времени, а также обеспечения функциональности на этапах разработки и производства системы, обеспечивая необходимую мощность, напряжение и ток для тестируемой системы без явного различия между реальной батареей и эмулятором.

Как это работает

Рисунок 1: Четырехквадрантная диаграмма ток-напряжение

Полнофункциональный имитатор аккумуляторной батареи в действительности представляет собой источник питания с возможностью поглощения и источника тока с использованием специального типа источника напряжения, который может работать как в двух-, так и в четырехквадрантном режиме. . Напротив, обычный источник питания может только генерировать, но не потреблять ток, и может работать только в первом квадранте. На рисунке 1 показаны четыре квадранта работы. В обычном источнике напряжения питания используется только один выходной транзистор, предназначенный для подачи тока, и он работает только в первом квадранте.

Рисунок 2: Упрощенная типовая схема источника питания

На рисунке 2 изображена упрощенная схема обычного источника питания. Симулятор, с другой стороны, имеет два транзистора выходной мощности: один для источника тока, а другой — для его поглощения. И он может быстро переходить от стока к источнику тока, не создавая сбоев. В четвертом квадранте работает тренажер.

Рисунок 3: Упрощенная схема питания эмулятора. Он поставляется с двумя выходными транзисторами, поэтому он может одновременно истощать и потреблять ток.

На рисунке 3 изображена упрощенная эквивалентная схема эмулятора.Примером симулятора является TS250 / TS200. Хотя они называются модулированным источником питания и усилителем формы сигнала соответственно, на самом деле они могут работать во всех четырех квадрантах, а их выход может быть либо постоянным, либо переменным током.

На рисунке 4 показана упрощенная эквивалентная схема TS250, используемого в качестве имитатора батареи, представленного на рисунке 5. TS250 обладает всеми возможностями имитатора батареи. Он может подавать и потреблять ток так же, как и настоящая батарея. Его регулятор DC-Offset предназначен для регулировки выходного постоянного напряжения, при котором он имитирует изменения напряжения батареи.

Рисунок 4: Упрощенная эквивалентная схема TS200 / TS250

Имитатор батареи может установить любое напряжение за считанные секунды по сравнению с реальной батареей, которая требует нескольких часов для достижения желаемого напряжения, упрощая стендовые испытания. Симулятор может воспроизвести перезаряженную батарею, что невозможно безопасно сделать с настоящей батареей. Точно так же симулятор может легко имитировать разряженную батарею (0 В), что также сложно сделать с настоящей батареей. Кроме того, если есть проблема в системе зарядки, симулятор может легко изменить напряжение аккумулятора с высокого на низкий и с низкого на высокий, чтобы можно было быстро определить проблему.

Рисунок 5: Усилитель формы сигнала TS250, используемый в виде имитатора батареи

Целью симулятора является проверка на стенде работы зарядных устройств, чтобы убедиться, что они надежны и способны безопасно заряжать батареи. Как обсуждалось ранее, реальной батарее потребуется значительный период времени для разряда, а также для зарядки, до 6 часов или более для завершения цикла зарядки и разрядки. Производительность и надежность зарядного устройства необходимо анализировать на протяжении всего цикла зарядки.Эмулятор может имитировать заряженную или разряженную батарею за считанные секунды. Используя эмулятор, у вас есть возможность имитировать аккумулятор при любом напряжении, просто регулируя регулятор выходного напряжения. Вы можете измерить зарядный ток при низком напряжении (менее 3 В для литиевого элемента), номинальном напряжении (от 3 до ~ 4,2 В) и высоком напряжении (более 4,2 В), чтобы проанализировать его полностью заряженный выход.

Рисунок 6: Профиль зарядки при постоянном токе / постоянном напряжении (CC / CV), показывающий различные режимы

Методика зарядки литий-ионных аккумуляторов
Оборудование для моделирования аккумуляторов обычно используется для проверки поведения зарядного устройства на всем напряжении.Хорошим примером этого является литий-ионный аккумулятор, стандартное рабочее напряжение которого составляет от 3,0 до 4,2 В, но может достигать 0 В, если он полностью разряжен. В литий-ионных аккумуляторах чаще всего используется метод зарядки CC / CV (постоянный ток и постоянное напряжение). При низком напряжении аккумулятора (ниже 3,2 В) его необходимо подзарядить слабым током. Батарея не может выдерживать более высокий зарядный ток при слишком низком напряжении, поэтому из соображений безопасности ток капельной зарядки обычно составляет одну десятую от нормы.На рисунке 6 показан профиль зарядного напряжения и тока.

Следующая стадия зарядного тока — это когда напряжение батареи достигает безопасного уровня для нормального тока, обычно это называется стадией быстрой зарядки. Обычно быстрая зарядка начинается, когда напряжение батареи достигает примерно 3,2 В. Зарядное устройство перейдет на более высокий зарядный ток, обычно примерно в десять раз выше, чем постоянный заряд. Это нормальный зарядный ток, и зарядное устройство регулирует постоянный ток независимо от напряжения батареи.большую часть времени зарядки аккумулятора занимает стадия постоянного тока. Зарядное устройство будет поддерживать скорость зарядки до тех пор, пока аккумулятор не достигнет примерно 4,2 В.

Пока аккумулятор заряжается, его напряжение продолжает расти. Когда напряжение достигает примерно «плавающего» напряжения, обычно 4,2 В, зарядное устройство переходит в режим зарядки с постоянным напряжением. Аккумулятор продолжает заряжаться, но зарядный ток постепенно уменьшается. Напряжение холостого хода — это максимальное напряжение батареи при полной зарядке.

Во время зарядки при постоянном напряжении ток зарядки аккумулятора постепенно уменьшается по мере заполнения аккумулятора. Когда аккумулятор полностью заряжен, ток снижается до уровня, который обычно составляет примерно 1/20 от нормального зарядного тока, или может полностью прекратить зарядку. На рисунке 6 показаны методы зарядки литий-ионных аккумуляторов путем построения графика зависимости напряжения и тока от времени, показывающего профиль напряжения и тока зарядки аккумулятора.

Нагрузочные испытания зарядного устройства
Хорошо спроектированное зарядное устройство должно обеспечивать правильную зарядку аккумулятора в нормальных условиях.Что еще более важно, он должен быть в состоянии безопасно обрабатывать несколько случаев зарядки в углу. На рис. 5 TS250 используется в качестве примера подключения симулятора к системе зарядки. Выход эмулятора аккумулятора TS250 подключается к разъемам аккумулятора системы или устройства. Симулятор заменяет аккумулятор. Чтобы проверить зарядное устройство, измените регулятор DC OFFSET, чтобы изменить эмулируемое напряжение во время записи зарядного тока. Переместите выходное напряжение симулятора с низкого на высокий и с высокого на низкий, чтобы показать, как зарядное устройство реагирует на изменения.

Зарядное устройство также должно заряжать полностью разряженный аккумулятор. Установите имитатор аккумулятора на 0 В и проверьте зарядное устройство, чтобы убедиться, что оно переходит в состояние непрерывной зарядки. Зарядный ток должен быть небольшим, около одной десятой от нормального зарядного тока. Затем медленно увеличивайте напряжение симулятора, следя за зарядным током. Он должен оставаться на уровне постоянного тока заряда до тех пор, пока напряжение имитатора аккумулятора не достигнет безопасного уровня (т. Е. 3,2 В), в зависимости от конструкции зарядного устройства. На этом этапе зарядное устройство должно начать быструю зарядку нормальным током, обычно около 1С.1С относится к зарядному току, равному емкости аккумулятора. Например, для аккумулятора емкостью 1000 мАч (мили-ампер-час) скорость зарядки 1С равна 1000 мА.

Для дальнейшего стресс-теста зарядного устройства отрегулируйте напряжение аккумулятора назад и четвертое в диапазоне от 2,9 В до 3,3 В, чтобы зарядка переключалась между режимами непрерывной и быстрой зарядки. Контролируйте поведение как входного тока зарядного устройства, так и выходного тока зарядного устройства (до симулятора аккумулятора). Обратите внимание на любое необычное поведение, такое как всплески тока, как на входе, так и на выходе, во время перехода.

Рекомендации по USB
Если зарядка осуществляется через порт USB, зарядное устройство также должно соответствовать всем спецификациям, связанным с USB. Стандартный USB обычно имеет два доступных уровня тока: 100 мА и 500 мА. Если тестируемая система не может успешно обмениваться данными с USB-хостом, она позволяет потреблять только 100 мА от USB-порта. Таким образом, зарядный ток должен быть ограничен до 100 мА для напряжений батареи от 0 В до ~ 3,2 В, когда тестируемое устройство выключено. Только после того, как система определит, что доступно 500 мА, зарядка может достигать 500 мА, но никогда не должна превышать эту величину.Следите за потребляемым током USB-порта, чтобы убедиться, что он не превышает 500 мА, особенно во время транзакции режима между непрерывной зарядкой и быстрой зарядкой.

Основная часть зарядки выполняется в режиме быстрой зарядки постоянным током. Напряжение аккумулятора на этом этапе составляет от 3,2 до 4,2 В. По мере того, как напряжение аккумулятора приближается к полному напряжению 4,2 В, зарядный ток постепенно снижается. Фактически зарядное устройство переходит из режима CC в режим CV. С помощью эмулятора аккумулятора измените напряжение в прямом и обратном направлении примерно в 4 раза.1 В и 4,2 В, чтобы зарядное устройство переключалось между режимами CC и CV и обратно. Убедитесь, что зарядное устройство работает правильно, контролируя входной и выходной токи. Если зарядное устройство питается от порта USB, убедитесь, что входной ток не превышает 500 мА.

Для проверки перенапряжения намеренно установите имитируемое напряжение батареи на 4,3 В. Это состояние перенапряжения. Теперь включите зарядное устройство, подав входное питание. Убедитесь, что зарядка никогда не заряжается при таком напряжении, даже в течение 1 мс.Что касается температурных сбоев, большинство литиевых батарей имеют встроенный датчик температуры. Вы можете провести стресс-тест зарядного устройства, подав на него сигнал о неисправности температуры. Зарядное устройство должно немедленно прекратить зарядку при горячем или холодном состоянии. Вам следует повторить тест на сбой температуры для нескольких напряжений батареи и режимов зарядки. Вы можете сделать это с помощью симулятора, чтобы установить напряжение на разных уровнях и режимах: от 0 до 2,9 В подзарядки, от 2,9 до 3,2 В (переход), от 3,2 до 4,1 В (режим CC), 4.От 1 В до 4,2 В (переходный режим и режим CV), 4,3 В (перенапряжение).

Вы можете имитировать старую и изношенную батарею, моделируя внутреннее сопротивление батареи. Вы можете сделать это, добавив резистор последовательно с симулятором. Старая батарея обычно имеет эффективное внутреннее сопротивление, которое в 5-10 раз выше, чем у новой батареи. Поэтому установите сопротивление соответственно. Высокий зарядный ток может вызвать нагрев резистора. Выбирая резистор, убедитесь, что он выдерживает рассеиваемую мощность. Вы можете повторить описанные выше тесты с эмулированной старой батареей.Другое неисправное состояние — аккумулятор не установлен или отключен (обрыв провода, кратковременное отключение и т. Д.). Зарядное устройство должно быть в состоянии обнаружить отсутствие батареи и безопасно справиться с ситуацией.

Первый случай тестирования — это когда аккумулятор отсутствует и на зарядное устройство подается питание. В зависимости от конструкции устройства зарядное устройство не должно быть включено. Следите за напряжением на выходе зарядного устройства (обычно подключенном к клемме аккумулятора). Напряжение в узле подключения аккумулятора (но без аккумулятора) не должно возрастать до высокого напряжения.Высокое напряжение на соединительном узле может повредить другие схемы, подключенные к тому же узлу. Напряжение не должно колебаться между высокими и низкими напряжениями.

Второй тестовый пример предназначен для батареи, которая изначально была установлена, но позже отключена. Зарядное устройство должно плавно выключиться. Убедитесь, что напряжение узла разъема аккумуляторной батареи не чрезмерно или не колеблется. Третий тестовый пример предназначен для повторного подключения батареи после скидки. Зарядное устройство должно начать зарядку, когда аккумулятор снова станет доступен.

Взгляд в будущее
Тщательное тестирование зарядного устройства — важная задача при разработке продукта для обеспечения безопасной работы, нормальное тестирование с реальной батареей занимает много времени. Имитатор батареи значительно сокращает время тестирования. Для получения дополнительной информации посетите www.accelinstruments.com/Applications/TS200/Battery-Simulator-AppNote.html

.

Схема автоматического зарядного устройства

с использованием LM358 OP-AMP »Источники питания

Компоненты:
  1. R1, R2, R3 1k (1/4 Вт)
  2. VR1, VR2 потенциометр 10k
  3. HT3F-12V реле
  4. D1 1N4007
  5. D2 1N5408
  6. D3 1N5233B (стабилитрон 6 В)
  7. 1 квартал BC547
  8. У1 LM358
  9. Светодиод DG (зеленый)
  10. DR Светодиод (красный)
  11. Аккумулятор 12В

Работа цепи автоматического зарядного устройства:

Прежде всего, напряжение 220 В переменного тока понижается трансформатором до 15 В.Затем он выпрямляется и сглаживается конденсатором С1. Он регулируется до 14 В с помощью регулятора напряжения Lm317. Затем он попадает в цепь зарядки аккумулятора. Для установки порогового напряжения зарядки аккумулятора использовались LM358 и два потенциометра (или триммер). Мы подаем опорное напряжение на инвертирующий вывод LM358. Пороговое напряжение подается на неинвертирующий вывод операционного усилителя. Если батарея заряжается до порогового напряжения, операционный усилитель включит транзистор, и он будет действовать как переключатель, а реле будет под напряжением.

Это происходит, когда батарея заряжает потенциал при увеличении стабилитрона. Потенциометр установлен так, что точно при пороговом напряжении происходит пробой стабилитрона, и стабилитрон начинает проводить, делая выход OP-AMP высоким. Это прекращает подачу питания на аккумулятор.

В процессе зарядки горит зеленый светодиод, что указывает на то, что аккумулятор заряжается. Когда аккумулятор полностью заряжен, его напряжение достигает порогового значения, это напряжение изменяет выходной сигнал OP-AMP на высокий.Это меняет положение реле. Следовательно, выключите цепь, но КРАСНЫЙ светодиод будет гореть, указывая на завершение зарядки.

Как установить порог отключения батареи:

Сначала отключите питание цепи.

Подключите источник переменного тока постоянного тока к точкам батареи в цепи.

Подайте напряжение, равное пороговому напряжению отсечки аккумулятора. Затем отрегулируйте RV1 так, чтобы реле просто сработало, то есть напряжение отключения.

Для аккумулятора 12 В это почти 13 В, а для аккумулятора Li-Po — 4,35 В.

Для зарядки Li-Po батареи вы можете использовать эту схему зарядного устройства 5V.
Настройка схемы завершена.
Снимите внешний источник переменного напряжения и замените его аккумулятором для зарядки.

Цепь переменного источника питания:

Вышеупомянутая схема представляет собой схему регулируемого источника питания. Эта схема может выдавать выходное напряжение от 1 или 2 до 37 В и выходной ток до 3 А.Вы можете использовать приведенную выше схему для изготовления источника переменного тока.

Работа схемы:

Трансформатор, используемый в приведенной выше схеме, имеет выход 15 В, 3 А. Затем мы использовали выпрямитель KBPC3510 для выпрямления переменного тока на выходе трансформатора. Выпрямитель преобразует синусоидальный переменный ток в однонаправленное пульсирующее напряжение постоянного тока, имеющее переменную составляющую и колебания.

Полярный конденсатор емкостью 1000 мкФ используется для сглаживания постоянного тока. После этого с помощью IC LM317 регулируется выход постоянного тока.С помощью потенциометра 10k можно контролировать выходное напряжение постоянного тока. Кроме того, крышка 10 мкФ используется для переменной нагрузки.

Компоненты:
  1. Трансформатор T1 15V (3A)
  2. KBPC3510 Мост диодный
  3. C1 1000 мкФ (25 В электролитический)
  4. C2 10 мкФ (неполярный)
  5. R1 220 Ом
  6. VR 10 кОм
  7. LM317 IC

Как работают зарядные устройства?

Как работают зарядные устройства? — Объясни это Реклама

Power to go — разве аккумулятор не идеален? Проблема в том, что они хранят только фиксированное количество электрического заряда перед разрядкой, обычно не более неудобные времена. Если вы используете аккумуляторные батареи, это меньше проблемы: вставьте батарейки в зарядное устройство, подключите и вставьте Через несколько часов они как новенькие и снова готовы к использованию. Типичный аккумулятор можно заряжать сотни раз, может длиться вы любите от трех-четырех лет до десяти или более лет, и будете вероятно сэкономите сотни долларов на покупке расходных материалов (так что это отлично подходит для окружающей среды).Но насколько хорошо твои батареи производительность зависит от того, как вы их используете и насколько тщательно вы заряжаете их. Вот почему приличное зарядное устройство так же важен, как и батарейки, которые вы в него вставляете. Что такое зарядное устройство и как работает это работает? Давайте познакомимся поближе!

Artwork: Зачем использовать сотни батареек один раз, когда можно использовать одну батарею сотни раз заправив его электрическим зарядом? Перезаряжаемые батареи для начала стоят немного дороже, но, относитесь к ним осторожно, и они сэкономят вам состояние за долгие годы их жизни.Они намного лучше для окружающей среды.

Что такое батарейки и как они работают?

Фото: Обычные батареи (например, эта бытовая угольно-цинковая батарея). не предназначены для использования более одного раза, поэтому не пытайтесь их перезаряжать. если ты Не любите угольно-цинковые батареи, не пытайтесь их перезарядить: для начала купите аккумуляторные.

Если вы читали нашу основную статью о батареях, вы будете знать все об этих портативных источниках питания растения.Пример того, что ученые называют электрохимией, они используют силу химии для высвобождения накопленной электроэнергии очень постепенно.

Что происходит внутри типичной батареи — например, в фонарике? Когда вы нажимаете выключатель питания, вы дает зеленый свет химическим реакциям внутри батареи. Когда ток начинает течь, ячейки (энергогенерирующие отсеки) внутри батареи начинают превращаться в поразительные, но совершенно невидимые пути. Химические вещества, из которых состоят их компоненты заставляют себя переставлять.Внутри каждой ячейки химическое реакции происходят с участием двух электрических клемм (или электроды) и химикат, известный как электролит которые их разделяют. Эти химические реакции вызывают появление электронов ( крошечные частицы внутри атомов, которые несут электричество), чтобы перекачивать цепь, к которой подключен аккумулятор, обеспечивающий питание фонарик. Но элементы внутри батареи содержат только ограниченные запасы химикатов, поэтому реакции не могут продолжаться бесконечно. Как только химикаты истощается, реакции останавливаются, электроны перестают течь через внешняя цепь, аккумулятор практически разряжен — и лампа гаснет. вне.

Это плохие новости. Хорошая новость заключается в том, что если вы используете аккумулятор, вы можете заставьте химические реакции протекать в обратном направлении с помощью зарядного устройства. Зарядка аккумулятора — полная противоположность его разрядке: где разрядка отдает энергию, зарядка забирает энергию и накапливает ее восстановив исходные химические вещества батареи. В Теоретически заряжать и разряжать аккумулятор можно любым количество раз; на практике даже аккумуляторные батареи разлагаются со временем, и в конечном итоге наступает момент, когда они больше не готов хранить заряд.На этом этапе вы должны утилизировать их или выкинь их.

Рекламные ссылки

Как работают зарядные устройства

Фото: Это зарядное устройство с быстрой зарядкой предназначено для зарядите четыре цилиндрических никель-кадмиевых (никадовых) аккумулятора за пять часов или одна батарея RX22 квадратной формы за 16 часов. Его легко использовать, и так же легко использовать неправильно: он не выключается, когда аккумуляторы полностью заряжены и нечего сообщит вам, когда зарядка будет завершена. С таким зарядным устройством аккумулятор заряжается это полные догадки.

Все зарядные устройства имеют одну общую черту: они работают, питая электрический ток через батареи в течение некоторого времени в надежде, что элементы внутри удерживайте часть энергии, проходящей через них. Это примерно где сходство зарядных устройств начинается и заканчивается!

Самые дешевые и грубые зарядные устройства используют либо постоянное напряжение, либо постоянный ток и подавайте его на батареи, пока не отключите их. Забудьте, и вы перезарядите батареи; снимите зарядное устройство слишком рано, и вы не будете заряжать их достаточно, так что они разойдутся быстрее.Более качественные зарядные устройства используют гораздо более слабый и щадящий «струйный» заряд (возможно, 3–5 процентов от максимального номинального тока аккумулятора) на гораздо более длительный срок. период времени.

Батареи

чем-то похожи на чемоданы: чем больше вы кладете, тем сложнее упаковать еще — и тем дольше это займет. Это легко понять, если вспомнить, что зарядка аккумулятора, по сути, включает обращая вспять химические реакции, которые происходят при его разряде. В аккумуляторе ноутбука например, зарядка и разрядка включают шунтирование ионов лития (атомов, которым недостает электронов) вперед и назад, от одного электрода (где их много) к другому электроду (где их мало).Поскольку все ионы несут положительный заряд, вначале их легче переместить к «пустому» электроду. В виде они начинают накапливаться там, становится сложнее собрать их больше, что усложняет работу на более поздних этапах зарядки, чем на более ранних.

График: Аккумуляторы труднее заряжать на более поздних стадиях. Зарядка последних 25 процентов батареи (оранжевая область) может занять столько же времени, как и первых 75 процентов (желтая область). Об этом стоит помнить, если вы имеете ограниченное время для зарядки аккумулятора и беспокоитесь, что это займет слишком много времени: возможно, вы сможете зарядить его на полпути за гораздо меньшее время, чем вы думаете.

Перезарядка обычно хуже, чем недозаряд. Если аккумуляторы полностью заряжены и вы не выключайте зарядное устройство, придется избавиться от лишних энергию, которую вы им даете. Они делают это, нагревая и создавая повышенное давление внутри, что может привести к их разрыву, утечке химикатов или газ, да еще и взорваться. (Думайте о перезарядке как о переваривании аккумулятор, и вы можете просто помнить, чтобы не делать этого!)

Фото: Innovations Battery Manager, популярный в 1990-х годах, продавался как интеллектуальное зарядное устройство, способное заряжать даже обычные угольно-цинковые и щелочные батареи.Справа: цифровой дисплей показывал напряжение каждой батареи при ее зарядке (в данном случае 1,39 вольт). После зарядки появилась небольшая гистограмма, показывающая, в каком хорошем состоянии была батарея (сколько еще раз вы могли бы ее зарядить). Было продано много тысяч таких зарядных устройств, но были разные мнения от того, насколько хорошо они работали.

Чуть более сложные зарядные устройства с таймером отключаются через заданный период времени, хотя это не обязательно предотвращает перезарядку или недозаряд, потому что идеальное время зарядки варьируется для всех типов причины (сколько заряда держала батарея вначале, насколько она горячая сколько ей лет, работает ли одна ячейка лучше других, и так далее).Лучшие зарядные устройства работают грамотно, используя электронные схемы на основе микрочипов, чтобы определить, сколько заряда хранятся в батареях, выясняя такие вещи, как изменения в напряжение батареи (технически называемое дельта V или ΔV) и температура элемента (дельта T или ΔT), когда зарядка, вероятно, будет «завершена», а затем отключение тока или переход на слабый капельный заряд на подходящее время; теоретически невозможно перезарядить интеллектуальное зарядное устройство.

Зарядка различных типов аккумуляторных батарей

Еще больше усложняет ситуацию то, что разные типы аккумуляторных батарей лучше всего реагируют на разные типы зарядки, поэтому зарядное устройство, подходящее для одного типа аккумулятора, может не работают с другим.

Никелевые батареи

Фотографии. Электрическая зубная щетка обычно содержит никадовые или никель-металлгидридные батареи и медленно или непрерывно заряжается на подставке, которая на самом деле является индукционным зарядным устройством.

кадмий никель (также называемый «никад» или NiCd), самый старый и, возможно, все еще лучший аккумуляторные батареи известного типа, лучше всего реагируют на быстрая зарядка (при условии, что они не нагреваются) или медленная струйка зарядка.

Никель-металлогидридные (NiMH) батареи

изготовлены по новейшей технологии и выглядят точно то же самое, что и никады, но, как правило, они дороже, потому что в них можно хранить больше заряда (указано на упаковке аккумулятора как более высокий рейтинг в мАч или миллиампер-часах).NiMH аккумуляторы можно быстро заряжать (на большой ток в течение нескольких часов, риск перегрева), медленный заряжен (около 12–16 часов при более низком токе) или струйкой заряжены (с намного меньшим током, чем у nicad), но они должны действительно заряжается только зарядным устройством NiMH: быстрое зарядное устройство nicad может привести к перезарядке никель-металлгидридных аккумуляторов.

Эксперты расходятся во мнениях относительно того, испытывают ли никелевые батареи так называемый эффект памяти. Это хорошо известное явление, когда не удается разрядить никелевый аккумулятор перед зарядкой (когда вы «доливаете» частично разряженный аккумулятор с помощью быстрая перезарядка), по общему мнению, вызывает необратимые химические изменения, которые уменьшают аккумулятор будет принимать в будущем большой заряд.Некоторые люди клянутся усилие памяти реально; другие также настаивают на том, что это миф. Настоящее объяснение явного эффекта памяти таково: понижение напряжения , где батарея не была полностью разряжена перед временной зарядкой «думает», что у него более низкое напряжение и меньшая емкость хранения заряда, чем должно быть. Эксперты по аккумуляторным батареям настаивают на том, что эту проблему можно решить с помощью зарядки и разрядки. аккумулятор полностью в несколько раз больше.

Принято считать, что никелевые аккумуляторы необходимо «заправлять». (полностью заряжены перед первым использованием), поэтому обязательно точно следуйте тому, что говорят производители, когда вы берете свой новый батарейки из упаковки.

Как долго нужно заряжать аккумуляторы?

Есть две простые причины, по которым существует так много разных размеров и типов батарей: в большей батарее больше химикатов, поэтому она может накапливать больше энергии и отпустить на более длительный срок; большие батареи также имеют тенденцию иметь больше ячеек внутри, поэтому они могут производить более высокое напряжение и ток для питания более крупных вещей (более яркие лампы для фонарей или более мощные двигатели). Точно так же большие аккумуляторные батареи нуждаются в более длительной зарядке.Чем больше энергии вы ожидаете получить от аккумуляторной батареи (чем дольше вы ожидаете, что он прослужит), тем дольше вам нужно его заряжать (или тем выше ток зарядки, который вам понадобится). Основной закон физики, называемой сохранением энергии, говорит нам вы не можете получить от батареи больше энергии, чем вложили в нее.

Большинство людей склонны ставить заряд «на ночь», не обращая особого внимания на то, что именно что это значит — но ваши батареи будут работать лучше и дольше, если вы заряжаете их нужное количество часов.Как долго это длится? Это может сбивать с толку, особенно если вы используете батареи, которых не было в комплекте с зарядным устройством. Не бойся! Все, что вам нужно сделать, это прочитать, что написано на ваших батареях, и вы должны найти (часто мелкими буквами) рекомендуемый ток зарядки и время зарядки. Если у вас есть базовое зарядное устройство, просто проверьте его номинальный ток и соответствующим образом отрегулируйте время зарядки. Однако помните, что мы говорили в другом месте о согласовании зарядного устройства с батареями.

Фото: Аккумуляторная наука — это не ракетостроение — заряжать аккумуляторные батареи легко, если вы будете следовать инструкциям, обычно написанным на батареях или на упаковке, в которой они поставлялись.

Например, эти три обычных 1,2-вольтовых никелевых аккумулятора имеют совершенно разные рекомендации:

  1. Вверху бело-зеленая батарея nicad рекомендует медленную зарядку 60 мА (миллиампер) в течение 14–16 часов или быструю зарядку 390 мА (ток более чем в шесть раз выше) всего за два часа (2 часа). Полный заряд аккумулятора равен току, умноженному на время, поэтому умножьте числа, и вы получите значение около 800–900 мАч. Сама батарея заявляет, что ее емкость равна 0.65 Ач (650 мАч), но не забывайте, что процесс зарядки не на 100 процентов эффективен: аккумулятор не будет поглощать всю электрическую энергию, проходящую через него. Таким образом, количество заряда, которое вы подаете, и количество, которое может поглотить аккумулятор, находятся в одном и том же парке.
  2. Посередине серебряный никель-металлгидридный аккумулятор рекомендует заряжать 200 мА (миллиампер) в течение 7 часов, что дает нам заряд около 1400 мАч. Опять же, сама батарея утверждает, что ее емкость ниже этой (1000 мАч).
  3. Внизу зелено-оранжевый NiMH аккумулятор рекомендует заряд 63 мА (миллиампер) в течение 18 часов, что дает чуть более 1000 мАч.Емкость аккумулятора чуть ниже (970 мАч).

Литий-ионные батареи

Литий-ионные аккумуляторные батареи

обычно встраиваются в такие устройства, как сотовые телефоны, Mp3-плееры, цифровые фотоаппараты и ноутбуки. Обычно они поставляются со своими зарядными устройствами, которые автоматически распознают при зарядке завершено и отключите питание в нужное время. Литий-ионные батареи могут стать опасно нестабильными, если напряжение батареи либо слишком высокое, либо слишком низкое, поэтому они разработаны никогда не работать в таких условиях.Если напряжение становится слишком низкий (если аккумулятор разряжается слишком сильно во время использования), прибор должен отключиться автоматически; если напряжение становится слишком высоким (во время зарядки) вместо этого отключится зарядное устройство. Несмотря на то что литий-ионные батареи не проявляют эффекта памяти, они разлагаются по мере того, как они стареют. Типичный симптом старения — постепенная разрядка период времени (может быть, час или около того), за которым следует внезапное драматическое, и после этого совершенно неожиданное отключение прибора. Узнайте больше о том, как работают литий-ионные батареи.

Фото: Защищенное от идиотов зарядное устройство Canon для литий-ионных аккумуляторов фотоаппарата. Когда аккумулятор требует зарядки, камера заранее предупреждает вас. Просто извлеките аккумулятор (очень просто для цифровой камеры), вставьте отдельное зарядное устройство, и индикатор загорится красным, а когда аккумулятор полностью заряжен, загорится зеленым. Весь процесс происходит автоматически и безопасно: камера прекращает использование батареи до того, как ее напряжение станет слишком низким; зарядное устройство прекращает зарядку до того, как напряжение станет слишком высоким.

Свинцово-кислотные батареи

Самые большие, самые тяжелые и старые аккумуляторные батареи получили свое название от (разбавленный) серно-кислотный электролит и электроды на основе свинца. Они самые нам знакомы как автомобильные аккумуляторы (начальная энергия обеспечивает довести двигатель автомобиля до того, как начнет гореть газ), хотя немного другие типы свинцово-кислотных аккумуляторов также используются в таких вещах, как гольф. багги и электрические инвалидные коляски.

Фото: Свинцово-кислотные автомобильные аккумуляторы были первоначально разработаны в 19 веке, задолго до того, как появились технологии перезарядки на основе никеля и лития.

Свинцово-кислотные батареи

популярны, потому что они просты, дешевы, надежны и используют хорошо зарекомендовавшие себя технологии. восходит к середине 19 века. Обычно они длятся несколько лет, хотя это полностью зависит от того, насколько хорошо они поддерживаются — другими словами, заряжаются и разряжаются. Они действительно заряжаются довольно долго (обычно до 16 часов — в несколько раз дольше, чем требуется для полной разрядки), и это может привести к тенденции к недозаряду (если у вас нет времени правильно зарядить их, прежде чем использовать их в следующий раз) или перезарядить (если вы поставите их на зарядку и забудете о них).Недозаряд, зарядка с неправильным напряжением или неиспользование аккумуляторов вызывает проблему, известную как сульфатирование (образование твердых кристаллов сульфата свинца), в то время как перезаряд вызывает коррозию (необратимая деградация положительной свинцовой пластины из-за окисления, аналогично ржавлению железа и стали. ). И то, и другое повлияет на производительность и срок службы свинцово-кислотной батареи. Чрезмерная зарядка также имеет тенденцию к разложению электролита, разлагая воду (путем электролиза) на водород и кислород, которые выделяются в виде газов и, следовательно, теряются в батарее.Это делает кислоту более сильной и с большей вероятностью атакует пластины, что снизит производительность аккумулятора. Это также означает, что для взаимодействия с пластинами доступно меньше электролита, что также снижает производительность. Время от времени в такие батареи необходимо доливать дистиллированную воду (не обычную воду), чтобы поддерживать кислоту в оптимальной концентрации и на достаточно высоком уровне, чтобы покрыть пластины.

Подбор аккумуляторов к зарядному устройству

Разные зарядные устройства предназначены для работы по-разному на разных скоростях. в основном подходит для разных типов батарей.Первое правило зарядка аккумулятора — это зарядное устройство, предназначенное для одного типа аккумулятора. может не подходить для зарядки другого: вы не можете зарядить мобильный телефон с автомобильным зарядным устройством, но вы не должны заряжать NiMH аккумуляторы с зарядным устройством nicad. Многие современные аккумуляторные бытовая техника и гаджеты, например ноутбуки, MP3-плееры и сотовые телефоны — при покупке приходят с их собственным специальным зарядным устройством, так что вы не нужно беспокоиться о согласовании зарядного устройства с аккумулятором. Но если вы покупаете в магазине пачку обычных аккумуляторных батарей, это важно, чтобы вы купили аккумуляторы, подходящие к имеющемуся у вас зарядному устройству, или замените зарядное устройство соответствующим образом.Обратите внимание на напряжение и ток, которые требуются батареи (это будет указано на упаковке с батареями или на сами аккумуляторы) обязательно выбирайте зарядное устройство с правильным напряжение и ток, чтобы идти с ними, и заряд для правильного количество времени. Если вы хотите купить себе аккумулятор батареи, но вы не совсем уверены, как подобрать батареи и зарядное устройство, выберите комбинированный набор, в котором вы покупаете аккумуляторы и зарядное устройство. в той же упаковке.

Фото: Подгонка аккумулятора к зарядному устройству.По мере того, как мир переходит на более экологичные электромобили с батарейным питанием, нам потребуется гораздо больше правильно оборудованные, удобно расположенные зарядные станции. В нем используются фотоэлектрические солнечные элементы (в навесе) для зарядки автомобилей, припаркованных ниже. Фото Денниса Шредера любезно предоставлено NREL.

На сколько хватает заряда аккумуляторных батарей?

Неудивительно, что это зависит от того, как вы относитесь к ним, храните и используете их. Небольшие перезаряжаемые аккумуляторы (такие как NiCd, NiMH и литий-ионные) обычно служат сотни «циклов». (вы можете заряжать и разряжать их столько раз), что может означать что угодно, от нескольких лет достойной жизни в ноутбуке до десятилетия использования в портативном радио.Лечится хорошо, свинцово-кислотные автомобильные аккумуляторы обычно годны для тысяч циклов и могут легко прослужить 5–10 лет в машине, которую водят каждый день. Но если оставить аккумуляторы в продукте, которым вы почти никогда не пользуетесь, никогда не заряжайте и не разряжайте их, не перезаряжайте их, дайте им перегреться или храните их в плохих условиях, не ждите, что они прослужат долго.

Как узнать, что пора заменить батарейки? В чем-то вроде ноутбука вы можете Заметьте, что литий-ионный аккумулятор какое-то время разряжается нормально, а затем внезапно теряет все оставшиеся заряжается очень быстро.Если вы используете аккумуляторные батареи NiCd или NIMH в таких вещах, как фонарики, вы увидите, что емкость очень постепенно снижается, и необходимость подзарядки возникает гораздо чаще.

Лучшие советы по увеличению срока службы батареи

Как максимально эффективно использовать батареи? Вот несколько полезных советов, которые я нашел прочитав различные сайты экспертов по батареям:

  1. Аккумуляторы лучше всего работают при регулярном использовании. Не оставляй их сидеть в вашем сарае, полностью заряженным или полностью разряженным в течение нескольких месяцев.
  2. Эксперты по аккумуляторным батареям предлагают «привести в состояние» или «восстановить». ваши батареи. Это означает, что вы регулярно позволяете им разряжаться. существенно перед подзарядкой, если сможете (хотя полностью разряжать их не нужно).
  3. Совместите зарядное устройство с аккумуляторами. Например, используйте NiMH зарядное устройство для NiMH аккумуляторов. и убедитесь, что зарядное устройство использует соответствующее напряжение и ток.
  4. Не перезаряжайте аккумуляторы. Вы их повредите.
  5. Не позволяйте батареям становиться слишком горячими или слишком холодными во время зарядки, хранения и т. Д. или использовать (это вредит им).Во время зарядки они будут нагреваться, но если сильно нагреются, то что-то не так.
  6. Не экономьте на покупке приличного интеллектуального зарядного устройства. Твоих батарей хватит на много дольше, если зарядное устройство относится к ним правильно!
  7. По возможности следуйте инструкциям, прилагаемым к вашему прибору. Например, инструкции, прилагаемые к роботу-пылесосу Roomba®, говорят вам оставить его «пристыкован» (сидит на зарядном устройстве), непрерывная зарядка, все время не используется. Если вы этого не сделаете, вы обнаружите, что ваш Roomba очень быстро разряжается (даже если вы им не пользуетесь), и вы вполне можете сократить срок службы батареи.
  8. Если вы используете что-то вроде ноутбука, постоянно подключенного к сети, возьмите за привычку позволяя ему работать от батареи, возможно, один раз в неделю или около того, пока он не разрядится почти полностью, чтобы поддерживать аккумулятор в хорошем состоянии. Вы обнаружите, что это помогает продлить жизнь вашей батареи.

Фото: Батареи бывают всех форм и размеров. Вы не всегда можете сказать, какие из них перезаряжаемые просто глядя. Из показанных здесь батарей можно заряжать только никель-кадмиевые и литий-ионные батареи; остальные — одноразовые.Большой литий-ионный аккумулятор серебристого цвета слева от ноутбука, в то время как меньший (справа) от iPod. Никель-кадмиевые батареи представляют собой универсальные перезаряжаемые аккумуляторы, которые подходят для универсальных аккумуляторных батарей. зарядное устройство, такое как на самом верхнем фото.

Рекламные ссылки

Узнать больше

На этом сайте

Книги

Статьи

  • Стеклянная батарея, которая становится все лучше? Марка Андерсона. IEEE Spectrum, 30 мая 2019 г.Нарушают ли батареи, состояние которых со временем улучшается, основной закон физики?
  • Он большой и долговечный, и он не загорится: ванадиевая батарея Redox-⁠Flow, созданная З. Гэри Янгом. IEEE Spectrum, 26 октября 2017 г. Станут ли VRFB следующим большим достижением в аккумуляторных технологиях?
  • «Потенциальные опасности на обоих концах жизненного цикла литий-ионных аккумуляторов», автор Марк Андерсон. IEEE Spectrum, 1 марта 2013 г. Исследует опасности производства и переработки литий-ионных батарей.
  • Сильный химический коктейль с недостатком Мэтью Уолджана.The New York Times, 17 января 2013 г. Риск возгорания вызывает все большую озабоченность, поскольку литий-ионные батареи становятся все более распространенным явлением.
  • Перезаряжаемые аккумуляторы
  • могут хранить энергию где угодно, Лиат Кларк, Wired, 2 июля 2012 г. Если бы мы могли превратить компоненты аккумуляторов в жидкости, мы могли бы распылять их на любую плоскую поверхность для хранения электроэнергии.
  • Вирусная батарея может «приводить в действие автомобили»: BBC News, 2 апреля 2009 г. Ученые Массачусетского технологического института построили новую мощную батарею от вирусов.
  • Батарея, которая «заряжается за секунды»: BBC News, 11 марта 2009 г.Новый способ изготовления литий-ионных аккумуляторов может значительно сократить время зарядки.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Крис Вудфорд 2009, 2021.Все права защищены. Полное уведомление об авторских правах и условиях использования.

Подписывайтесь на нас

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Цитируйте эту страницу

Вудфорд, Крис. (2009/2021) Зарядные устройства. Получено с https://www.explainthatstuff.com/how-battery-chargers-work.html. [Доступ (укажите дату здесь)]

Подробнее на нашем сайте…

Учебное пособие по зарядке аккумулятора | ChargingChargers.com


Текущая технология зарядки аккумуляторов основана на использовании микропроцессоров (компьютерных чипов) для подзарядка с использованием 3-ступенчатой ​​(или 2-х или 4-х ступенчатой) регулируемой зарядки. Это «умные» зарядных устройств », а качественные устройства обычно не продаются в дисконтных магазинах. Стадиями или этапами зарядки свинцово-кислотных аккумуляторов являются объемная, абсорбционная и плавающая. Квалификация или уравнивание иногда считаются еще одним этапом.2 этап блок будет иметь объемную и плавающую ступени. Важно использовать батареи производителя. рекомендации по зарядке и напряжениям, или качественный микропроцессор управляемое зарядное устройство для поддержания емкости аккумулятора и срока его службы.

«Умные зарядные устройства» созданы с учетом современной философии зарядки. а также получать информацию от аккумулятора, чтобы обеспечить максимальный заряд с минимальное наблюдение.Для некоторых гелевых аккумуляторов и аккумуляторов AGM могут потребоваться специальные настройки. или зарядные устройства. Наши устройства выбраны по их совместимости с типами батарей, которые они уточнить. Гелевые батареи обычно требуют определенного профиля заряда, а гелевые батареи требуется специальное или гелеобразное зарядное устройство, или подходящее гелеобразное зарядное устройство. Пиковая зарядка напряжение для гелевых аккумуляторов составляет 14,1 или 14,4 вольт, что ниже, чем у влажных или AGM. Тип батареи необходим для полной зарядки. Превышение этого напряжения в гелевой батарее может вызвать пузыри в геле электролита и необратимое повреждение.

Большинство производителей аккумуляторов рекомендуют устанавливать зарядное устройство примерно на 25% емкости аккумулятора. емкость (ah = емкость в ампер-часах). Таким образом, 100-амперная батарея потребует около 25 ампер. зарядное устройство (или меньше). Для сокращения времени зарядки можно использовать зарядные устройства большего размера, но уменьшить срок службы батареи. Меньшие зарядные устройства подходят для длительного плавания, например а 1 или «умное зарядное устройство» на 2 А можно использовать для обслуживания батареи между циклами с повышенным током использовать.Некоторые батареи указывают 10% емкости (0,1 X C) в качестве скорости заряда, а в то время как это ничего не помешает, хорошее микропроцессорное зарядное устройство соответствующей зарядки профиль должен быть в порядке до 25% ставки. Вы разговариваете с разными инженерами, даже в одна и та же компания, вы получите разные ответы.

Трехступенчатая зарядка аккумулятора

Этап BULK включает около 80% перезарядки, при этом ток зарядки остается постоянным (в зарядном устройстве постоянного тока), и напряжение увеличивается.Правильно размер зарядного устройства даст батарее столько тока, сколько она может принять до зарядного устройства емкость (25% емкости аккумулятора в ампер-часах), и не поднимать мокрый аккумулятор выше 125 F, или аккумулятор AGM или GEL (регулируемый клапаном) более 100 F.

Ступень ПОГЛОЩЕНИЕ (примерно оставшиеся 20%) имеет зарядное устройство. удерживая напряжение на уровне напряжения поглощения зарядного устройства (от 14,1 до 14,8 В постоянного тока). VDC, в зависимости от уставок зарядного устройства) и уменьшая ток до тех пор, пока аккумулятор не полностью заряжен.Некоторые производители зарядных устройств называют эту стадию абсорбции стадия уравнивания. Мы не согласны с таким использованием термина. Если аккумулятор не удерживают заряд, или ток не падает после ожидаемого времени перезарядки, батарея может иметь постоянную сульфатацию.

Ступень FLOAT — это место, где напряжение заряда снижается до 13,0 В постоянного тока и 13,8 В постоянного тока и поддерживается постоянным, в то время как ток снижается до менее 1% заряда батареи емкость.Этот режим можно использовать для поддержания полностью заряженного аккумулятора на неопределенный срок.

Время перезарядки можно приблизительно определить, разделив заменяемые ампер-часы на 90%. номинальной мощности зарядного устройства. Например, аккумулятор на 100 ампер-час с Разряд 10% потребует замены 10 ампер. Используя зарядное устройство на 5 ампер, у нас есть 10 ампер. часов, разделенных на 90% от 5 ампер (0,9×5) ампер = расчетное время зарядки 2,22 часа. А глубоко разряженный аккумулятор отклоняется от этой формулы, требуя больше времени на каждый ампер подлежит замене.

Рекомендации по частоте подзарядки варьируются от эксперта к эксперту. Кажется, что глубина разряда влияет на срок службы батареи больше, чем частота подзарядки. За например, подзарядка, когда оборудование не будет использоваться какое-то время (прием пищи перерыв или что-то еще), может поддерживать среднюю глубину разряда выше 50% для услуги день. В основном это относится к аккумуляторным батареям, где средняя глубина разряд падает ниже 50% за день, а аккумулятор можно полностью зарядить один раз в течение 24 часов.

Выравнивание

Выравнивание — это, по сути, управляемая перезарядка. Некоторые производители зарядных устройств назовите пиковое напряжение, которое зарядное устройство достигает в конце НАСОСНОГО режима (поглощение напряжение) выравнивающее напряжение, но технически это не так. Большая влажность (залитые) батареи иногда выигрывают от этой процедуры, особенно физически высокие батареи. Электролит в мокрой батарее со временем может расслаиваться, если не ездить на велосипеде изредка.При выравнивании напряжение поднимается выше номинального. пиковое зарядное напряжение (от 15 до 16 вольт в 12-вольтовой системе) в газе этап и проводится в течение фиксированного (но ограниченного) периода. Это разжигает химию в аккумулятор целиком, «уравняв» силу электролита и сбив любой рыхлый сульфат, который может находиться на пластинах аккумулятора.

Конструкция аккумуляторов AGM и гелевых практически исключает расслоение, и почти все производители этого типа не рекомендуют его (не советуют).Некоторые производители (особенно Concorde) указывают процедуру, но напряжение и время не учитываются. важно, чтобы избежать повреждения аккумулятора.

Тестирование батареи

Тестирование батареи можно провести несколькими способами. Самый популярный включает в себя измерение удельного веса и напряжения аккумулятора. Удельный вес относится к влажным ячейкам с съемные колпачки, дающие доступ к электролиту. Для измерения удельного веса купите ареометр с температурной компенсацией в магазине автозапчастей или в магазине инструментов.К Измерьте напряжение, используйте цифровой вольтметр в настройке постоянного напряжения. Поверхность Перед испытанием необходимо снять заряд со свежезаряженной батареи. 12 часов истечение срока после зарядки квалифицируется, или вы можете удалить поверхностный заряд с помощью нагрузки (20 ампер в течение 3 с лишним минут).

Состояние зарядного напряжения Удельный вес 12 В 6 В 100% 12.7 6,3 1,265 75% 12,4 6,2 1,225 50% 12,2 6,1 1,190 25% 12,0 6,0 1,155 Разряжено 11,9 6,0 1,120

Нагрузочное тестирование — еще один метод тестирования батареи. Нагрузочное тестирование удаляет усилители из аккумулятор (аналогично запуску двигателя).Некоторые производители аккумуляторов маркируют свои аккумулятор с амперной нагрузкой для тестирования. Это число обычно составляет 1/2 рейтинга CCA. Например, батарея на 500 CCA будет тестировать под нагрузкой 250 ампер в течение 15 секунд. Нагрузка Тест может быть выполнен только в том случае, если аккумулятор полностью или почти полностью заряжен. Некоторые электронные Тестеры нагрузки применяют нагрузку 100 А в течение 10 секунд, а затем отображают напряжение батареи. Это число сравнивается с диаграммой на тестере на основе рейтинга CCA для определения состояние батареи.

Сульфатация аккумуляторов начинается, когда удельный вес падает ниже 1,225 или напряжение измеряет менее 12,4 (батарея 12 В) или 6,2 (батарея 6 В). Сульфатирование может затвердеть на пластинах батареи, если оставить их на достаточно долгое время, уменьшая и в конечном итоге разрушая способность батареи генерировать номинальные вольты и амперы. Есть устройства для удаление жесткого сульфатирования, но лучший способ — предотвратить образование путем правильного уход за аккумулятором и подзарядка после цикла разрядки.Сульфатирование — основная причина значительная часть свинцово-кислотных аккумуляторов не достигает своего химического срока службы.

Зарядка параллельно соединенных аккумуляторов

Батареи, подключенные параллельно (положительный к положительному, отрицательный к отрицательному), видны зарядное устройство как одна большая батарея суммарная емкость всех батарей в ампер-часах. Таким образом, три 12-вольтовых батареи по 100 ампер-час (ач) в параллельно видны как одна батарея на 12 вольт 300 ач.Их можно зарядить одним плюсом и отрицательное соединение от одного зарядного устройства с рекомендованным выходом усилителя. Они также могут быть заряжены с зарядным устройством с несколькими выходами, например, в данном случае с трехъядерным блоком, с каждой батареей получение собственного подключения при напряжении аккумуляторной батареи. Зарядная сила тока будет суммой отдельных выходных усилителей.

Зарядная серия подключенных аккумуляторов

Батареи, соединенные последовательно, — это отдельная история.Три 12-вольтовых батареи по 100 ампер-часов соединены в последовательную цепочку (положительный к отрицательному, положительный к отрицательному, положительный к отрицательному) сделал бы батарею 36 вольт 100 ач. Его можно заряжать через батарею с помощью 36 вольт. выходное зарядное устройство соответствующего выхода усилителя. Их также можно заряжать с несколькими выходами зарядное устройство, как в данном случае блок из трех банков, при этом каждая батарея подключается к напряжение аккумулятора (в данном случае 12 вольт).Подойдет любой метод, БЕЗ одного или нескольких батареи отводятся при напряжении ниже, чем в системе. Например, постучать по одной из батарей в этой 36-вольтовой цепочке на 12 вольт для радио или некоторых источников света и т. д. Это разбалансирует батарею, и зарядка при системном напряжении (36 В) не исправляет дисбаланс. Зарядное устройство для нескольких банков подключение к каждой батарее — это правильный способ справиться с этой серией батареек, так как она исправляет дисбаланс при каждом цикле зарядки.

Домой | Учебники | Зарядка батареи

5S 5 Последовательный элемент 18 В 21 В 20 А Литий-ионный литиевый аккумулятор Плата защиты зарядки Модуль Цепи Модуль BMS для электроинструмента: Amazon.com: Industrial & Scientific

Характеристики:

Защитная пластина предназначена для литий-ионных аккумуляторов серии 5, в основном используемых для электроинструментов.
Он использует специальную ИС для литиевых батарей 5S в качестве процессора для определения в реальном времени напряжения, тока заряда и разряда и температуры окружающей среды каждой батареи.
Стабильные различные защитные функции для зарядки и разрядки, такие как защита от перезарядки, защита от перегрузки и защита от короткого замыкания.
Низкое энергопотребление, рабочий ток около 25uA, ток покоя около 6uA.
Выбор подходящей платы защиты и ее правильное применение жизненно важны для долговечности ваших батарей.

Технические характеристики:

Напряжение заряда: 19/21 В
Напряжение заряда одной ячейки: 3,8 / 4,25 В
Постоянный ток разряда: 8-20 А
Напряжение обнаружения перезаряда одной ячейки: 3.85-4,25 В
Задержка защиты от перезаряда: 1S
Напряжение восстановления одиночной ячейки от перезаряда: 3,75-4,13 В
Задержка срабатывания защиты от перегрузки: 1 мс
Напряжение обнаружения одиночной ячейки перегрузки: 2-2,8 В
Задержка защиты от переразряда: 1 с
Напряжение восстановления одиночного элемента от избыточного разряда: 2,5-3,0 В
Задержка срабатывания защиты от переразряда: 100 ± 20 мс
Напряжение обнаружения перегрузки по току: 0,1-0,4 В
Ток обнаружения перегрузки по току: 30 ± 5 А
Задержка обнаружения перегрузки по току : 1S
Поддержка защиты от короткого замыкания: Да
Задержка обнаружения короткого замыкания: 250 мкс
Задержка срабатывания короткого замыкания: 1S
Напряжение обнаружения короткого замыкания: 0.8V
Состояние восстановления: Авто после отключения нагрузки
Защита от перегрева
Температура защиты: 70 ± 5 °

Температура восстановления: 55 ± 5 °
Рабочее состояние
: 25 мкА (25 °)

Состояние ожидания: 6 мкА (25 °)
Внутреннее сопротивление главной цепи разряда: 30 ± 5 мОм
Рабочая температура: -40 ° -85 ° RH≤75%
Температура хранения: -40 ° -125 ° RH≤75%
Размер
Длина x ширина: 45×40 мм / 1,77 * 1,57 «

Примечание:

Допускается погрешность в 1-3 мм из-за m

Объясните системы зарядки аккумуляторов.

написано 5.5 лет назад пользователем Рамнатх ♦ 8.9k • изменен 5,5 года назад

Батареи используются в самых разных приложениях. Например:

  • Для запуска транспортных средств, таких как скутеры, автомобили, автобусы и т. Д.
  • В цепях ИБП и инвертора для освещения или для работы других бытовых устройств.
  • В электромобилях.
  • В телефонных сетях

На рис. Показана схема автоматической зарядки аккумулятора с использованием SCR T1

.
  1. Однофазный трансформатор понижает напряжение в сети до 15 В на каждой вторичной обмотке.Диоды D1, D2 и вторичные обмотки трансформатора составляют двухимпульсный выпрямитель со средней точкой.

  2. Стабилитрон 12 В включен последовательно с R1. R2 ограничивает ток зарядки аккумулятора, тогда как R1 ограничивает ток стабилитрона.

  3. Клемма A всегда положительна по отношению к клемме B. В течение времени, когда напряжение на AB, т. Е. $ V_ {AB} $ больше, чем напряжение батареи (= 12 В или менее 12 В для разряженной батареи), SCR T1 смещен в прямом направлении. .

  4. Теперь, когда vAB подает напряжение стабилитрона VZ = 12 В, затем KVL для замкнутой цепи стабилитрона, D3, перехода затвор-катод T1, $ R_2 $ и разряженной батареи подтверждает, что сетевое напряжение (= 12 В — напряжение разряженной батареи) вперед смещает схему затвор-катод, и в результате в SCR T1 появляется ток затвора.

  5. Этот ток затвора, связанный с уже смещенным вперед тиристором T1, включает его, и таким образом батарея начинает заряжаться через $ R_2 $.

  6. В течение каждого полупериода аккумулятор заряжается всякий раз, когда $ v_ {AB} $ превышает напряжение аккумулятора. Таким образом, зарядный ток аккумулятора имеет импульсную форму. Стабилитрон, напряжение в точке C при 12В.

  7. Когда аккумулятор заряжен до номинального значения 12 В, сетевое напряжение в цепи стабилитрон-аккумулятор равно нулю; переход затвор-катод теперь не может быть смещен вперед.

  8. Так как стробирующий импульс не может появиться; SCR t1, хотя и смещен вперед, не может включиться. Это показывает, что после полной зарядки аккумулятора дальнейшая зарядка аккумулятора автоматически прекращается.

Есть какие-нибудь советы по поводу неисправных батарей / зарядной цепи? — MacBook Pro 13 дюймов, Unibody, середина 2010 г.,

Итак, вот предыстория.

После ужасной аварии с разбрызгивателем мой ноутбук оказался под водой на довольно долгое время, кажется, почти на час.При обнаружении сразу разобрал большую часть деталей и на неделю положил в рис. Я все еще не могу поверить, как мне повезло, что он все еще работает безупречно.

Почти.

Единственная постоянная проблема, которую я заметил, заключалась в том, что аккумулятор больше не работал. Значок аккумулятора вверху просто говорит о том, что аккумулятор не заряжается, он работает только при питании от зарядного устройства и сразу же отключается, если его отключить. Сначала я подозревал, что аккумулятор поврежден, поэтому заказал новый.Я заменил свой старый на новый, и, к моему удовольствию, мой ноутбук снова разряжен. К сожалению, я быстро обнаружил, что по-прежнему не удается зарядить аккумулятор из сообщения вверху.

Затем я выбрал другой путь и сбросил PRAM, SMC и даже переустановил Mavericks для хорошей меры (у меня были резервные копии). Затем все стало странно, так как я обнаружил, что после этого мой MacBook больше не мог обнаруживать заменяемую батарею, давая мне батарею с символом «X» вверху, сообщением «Нет доступной батареи» и Системный отчет дал мне те же характеристики, как если бы у меня вообще не было батареи.Старый аккумулятор продолжал обнаруживаться нормально, застрял на 62%, но не заряжался.

Короче говоря, ни одна из двух разных батарей не может заряжаться, и только мой оригинал даже обнаружен (хотя более новая замена использовалась до сброса SMC, PRAM, ОС и т. Д.). Я планирую посетить Apple Store, но, к сожалению, ближайший ко мне находится более чем в 200 милях от отеля. Пока у меня не будет возможности диагностировать это, мой вопрос в том, есть ли у вас какие-либо другие идеи о действиях, которые я мог бы предпринять, чтобы диагностировать / решить эту проблему.Я исследовал это довольно тщательно (я думаю) и пробовал много других вещей. На данный момент я могу предположить, что цепь зарядки была повреждена, хотя мне также любопытно, почему новая батарея перестала работать, и произошла ли она в моем ноутбуке. Я был бы признателен за любые идеи / диагнозы, которые у вас есть, и за любые зацепки, которые вы можете мне рассказать, спасибо.

Мне удалось получить статистику кокоса для новой сменной батареи (разряженной), но она дала мне только это:

Потом все стало странно.Я попытался вернуть свой оригинал, но обнаружил, что мой ноутбук не хочет отображать значок батареи вверху, даже после многократного включения его в настройках. До сих пор я в основном перезагружал свой ноутбук со всеми возможными комбинациями сбросов SMC, сбросов PRAM, смены батарей и т. Д., Но пока безуспешно, за исключением одного из перезапусков, который вернул значок, но с Х прям как замена АКБ. Coconut Battery дал мне это:

То же самое, что Coconut дает мне, когда у меня вообще нет батареи, работающей только от адаптера переменного тока.Это стало еще более странным, так как Coconut Battery затем разбилась и не открывалась снова до следующего перезапуска, из-за чего значок снова исчезал.

На данный момент я все еще пытаюсь заставить его запуститься (с оригинальной батареей) и показать нормальный значок батареи, который он показывал в течение последних нескольких дней.

Если у вас, ребята, нет каких-либо советов, которые я могу попробовать сейчас, я, вероятно, возьму немного времени и воспользуюсь советом oldturkey03, чтобы очистить все, так как я только слегка очистил внешние поверхности некоторых основных компонентов (с изопропиловым спиртом, 99% ).

Сменный аккумулятор, который я получил, был от стороннего реселлера, но, насколько я могу судить, он кажется подлинным от Apple. Текст и номера моделей между двумя батареями идентичны, на самом деле вы никогда не сможете отличить их друг от друга, за исключением небольшой этикетки, которую продавец наклеил на замену.

Будет ли плата Mag-Safe вероятным подозреваемым в этой ситуации? Кажется, что все в порядке, и индикатор на моем зарядном устройстве работает нормально (сначала оранжевый при подключении, а вскоре становится зеленым).

Кроме того, могу ли я проверить какие-либо соединения с помощью вольтметра / тока, которые могут здесь помочь?

Итак, примерно через 2 часа отчаянных попыток снова отобразить значок батареи, это действительно так! (но только после второй легкой чистки и переключения порта magsafe (бег по боковой стороне ноутбука), это не имеет к этому никакого отношения, не так ли?). Таким образом, значок аккумулятора снова находится вверху со значком зарядки, хотя при нажатии на него по-прежнему отображается «Не заряжается» и «Источник питания: адаптер питания».Кокосовая батарея дает мне это:

(Я знаю, что он уже был в ужасном состоянии, и я все равно планировал заменить его в ближайшее время. Вся эта проблема возникла только после инцидента с водой, поэтому я сомневаюсь, что это как-то связано с этим.)

Кроме того, я заметил, что вентилятор стал намного менее шумным после того, как значок заработал. Хотя я понимаю, что это больше похоже на проблему с SMC, могу заверить вас, что я уже много-много раз сбрасывал его. Еще одна полезная информация: каждый раз, когда я выполняю сброс SMC ИЛИ отсоединяю кабель зарядного устройства от ноутбука, мой компьютер больше не может запускаться простым нажатием кнопки питания.Каждый раз, когда это происходило, мне приходилось отключать кабель питания, удерживать кнопку питания в течение 5 секунд, затем снова подключать кабель, все еще удерживая питание, а затем удерживать его еще 5 секунд. Отпустив его по прошествии этих 10 секунд, я смог бы нажать кнопку и включить.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *