Гальваническая развязка что это такое простыми словами. Гальваническая развязка: принцип работы, виды и применение

Что такое гальваническая развязка и зачем она нужна. Какие бывают виды гальванической развязки. Как работает оптронная, трансформаторная и емкостная развязка. Где применяется гальваническая изоляция в электронике и электротехнике.

Содержание

Что такое гальваническая развязка и для чего она нужна

Гальваническая развязка (также называемая гальванической изоляцией) — это способ передачи энергии или сигнала между электрическими цепями без электрического контакта между ними. Основная задача гальванической развязки — разделить цепи с разными уровнями напряжения или потенциалами заземления.

Зачем нужна гальваническая развязка? Основные причины ее применения:

  • Защита от высоких напряжений и обеспечение электробезопасности
  • Устранение паразитных связей и помех между цепями
  • Сопряжение цепей с разными напряжениями питания
  • Устранение земляных петель
  • Повышение помехоустойчивости систем

Таким образом, гальваническая развязка позволяет передавать сигналы или энергию между цепями, обеспечивая их электрическую изоляцию друг от друга. Это повышает надежность, безопасность и помехозащищенность электронных устройств.


Основные виды гальванической развязки

Существует несколько основных способов реализации гальванической развязки в электронных устройствах:

Оптронная (оптоэлектронная) развязка

Основана на использовании оптопар, состоящих из светодиода и фотоприемника. Сигнал преобразуется в световой поток, передается через прозрачный диэлектрик и снова преобразуется в электрический сигнал. Обеспечивает хорошую изоляцию, но имеет ограничения по быстродействию.

Трансформаторная развязка

Использует явление электромагнитной индукции для передачи сигнала между гальванически развязанными обмотками трансформатора. Обеспечивает передачу как постоянного, так и переменного тока. Применяется в источниках питания, драйверах затворов и др.

Емкостная (КМОП) развязка

Основана на передаче сигнала через емкостной барьер, сформированный на кристалле полупроводника. Обеспечивает высокое быстродействие и хорошую изоляцию. Широко применяется в современных цифровых изоляторах.

Принцип работы оптронной гальванической развязки

Оптронная развязка является одним из самых распространенных способов гальванической изоляции. Рассмотрим принцип ее работы подробнее:


  1. Входной электрический сигнал подается на светодиод
  2. Светодиод преобразует электрический сигнал в световой поток
  3. Свет проходит через прозрачный диэлектрик, обеспечивающий изоляцию
  4. Фотоприемник (фотодиод, фототранзистор) преобразует свет обратно в электрический сигнал
  5. Выходной сигнал формируется в соответствии с входным, но уже гальванически развязан

Преимущества оптронной развязки:

  • Простота реализации
  • Высокое сопротивление изоляции
  • Низкая проходная емкость
  • Широкий диапазон передаваемых сигналов

Недостатки:

  • Ограниченное быстродействие
  • Температурная зависимость характеристик
  • Значительный разброс параметров

Особенности трансформаторной гальванической развязки

Трансформаторная развязка основана на явлении электромагнитной индукции. Принцип ее работы:

  1. Входной сигнал подается на первичную обмотку трансформатора
  2. В магнитопроводе создается переменное магнитное поле
  3. Магнитное поле наводит ЭДС во вторичной обмотке
  4. На выходе вторичной обмотки формируется развязанный выходной сигнал

Особенности трансформаторной развязки:


  • Возможность передачи больших мощностей
  • Высокая электрическая прочность изоляции
  • Передача как переменного, так и постоянного тока (при использовании модуляции)
  • Влияние паразитных параметров на высоких частотах

Трансформаторная развязка широко применяется в импульсных источниках питания, драйверах силовых ключей, развязке интерфейсов.

Современные цифровые изоляторы на основе КМОП-технологии

Развитие полупроводниковых технологий позволило создать цифровые изоляторы на основе КМОП-структур. Принцип их работы:

  1. Входной сигнал кодируется в последовательность импульсов
  2. Импульсы передаются через емкостной барьер на кристалле
  3. На приемной стороне сигнал декодируется обратно

Преимущества КМОП-изоляторов:

  • Высокое быстродействие (до сотен Мбит/с)
  • Малое энергопотребление
  • Высокая надежность
  • Интеграция нескольких каналов в одном корпусе

Цифровые изоляторы находят широкое применение в промышленных интерфейсах, измерительных системах, медицинском оборудовании и других областях, где требуется надежная гальваническая развязка высокоскоростных сигналов.


Применение гальванической развязки в электронике

Гальваническая развязка используется во многих областях электроники и электротехники:

  • Источники питания (развязка первичных и вторичных цепей)
  • Измерительные системы (изоляция датчиков)
  • Промышленные интерфейсы (RS-485, CAN, Profibus и др.)
  • Драйверы силовых ключей
  • Медицинское оборудование
  • Аудиотехника (устранение земляных петель)
  • Системы сбора данных

Выбор конкретного типа гальванической развязки зависит от требований к скорости передачи, уровню изоляции, условий эксплуатации и других факторов.

Особенности применения гальванической развязки в силовой электронике

В силовой электронике гальваническая развязка играет критически важную роль для обеспечения безопасности и правильного функционирования устройств. Основные области применения:

  • Драйверы затворов MOSFET и IGBT транзисторов
  • Измерение токов и напряжений в силовых цепях
  • Передача управляющих сигналов между низковольтными и высоковольтными частями схемы
  • Изоляция в DC/DC преобразователях

Для силовой электроники критически важны следующие параметры гальванической развязки:


  1. Высокая электрическая прочность изоляции (до нескольких кВ)
  2. Устойчивость к высоким скоростям изменения напряжения (dv/dt)
  3. Малая задержка распространения сигнала
  4. Широкий диапазон рабочих температур

В современных устройствах силовой электроники чаще всего применяются специализированные драйверы затворов со встроенной гальванической развязкой на основе трансформаторов или цифровых изоляторов.


Гальваническая развязка. Кто, если не оптрон? / Хабр

Есть в электронике такое понятие как гальваническая развязка. Её классическое определение — передача энергии или сигнала между электрическими цепями без электрического контакта. Если вы новичок, то эта формулировка покажется очень общей и даже загадочной. Если же вы имеете инженерный опыт или просто хорошо помните физику, то скорее всего уже подумали про трансформаторы и оптроны.

Статья под катом посвящена различным способам гальванической развязки цифровых сигналов. Расскажем зачем оно вообще нужно и как производители реализуют изоляционный барьер «внутри» современных микросхем.

Речь, как уже сказано, пойдет о изоляции цифровых сигналов. Далее по тексту под гальванической развязкой будем понимать передачу информационного сигнала между двумя независимыми электрическими цепями.

Зачем оно нужно

Существует три основные задачи, которые решаются развязкой цифрового сигнала.

Первой приходит в голову защита от высоких напряжений. Действительно, обеспечение гальванической развязки — это требование, которое предъявляет техника безопасности к большинству электроприборов.

Пусть микроконтроллер, который имеет, естественно, небольшое напряжение питания, задает управляющие сигналы для силового транзистора или другого устройства высокого напряжения. Это более чем распространенная задача. Если между драйвером, который увеличивает управляющий сигнал по мощности и напряжению, и управляющим устройством не окажется изоляции, то микроконтроллер рискует попросту сгореть. К тому же, с цепями управления как правило связаны устройства ввода-вывода, а значит и человек, нажимающий кнопку «включить», легко может замкнуть цепь и получить удар в несколько сотен вольт.

Итак, гальваническая развязка сигнала служит для защиты человека и техники.

Не менее популярным является использование микросхем с изоляционным барьером для сопряжения электрических цепей с разными напряжениями питания.

Тут всё просто: «электрической связи» между цепями нет, поэтому сигнал логические уровни информационного сигнала на входе и выходе микросхемы будут соответствовать питанию на «входной» и «выходной» цепях соответственно.

Гальваническая развязка также используется для повышения помехоустойчивости систем. Одним из основных источников помех в радиоэлектронной аппаратуре является так называемый общий провод, часто это корпус устройства. При передаче информации без гальванической развязки общий провод обеспечивает необходимый для передачи информационного сигнала общий потенциал передатчика и приемника. Поскольку обычно общий провод служит одним из полюсов питания, подключение к нему разных электронных устройств, в особенности силовых, приводит к возникновению кратковременных импульсных помех. Они исключаются при замене «электрического соединения» на соединение через изоляционный барьер.

Как оно работает

Традиционно гальваническая развязка строится на двух элементах — трансформаторах и оптронах.

Если опустить детали, то первые применяются для аналоговых сигналов, а вторые — для цифровых. Мы рассматриваем только второй случай, поэтому имеет смысл напомнить читателю о том кто такой оптрон.

Для передачи сигнала без электрического контакта используется пара из излучателя света (чаще всего светодиод) и фотодетектора. Электрический сигнал на входе преобразуется в «световые импульсы», проходит через светопропускающий слой, принимается фотодетектором и обратно преобразуется в электрический сигнал.

Оптронная развязка заслужила огромную популярность и несколько десятилетий являлась единственной технологией развязки цифровых сигналов. Однако, с развитием полупроводниковой промышленности, с интеграцией всего и вся, появились микросхемы, реализующие изоляционный барьер за счет других, более современных технологий.

Цифровые изоляторы — это микросхемы, обеспечивающие один или несколько изолированных каналов, каждый из которых «обгоняет» оптрон по скорости и точности передачи сигнала, по уровню устойчивости к помехам и, чаще всего, по стоимости в пересчете на канал.

Изоляционный барьер цифровых изоляторов изготавливается по различным технологиям. Небезызвестная компания Analog Devices в цифровых изоляторах ADUM в качестве барьера использует импульсный трансформатор. Внутри корпуса микросхемы расположено два кристалла и, выполненный отдельно на полиимидной пленке, импульсный трансформатор. Кристалл-передатчик по фронту информационного сигнала формирует два коротких импульса, а по спаду информационного сигнала — один импульс. Импульсный трансформатор позволяет с небольшой задержкой получить на кристалле-передатчике импульсы по которым выполняется обратное преобразование.

Описанная технология успешно применяется при реализации гальванической развязки, во многом превосходит оптроны, однако имеет ряд недостатков, связанных с чувствительностью трансформатора к помехам и риску искажений при работе с короткими входными импульсами.

Гораздо более высокий уровень устойчивости к помехам обеспечивается в микросхемах, где изоляционный барьер реализуется на емкостях. Использование конденсаторов позволяет исключить связь по постоянному току между приемником и передатчиком, что в сигнальных цепях эквивалентно гальванической развязке.


Если последнее предложение вас взбудоражило..

Если вы почувствовали жгучее желание закричать что гальванической развязки на конденсаторах быть не может, то рекомендую посетить треды вроде этого. Когда ваша ярость утихнет, обратите внимание что все эти споры датируются 2006 годом. Туда, как и в 2007, мы, как известно, не вернемся. А изоляторы с емкостным барьером давно производятся, используются и отлично работают.

Преимущества емкостной развязки заключаются в высокой энергетической эффективности, малых габаритах и устойчивости к внешним магнитным полям. Это позволяет создавать недорогие интегральные изоляторы с высокими показателями надежности. Они выпускаются двумя компаниями — Texas Instruments и Silicon Labs. Эти фирмы используют различные технологии создания канала, однако в обоих случаях в качестве диэлектрика используется диоксид кремния. Этот материал имеет высокую электрическую прочность и уже несколько десятилетий используется при производстве микросхем. Как следствие, SiO2 легко интегрируется в кристалл, причем для обеспечения напряжения изоляции величиной в несколько киловольт достаточно слоя диэлектрика толщиной в несколько микрометров.

На одном (у Texas Instruments) или на обоих (у Silicon Labs) кристаллах, которые находятся в корпусе цифрового изолятора, расположены площадки-конденсаторы. Кристаллы соединяются через эти площадки, таким образом информационный сигнал проходит от приемника к передатчику через изоляционный барьер.

Хотя Texas Instruments и Silicon Labs используют очень похожие технологии интеграции емкостного барьера на кристалл, они используют совершенно разные принципы передачи информационного сигнала.

Каждый изолированный канал у Texas Instruments представляет собой относительно сложную схему.

Рассмотрим её «нижнюю половину». Информационный сигнал подается на RC-цепочки, с которых снимаются короткие импульсы по фронту и спаду входного сигнала, по этим импульсам сигнал восстанавливается. Такой способ прохождения емкостного барьера не подходит для медленноменяющихся (низкочастотных) сигналов. Производитель решает эту проблему дублированием каналов — «нижняя половина» схемы является высокочастотным каналом и предназначается для сигналов от 100 Кбит/сек.

Сигналы с частотой ниже 100 Кбит/сек обрабатываются на «верхней половине» схемы. Входной сигнал подвергается предварительной ШИМ-модуляции с большой тактовой частотой, модулированный сигнал подается на изоляционный барьер, по импульсам с RC-цепочек сигнал восстанавливается и в дальнейшем демодулируется.
Схема принятия решения на выходе изолированного канала «решает» с какой «половины» следует подавать сигнал на выход микросхемы.

Как видно на схеме канала изолятора Texas Instruments, и в низкочастотном, и в высокочастотном каналах используется дифференциальная передача сигнала. Напомню читателю её суть.

Дифференциальная передача — это простой и действенный способ защиты от синфазных помех. Входной сигнал на стороне передатчика «разделяется» на два инверсных друг-другу сигнала V+ и V-, на которые синфазные помехи разной природы влияют одинаково. Приемник осуществляет вычитание сигналов и в результате помеха Vсп исключается.

Дифференциальная передача также используется в цифровых изоляторах от Silicon Labs. Эти микросхемы имеют более простую и надежную структуру. Для прохождения через емкостный барьер входной сигнал подвергается высокочастотной OOK (On-Off Keying) модуляции. Другими словами, «единица» информационного сигнала кодируется наличием высокочастотного сигнала, а «ноль» — отсутствием высокочастотного сигнала. Модулированный сигнал проходит без искажений через пару емкостей и восстанавливается на стороне передатчика.

Цифровые изоляторы Silicon Labs превосходят микросхемы ADUM-ы по большинству ключевых характеристик. Микросхемы от TI обеспечивают примерно такое же качество работы как Silicon Labs, но в отдельных случаях уступают в точности передачи сигнала.

Где оно работает

Хочется добавить пару слов о том в каких микросхемах используется изоляционный барьер.
Первыми стоит назвать цифровые изоляторы. Они представляют собой несколько изолированных цифровых каналов, объединенных в одном корпусе. Выпускаются микросхемы с различной конфигурацией входных и выходных однонаправленных каналов, изоляторы с двунаправленными каналами (используются для развязки шинных интерфейсов), изоляторы со встроенным DC/DC-контроллером для изоляции питания.

Ещё больше картинок

Микросхема серии Si86xx — цифровой изолятор с четырьмя прямыми и двумя обратными каналами

Микросхема серии Si860x — цифровой изолятор с двумя двунаправленными и двумя однонаправленными каналами

Микросхема серии Si88xx — цифровой изолятор с двумя каналами и встроенным DC/DC-контроллером

Кроме цифровых изоляторов выпускаются изолированные драйверы силовых транзисторов, в том числе на посадочное место оптодрайверов, усилители токового шунта, гальваноразвязанные АЦП и др.

Ещё больше картинок

Микросхема серии Si823x — изолированный драйвер верхнего и нижнего ключа

Микросхема серии Si8261 — изолированный драйвер с эмулятором светодиода на входе

Микросхема серии Si8920 — изолированный усилитель токового шунта

Микросхема серии Si890x — изолированный АЦП

Гальваническая развязка. Виды и работа. Особенности

Содержание:

Введение

Гальваническая развязка (изоляция), обычно называемая просто развязкой, является способом, в соответствии с которым отдельные части электрической системы могут обладать различными потенциалами земли. Двумя наиболее распространенными причинами создания развязки является безопасность от сбоев в продуктах промышленного класса, и там, где требуется проводная связь между устройствами, каждое из которых имеет собственный источник питания.

Гальваническая развязка оптоэлектронного типа

С развитием высоких технологий, использующих полупроводниковые элементы, все более широкое распространение получают БГР – блоки гальванической изоляции на основе оптоэлектронных узлов. Их основой служат оптроны, известные среди электротехников в качестве оптопар, выполненных на основе диодов, транзисторов, тиристоров и других элементов, обладающих повышенной светочувствительностью.

Общая схема оптической части, связывающая источник данных с приемником, использует в качестве сигнала нейтральные фотоны. Благодаря этому свойству, выполняется развязка цепи на входе и выходе, а также ее согласование с входными и выходными сопротивлениями.

Когда используется оптоэлектронная схема, приемник совершенно не влияет на источник сигнала, поэтому сигналы могут модулироваться в широком частотном диапазоне. Данные устройства обладают компактными размерами, поэтому они часто используются в микроэлектронике.

В конструкцию оптической пары входит световой излучатель, проводящая среда для светового потока, а также приемник, преобразующий свет в электрические сигналы. Сопротивление на входе и выходе оптрона очень большое, прядка нескольких миллионов Ом.

Вначале входной сигнал попадает на светодиод, далее в виде света он по световоду попадает на фототранзистор. На выходе устройства данная схема создает перепад или импульс выходного электрического тока. В результате цепи, связанные с двух сторон со светодиодом и фототранзистором, оказываются изолированными между собой.

Виды гальванической развязки

В микросхемах гальванической развязки используются, в основном, три способа гальванического разделения:

  • оптронная развязка;
  • трансформаторная развязка;
  • КМОП.

Оптронная развязка известна очень давно. Пожалуй, наибольших успехов в производстве гальванических оптронных развязок достигли компании Avago (ныне Broadcom) и Toshiba. Основными ограничивающими факторами в использовании оптронных развязок являются температурная зависимость, временные задержки, из-за которых может происходить рассинхронизация тактовых сигналов и данных, ограничение скорости передачи и довольно большое энерго­потребление. В высокоскоростных интерфейсах оптронная развязка не находит широкого применения.

Трансформаторная развязка наилучшим способом реализована в технологии iCoupler компании Analog Devices, а развязка с использованием КМОП-технологии — в технологиях компаний Texas Instruments и SiLabs. Обе эти технологии позволяют увеличить электрическую прочность изоляции до более чем 5 кВ (АС).

В технологии iCoupler планарный микротрансформатор формируется на кристалле кремния. Первичная и вторичная части этого трансформатора разделены полиимидом с высокой электрической прочностью. В КМОП-технологии кристаллы, образующие первичную и вторичную часть развязки, разделены дифференциальным емкостным изолирующим барьером. С точки зрения автора, трансформаторная развязка и емкостная развязка КМОП-технологии практически равноценны при использовании в сетях передачи данных. Ни одна из них не имеет явных преимуществ над другой.

Несмотря на отмеченные выше недостатки оптронных развязок, следует сказать несколько слов в их защиту. Нередко в специализированных СМИ высказывается мнение о том, что этот вид развязки якобы устарел и она во всех отношениях уступает конкурентам. В качестве доказательства приводятся результаты сравнительных испытаний или моделирования.

Например, в среди прочих характеристик рассматривается важный параметр — стойкость к изменению синфазного напряжения (common-mode transient immunity, CMTI). Сравнивается реакция на изменение синфазного напряжения оптронной развязки HCPL‑4506 (с CMTI = 20 кВ/мкс) и развязки Si8712A (с CMTI свыше 50 кВ/мкс), производимой по КМОП-технологии. Как и следовало ожидать, результаты сравнительных испытаний показали, что Si8712A значительно меньше реагирует на изменение синфазного напряжения, чем HCPL‑4506.

Результат объясняется наличием паразитных емкостей и несовершенством схемы HCPL‑4506. Действительно, как уже упоминалось, паразитные проходные емкости ухудшают характеристики развязки, но дело в том, что для испытаний был отобран далеко не лучший вариант оптронной развязки. Например, оптронная развязка ACNW3410 от Avago (Broadcom) в драйвере затвора использует улучшенную схему и ее величина CMTI = 100 кВ/мкс та же, что у развязок, производимых по двум другим технологиям.
В заключение отметим, что оптронные развязки имеют свою нишу применения. Прежде всего, это одноканальные развязки сигнальных линий и драйверы затворов. Из-за относительно больших задержек распространения сигналов и возможных рассогласований этих задержек между каналами не рекомендуется использовать их в многоканальных системах передачи данных и в драйверах затвора силовых каскадов с двумя и более силовыми ключами

Зачем оно нужно

Существует три основные задачи, которые решаются развязкой цифрового сигнала.
Первой приходит в голову защита от высоких напряжений. Действительно, обеспечение гальванической развязки — это требование, которое предъявляет техника безопасности к большинству электроприборов.
Пусть микроконтроллер, который имеет, естественно, небольшое напряжение питания, задает управляющие сигналы для силового транзистора или другого устройства высокого напряжения. Это более чем распространенная задача. Если между драйвером, который увеличивает управляющий сигнал по мощности и напряжению, и управляющим устройством не окажется изоляции, то микроконтроллер рискует попросту сгореть. К тому же, с цепями управления как правило связаны устройства ввода-вывода, а значит и человек, нажимающий кнопку «включить», легко может замкнуть цепь и получить удар в несколько сотен вольт.
Итак, гальваническая развязка сигнала служит для защиты человека и техники.

Не менее популярным является использование микросхем с изоляционным барьером для сопряжения электрических цепей с разными напряжениями питания. Тут всё просто: «электрической связи» между цепями нет, поэтому сигнал логические уровни информационного сигнала на входе и выходе микросхемы будут соответствовать питанию на «входной» и «выходной» цепях соответственно.

Гальваническая развязка также используется для повышения помехоустойчивости систем. Одним из основных источников помех в радиоэлектронной аппаратуре является так называемый общий провод, часто это корпус устройства. При передаче информации без гальванической развязки общий провод обеспечивает необходимый для передачи информационного сигнала общий потенциал передатчика и приемника. Поскольку обычно общий провод служит одним из полюсов питания, подключение к нему разных электронных устройств, в особенности силовых, приводит к возникновению кратковременных импульсных помех. Они исключаются при замене «электрического соединения» на соединение через изоляционный барьер.

Где оно работает

Теперь о том в каких микросхемах используется изоляционный барьер.
Первыми стоит назвать цифровые изоляторы. Они представляют собой несколько изолированных цифровых каналов, объединенных в одном корпусе. Выпускаются микросхемы с различной конфигурацией входных и выходных однонаправленных каналов, изоляторы с двунаправленными каналами (используются для развязки шинных интерфейсов), изоляторы со встроенным DC/DC-контроллером для изоляции питания. Кроме того выпускаются изолированные драйверы силовых транзисторов, в том числе на посадочное место оптодрайверов, усилители токового шунта, гальваноразвязанные АЦП и др.
* Микросхемы серии Si86xx (известны также как Si84xx) — однонаправленные цифровые изоляторы

Ещё есть изоляторы малыши Si80xx в QSOP-ах. Все на 1кВ.
* Микросхемы серии Si860x (известны также как Si840x) — двунаправленные цифровые изоляторы для шины I2C и т.п.

* Микросхемы серии Si87xx — цифровые изоляторы на посадочное место оптрона

* Микросхемы серии Si88xx — со встроенным DC/DC

* Микросхемы серии Si823x — двухканальные драйверы силовых транзисторов (+ Si824x, заточенные под аудиоусилители)

* Микросхемы серии Si826x — одноканальные драйверы на посадочное место оптодрайверов

* Микросхемы серии Si8920 — гальваноразвязанные АЦП

* Микросхемы серии Si890x — изолированные усилители токового шунта

Устройство гальванической развязки TEPLOCOM GF для питания котлов отопления

Компания БАСТИОН разработала и производит на протяжении нескольких лет специальное устройство, позволяющее выполнять гальваническую развязку или сопряжение цепи питания приборов системы отопления и цепи сетевого электропитания дома. Это устройство позволяет выполнять правильное и безопасное подключение оборудования в домах, где «заземление» не предусмотрено, или качество заземления не удовлетворяет показателям технических нормативов.

Устройство гальванического сопряжения  TEPLOCOM GF  предназначено для улучшения показателей качества электропитания в электрических сетях без заземления и в электрических сетях с некачественным заземлением.

Устройство гальванического сопряжения TEPLOCOM GF предназначено для организации качественного и безопасного электропитания котлов отопления и других приборов систем отопления дома.

Устройство гальванического сопряжения TEPLOCOM GF может быть использовано и для улучшения питания других электрических приборов и оборудования мощностью не более 200 ВА.

TEPLOCOM GF  может эксплуатироваться в закрытых помещениях и специально разработан для круглосуточного режима работы.

Современная гальваническая развязка

В наши дни лучший способ обеспечить необходимую гальваническую развязку — это использовать компоненты, разработанные специально для этой цели. Примеры включают специальные усилители и аналого-цифровые преобразователи (АЦП), используемые для отправки изолированных данных измерения тока и напряжения, когда это необходимо системе.

Дифференциальные усилители контролируют напряжение на чувствительном резисторе для получения значения тока. Обычно для этого приложения требуются два источника питания (рисунок ниже слева). Однако наличие второго источника питания делает продукт больше, тяжелее и дороже.

Texas Instruments разработала линейку усилителей и АЦП с однополярным питанием, чтобы решить эту проблему. Изолированный усилитель AMC3301 (рисунок выше справа) включает полностью интегрированный преобразователь постоянного тока в постоянный (DC-DC) для подачи второго напряжения питания. Изоляция обеспечивается емкостной связью внутри интегральной схемы. AMC3301 соответствует правилам безопасности высоковольтной изоляции для сертификации UL 1577 до 4250 В среднеквадратического значения DIN VDEV 0884-11 для пикового напряжения до 6000 В.

Для обеспечения изолированных данных измерений и управления можно использовать два типа изолирующих устройств — изолированный усилитель и изолированный модулятор. Оба являются типами с однополярным питанием и каждый содержит внутренний дельта-сигма (ΔΣ) АЦП.

Контролируемый аналоговый сигнал отправляется на микросхему, усиливается, а затем оцифровывается АЦП. АЦП генерирует последовательный поток битов, который проходит через емкостный изолирующий барьер на кристалле. Этот последовательный поток битов затем отправляется на фильтр нижних частот, который вырабатывает напряжение, пропорциональное входному сигналу. В этот момент восстановленный сигнал постоянного тока может быть снова оцифрован в другом АЦП, возможно, в обычном системном микроконтроллере.

В качестве другого варианта можно использовать изолированный модулятор, такой как AMC1305 / 06 от TI. Он принимает отслеживаемый сигнал тока или напряжения и усиливает его перед оцифровкой в более быстром ΔΣ АЦП. АЦП посылает свой сигнал через внутренний емкостный изолирующий барьер на выход. Этот сигнал представляет собой серию битов, представляющих напряжение внутри устройства. Внешний фильтр нижних частот генерирует пропорциональный аналоговый сигнал, который снова может быть оцифрован для цифровой обработки сигнала.

Хотя и изолированные усилители, и модуляторы действительно обеспечивают хорошие характеристики, изолирующие модуляторы, как правило, являются лучшей альтернативой. Они обладают превосходным соотношением сигнал / шум, большей точностью и меньшей задержкой.

Электроника для всех

Порой приходится делать гальваническое разделение аналогового сигнала. Например, чтобы отделить АЦП контроллера от высоковольтной части. И если с передачей дискретных сигналов все более менее понятно, там можно обойтись обычным оптроном, работающим в режиме вкл-выкл, то что делать с аналоговым сигналом?

Первое что приходит на ум, так это взять какую-нибудь оптопару и попробовать питать ее светодиод не номинальным напряжением, а нашим аналоговым сигналом. Ведь если напряжение на входе меньше, то светодиод горит тусклее и у фотодиода или фототранзистора на выходе будет совсем другое открытие. Если посмотреть даташит на какую-нибудь оптрон, вроде дешевого и популярного LTV817, то да, можно увидеть вполне характерную зависимость тока выхода (IC от тока входящего в светодиод (IF):

И даже можно попробовать на нем что-то изобразить. Но возникает несколько проблем. И главная даже не в нелинейности. В конце концов, в большинстве случаев, у нас сигнал все равно идет на АЦП какое-нибудь. А там нелинейность можно бы и программно исправить — бомбануть табличку или по формулам с кусочно-линейной аппроксимацией. Нет, главная проблема тут в разбросе параметров самих оптронов от штуки к штуке, даже в пределах одной партии, более того, они еще и с температурой очень сильно изменяют свои характеристики. Получится система которую сложно повторить и откалибровать. Скорей получится сделать всратый термометр чем линию связи
Будь то фотодиод, фототранзистор или фоторезистор. Для сколь-нибудь точной передачи сигнала подходит так себе. Но это можно исправить и поможет нам наш старый дружок… Операционный усилитель! :))))

Первым делом он поможет нам линеаризовать сигнал. Т.е. можно будет смело забыть про эти кривые передаточные характеристики оптического канала и все что влезло вылезет в том же виде. А это существенно все упрощает.

Делаем обратную связь через оптический канал. Как это работает. Допустим, в начальном состоянии, фототранзистор затемнен, закрыт и точка А подтянута к +V, пусть там будет вольт 15. А на точку В подали, скажем, 3 вольта входного сигнала. На выходе будет (15-3) * дохрена = напряжение которое зажжет светодиод оптопары и начнет открывать фототранзистор. А он, в свою очередь, просадит напряжение подтяжки в точке А до тех пор, пока оно не сравняется с напряжением на точке В и ОУ не успокоится, замерев в этом устойчивом положении.

Если промоделировать, то увидим, что напряжения идентичные.

Желтый луч это входной с генератора, а синий с обратной связи.

Почти… у выходного (Сигнал В) сигнала есть небольшая плоскость внизу. Это связано с тем, что транзистор оптопары не может придавить сигнал совсем в ноль. Чтобы от нее избавиться надо чуток приподнять входной сигнал, добавив к нему смещение в пол вольта-вольт. Например, сделав сумматор из ОУ. Но это уже не большая проблема, сумматор можно собрать на другом ОУ из той же микросхемы.

Окей, классно. Приравняли мы напряжение А и В с помощью ОУ. А что нам это дает? Они ведь все равно на одной стороне находятся. Что дальше? А дальше мы можем взять вторую, точно такую же оптопару, а лучше второй канал сдвоенной оптопары (чтобы максимально идентичные свойства были) и насадить на тот же выходной ток с нашего ОУ. И он будет дублировать напряжение на той стороне. Вот так:

Токи через светодиоды идут одинаковые, значит светят они идентично. Транзисторы одинаковые (насколько это возможно), а значит на выходе будет то же самое напряжение.

На модели все также:

Если делать смещение, то тут же, на принимающем ОУ, его можно и отрезать.

Под такое дело есть даже специальные линейные оптопары. Они отличаются лучшими характеристиками в плане работы в линейном режиме, а еще имеют один светодиод, светящий на сразу на два фотодетектора. Что еще больше снижает разбег параметров, повышая точность. Типичный представитель такой микросхемы HCNR200 в ней один светодиод и два фотодиода. Включается она следующим образом:

Тут все почти то же самое. Только фотодиод тянет линию вверх, когда засвечивается. Стремясь сравнять напряжения на А и В. А второй фотодиод, по ту сторону барьера, за ним повторяет один в один.

Если промоделировать, то все работает идентично.

Но уже нет площадки на выходе. А если она у вас появляется сверху, значит фотодиод не может выдать нужный ток, чтобы обеспечить падение напряжения и надо увеличить сопротивление резистора который тянет вниз.

У данного способа развязки много недостатков. Он не очень точен, не очень быстр. Никакой прецизионности тут не будет, погрешность в пару процентов вам обеспечена. И вряд ли вы сможете перетащить сигнал быстрей нескольких десятков килогерц через такую сборку. Но у него есть одно несомненное достоинство — ультимативная дешевизна и простота. Так что если вас не смущает погрешность в несколько процентов, а частоты невелики, то зачем платить по пол сотни баксов за прецизионные изолированные ОУ, если можно обойтись всего двумя тремя бачинскими за попсовый оптрон и не менее попсовый же операционный усилок.

Вот такой вот способ передачи аналогового сигнала с гальванической развязкой. В следующий раз я наброшу еще несколько способов.

Микросхемы для гальванической развязки цифровых сигналов (изоляторы)

TI предлагает широкую линейку микросхем, предназначенных для развязки цифровых сигналов различных скоростей (от постоянного сигнала до 150 Мбит/с), выпускаются одно- и двунаправленные модификации, содержащие от одного до четырех каналов (таб­лица 2). За счет повышения уровня интеграции многоканальные изоляторы позволяют сэкономить место на плате.

Микросхемы могут применяться в распространенных цифровых интерфейсах в различных промышленных приложениях. Все изоляторы имеют однополярное питание 3/5 В, логические КМОП-уровни переключения. Номинальное напряжение питания находится в диапазоне 3,3…5,0 В как для VCC1, так и для VCC2. Возможна различная их комбинация.

Все микросхемы с тремя цифрами в наименовании являются одноканальными (ISO721). В изоляторах с четырьмя цифрами две первые означают серию, предпоследняя говорит о количестве каналов, а последняя — о каналах с обратным направлением передачи данных. Например, ISO7241 часто применяется для гальванической развязки SPI-интерфейса и имеет четыре канала: передачи данных, приема, тактирования, и выбора устройства (рис. 1).

Рис. 1. Структура изолятора ISO7241

Для развязки цепей передачи данных в микросхемах TI используется емкостной барьер с изолятором из диоксида кремния (SiO2). Технология характеризуется высокой степенью надежности, низкими задержками времени распространения сигнала (от 7 нс), малыми искажениями сигнала и задержками «канал-канал» (от 1 нс), высокой устойчивостью к электромагнитному полю, а также широким температурным диапазоном работы (-55…125°С).

Индекс EP (ISO721M-EP, ISO7241A-EP) указывает на расширенный температурный диапазон работы -55…125°С, большинство остальных микросхем имеют диапазон -40…125°С. В ближайшем будущем в продаже появятся ISO7221-HT; индекс HT означает высокотемпературное и высоконадежное применение в жестких температурных условиях, например, в нефтедобывающей отрасли. Эти изделия будут изготовлены из высокотемпературного пластика, способного выдерживать температуры -55…175°С.

Стоит обратить отдельное внимание на новое семейство двухканальных развязок для применений с малым энергопотреблением ISO7420/7421 — семейство развязок с потреблением тока порядка 1,5 мА на канал. В продаже появилась ISO7420FE, суффикс F означает, что в случае аварийного состояния входных линий, выход будет переведен в положение с низким уровнем, защищая, таким образом, выходные цепи.

Вслед за Европой в России в скором времени планируется ужесточение требований безопасности для ответственных применений. Например, в Европейских странах действует постановление о двукратном запасе по напряжению пробоя изоляции для медицинских применений; таким образом, устройство должно выдерживать пробой напряжением до 5000 В RMS в течении минуты. Texas Instruments выпустила двухканальные изоляторы ISO7520 и ISO7521 с напряжением пробоя 5000 В RMS, отличающихся друг от друга направлением передачи данных второго канала.

Предыдущая

ТеорияПочему в странах разные розетки?

Следующая

ТеорияКвантовый эффект холла

Часто задаваемые вопросы — Schneider Electric

 {"searchBar":{"inputPlaceholder":"Поиск по ключевому слову или задать вопрос","searchBtn":"Поиск","error":"Пожалуйста, введите ключевое слово для поиска"} } 

В чем основные отличия контакторов LC1D и LC1K?

Проблема: Различия между контакторами LC1D и LC1K Линейка продуктов: Контакторы и пускатели IEC Окружающая среда: Контакторы Tesys K и Tesys D Разрешение: Контакторы D-Line больше, надежнее и…

Как сохранить параметры в клавиатуре и загрузить на другой идентичный…

Проблема: Попытка сохранить параметры в клавиатуре и загрузите их в другой идентичный привод ATV630. Линейка продуктов: Приводы ATV630 Окружающая среда: Клавиатура Причина: Перенос файлов Решение: Перейти к главному…0004

Можно ли использовать пускатели GV2, GV3 и GV7 с обратной подачей?

Проблема: Обратная подача Линейка продуктов GV2, GV3 и GV7: Пускатели и устройства защиты двигателя Окружающая среда: Ручные пускатели PowerPact™ Решение: Не рекомендуется.

Можно ли смоделировать функциональные блоки PTO в SoMachine Basic?

Проблема: Можно ли моделировать функциональные блоки PTO в SoMachine Basic? Линейка продуктов: M221, TM221 Решение: Как и в случае с блоками PID, вы не можете имитировать блоки функций PTO в SoMachine Basic. Вы будете…

Часто задаваемые вопросы о популярных видеоПопулярные видео

Видео: Как подключить TeSys T к Somove через Modbus…

:

Видео Преобразование проекта ProWORX 32 в Unity Pro

Видео: Как подключить и запрограммировать привод ATV61/71 для 3-проводной…

Узнайте больше в разделе часто задаваемых вопросов по общим знаниямОбщие знания

Проверка сопротивления изоляции и влажности

Проблема: Как влажность влияет на результаты испытаний сопротивления изоляции? Линейка продуктов: автоматические выключатели Окружающая среда: выключатели в литом и изолированном корпусах Разрешение: высокая влажность может значительно…

Почему я теряю лицензию зарегистрированной копии сервера OFS после…

Проблема: потеря лицензии зарегистрированной копии сервера OFS в Windows10, Windows Server 2016 или Windows Server 2019 после обновления до версии сервера OFS 3.63. 08.11.2021

В чем разница между PNP и NPN при описании трехпроводного…

Большинство промышленных бесконтактных датчиков (индуктивные, емкостные, ультразвуковые и фотоэлектрические) являются полупроводниковыми. Термин твердотельный относится к типу компонентов, используемых в датчике. Твердотельный…

Что означают термины AC1 и AC3?

6.2.1″> Проблема: Каковы категории использования AC-1 и AC-3? Линейка продуктов: Schneider Electric Products Окружающая среда: Индуктивные и резистивные нагрузки Разрешение: AC-1 — Эта категория применяется ко всем нагрузкам переменного тока…

Гальваническая развязка стала проще | Electronic Design

Эта статья является частью TechXchange : Exploring Digital Isolator Technology

Загрузите эту статью в формате PDF.

Сегодня во многих новых конструкциях абсолютно необходима гальваническая развязка между двумя или более частями оборудования или между двумя критическими секциями одного продукта или системы. Если вы еще не делали этого раньше, вы можете ускориться, прежде чем продолжить. Это означает изучение основ гальванической развязки, причин ее использования и знакомство со способами ее достижения.

В этой статье дается определение гальванической развязки, объясняются ее преимущества, а затем обобщаются наиболее распространенные способы ее реализации. И это раскрывает новый подход к обеспечению гальванической развязки с помощью специальных ИС.

 Спонсорские ресурсы: 

  • Упростите свои схемы изолированных датчиков тока и напряжения
  • Эталонный проект высокоэффективного аналогового модуля ввода с низким уровнем выбросов
  • Полностью интегрированная изоляция сигналов и питания – области применения и преимущества

Знакомство с гальванической развязкой

Гальваническая развязка — это процесс проектирования оборудования или систем с отдельными источниками питания, чтобы они не обменивались питанием и не взаимодействовали каким-либо образом. Идея состоит в том, чтобы питание постоянного тока (и/или переменного тока) было отдельным и независимым. Одна система электроснабжения не должна влиять на другую. В то же время обычно необходимо полностью изолированно передавать сигналы мониторинга и управляющие данные между ними.

Энергетическая изоляция достигается за счет того, что две физические секции находятся на достаточном расстоянии друг от друга. И это обычно реализуется путем НЕ соединения заземляющих соединений двух систем. Это устраняет контуры заземления и уменьшает или, по крайней мере, сводит к минимуму любой перенос шума. Когда используются как высоковольтные, так и низковольтные подсистемы, такая физическая изоляция и изоляция заземления также помогают защитить пользователей и специалистов по обслуживанию от ударов, низковольтные цепи от высокого напряжения, а в некоторых случаях защищают от молнии.

Примеры оборудования, требующего гальванической развязки, включают программируемые логические контроллеры (ПЛК) в заводских инструментах и ​​оборудовании, источники бесперебойного питания (ИБП), моторные приводы, промышленные роботы, зарядные устройства, инверторы и иногда преобразователи постоянного тока. И есть растущая потребность в автомобильных приложениях.

TI. com — это самый простой способ поиска и покупки оригинальных деталей TI по ​​самым низким ценам в Интернете.

{}»>Купить на TI.com

Внедрение гальванической развязки

Для реализации гальванической развязки используется широкий спектр методов. Пожалуй, самым старым и до сих пор самым эффективным является трансформатор. Он работает, позволяя своим двум обмоткам передавать данные, сообщения и коды посредством магнитных полей между первичной и вторичной обмотками. Между первичной и вторичной обмотками постоянного тока нет.

На рис. 1 показан пример базового блока питания, используемого в системе, требующей изоляции. SN6501-Q1 — это драйвер генератора, который вырабатывает сигнал переключения для трансформатора. Трансформатор обеспечивает соотношение витков для получения желаемого выходного напряжения и идеальную изоляцию, полученную за счет только магнитной связи между входом и выходом. Регулятор с малым падением напряжения (LDO) очищает выпрямленный сигнал и устанавливает желаемое выходное напряжение.

Оптопары или оптоизоляторы — еще одно почти идеальное устройство для передачи данных с разумной скоростью. Поток данных о напряжении управляет светодиодом внутри оптоизолятора. Фототранзистор улавливает свет на расстоянии нескольких миллиметров. Выход транзистора полностью изолирован от входа. Изоляция очень полная.

Одним из лучших методов изоляции является использование конденсаторов. Они блокируют постоянный ток, но пропускают переменный ток, что делает их и их варианты чрезвычайно эффективными. Другими устройствами, участвующими в создании гальванической развязки, являются специальные компоненты, такие как датчики Холла и даже механические реле.

Современная гальваническая развязка

Лучший способ обеспечить необходимую гальваническую развязку в наши дни — использовать продукты, специально предназначенные для этой цели. Примеры включают специальные усилители и аналого-цифровые преобразователи (АЦП), используемые для отправки изолированных данных измерения тока и напряжения, когда это необходимо системе.

Дифференциальные усилители контролируют напряжение на чувствительном резисторе, чтобы обеспечить показания тока. Обычно в этом приложении требуется два источника питания (рис. 2, слева) . Однако наличие второго запаса делает продукт больше, тяжелее и дороже.

Компания Texas Instruments разработала линейку усилителей и АЦП с однополярным питанием, чтобы решить эту проблему. Изолированный усилитель AMC3301 (рис. 2, справа) включает в себя полностью интегрированный преобразователь постоянного тока для подачи второго напряжения питания. Изоляция обеспечивается емкостной связью внутри ИС. AMC3301 соответствует правилам безопасности изоляции высокого напряжения для сертификации UL 1577 до 4250 В среднеквадратичного значения и DIN VDEV 0884-11 для пикового напряжения до 6000 В.

Для предоставления изолированных данных измерений и управления можно использовать два типа изолирующих устройств — изолированный усилитель и изолированный модулятор. Оба являются типами с однополярным питанием, и каждый содержит внутренний дельта-сигма (ΔΣ) АЦП.

Контролируемый аналоговый сигнал отправляется на микросхему, усиливается, а затем оцифровывается АЦП. АЦП генерирует последовательный битовый поток, который проходит через встроенный емкостной изолирующий барьер. Этот последовательный битовый поток затем отправляется на фильтр нижних частот, который создает напряжение, пропорциональное входному сигналу. В этот момент восстановленный сигнал постоянного тока может быть снова оцифрован в другом АЦП, возможно, в обычном системном микроконтроллере 9.0007

В качестве опции можно использовать изолированный модулятор, такой как AMC1305/06 от TI. Он принимает отслеживаемый сигнал тока или напряжения и усиливает его перед оцифровкой в ​​более быстром ΔΣ АЦП. АЦП посылает свой сигнал через внутренний емкостной изолирующий барьер на выход. Этот сигнал представляет собой серию битов, представляющих напряжение внутри устройства. Внешний фильтр нижних частот генерирует пропорциональный аналоговый сигнал, который можно снова оцифровать для цифровой обработки сигнала.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *