Простая защита от кз блока питания: Блок питания с защитой от короткого замыкания

Содержание

Простая защита от короткого замыкания всего на одном реле

Простейшая, надежная защита от короткого замыкания, без логической электроники, транзисторов и всего остального. Светодиоды используются только в качестве индикации.
Данное устройство можно применить в низковольтных схемах, где есть опасность замыкания контактов с выходным напряжением 6 - 18 В.
Простая защита от короткого замыкания всего на одном реле

Понадобится


  • Реле 12 В.
    Простая защита от короткого замыкания всего на одном реле
  • Два резистора 10 кОм.
    Простая защита от короткого замыкания всего на одном реле
  • Два светодиода разного цвета.
    Простая защита от короткого замыкания всего на одном реле

  • Кнопка без фиксации.

Делаем простую защиту от короткого замыкания


Рассмотрим принципиальную схему устройства:
Простая защита от короткого замыкания всего на одном реле
Работает оно следующим образом: При подаче питания, реле остается в неизменном состоянии, горит только красный светодиод. На выходи нет никакого потенциала. Чтобы запустить работу, необходимо кратковременно нажать на кнопку. После этого реле сменит свое состояние, замкнет паралельно контакты кнопки и будет удерживаться в таком состоянии до КЗ. Красный свет потухнет и загорится зеленый. На выходе появится напряжение для питания нагрузки.
Если случится КЗ, общее напряжение цепи упадет до нуля. Контакты реле отпустятся и отключат нагрузку. Чтобы возобновить подачу напряжения на выходе, необходимо будет опять нажать на кнопку однократным нажатием.

Спаяем устройство на универсальной плате:

Простая защита от короткого замыкания всего на одном реле

Слева вход для источника питания, справа выход для нагрузки.
Простая защита от короткого замыкания всего на одном реле

Работа


Подключаем питание. Светится красный светодиод.
Простая защита от короткого замыкания всего на одном реле
В роли нагрузки используется небольшой электродвигатель на 12В. Нажимаем кнопку однократно: светодиод красный потух, загорелся зеленый.
Простая защита от короткого замыкания всего на одном реле
Если мотор был подключен, то он будет работать. Если сейчас замкнуть выходные контакты, то зеленый светодиод потухнет, загорится красный. Питание на выходе пропадет до тех пор, пока повторно не будет нажата тактовая кнопка.
Простая защита от короткого замыкания всего на одном реле

Вот и все! Невероятно простое и надежное в работе устройство. Оно также выключит нагрузку, если входящие питание от источника кратковременно пропадет. Эта функция тоже может быть весьма полезной.

Смотрите видео


Простой маломощный БП с защитой от КЗ, на старой элементной базе

Блок питания появился на свет как некая гуманитарная помощь знакомому школьнику-семикласснику, для направления его внутренней энергии в хорошее, полезное русло. Таким стабилизированным и регулируемым источником можно запитывать несколько подаренных электро- и радио-конструкторов, первые несложные схемы, которые мы, я надеюсь, соберем. В дальнейшем, при необходимости БП можно будет усовершенствовать – используя корпус, измерители, радиатор, несложно будет собрать более мощный прибор с лучшими параметрами. Пространство внутри вполне это позволяет.

Итак. Блок питания собран по классической схеме, выпрямитель – источник слаботочного стабилизированного напряжения на стабилитроне, эмиттерный повторитель-регулятор на составном транзисторе. Узел защиты от КЗ собран на транзисторе V6, он закрывает регулирующий транзистор при замыкании выходных клемм, в таком состоянии прибор может находиться длительное время. Существует более подробное описание работы схемы, список элементов для замены приведенных.

Блок питания обеспечивает регулируемое стабилизированное напряжение 0,5…12 В с максимальным током 400 мА. Элементная база устройства – сугубо дискретные элементы, германиевые транзисторы старых серий. При определении со схемотехникой блока, все элементы мгновенно и без труда нашлись в коробках и банках, параметры тоже устроили. Решено было не противиться воле провидения.


Главные факторы в конструкции нынешней, применительно к назначению – небольшая мощность, небольшое выходное напряжение, регулируемость, индикация напряжения, защита от КЗ. Кроме того должен быть удобный корпус, безопасное исполнение. Чтобы никаких накрученных проводков на вилку настольной лампы (в пол-голоса) и как только жив остался…

По сравнению с исходной схемой, стрелочный вольтметр заменен на цифровой китайский модуль-измеритель напряжения и тока – не капли не жалко, а ребенку радость. Кроме прочего в голове лучше уложится зависимость потребляемого тока от напряжения, будет видно как напряжение просаживается на относительно мощной нагрузке, напряжение на конкретной нагрузке можно установить с учетом этой просадки (по сравнению со шкалой под ручкой R8) и т.д. Словом, в учебно-наглядных целях. Единственный минус – пришлось озаботиться личным микро-БП для измерителя, впрочем, он допускает широкий диапазон напряжений для питания и удалось легко подобрать ему старый исправный сетевой адаптер-зарядку для мобильного телефона. При этом, индикаторной неоновой лампой с токоограничительным резистором можно смело манкировать – светящиеся цифры измерителя преотлично их заменят.

К делу.

Что было использовано для работы.

Набор инструмента для электромонтажа, набор некрупного слесарного инструмента.

Первым делом подобрал элементы, привел в порядок их выводы, проверил на тестере элементов. К слову, транзисторы вроде П213 тестер игнорирует, проверять его пришлось старым добрым способом – попереходно, тестером.


В транзисторе П213 металлический, прижимаемый к радиатору корпус соединен с выводом его коллектора – чтобы не изолировать от металлической коробки блока весь радиатор, изолировать пришлось сам транзистор. К счастью, нашлась специальная слюдяная прокладка, к несчастью, не оказалось специальных винтиков с изоляторами, пришлось выкручиваться. Момент удалось разрешить фланцем-изолятором. Выпилил его из нетолстого текстолита ювелирным лобзиком с крупнозубой (№0) пилкой. Как и при использовании всех слоистых пластиков, детали из текстолита следует красить (лакировать) – они весьма пористы и как следствие, гигроскопичны.

Собрал прибор навесным манером для проверки работоспособности. Собственно, элементов в схеме немного, значительная их часть крупные, установочные. Их выводы удобно использовать как контактные площадки. Кроме них конструкция внутренней части блока не предполагает дополнительных точек крепления. Все мелкие элементы сгруппированы в две части так, чтобы между ними было меньше соединительных проводов. Первая часть имеет опору – крупную оксидную емкость (С1), вторая – ножки регулирующего транзистора на радиаторе.


Короткие выводы элементов при соединении пайкой образуют жесткую пространственную конструкцию.

Убедившись в работоспособности макета, приступил к самому сложному – корпусу. Он был изготовлен из листового металла способом гнутья, частично пайки и состоит из двух П-образных частей. Нижняя – поддон и торцевые стенки сделаны из оцинкованной стали (легко паять), крышка – из тонкого алюминиевого листа (старый кровельный лист). Электрохимический ряд напряжений металлов вполне допускает их механическое соединение.


Нижняя часть (поддон) выгнут из простой прямоугольной заготовки. Торцевые стенки припаиваются к нему и усиливаются (также пайкой) пластинчатыми раскосами. Конструкция несколько сложная, зато дающая возможность без помех орудовать ювелирным лобзиком при изготовлении фигурных проемов под установочные элементы.


Разметку торцевых панелей делал на манер накернивания печатных плат – распечатал вычерченный в КАДе эскиз в формате 1:1, вырезал ему лепестки, обернул вокруг заготовки железки и закрепил (при необходимости) липкой лентой. Разметку прямоугольных проемов перенес слегка накернив их углы, круглых – их центры. Чертилкой или тонко отточенным карандашиком соединил прямоугольники, в центры ставил ножку циркуля-балеринки (для малых окружностей). Дополнительные загогулины вырисовывал по месту, примеряя к детали.



Ряд установочных элементов были разукомплектованы или имели небольшие дефекты, поломки, не лишающие впрочем, их работоспособности. Например, для изолированной клеммы «-» не удалось найти гайку-крепеж с мелкошаговой резьбой, пришлось применить пайку и импровизированный изолятор. Клемму общего провода, а здесь это «+» впаял в стенку насмерть.

Выпилив и подогнав проемы для всех установочных элементов, спаял нижнюю часть корпуса – поддон, торцевые стенки, раскосы (зачистить, нанести «кислоту паяльную» (хлористый цинк), лудить; после пайки хорошо промыть водой со щеткой, в воду можно добавить чуток соды).

Некоторые установочные элементы были не рассчитаны на установку в столь тонкую (0,5 мм) панель, пришлось укрепить их термоклеем. Его адгезия к стали здесь неважна, он работает этаким упором на сжатие. Пластиковые части предварительно покорябал острым ножом.


Колодка предохранителя тоже болталась, здесь пришлось выпилить из алюминия (он чуть толще) еще пару утолщительных шайб.

В качестве сетевого трансформатора применен кадровый ТВК-110ЛМ от старого лампового телевизора. Он положен набок, его внешняя обойма припаяна к площадке из оцинкованной стали. Площадка приклепана к поддону БП вытяжными заклепками.

Адаптер-зарядка от старого телефона (БП измерителя) несколько доработана – удалена штатная сетевая вилка, вместо нее наружу выведена пара проводов. Это безопаснее и уменьшает потребное для узла место.

Для установки С1 с обвесом пришлось сделать деталь-крепление. Для нижней площадки использовал выпиленную из окна для измерителя серединку, обойму согнул из узкой пластинки на трубке подходящего диаметра. Разрезная обойма припаяна только в двух точках. Это достаточно прочно и позволяет свободной ее части плотно обжать цилиндрическую деталь – конденсатор. Фиксировать можно пластиковыми ремешками для электромонтажа или даже стальным червячным хомутом (очень осторожно - большое усилие).

Площадка с закрепленным конденсатором приклепана к поддону вытяжными заклепками.



Радиатор с транзистором крепится при помощи двух коротких винтиков, железку пришлось немного поёрзать на бруске с пришпиленной наждачной шкуркой, чтобы выровнять её нижнюю, соприкасающуюся с поддоном часть. Так она стоит ровнее и плотнее. Под винты подложил кузовные (широкие) шайбы, в резьбу капнул лака для застопоривания.




Размеры для развертки крышки вымерял по месту, начертил на отрихтованом листе, вырезал ножницами по металлу. Согнул, притупил острые кромки, разметил и просверлил массив вентиляционных отверстий. Сделал два ряда отверстий и в поддоне, под радиатором, чтобы организовать воздушный поток вокруг него.

Сверяясь с большим мультиметром подрегулировал показания измерительного блока прибора.

Собрал корпус БП, крышку к нижней части приклепал вытяжными заклепками – часто вскрывать ее нет нужды, но при необходимости, заклепки без труда высверливаются.

На дне блока «Моментом» приклеил резиновые ножки, сделал самые необходимые пояснительные надписи «промышленным» стойким лаковым фломастером.


Babay Mazay, июнь, 2020 г.

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Мощный блок питания с защитой по току

Мощный блок питания с защитой по току
Каждому человеку, собирающему электронные схемы, необходим универсальный источник питания, позволяющий в широких пределах изменять напряжение на выходе, контролировать ток и при необходимости отключать питаемое устройство. В магазинах подобные лабораторные блоки питания стоят весьма недёшево, но зато собрать такой можно самостоятельно из распространённых радиодеталей. Представленный блок питания включает в себя:
  • Регулировку напряжения до 24 вольт;
  • Максимальный ток, отдаваемый в нагрузку, до 5 ампер;
  • Защиту по току с выбором нескольких фиксированных значений;
  • Активное охлаждение для работы при больших токах;
  • Стрелочные индикаторы тока и напряжения;

Схема регулятора напряжения


Мощный блок питания с защитой по току
Самый простой и доступный вариант регулятора напряжения – схема на специальной микросхеме, называемой стабилизатором напряжения. Наиболее подходящим вариантом является LM338, она обеспечивает максимальный ток в 5 А и минимум пульсаций на выходе. Также сюда подойдут LM350 и LM317, но максимальный ток в этом случае составит 3 А и 1,5 А соответственно. Переменный резистор служит для регулировки напряжения, его номинал зависит от того, какое максимальное напряжение необходимо получить на выходе. Если максимальное выходное требуется 24 вольта – необходим переменный резистор сопротивлением 4,3 кОм. В этом случае нужно взять стандартный потенциометр на 4.7 кОм и соединить параллельно с ним постоянный на 47 кОм, общее сопротивление получится примерно 4.3 кОм. Для питания всей схемы необходим источник постоянного тока с напряжением 24-35 вольт, в моём случае это обычный трансформатор со встроенным выпрямителем. Также можно применять зарядные устройства ноутбуков или другие различные импульсные источники, подходящие по току.
Данный регулятор напряжения является линейным, а значит, вся разница между входным и выходным напряжением приходится на одну микросхему и рассеивается на ней в виде тепла. При больших токах это весьма критично, поэтому микросхема должна быть установлена на большом радиаторе, лучше всего для этого подойдёт радиатор от процессора компьютера, работающий в паре с вентилятором. Для того, чтобы вентилятор не вращался всё время зря, а включался только при нагреве радиатора, необходимо собрать небольшой датчик температуры.

Схема управления вентилятором


Мощный блок питания с защитой по току
В его основе лежит NTC термистор, сопротивление которого меняется в зависимости от температуры - при увеличении температуры сопротивление значительно уменьшается, и наоборот. Операционный усилитель выполняет роль компаратора, регистрируя изменение сопротивление термистора. При достижении порога срабатывания на выходе ОУ появляется напряжение, транзистор отпирается и запускает вентилятор, вместе с которым загорается светодиод. Подстроечный резистор служит для настройки порога срабатывания, его номинал стоит выбирать исходя из сопротивления термистора при комнатной температуре. Допустим, термистор имеет сопротивление 100 кОм, подстроечный резистор в этом случае должен иметь номинал примерно 150-200 кОм. Главное преимущество этой схемы – наличие гистерезиса, т.е. разницы между порогами включения и выключения вентилятора. Благодаря гистерезису не происходит частого включения-выключения вентилятора при температуре, близкой к пороговой. Термистор выводится на проводках непосредственно на радиатор и устанавливается в любое удобное место.
Мощный блок питания с защитой по току
Мощный блок питания с защитой по току
Мощный блок питания с защитой по току
Схема защиты по току
Мощный блок питания с защитой по току
Пожалуй, самая важная часть всего блока питания – защита по току. Работает она следующим образом: падение напряжение на шунте (резистор сопротивлением 0.1 Ом) усиливается до уровня 7-9 вольт и с помощью компаратора сравнивается с эталонным. Эталонное напряжение для сравнения задаётся четырьмя подстроечными резисторами в диапазоне от нуля до 12 вольт, вход операционного усилителя подключается к резисторам через галетный переключатель на 4 положения. Таким образом, меняя положение галетного переключателя мы можем выбирать из 4-х заранее установленных вариантов токов защиты. Например, можно установить следующие значения: 100 мА, 500 мА, 1,5 А, 3 А. При превышении тока, заданного галетным переключателем, сработает защита, напряжение перестанет поступать на выход и загорится светодиод. Для сброса защиты достаточно кратковременно нажать на кнопку, напряжение на выходе появится вновь. Пятый подстроечный резистор необходим для установки коэффициента усиления (чувствительности), его нужно установить так, чтобы при токе через шунт 1 Ампер напряжение на выходе ОУ было примерно 1-2 вольта. Резистор настройки гистерезиса срабатывания защиты отвечает за «чёткость» защёлкивания схемы, его нужно настраивать в том случае, если напряжение на выходе не пропадает полностью.Данная схема хороша тем, что имеет высокую скорость срабатывания, моментально включая защиту при превышении тока.

Блок индикации тока и напряжения


Большинство лабораторных блоков питания оснащено цифровыми вольтметрами и амперметрами, показывающими величины в виде цифр на табло. Такой вариант компактен и обеспечивает неплохую точность показаний, однако совершенно неудобен для восприятия. Именно поэтому для индикации решено использовать стрелочные головки, показания которых легко и приятно воспринимаются. В случае с вольтметром всё просто – он подключается к выходным клеммам блок питания через подстроечный резистор с сопротивлением примерно 1-2 МОм. Для правильной работы амперметра необходим усилитель шунта, схема которого показана ниже.
Мощный блок питания с защитой по току
Подстроечный резистор необходим для настройки коэффициента усиления, в большинстве случаев его достаточно оставить в среднем положении (примерно 20-25 кОм). Стрелочная головка подключается через галетный переключатель, с помощью которого можно выбирать один из трёх подстроечных резисторов, с помощью которых задаётся ток максимального отклонения амперметра. Таким образом, амперметр может работать в трёх диапазонах – до 50 мА, до 500 мА, до 5А, это обеспечивает максимальную точность показаний при любом токе нагрузки.
Мощный блок питания с защитой по току

Сборка платы блока питания


Плата печатная:

Теперь, когда все теоретические аспекты учтены, можно приступать к сборке электронной части конструкции. Все элементы блока питания – регулятор напряжения, датчик температуры радиатора, блок защиты, усилитель шунта для амперметра собираются на одной плате, размеры которой 100х70 мм. Плата выполняется методом ЛУТ, ниже представлены несколько фотографий процесса изготовления.
Мощный блок питания с защитой по току
Мощный блок питания с защитой по току
Мощный блок питания с защитой по току
Силовые дорожки, по которым течёт ток нагрузки, желательно залудить толстым слоем припоя для уменьшения сопротивления. Сперва на плату устанавливаются мелкие детали.
Мощный блок питания с защитой по току
После этого все остальные компоненты. Микросхему 78L12, питающую датчик температуры и кулер, необходимо установить на небольшой радиатор, место для которого предусмотрено на печатной плате. В последнюю очередь на плату запаиваются провода, на которых выводятся вентилятор, термистор, кнопка сброса защиты, галетные переключатели, светодиоды, микросхема LM338, вход и выход напряжения. Вход напряжения удобнее всего подключить через DC разъём, при этом необходимо учитывать, что он должен обеспечивать большой ток. Все силовые провода необходимо использовать соответствующего току сечения, желательно медные. Плюс выхода с печатной платы идёт к выходным клеммам не напрямую, а через тумблер с двумя группами контактов. Вторая группа при этом включает и выключает светодиод, показывающий, подаётся ли на клеммы напряжение.
Мощный блок питания с защитой по току
Мощный блок питания с защитой по току
Мощный блок питания с защитой по току
Мощный блок питания с защитой по току

Сборка корпуса


Корпус можно как найти готовый, так и собрать самостоятельно. Изготовить его можно, например, из фанеры и ДВП, как я и сделал. В первую очередь вырезается прямоугольная передняя панель, на которой будут установлены все органы управления.
Мощный блок питания с защитой по току
Затем изготавливаются стенки и днище ящика, конструкция скрепляется воедино саморезами. Когда готов каркас, можно устанавливать внутрь всю электронику.
Мощный блок питания с защитой по току
Органы управления, стрелочные головки, светодиоды устанавливаются на свои места в передней панели, плата укладывается внутри корпуса, радиатор с вентилятором крепятся на заднюю панель. Для крепления светодиодов используются специальные держатели. Выходные клеммы желательно продублировать, тем более что место позволяет. Размеры корпуса получились 290х200х120 мм, внутри корпуса остаётся ещё много свободного пространства, и туда может уместиться, например, трансформатор для питания всего аппарата.
Мощный блок питания с защитой по току
Мощный блок питания с защитой по току
Мощный блок питания с защитой по току
Мощный блок питания с защитой по току
Мощный блок питания с защитой по току
Мощный блок питания с защитой по току
Мощный блок питания с защитой по току

Настройка


Несмотря на множество подстроечных резисторов, настройка блока питания довольно проста. Первых делом калибруем вольтметр, подключив к выходным клеммам внешний. Вращая подстроечный резистор, включенный последовательно со стрелочной головкой вольтметра добиваемся равенства показаний. Затем подключаем на выход какую-либо нагрузку с амперметром и калибруем усилитель шунта. Вращая каждый и трёх подстрочных резисторов добиваемся совпадений показаний на каждом из трёх диапазонов измерений амперметра – в моём случае это 50 мА, 500 мА и 5А. Далее устанавливаем необходимые токи защиты с помощью четырёх подстроечных резисторов. Сделать это несложно, учитывая, что штатный амперметр уже откалиброван и показывает точный ток. Плавно повышаем напряжение (при этом повышается и ток) и смотрим, при каком токе срабатывает защита. Затем вращаем каждый из резисторов, устанавливая четыре нужных тока защиты, между которыми можно переключаться с помощью галетного переключателя. Теперь осталось лишь установить нужный порог срабатывания датчика температуры радиатора – настройка закончена.
Мощный блок питания с защитой по току

Смотрите видео


Защита блока питания от короткого замыкания

Для питания своих конструкций радиолюбители нередко используют простейшие блоки, состоящие из понижающего трансформатора и выпрямителя с конденсатором фильтра. И, конечно, в таких блоках нет никакой защиты от короткого замыкания (КЗ) в нагрузке, хотя оно подчас приводит к выходу из строя выпрямителя и даже трансформатора. Применять в таких блоках питания в качестве элемента защиты плавкий предохранитель не всегда удобно, да и, кроме того, быстродействие у него невысокое. Один из вариантов решения проблемы защиты от КЗ — включение последовательно с нагрузкой полевого транзистора средней мощности с встроенным каналом.

Дело в том, что на вольт-амперной характеристике такого транзистора есть участок, на котором ток стока не зависит от напряжения между стоком и истоком. Поэтому на этом участке транзистор работает как стабилизатор (ограничитель) тока. Вольт-амперные характеристики транзистора для различных сопротивлений резистора R2 приводятся на рис. 7.1. Работает защита так. Если сопротивление резистора R2 равно нулю (т.е. исток соединен с затвором), а нагрузка потребляет ток около 0,25 А, то падение напряжения на полевом транзисторе не превышает 1,5 В, и на нагрузке будет практически все выпрямленное напряжение. При появлении же в цепи нагрузки замыкания ток через выпрямитель резко возрастает и при отсутствии транзистора может достичь нескольких ампер.

Транзистор ограничивает ток короткого замыкания на уровне 0,45...0,5 А независимо от падения напряжения на нем. В этом случае выходное напряжение станет равным нулю, а все напряжение упадет на полевом транзисторе.

Таким образом, в случае КЗ мощность, потребляемая от источника питания, увеличится в данном примере не более чем вдвое, что в большинстве случаев вполне допустимо и не отразится на «здоровье» деталей блока питания.

Уменьшить ток короткого замыкания можно увеличением сопротивления резистора R2. Нужно подобрать такой резистор, чтобы ток короткого замыкания был примерно вдвое больше максимального тока нагрузки. Подобный способ защиты особенно удобен для блоков питания со сглаживающим RC-фильтром. Поскольку во время КЗ на полевом транзисторе падает почти все выпрямленное напряжение, его можно использовать для световой или звуковой сигнализации. К примеру, схема включения световой сигнализации показана на рис. 7.2. Когда с нагрузкой все в порядке, горит светодиод HL2 зеленого цвета. При этом падения напряжения на транзисторе недостаточно для зажигания свето-диода HL1. Но стоит появиться КЗ в нагрузке, как светодиод HL2 гаснет, но зато вспыхивает HL1 красного свечения. Резистор R2 выбирают в зависимости от нужного ограничения тока КЗ по высказанным выше рекомендациям. Схема подключения звукового сигнализатора замыкания приведена на рис. 7.3. Его можно подключать либо между стоком и истоком транзистора, либо между стоком и затвором, как светодиод HL1.

При появлении на сигнализаторе достаточного напряжения вступает в действие генератор 34, выполненный на однопереходном транзисторе VT2, и в головном телефоне BF1 раздается звук. Однопереходный транзистор может быть КТ117А...КТ117Г, теле

фон — низкоомный (можно заменить динамической головкой небольшой мощности). Остается добавить, что для слаботочных нагрузок в блок питания можно ввести ограничитель тока КЗ на полевом транзисторе КП302В. При выборе транзистора для других блоков следует учитывать его допустимую мощность и напряжение сток-исток. Полное описание этого устройства приводится в [103].

РЕГУЛИРУЕМЫЙ БЛОК ПИТАНИЯ С ЗАЩИТОЙ

   У каждого радиолюбителя, регулярно занимающегося конструированием электронных устройств, думаю, имеется дома регулируемый блок питания. Штука действительно удобная и полезная, без которого, испробовав его в действии, обходиться становится трудно. Действительно, нужно ли нам проверить, например светодиод, то потребуется точно выставлять его рабочее напряжение, так как при значительном превышении подаваемого напряжения на светодиод, последний может просто сгореть. Также и с цифровыми схемами, выставляем выходное напряжение по мультиметру 5 вольт, или любое другое нужное нам и вперед.

Регулируемый блок питания с защитой и регулировкой тока самодельный

   Многие начинающие радиолюбители, сначала собирают простой регулируемый блок питания, без регулировки выходного тока и защиты от короткого замыкания. Так было и со мной, лет 5 назад собрал простой БП с регулировкой только выходного напряжения от 0,6 до 11 вольт. Его схема приведена на рисунке ниже:

Регулируемый блок питания радиолюбителя схема

   Но несколько месяцев назад решил провести апгрейд этого блока питания и дополнить его схему небольшой схемкой защиты от короткого замыкания. Эту схему нашел в одном из номеров журнала Радио. При более детальном изучении выяснилось, что схема во многом напоминает приведенную выше принципиальную схему, собранного мной ранее блока питания. При коротком замыкании в питаемой схеме светодиод индикации КЗ гаснет, сигнализируя об этом, и выходной ток становится равен 30 миллиампер. Было решено, взяв часть этой схемы дополнить свою, что и сделал. Оригинал, схему из журнала Радио, в которую входит дополнение, привожу на рисунке ниже:

Регулируемый блок питания с защитой схема из журнала Радио

   На следующем рисунке показывается часть этой схемы, которую нужно будет собрать.

Схема защита от короткого замыкания

   Номинал некоторых деталей, в частности резисторов R1 и R2, нужно пересчитать в сторону увеличения. Если у кого-то остались вопросы, куда подсоединять  выходящие провода с этой схемы, приведу следующий рисунок:

Совмещение схем БП

   Еще дополню, что в собираемой схеме, вне зависимости, будет это первая схема, или схема из журнала Радио необходимо поставить на выходе, между плюсом и минусом резистор 1 кОм. На схеме из журнала Радио это резистор R6. Дальше осталось протравить плату и собрать все вместе в корпусе блока питания. Зеркалить платы в программе Sprint Layout не нужно. Рисунок печатной платы защиты от короткого замыкания:

Рисунок печатной платы защиты от короткого замыкания

   Примерно месяц назад мне попалась на глаза схема приставки регулятора выходного тока, которую можно было использовать совместно с этим блоком питания. Схему взял с этого сайта. Тогда собрал эту приставку в отдельном корпусе и решил подключать её по мере необходимости для зарядки аккумуляторов и тому подобных действий, где важен контроль выходного тока. Привожу схему приставки, транзистор кт3107 в ней заменил на кт361.

Регулировка выходного тока - схема приставки

   Но впоследствии пришла в голову мысль соединить, для удобства, все это в одном корпусе. Открыл корпус блока питания и посмотрел, места осталось маловато, переменный резистор не поместится. В схеме регулятора тока используется  мощный переменный резистор, имеющий довольно большие габариты. Вот как он выглядит:

Переменный резистор ППБ 15 Е

   Тогда решил просто соединить оба корпуса на винты, сделав соединение между платами проводами. Также поставил тумблер на два положения: выход с регулируемым током и нерегулируемым. В первом случае,  выход с основной платы блока питания соединялся с входом регулятора тока, а выход регулятора тока шел на зажимы на корпусе блока питания, а во втором случае, зажимы соединялись напрямую с выходом с основной платы блока питания. Коммутировалось все это шести контактным тумблером на 2 положения. Привожу рисунок печатной платы регулятора тока:

рисунок печатной платы регулятора тока

   На рисунке печатной платы, R3.1 и R3.3 обозначены выводы переменного резистора первый и третий, считая слева. Если кто-то захочет повторить, привожу схему подключения тумблера для коммутации:

Схема коммутации тумблером в блоке питания с защитой

   Печатные платы блока питания, схемы защиты и схемы регулировки тока прикрепил в архиве. Материал подготовил AKV.

Блок питания 1…20 В с защитой по току


При наладке различных электронных устройств необходим блок питания (БП), в котором имеется регулировка выходного напряжения и возможность регулирования уровня срабатывания защиты от превышения по току в широких пределах. При срабатывании защиты, нагрузка (подключенное устройство) должна автоматически отключаться.

Поиск в интернете дал несколько подходящих схем блоков питания. Остановился на одной из них. Схема проста в изготовлении и наладке, состоит из доступных деталей, выполняет заявленные требования.

Предлагаемый к изготовлению блок питания выполнен на базе операционного усилителя LM358 и имеет следующие характеристики:
Входное напряжение, В - 24...29
Выходное стабилизированное напряжение, В - 1...20 (27)
Ток срабатывания защиты, А - 0,03...2,0


Фото 2. Схема БП

Описание работы БП

Регулируемый стабилизатор напряжения собран на операционном усилителе DA1.1. На вход усилителя (вывод 3) поступает образцовое напряжение с движка переменного резистора R2, за стабильность которого отвечает стабилитрон VD1, а на инвертирующий вход (вывод 2) напряжение поступает с эмиттера транзистора VT1 через делитель напряжения R10R7. С помощью переменного резистора R2, можно изменять выходное напряжение БП.
Блок защиты от перегрузок по току выполнен на операционном усилителе DA1.2, он сравнивает напряжения на входах ОУ. На вход 5 через резистор R14 поступает напряжение с датчика тока нагрузки - резистора R13. На инвертирующий вход (вывод 6) поступает образцовое напряжение, за стабильность которого отвечает диод VD2 с напряжением стабилизации около 0,6 в.

Пока падение напряжения, создаваемое током нагрузки на резисторе R13, меньше образцового, напряжение на выходе (вывод 7) ОУ DA1.2 близко к нулю. В том случае, если ток нагрузки превысит допустимый установленный уровень, увеличится напряжение на датчике тока и напряжение на выходе ОУ DA1.2 возрастет практически до напряжения питания. При этом включится светодиод HL1, сигнализируя о превышении, откроется транзистор VT2, шунтируя стабилитрон VD1 резистором R12. Вследствие чего, транзистор VT1 закроется, выходное напряжение БП уменьшится практически до нуля и нагрузка отключится. Для включения нагрузки нужно нажать на кнопку SА1. Регулировка уровня защиты выполняется с помощью переменного резистора R5.

Изготовление БП

1. Основу блока питания, его выходные характеристики определяет источник тока – применяемый трансформатор. В моем случае нашел применение тороидальный трансформатор от стиральной машины. Трансформатор имеет две выходные обмотки на 8в и 15в. Соединив обе обмотки последовательно и добавив выпрямительный мост на имеющихся под рукой диодах средней мощности КД202М, получил источник постоянного напряжения 23в, 2а для БП.


Фото 3. Трансформатор и выпрямительный мост.

2. Другой определяющей частью БП является корпус прибора. В данном случае нашел применение детский диапроектор мешающийся в гараже. Удалив лишнее и обработав в передней части отверстия для установки показывающего микроамперметра, получилась заготовка корпуса БП.


Фото 4. Заготовка корпуса БП

3. Монтаж электронной схемы выполнен на универсальной монтажной плате размером 45 х 65 мм. Компоновка деталей на плате зависит от размеров, найденных в хозяйстве компонентов. Вместо резисторов R6 (настройка тока срабатывания) и R10 (ограничение максимального напряжения на выходе) на плате установлены подстроечные резисторы с увеличенным в 1,5 раза номиналом. По окончании настройки БП их можно заменить на постоянные.


Фото 5. Монтажная плата

4. Сборка платы и выносных элементов электронной схемы в полном объеме для испытания, настройки и регулировки выходных параметров.


Фото 6. Узел управления БП

5. Изготовление и подгонка шунта и дополнительного сопротивления для использования микроамперметра в качестве амперметра или вольтметра БП. Дополнительное сопротивление состоит из последовательно соединенных постоянного и подстроечного резисторов (на фото сверху). Шунт (на фото ниже) включается в основную цепь тока и состоит из провода с малым сопротивлением. Сечение провода определяется максимальным выходным током. При измерении силы тока, прибор подключается параллельно шунту.


Фото 7. Микроамперметр, шунт и дополнительное сопротивление

Подгонка длины шунта и величины дополнительного сопротивления производится при соответствующем подключении к прибору с контролем на соответствие по мультиметру. Переключение прибора в режим Амперметр/Вольтметр выполняется тумблером в соответствии со схемой:

Блок питания 1…20 В  с защитой по току
Фото 8. Схема переключения режима контроля

6. Разметка и обработка лицевой панели БП, монтаж выносных деталей. В данном варианте на лицевую панель вынесен микроамперметр (тумблер переключения режима контроля A/V справа от прибора), выходные клеммы, регуляторы напряжения и тока, индикаторы режима работы. Для уменьшения потерь и в связи с частым использованием, дополнительно выведен отдельный стабилизированный выход 5 в. Для чего напряжение, от обмотки трансформатора на 8в, подается на второй выпрямительный мост и типовую схему на 7805 имеющую встроенную защиту.

Блок питания 1…20 В  с защитой по току
Фото 9. Лицевая панель

7. Сборка БП. Все элементы БП устанавливаются в корпус. В данном варианте, радиатором управляющего транзистора VT1 служит алюминиевая пластина толщиной 5 мм, закрепленная в верхней части крышки корпуса, служащего дополнительным радиатором. Транзистор закреплен на радиаторе через электроизолирующую прокладку.

Блок питания 1…20 В  с защитой по току
Фото 10. Сборка БП без крышкиБлок питания 1…20 В  с защитой по току
Фото 11. Общий вид БП.

Детали:

Операционный усилитель LM358N имеет в своем составе два ОУ.

Транзистор VT1 можно заменить на любой из серий КТ827, КТ829. Транзистор VT2 любой из серии КТ315. Стабилитрон VD1 можно использовать любой, с напряжением стабилизации 6,8…8,0в и током 3…8 мА. Диоды VD2-VD4 из серии КД521 или КД522Б. Конденсаторы С3, C4 - пленочные или керамические. Оксидные конденсаторы: C1 - К50-18 или аналогичный импортный, остальные — из серии К50-35. Постоянные резисторы серии МЛТ, переменные — СП3-9а.

Налаживание блока питания - движок переменного резистора R2 перемещают в верхнее по схеме положение и измеряют максимальное выходное напряжение, устанавливают его равным 20 В, подбирая резистор R10. После этого подключают к выходу нагрузку и производят замеры тока срабатывания защиты. Для уменьшения уровня срабатывания защиты, уменьшить сопротивление резистора R6. Для увеличения максимального уровня срабатывания защиты - уменьшить сопротивление резистора R13 — датчика тока нагрузки.

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Защита в блоках питания ATX для компьютеров

Опубликовано 12.11.2018 автор — 0 комментариев

Приветствую вас, друзья! При работе любого электронного устройства могут возникнуть «завихрения», которые при отсутствии страховки, способны вывести его из строя, а в случае с БП в ПК – еще и несколько компонентов в придачу. Тема сегодняшней публикации – защита в блоках питания, с описанием всех необходимых опций. И так начнем.

Power Good

Из-за специфики конструкции устройства, при включении, напряжение на выходе достигает необходимой величины не мгновенно, а по истечении 0,02 секунд.

Для того, чтобы исключить подачу пониженного напряжения к потребителям энергии, что может негативно сказаться на их работе, и обеспечить необходимые номиналы в 3,3, 5 и 12 Вольт, в блоках ATX выделена специальная линия, которая подает сигнал о нормальной работе БП.

Маркируется такой кабель серым цветом и, как и остальные, подключается к материнской плате. При отсутствии сигнала на линии, компьютер попросту не включится.

Защита от перепадов напряжения

От перенапряжения и его недостатка, компьютер защищает одна и та же схема, отключающая девайс, если напряжение на любой из линий не соответствует номинальному. Обозначается функция английской аббревиатурой UVP / OVP.

Некоторое неудобство в том, что контрольные точки, при достижении которых срабатывает защита, могут находиться на некотором удалении от номинального напряжения, но при этом устройство будет соответствовать спецификации ATX.

Например, допускается подача напряжения до 15 Вольт, однако при длительной работе в таком режиме, комплектующие могут попросту перегореть.

Защита от перегрузки по току

Как мы помним, сила тока – еще одна, не менее важная его характеристика. Согласно международным стандартам оргтехники, один проводник не может передавать более 240 Вольт-Ампер, то есть 240 Ватт, в случае с постоянным током.

Максимально нагруженная цепь с напряжением 12 Вольт передаст не более 20 Ампер. При таком раскладе создать БП мощностью более 300 Ватт, не получится.

Для обхода этого ограничения, выводы 12 Вольт разбиваются на несколько групп с отдельной защитой по току (OCP) для каждой. При этом некоторые производители откровенно халтурят, используя только одну защитную схему, к которой подключаются все выводы, а срабатывает защита уже при 40 Амперах.

Определить «на глаз», какой именно подход использован, возможно только при разборке устройства и проверке его электрических цепей. Поэтому советую покупать комплектующие только тех брендов, в качестве продукции которых, вы уверены.

Защита от короткого замыкания

От КЗ блок питания защищает простая схема SCP, которая используется уже пару десятков лет. Для активации, достаточно пары транзисторов, при этом вовсе необязательно задействовать систему мониторинга рабочих параметров устройства.

Защита от перегрева

OTP выключает девайс, когда его температура достигает заданного значения. Схема присутствует только в качественных устройствах и базируется на паре термисторов, прикрепленных к радиатору или печатной плате.

Более сложный вариант – когда при превышении температуры, термистор заставляет быстрее вращаться кулер, регулируя рабочие параметры.

Защита по питанию

OPP или OPL – опциональный вид защиты, реализованный, с помощью специального контроллера или мониторинговой микросхемы. Схема контролирует количество тока, потребляемого из сети, и отключает БП при превышении определенного порога.

Найти любые по мощности и прочим характеристикам блоки питания для компьютера, а также все остальные комплектующие, вы можете в этом интернет-магазине.

Также советую ознакомиться с публикациями «Что значит PFC в блоке питания» и «Сертификаты БП для ПК». Рейтинг лучших устройств вы найдете здесь.

Спасибо за внимание и до следующих встреч на страницах моего блога! Подпишитесь на новостную рассылку, чтобы быть в курсе последних обновлений.

С уважением, автор блога Андрей Андреев

Повышенное напряжение источника питания »Примечания по электронике

Защита от перенапряжения блока питания действительно полезна - некоторые сбои блока питания могут вызвать повреждение оборудования большим напряжением. Защита от перенапряжения предотвращает это как на линейных регуляторах, так и на импульсных источниках питания.


Пособие по схемам источника питания и руководство Включает:
Обзор электроники источника питания Линейный источник питания Импульсный источник питания Защита от перенапряжения Характеристики блока питания Цифровая мощность Шина управления питанием: PMbus Бесперебойный источник питания


Хотя современные блоки питания сейчас очень надежны, всегда есть небольшая, но реальная вероятность того, что они могут выйти из строя.

Они могут выйти из строя по-разному, и одна особенно тревожная возможность заключается в том, что элемент последовательного прохода, то есть транзистор главного прохода или полевой транзистор, может выйти из строя таким образом, что произойдет короткое замыкание. Если это произойдет, в цепи, на которую подается питание, может появиться очень высокое напряжение, часто называемое перенапряжением, что приведет к катастрофическому повреждению всего оборудования.

Добавив небольшую дополнительную схему защиты в виде защиты от перенапряжения, можно защититься от этой маловероятной, но катастрофической возможности.

Большинство источников питания, предназначенных для очень надежной работы дорогостоящего оборудования, включают в себя некоторую защиту от перенапряжения, чтобы гарантировать, что любой отказ источника питания не приведет к повреждению оборудования, на которое подается питание. Это относится как к линейным источникам питания, так и к импульсным источникам питания.

Некоторые источники питания могут не иметь защиты от перенапряжения, и они не должны использоваться для питания дорогостоящего оборудования - можно немного спроектировать электронную схему и разработать небольшую схему защиты от перенапряжения и добавить ее в качестве дополнительного элемента. .

Основы защиты от перенапряжения

Есть много причин, по которым блок питания может выйти из строя. Однако, чтобы понять немного больше о защите от перенапряжения и проблемах схемы, легко взять простой пример линейного регулятора напряжения, использующего очень простой стабилитрон и транзистор с последовательным проходом.

Стабилизатор серии Basic series regulator using a zener diode and emitter follower Basic, использующий стабилитрон и эмиттерный повторитель.

Хотя более сложные блоки питания обеспечивают лучшую производительность, они также используют последовательный транзистор для передачи выходного тока.Основное отличие заключается в способе подачи напряжения регулятора на базу транзистора.

Обычно входное напряжение таково, что на элементе последовательного регулятора напряжения падает несколько вольт. Это позволяет последовательному транзистору адекватно регулировать выходное напряжение. Часто падение напряжения на последовательном транзисторе является относительно высоким - для источника питания 12 вольт входное напряжение может составлять 18 вольт и даже больше, чтобы обеспечить необходимое регулирование и подавление пульсаций и т. Д.

Это означает, что в элементе регулятора напряжения может быть значительное количество тепла, рассеиваемого в сочетании с любыми переходными выбросами, которые могут появиться на входе, это означает, что всегда существует вероятность отказа.

Устройство последовательного прохода транзистора чаще всего выходит из строя в состоянии разомкнутой цепи, но при некоторых обстоятельствах в транзисторе может возникнуть короткое замыкание между коллектором и эмиттером. Если это произойдет, то на выходе регулятора напряжения появится полное нерегулируемое входное напряжение.

Если на выходе появится полное напряжение, это может привести к повреждению многих микросхем в цепи питания. В этом случае ремонт схемы вполне может оказаться невозможным.

Принцип работы импульсных регуляторов сильно различается, но есть обстоятельства, при которых полный выходной сигнал может появиться на выходе источника питания.

Как для источников питания с линейным стабилизатором, так и для импульсных источников питания всегда рекомендуется какая-либо защита от перенапряжения.

Виды защиты от перенапряжения

Как и во многих электронных технологиях, существует несколько способов реализации той или иной возможности. Это верно для защиты от перенапряжения.

Можно использовать несколько различных техник, каждая со своими характеристиками. При определении того, какой метод использовать на этапе проектирования электронных схем, необходимо взвесить производительность, стоимость, сложность и режим работы.

  • SCR лом: Как следует из названия, цепь лома вызывает короткое замыкание на выходе источника питания, если возникает состояние перенапряжения.Обычно для этого используются тиристоры, то есть тиристоры, поскольку они могут переключать большие токи и оставаться включенными до тех пор, пока не рассеется какой-либо заряд. Тиристор может быть снова подключен к предохранителю, который перегорает и изолирует регулятор от дальнейшего воздействия на него напряжения.

    Thyristor or SCR overvoltage protection circuit Схема защиты тиристорного лома от перенапряжения

    В этой схеме стабилитрон выбран так, чтобы его напряжение было выше нормального рабочего напряжения на выходе, но ниже напряжения, при котором может произойти повреждение. При такой проводимости через стабилитрон не протекает ток, потому что его напряжение пробоя не было достигнуто, и ток не течет на затвор тиристора, и он остается выключенным.Блок питания будет работать нормально.

    Если последовательный транзистор в источнике питания выходит из строя, напряжение начинает расти - развязка в блоке гарантирует, что оно не поднимется мгновенно. Когда он поднимается, он поднимается выше точки, в которой стабилитрон начинает проводить, и ток течет в затвор тиристора, вызывая его срабатывание.

    Когда тиристор срабатывает, он замыкает выход источника питания на землю, предотвращая повреждение схемы, которую он питает.Это короткое замыкание также можно использовать для перегорания предохранителя или другого элемента, отключая питание регулятора напряжения и изолируя устройство от дальнейшего повреждения.

    Часто развязка в виде небольшого конденсатора помещается от затвора тиристора к земле, чтобы предотвратить резкие переходные процессы или высокочастотные помехи от источника питания от устройства, которые попадают на соединение затвора и вызывают ложный запуск. Однако его не следует делать слишком большим, так как это может замедлить срабатывание цепи в реальном случае отказа, а защита может сработать слишком медленно.

    Примечание по защите от перенапряжения тиристорного лома:

    Тиристор или SCR, выпрямитель с кремниевым управлением, может использоваться для защиты от перенапряжения в цепи питания. Обнаружив высокое напряжение, схема может запустить тиристор, чтобы поместить короткое замыкание или лом на шину напряжения, чтобы гарантировать, что оно не поднимется до высокого напряжения.

    Подробнее о Схема защиты тиристорного лома от перенапряжения.

  • Фиксация напряжения: Другая очень простая форма защиты от перенапряжения использует подход, называемый фиксацией напряжения. В простейшей форме это может быть обеспечено с помощью стабилитрона, установленного на выходе регулируемого источника питания. Если напряжение на стабилитроне выбрано немного выше максимального напряжения шины, в нормальных условиях он не будет проводить. Если напряжение поднимется слишком высоко, оно начнет проводить, ограничивая напряжение на значении, немного превышающем напряжение шины.

    Если для регулируемого источника питания требуется более высокий ток, можно использовать стабилитрон с транзисторным буфером. Это увеличит пропускную способность по току по сравнению с простой схемой на стабилитроне в коэффициент, равный коэффициенту усиления по току транзистора. Поскольку для этой схемы требуется силовой транзистор, вероятные уровни усиления по току будут низкими - возможно, 20-50.

    Zener diode over-voltage clamp Фиксатор перенапряжения на стабилитроне
    (а) - простой стабилитрон, (б) - повышенный ток с транзисторным буфером
  • Ограничение напряжения: Когда для импульсных источников питания требуется защита от перенапряжения, методы SMPS с зажимом и ломом используются менее широко из-за требований к рассеиваемой мощности, а также из-за возможных размеров и стоимости компонентов.

    К счастью, большинство импульсных регуляторов выходят из строя из-за низкого напряжения. Однако часто бывает целесообразно использовать возможности ограничения напряжения в случае возникновения перенапряжения.

    Часто этого можно достичь, определив состояние повышенного напряжения и отключив преобразователь. Это особенно применимо в случае преобразователей постоянного тока в постоянный. При реализации этого необходимо включить измерительную петлю, которая находится за пределами основного регулятора IC - многие регуляторы режима переключения и преобразователи постоянного тока используют микросхему для создания большей части схемы.Очень важно использовать внешний контур считывания, потому что, если микросхема регулятора режима переключения повреждена, вызывая состояние перенапряжения, механизм считывания также может быть поврежден.

    Очевидно, что для этой формы защиты от перенапряжения требуются схемы, специфичные для конкретной схемы и используемых микросхем импульсного источника питания.

Используются все три метода, которые могут обеспечить эффективную защиту источника питания от перенапряжения. У каждого есть свои преимущества и недостатки, и выбор техники должен зависеть от конкретной ситуации.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Возврат в меню проектирования схем. . .

.

Достижение координации реле и выборочной защиты от короткого замыкания в передающих сетях

Координация реле и селективная защита

Выбранный принцип защиты влияет на скорость работы защиты, что оказывает значительное влияние на ущерб, причиненный короткими замыканиями. Чем быстрее срабатывает защита, тем меньше опасности, повреждения и тепловые нагрузки.

Relay Coordination and Selective Short-Circuit Protection In Transmission Networks Координация реле и избирательная защита от короткого замыкания в сетях передачи

Кроме того, продолжительность провала напряжения, вызванного коротким замыканием, будет тем короче, чем быстрее срабатывает защита.Таким образом, недостаток для других частей сети из-за пониженного напряжения будет сведен к минимуму. Быстрое срабатывание защиты также снижает пики нагрузки после аварии, которые в сочетании с провалом напряжения увеличивают риск распространения помех на исправные части сети.

В сетях передачи любое увеличение скорости работы защиты позволит увеличить нагрузку на линии, не увеличивая риск потери стабильности сети.

Хорошая и надежная селективность защиты важна для того, чтобы ограничить прерывание питания до минимально возможной области и дать четкую индикацию неисправной части сети. Это позволяет направить корректирующие действия на неисправный участок сети и восстановить подачу питания как можно быстрее.

Таким образом, следует обращать внимание на скорость срабатывания защиты, на которую может повлиять правильный выбор применяемого принципа защиты.

Селективная защита от короткого замыкания может быть достигнута различными способами, например:

  1. Градиентная защита по времени
  2. Временная и токовая защита
  3. Градуированная по времени и направлению
  4. Ток и полное сопротивление повышенная защита
  5. Блокировочная защита
  6. Дифференциальная защита

1. Градуированная по времени защита

Простой способ получения выборочной защиты - использовать временную градацию.Принцип состоит в том, чтобы классифицировать время срабатывания реле таким образом, чтобы реле, ближайшее к месту повреждения, сработало первым. Градуированная по времени защита реализуется с помощью реле максимального тока с независимой выдержкой времени или инверсной временной характеристикой .

Время срабатывания реле с независимой выдержкой времени не зависит от величины тока повреждения, в то время как время срабатывания реле с обратнозависимой выдержкой времени тем меньше, чем выше величина тока повреждения.Градуированная по времени защита лучше всего подходит для радиальных сетей.

Принцип защиты от обратнозависимой выдержки времени особенно подходит для радиальных сетей , где изменения мощности короткого замыкания из-за изменений в конфигурации сети невелики или где величина тока короткого замыкания в начале и конце фидера значительно отличается . В этих случаях использование реле с обратнозависимой выдержкой времени вместо реле с независимой выдержкой времени обычно может сократить время срабатывания защиты при высоких значениях тока короткого замыкания.Градуировку времени с помощью предохранителей также легче получить с помощью реле с обратнозависимой выдержкой времени.

Принимая во внимание приведенные выше аргументы, а также принимая во внимание, например, способность выдерживать ток короткого замыкания компонентов сети, применение реле с обратнозависимой выдержкой времени для защиты сети от короткого замыкания может быть оправдано.

Стандарты IEC 60255-151 и BS 142 определяют четыре набора характеристических кривых время-ток для реле с обратным временем:

  • Нормальный обратный
  • Длительный обратный
  • Очень обратный
  • Чрезвычайно обратный

Для обратного реле времени время срабатывания (с) можно рассчитать по уравнению (1):

Operating time (s) for inverse time relays

где:

  • k - регулируемый множитель времени
  • I - измеренное значение фазного тока
  • I> - установленное значение пускового (срабатывания) тока
  • α, β - параметры, связанные с набором кривой

В соответствии со стандартами реле должно запускаться, когда ток включения превышает 1.3-кратный установленный пусковой ток , когда используется нормальная, очень или очень обратнозависимая временная характеристика. Когда используется долговременная обратная характеристика, реле должно запускать , когда ток включения превышает в 1,1 раза установленный пусковой ток .

Таблица 1 Параметры α и β определяют крутизну кривых время-ток следующим образом:

временная защита в радиальной сети. В примере сети реализована трехступенчатая защита.

  • Для ступени с низкой уставкой (3I>) может быть задана обратнозависимая или независимая временная характеристика.
  • Высокая ступень и мгновенная ступень (3I >> и 3I >>>) имеют независимую временную характеристику, и их цель состоит в том, чтобы ускорить срабатывание защиты в условиях сильного тока короткого замыкания.

Многоступенчатая защита часто требуется для удовлетворения требований к чувствительности и скорости работы, а также для достижения хорошей и надежной классификации защиты, см. Рисунок 1.

Наиболее удобно изучать и планировать схемы селективной по времени защиты. осуществляется с использованием диаграмм селективности .

Диаграмма селективности представляет собой набор конкретных кривых время / ток, который показывает все кривые время / ток , то есть рабочие характеристики реле соответствующей цепи реле защиты.

Цепочка реле в примере на Рисунке 1 включает два реле. Диаграмма селективности также включает дополнительную информацию, необходимую для планирования и работы защиты, такую ​​как минимальный и максимальный уровни тока короткого замыкания в точках реле, максимальный ток нагрузки, номинальные токи и выдерживаемая способность компонентов сети по току короткого замыкания и максимальная предельные значения возможных коммутационных пусковых токов и пусковых токов.

Диаграмма селективности на Рисунке 1 показывает, что в случае возникновения неисправности, например, в дальнем конце фидера (отходящий фидер 1), защищенном реле 1, величина тока повреждения будет на уровне, обозначенном [ 8 ]. Эта неисправность вызывает запуск как реле 1, так и реле 2 (отходящий фидер 1).

Таким образом, рассматриваемый фидер относится к области защиты реле 1 и реле 2, обеспечивая внутреннюю резервную защиту фидера. Если реле 1 или его автоматический выключатель не сработают, реле 2 будет разрешено срабатывать.

Overcurrent protection of radial network and the corresponding selectivity diagram Рисунок 1 - Максимальная токовая защита радиальной сети и соответствующая диаграмма селективности

Выбор правильного времени классификации имеет большое значение для селективности защиты. Время классификации - это разница во времени между двумя последовательными ступенями защиты. В условиях сильного тока короткого замыкания время срабатывания реле не должно излишне увеличиваться, и, с другой стороны, должен поддерживаться удовлетворительный запас для обеспечения селективности.

Когда вместо реле с независимой выдержкой времени используются реле с обратнозависимой выдержкой времени, обычно необходимо использовать более длительное время градации , потому что, помимо прочего, необходимо учитывать влияние неточности измерения тока на время срабатывания.

В примере на Рисунке 1 время сортировки было определено отдельно для каждого этапа. Время градации между этапами с обратным временем обозначено Δt IDMT и, соответственно, время градуировки между этапами с независимым временем обозначено как Δt DT .

При определении времени классификации необходимо учитывать, что при более низких уровнях тока повреждения необходимо в определенной степени учитывать преобладающие токи нагрузки ΣI L исправных фидеров во время повреждения.Эти токи суммируются, например, с током, измеряемым реле 2 при возникновении неисправности в фидере 1.

При использовании числовых реле требуемое время градации можно рассчитать по уравнениям (2) и (2). На рисунке 2 показано, как формируются времена сортировки и влияющие на них факторы.

Для реле с независимой выдержкой времени время градации Δ tDT получается из уравнения (2).

Δ tDT = 2⋅t E + t R + t CB + t M

Где:

  • t E - допуск на время срабатывания реле
  • t CB - время срабатывания выключателя
  • t R - время задержки реле
  • t M - запас прочности

Запас прочности учитывает возможные задержка срабатывания реле из-за насыщения ТТ, вызванного постоянной составляющей тока повреждения.Продолжительность возможной дополнительной задержки, возникающей таким образом, зависит от типа повреждения, величины тока повреждения и соотношения между предельным коэффициентом точности ТТ и установленным значением тока.

Теоретически задержка может равняться постоянной времени составляющей постоянного тока, если ток короткого замыкания немного превышает установленное значение и если установленное значение было выбрано немного ниже соответствующего предельного коэффициента точности ТТ. .

На практике, однако, ТТ последовательных реле цепи защиты будут насыщаться в пределах определенного диапазона тока короткого замыкания, что означает, что срабатывание реле примерно одинаково задерживается.

По этой причине, достаточно запаса прочности, равного длине цикла основной частоты .

Если, однако, существуют относительно большие различия в предельных коэффициентах точности последовательных ТТ в цепи защиты, может быть оправдано увеличение запаса прочности по отношению к постоянной времени составляющей постоянного тока. Также следует увеличить запас прочности, если в цепи отключения выключателя используются вспомогательные реле.

Время задержки - это период времени непосредственно перед истечением таймера задержки срабатывания.

Если неисправность исчезает до начала времени задержки, реле защиты, которое было запущено из-за неисправности, все еще может отменить свою команду отключения. Если неисправность исчезнет в течение времени задержки непосредственно перед истечением таймера задержки срабатывания, будет инициирована команда отключения.

Время классификации Δt IDMT для схемы защиты

.Цепь защиты от перегрузки по току

с использованием операционного усилителя

Цепи защиты

жизненно важны для успеха любой электронной конструкции. В наших предыдущих руководствах по схемам защиты мы разработали множество основных схем защиты, которые можно адаптировать к вашей схеме, а именно: защиту от перенапряжения, защиту от короткого замыкания, защиту от обратной полярности и т. Д. В дополнение к этому списку схем в этой статье мы научится спроектировать и построить простую схему для защиты от сверхтоков с использованием операционного усилителя .

Защита от перегрузки по току часто используется в цепях питания для ограничения выходного тока блока питания. Термин «перегрузка по току» - это состояние, при котором нагрузка потребляет ток, превышающий указанные возможности блока питания. Это может быть опасной ситуацией, так как перегрузка по току может привести к повреждению источника питания. Поэтому инженеры обычно используют схему защиты от перегрузки по току для отключения нагрузки от источника питания во время таких сценариев сбоя, таким образом защищая нагрузку и источник питания.

Защита от перегрузки по току с использованием операционного усилителя

Существует много типов схем защиты от перегрузки по току; сложность схемы зависит от того, насколько быстро схема защиты должна реагировать в случае перегрузки по току. В этом проекте мы построим простую схему защиты от перегрузки по току, используя операционный усилитель, который очень часто используется и может быть легко адаптирован для ваших проектов.

Схема, которую мы собираемся спроектировать, будет иметь регулируемое пороговое значение перегрузки по току , а также будет иметь функцию автоматического перезапуска при отказе .Поскольку это схема защиты от перегрузки по току на базе операционного усилителя, она будет иметь операционный усилитель в качестве блока управления. Для этого проекта используется операционный усилитель общего назначения LM358 . На изображении ниже показана схема контактов LM358.

LM358 Pin Diagram

Как видно на изображении выше, внутри одного корпуса микросхемы у нас будет два канала операционного усилителя. Однако в этом проекте используется только один канал. Операционный усилитель будет переключать (отключать) выходную нагрузку с помощью полевого МОП-транзистора. В этом проекте используется MOSFET IRF540N с каналом N.Рекомендуется использовать соответствующий радиатор MOSFET, если ток нагрузки превышает 500 мА. Однако в этом проекте MOSFET используется без радиатора. На изображении ниже представлена ​​распиновка IRF540N .

IRF540N Pin Diagram

Для питания операционного усилителя и схемы используется линейный стабилизатор напряжения LM7809 . Это линейный стабилизатор напряжения 9В 1А с широким диапазоном входного напряжения. Распиновку можно увидеть на изображении ниже

LM7809 linear Voltage Regulator Pinout

Необходимые материалы:

Список компонентов, необходимых для максимальной токовой защиты цепи , приведен ниже.

  1. Макет
  2. Требуется источник питания 12 В (минимум) или в соответствии с напряжением.
  3. LM358
  4. 100 мкФ 25 В
  5. IRF540N
  6. Радиатор (согласно требованиям приложения)
  7. горшок обрезной 50к.
  8. Резистор 1 кОм с допуском 1%
  9. Резистор 1Meg
  10. Резистор
  11. 100 кОм с допуском 1%.
  12. Резистор 1 Ом, 2 Вт (максимум 2 Вт при токе нагрузки 1,25 А)
  13. Провода для макета

Схема защиты от перегрузки по току

Простая схема защиты от перегрузки по току может быть спроектирована с использованием операционного усилителя для определения перегрузки по току, и на основе результата мы можем управлять МОП-транзистором для отключения / подключения нагрузки к источнику питания.Принципиальная схема для того же проста и ее можно увидеть на изображении ниже

.

 Overcurrent Protection Circuit Diagram using Op-amp

Рабочая цепь защиты от сверхтока

Как видно из принципиальной схемы, полевой МОП-транзистор IRF540N используется для управления нагрузкой как ВКЛ или ВЫКЛ во время нормального состояния и состояния перегрузки . Но перед отключением нагрузки важно определить ток нагрузки. Для этого используется шунтирующий резистор R1 , который представляет собой шунтирующий резистор 1 Ом и мощностью 2 Вт.Этот метод измерения тока называется Shunt Resistor Current Sensing , вы также можете проверить другие методы измерения тока, которые также можно использовать для обнаружения перегрузки по току.

Во включенном состоянии полевого МОП-транзистора ток нагрузки протекает через сток полевого МОП-транзистора к истоку и, наконец, к земле через шунтирующий резистор. В зависимости от тока нагрузки шунтирующий резистор создает падение напряжения, которое можно рассчитать по закону Ом . Поэтому предположим, что при протекании тока 1 А (ток нагрузки) падение напряжения на шунтирующем резисторе составляет 1 В, как V = I x R (V = 1 A x 1 Ом).Таким образом, если это падение напряжения сравнивается с заранее заданным напряжением с помощью операционного усилителя, мы можем обнаружить перегрузку по току и изменить состояние полевого МОП-транзистора, чтобы отключить нагрузку.

Операционный усилитель обычно используется для выполнения математических операций, таких как сложение, вычитание, умножение и т. Д. Поэтому в этой схеме операционный усилитель LM358 настроен как компаратор. Согласно схеме, компаратор сравнивает два значения. Первый из них является падение напряжения через шунт, а другой представляет собой предопределенное напряжение (опорное напряжение), используя переменный резистор или потенциометр RV1.RV1 действует как делитель напряжения. Падение напряжения на шунтирующем резисторе определяется инвертирующим выводом компаратора и сравнивается с опорным напряжением, подключенным к неинвертирующему выводу операционного усилителя.

В связи с этим, если считанным напряжением меньше, чем опорное напряжение, компаратор будет производить положительное напряжение на выходе, которая близка к VCC компаратора. Но, если считанное напряжение больше, чем опорное напряжение, компаратор будет производить отрицательное напряжение питания через выход (отрицательное питание подключено через GND, поэтому 0В в данном случае).Этого напряжения достаточно для включения или выключения MOSFET.

Работа с переходным откликом / проблемой стабильности

Но когда высокая нагрузка будет отключена от источника питания, переходные изменения создадут линейную область на компараторе, и это создаст петлю, в которой компаратор не сможет правильно включить или выключить нагрузку, и операционный усилитель станет нестабильный . Например, предположим, что 1А устанавливается с помощью потенциометра для переключения полевого МОП-транзистора в состояние ВЫКЛ.Поэтому переменный резистор настроен на выход 1 В. В ситуации, когда компаратор определяет, что падение напряжения на шунтирующем резисторе составляет 1,01 В (это напряжение зависит от точности операционного усилителя или компаратора и других факторов), компаратор отключит нагрузку. Переходных изменения возникают, когда высокая нагрузка внезапно отключена от блока питания, и это кратковременное повышение опорного напряжения, который приглашает плохие результаты через компаратор и заставляет его работать в линейной области.

Лучший способ для решения этой проблемы заключается в использовании стабильного питания через компаратор, где переходные изменения не влияют на входном напряжение компаратора и источник опорного напряжения. Мало того, в компараторе необходимо добавить дополнительный гистерезис метода. В этой схеме это выполняется линейным регулятором LM7809 и резистором гистерезиса R4, резистором 100 кОм. LM7809 обеспечивает надлежащее напряжение на компараторе, так что переходные изменения в линии питания не влияют на компаратор.C1, конденсатор емкостью 100 мкФ используется для фильтрации выходного напряжения.

Гистерезисный резистор R4 подает небольшую часть входного сигнала на выход операционного усилителя, что создает разрыв напряжения между нижним порогом (0,99 В) и высоким порогом (1,01 В), при котором компаратор меняет свое выходное состояние. Компаратор не изменяет состояние немедленно, если достигается пороговая точка, вместо этого, чтобы изменить состояние с высокого на низкий, измеренный уровень напряжения должен быть ниже нижнего порога (например, 0.97 В вместо 0,99 В) или чтобы изменить состояние с низкого на высокое, измеренное напряжение должно быть выше верхнего порога (1,03 вместо 1,01). Это повысит стабильность компаратора и уменьшит количество ложных срабатываний. Помимо этого резистора, R2 и R3 используются для управления затвором. R3 - это понижающий резистор затвора полевого МОП-транзистора.

Тестирование цепи защиты от сверхтока

Схема построена на макетной плате и протестирована с использованием лабораторного источника питания вместе с переменной нагрузкой постоянного тока.

Overcurrent Protection Circuit using Op-Amp - Testing

Схема проверена, и было замечено, что выход успешно отключился при различных значениях, установленных переменным резистором. Видео, представленное в нижней части этой страницы, показывает полную демонстрацию тестирования максимальной токовой защиты в действии.

Советы по проектированию защиты от сверхтоков

  • RC демпферная цепь на выходе может улучшить EMI.
  • Радиатор большего размера и специальный МОП-транзистор могут быть использованы для требуемого приложения.
  • Хорошо сконструированная печатная плата повысит стабильность схемы.
  • Мощность шунтирующего резистора необходимо регулировать в соответствии с степенным законом (P = I 2 R) в зависимости от тока нагрузки.
  • Очень маломощный резистор в миллиомах можно использовать для небольшого корпуса, но падение напряжения будет меньше. Для компенсации падения напряжения можно использовать дополнительный усилитель с соответствующим усилением.
  • Для решения проблем, связанных с точным измерением тока, рекомендуется использовать специальный усилитель измерения тока.

Надеюсь, вы поняли руководство и получили из него что-то полезное. Если у вас есть какие-либо вопросы, оставьте их в комментариях или используйте форумы для других технических вопросов.

.

Основы трансформаторов тока в силовых цепях (теория и практика)

Ток и напряжение в силовых цепях

Если напряжение или ток в силовой цепи слишком высоки для прямого подключения измерительных приборов или реле, связь осуществляется через трансформаторы. Такие измерительные трансформаторы необходимы для создания уменьшенной копии входной величины с точностью, ожидаемой для конкретного измерения.

Current Transformers In a Nutshell В двух словах о трансформаторах тока

Это стало возможным благодаря высокому КПД трансформатора.Во время и после больших мгновенных изменений входной величины форма волны может больше не быть синусоидальной, поэтому важны характеристики измерительных трансформаторов.

Многие системы защиты должны срабатывать во время переходных помех на выходе измерительных трансформаторов после отказа системы. Ошибки на выходе трансформатора могут задержать срабатывание защиты или вызвать ненужные операции.

Следовательно, функционирование таких трансформаторов необходимо проверить аналитически .

Содержание:

  1. Простая эквивалентная схема трансформатора тока
  2. Подключения трансформатора тока (первичный / вторичный)
    1. Ошибки
      1. Ошибка соотношения тока или соотношения
      2. Ошибка фазы
    2. Общая ошибка
    3. Предел точности Защитные трансформаторы тока
    4. Трансформаторы тока класса PX
    5. Обмотка трансформатора тока
      1. Обмотка первичной обмотки
      2. Втулка или стержень первичной обмотки
      3. Балансировочные трансформаторы тока
      4. Суммирующие трансформаторы тока
      5. Трансформаторы тока с воздушным зазором
    6. Обмотка Устройства
      1. ТТ с завышенными размерами
      2. ТТ с противодействием
      3. Линейные трансформаторы тока
    7. Импеданс вторичной обмотки
    8. Номинальный ток вторичной обмотки
    9. Номинальный кратковременный ток
    10. Отклик трансформатора тока при переходных процессах 90 019
    11. Переходный процесс первичного тока
    12. Практические условия
  3. Гармоники во время переходного периода
  4. Испытательные обмотки

1.Простая эквивалентная схема трансформатора тока

Трансформатор может быть представлен эквивалентной схемой на Рисунке 1, где все величины относятся к вторичной обмотке.

Equivalent circuit of transformer Рисунок 1 - Эквивалентная схема трансформатора

Когда трансформатор не имеет передаточного отношения 1/1, это состояние может быть представлено путем подачи питания на эквивалентную схему с помощью идеального трансформатора с заданным передаточным числом, но без потерь.

Трансформаторы напряжения и тока для низких номинальных значений первичного напряжения или тока трудно различить.Для более высоких оценок обычны различия в конструкции. Тем не менее, основные различия между этими устройствами заключаются в способе их подключения к силовой цепи .

Трансформаторы напряжения очень похожи на малые силовые трансформаторы, отличаясь только деталями конструкции, которые позволяют регулировать точность передаточного отношения в указанном диапазоне выходных сигналов. Трансформаторы тока имеют первичные обмотки , соединенные последовательно с силовой цепью, а также последовательно с полным сопротивлением системы.

Отклик трансформатора радикально отличается в этих двух режимах работы.

Эта техническая статья объяснит все важные аспекты трансформаторов тока в приложениях измерения и защиты среднего и высокого напряжения.

Вернуться к содержанию ↑


2. Подключения трансформатора тока (первичный / вторичный)

Первичная обмотка трансформатора тока соединена последовательно с силовой цепью, а полное сопротивление незначительно по сравнению с импедансом силовой цепи.

Импеданс энергосистемы определяет ток, проходящий через первичную обмотку трансформатора тока. Это состояние можно представить, вставив полное сопротивление нагрузки, указанное через отношение витков, во входное соединение на Рисунке 1 выше.

Этот подход разработан на Рисунке 2, на числовом примере 300 / 5A CT , примененного к энергосистеме 11 кВ. Считается, что система имеет номинальный ток (300 А), а ТТ питает нагрузку 10 ВА.

Derivation of equivalent circuit of a current transformer Рисунок 2 - Расчет эквивалентной схемы трансформатора тока

Исследование окончательной эквивалентной схемы на Рисунке 2 (c) с учетом типичных значений компонентов позволяет выявить все свойства трансформатора тока.

Видно, что:

  1. На вторичный ток не влияет изменение импеданса нагрузки в значительном диапазоне.
  2. Вторичная цепь не должна прерываться, пока первичная обмотка находится под напряжением.Наведенная вторичная ЭДС. в этих условиях достаточно высока, чтобы представлять опасность для жизни и изоляции.
  3. Ошибки отношения и фазового угла можно легко вычислить, если известны намагничивающие характеристики и полное сопротивление нагрузки.

Вернуться к содержанию ↑


2.1 Ошибки

Общую векторную диаграмму для трансформатора напряжения (щелкните, чтобы увидеть) можно упростить, опустив детали, которые не представляют интереса при измерении тока.Взгляните на рисунок 3.

Ошибки возникают из-за того, что охотится за нагрузкой посредством возбуждающего импеданса . Это использует небольшую часть входного тока для возбуждения сердечника, уменьшая количество, передаваемое нагрузке.

Итак, I s = I p - I e

где Ie зависит от Z e , возбуждающего импеданса и вторичной ЭДС. E s , задаваемый уравнением:

E s = I s (Z s + Z b ) ,

где:

4
  • Z s = собственный импеданс вторичной обмотки, который обычно можно принять за резистивный компонент R s только
  • Z b = полное сопротивление нагрузки
  • Vector diagram for current transformer (referred to secondary) Рисунок 3 - Векторная диаграмма трансформатора тока (относительно вторичной обмотки)

    Вернуться к содержанию ↑


    2.1.1 Ошибка тока или коэффициента

    Это разница в величине между I p и I s и равна I r , компоненту I e , который находится в фазе с I s .

    Вернуться к содержанию ↑


    2.1.2 Ошибка фазы

    Это представлено как I q , компонент I e в квадратуре с I s и приводит к ошибке фазы Φ .

    Значения текущей ошибки и фазовой ошибки зависят от сдвига фазы между I s и I e , но ни текущая, ни фазовая ошибка не может превышать векторную ошибку I e . При умеренно индуктивной нагрузке, в результате чего I s и I e примерно совпадают по фазе, фазовая ошибка мала, и возбуждающий компонент почти полностью соответствует ошибке отношения.

    Для компенсации этого часто используется уменьшение вторичной обмотки на один или два витка.

    Например, в трансформаторе тока, показанном на рисунке 2, наихудшая ошибка из-за использования индуктивной нагрузки номинального значения будет около 1,2%. Если номинальное соотношение витков составляет 2: 120 , удаление одного вторичного витка повысит выходную мощность на 0,83% , в результате чего общая погрешность по току составит -0,37% .

    Для более низкой нагрузки или другого коэффициента мощности нагрузки ошибка изменится в положительном направлении до максимального значения +0.7% при нулевой нагрузке; реактивное сопротивление рассеяния вторичной обмотки предполагается незначительным.

    Никакая соответствующая коррекция не может быть сделана для фазовой ошибки, но следует отметить, что фазовая ошибка мала для умеренно реактивных нагрузок.

    Вернуться к содержанию ↑


    2.2 Общая ошибка

    Это определено в IEC 61869 1 и 2 как среднеквадратичное значение. значение разницы между идеальным вторичным током и фактическим вторичным током.Он включает в себя ошибки тока и фазы, а также влияние гармоник в возбуждающем токе.

    Класс точности измерительных трансформаторов тока показан в Таблице 1 и Таблице 2.

    Таблица 1 - Пределы погрешности ТТ для классов точности от 0,1 до 1,0

    Тип характеристики α β
    Нормальный обратный 0.02 0,14
    Очень инверсный 1,0 13,5
    Чрезвычайно инверсный 2,0 80,0
    Долговременный инверсный 1.0 1,0

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Класс точности % тока + / - Процентный ток
    (соотношение) ошибка
    +/- Смещение фазы
    (минуты)
    5 20 100 120 5 20 100 120 .1 0,4 0,2 0,1 0,1 15 8 5 5
    0,2 0,75 0,35