100 нанофарад маркировка – ( , )

Содержание

Конденсатор 10n это сколько — Морской флот

Очень важно знать емкость того или иного конденсатора, а под рукой не всегда оказываются измерительные приборы с помощью которых можно эту емкость узнать. Специально для этих случаев были придуманы кодовые маркировки. Существую 4 основных способа маркировки конденсаторов:

  • Кодовая маркировка 3 цифрами;
  • Кодовая маркировка 4 цифрами;
  • Буквенно цифровая маркировка;
  • Специальная маркировка для планарных конденсаторов.

Кодовая маркировка конденсаторов 3 цифрами

К примеру конденсатор с обозначением 153 означает что его емкость составляет 15000 пФ.

Код Пикофарады, пФ, pF Нанофарады, нФ, nF Микрофарады, мкФ, μF
109 1.0 пФ 0.0010нф
159 1.5 пФ 0.0015нф
229 2.2 пФ 0.0022нф
339 3.3 пФ 0.0033нф
479 4.7 пФ 0.0048нф
689 6.8 пФ 0.0068нФ
100 10 пФ 0.01 нФ
150 15 пФ 0.015 нФ
220 22 пФ 0.022 нФ
330 33 пФ 0.033 нФ
470 47 пФ 0.047 нФ
680 68 пФ 0.068 нФ
101 100 пФ 0.1 нФ
151 150 пФ 0.15 нФ
221 220 пФ 0.22 нФ
331 330 пФ 0.33 нФ
471 470 пФ 0.47 нФ
681 680 пФ 0.68 нФ
102 1000 пФ 1 нФ
152 1500 пФ 1.5 нФ
222 2200 пФ 2.2 нФ
332 3300 пФ 3.3 нФ
472 4700 пФ 4.7 нФ
682 6800 пФ 6.8 нФ
103 10000 пФ 10 нФ 0.01 мкФ
153 15000 пФ 15 нФ 0.015 мкФ
223 22000 пФ 22 нФ 0.022 мкФ
333 33000 пФ 33 нФ 0.033 мкФ
473 47000 пФ 47 нФ 0.047 мкФ
683 68000 пФ 68 нФ 0.068 мкФ
104 100000 пФ 100 нФ 0.1 мкФ
154 150000 пФ 150 нФ 0.15 мкФ
224 220000 пФ 220 нФ 0.22 мкФ
334 330000 пФ 330 нФ 0.33 мкФ
474 470000 пФ 470 нФ 0.47 мкФ
684 680000 пФ 680 нФ 0.68 мкФ
105 1000000 пФ 1000 нФ 1 мкФ

Кодовая маркировка конденсаторов 4 цифрами

При маркировки конденсаторов этим способом важно запомнить что полученное значение будет измеряться в пикоФарадах. К примеру маркировка конденсатора 1002 будет расшифровываться следующим образом: 1002 = 100*10 2 пФ = 10000 пФ = 10.0 нФ. Последняя цифра это показатель степени по основанию 10. А первые три это число которое необходимо умножить на 10 возведенную в определенную степень.

Буквенно-цифровая маркировка

В данном случае вместо запятой ставится соответсвующая единица измерения (пФ, нФ, мкФ).

Пример: 10п или 10p = 10 пФ, 4n7 или 4н7 = 4,7 нФ, μ22 = 0.22 мкФ.

Вожно запомнить что буква «п» очень похожа на «n» и не нужно их путать. Что довольно часто делают начинающие радиолюбители.

Огромное разнообразие конденсаторов позволяет использовать их практически в любой схеме. Для правильного подбора параметров электрической сети необходимо четко владеть знаниями маркировки конденсаторов, которые имеют ключевое значение. Сложность возникает из-за того, что она разнится в большом количестве случаев – на нее влияет производитель, страна-экспортер, вид и параметры самого конденсатора, и даже его размеры.

В данной статье рассмотрим основные параметры конденсаторов, которые влияют на их маркировку, а также научимся правильно читать значения, нанесенные производителем даже на самые крохотные изделия.

Параметры конденсаторов

Эти устройства предназначены для накопления электрического заряда. Емкость измеряется в специальных единицах, именуемых фарадами (Ф, или F). Однако 1 фарад – колоссальная величина, которая не используется в радиотехнике. Для конденсаторов применяется микрофарад (мкФ, µF) – фарад, разделенный на миллион. Единица обозначается как мкФ практически на всех типах конденсаторов. В теоретических расчетах иногда можно увидеть миллифарад (мФ, mF), что равняется фараду, деленному на тысячу. В маленьких конденсаторах применяется нанофарад (нФ, nF) и пикофарад (пФ, pF), что соответственно равняется 10 -9 и 10 -12 фарад. Это обозначение очень важно, так как используется в маркировке либо напрямую, либо с помощью заменяемых значений.

Типы маркировок

На данный момент производителями используется несколько типов, которые могут располагаться на корпусе как по отдельности, так и взаимозаменяемыми значениями. Все значения ниже будут исключительно теоретическими, предоставленными для наглядного примера.

  • Самый простой тип маркировки – никаких шифров и табличных замещений, емкость напрямую пишется на корпусе, что без лишних движений сразу предоставляет конечному пользователю реальные параметры. И такой способ использовался бы везде, если бы не его громоздкость – полностью написать емкость получится только на довольно больших изделиях, иначе рассмотреть надпись будет невозможно даже с помощью лупы. Например: запись 100 µF±6% означает, что данный конденсатор имеет емкость 100 микрофарад с амортизацией в 6% от общей емкости, что равно значению 94–106 микрофарад. Также допускается использование маркировки вида 100 µF +8%/-10%, что означает неравнозначную амортизацию, равную 90–108 микрофарад. Это самый простой и понятный способ, однако такая маркировка очень громоздкая, поэтому применяется на больших и очень емких конденсаторах.
  • Цифровая маркировка конденсаторов (а также численно-буквенная) используется в тех случаях, когда маленькая площадь изделия не позволяет поместить подробную запись о емкости. Поэтому определенные значения заменяются обычными цифрами и латинскими буквами, которые поочередно расшифровываются для получения полной информации.

Все очень просто – если используются только цифры (а на подобных изделиях их обычно три штуки), то расшифровывать нужно следующим образом:

  • первые две цифры обозначают первые две цифры емкости;
  • третья цифра обозначает количество нулей, которое необходимо дописать после первых двух цифр;
  • такие конденсаторы всегда измеряются в пикофарадах.

Возьмем для примера первый вариант с картинки выше с записью 104. Первые две цифры так и оставляем – 10. К ним приписываем количество нулей, обозначенных третьей цифрой, то есть 4. Получаем значение в 100 000 пикофарад. Возвращаемся к таблице в начале статьи, уменьшаем количество нулей и получаем приемлемое значение в 100 микрофарад.

Если используется одна или две цифры, они так и остаются. Например, обозначения 5 и 15 обозначают 5 и 15 пикофарад соответственно. Маркировка .55 равна 0.55 микрофарад.

Интересная запись выполняется с использованием букв либо вместо точки, либо как другой величины. Например, 8n2 обозначает 8.2 нанофарад, когда как n82 означает 0.82 нанофарад. Для определенного класса конденсаторов в конце может дописываться дополнительная кодовая маркировка, например, 100V.

  • Маркировка керамических конденсаторов численно-буквенным способом является стандартом для этих изделий. Здесь используются точно такие же алгоритмы шифрования, а сами надписи физически наносятся производителем на керамическую поверхность.
  • Устаревшим, однако все еще используемым вариантом, считается цветовая индикация. Она применялась в советском производстве для упрощения считывания маркировки даже на очень маленьких изделиях. Минус в том, что запомнить сходу такую таблицу достаточно проблематично, поэтому желательно иметь ее под рукой, по крайней мере, поначалу. Цвета наносятся на конденсаторы, где маркировка выполняется в виде монотонных полосок. Считываются следующим образом:
  • первые два цвета означают емкость в пикофарадах;
  • третий цвет показывает количество нулей, которые необходимо дописать;
  • четвертый и пятый цвета соответственно показывают возможный допуск и номинал подаваемого напряжения на изделие.
Цвет Значение
Черный
Коричневый 1
Красный 2
Оранжевый 3
Желтый 4
Зеленый 5
Голубой 6
Фиолетовый 7
Серый 8
Белый 9
  • Маркировка импортных конденсаторов выполняется аналогичными способами, только вместо кириллицы может использоваться латиница. Например, на отечественных вариантах может встречаться 5мк1, что означает 5.1 микрофарад. Тогда как на импортных это значение будет выглядеть как 5µ Если запись совершенно непонятна, то можно обратиться к официальному производителю за разъяснениями, скорее всего на сайте есть таблицы или программа, которые расшифровывают его маркировку. Однако это встречается только в исключительных случаях и редко попадается.

Заключение

Чем меньше конденсатор, тем более компактной записи он требует. Однако современное производство способно нанести на корпус достаточно маленькие значения, расшифровка которых выполняется вышеописанными способами. Внимательно проверяйте полученные значения во избежание поломки собранной электрической цепи.

Кроме буквенно-цифровой маркировки применяется способ цифровой маркировки тремя или четырьмя цифрами по стандартам IEC (табл. 2.5, 2.6).

При таком способе маркировки первые две или три цифры обозначают значение емкости в пикофарадах (пФ), а последняя цифра — количество нулей. При обозначении емкостей менее 10 пФ последней цифрой может быть «9» (109 = 1 пФ), при обозначении емкостей 1 пФ и менее первой цифрой будет «0» (010 = 1 пФ). В качестве разделительной запятой используется буква R (0 R 5 = 0,5 пФ).

При маркировке емкостей конденсаторов в микрофарадах применяется цифровая маркировка: 1 — 1 мкФ, 10 — 10 мкФ, 100 — 100 мкФ. В случае необходимости маркировки дробных значений емкости в качестве разделительной запятой ис­пользуется буква R : R 1 — 0,1 мкФ, R 22 — 0,22 мкФ, 3 R 3 — 3,3 мкФ (при обозначении емкости в мкФ перед буквой R цифра 0 не ставится, а она ставится только при обозначении емкостей менее 1 пФ).

После обозначения емкости может быть нанесен буквенный символ, обозначаю­ щий допустимое отклонение емкости конденсатора в соответствии с табл. 2.4.

Таблица 2.5. Кодировка номинальной емкости конденсаторов тремя цифрами

Пикофарады ( пФ ; pF)

Нанофарады ( нФ ; nF)

КОД

Емкость

Пикофарады ( пф ; pF)

Нанофарады ( нФ ; nF)

Микрофарады ( мкФ ; mF)

Код

Емкость

Пикофарады ( пФ ; pF)

Нанофарады ( нФ ; nF)

Микрофарады ( мкФ

ТКЕ (температурный коэффициент емкости) — параметр конденсатора, который характеризует относительное изменение емкости от номинального значения при изменении температуры окружающей среды. Этот параметр принято выражать в миллионных долях емкости конденсатора на градус
(10/-6 / °С). ТКЕ может быть положительным (обозначается буквой «П» или «Р»), отрицательным
(«М» или « N »), близким к нулю («МП») или ненормированным («Н»).

Конденсаторы изготавливаются с различными по ТКЕ типами диэлектриков: группы NPO , X 7 R , Z 5 U , Y 5 V и другие. Диэлектрик группы NPO ( COG ) обладает низкой диэлектрической проницаемостью, но хорошей температурной стабильно­стью (ТКЕ близок к нулю). SMD конденсаторы больших номиналов, изготовлен­ ные с применением этого диэлектрика, наиболее дорогостоящие. Диэлектрик группы X 7 R имеет более высокую диэлектрическую проницаемость, но меньшую температурную стабильность.

Диэлектрики групп Z 5 U и Y 5 V имеют очень высокую диэлектрическую проница­ емость, что позволяет изготовить конденсаторы с большим значением емкости, но имеющие значительный разброс параметров. SMD конденсаторы с диэлектриками групп X 7 R и Z 5 U используются в цепях общего назначения.

Радиодетали, приборы, диски, литература почтой.

Скачать бесплатно схемы,электронные книги (ebook) по радиоэлектронике, схемы для начинающих, радиотехника для начинающих схемы ТВ бесплатно, схемы управления, радиоустройств
блоков питания, схемы усилителей мощности.
Справочники радиолюбителя, справочники микросхемы
справочники электронных компонентов — диоды, тиристоры, транзисторы, конденсаторы, datasheet электронных компонентов.

Справочники и учебный материал (бесплатно)

morflot.su

Обозначение микрофарад на конденсаторах

Правила маркировки конденсаторов постоянной ёмкости

При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов.

Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре.

Естественно, перед вторичным использованием необходимо проверить конденсаторы, особенно электролитические, которые сильнее подвержены старению.

При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?

У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.

Первое, это номинальная ёмкость конденсатора. Измеряется в долях Фарады.

Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.

Третье, что указывается в маркировке, это допустимое рабочее напряжение. Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.

Итак, разберёмся в том, как маркируют конденсаторы.

Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.

Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.


Конденсаторы серии К73 и их маркировка

Правила маркировки.

Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n.

Обозначение 100n – это значение номинальной ёмкости. Для 100n – 100 нанофарад (нФ) — 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).

Можно встретить маркировку вида 47HC. Данная запись соответствует 47nK и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.

Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Подробнее об этом читайте здесь.

Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C — 0,1 мкФ. Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.

Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M, m вместо десятичной запятой, незначащий ноль опускается.

Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.

На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.


Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом

Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах. Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.

Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов.

Буквенный код отклонения ёмкости (допуск).

Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK, 220nM, 470nJ.

Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.

Допуск в % Буквенное обозначение
лат. рус.
± 0,05p A
± 0,1p B Ж
± 0,25p C У
± 0,5p D Д
± 1,0 F Р
± 2,0 G Л
± 2,5 H
± 5,0 J И
± 10 K С
± 15 L
± 20 M В
± 30 N Ф
-0. +100 P
-10. +30 Q
± 22 S
-0. +50 T
-0. +75 U Э
-10. +100 W Ю
-20. +5 Y Б
-20. +80 Z А

Маркировка конденсаторов по рабочему напряжению.

Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя. Не лишним будет брать конденсатор с запасом по рабочему напряжению.

Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.

Номинальное рабочее напряжение, B Буквенный код
1,0 I
1,6 R
2,5 M
3,2 A
4,0 C
6,3 B
10 D
16 E
20 F
25 G
32 H
40 S
50 J
63 K
80 L
100 N
125 P
160 Q
200 Z
250 W
315 X
350 T
400 Y
450 U
500 V

Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.

Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.

Огромное разнообразие конденсаторов позволяет использовать их практически в любой схеме. Для правильного подбора параметров электрической сети необходимо четко владеть знаниями маркировки конденсаторов, которые имеют ключевое значение. Сложность возникает из-за того, что она разнится в большом количестве случаев – на нее влияет производитель, страна-экспортер, вид и параметры самого конденсатора, и даже его размеры.

В данной статье рассмотрим основные параметры конденсаторов, которые влияют на их маркировку, а также научимся правильно читать значения, нанесенные производителем даже на самые крохотные изделия.

Параметры конденсаторов

Эти устройства предназначены для накопления электрического заряда. Емкость измеряется в специальных единицах, именуемых фарадами (Ф, или F). Однако 1 фарад – колоссальная величина, которая не используется в радиотехнике. Для конденсаторов применяется микрофарад (мкФ, µF) – фарад, разделенный на миллион. Единица обозначается как мкФ практически на всех типах конденсаторов. В теоретических расчетах иногда можно увидеть миллифарад (мФ, mF), что равняется фараду, деленному на тысячу. В маленьких конденсаторах применяется нанофарад (нФ, nF) и пикофарад (пФ, pF), что соответственно равняется 10 -9 и 10 -12 фарад. Это обозначение очень важно, так как используется в маркировке либо напрямую, либо с помощью заменяемых значений.

Типы маркировок

На данный момент производителями используется несколько типов, которые могут располагаться на корпусе как по отдельности, так и взаимозаменяемыми значениями. Все значения ниже будут исключительно теоретическими, предоставленными для наглядного примера.

  • Самый простой тип маркировки – никаких шифров и табличных замещений, емкость напрямую пишется на корпусе, что без лишних движений сразу предоставляет конечному пользователю реальные параметры. И такой способ использовался бы везде, если бы не его громоздкость – полностью написать емкость получится только на довольно больших изделиях, иначе рассмотреть надпись будет невозможно даже с помощью лупы. Например: запись 100 µF±6% означает, что данный конденсатор имеет емкость 100 микрофарад с амортизацией в 6% от общей емкости, что равно значению 94–106 микрофарад. Также допускается использование маркировки вида 100 µF +8%/-10%, что означает неравнозначную амортизацию, равную 90–108 микрофарад. Это самый простой и понятный способ, однако такая маркировка очень громоздкая, поэтому применяется на больших и очень емких конденсаторах.
  • Цифровая маркировка конденсаторов (а также численно-буквенная) используется в тех случаях, когда маленькая площадь изделия не позволяет поместить подробную запись о емкости. Поэтому определенные значения заменяются обычными цифрами и латинскими буквами, которые поочередно расшифровываются для получения полной информации.

Все очень просто – если используются только цифры (а на подобных изделиях их обычно три штуки), то расшифровывать нужно следующим образом:

  • первые две цифры обозначают первые две цифры емкости;
  • третья цифра обозначает количество нулей, которое необходимо дописать после первых двух цифр;
  • такие конденсаторы всегда измеряются в пикофарадах.

Возьмем для примера первый вариант с картинки выше с записью 104. Первые две цифры так и оставляем – 10. К ним приписываем количество нулей, обозначенных третьей цифрой, то есть 4. Получаем значение в 100 000 пикофарад. Возвращаемся к таблице в начале статьи, уменьшаем количество нулей и получаем приемлемое значение в 100 микрофарад.

Если используется одна или две цифры, они так и остаются. Например, обозначения 5 и 15 обозначают 5 и 15 пикофарад соответственно. Маркировка .55 равна 0.55 микрофарад.

Интересная запись выполняется с использованием букв либо вместо точки, либо как другой величины. Например, 8n2 обозначает 8.2 нанофарад, когда как n82 означает 0.82 нанофарад. Для определенного класса конденсаторов в конце может дописываться дополнительная кодовая маркировка, например, 100V.

  • Маркировка керамических конденсаторов численно-буквенным способом является стандартом для этих изделий. Здесь используются точно такие же алгоритмы шифрования, а сами надписи физически наносятся производителем на керамическую поверхность.
  • Устаревшим, однако все еще используемым вариантом, считается цветовая индикация. Она применялась в советском производстве для упрощения считывания маркировки даже на очень маленьких изделиях. Минус в том, что запомнить сходу такую таблицу достаточно проблематично, поэтому желательно иметь ее под рукой, по крайней мере, поначалу. Цвета наносятся на конденсаторы, где маркировка выполняется в виде монотонных полосок. Считываются следующим образом:
  • первые два цвета означают емкость в пикофарадах;
  • третий цвет показывает количество нулей, которые необходимо дописать;
  • четвертый и пятый цвета соответственно показывают возможный допуск и номинал подаваемого напряжения на изделие.
Цвет Значение
Черный
Коричневый 1
Красный 2
Оранжевый 3
Желтый 4
Зеленый 5
Голубой 6
Фиолетовый 7
Серый 8
Белый 9
  • Маркировка импортных конденсаторов выполняется аналогичными способами, только вместо кириллицы может использоваться латиница. Например, на отечественных вариантах может встречаться 5мк1, что означает 5.1 микрофарад. Тогда как на импортных это значение будет выглядеть как 5µ Если запись совершенно непонятна, то можно обратиться к официальному производителю за разъяснениями, скорее всего на сайте есть таблицы или программа, которые расшифровывают его маркировку. Однако это встречается только в исключительных случаях и редко попадается.

Заключение

Чем меньше конденсатор, тем более компактной записи он требует. Однако современное производство способно нанести на корпус достаточно маленькие значения, расшифровка которых выполняется вышеописанными способами. Внимательно проверяйте полученные значения во избежание поломки собранной электрической цепи.

Очень важно знать емкость того или иного конденсатора, а под рукой не всегда оказываются измерительные приборы с помощью которых можно эту емкость узнать. Специально для этих случаев были придуманы кодовые маркировки. Существую 4 основных способа маркировки конденсаторов:

  • Кодовая маркировка 3 цифрами;
  • Кодовая маркировка 4 цифрами;
  • Буквенно цифровая маркировка;
  • Специальная маркировка для планарных конденсаторов.

Кодовая маркировка конденсаторов 3 цифрами

К примеру конденсатор с обозначением 153 означает что его емкость составляет 15000 пФ.

Код Пикофарады, пФ, pF Нанофарады, нФ, nF Микрофарады, мкФ, μF
109 1.0 пФ 0.0010нф
159 1.5 пФ 0.0015нф
229 2.2 пФ 0.0022нф
339 3.3 пФ 0.0033нф
479 4.7 пФ 0.0048нф
689 6.8 пФ 0.0068нФ
100 10 пФ 0.01 нФ
150 15 пФ 0.015 нФ
220 22 пФ 0.022 нФ
330 33 пФ 0.033 нФ
470 47 пФ 0.047 нФ
680 68 пФ 0.068 нФ
101 100 пФ 0.1 нФ
151 150 пФ 0.15 нФ
221 220 пФ 0.22 нФ
331 330 пФ 0.33 нФ
471 470 пФ 0.47 нФ
681 680 пФ 0.68 нФ
102 1000 пФ 1 нФ
152 1500 пФ 1.5 нФ
222 2200 пФ 2.2 нФ
332 3300 пФ 3.3 нФ
472 4700 пФ 4.7 нФ
682 6800 пФ 6.8 нФ
103 10000 пФ 10 нФ 0.01 мкФ
153 15000 пФ 15 нФ 0.015 мкФ
223 22000 пФ 22 нФ 0.022 мкФ
333 33000 пФ 33 нФ 0.033 мкФ
473 47000 пФ 47 нФ 0.047 мкФ
683 68000 пФ 68 нФ 0.068 мкФ
104 100000 пФ 100 нФ 0.1 мкФ
154 150000 пФ 150 нФ 0.15 мкФ
224 220000 пФ 220 нФ 0.22 мкФ
334 330000 пФ 330 нФ 0.33 мкФ
474 470000 пФ 470 нФ 0.47 мкФ
684 680000 пФ 680 нФ 0.68 мкФ
105 1000000 пФ 1000 нФ 1 мкФ

Кодовая маркировка конденсаторов 4 цифрами

При маркировки конденсаторов этим способом важно запомнить что полученное значение будет измеряться в пикоФарадах. К примеру маркировка конденсатора 1002 будет расшифровываться следующим образом: 1002 = 100*10 2 пФ = 10000 пФ = 10.0 нФ. Последняя цифра это показатель степени по основанию 10. А первые три это число которое необходимо умножить на 10 возведенную в определенную степень.

Буквенно-цифровая маркировка

В данном случае вместо запятой ставится соответсвующая единица измерения (пФ, нФ, мкФ).

Пример: 10п или 10p = 10 пФ, 4n7 или 4н7 = 4,7 нФ, μ22 = 0.22 мкФ.

Вожно запомнить что буква «п» очень похожа на «n» и не нужно их путать. Что довольно часто делают начинающие радиолюбители.

mytooling.ru

Таблица значений конденсаторов, маркировка | Техническая информация

2011-06-23

Ёмкость конденсаторов может обозначаться в микрофарадах (uF), нанофарадах (nF), пикофарадах (pF), либо кодом. Данная таблица поможет вам разобраться в одинаковых значениях при различных обозначениях и подобрать аналоги для замены.

 

Таблица обозначений конденсаторов
uF (мкФ) nF (нФ) pF (пФ) Code (Код)
* более подробную информацию для конкретных серий конденсаторов (DataShet-ы, описание, параметры, технические характеристики, и тд.) вы сможете найти на сайтах поисковых систем Яндекс или Google.
 
1uF 1000nF 1000000pF 105
0.82uF 820nF 820000pF 824
0.8uF 800nF 800000pF 804
0.7uF 700nF 700000pF 704
0.68uF 680nF 680000pF 684
0.6uF 600nF 600000pF 604
0.56uF 560nF 560000pF 564
0.5uF 500nF 500000pF 504
0.47uF 470nF 470000pF 474
0.4uF 400nF 400000pF 404
0.39uF 390nF 390000pF 394
0.33uF 330nF 330000pF 334
0.3uF 300nF 300000pF 304
0.27uF 270nF 270000pF 274
0.25uF 250nF 250000pF 254
0.22uF 220nF 220000pF 224
0.2uF 200nF 200000pF 204
0.18uF 180nF 180000pF 184
0.15uF 150nF 150000pF 154
0.12uF 120nF 120000pF 124
0.1uF 100nF 100000pF 104
0.082uF 82nF 82000pF 823
0.08uF 80nF 80000pF 803
0.07uF 70nF 70000pF 703
0.068uF 68nF 68000pF 683
0.06uF 60nF 60000pF 603
0.056uF 56nF 56000pF 563
0.05uF 50nF 50000pF 503
0.047uF 47nF 47000pF 473
0.04uF 40nF 40000pF 403
0.039uF 39nF 39000pF 393
0.033uF 33nF 33000pF 333
0.03uF 30nF 30000pF 303
0.027uF 27nF 27000pF 273
0.025uF 25nF 25000pF 253
0.022uF 22nF 22000pF 223
0.02uF 20nF 20000pF 203
0.018uF 18nF 18000pF 183
0.015uF 15nF 15000pF 153
0.012uF 12nF 12000pF 123
0.01uF 10nF 10000pF 103
0.0082uF 8.2nF 8200pF 822
0.008uF 8nF 8000pF 802
0.007uF 7nF 7000pF 702
0.0068uF 6.8nF 6800pF 682
0.006uF 6nF 6000pF 602
0.0056uF 5.6nF 5600pF 562
0.005uF 5nF 5000pF 502
0.0047uF 4.7nF 4700pF 472
0.004uF 4nF 4000pF 402
0.0039uF 3.9nF 3900pF 392
0.0033uF 3.3nF 3300pF 332
0.003uF 3nF 3000pF 302
0.0027uF 2.7nF 2700pF 272
0.0025uF 2.5nF 2500pF 252
0.0022uF 2.2nF 2200pF 222
0.002uF 2nF 2000pF 202
0.0018uF 1.8nF 1800pF 182
0.0015uF 1.5nF 1500pF 152
0.0012uF 1.2nF 1200pF 122
0.001uF 1nF 1000pF 102
0.00082uF 0.82nF 820pF 821
0.0008uF 0.8nF 800pF 801
0.0007uF 0.7nF 700pF 701
0.00068uF 0.68nF 680pF 681
0.0006uF 0.6nF 600pF 621
0.00056uF 0.56nF 560pF 561
0.0005uF 0.5nF 500pF 52
0.00047uF 0.47nF 470pF 471
0.0004uF 0.4nF 400pF 401
0.00039uF 0.39nF 390pF 391
0.00033uF 0.33nF 330pF 331
0.0003uF 0.3nF 300pF 301
0.00027uF 0.27nF 270pF 271
0.00025uF 0.25nF 250pF 251
0.00022uF 0.22nF 220pF 221
0.0002uF 0.2nF 200pF 201
0.00018uF 0.18nF 180pF 181
0.00015uF 0.15nF 150pF 151
0.00012uF 0.12nF 120pF 121
0.0001uF 0.1nF 100pF 101
0.000082uF 0.082nF 82pF 820
0.00008uF 0.08nF 80pF 800
0.00007uF 0.07nF 70pF 700
0.000068uF 0.068nF 68pF 680
0.00006uF 0.06nF 60pF 600
0.000056uF 0.056nF 56pF 560
0.00005uF 0.05nF 50pF 500
0.000047uF 0.047nF 47pF 470
0.00004uF 0.04nF 40pF 400
0.000039uF 0.039nF 39pF 390
0.000033uF 0.033nF 33pF 330
0.00003uF 0.03nF 30pF 300
0.000027uF 0.027nF 27pF 270
0.000025uF 0.025nF 25pF 250
0.000022uF 0.022nF 22pF 220
0.00002uF 0.02nF 20pF 200
0.000018uF 0.018nF 18pF 180
0.000015uF 0.015nF 15pF 150
0.000012uF 0.012nF 12pF 120
0.00001uF 0.01nF 10pF 100
0.000008uF 0.008nF 8pF 080
0.000007uF 0.007nF 7pF 070
0.000006uF 0.006nF 6pF 060
0.000005uF 0.005nF 5pF 050
0.000004uF 0.004nF 4pF 040
0.000003uF 0.003nF 3pF 030
0.000002uF 0.002nF 2pF 020
0.000001uF 0.001nF 1pF 010

 

Магазин Dalincom предлагает большой ассортимент конденсаторов — керамические, электролитические, металлопленочные, пусковые, и др, которые вы можете купить в разделе Конденсаторы. Так-же обратите внимание на наше предложение по оптовым поставкам электролитических конденсаторов.

Предыдущая публикация: Замена ламп в LCD-панелях
Следующая публикация: LVDS кабели серий FIX и DF

dalincom.ru

Фарад — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 16 марта 2019;
проверки требуют 2 правки.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 16 марта 2019;
проверки требуют 2 правки.

Фара́д (русское обозначение: Ф; международное обозначение: F; прежнее название — фара́да) — единица измерения электрической ёмкости в Международной системе единиц (СИ), названная в честь английского физика Майкла Фарадея[1]. 1 фарад равен ёмкости конденсатора, при которой заряд 1 кулон создаёт между его обкладками напряжение 1 вольт:

1 Ф = 1 Кл/1 В.

Через основные единицы системы СИ фарад выражается следующим образом:

Ф = А2·с4·кг−1·м−2.

В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы «фарад» пишется со строчной буквы, а её обозначение — с заглавной (Ф). Такое написание обозначения сохраняется и в обозначениях производных единиц, образованных с использованием фарада. Например, обозначение единицы измерения абсолютной диэлектрической проницаемости «фарад на метр» записывается как Ф/м.

В Международную систему единиц фарад введён решением XI Генеральной конференции по мерам и весам в 1960 году, одновременно с принятием системы СИ в целом[2].

Фарад — очень большая ёмкость для уединённого проводника: ёмкостью 1 Ф обладал бы уединённый металлический шар, радиус которого равен 13 радиусам Солнца (ёмкость же шара размером с Землю, используемого как уединённый проводник, составляла бы около 710 микрофарад).

В фарадах измеряют электрическую ёмкость проводников, то есть их способность накапливать электрический заряд. Например, в фарадах (и производных единицах) измеряют: ёмкость кабелей, конденсаторов, межэлектродные ёмкости различных приборов. Промышленные конденсаторы имеют номиналы, измеряемые в микро-, нано- и пикофарадах и выпускаются ёмкостью до ста фарад; в звуковой аппаратуре используются гибридные конденсаторы ёмкостью до сорока фарад. Ёмкость т. н. ионисторов (супер-конденсаторов с двойным электрическим слоем) может достигать многих килофарад.

Не следует путать электрическую ёмкость и электрохимическую ёмкость батареек и аккумуляторов, которая имеет другую природу и измеряется в других единицах: ампер-часах, соразмерных электрическому заряду (1 ампер-час равен 3600 кулонам).

Фарад может быть выражен через основные единицы системы СИ как:

с4⋅А2⋅м−2⋅кг−1.

Таким образом, его значение равно:

Ф = Кл·В−1 = А·с·В−1 = Дж·В−2 = Вт·с·В−2 = Н·м·В−2 = Кл2·Дж−1 = Кл2·Н−1·м−1 = с2·Кл2·кг−1·м−2 = с4·А2·кг−1·м−2 = с·Ом−1 = Ом−1·Гц−1 = с2·Гн−1,

где Ф — фарад, А — ампер, В — вольт, Кл — кулон, Дж − джоуль, м — метр, Н — ньютон, с — секунда, Вт — ватт, кг — килограмм, Ом — ом, Гц — герц, Гн — генри.

Образуются с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Ф декафарад даФ daF 10−1 Ф децифарад дФ dF
102 Ф гектофарад гФ hF 10−2 Ф сантифарад сФ cF
103 Ф килофарад кФ kF 10−3 Ф миллифарад мФ mF
106 Ф мегафарад МФ MF 10−6 Ф микрофарад мкФ µF
109 Ф гигафарад ГФ GF 10−9 Ф нанофарад нФ nF
1012 Ф терафарад ТФ TF 10−12 Ф пикофарад пФ pF
1015 Ф петафарад ПФ PF 10−15 Ф фемтофарад фФ fF
1018 Ф эксафарад ЭФ EF 10−18 Ф аттофарад аФ aF
1021 Ф зеттафарад ЗФ ZF 10−21 Ф зептофарад зФ zF
1024 Ф иоттафарад ИФ YF 10−24 Ф иоктофарад иФ yF
     применять не рекомендуется      не применяются или редко применяются на практике
  • Дольную единицу пикофарад до 1967 года называли микромикрофарада (русское обозначение: мкмкф; международное: µµF)[3].
  • На схемах электрических цепей и (часто) в маркировке ранних конденсаторов советского производства целое число (например, «47») означало ёмкость в пикофарадах, а десятичная дробь (например, «10,0» или «0,1») — в микрофарадах; никакие буквенные обозначения единиц измерения ёмкости на схемах не применялись… Позже и до сегодняшних дней: любое число без указания единицы измерения — ёмкость в пикофарадах; с буквой н — в нанофарадах; а с буквами мк — в микрофарадах. Использование других единиц ёмкости на схемах не стандартизовано (как и обозначение номинала на конденсаторах). На малогабаритных конденсаторах используют различного рода сокращения: например, после двух значащих цифр ёмкости в пикофарадах указывают число следующих за ними нулей (таким образом, конденсатор с обозначением «270» имеет номинальную ёмкость 27 пикофарад, а «271» — 270 пикофарад)[источник не указан 2346 дней].
  • В текстах на языках, использующих латиницу, очень часто при обозначении микрофарад в тексте заменяют букву µ (мю) на латинскую u («uF» вместо «µF») из-за отсутствия в раскладке клавиатуры греческих букв.

Связь с единицами измерения в других системах[править | править код]

  • Сантиметр (другое название «статфарад», статФ) — единица электрической ёмкости в СГСЭ и гауссовой системе, ёмкость шара радиусом 1 см в вакууме:
    • 1 статФ ≈ 1,1126… пФ;
    • 1 Ф = 8,9875517873681764×1011 статФ (точно). Коэффициент равен с2×10−5 Ф/см = 100/(4πε0).
  • Абфарад — единица электрической ёмкости в СГСМ; очень большая единица: 1 абФ = 109 Ф = 1 ГФ.

ru.wikipedia.org

Маркировка и основные характеристики конденсатора 104

Одним из важнейших элементов электронной схемы и практически любой теле,- радиоаппаратуры является ёмкостной двухполюсник под названием конденсатор. Из всего разнообразия, которое выдаёт потребителям рынок электронных деталей, можно выделить конденсатор 104. Это пассивный компонент электроцепи, который часто используется в частотных фильтрах, колебательных контурах и других узлах.

Керамический конденсатор

Устройство керамических конденсаторов

Изначально этот элемент представлял собой две пластины, между которыми сохранялся воздушный промежуток. Впоследствии этот промежуток стали заполнять различными диэлектриками.

Конструкция керамической детали

Важно! Изменяя размер пластин (площадь обкладок) и экспериментируя с составом и структурой диэлектрика, варьировали главное свойство двухполюсника – ёмкость (C). Конденсаторы иногда зовут просто емкостью.

На схемах подобный элемент обозначают двумя параллельными вертикальными отрезками с расстоянием между ними. Это визуально напоминает две пластины и воздушный промежуток.

Изображение емкости на схемах

Керамические конденсаторы относятся к классу элементов с твёрдым диэлектриком неорганического происхождения. Это в данном случае  керамика. Структура конденсатора 104к представляет собой следующее строение:

  • керамический диск, выступающий в качестве диэлектрика;
  • два слоя серебра, которые нанесены на диск методом напыления с двух сторон;
  • выводы для подключения.

У керамических дисковых двухполюсников устойчивая линейная зависимость C от температуры. Схема их включения не зависит от полярности прикладываемого напряжения, поэтому они называются неполярными.

Внимание! Конденсатор является накопителем (аккумулятором) энергии, которую он собирает, заряжаясь, и может отдать её в нужный момент, разрядившись на нагрузку. Ёмкостной двухполюсник не пропускает постоянный ток, но не препятствует прохождению переменного.

Элементы с одним диэлектрическим промежутком называют однослойными. Небольшой размер дисковых керамических ёмкостей, согласно их электрическим характеристикам, не позволяет накопить на обкладках заряд, воздействие которого можно проверить, коснувшись рукой двух его выводов одновременно. Однако детали, обладающие большой ёмкостью (несколько тысяч микрофарад), могут, разрядившись через тело человека, нанести ему удар током.

Керамические дисковые элементы

Многослойные конденсаторы

Если у металлопленочных элементов для увеличения величины С применяют не один слой плёнок диэлектрика и обкладок, то у керамических для этого также заменяют один слой несколькими.

К сведению. Применение подобных элементов для цепей с изменяющейся полярностью питания давало хорошие результаты по частотным характеристикам, позволяло иметь малые потери, низкий ток утечек, небольшие габариты, но и маленькую ёмкость.

Японская фирма Murata разработала технологию, которая поставила на конвейер конденсаторы с C = 100 мкФ и выше. Современным представителем керамических элементов с большой емкостью выступают многослойные модели. Формула их ёмкости (в фарадах):

C = E0*(E*S0*N)/D,

где:

  • E0 – постоянная диэлектрическая проницаемость (ПДП) вакуума;
  • E – ПДП керамики;
  • S0 – рабочая площадь обкладки (электрода), мм2;
  • N – количество диэлектрических слоёв;
  • D – толщина диэлектрического слоя, мм.

Формула говорит о том, что, если уменьшить слой керамики, увеличить число электродов (слоёв) и их площадь, то можно добиться значительного увеличения ёмкости элемента.

Важно! Нельзя бесконечно истончать слой диэлектрика без риска получить низкий порог пробоя. Этот критичный баланс между высоким рабочим напряжением и большой ёмкостной характеристикой ограничивает производство идеальных элементов подобной конструкции.

Та же корпорация Murata, увеличивая количество слоёв с одного до сотни (за десятилетие), добилась уменьшения толщины керамики с 10 мкм лишь до 1,8 мкм. Технически увеличить количество диэлектрических слоев допустимо, только истончая единичный слой. Для того чтобы правильно подбирать нужный ёмкостной элемент, разработана маркировка керамических конденсаторов (КК).

Маркировка КК

Любая расшифровка емкостных двухполюсников выполняется двумя или тремя знаками. На элементы маленького размера наносят обозначения по стандартам EIA. Первые две цифры – это всегда обозначение емкости. Если после двух цифр стоит буква n, это нанофарады. Конденсатор с 10n на корпусе имеет номинал 10 нанофарад.

В трёхзначной кодировке третья цифра обозначает множитель нуля. Так, например, 104 на корпусе элемента – это 10 пикофарад и множитель 104.

В итоге получается:

10*104пФ = 100000 пФ = 100 нФ = 0,1 мкФ.

Исходя из этого, код 010 будет означить 0,1 пФ. Часто используют латинскую R, чтобы обозначить значение С, которое меньше 1 пФ, например, 0R7 = 0,7 пФ.

Внимание! Когда после первых двух знаков стоят цифры 9 или 8, то это значит, что величину С необходимо умножить на 0,1 и 0,01, соответственно, а не умножать на 10 со степенью 9 или 8. К примеру, 109 = 10*0,1 = 1,0 пФ; 138 = 13*0,01 = 0,13 пФ.

Буквы, стоящие сразу за тремя цифрами, обозначают процент погрешности значения С. У конденсатора 104j, j означает ± 5%.

Для керамических конденсаторов маркировка в таблице

Варианты кодировок номинальных напряжений конденсатора

Значение напряжения, которое является для элемента номинальным (Uном), может наноситься на корпус детали отдельным кодом. К примеру, для 104j конденсатора номинал 16 В будет отмечен сочетанием 1С.

Отмечены следующие соотношения между кодом и величиной Uном:

  • 1С = 16 В;
  • 1E = 25 В;
  • 1H = 50 В;
  • 2A = 100 В;
  • 2D = 200 В;
  • 2E = 250 В;
  • 2F = 315 В;
  • 2G = 400 В;
  • 2J = 630 В.

Если на элементе присутствует маркер 2E, значит, к нему можно приложить номинальное напряжение 250 В.

Емкостные величины

Конденсатор 104 емкость которого считают как 10*104, будет обладать величиной С, равной 100000 пф или 0,1 мкФ. Чтобы ответить на вопрос, конденсатор 100n это сколько пикофарад, нужно знать кратность и дробность математических приставок. Для этого можно заглянуть в таблицу или воспользоваться онлайн-переводчиком величин.

Таблица кратных и дробных приставок

Умение расшифровывать кодировку керамических конденсаторов позволяет подобрать аналогичную деталь, заменить неисправную или применить нужную при сборке схемы. Обозначения на корпусе типа 104, 100n, 108j и другие буквенно-цифровые метки уже никого не смогут ввести в заблуждение.

Видео

amperof.ru

Маркировка конденсаторов | RCmarket.ua

Код Номинал
1R0 1 пФ
2R2 2.2 пФ
3R3 3.3 пФ
4R7 4.7 пФ
5R1 5.1 пФ
5R6 5.6 пФ
6R8 6.8 пФ
7R5 7.5 пФ
8R2 8.2 пФ
100 10 пФ
120 12 пФ
150 15 пФ
160 16 пФ
180 18 пФ
200 20 пФ
220 22 пФ
240 24 пФ
Код Номинал
270 27 пФ
300 30 пФ
330 33 пФ
360 36 пФ
390 39 пФ
430 43 пФ
470 47 пФ
510 51 пФ
560 56 пФ
680 68 пФ
750 75 пФ
820 82 пФ
910 91 пФ
101 100 пФ
121 120 пФ
151 150 пФ
181 180 пФ
Код Номинал
201 200 пФ
221 220 пФ
241 240 пФ
271 270 пФ
301 300 пФ
331 330 пФ
361 360 пФ
391 390 пФ
431 430 пФ
471 470 пФ
511 510 пФ
561 560 пФ
621 620 пФ
681 680 пФ
751 750 пФ
821 820 пФ
911 910 пФ
Код Номинал
102 1 нФ
122 1.2 нФ
132 1.3 нФ
152 1.5 нФ
182 1.8 нФ
202 2 нФ
222 2.2 нФ
272 2.7 нФ
302 3 нФ
332 3.3 нФ
362 3.6 нФ
472 4.7 нФ
562 5.6 нФ
682 6.8 нФ
752 7.5 нФ
822 8.2 нФ
912 9.1 нФ
Код Номинал
103 10 нФ
153 15 нФ
223 22 нФ
333 33 нФ
473 47 нФ
683 68 нФ
104 0.1 мкФ
154 0.15 мкФ
224 0.22 мкФ
334 0.33 мкФ
474 0.47 мкФ
684 0.68 мкФ
105 1 мкФ
155 1.5 мкФ
225 2.2 мкФ
475 4.7 мкФ
106 10 мкФ

rcmarket.ua

Отправить ответ

avatar
  Подписаться  
Уведомление о