Как работает электрическая сеть 220 вольт. Почему используется переменный ток частотой 50 Гц. Как передается электроэнергия от электростанции до потребителя. Что такое фаза и ноль в бытовой электросети. Почему важно соблюдать технику безопасности при работе с электричеством.
История стандартизации электрических сетей
В начале 20 века в Российской империи существовала полная неразбериха с параметрами электрических сетей. Каждый поставщик электроэнергии устанавливал собственные стандарты напряжения и частоты тока. Это создавало массу неудобств для потребителей.
Ситуация изменилась лишь в 1913 году, когда инженеры решились на передачу электроэнергии на большие расстояния по воздушным линиям. Это позволило избавиться от необходимости строить электростанции «у каждой розетки».
Постепенно произошла стандартизация параметров электросети. За основу был принят европейский стандарт переменного тока напряжением 220 вольт. Это позволило унифицировать электроприборы и сделать их использование более удобным для потребителей.
Почему используется переменный ток?
Долгое время шла «война токов» между сторонниками постоянного (Эдисон) и переменного (Тесла) тока. В итоге победу одержал переменный ток по следующим причинам:
- Меньшие потери при передаче на большие расстояния
- Простота повышения и понижения напряжения с помощью трансформаторов
- Более простая конструкция генераторов переменного тока
Постоянный ток имел существенные недостатки при передаче энергии на дальние расстояния из-за больших потерь на нагрев проводов. Кроме того, генераторы постоянного тока требовали частого обслуживания из-за наличия коллектора и щеток.
Генерация и передача электроэнергии
На электростанциях используются трехфазные генераторы переменного тока. Они имеют три обмотки, расположенные под углом 120 градусов друг к другу. При вращении ротора в каждой обмотке генерируется переменное напряжение со сдвигом фаз.
Для передачи электроэнергии на большие расстояния используются высоковольтные линии электропередач (ЛЭП). Напряжение повышается до сотен киловольт с помощью трансформаторов. Это позволяет снизить потери при передаче.
Вблизи потребителей напряжение понижается на трансформаторных подстанциях. В итоге до конечного потребителя доходит напряжение 220/380 В.
Особенности бытовой электросети 220 В
В розетках бытовой электросети действует переменное напряжение со следующими параметрами:
- Действующее значение напряжения — 220 В
- Амплитудное значение — около 310 В
- Частота — 50 Гц
Напряжение подается по двум проводам — фазному и нулевому. Иногда добавляется третий защитный проводник заземления.
Фазное напряжение постоянно меняется по синусоидальному закону от +310 В до -310 В с частотой 50 раз в секунду. Действующее значение 220 В — это среднеквадратичное значение переменного напряжения.
Техника безопасности при работе с электричеством
При работе с бытовой электросетью необходимо соблюдать следующие правила безопасности:
- Не прикасаться одновременно к фазному и нулевому проводникам
- Использовать изолирующие средства защиты
- Отключать напряжение перед проведением работ
- Не работать с электропроводкой мокрыми руками
- Применять инструменты с изолированными ручками
Даже кратковременное воздействие напряжения 220 В может быть опасно для жизни. Поэтому все работы с электропроводкой должны выполнять только квалифицированные специалисты.
Почему используется частота 50 Гц?
Выбор частоты переменного тока 50 Гц обусловлен несколькими факторами:
- Оптимальная частота вращения генераторов (3000 об/мин)
- Минимальные потери в линиях электропередачи
- Отсутствие заметного мерцания ламп накаливания
- Простота синхронизации электрических сетей
В США и некоторых других странах используется частота 60 Гц. Это связано с историческими причинами развития их энергосистем. Принципиальной разницы между 50 и 60 Гц нет.
Трехфазная система электроснабжения
Для питания мощных потребителей используется трехфазная система переменного тока. Она имеет следующие преимущества:
- Более равномерная нагрузка на генератор
- Экономия проводников при передаче энергии
- Возможность получения двух уровней напряжения (фазного и линейного)
- Создание вращающегося магнитного поля в электродвигателях
В трехфазной системе используются три фазных провода и один нулевой. Напряжение между фазами составляет 380 В, а между фазой и нулем — 220 В.
Стабилизация напряжения в электросети
Напряжение в электросети может колебаться в определенных пределах из-за изменения нагрузки. Для защиты чувствительных электроприборов применяются стабилизаторы напряжения. Они бывают следующих типов:
- Электромеханические (с сервоприводом)
- Электронные (симисторные)
- Релейные
- Гибридные
Современная бытовая техника обычно имеет встроенные импульсные блоки питания, способные работать в широком диапазоне входных напряжений. Поэтому необходимость в отдельных стабилизаторах для дома отпала.
Как узнать напряжение ЛЭП по её внешнему виду: ammo1 — LiveJournal
Полезно знать, какое напряжение передаётся по линии электропередач (ЛЭП), так как для каждого напряжения существует своя безопасная зона от проводов.
Минимальное напряжение ЛЭП — 0.4 кВ (напряжение между каждым фазным проводом и нолём — 220 вольт). Такие линии обычно используются в дачных посёлках, они выглядят так.
Характерный признак — маленькие белые или прозрачные изоляторы и пять проводов (три фазы, ноль, фаза к фонарям освещения).
Для подвода напряжения к трансформаторам тех же дачных посёлков используются линии 6 и 10 кВ. 6-киловольтные линии используются всё реже.
Отличие от низковольтной линии в размере изоляторов. Здесь они гораздо больше. Для каждого провода используется один или два изолятора. Проводов всегда три.
Очень важно не путать эти линии. Я читал грустную историю про горе-строителей, которые хотели подключить бетономешалку напрямую к проводам ЛЭП и сдуру накинули крючки на 10-киловольтные провода вместо 220-вольтных.
Следующий стандартный номинал напряжения ЛЭП — 35 кВ.
Такую ЛЭП легко распознать по трём изоляторам, на которых закрепляется каждый провод.
У линии 110 кВ (110 тысяч вольт) изоляторов на каждом проводе шесть.
У линии 150 кВ изоляторов на каждом проводе 8-9.
Линии 220 кВ чаще всего используются для подвода электричества к подстанциям. В гирлянде от 10 изоляторов. ЛЭП 220 кВ могут значительно отличаться друг от друга, количество изоляторов может доходить до 40 (две группы по 20), но одна фаза у них всегда передаётся по одному проводу.
Недавно в Москве на пересечении Калужского шоссе и МКАД поставили две опоры ЛЭП 220 кВ необычного вида. О них подробно рассказала neferjournal: http://neferjournal.livejournal.com/4207780.html. Это фото из её поста.
ЛЭП 330 кВ, 500 кВ и 750 кВ можно распознать по количеству проводов каждой фазы.
330 кВ — по два провода в каждой фазе и от 14 изоляторов.
ЛЭП 500 кВ — по три провода, расположенных треугольником, на фазу и от 20 изоляторов в гирлянде.
ЛЭП 750 кВ — 4 или 5 проводов, расположенных квадратом или кольцом, на каждую фазу и от 20 изоляторов в гирлянде.
Убедиться в точности определения напряжения можно, посмотрев, что написано на опоре ЛЭП. Во второй строке указан номер опоры ЛЭП, а в первой строке указана буква и цифра через тире. Цифра — это номер высоковольтной линии, а буква — напряжение. Буква Т означает 35 кВ, С — 110 кВ, Д — 220 кВ.
Допустимые расстояния до токоведущих частей для разных типов ЛЭП.
Информация и часть фотографий для этого поста во многом почёрпнута из статьи Как по изоляторам определить напряжение ВЛ.
© 2016, Алексей Надёжин
Основная тема моего блога — техника в жизни человека. Я пишу обзоры, делюсь опытом, рассказываю о всяких интересных штуках. А ещё я делаю репортажи из интересных мест и рассказываю об интересных событиях.
Добавьте меня в друзья здесь. Запомните короткие адреса моего блога: Блог1.рф и Blog1rf.ru.
Второй мой проект — lamptest.ru. Я тестирую светодиодные лампы и помогаю разобраться, какие из них хорошие, а какие не очень.
ammo1.livejournal.com
Вольт напряжение единица ток генератор преобразователь физика
Вольт.
Вольт – единица измерения электрического потенциала, разности потенциалов, электрического напряжения и электродвижущей силы в Международной системе единиц (СИ). Вольт как единица измерения имеет русское обозначение – В и международное обозначение – V.
Вольт, как единица измерения
Применение вольта
Представление вольта в других единицах измерения – формулы
Кратные и дольные единицы вольта
Интересные примеры
Другие единицы измерения
Вольт, как единица измерения:
Вольт – единица измерения электрического потенциала, разности потенциалов, электрического напряжения и электродвижущей силы в Международной системе единиц (СИ), названная в честь итальянского физика и физиолога Алессандро Вольты.
Вольт как единица измерения имеет русское обозначение – В и международное обозначение – V.
Существует несколько определений вольта.
Разность потенциалов между двумя точками равна 1 вольту (В), если для перемещения заряда величиной 1 кулон (Кл) из одной точки в другую над ним надо совершить работу величиной 1 джоуль (Дж).
1 вольт (В) равен электрическому напряжению, вызывающему в электрической цепи постоянный ток силой 1 ампер (А) при мощности 1 ватт (Вт). Либо 1 вольт равен электрическому напряжению на концах проводника, необходимое для выделения в нём теплоты мощностью в один ватт (Вт) при силе протекающего через этот проводник постоянного тока в один ампер (A).
1 вольт (В) равен разность потенциалов на резисторе в 1 Ом (Ω) при протекании через него тока в 1 ампер (А).
В = (м² · кг) / (с3 · A) = Дж / Кл = Вт / А = А · Ом.
1 В = (1 м² · 1 кг) / (1 с3 · 1 A) = 1 Дж / 1 Кл = 1 Вт / 1 А = 1 А · 1 Ом.
В Международную систему единиц вольт введён решением XI Генеральной конференцией по мерам и весам в 1960 году, одновременно с принятием системы СИ в целом. В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы «вольт» пишется со строчной буквы, а её обозначение — с заглавной (В). Такое написание обозначения сохраняется и в обозначениях производных единиц, образованных с использованием вольта.
Применение вольта:
В вольтах измеряют электрического потенциал, разность потенциалов, электрическое напряжение и электродвижущую силу.
Представление вольта в других единицах измерения – формулы:
Через основные и производные единицы системы СИ вольт выражается следующим образом:
В = (м² · кг) / (с3 · A).
В = Дж / Кл.
В = Вт / А.
В = А · Ом.
В = (Вт · Ом)1/2.
где А – ампер, В – вольт, Кл – кулон, Дж – джоуль, м – метр, с – секунда, Вт – ватт, кг – килограмм, Ом – ом.
Кратные и дольные единицы вольта:
Кратные и дольные единицы образуются с помощью стандартных приставок СИ.
Кратные | Дольные | ||||||
величина | название | обозначение | величина | название | обозначение | ||
10 | декавольт | даВ | daV | 10−1 В | децивольт | дВ | dV |
102 В | гектовольт | гВ | hV | 10−2 В | сантивольт | сВ | cV |
103 В | киловольт | кВ | kV | 10−3 В | милливольт | мВ | mV |
106 В | мегавольт | МВ | MV | 10−6 В | микровольт | мкВ | µV |
109 В | гигавольт | ГВ | GV | 10−9 В | нановольт | нВ | nV |
1012 В | теравольт | ТВ | TV | 10 −12 В | пиковольт | пВ | pV |
1015 В | петавольт | ПВ | PV | 10−15 В | фемтовольт | фВ | fV |
1018 В | эксавольт | ЭВ | EV | 10−18 В | аттовольт | аВ | aV |
1021 В | зеттавольт | ЗВ | ZV | 10−21 В | зептовольт | зВ | zV |
1024 В | иоттавольт | ИВ | YV | 10−24 В | иоктовольт | иВ | yV |
Интересные примеры*:
Наименьшее измеряемое напряжение составляет порядка 10 нВ.
Разность потенциалов на мембране нейрона – 70 мВ.
Напряжение на обычной пальчиковой батарейке типа АА – 1,5 В (постоянное).
Силовое питание компьютерных компонентов имеет напряжение – 5 В, 12 В (постоянное).
Напряжение электрооборудования автомобилей – 12 В, для тяжелых грузовиков – 24 В (постоянное).
Напряжение в аккумуляторах автомобилей – 12/24 В (постоянное).
Напряжение в блоке питания ноутбука и жидкокристаллических мониторов – 19 В (постоянное).
«Безопасное» пониженное напряжение в сети в опасных условиях – 36-42 В (переменное).
Напряжение в телефонной линии (при опущенной трубке) – 50 В (постоянное).
Напряжение в электросети Японии – 100 / 172 В (переменное трехфазное).
Напряжение в домашних электросетях США – 120 / 240 В (сплит-фаза) (переменное трехфазное).
Напряжение в бытовых электросетях России – 220 / 380 В (переменное трехфазное).
Разряд электрического ската – до 200-250 В (постоянное).
Разряд электрического угря – до 650 В (постоянное).
Напряжение на свече зажигания автомобиля – 10-25 кВ (импульсное).
Напряжение в контактной сети трамвая, троллейбуса – 600 В (660 В) (постоянное).
Напряжение контактного рельса в метрополитене – 825 В (постоянное).
Напряжение в контактной сети железных дорог – 3 кВ (постоянное), 25 кВ (переменное).
Напряжение в магистральных ЛЭП – 110, 220, 330, 500, 750 и 1150 кВ (переменное трехфазное).
Самое высокое постоянное напряжение, полученное в лаборатории – 25 МВ.
Молния имеет напряжение от 100 МВ и выше (постоянное).
* в скобках указан тип напряжения.
Источник: https://ru.wikipedia.org/wiki/Вольт
Примечание: © Фото https://www.pexels.com, https://pixabay.com
карта сайта
напряжение сколько питание 1 380 5 6 18 12 220 вольт интернет магазин купить аккумулятор шуруповерт каталог трансформатор
2 3 24 вольта лампа
светодиод блок питания вольт цена схема спб ток генератор преобразователь своими руками
Коэффициент востребованности 40
xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai
Напряжение 220 Вольт | Практическая электроника
Да, все знают что это электрический ток в розетке должен быть 220 вольт». Но тех, кто представляет хотя бы приблизительно как он образуется и передаётся потребителю, кто может сказать «в бытовой электросети однофазная линия переменного тока 220 вольт частотой 50 Герц» совсем немного и, скорее всего, это будут специально обученные люди, которые тоже порой не задумываются о том, почему именно 220 вольт? Почему переменный ток, почему частота сети именно 50 Герц? А действительно, почему сложилось именно так? Вариантов-то было множество. И кстати, заходя вперёд, стоит сообщить что вышеперечисленное не эталонный стандарт для всей планеты. Кто-то пошёл и другим путём в возведении электро-инфраструктуры. На эти и некоторые другие вопросы мы попытаемся дать ответы в данной статье.
Генератор
Чтобы подать электричество в розетку, необходимо его как-то сгенерировать. Для выработки электроэнергии до сих пор в большинстве применяются технологии конца 19 века – электромагнитная индукция, преобразующая механическую энергию в электрическую. Проще говоря – генераторы. Различие генераторов лишь в том, каким образом подают механическую энергию. Раньше это были громоздкие паровые машины. Со временем добавились гидротурбины для проточной воды (гидроэлектростанции) , двигатели внутреннего сгорания, ядерные реакторы.
Принцип действия генератора основан на магнитной индукции. Вращательное движение генератора превращается в электрический ток. То есть можно сказать, что генератор – это тот же самый электродвигатель, но обратного действия. Если на электродвигатель подать напряжение, то он начнет вращаться. Генератор работает наоборот. Вращательное движение вала генератора превращается в электрический ток. Поэтому, чтобы вращать вал генератора, нам потребуется какая-либо энергия извне. Это может быть пар, который раскручивает турбину, а она в свою очередь раскручивает вал генератора
Принцип работы ТЭСлибо это может быть сила потока воды, которая с помощью гидротурбины раскручивает вал генератора, а он в свою очередь также вырабатывает электрический ток
Принцип работы ГЭСНу или это может быть даже ветряк
Ветряная электростанцияКороче говоря, принцип везде один и тот же.
Кстати, ядерный реактор не способен самостоятельно выработать энергию. По сути, атомная энергоустановка является тем же самым примитивным паровым котлом, где рабочим телом является обыкновенный пар. Да, нынче существуют иные способы генерации электричества, на вроде тех же самых солнечных элементов, бетагальванических и изотопных ядерных батарей, «мифических» токомаков. Однако, вышеперечисленный «хайтэк» имеет существенные ограничения – запредельная стоимость материалов ,монтажа и наладки, габариты и малый кпд. Потому, всерьёз рассматривать всё это в качестве полноценной электростанции большой мощности не стоит (по крайней мере в ближайшие пару десятков лет).
Экскурс в историю
Итак, генератор на нашей электростанции преобразовывает механическую энергию в электрическую. А что дальше? В каком виде и как именно передавать энергию потребителю? Как избежать колоссальных потерь при передаче?
Поразительно, но подобная ситуация существовала на самом деле! В той же Российской Империи вплоть до начала 20 века была полная неразбериха. Рядом с каждым «крупным» потребителем электроэнергии (фабрика, подворье преуспевающего купца или гостиница для особ благородных кровей) строили отдельную электростанцию. Было множество конкурирующих фирм, предоставляющих услуги электрификации и, в последующем, своё электрическое оборудование заточенное только под свою сеть. Каждый поставщик электроэнергии задавал собственные параметры электросети – напряжение, частоту. Были даже электросети с постоянным током! Человек, купивший, к примеру, электролампочки в «Товариществе электрического освещения Лодыгин и Ко» смог бы использовать их лишь в электросети этой же компании. При подключении к сети «Дженерал электрик» эта лампочка тут же вышла бы из строя – напряжение сети этой фирмы было значительно выше необходимого, не говоря уже о других параметрах.
Лишь в 1913 году имперские инженеры решились передавать электроэнергию на большие расстояния по воздушным проводным линиям, избавив от необходимости постройки электростанций «у каждой розетки». В преддверии грядущей великой войны и нахлынувшего патриотизма власть задумалась об импортозамещении. Ну прям как в наше время, после кризиса 2014 года). Были финансово и юридически задавлены многие небольшие западные фирмы (кроме германских и французских), преференции и льготы давались лишь отечественным товариществам и предприятиям. В итоге, это привело к монополизму на рынке поставщика электроэнергии и, невольно, стандартизации параметров электрической сети.
Так как Берлин и Париж были уже электрифицированы единой энергосистемой с переменным напряжением сети 220 вольт, отечественные компании также приняли этот стандарт. Людям было удобнее использовать электрические приборы единого типа, не беспокоясь что их новомодный электрический пылесос сгорит на новом месте жительства из-за других параметров энергосети. Произошло полное вытеснение многих небольших фирм – никто уже не хотел пользоваться их услугами и их приборами, хотя они вынужденно подстроились под единый стандарт электросети. Те самые 220 вольт переменного тока.
Почему именно переменное напряжение?
Не так давно по историческим меркам у человечества возникла дилемма: какой ток лучше? Переменный или постоянный? Этот период времени был известен, как “война токов”. На самом деле были споры между Николой Теслой и Эдисоном – самыми великими учеными-изобретателями того времени. Эдисон был за постоянный ток, а Никола Тесла – за переменный. Это борьба продолжалось более 100 лет, даже после смерти этих великих ученых! Но все-таки в 2007 году окончательную победу одержал переменный ток.
Дело все в том, что постоянный ток при передаче на большие расстояния теряет свою энергию на нагрев проводов. Здесь во всем виноват закон Джоуля-Ленца
Q=I2Rt
где
Q — количество выделяемого тепла (Джоули)
I — сила тока, протекающего через проводник (Амперы)
R — сопротивление проводника (Омы)
t — время прохождения тока через проводник (Секунды)
Нетрудно догадаться, что чем больше сила тока будет протекать по проводам, и чем длиннее будут провода, тем больше они будут нагреваться, так как сопротивление провода выражается формулой:
сопротивление провода формулаВторой причиной было то, что в генераторе постоянного тока надо было использовать специальную конструкцию, которая бы позволяла снимать электрический ток с движущихся обмоток. Для этого на валу двигателя крепился так называемый коллектор, к которому припаивались обмотки генератора. Коллектор все время находился в движении, так как он закреплен на самом валу генератора. С коллектора с помощью графитовых щеток снималось напряжение. Тот же самый принцип до сих пор используется в генераторах и двигателях постоянного тока.
Принцип работы генератора постоянного токаМинусом такой конструкции является то, что со временем щетки и коллектор изнашиваются. Поэтому, такой генератор надо часто обслуживать, вовремя заменять щетки и чистить коллектор. Чаще всего такой генератор имеет два провода: плюс и минус. Чем больше коллекторных пластин (ламелей) на таком генераторе, тем чище будет постоянный ток с такого генератора. Если такой генератор имеет множество ламелей и крутится с одинаковой скоростью, то на осциллографе можно увидеть примерно такую картину постоянного тока
осциллограмма постоянного токаТаких недостатков лишен генератор переменного напряжения. Принцип его действия показан ниже
Принцип работы генератора переменного токаВ настоящее время в нем используются три обмотки, разнесенные друг от друга на 120 градусов. Один конец каждой обмотки соединяется с друг другом, образуя так называемый “ноль”. В нашей стране такие генераторы на ТЭС или ГЭС стараются крутить со скоростью 50 оборотов/сек. Ну или 3000 оборотов/минуту. Неплохая такая скорость). В Америке же их крутят под 60 оборотов/сек. А что такое обороты в секунду? Это и есть частота. А частота, как вы помните, выражается в Герцах (Гц). Поэтому, у нас в розетках частота 50 Гц, в Америке 60 Гц.
Такие генераторы называют трехфазными, так как они имеют три фазы: A, B, C. В англо-язычной литературе можно увидеть обозначение R, S, T либо L1, L2, L3. Точка, где соединяется конец всех обмоток обозначается буквой N (ноль).
То есть по сути с генератора выходит 4 провода: фазы A,B,С и 0, он же нейтраль N, который соединяет один конец каждой из трех обмоток.
Обмотки генератора переменного токаПри вращении ротора-магнита в каждой обмотке создается электрический ток. Если с помощью осциллографа вывести осциллограммы сразу трех обмоток, то можно увидеть что-то типа этого:
Осциллограммы трехфазного напряженияПередача электрического тока на дальние расстояния
Итак, электрический ток мы получили. Теперь надо как-то передать его на дальние расстояния, не забывая про закон Джоуля-Ленца: Q=I2Rt . То есть нам надо каким-то чудом уменьшить силу тока, которая будет течь по проводам, так как в основном из-за нее происходят большие потери.
Для этих целей идеально подойдет трансформатор, но не простой, а трехфазный. Здесь используется замечательное свойство трансформатора: если повышаем напряжение, то понижаем силу тока, и наоборот, понижаем напряжение, увеличиваем силу тока. Поэтому, для того, чтобы передать полученную электроэнергию на дальние расстояния, нам нужно увеличить в несколько раз напряжение, тем самым мы в это же число раз уменьшим силу тока. Ниже на рисунке схема передачи электроэнергии от генератора ГЭС и до конечного потребителя, то есть для заводов, для электротранспорта и для нас с вами.
Передача электроэнергии от генератора до конечного потребителяС ГЭС напряжение повышают до нескольких киловольт, чаще всего до 110 кВ. Все это достигается с помощью трехфазного высоковольтного повышающего трансформатора (2).
Трехфазный высоковольтный трансформаторДалее высоковольтное напряжение идет по высоковольтной линии (3) и доходит до какого-либо города, либо райцентра.
Высоковольтная линия передачи электроэнергииВ каждом райцентре либо городе есть своя подстанция, где имеется уже свой высоковольтный понижающий трансформатор (4), который преобразует напряжение 110 кВ в 10 кВ, либо в 6 кВ (5).
Почему нельзя было сразу тянуть провода с генератора? Зачем надо было повышать, а потом снова понижать напряжение? Все опять же из за закона Джоуля-Ленца. Так как ГЭС находится на очень большом расстоянии от потребителей электроэнергии, приходится повышать напряжение, чтобы минимизировать потери на нагрев проводов. Как мы уже говорили, трансформатор повышает напряжение, но при этом уменьшает во столько же раз силу тока, поэтому потери в проводах на дальние расстояния сокращаются в разы, исходя из формулы Джоуля-Ленца Q=I2Rt.
Потом уже с подстанции напряжение расходится по трансформаторным “будкам”, которые можно уже заметить в каждом районе.
От этих “будок” выходит после преобразования приблизительно 380 Вольт. Но здесь есть один нюанс. Везде используется три провода, а к нам в дома заходят чаще всего два провода. В чем же дело? А дело как раз в том, что есть такое понятие как линейное и фазное напряжение. Линейное напряжение замеряется между 3 проводами, по которым идут 380 В. Они называются фазами. То есть грубо говоря – это те же самые провода, которые вышли с генератора еще где-нибудь на ГЭС. Но если взять любую из фаз и замерять напряжение относительно нулевого проводника, то есть относительно нуля, то у нас будет фазное напряжение 220 В. Получается, к нам в дом заходит ОДНА фаза и НОЛЬ. Куда деваются другие фазы? Они равномерно распределяются между жильцами дома или вашего района. То есть к вашему соседу может придти другая фаза, но тот же самый ноль.
Трехфазное линия передачи электроэнергииНапряжение 220 Вольт
Очень много вопросов в рунете именно по напряжению “из розетки”. Самый часто задаваемый вопрос выглядит так:
– Какой ток в розетке?
Здесь вопрос, конечно же, поставлен неправильно. Током чаще всего называют именно силу тока. Правильнее было бы задать вопрос: “Какое напряжение в розетке?”
У нас в России в домашней сети переменное напряжение с частотой в 50 Герц, максимальной амплитудой приблизительно в 310 Вольт и действующим напряжением в 220 Вольт. Думаю, это будет самый развернутый ответ.
Итак, теперь давайте разбираться что к чему.
Как же выглядит этот “ток из розетки” на осциллографе? Ну примерно вот так:
По вертикали у нас одна клеточка равняется 100 Вольтам. Следовательно, максимальная амплитуда Umax будет равна где-то 330 Вольт
амплитудное значение напряженияПо идее должно быть 310 Вольт. Хотя оно и не удивительно. Напряжение в сети редко когда бывает стабильным. Все, конечно же, зависит от потребителей и трансформатора на электростанции, который их питает.
Когда я был еще совсем маленьким, рядом с телевизором у нас стояло очень интересное устройство. На нем была шкала, и мы вечером подкручивали крутилку, чтобы шкала показывала ровно 220 Вольт, иначе телевизор отказывался работать. С возрастом я понял, что это был ручной стабилизатор напряжения, так как именно вечером все соседи начинали “жрать” электричество и поэтому в сети было вольт 190-200. Это уже сейчас во всех телевизорах и других бытовых приборах эти стабилизаторы встроены прямо внутри прибора, и поэтому надобность в стабилизаторах резко отпала.
Фаза и ноль
К вам 220 Вольт приходит по двум проводам. Иногда с ними бывает в связке еще и третий провод желто-зеленого цвета – это земля. Этот провод используется для обеспечения безопасности. В старых домах такого провода нет. Земля в 90% случаев обозначается как желто-зеленый провод. Другие провода могут иметь различную окраску, но чаще всего стараются ноль маркировать синим проводом, а фазу – ярким цветом. Например, красным.
Обозначение фазы, нуля и земли на проводеИтак, по одному проводу течет фаза, по другому – ноль. Ноль – это провод для съема электрического тока с фазы. Ноль не представляет опасности для человека, но лучше все-таки не экспериментировать! В фазе напряжение очень быстро изменяется сначала от какого-то максимального значения (для 220 Вольт это значение равняется 310 Вольт), потом падает до нуля, и потом идет в минус и достигает значения в -310 Вольт и потом снова до нуля и снова до 310 Вольт. Итак, за секунду он успевает проделать эту операцию 50 раз, так как генератор на ГЭС, ТЭС или АЭС крутится именно с такой скоростью.
осциллограмма 220 ВКакие процессы происходят на фазе?
В какой-то момент времени фаза бывает больше по напряжению, чем ноль. В какой-то момент времени она становится равна нулю. А в какой-то момент времени становится меньше чем ноль. Или, иначе говоря, ноль становится больше по напряжению, чем фаза). Потом фаза снова становится равна нулю, а потом снова больше нуля и все это повторяется до тех пор, пока работает генератор на электростанции.
Хотите узнать, как все это выглядит на графике? Да пожалуйста 😉
фаза и ноль на осциллограммеКак я уже сказал, фаза без нуля – ничто! И если даже встать на диэлектрический коврик, то есть полностью изолировать себя от контакта с землей, то можно даже и потрогать фазу без вреда для здоровья. НО! не вздумайте проверять это дома! Так поступают только матерые электрики и у них имеются в наличии эти диэлектрические коврики и другие прибамбасы.
Но никогда, слышите, НИКОГДА! не дотрагивайтесь голыми руками сразу до двух проводов, тем более взяв их по одному в руки! Вы будете проводником, соединяющим цепь 220 Вольт. Или попросту говоря, вас ударит электрическим током. Думаю, некоторые до сих пор помнят эти “приятные” ощущения. А как бодрит сразу! Уууухх)))
Напряжение в розетке – это действующее напряжение и вычисляется оно по формуле:
где
UД – это действующее напряжение, В
Umax – максимальное напряжение, В
Следовательно,
что мы и видели на осциллограмме.
Так что знайте, что в электронике и в электрике если вам говорят, что напряжение переменного тока, допустим, 24 Вольта – это действующее напряжение. Максимальным значением переменного напряжения никто не пользуется.
Резюме
В наших розетках электрический ток вырабатывают генераторы переменного тока, которые находятся за много километров от нас. Вал таких генераторов разгоняют турбины, которые преобразуют энергию падающей воды либо горячего пара во вращательное движение.
Электрический ток несколько раз трансформируется в разные величины напряжения, пока идет до конечного потребителя.
В промышленности используются другие значения электрического тока, такие как 10 кВ, 6 кВ, 380 В по три фазы. Для простого обывателя, типа меня и вас, электрический ток идет по двум проводам, называемым фазой и нулем.
www.ruselectronic.com
Напряжение в 1 Вольт, физический смыл, простое определение
Что такое напряжение в 1 вольт?
Напряжение электрического тока – это величина, характеризующая разность зарядов (потенциалов) между полюсами либо участками цепи, по которой идет ток. Классическое определение: напряжение это величина, которая показывает разность потенциалов между двумя точками. Оно равно 1 вольту (это единица измерения напряжения), когда необходимо переместить единичный заряд в 1 кулон, приложив для этого усилие всего в 1 джоуль выполненной работы.
Наиболее простое сравнение
Для понимания данной величины, можно описать на примере работы водопровода или резервуара с водой, где напряжение соответствует давлению воды в емкости, трубе. Вода в нашем примере – это заряд, а скорость потока, который возникает под давлением – и есть электрический ток. Чем больше давление воды – напряжение, тем больше скорость струи в трубе – больше тока получает потребитель.
Как в водопроводе, так и в электрических сетях важное значение имеет диаметр проводника. При большом диаметре трубы и достаточном давлении через нее проходит много воды. Так и в электрической сети: при требуемом сечении проводника и высоком напряжении ваши электроприборы будут получать достаточно электроэнергии для работы. Если не рассчитать сеть и перегрузить ее, то на примере водопровода это закончится аварией: трубу от избыточного давления может разорвать. Так и с электрической сетью: если ваши провода и приборы рассчитанные на 10 ампер и внезапно по ним начнет протекать ток в 30А, то они могут элементарно оплавиться или сгореть.
Исходя из этого становится понятно, почему одни напряжения неопасны для человека, а другие – смертельны? Сравним снова водой. Например, вода в океане – это огромный источник давления. Если человека поместить на глубину больше 5 метров, то ему становится плохо от давления воды на его ткани. Так же и с током: когда источник тока мощный, а человек содержит в себе незначительный заряд, то между источником тока и человеком возникает огромное напряжение, способное человека травмировать или убить.
А кто это все придумал?
Изучение электричества, согласно историческим данным, началось в 15 веке, хотя о действии данных сил люди знали давно: кто-то находил намагниченные куски металла, кто-то наблюдал и задумывался, откуда берутся молнии, а кто-то не мог избавиться от пыли, которую удерживает на поверхности статическое электричество. После было три столетия опытов, споров, разработки различных теорий. Прорыв в изучении темы случился в конце 16 века, когда был изобретен первый конденсатор. Это время и выпало на молодость и взросление талантливого ученого из Италии — Алессандро Вольты (1745—1827).
Вольт был химиком, физиком и физиологом, основательно знал математику, с трудами Ньютона он познакомился в 13 лет, а к своим 55 годам изобрёл первую электрическую батарею в мире. Этот простейший гальванический элемент произвел переворот в мире электричества: так людям открылись электролиз, который сегодня повсеместно применяется при производстве и обработке металлов и электрическая дуга. В честь заслуг Алессандро Вольты в изучении электричества, и было присвоено его имя единице измерения напряжения.
pue8.ru
простой для повторения генератор высокого напряжения / Habr
Добрый день, уважаемые хабровчане.
Этот пост будет немного необычным.
В нём я расскажу, как сделать простой и достаточно мощный генератор высокого напряжения (280 000 вольт). За основу я взял схему Генератора Маркса. Особенность моей схемы в том, что я пересчитал её под доступные и недорогие детали. К тому же сама схема проста для повторения (у меня на её сборку ушло 15 минут), не требует настройки и запускается с первого раза. На мой взгляд намного проще чем трансформатор Теслы или умножитель напряжения Кокрофта-Уолтона.
Принцип работы
Сразу после включения начинают заряжаться конденсаторы. В моём случае до 35 киловольт. Как только напряжение достигнет порога пробоя одного из разрядников, конденсаторы через разрядник соединятся последовательно, что приведёт к удвоению напряжения на конденсаторах, подсоединённых к этому разряднику. Из-за этого практически мгновенно срабатывают остальные разрядники, и напряжение на конденсаторах складывается. Я использовал 12 ступеней, то есть напряжение должно умножиться на 12 (12 х 35 = 420). 420 киловольт — это почти полуметровые разряды. Но на практике, с учетом всех потерь, получились разряды длиной 28 см. Потери были вследствие коронных разрядов.
О деталях:
Сама схема простая, состоит из конденсаторов, резисторов и разрядников. Ещё потребуется источник питания. Так как все детали высоковольтные, возникает вопрос, где же их достать? Теперь обо всём по порядку:
1 — резисторы
Нужны резисторы на 100 кОм, 5 ватт, 50 000 вольт.
Я пробовал много заводских резисторов, но ни один не выдерживал такого напряжения — дуга пробивала поверх корпуса и ничего не работало. Тщательное загугливание дало неожиданный ответ: мастера, которые собирали генератор Маркса на напряжение более 100 000 вольт, использовали сложные жидкостные резисторы генератор Маркса на жидкостных резисторах, или же использовали очень много ступеней. Я захотел чего-то проще и сделал резисторы из дерева.
Отломал на улице две ровных веточки сырого древа (сухое ток не проводит) и включил первую ветку вместо группы резисторов справа от конденсаторов, вторую ветку вместо группы резисторов слева от конденсаторов. Получилось две веточки с множеством выводов через равные расстояния. Выводы я делал путём наматывания оголённого провода поверх веток. Как показывает опыт, такие резисторы выдерживают напряжение в десятки мегавольт (10 000 000 вольт)
2 — конденсаторы
Тут всё проще. Я взял конденсаторы, которые были самыми дешевыми на радио рынке — К15-4, 470 пкф, 30 кВ, (они же гриншиты). Их использовали в ламповых телевизорах, поэтому сейчас их можно купить на разборке или попросить бесплатно. Напряжение в 35 киловольт они выдерживают хорошо, ни один не пробило.
3 — источник питания
Собирать отдельную схему для питания моего генератора Маркса у меня просто не поднялась рука. Потому, что на днях мне соседка отдала старенький телевизор «Электрон ТЦ-451». На аноде кинескопа в цветных телевизорах используется постоянное напряжение около 27 000 вольт. Я отсоединил высоковольтный провод (присоску) с анода кинескопа и решил проверить, какая дуга получится от этого напряжения.
Вдоволь наигравшись с дугой, пришел к выводу, что схема в телевизоре достаточно стабильная, легко выдерживает перегрузки и в случае короткого замыкания срабатывает защита и ничего не сгорает. Схема в телевизоре имеет запас по мощности и мне удалось разогнать её с 27 до 35 киловольт. Для этого я покрутил подстроичник R2 в модуле питания телевизора так, что питание в строчной развертке поднялось с 125 до 150 вольт, что в свою очередь привело к повышению анодного напряжения до 35 киловольт. При попытке ещё больше увеличить напряжение, пробивает транзистор КТ838А в строчной развёртке телевизора, поэтому нужно не переборщить.
Процесс сборки
С помощью медной проволоки я прикрутил конденсаторы к веткам дерева. Между конденсаторами должно быть расстояние 37 мм, иначе может произойти нежелательный пробой. Свободные концы проволоки я загнул так, чтобы между ними получилось 30 мм — это будут разрядники.
Лучше один раз увидеть, чем 100 раз услышать. Смотрите видео, где я подробно показал процесс сборки и работу генератора:
Техника безопасности
Нужно соблюдать особую осторожность, так как схема работает на постоянном напряжении и разряд даже от одного конденсатора будет скорее всего смертельным. При включении схемы нужно находиться на достаточном удалении потому, что электричество пробивает через воздух 20 см и даже более. После каждого выключения нужно обязательно разряжать все конденсаторы (даже те, что стоят в телевизоре) хорошо заземлённым проводом.
Лучше из комнаты, где будут проводиться опыты, убрать всю электронику. Разряды создают мощные электромагнитные импульсы. Телефон, клавиатура и монитор, которые показаны у меня в видео, вышли из строя и ремонту больше не подлежат! Даже в соседней комнате у меня выключился газовый котёл.
Нужно беречь слух. Шум от разрядов похож на выстрелы, потом от него звенит в ушах.
Интересные наблюдения
Первое, что ощущаешь при включении — то, как электризуется воздух в комнате. Напряженность электрического поля настолько высока, что чувствуется каждым волоском тела.
Хорошо заметен коронный разряд. Красивое голубоватое свечение вокруг деталей и проводов.
Постоянно слегка бьет током, иногда даже не поймёшь от чего: прикоснулся к двери — проскочила искра, захотел взять ножницы — стрельнуло от ножниц. В темноте заметил, что искры проскакивают между разными металлическими предметами, не связанными с генератором: в дипломате с инструментом проскакивали искорки между отвёртками, плоскогубцами, паяльником.
Лампочки загораются сами по себе, без проводов.
Озоном пахнет по всему дому, как после грозы.
Заключение
Все детали обойдутся где-то в 50 грн (5$), это старый телевизор и конденсаторы. Сейчас я разрабатываю принципиально новую схему, с целью без особых затрат получать метровые разряды. Вы спросите: какое применение данной схемы? Отвечу, что применения есть, но обсуждать их нужно уже в другой теме.
На этом у меня всё, соблюдайте осторожность при работе с высоким напряжением.
habr.com
Калькулятор перевода силы тока в мощность
Мощность в электрической цепи представляет собой энергию, потребляемую нагрузкой от источника в единицу времени, показывая скорость ее потребления. Единица измерения Ватт [Вт или W]. Сила тока отображает количество энергии прошедшей за величину времени, то есть указывает на скорость прохождения. Измеряется в амперах [А или Am]. А напряжение протекания электрического тока (разность потенциалов между двумя точками) измеряется в вольтах. Сила тока прямо пропорциональна напряжению.
Чтобы самостоятельно рассчитать соотношение Ампер / Ватт или Вт / А, нужно использовать всем известный закон Ома. Мощность численно равна произведению тока, протекающего через нагрузку, и приложенного к ней напряжения. Определяется одним из трех равенств: P = I * U = R * I² = U²/R.
Следовательно, чтобы определить мощность источника потребления энергии, когда известна сила тока в сети, нужно воспользоваться формулой: Вт (ватты) = А (амперы) x I (вольты). А чтобы произвести обратное преобразование, надо перевести мощность в ваттах на силу потребления тока в амперах: Ватт / Вольт. Когда же имеем дело с 3-х фазной сетью, то придется еще и учесть коэффициент 1,73 для силы тока в каждой фазе.
Сколько Ватт в 1 Ампере и ампер в вате?
Чтобы перевести Ватты в Амперы при переменном или постоянном напряжении понадобится формула:
I = P / U, где
I – это сила тока в амперах; P – мощность в ваттах; U – напряжение у вольтахесли сеть трехфазная, то I = P/(√3xU), поскольку нужно учесть напряжение в каждой из фаз.
Корень из трех приблизительно равен 1,73.
То есть, в одном ватте 4,5 мАм (1А = 1000мАм) при напряжении в 220 вольт и 0,083 Am при 12 вольтах.Когда же необходимо перевести ток в мощность (узнать, сколько в 1 ампере ватт), то применяют формулу:
P = I * U или P = √3 * I * U, если расчеты проводятся в 3-х фазной сети 380 V.
А значит, если имеем дело с автомобильной сетью на 12 вольт, то 1 ампер — это 12 Ватт, а в бытовой электросети 220 V такая сила тока будет в электроприборе мощностью 220 Вт (0,22 кВт). В промышленном оборудовании, питающемся от 380 Вольт, целых 657 Ватт.
Таблица перевода Ампер – Ватт:
6 | 12 | 24 | 220 | 380 | Вольт | |
5 Ватт | 0,83 | 0,42 | 0,21 | 0,02 | 0,008 | Ампер |
6 Ватт | 1,00 | 0,5 | 0,25 | 0,03 | 0,009 | Ампер |
7 Ватт | 1,17 | 0,58 | 0,29 | 0,03 | 0,01 | Ампер |
8 Ватт | 1,33 | 0,67 | 0,33 | 0,04 | 0,01 | Ампер |
9 Ватт | 1,5 | 0,75 | 0,38 | 0,04 | 0,01 | Ампер |
10 Ватт | 1,67 | 0,83 | 0,42 | 0,05 | 0,015 | Ампер |
20 Ватт | 3,33 | 1,67 | 0,83 | 0,09 | 0,03 | Ампер |
30 Ватт | 5,00 | 2,5 | 1,25 | 0,14 | 0,045 | Ампер |
40 Ватт | 6,67 | 3,33 | 1,67 | 0,13 | 0,06 | Ампер |
50 Ватт | 8,33 | 4,17 | 2,03 | 0,23 | 0,076 | Ампер |
60 Ватт | 10,00 | 5,00 | 2,50 | 0,27 | 0,09 | Ампер |
70 Ватт | 11,67 | 5,83 | 2,92 | 0,32 | 0,1 | Ампер |
80 Ватт | 13,33 | 6,67 | 3,33 | 0,36 | 0,12 | Ампер |
90 Ватт | 15,00 | 7,50 | 3,75 | 0,41 | 0,14 | Ампер |
100 Ватт | 16,67 | 3,33 | 4,17 | 0,45 | 0,15 | Ампер |
200 Ватт | 33,33 | 16,67 | 8,33 | 0,91 | 0,3 | Ампер |
300 Ватт | 50,00 | 25,00 | 12,50 | 1,36 | 0,46 | Ампер |
400 Ватт | 66,67 | 33,33 | 16,7 | 1,82 | 0,6 | Ампер |
500 Ватт | 83,33 | 41,67 | 20,83 | 2,27 | 0,76 | Ампер |
600 Ватт | 100,00 | 50,00 | 25,00 | 2,73 | 0,91 | Ампер |
700 Ватт | 116,67 | 58,33 | 29,17 | 3,18 | 1,06 | Ампер |
800 Ватт | 133,33 | 66,67 | 33,33 | 3,64 | 1,22 | Ампер |
900 Ватт | 150,00 | 75,00 | 37,50 | 4,09 | 1,37 | Ампер |
1000 Ватт | 166,67 | 83,33 | 41,67 | 4,55 | 1,52 | Ампер |
Зачем нужен калькулятор
Онлайн калькулятор позволит быстро перевести ток в мощность. Он позволяет пересчитать потребляемую силу тока 1 Ампер в Ватт мощности, какого-либо потребителя при напряжении 12 либо 220 и 380 Вольт.
Такой перевод мощности используют как при подборе генератора для потребителей тока в бортсети автомобиля 12 Вольт с постоянным током, так и в бытовой электронике, при прокладывании проводки.
Поэтому калькулятор перевода мощности в амперы или силу тока в ватты потребуется абсолютно всем электрикам или тем, кто занимается ею и хочет быстро перевести эти единицы. Но все же калькулятор главным образом предназначен для автовладельцев. С его помощью можно посчитать каждый электрокомпонент в автомобиле и использовать полученную сумму, чтобы понять, сколько электричества должен вырабатывать генератор или какой емкостью поставить аккумулятор.
Как пользоваться
Чтоб воспользоваться быстрым переводом и пересчитать Ампер в мощность Ватт необходимо будет:
- Ввести значение напряжения, которое питает источник.
- В одной ячейке указать значение потребляемого тока (в списке можно выбрать Ампер либо мАм).
- В другом поле сразу появится результат пересчета “ток в мощность” (по умолчанию отображается в Ватт, но есть возможность установить и кВт, тогда значение автоматически пересчитается в киловатты мощности).
Преобразование можно сделать как с амперов в ватты, так и на оборот с W в A, достаточно просто сразу ввести мощность потребителя, и тогда в другой ячейке отобразится сила потребляемого тока в сети с конкретно указанным напряжением.
etlib.ru