Какие преимущества дает трехфазная электросеть в частном доме. Почему иногда лучше оставить однофазное подключение. Как правильно выбрать тип электросети для своего жилья. На что обратить внимание при проектировании электропроводки.
Особенности трехфазной и однофазной электросети
Прежде чем сравнивать преимущества и недостатки разных типов электросетей, разберемся в их ключевых особенностях:
Однофазная сеть
- Два проводника — фаза и ноль
- Напряжение 220-230 В
- Подходит для большинства бытовых приборов
- Более простая и дешевая в монтаже
- Ограниченная мощность (обычно до 5-7 кВт)
Трехфазная сеть
- Четыре проводника — три фазы и ноль
- Линейное напряжение 380 В
- Позволяет подключать мощное оборудование
- Равномерное распределение нагрузки по фазам
- Большая суммарная мощность (15-25 кВт и выше)
Преимущества трехфазной электросети в частном доме
Рассмотрим основные плюсы подключения трехфазной электросети в частном доме или коттедже:
Высокая мощность
Главное преимущество трехфазной сети — возможность подключения большей суммарной мощности. Типовые значения для частных домов:
- Однофазная сеть — 5-7 кВт
- Трехфазная сеть — 15-25 кВт
Это позволяет одновременно использовать энергоемкие приборы без риска перегрузки сети.
Равномерное распределение нагрузки
В трехфазной сети нагрузка распределяется по трем фазам. Это снижает нагрузку на каждый отдельный проводник и повышает надежность системы.
Возможность подключения трехфазного оборудования
Трехфазная сеть позволяет напрямую подключать мощное трехфазное оборудование — насосы, станки, сварочные аппараты и т.д.
Когда выгоднее оставить однофазную сеть
Несмотря на преимущества трехфазной системы, в некоторых случаях оправдано сохранение однофазного подключения:
Небольшой дом с малым энергопотреблением
Если суммарная мощность бытовых приборов не превышает 5-7 кВт, однофазной сети будет достаточно. Это характерно для небольших дачных домиков.
Высокая стоимость подключения трехфазной сети
В некоторых случаях подведение трехфазной линии может потребовать значительных затрат на монтаж и оборудование. Если бюджет ограничен, разумнее оставить однофазное подключение.
Отсутствие трехфазных потребителей
Если в доме не планируется использование мощного трехфазного оборудования, переход на трехфазную сеть может быть неоправданным.
Как выбрать оптимальный вариант электросети для дома
При выборе типа электросети для частного дома следует учитывать следующие факторы:
Оцените реальное энергопотребление
Составьте список всех электроприборов, которые планируется использовать одновременно. Суммируйте их мощности и добавьте запас 20-30%. Если итоговая цифра не превышает 5-7 кВт, однофазной сети будет достаточно.
Учитывайте перспективы расширения
Даже если текущее потребление невелико, подумайте о возможном увеличении нагрузки в будущем. Трехфазная сеть обеспечит больший запас по мощности.
Проанализируйте стоимость подключения
Сравните затраты на подведение однофазной и трехфазной линии. Учтите стоимость кабеля, щитового оборудования, монтажных работ.
Оцените сложность монтажа
Трехфазная проводка сложнее в монтаже и требует более квалифицированных специалистов. Это может увеличить стоимость и сроки работ.
Особенности проектирования электропроводки в частном доме
Независимо от выбранного типа сети, при проектировании электропроводки важно учитывать следующие моменты:
Правильный расчет нагрузок
Тщательно рассчитайте ожидаемые нагрузки по группам потребителей. Это позволит правильно выбрать сечение проводов и номиналы автоматов защиты.
Грамотное распределение нагрузки
При трехфазном подключении важно равномерно распределить потребители по фазам. Это обеспечит стабильную работу сети.
Качественные материалы и оборудование
Не экономьте на проводах, автоматах защиты, розетках и выключателях. От их качества зависит безопасность и надежность электросети.
Продуманная схема электроснабжения
Разделите потребители на группы, предусмотрите резервные линии. Это упростит эксплуатацию и повысит надежность системы.
Заключение: выбор за вами
Выбор между однофазной и трехфазной электросетью зависит от конкретных условий и потребностей. Трехфазная система имеет ряд преимуществ, но не всегда оправдана. Тщательно оцените все факторы и при необходимости проконсультируйтесь со специалистами. Грамотно спроектированная электросеть обеспечит комфорт и безопасность вашего дома на долгие годы.
Три фазы — как это работает
Три фазы — это основные части многофазной системы электрических цепей. Все мы знаем, что в наши дома электроэнергия поступает по двум проводам — фазе (фазный провод) и нулю (нейтральный провод). Но как правило у большинства людей понимание протекающих процессов ограничивается несколькими базовыми примерами, и часто оно не верное. В данном обзоре мы постараемся разобраться по возможности простыми словами с тремя фазами — особенностью протекания тока в трехфазной системе с нейтральным проводом и без него.
Три фазы — основы
Трехфазная цепь — это совокупность трех электрических цепей, в которых действуют синусоидальные ЭДС, одинаковые по амплитуде и частоте, сдвинутые по фазе одна от другой на угол 120° (2π/3) и создаваемые общим источником энергии. Расшифруем это определение. В нем упоминаются следующие понятия:
- Общий источник энергии
- Синусоидальные ЭДС сдвинутые по фазе одна от другой на угол 120°. Получение ЭДС (электродвижущей силы) основано на принципе электромагнитной индукции. При этом три фазы обмотки статора генератора повернуты в пространстве друг относительно друга на 1/3 часть окружности, то есть магнитные оси фаз повернуты в пространстве на угол 120°.
- Синусоидальные ЭДС, одинаковые по амплитуде и частоте. Если рассмотреть последний участок трансформации напряжения, то при привычном действующем напряжении 230 Вольт амплитуда каждой фазы 325 Вольт (230×√2). Частота ЭДС определяется частотой вращения ротора генератора. Частота 50 Гц значит, что ток пятьдесят раз в секунду идет в одну сторону и пятьдесят раз в обратную. При этом сто раз в секунду он достигает амплитудного значения и сто раз становится равным нулю. Смена направления происходит при переходе графика синусоиды через нулевое значение.
Термин «фаза» имеет в электротехнике два значения:
- Фазой называют аргумент синуса (ωt + Ψ). Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой (ω) и начальной фазой Ψ (пси). Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.
- Каждая отдельная цепь, входящая в трехфазную цепь принято называть фазой.
Трехфазные цепи имеют широкое распространение за счет следующих преимуществ:
- Экономичности производства и передачи энергии по сравнению с однофазными цепями.
- Возможности простого получения кругового вращающегося магнитного поля, необходимого для трехфазного асинхронного двигателя.
- Возможности получения в одной установке двух эксплуатационных напряжений — фазного и линейного.
Основными элементами трехфазной цепи являются:
- Трехфазный генератор, преобразующий механическую энергию в электрическую.
- Трансформатор напряжения. Для передачи электроэнергии на большие расстояния напряжения электрического тока с помощью силовых трансформаторов повышают до сотен тысяч вольт. Конечные же потребители используют ток после силового понижающего трансформатора.
- Линии электропередач — один из компонентов электрической сети, система энергетического оборудования, предназначенная для передачи электроэнергии посредством электрического тока (токопроводы, кабельные и воздушные линии).
- Приемники (потребители), которые могут быть как трехфазными (например, трехфазные асинхронные двигатели), так и однофазными (например, лампы накаливания).
Каждая из трех фаз в цепи имеет стандартное наименование и цветовую маркировку:
- Первая фаза обозначается латинской буквой A и желтым цветом.
- Вторая фаза обозначается латинской буквой B и зеленым цветом.
- Третья фаза обозначается латинской буквой C и красным цветом.
Если идет речь о конкретном элементе цепи, например трехфазном генераторе, трансформаторе, то в данном случае фаза — это одна из трех обмоток генератора (трансформатора), имеющая начало и конец.
Начала обмоток фаз обозначаются латинскими буквами А, В, С, а
Три фазы без нуля
Все дома и квартиры можно условно назвать однофазными приемниками (потребителями), являющимися элементами трехфазной цепи. Но если рассмотреть совокупность однофазных приемников, то по отношению к источнику (распределительному трансформатору) они выступают как одна трехфазная нагрузка. И именно переход от отдельных однофазных потребителей к их общему трехфазному потреблению вызывает много вопросов у многих интересующихся темой электротехники людей. До сих пор в понимании многих электрический ток приходит в дом по фазе и уходит обратно к трансформатору по нулю (нейтральному проводу). Но как он уходит правильно, об этом к сожалению не многие знают. Постараемся содержательно и предельно понятно раскрыть этот вопрос на примере трех фаз и нагрузок в системе без нуля (нейтрального провода).
Для начала рассмотрим пример электроснабжения условной улицы, дома на которой равномерно подключены к трем фазам, идущим от распределительного трансформатора. Воспользовавшись программой Multisim отобразим это схематически:
Расшифруем трехфазную электрическую цепь:
- V1 — трехфазный генератор 230 В. В нашем случае он заменяет понижающий распределительный трансформатор.
- Отходящие от него три фазы выделены соответствующими цветами — желтый, зеленый красный. Резисторы RPA1-RPA3, RPB1-RPB3, RPC1-RPC3 — условные сопротивления участков фазных проводов.
- Точка соединения концов фазных обмоток заземлена. Сопротивление заземлителя нейтрали трансформатора RZN = 4 Ом (глухозаземленная нейтраль).
- Отходящий от трансформатора нейтральный провод отмечен голубым цветом. Он также имеет определенное сопротивление, складывающееся из сопротивлений
- RA1-RA3, RB1-RB3, RC1-RC3 — нагрузки в домах, подключенных к одной из трех фаз воздушной линии.
Возможно кто-то посчитает схему сложной и непонятной, так как электроснабжение домов от распределительного трансформатора фактически показано с использованием лишь сопротивлений (резисторов). Но на электрических схемах многие их элементы, например лампочки, электродвигатели, соединительные провода, часто отображают в виде сопротивлений. Это вполне допустимо, так как при расчетах и анализе схемы достаточно знать лишь сопротивление R того или иного элемента. Да и самому электроприбору не требуется от генератора (силового распределительного трансформатора) каких либо специальных условий. Подключенному в цепь приемнику (нагрузке) достаточно получить необходимое напряжение (U). А с учетом сопротивления легко просчитывается сила тока в цепи (I = U/R) и мощность, потребляемая приемником (P = UI).
Для понимания рассмотрим любой дом (нагрузку) и разберемся, почему он на схеме отмечен резистором с определенным сопротивлением. Электроприборы, включенные в сеть, потребляют определенную мощность:
В приведенном примере холодильник, тостер, электроплита и стиральная машина в совокупности имеют мощность потребления (P) 40+700+2000+260 = 3000 Вт. Зная напряжение U = 230 В, нетрудно определить общее сопротивление по следующий формуле R = U²/P = 230²/300 ≈ 17,6 Ом. По данной формуле также можно рассчитать сопротивление каждого электроприбора по отдельности, и для получении общего сопротивления воспользоваться правилом параллельного соединения.
Разобравшись, что потребление электроэнергии домом либо иной электроустановкой можно на схеме изобразить в виде сопротивления, перейдем к следующему важному вопросу. Многие неверно представляют путь движения тока в трехфазной электрической цепи. Упрощенно они считают, что ток в розетку приходит по фазе, запитывает электроприборы, а затем уходит по нулю (нейтральному проводу) в распределительный трансформатор. Но на самом деле все намного сложнее. Постараемся доступно рассмотреть особенности трех фаз и значение нейтрального провода.
Для начала в приведенную выше схему добавим четыре амперметра на три фазы и нейтральный провод:
Какой вывод можно сделать, если проанализировать силу тока по трем фазам IA = 49,2 А, IB = 48,8 А, IC = 48,9 А? Из приведенных данных следует, что три фазы нагружены почти равномерно. Теперь проанализируем силу тока, возвращающегося по нейтральному проводу в точку соединения концов обмоток фаз в трансформаторе. Амперметр IN показывает 0,3 А. То есть озвученный выше тезис, что ток приходит по фазе, а затем уходит по нулю (нейтральному проводу) в распределительный трансформатор, в корне не верный. В данном примере токи в трех фазах циркулируют между содой, и лишь незначительная часть, равная геометрической сумме этих токов, возвращается в нулевую точку (нейтраль) трансформатора.
При соединении нагрузок (домов) в звезду линейные токи I и фазные токи Iф равны. А в соответствии с первым законом Кирхгофа ток в нулевом проводе равен геометрической сумме линейных (фазных) токов: IN = IA+IB+IC. При симметричной нагрузке ZA = ZB = ZC ток в нулевом проводе IN = 0 и, следовательно, необходимость в таком проводе отпадает. Естественно, когда в трехфазной цепи нагрузки — это дома или квартиры, добиться идеальной симметрии потребления электроэнергии невозможно. Для примера, симметричными трехфазными приемниками являются трехфазные электродвигатели. Однако, чтобы понять, как ток распространяется в трехфазной цепи, можно допустить симметричную нагрузку домами или квартирами. Что мы и сделаем:
Сразу отметим, раз уж мы сделали допущение о симметричной нагрузке (сопротивление потребителей каждого дома по 15 Ом), то также упростим схему, убрав сопротивления проводов. Что в итоге получилось:
- Сила тока по трем фазам стала одинаковой IA = IB = IC ≈ 46 А.
- Сила тока в нейтральном проводе стала равна нулю IN ≈ 0 А.
Соответственно, как и отмечалось выше, при симметричной нагрузке ток в нулевом проводе IN = 0, и необходимость в таком проводе отпадает (что и показано во второй части схемы). К сожалению, не все понимают, что значит убрать из схемы нейтральный (нулевой) провод. В вашей розетке он остается, а убирается он лишь на участке соединения двух нулевых (общих) точек соединения обмоток генератора и соединения приемников (домов) звездой. И если вы посмотрите на вторую часть приведенной выше схемы, оставшийся нейтральный провод, к которому все также подключены дома — это ни что иное, как общая (нулевая при симметричной нагрузке) точка соединения всех домов (приемников, потребителей). При этом отсутствующая связь этой точки с нейтралью трансформатора при симметричной нагрузке никак не сказывается на работу приемников (получение ими необходимого напряжения). А все по тому, что геометрическая сумма токов равна нулю, и все перераспределение энергии происходит между тремя фазами.
Казалось бы все просто, но как показывает практика, обычная трактовка основ электротехники все равно непонятна многим. Поэтому пойдем дальше и постараемся объяснить особенности функционирования трехфазной электрической цепи более подробно и нестандартно. Используем все тот же пример, но трансформируем схему в более простую модель. К каждой фазе у нас подключено по три дома. Сопротивление нагрузки каждого дома мы приняли равным 15 Ом (симметричная нагрузка). Воспользовавшись правилом параллельного соединения сложим сопротивления трех домов для получения общего сопротивления. Если в цепи используются резисторы одного номинала, то формула общего сопротивления имеет вид R = R1 / N (R1 – номинальное сопротивление резистора; N – количество резисторов с одинаковым номинальным сопротивлением). Получаем R = 15/3 = 5 Ом. То есть теперь три дома (резистора) на фазе можно заменить одним резистором с сопротивлением 5 Ом:
Мы упростили схему и показали, что при симметричной нагрузке по трем фазам можно без последствий отказаться от нейтрального провода, соединяющего две нулевые точки. Но даже в таком представлении схема будет не совсем понятна многим. Поэтому без внесения изменений перерисуем схему еще раз:
Для простоты одинаковые участки на двух схемах дополнительно промаркированы (0 — нулевые точки соединения обмоток трансформатора и приемников, N — нейтральный провод, соединяющий две нулевые точки). Может возникнуть вопрос, почему это — нулевые точки? Потому что при симметричной нагрузке в этих точках нет напряжения (потенциал равен нулю). На последней схеме дополнительно показана разность потенциалов между нулевыми точками UN = 0,01 nV ≈ 0 V. Следующий вопрос, а скорее заблуждение, что нулевой потенциал — это следствие заземления нейтрали. Это не так, и в следующих схемах мы объясним все через потенциалы:
Несмотря на то, что трехфазный генератор был заменен тремя источниками переменного напряжения, схема осталась прежней. Данная замена сделана для наглядности, чтобы можно было показать как начала обмоток (A, B, C), так и концы (X, Y, Z), соединенные звездой в общей точке (нейтрали). К началам обмоток (выводам трансформатора) подключен осциллограф и показаны синусоиды трех фаз, смещенных друг относительно друга на 120°. Синусоиды показывают амплитудное значение напряжения +325 и -325 Вольт на пиках. Простыми словами это значит, что с учетом частоты 50 Гц каждую секунду на выводе каждой фазы напряжение меняется от 0 до 325 до 0 до -325 до 0 Вольт. Такое изменение в совокупности дает привычные нам действующие 230 Вольт (325/√2), но далее мы будем рассматривать только амплитудное значение напряжения.
Вернемся к синусоидам трех фаз и рассмотрим напряжения в отмеченный момент времени, когда напряжение на пике фазы А (желтый график) +325 Вольт. В этот же момент на выводах оставшихся двух фаз (B, C) напряжение в сумме дает -325 Вольт (В ≈ -162,5 Вольт, C ≈ -162,5 Вольт). Все эти значения просчитаны как разность потенциалов начал и концов обмоток генератора (трансформатора) и показаны на осциллографе. Останемся в том же моменте времени, но перейдем от напряжений на осциллографе к конкретным потенциалам:
Теперь обратим внимание на такой параметр как напряжение. Напряжение показывает, какую работу совершает электрическое поле по перемещению единицы заряда на данном участке цепи. Для того чтобы образовалось электрическое поле в цепи должна быть разность потенциалов, и она в нашем примере есть. Разность потенциалов позволяет носителям электрического заряда (электронам) перемещаться из области с большим потенциалом в область с меньшим потенциалом (ток).
С учетом вышеперечисленного проанализируем схему. Начнем с правой части — начал обмоток (A, B, C). Без углубления в вектора, сложные формулы и комплексные числа попробуем понять путь протекания тока. На выводе A мы имеем потенциал +162,5 Вольт. Количественно это значит, что в данной точке находится избыток носителей электрического заряда. На выводах B и С имеется недостаток зарядов по -81,25 Вольт, что суммарно дает -162,6 Вольт. Получается разность потенциалов, в результате которой заряды от вывода A направляются к общей точке соединения приемников, далее перераспределяются и направляются к выводам B и С. При этом скорость перемещения зарядов на всем пути будет одинакова, но сила тока на трех фазах будет разной. Это обусловлено разным напряжением при одинаковом сопротивлении (симметрии потребления). Постараемся объяснить это простыми словами:
- Определенное количество зарядов (x) со скоростью (v) проходит по фазному проводу А, проходит нагрузку R = 5 Ом и попадает в точку соединение трех симметричных нагрузок (приемников).
- Из общей точки заряды разделяются пополам (x/2) и с той же скоростью (v) проходят нагрузки R = 5 Ом на фазах B и С, далее следуют к выводам этих фаз.
Такая конфигурация с симметричным источником и приемником позволяет всем зарядам от вывода фазы A сбалансированно перераспределится через оставшиеся две фазы B и C. Другими словами в точке соединения трех приемников никогда не бывает избытка или недостатка зарядов, что свидетельствует о нулевом потенциале этой точки. По такому же принципу заряды перераспределяются в левой части схемы, где соединены концы обмоток (X, Y, Z).
Подведем итог. При симметричном трехфазном источнике и симметричных приемниках потребность в четвертом нейтральном проводе отпадает. Достигается это за счет за счет ЭДС, сдвинутых по фазе одна от другой на угол 120°, которые перераспределяют заряды по трем одинаковым путям с одинаковой скоростью. Такая аналогия с путями и скоростью очень важна, и об этом вы узнаете в следующем пункте, описывающем значение нейтрального провода.
Значение нейтрального провода в трехфазной системе
При несимметричной нагрузке и отсутствии нейтрального провода фазные
напряжения приемника уже не связаны жестко с фазными напряжениями
генератора, так как на нагрузку воздействуют только линейные напряжения
генератора. Несимметричная нагрузка в таких условиях вызывает несимметрию ее фазных напряжений (UA, UB, UC) и смещение ее нейтральной точки (0) из центра треугольника напряжений (смещение нейтрали).
Естественно треугольник напряжений (векторы фазных напряжений) и сложные формулы расчетов мы рассматривать не будем. Постараемся, как и в предыдущих пунктах, разобраться с вопросом наглядно и упрощенно:
В приведенной выше схеме наблюдается несимметрия потребления. Фаза A нагружена больше и имеет сопротивление 5 Ом. Фаза B нагружена меньше и имеет сопротивление 10 Ом. Фаза C нагружена еще меньше и имеет сопротивление 15 Ом. С учетом этого произошла несимметрии фазных напряжений (UA ≈ 157 Вольт, UB ≈ 261 Вольт, UC ≈ 287 Вольт). Смещение нейтральной точки соединения приемников (0) привело к появлению разности потенциалов с нейтралью трансформатора UN = 75 Вольт.
Важно — в данной схеме нет нейтрального провода (измеряется всего лишь разность потенциалов).
Перейдем к потенциалам на выводах генератора (трансформатора). Они остались такими же, как и при симметричной нагрузке приемников. В конце предыдущего пункта мы отметили важность сбалансированности и одинаковой скорости движения электронов в цепи (для справки: ток у нас не постоянный, потому движение условное, и фактически — это «топтание на месте»). Как же происходит движение зарядов в данном случае, когда изменились параметры «путепроводов» (различное сопротивление на участках цепи):
- Определенное количество зарядов (x) со скоростью (v) проходит по фазному проводу А, проходит нагрузку R = 5 Ом и попадает в точку соединение трех несимметричных нагрузок (приемников).
- Из общей точки заряды уже не разделяются пополам. Виной тому увеличение сопротивления на пути от нейтральной точки приемников к выводам фаз B и C на трансформаторе. Баланс нарушился, и теперь то количество зарядов, пришедших от вывода A попросту не успевают перераспределится в цепи. Образуется избыток в данный момент времени зарядов в точке соединения нагрузок (0). Раз есть избыток (или недостаток в определенный момент периода синусоиды) в этой нулевой точке, то есть и разность потенциалов с нейтралью трансформатора (что и показал вольтметр UN).
Так как в нейтральной точке имеется потенциал, отличный от нуля, то это приводит к несимметрии фазных напряжений. К примеру, если бы потенциал в нейтральной точке был равен 0 Вольт (случай симметричной нагрузки), то фазное напряжение UA можно было бы рассчитать, как +162,5-(-162,5)-0 = 325 Вольт (амплитудное значение). 325/√2 ≈ 230 Вольт (действующее значение). В случае с несимметричным потреблением в нейтральной точке будет всегда какой-то потенциал. Соответственно при расчетах мы получим иное амплитудное и действующее значение напряжения. Из примера просчитанного в программе видно, что действующее напряжение UA ≈ 157 Вольт. Соответственно амплитудное равно 157×√2 ≈ 222 Вольт. Это можно наглядно увидеть на графиках синусоид, приведенных выше. Берем пик синусоиды фазы A с напряжением (потенциалом) +325 Вольт, и от этого потенциала отнимаем потенциал нейтрали (канал D) +103 Вольт в данный момент времени. То же самое можно сделать с остальными фазами. Берем пик синусоиды фазы B с напряжением (потенциалом) +325 Вольт, и от этого потенциала отнимаем потенциал нейтрали (канал D) -36 Вольт в данный момент времени. Получаем +325-(-36) = +361 Вольт (амплитудное значение). 355×√2 ≈ 255 Вольт (действующее значение). Приблизительно это и показывает вольтметр UB ≈ 261 Вольт.
Для того чтобы выравнивать фазные напряжения приемника при несимметричной нагрузке, нужен нейтральный провод соединяющий нулевые точки трансформатора (генератора) и приемников:
При наличии нейтрального провода в общей точке соединения нагрузок уже не может образовываться излишек или недостаток зарядов (потенциал), так как он сразу же будет перенаправляется в общую точку соединения концов фазных обмоток трансформатора (генератора).
Завершая тему трех фаз с нулем и без нуля стоит также отметить, что наличие нейтрального провода в цепи при несимметричной нагрузке, также позволяет подключать однофазные приемники с номинальным напряжением в √3 раз меньше номинального линейного напряжения трехфазной сети (230/400 Вольт).
ᐉ Что удобнее в частном доме – одна фаза или три?
При обустройстве частного дома, большого коттеджа или просто дачного домика встаёт вопрос, каким образом лучше оборудовать внутреннюю электросеть. И одним из первых факторов является тип питания – трёхфазный или однофазный. Как пользователи, так и мастера уже долго спорят о преимуществах каждого способа, его сильных сторонах и удобстве, не приходя к единому мнению. Сегодня и мы включимся в эту дискуссию, чтобы попробовать разобраться в разнице между двумя типами схем питания.
Если наши читатели не очень хорошо разбираются в электротехнике и не могут самостоятельно увидеть принципиальную разницу между трёхфазной и однофазной сетью, мы поясним. Все бытовые электроприборы рассчитаны на питание от однофазной сети 220 В – той, в которой есть всего два полюса (фаза и ноль). Соответственно, в трёхфазной сети на 380 В проводников будет четыре (три фазы и ноль). Если в каждом случае также учитывать заземление, число токоведущих жил увеличится на единицу – три и пять, соответственно. Однако, что всё это изменит на практике? Давайте разбираться.
Структура энергопотребления в современном доме
Вряд ли кто-нибудь станет спорить с тем, что в наше время потребление электроэнергии значительно возросло по сравнению с концом прошлого века. И речь, разумеется, не о числе светильников в жилище, а об обилии различных электрозависимых приборов, компьютерной техники, аудиосистем, кухонных устройств и пр. Темпы потребления просто колоссальны, и они продолжают ежегодно расти. Чтобы эффективно выполнять хозяйственные задачи, население запасается всё более мощными утюгами и пылесосами, переходит на электроплиты и бойлеры. К примеру, лет тридцать назад проектировщики закладывали на одну квартиру или частный дом лимит нагрузки с амперажем в 8-10А, подразумевая большой запас, а по нынешним временам к границам данного предела может подойти даже мощный электрочайник. Привычная нам однофазная сеть часто не выдерживает подобных перегрузок, а потому наблюдается повсеместный переход на трёхфазную.
Нередко можно услышать, будто подключение по трёхфазной схеме позволит многократно увеличить допустимую мощность подключаемых электроприборов. На самом деле, такая формулировка не совсем корректна. В действительности, предельная нагрузка дома лимитируется в технической документации на подключение. Как правило, для трёх фаз данная величина соответствует 15 кВт. При этом для однофазной сети она может быть равна 10 или всё тем же 15 кВт. Таким образом, выигрыша по мощности владельцы дома с трёхфазным питанием не получают или он довольно мал.
Если сказанное выше Вас запутало, сейчас последуют разъяснения и аргументация. Преимуществом трёхфазного способа подключения для некоторых людей может стать сечение питающего кабеля. При равной совокупной мощности на одну фазу потребуется куда более толстый кабель или провод. Как известно ещё из школьного курса физики, мощность прямо пропорциональна силе тока. Применительно к рассматриваемой ситуации это означает, что в случае распределения тока по трём проводам, на каждый из них нагрузка будет меньше. А это означает, что и автоматический выключатель на вводе получит меньший номинал.
Разумеется, одно лишь сечение провода не может иметь решающего значения при обустройстве электропроводки, однако оно влечёт за собой другие последствия. Например, габариты распределительного щитка возрастут пропорционально числу фаз. Мало того, что вводной автомат займёт место трёх-четырёх стандартных модулей внутри бокса, так ещё и УЗО будут иметь повышенные габариты. Нередким сейчас является и случай, когда фазы разводятся прямо в щитке, делая его многоярусным, с собственным комплектом УЗО, реле напряжения и узлами дифференциальной защиты на каждом ярусе. Если принять во внимание размеры счётчика и набора автоматов для групповых электроточек, становится понятным, что вводной щиток при трёхфазном способе ввода получается действительно крупным.
Последний аспект звучит как один из негативных факторов, однако мы стремимся описывать картину наиболее объективно, не делая преждевременных выводов за читателя, а потому продолжим рассматривать плюсы и минусы разных видов подключения неотрывно друг от друга. Так, для частного дома или дачи именно трёхфазный ввод несёт дополнительные удобства. Имея возможность подключить сюда сварочный аппарат, мощный электрический котёл или асинхронный двигатель, домашний мастер получает безопасно работающие агрегаты с наивысшими эксплуатационными характеристиками, которые не приводят к перекосу фаз в процессе работы.
Отметим также, что явление перекоса фаз не в полной мере находится в зоне ответственности конечного потребителя. Даже если вводной трёхфазный кабель приходит напрямую от воздушной линии электропередач без каких-либо промежуточных устройств, обеспечить идеальный баланс напряжения между тремя жилами невозможно. В дальнейшем же, задача по балансировке нагрузок на фазы действительно ложится на электрика, выполняющего внутридомовую разводку. Если в общей питающей сети Вы делите три фазы с другими потребителями, то в своей внутренней способны самостоятельно распределить нагрузку наиболее равномерно на основании информации о имеющихся приборах и устройствах.
В однофазной сети, типичной для квартир в многоквартирных домах, можно наблюдать картину, что одна из фаз заметно «проседает», из-за чего у одних жильцов на этаже постоянно недостаточно высокое напряжение. Собственники же домов с трёхфазным вводом могут изначально проверить стабильность напряжения в каждом проводнике и отвести под наиболее важные потребители две условно надёжные жилы, уменьшив совокупный перекос.
Из вышесказанного очевидно, что главным достоинством трёхфазного ввода является возможность подключения мощных электроприборов и устройств, рассчитанных на питание от 380 В. В то же время именно повышенный вольтаж является источником дополнительной опасности во время выполнения электромонтажных работ. Последнее обстоятельство говорит не только о необходимости соблюдать аккуратность при сборке питающих цепей, но и о том, что ток короткого замыкания в рассматриваемом случае будет выше. Это означает увеличение пожароопасности объекта в целом, а при кустарном подходе к электромонтажным работам – и саму вероятность возгорания.
На практике основной мотивацией собственников для проведения трёхфазного питания частных домов являются лишь три фактора. Первый – возможность эксплуатации мощной силовой техники и сельскохозяйственных установок, требующих 380 В. Второй – возможное повышение порога совокупной мощности энергопотребления (если энергоснабжающая компания этого не запрещает). Третий – глобальная независимость от других домохозяйств в общей сети за счёт возможности самостоятельно перераспределить фазные провода между группами потребителей. Специалисты предлагают определять необходимость выполнения трёхфазного ввода по жилой площади. Для дачи на 30-50 кв. метров обычно достаточно однофазной сети, если не планируется эксплуатация мощных измельчителей или мотокосилок, для частного дома с той же площадью трёхфазный ввод рекомендуется лишь для повышения стабильности напряжения в сети, а для коттеджей от 100 кв. метров и более он уже обязателен.
Напоследок здесь хочется отметить различие в расходе материала. Обычно об этом задумываются не сразу, однако данный фактор необходимо иметь в виду. Так называемое истинно трёхфазное питание будет присутствовать всего в паре узлов на всё домохозяйство, а затем один вводной кабель всё равно пройдёт через коммутационный узел, где разделится на три двужильных. На первый взгляд может показаться, что расход проводов практически не будет зависеть от способа ввода питания в здания, поскольку общей точкой схождения проводников всё равно остаётся вводной щиток, однако это не совсем так. Если Вы хотите сделать действительно безопасные контуры электроснабжения, в некоторые места дома всё равно потребуется тянуть дополнительные провода. К примеру, если розетки на кухне, в столовой, в ванной комнате и туалете, а также в кладовках Вы присоединяете к одной фазе, спальню, гостиную и другие жилые комнаты, расположенные дальше упомянутой группы помещений, лучше запитать от другой фазы. Это означает, что провода в каждом случае пройдут мимо ближних распределительных коробок, чтобы коммутироваться в дальних. Экономить на подобных вещах совершенно бессмысленно, если изначально ставится цель повысить надёжность и безопасность домашней электросети.
Как провести трёхфазную сеть?
Проводкой системы с таким вольтажом должны заниматься профессионалы – монтажники из горэлектрослужбы или иной обслуживающей компании. Делается это не только из-за повышенной степени опасности самих работ, но и из-за необходимости детального согласования большого пакета документов. Владельцу дома будет необходимо предоставить не только паспорт и документы, подтверждающие право собственности на дом, но также план электропроводки в жилом помещении. При этом следует обратить внимание на простой факт: если речь идёт о частном коттедже, который только был возведён, план разводки специалисты могут и не попросить (к тому же, он не всегда составлен в окончательной редакции), а при смене питания с однофазного на трёхфазное в старом дачном домике такой документ обязателен.
Разумеется, потребители часто негодуют, сетуют на бюрократию в подобных делах, однако в действительности представители контрольных и монтажных организаций делают упор на безопасность. Всё просто – перед подключением новой питающей линии нужно проверить состояние имеющейся электропроводки. Если будет обнаружено, что она слишком старая, в подключении трёхфазного ввода откажут. Более того, бывают случаи, когда по результатам замеров сокращают даже имеющийся лимит мощности однофазной сети. Выход из подобных ситуаций только один – полностью менять проводку. Иногда потребителям везёт чуть больше, и у них получается договориться хотя бы на то, чтобы работы по подключению трёхфазного питания и замене электропроводки в доме производились параллельно. В большинстве же случаев представители энергосетей отказываются начинать монтаж до того, как проводка будет готова.
Многие усматривают в подобном подходе коррупционную составляющую, но на самом деле это забота о муниципальной собственности, о линии питания в целом. Если электроавария произойдёт внутри однофазной сети в отдельном домохозяйстве, ущерб даже в самом худшем случае ограничится локальным пожаром. Если же авария случится в трёхфазной сети, велика вероятность, что это спровоцирует каскадный перекос фаз у нескольких домов сразу, а это при неблагоприятных условиях может вылиться даже в повреждение магистральной линии электропередач. Несмотря на всю веру в современную защитную автоматику, эффект каскадирования перекоса фаз часто является виновником пожаров в садовых товариществах и в частном секторе, провоцируя выход из строя сотен метров ЛЭП. Спасти своё имущество в подобных ситуациях удаётся лишь тем, у кого УЗО и реле напряжения стоит на каждой фазе, а вся электросеть оборудована дополнительной дифференциальной защитой и вводным автоматическим выключателем.
В более сложных ситуациях обстоятельства складываются таким образом, что даже при соблюдении всех норм безопасности со стороны потребителей, подключение трёхфазной сети с целью повышения предела доступной мощности электропотребления является невозможным. Например, снабжающая компания заблаговременно распределила нагрузку по числу домов и увеличивать её попросту некуда – тем более, при подключении трёхфазным способом. Чтобы получить желаемый результат, на территории участка приходится создавать локальную трансформаторную будку. А это повлечёт за собой дополнительные трудности, необходимость согласования большого пакета документов и, разумеется, существенно увеличит расходы на прокладку питающей линии. Насколько всё это полезно и рентабельно в конкретной ситуации, каждый потребитель уже должен определять самостоятельно.
Однофазный VS Трехфазный: в чем разница?
Содержание
Блок питания переменного тока можно разделить на однофазный (1-фазный) и трехфазный (3-фазный). Как правило, однофазное питание используется там, где потребность в электроэнергии невелика. Короче говоря, это для запуска небольшой техники. Трехфазное питание несет большую нагрузку и может работать на большом оборудовании на заводах.
Когда дело доходит до однофазной и трехфазной сети, основное различие заключается в том, что первая используется для бытового электроснабжения, а вторая – для работы тяжелой техники. В этой статье обсуждаются различия между ними, чтобы вы могли узнать что такое трехфазное питание и понять, как они работают.
Что такое однофазное питание и его особенности?
В однофазном электричестве напряжение питания изменяется одновременно. Обычно однофазный ток называют «бытовым напряжением», потому что он в основном используется в домах. Когда дело доходит до распределения питания, при однофазном подключении используются нулевой и фазный провода. Нейтральный провод действует как обратный путь для тока, а фазные провода несут нагрузку.
При однофазном подключении напряжение начинается с 230 Вольт и имеет частоту около 50 Герц. Поскольку напряжение в однофазном соединении постоянно растет и падает, на нагрузку не подается постоянная мощность. Давайте обсудим преимущества и недостатки использования однофазного питания.
Преимущества
- Однофазные соединения предназначены для бытового электроснабжения и жилых домов. Это связано с тем, что для работы большинства бытовых приборов требуется небольшое количество электроэнергии, таких как телевизор, освещение, вентиляторы, холодильник и т. д.
- Функционирование однофазного подключения простое и обычное. Он представляет собой компактный и легкий блок, в котором поток электроэнергии по проводам будет меньше, если напряжение выше.
- Из-за снижения мощности он обеспечивает оптимальную работу мощности от однофазного подключения и эффективную передачу мощности.
- Однофазное подключение лучше всего подходит для агрегатов мощностью до 5 л. с.
Недостатки
- Тяжелое оборудование, такое как промышленные двигатели и другое оборудование, не может работать от однофазного источника питания.
- Небольшие двигатели мощностью менее одного киловатта не могут работать от однофазного источника питания из-за отсутствия начального крутящего момента, необходимого двигателю. Итак, для бесперебойной работы двигателя требуется дополнительное оборудование, называемое пускателем двигателя .
Что такое трехфазное питание и его особенности?
При трехфазном подключении к электросети вы получаете три отдельных электрических услуги. Итак, как работает трехфазный ? Каждая ветвь тока может достигать максимального напряжения и отделяется на одну треть времени, завершенного в течение одного цикла. Короче говоря, напряжение от трехфазного подключения к сети остается постоянным.
И никогда не падает до нуля. Понимание трехфазного питания и принципов его работы важно, если вы работаете с тяжелым оборудованием. Для этого требуется три проводника вместе с одним нейтральным проводом в трехфазном соединении. Токопроводящие жилы находятся на расстоянии 120 градусов друг от друга.
Кроме того, вы можете найти два различных типа конфигураций в трехфазном питании: звезда и треугольник. Для конфигурации «звезда» требуется заземление и нейтральный провод. Конфигурация схемы «треугольник» не требует нейтральных проводов.
Более того, все виды высоковольтного оборудования могут использовать питание от схемы треугольника. Вот преимущества и недостатки использования трехфазного источника питания.
Преимущества
- Не требует дополнительных пускателей для запуска тяжелых промышленных двигателей, поскольку имеет достаточную мощность для обеспечения необходимого крутящего момента.
- Большая техника работает эффективно. Промышленные и коммерческие нагрузки предпочитают трехфазное подключение из-за высокой потребности в электроэнергии.
- При увеличении количества фаз в системе питания напряжение трехфазной сети становится более плавным.
- Трехфазное соединение не требует излишних проводящих материалов для передачи электроэнергии. Таким образом, если речь идет об экономичном решении, трехфазное подключение является более экономичным.
Недостатки
- Самым большим недостатком трехфазного подключения является то, что оно не выдерживает перегрузки. Таким образом, это может повредить оборудование, и шансы на дорогостоящий ремонт выше. Это связано с тем, что стоимость отдельных компонентов высока.
- Поскольку напряжение блока очень высокое, трехфазное подключение требует больших затрат на изоляцию. Изоляция зависит от напряжения, а размер проводов зависит от распределения мощности.
В чем разница между однофазным и трехфазным питанием?
Вот важные различия между однофазным и трехфазным подключением.
- При однофазном подключении электрический ток протекает по одному проводнику. С другой стороны, трехфазное соединение состоит из трех отдельных проводников, которые необходимы для передачи электроэнергии.
- В однофазной системе электроснабжения напряжение может достигать 230 Вольт. А вот при трехфазном подключении он может нести напряжение до 415 Вольт.
- Для бесперебойного прохождения электроэнергии по однофазному соединению требуется два отдельных провода. Один представляет собой нейтральный провод, а другой представляет собой одну фазу. Они необходимы для завершения цепи. При трехфазном подключении системе требуется один нейтральный провод и трехфазные провода для завершения цепи.
- Максимальная мощность передается по трехфазному соединению по сравнению с однофазным источником питания.
- Однофазное соединение состоит из двух проводов, образующих простую сеть. А вот на трехфазном подключении сеть сложная, потому что там четыре разных провода.
- Так как однофазное соединение имеет один фазный провод, если что-то случится с сетью, полное питание будет прервано. Однако в трехфазном источнике питания, если что-то случится с одной фазой, остальные фазы все равно будут работать. Таким образом, нет прерывания питания.
- Что касается эффективности, то однофазное подключение меньше по сравнению с трехфазным подключением. Это связано с тем, что для трехфазного источника питания требуется меньше проводников по сравнению с однофазным источником питания для той же цепи.
Заключение
Таким образом, когда речь идет о однофазном и трехфазном электроснабжении , для подключения к электричеству в жилых помещениях не требуется трехфазное подключение, потому что все приборы не нуждаются в таком подключении. Однако, если в вашем доме есть несколько тяжелых приборов, возможно, вам может понадобиться трехфазное подключение.
Рекомендуем к прочтению
Устройство передачи энергии
Сколько мощности теряется в линиях электропередачи
Содержание Электричество — одно из величайших изобретений, когда-либо созданных. И хотя было время, когда люди жили без этого товара,
Подробнее »
Устройство передачи энергии
Электрический трансформатор: как это работает?
Трансформатор (ТФ) уже более века работает как важнейший элемент в системах распределения электроэнергии, как для промышленности, так и для предприятий,
Подробнее »
Electrician Melbourne: что такое трехфазное питание и нужно ли оно мне?
Большинство домов в Австралии имеют однофазное питание, но если у вас дом большего размера, вы можете быть подключены к сети через трехфазное питание. Электричество вырабатывается и распределяется в 3 фазы, поэтому вы видите несколько воздушных кабелей на столбах на улице. Наличие 3 фаз позволяет нам получать как 240 В, так и 415 В от одного и того же источника электроэнергии.
Вот советы от Kenner Electrics, вашего надежного электрика из Восточного Мельбурна
В чем разница между однофазным и трехфазным питанием?
Однофазное питание имеет два провода; активный и нейтральный. Он обеспечивает питание около 240 вольт и используется в домах и на предприятиях для большинства приборов и освещения.
3-фазное питание имеет четыре провода; три активных и один нейтральный, подает питание как на 240 В, так и на 415 В. Когда мы вносим в дом трехфазное электропитание, количество доступной энергии увеличивается втрое. Это связано с тем, что у нас есть доступ ко всем трем фазам, поэтому, по сути, это означает, что у нас подключено 3 однофазных источника питания.
В больших домах, в которых могут быть сотни розеток питания, множество кухонных приборов на 240 В и более крупные трехфазные кондиционеры на 415 В, доступ к большей мощности необходим, чтобы убедиться, что одна фаза не перегружена, что может вызвать неудобства. путешествие.
Так зачем мне 3-фазное питание дома?
3-фазная сеть способна удовлетворить потребности в электроэнергии более крупных и мощных приборов . Вот почему он чаще используется в коммерческих и промышленных условиях для управления большим оборудованием, требующим большой мощности. Но вам может понадобиться это для вашего дома, если у вас есть большая система кондиционирования воздуха, большая электрическая плита, мощная система мгновенного электрического горячего водоснабжения или домашняя мастерская с оборудованием. Переход на 3-фазное питание означает, что вы можете безопасно запускать все свои приборы одновременно, не беспокоясь о том, что они отключат цепи.
Большинству небольших домов и квартир не требуется трехфазное питание, поскольку все их бытовые приборы и электропитание прекрасно работают от однофазного питания. Но если вы ремонтируете или добавляете энергоемкие приборы, поговорите со своим электриком, чтобы узнать, нужно ли вам трехфазное питание.
Перейдите по этой ссылке на наш веб-сайт, чтобы получить дополнительную информацию об обновлении расходных материалов, в том числе о том, сколько это стоит.
Как узнать, какой тип электричества подключен к моему дому?
Посмотрите на главный выключатель на распределительном щите. Если он имеет ширину 1 полюс (около 1 пальца), значит, ваше электроснабжение однофазное. Если главный выключатель имеет ширину 3 полюса (примерно 3 ширины пальца), то, скорее всего, у вас трехфазное питание.
Еще один способ узнать, что это обычно написано на вашем счетчике электроэнергии. Но если жаргон на вашем счетчике электроэнергии слишком сложен для понимания, вы можете просто позвонить своему дистрибьютору электроэнергии (например, United Energy), и они смогут сообщить вам об этом.
Похожие сообщения :
— Зачем вам нужно охранное освещение и установка видеонаблюдения?
— Почему важна проверка электробезопасности?
— Как решить проблему отключения цепей?
Что делать, если мне нужно перейти на 3-фазное питание?
Если вам нужно перейти на 3-фазное питание или если вы строите новый дом с большими потребностями в электроэнергии, свяжитесь с Kenner Electrics.