Анод у диода: как определить где плюс, а где минус

Содержание

Полупроводниковый диод

Полупроводниковый диод — самый простой полупроводниковый прибор, состоящий из одного PN перехода. Основная его функция — это проводить электрический ток в одном направлении, и не пропускать его в обратном. Состоит диод из двух слоев полупроводника типов N и P.

На стыке соединения P и N образуется PN-переход (PN-junction). Электрод, подключенный к P, называется анод. Электрод, подключенный к N , называется катод. Диод проводит ток в направлении от анода к катоду, и не проводит обратно.

Диод в состоянии покоя

Посмотрим, что происходит внутри PN-перехода, когда полупроводниковый диод находится в состоянии покоя. То есть тогда, когда ни к аноду, ни к катоду не подключено напряжения.

Итак, в части N имеются в наличии свободные электроны – отрицательно заряженные частицы. В части P находятся положительно заряженные ионы – дырки. В результате, в том месте, где есть частицы с зарядами разных знаков, возникает электрическое поле, притягивающее их друг к другу.

Под действием этого поля свободные электроны из части N дрейфуют через PN переход в часть P и заполняют некоторые дырки. В итоге получается очень слабый электрический ток, измеряемый в наноамперах. В результате, плотность вещества в P части повышается и возникает диффузия (стремление вещества к равномерной концентрации), толкающая частицы обратно на сторону N.


Обратное включение диода

Теперь посмотрим, как у полупроводникового диода получается выполнять свою основную функцию – проводить ток только в одном направлении. Подключим источник питания — плюс к катоду, минус к аноду.

В соответствии с силой притяжения, возникшей между зарядами разной полярности, электроны из N начнут движение к плюсу и отдалятся от PN перехода. Аналогично, дырки из P будут притягиваться к минусу, и также отдалятся от PN перехода. В результате, плотность вещества у электродов повышается. В действие приходит диффузия и начинает толкать частицы обратно, стремясь к равномерной плотности вещества.

Как мы видим, в этом состоянии диод не проводит ток. При повышении напряжения, в PN переходе будет все меньше и меньше заряженных частиц.

Прямое включение диода

Меняем полярность источника питания — плюс к аноду, минус к катоду. В таком положении, между зарядами одинаковой полярности возникает сила отталкивания. Отрицательно заряженные электроны отдаляются от минуса и двигаются сторону pn перехода. В свою очередь, положительно заряженные дырки отталкиваются от плюса и направляются навстречу электорнам. PN переход обогащается заряженными частицами с разной полярностью, между которыми возникает электрическое поле – внутреннее электрическое поле PN перехода

. Под его действием электроны начинают дрейфовать на сторону P. Часть из них рекомбинируют с дырками (заполняют место в атомах, где не хватает электрона). Остальные электроны устремляются к плюсу батарейки. Через диод пошел ток ID.

Чтобы не возникло путаницы, напомню, что направление тока на электрических схемах обратно направлению потока электронов.

Недостатки реального полупроводникового диода

На практике, в реальном диоде, при обратном подключении напряжения, возникает очень маленький ток, измеряемый в микро, или наноамперах ( в зависимости от модели прибора ). В следствии слишком высокого напряжения, может разрушиться кристаллическая структура полупроводника в диоде. В этом случае, прибор начнет хорошо проводить ток также и при обратном смещении. Такое напряжение называется напряжение пробоя. Процесс разрушения структуры полупроводника невосстановим, и прибор приходит в негодность.

При прямом подключении, напряжение между анодом и катодом должно достигнуть определенного значения Vϒ, для того чтобы диод начал хорошо проводить ток. Для кремниевых приборов Vϒ — это примерно 0.7V, а для германиевых — около 0.3V. Более подробно об этом, и других характеристиках полупроводникового выпрямительного диода пойдет речь в статье ВАХ полупроводникового диода.

Электровакуумный диод | Основы электроакустики

Электровакуумный диод — вакуумная двухэлектродная электронная лампа. Катод диода нагревается до температур, при которых возникает термоэлектронная эмиссия. При подаче на анод отрицательного относительно катода напряжения все эмитированные катодом электроны возвращаются на катод, при подаче на анод положительного напряжения часть эмитированных электронов устремляется к аноду, формируя его ток. Таким образом, диод выпрямляет приложенное к нему напряжение. Это свойство диода используется для выпрямления переменного тока и детектирования сигналов высокой частоты. Практический частотный диапазон традиционного вакуумного диода ограничен частотами до 500 МГц. Дисковые диоды, интегрированные в волноводы, способны детектировать частоты до 10 ГГц

Диод — двухэлектродный прибор, состоящий из катода и анода. Одна группа диодов предназначена для детектирования, т.е. для выделения напряжения низкой частоты из модулированных высокочастотных колебаний. Они выпускаются с катодами косвенного накала и имеют электроды небольшого размера, рассчитанные на малые анодные токи, малую допустимую мощность потерь на аноде и сравнительно невысокое обратное напряжение. Вторая группа диодов (диоды большой мощности) предназначена для выпрямления переменного напряжения, в основном, тока промышленной частоты.

Электровакуумный диод представляет собой сосуд (баллон), в котором создан высокий вакуум. В баллоне размещены два электрода — катод и анод. Катод прямого накала представляет собой прямую или W-образную нить, разогреваемую током накала. Катод косвенного накала — длинный цилиндр или короб, внутри которых уложена электрически изолированная спираль подогревателя. Как правило, катод вложен внутрь цилиндрического или коробчатого анода, который в силовых диодах может иметь рёбра или «крылышки» для отвода тепла. Выводы катода, анода и подогревателя (в лампах косвенного накала) соединены с внешними выводами (ножками лампы).

Принцип работы При разогреве катода электроны начнут покидать его поверхность за счёт термоэлектронной эмиссии. Покинувшие поверхность электроны будут препятствовать вылету других электронов, в результате вокруг катода образуется своего рода облако электронов. Часть электронов с наименьшими скоростями из облака падает обратно на катод. При заданной температуре катода облако стабилизируется: на катод падает столько же электронов, сколько из него вылетает. Уже при нулевом напряжении анода относительно катода (например, при коротком замыкании анода на катод) в лампе течёт ток электронов из катода в анод: относительно быстрые электроны преодолевают потенциальную яму пространственного заряда и притягиваются к аноду. Отсечка тока наступает только тогда, когда на анод подано запирающее отрицательное напряжение порядка ?1 В и ниже. При подаче на анод положительного напряжения в диоде возникает ускоряющее поле, ток анода возрастает. При достижении током анода значений, близких к пределу эмиссии катода, рост тока замедляется, а затем стабилизируется (насыщается).
Вольт-амперная характеристика (ВАХ) электровакуумного диода имеет 3 характерных участка:

1. Нелинейный участок. На начальном участке ВАХ ток медленно возрастает при увеличении напряжения на аноде, что объясняется противодействием полю анода объёмного отрицательного заряда электронного облака. По сравнению с током насыщения, анодный ток при U_a = 0 очень мал (и не показан на схеме). Его зависимость от напряжения растет экспоненциально, что обуславливается разбросом начальных скоростей электронов. Для полного прекращения анодного тока необходимо приложить некоторое анодное напряжение меньше нуля, называемое запирающим.

2. Участок закона степени трёх вторых. Зависимость анодного тока от напряжения описывается законом степени трёх вторых:  j=g \cdot U_a^{3/ 2},где g — постоянная, зависящая от конфигурации и размеров электродов (первеанс).2}} — универсальная термоэлектронная постоянная Зоммерфельда.
ВАХ анода зависит от напряжения накала — чем больше накал, тем больше крутизна ВАХ и тем больше ток насыщения. Чрезмерное увеличение напряжения накала приводит к уменьшению срока службы лампы.
К основным параметрам электровакуумного диода относятся:

  •     Крутизна ВАХ: S={dI_a \over dU_a} — изменение анодного тока в мА на 1 В изменения напряжения.
  •     Дифференциальное сопротивление: R_i={1 \over S}
  •     Максимально допустимое обратное напряжение. При некотором напряжении, приложенном в обратном направлении (то есть изменена полярность катода и анода), происходит пробой диода — проскакивает искра между катодом и анодом, что сопровождается резким возрастанием силы тока.
  •     Запирающее напряжение — напряжение, необходимое для прекращения тока в диоде.
  •     Максимально допустимая рассеиваемая мощность.
  • Крутизна и внутреннее сопротивление являются функциями от анодного напряжения и температуры катода.

Если температура катода постоянна, то в пределах участка «трех вторых» крутизна равна первой производной от функции «трех-вторых».

Они выпускаются как с катодами прямого, так и подогревного (косвенного) накала и делятся на два класса: низковольтные и высоковольтные. К маломощным высокочастотным диодам, предназначенным для детектирования высокочастотных колебаний, относятся диоды типа 6Х6С, 6Х2П, 6Х7Б, а также диоды в комбинации с триодами и пентодами: 1Б1П, 1Б2П, 6Б2П, 6Б8С, 6Г2 и 6Г7. К кенотронам, предназначенным для выпрямления напряжения промышленной частоты в выпрямителях радиоаппаратуры, относятся: 5Ц3С, 5Ц4С, 5Ц9С, 6Ц4П и 6Ц5С.

Обозначения диодов

  • Первый элемент — число, обозначающее (округленно) напряжение накала.
  • Второй элемент — буква, обозначающая тип лампы: Д — одинарные диоды. Х — двойные диоды. Ц — кенотроны (назависимо от числа анодов).
  • Третий элемент — число, указывающее порядковый номер типа прибора с одинаковыми остальными элементами обозначения.
  • Четвертый элемент — буква, указывающая на конструктивное оформление. Лампы в металлическом баллоне этой буквы не имеют. С — стеклянный баллон; П- пальчиковая лампа; Б — миниатюрная лампа диаметром 6 мм; Ж — лампы типа «желудь», специально для УКВ; Л — лампы с замковым цоколем, устраняющим возможность выпадения из гнезда при тряске.

Как проверить диод Шоттки мультиметром: подробная инструкция

Современная электроника давно взяла курс на развитие технологий и уменьшение размера приборов. Для того чтобы сделать прибор меньше, производятся миниатюрные радиодетали, собранные в максимально маленькие, но эффективные электрические схемы.

В сегодняшней статье будет подробно раскрыта тема — диод Шоттки. Пользователь получит информацию о том, как проверить диод Шоттки мультиметром, назначении этих элементов, принципу действия и основных разновидностях.

Назначение

Основное назначение диода Шоттки заключается в создании барьера для падения напряжения, подаваемого в общую цепь. Данный элемент также является полупроводником, как и все диоды. Особенность конструкции является используемый металл в качестве барьера. Основное отличие от обычного диода заключается в величине снижаемого на выходе напряжения. Оно составляет всего 0.2–0.4 вольта, против 0.6–0.8 у обычного полупроводника.

Принцип действия

Принцип работы диода Шоттки почти не отличается от полупроводниковых диодов. Особенностью является наличие металла. В обычном полупроводнике используется 2 вещества, которые формируют внутри себя электроны с положительным и отрицательным зарядом. При прохождении электрического тока, часть заряда теряется на образование этих электронов.

В диоде Шоттки используется металл и полупроводник. В качестве металлического барьера при производстве используют золото, кремний, германий. Диод также состоит из анода и катода. При подаче напряжения на анод, металл создает магнитный барьер для прямого прохождения напряжения. На его поверхности создаются электроны с отрицательным зарядом. При образовании значительного магнитного поля элемент импульсно разряжается. Такой разряд способен повторятся бесконечное количество раз, при условии соблюдения рабочего напряжения и температуры.

Наиболее комфортным напряжением для этого типа диодов является параметр 40–60 вольт. Именно это напряжение позволяет осуществлять переход без потери доли напряжения и без увеличения температуры.

Температура также играет значительную роль для быстрого перехода зарядов. При малом напряжении на входе создается повышение температуры. За счет этого увеличивается количество заряженных электронов, которые быстрее преодолевают металлический барьер.

Разновидности

Диоды Шоттки используются с современной электронике в качестве выпрямителей напряжения. Они способствуют простому, быстрому переходу частиц без существенных потерь на выходе. Основное использование — в диодных схемах импульсных блоков питания. Также они используются для создания импульсного напряжения. Существует 2 основных разновидности этих элементов:

  1. Обычный диод Шоттки в корпусе с анодом и катодом.
  2. Сдвоенные диоды.

Сдвоенные элементы бывают 3 типов:

  1. 2 анода и один катод.
  2. 2 катода и один анод.
  3. Удвоенная сборка с несколькими анодами и катодами.

Такие элементы используются для: выпрямления напряжения солнечных батарей; высоковольтных выпрямителей тока с мощностью до 10 ампер. Сдвоенные элементы используются для максимальной миниатюризации печатной платы приборов. По своей сути это 2 или 3 одинаковых элемента в одном корпусе.

Проверка

Далее будут подробно описаны способы проверки диода Шоттки с помощью цифрового мультиметра. Эти радиодетали можно тестировать описанными ниже способами и аналоговыми измерительными приборами.

Перед тестированием описываемой радиодетали необходимо знать следующие нюансы:

  1. Каждый одиночный диод маркируется белым или серым кольцом. Таким образом указывается катод устройства. Через эту ножку протекает отрицательный заряд или она является запорным входом.
  2. При прозвонке стоит знать, что диоды показывают свою работоспособность только со стороны открытого входа.
  3. Проверяемые элементы и измерительные щупы нельзя держать в руках. Тестер покажет сопротивление человека, что может привести к ошибкам в замерах.
  4. Также стоит знать, какое напряжение поступает от тестера при замерах в режиме прозвонки и сопротивления. Это необходимо, чтобы сопоставлять результат с характеристикой проверяемой детали. Например, тестер выдает 9 вольт для прозвонки, падение напряжения диода составляет 5 вольт. Значит при замере элемент должен выдать данные в пределах 4–4.5 вольт.
  5. Нельзя выполнять проверку подключенного через фазу переменного тока устройства.

Итак, теперь можно приступить к проверке.

Один диод

Тестирование одиночного элемента начинается с включения мультиметра в режим замера сопротивления. Далее необходимо:

  1. Черный измерительный щуп соединить со стороной промаркированной кольцом, то есть с катодом.
  2. Красный измерительный щуп соединяется с анодом.
  3. Тестер должен показать сопротивление перехода. Если в этом положении высвечивается «0» или «1», то элемент можно считать неисправным.
  4. Далее проверяется обратная проводимость. Для этого нужно сменить положение измерительных щупов. При смене полярности сопротивления быть не должно. Если есть хоть незначительные показания, то устройство неисправно.

Точно таким же способом проверяется устройство и в режиме прозвонки. При правильной полярности, тестер должен выдать результат с разницей 300 мВ. При смене полярности результата быть не должно.

Проверка в гнезде «PNP/NPN»

Современные мультиметры оснащаются специальным разъемом для проверки целостности транзисторов. Этот разъем можно использовать для теста диода Шоттки. Для этого необходимо:

  1. Мультиметр перевести в режим «hFE».
  2. Анод вставить в отверстие «P».
  3. Катод в отверстие «N».
  4. Тестер покажет проводимость элемента. Далее потребуется сменить полярность. Просто перевернуть диод и вставить обратно. Отсутствие проводимости укажет на целостность устройства.

Эти проверки точно укажут на коэффициент потери тока на выходе, а также на общую работоспособность детали.

Проверка сдвоенных элементов

Такие детали выполнены в одном корпусе схожим с транзистором. Имеют один анод и 2 катода или наоборот. Перед проверкой необходимо убедиться, какая деталь перед вами. Например, необходимо провести тест элемента с одним анодом в центре и двумя катодами по краям. Далее необходимо:

  1. Тестер переводится на режим прозвонки.
  2. Измерительный щуп красного цвета соединяется с центральной ножкой детали.
  3. Черный измерительный щуп соединяется с «1» катодом.
  4. Тестер должен выдать звуковой сигнал и результат замера с вычетом потери до 300 мВ.
  5. Таким же способом тестируется ножка «2». Результат должен быть аналогичным.
  6. Если при этом положении измерительных щупов элемент прошел проверку, то необходимо сменить полярность и повторить тест.

Такая же проверка покажет целостность элементов у сдвоенной сборки, состоящих из 4 диодов.

Диодный мост

Диоды Шоттки активно используются в качестве составных деталей диодных мостов для разного рода блоков питания, выпрямителей. Диодный мост состоит из 4 деталей, которые соединены последовательно друг с другом. На такой схеме есть 2 контакта для входящего переменного напряжения и 2 контакта для выхода постоянного тока. При помощи цифрового тестера можно легко проверить целостность этого устройства.

Делается это следующим образом:

  1. Перед тестированием блок питания нужно обесточить.
  2. Дать разредиться конденсаторам.
  3. Перевести мультиметр на режим прозвонки.
  4. Измерительный щуп красного цвета соединяется с контактом «1» входа.
  5. Измерительный щуп черного цвета соединяется с контактом «2» входа.
  6. Отсутствие зуммера указывает на работоспособность диодов на входе.

Далее проверяется отдельно каждая пара.

  1. Измерительный щуп красного цвета соединяется с контактом «-».
  2. Черный измерительный щуп с любым контактом входа «~» переменного напряжения.
  3. Тестер должен выдать значение в пределах 500 мВ. Эта пара является рабочей.
  4. Таким же образом проверяется второй контакт входа. Данные также должны быть в пределах 500 мВ.

Далее нужно повторить проверку, но сменить положение щупов. Измерительный щуп черного цвета соединить с «-», а красным проверить контакты входа. Тестер не должен выдать никаких значений или только «1». Это указывает на то, что переход внутри диодов с этой стороны закрыт. Если данные есть, мост не пригоден к включению в сеть.

Далее проводится проверка выхода постоянного напряжения. Для этого нужно:

  1. Измерительный щуп черного цвета соединить с контактом «+».
  2. Измерительным щупом красного цвета сделать замеры на контактах входа переменного тока.
  3. Результат должен быть в пределах 500 мВ.
  4. При смене полярности и повторной проверке, результата быть не должно или он будет равен «1».

Данная проверка укажет на целостность устройства. Если в диодном мосту обнаружилась неисправность диодов, то их необходимо заменить на точные аналоги. После того как был выполнен их монтаж, необходимо провести повторную проверку на целостность моста, а только после этого проверять с подключением переменного напряжения.

Проверка на плате

Выполнять проверку диода Шоттки на плате можно. Но для этого лучше провести выпаивание катода элемента. Таким образом полностью снимается проблема ошибочного замера с измерением сопротивлений вмонтированных рядом радиодеталей.

Заключение

Статья подробно раскрыла основную информацию о диодах Шоттки, методах проверки этого элемента. Начинающим радиолюбителям необходимо серьезно отнестись к разновидностям этой детали. Перед тем как сменить элемент, необходимо проверить по таблице максимальный ток вхождения, номинал утечки и проводимости. Любые несоответствия могут стать причиной выхода из строя всей цепи прибора.

Видео по теме

Что такое падение напряжения на диоде?

Диод является распространенным полупроводниковым устройством, используемым во многих различных типах электронных схем. Когда электрический сигнал проходит через диод, диод потребляет небольшое количество напряжения сигнала при его работе. Разница между напряжением сигнала, поступающего на диод, и напряжением сигнала, выходящего из диода, представляет собой падение напряжения на диоде. Хотя падение напряжения на диоде может относиться как к прямому, так и к обратному падению напряжения на диоде, оно обычно описывает прямое падение напряжения.

Конструкция диода включает соединение анода и катода, двух кусков материала с различными электрическими зарядами. Анод заряжен положительно, а катод заряжен отрицательно. В месте, где эти два разных материала встречаются, называемый соединением, два разных противостоящих заряда эффективно взаимно уничтожаются. Эта область без заряда является обедненным слоем диода, который образует изолирующий слой внутри диода между анодом и катодом.

Когда электрический сигнал поступает на катод диода, дополнительная отрицательная сила увеличивает ширину обедненного слоя, когда он реагирует с положительно заряженным анодом. Более широкий слой истощения будет блокировать прохождение сигнала через диод и потреблять все напряжение в процессе. Например, если на диод подается 5 вольт, падение напряжения на диоде также составит 5 вольт. Диод в этом состоянии имеет обратное смещение, и падение напряжения является обратным падением напряжения на диоде.

Электрический сигнал, поступающий на анод диода, создает другой набор условий внутри диода. Отрицательно заряженный сигнал будет проходить через анод, встречаться с катодом и проходить через диод, продолжая до остальной части цепи. В этом процессе относительно небольшое количество напряжения теряется, преодолевая положительный заряд анода. Для типичного кремниевого диода потеря напряжения составляет приблизительно 0,7 вольт. Диод в этом состоянии смещен в прямом направлении, и падение напряжения является прямым падением напряжения на диоде.

Разница между прямым и обратным состояниями в диоде позволяет им блокировать сигнал в одном направлении, сбрасывая 100% напряжения, но позволяя ему проходить в другом, только сбрасывая небольшое количество. Поскольку у большинства диодов обратное падение напряжения составляет 100%, предполагается, что термин «падение напряжения на диоде» относится к прямому падению напряжения, однако это не всегда так.

Существуют специальные диоды, которые не пропускают 100% обратного напряжения, такие как варикап или варактор. В этих диодах заряды катодов и анодов даже не поперек их ширины. В результате эти диоды могут позволить части сигнала, поступающего на катод, проходить через диоды, даже если они находятся в состоянии обратного смещения. При описании падения напряжения в этих типах диодов важно различать прямое и обратное падение напряжения.

ДРУГИЕ ЯЗЫКИ

Защитный диод ESD, двойной общий анод

% PDF-1.4 % 1 0 объект > эндобдж 5 0 obj / Название (NZL5V6AXV3T1 — Диод для защиты от электростатических разрядов, двойной общий анод) >> эндобдж 2 0 obj > эндобдж 3 0 obj > транслировать application / pdf

  • ON Semiconductor
  • NZL5V6AXV3T1 — Диод для защиты от электростатических разрядов, двойной общий анод
  • Эти двойные монолитные кремниевые диоды защиты от электростатических разрядов предназначены для использование в оборудовании, чувствительном к напряжению и электростатическому разряду, например, в компьютерах, принтеры, бизнес-машины, системы связи, медицинские оборудование и другие приложения.Их общий анод с двойным переходом конструкция защищает две отдельные линии, используя только одну упаковку. Эти устройства идеально подходят для ситуаций, когда пространство на плате ограничено.
  • 2018-10-15T14: 39: 47-07: 00BroadVision, Inc.2020-10-05T11: 35: 55 + 02: 002020-10-05T11: 35: 55 + 02: 00Acrobat Distiller 18.0 (Windows) uuid: ec091b8c- b762-41a1-8d1a-dc402b665e29uuid: 93e9b2e0-deb2-4f73-b75f-3887a9541594 Распечатать конечный поток эндобдж 4 0 obj > эндобдж 6 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > транслировать HlUn6GҼE4 $ ID 室 (w (Ju3gfΜ6b

    Что такое диод? — Определение из WhatIs.com

    Диод — это специализированный электронный компонент с двумя электродами, которые называются анодом и катодом. Большинство диодов изготовлено из полупроводниковых материалов, таких как кремний, германий или селен. Некоторые диоды состоят из металлических электродов в камере, откачанной или заполненной чистым элементарным газом при низком давлении. Диоды могут использоваться как выпрямители, ограничители сигналов, регуляторы напряжения, переключатели, модуляторы сигналов, смесители сигналов, демодуляторы сигналов и генераторы.

    Основным свойством диода является его способность проводить электрический ток только в одном направлении.Когда катод заряжен отрицательно относительно анода при напряжении, превышающем определенный минимум, называемый прямым переключением , тогда ток течет через диод. Если катод положительный по отношению к аноду, находится под тем же напряжением, что и анод, или отрицательный на величину, меньшую, чем напряжение прямого переключения, то диод не проводит ток. Это упрощенное представление, но верно для диодов, работающих как выпрямители, переключатели и ограничители. Напряжение прямого переключения составляет примерно шесть десятых вольта (0.6 В) для кремниевых устройств, 0,3 В для германиевых устройств и 1 В для селеновых устройств.

    Невзирая на вышеприведенное общее правило, если катодное напряжение является положительным по отношению к анодному напряжению на достаточно большую величину, диод будет проводить ток. Напряжение, необходимое для возникновения этого явления, известное как лавинное напряжение , сильно варьируется в зависимости от природы полупроводникового материала, из которого изготовлено устройство. Напряжение лавины может составлять от нескольких вольт до нескольких сотен вольт.

    Когда аналоговый сигнал проходит через диод, работающий в точке прямого размыкания или около нее, форма сигнала искажается. Эта нелинейность позволяет осуществлять модуляцию, демодуляцию и смешивание сигналов. Кроме того, сигналы генерируются на гармониках или целых кратных входной частоте. Некоторые диоды также имеют характеристику, которая неточно названа отрицательным сопротивлением . Диоды этого типа при приложении напряжения нужного уровня и полярности генерируют аналоговые сигналы на микроволновых радиочастотах.

    Полупроводниковые диоды могут быть разработаны для выработки постоянного тока (DC), когда на них попадает энергия видимого света, инфракрасного (ИК) или ультрафиолетового (УФ) излучения. Эти диоды известны как фотоэлектрические элементы и являются основой для систем солнечной энергии и фотосенсоров. Еще одна форма диодов, обычно используемых в электронном и компьютерном оборудовании, излучает видимый свет или инфракрасную энергию, когда через них проходит ток. Таким устройством является привычный светодиод (LED).

    Описание

    диодов — инженерное мышление

    Узнайте, как работают диоды, а также почему и где мы их используем.

    Прокрутите вниз, чтобы посмотреть руководство YouTube.

    Что такое диод

    Пример диода

    Диод выглядит примерно так, как на изображении выше, и бывает разных размеров. Обычно они имеют черный цилиндрический корпус с полосой на одном конце, а также несколько выводов, которые позволяют нам подключить его к цепи. Этот конец известен как анод, а этот конец — катод, и мы увидим, что это значит, позже в видео.

    Вы также можете получить другие формы, такие как стабилитрон или даже светодиод, который представляет собой светоизлучающий диод, но мы не будем рассматривать их в этой статье.

    Другие примеры диодов

    Диод позволяет току течь только в одном направлении.

    Представим себе водопровод с установленным поворотным клапаном. Когда вода течет по трубе, она толкает распашную заслонку и продолжает течь. Однако, если вода меняет направление, вода закроет заслонку и не сможет течь. Следовательно, вода может течь только в одном направлении.

    Водопроводная труба Это очень похоже на диод, мы используем их для управления направлением тока в цепи.

    Теперь мы анимировали это с помощью электронного потока, в котором электроны перетекают от отрицательного к положительному. Однако в электронике традиционно используют обычный поток, который изменяется от положительного к отрицательному. Обычный ток, вероятно, легче понять, вы можете использовать любой, на самом деле это не имеет значения, но просто помните о двух и о том, какой из них мы используем.

    Пример светодиода

    Итак, если мы подключим диод к простой схеме светодиода, подобной приведенной выше, необходимо отметить, что светодиод будет включаться только тогда, когда диод установлен правильно.Это позволяет току течь только в одном направлении. Таким образом, в зависимости от того, как он установлен, он может действовать как проводник или изолятор.

    Полосатый конец подсоединяется к минусу, а черный конец подсоединяется к плюсу, чтобы он действовал как проводник. Это позволяет току течь, мы называем это прямым смещением. Если перевернуть диод, он будет действовать как изолятор, и ток не будет течь. Мы называем это обратным смещением.

    Прямое смещение и обратное смещение

    Как работает диод?

    Как вы, возможно, знаете, электричество — это поток свободных электронов между атомами.Мы используем медные провода, потому что в меди много свободных электронов, что облегчает пропускание электричества. Мы используем резину, чтобы изолировать медные провода и обезопасить себя, потому что резина является изолятором, что означает, что ее электроны удерживаются очень плотно и, следовательно, не могут перемещаться между атомами.

    Если мы посмотрим на базовую модель атома металлического проводника, у нас есть ядро ​​в центре, и оно окружено множеством орбитальных оболочек, удерживающих электроны. Каждая оболочка содержит максимальное количество электронов, и электрон должен иметь определенное количество энергии, чтобы попасть в каждую оболочку.Электроны, расположенные дальше всего от ядра, обладают наибольшей энергией. Самая внешняя оболочка известна как валентная оболочка, и проводник имеет от 1 до 3 электронов в своей валентной оболочке.

    Атом меди

    Электроны удерживаются на месте ядром. Но есть еще одна оболочка, известная как зона проводимости. Если электрон может достичь этого, он может вырваться из атома и перейти к другому. У атома металла, такого как медь, зона проводимости и валентная оболочка перекрываются, поэтому электрону очень легко перемещаться.

    Самая внешняя оболочка уплотнена изолятором. Электрону практически нет места для присоединения. Ядро плотно захватывает электроны, а зона проводимости находится далеко, поэтому электроны не могут добраться до нее, чтобы убежать. Следовательно, электричество не может проходить через этот материал.

    Однако есть еще один материал, известный как полупроводник. Кремний — это пример полупроводника. В этом материале слишком много электронов во внешней оболочке, чтобы быть проводником, поэтому он действует как изолятор.Однако следует отметить; что, поскольку зона проводимости довольно близка; если мы предоставим некоторую внешнюю энергию, некоторые электроны получат достаточно энергии, чтобы совершить прыжок из баллона в зону проводимости, чтобы стать свободными. Следовательно, этот материал может действовать как изолятор, так и как проводник.

    Чистый кремний почти не имеет свободных электронов, поэтому инженеры добавляют в кремний небольшое количество других материалов, чтобы изменить его электрические свойства.

    Изолятор, проводник, полупроводник. Пример

    Мы называем это легированием P-типа и N-типа.Мы объединяем эти легированные материалы в диод.

    Итак, внутри диода есть два вывода, анод и катод, которые подключаются к тонким пластинам. Между этими пластинами имеется слой легированного кремния P-типа на анодной стороне и слой легированного кремния N-типа на катодной стороне. Все это покрыто смолой для изоляции и защиты материалов.

    Пример диода

    Давайте представим, что материал еще не легирован, так что внутри находится чистый кремний. Каждый атом кремния окружен 4 другими атомами кремния.Каждому атому требуется 8 электронов в своей валентной оболочке, но атомы кремния имеют только 4 электрона в своей валентной оболочке, поэтому они тайком делят электрон со своим соседним атомом, чтобы получить 8 желаемых. Это известно как ковалентное связывание.

    Ковалентное связывание

    Когда мы добавляем материал N-типа, такой как фосфор, он займет положение некоторых атомов кремния. В валентной оболочке атома фосфора 5 электронов. Так как атомы кремния делятся электронами, чтобы получить желаемое 8, им не нужен этот дополнительный электрон, поэтому теперь в материале есть дополнительный электрон, и поэтому они могут свободно перемещаться.

    Добавление фосфора

    При легировании P-типа мы добавляем такой материал, как алюминий. У этого атома всего 3 электрона в валентной оболочке, поэтому он не может предоставить своим 4 соседям один электрон, поэтому одному из них придется обойтись без него. Таким образом, создается дыра, в которой электрон может сидеть и занимать ее.

    Итак, теперь у нас есть два легированных куска кремния, один со слишком большим количеством электронов, а другой с недостаточным количеством электронов.

    Два материала соединяются, образуя соединение P-N.На этом стыке мы получаем так называемую область истощения. В этой области часть избыточных электронов со стороны N-типа переместится, чтобы занять дырки со стороны P-типа. Эта миграция образует барьер с скоплением электронов и дырок на противоположных сторонах. Электроны заряжены отрицательно, а дырки считаются положительно заряженными. Таким образом, нарастание приводит к образованию слегка отрицательно заряженной области и слегка положительно заряженной области. Это создает электрическое поле и предотвращает перемещение большего количества электронов.В типичных диодах разность потенциалов в этой области составляет около 0,7 В.

    Пример истощения

    Когда мы подключаем источник напряжения через диод с анодом (P-типа), подключенным к плюсу, а катод (N), соединенным с минусом, это создаст прямое смещение и позволит току течь. Источник напряжения должен быть выше барьера 0,7 В, иначе электроны не смогут попасть в перемычку.

    Источник напряжения должен быть больше, чем барьер

    Когда мы меняем направление питания, положительный полюс подключается к катоду N-типа, а отрицательный — к аноду P-типа.Отверстия притягиваются к отрицательному полюсу, а электроны притягиваются к положительному положению, что вызывает расширение барьера, и поэтому диод действует как проводник, предотвращая протекание тока.

    Технические характеристики

    Пример символа

    Диоды представлены на технических чертежах символом, подобным изображению выше. Полоса на корпусе обозначается вертикальной линией на символе, а стрелка указывает в направлении обычного тока.

    Когда мы смотрим на диод, мы видим эти цифры и буквы на корпусе.Они идентифицируют диод, поэтому вы можете найти технические подробности в Интернете.

    Схема I-V

    Диод будет иметь диаграмму I-V, как показано выше. На этой диаграмме показаны характеристики тока и напряжения диода, которые построены в виде изогнутой линии. Эта сторона должна работать как проводник, а эта сторона — как изолятор.

    Вы можете видеть, что диод может действовать как изолятор только до определенной разности напряжений на нем. Если вы превысите это значение, он станет проводником и позволит току течь.Это приведет к выходу из строя диода и, возможно, вашей схемы, поэтому вам необходимо убедиться, что размер диода соответствует вашему применению.

    Точно так же диод может выдерживать только определенное напряжение или ток при прямом смещении. Значение разное для каждого диода, вам нужно будет просмотреть эти данные, чтобы узнать подробности.

    Диод требует определенного уровня напряжения для открытия и пропуска тока в прямом смещении. Большинство из них около 0,6 В. Если мы подадим напряжение меньше этого, он не откроется, чтобы позволить току течь.Но по мере того, как мы увеличиваем это значение, величина тока, который может протекать, будет быстро увеличиваться.

    Пример напряжения диода

    Диоды также будут обеспечивать падение напряжения в цепи. Например, когда я добавил этот диод в простую светодиодную схему, установленную на макетной плате, я получил значение падения напряжения 0,71 В.

    Почему мы их используем

    Как уже упоминалось, мы используем диоды для управления направлением тока в цепи. Это полезно, например, для защиты нашей цепи, если источник питания был подключен сзади на переднюю.Диод может блокировать ток и обеспечивать безопасность наших компонентов.

    Мы также можем использовать их для преобразования переменного тока в постоянный. Как вы, возможно, знаете, переменный или переменный ток перемещает электроны вперед и назад, создавая синусоидальную волну с положительной и отрицательной половинами, но постоянный или постоянный ток перемещает электроны только в одном направлении, что дает плоскую линию в положительной области.

    Если мы подключим первичную сторону трансформатора к источнику переменного тока, а затем подключим вторичную сторону к одному диоду, диод пропустит только половину волны и заблокирует ток в противоположном направлении.Таким образом, цепь проходит только положительную половину цикла, поэтому теперь это очень грубая цепь постоянного тока, хотя ток пульсирует, но мы можем это улучшить.

    Первичный пример

    Один из способов сделать это — если мы подключим четыре диода к вторичной стороне, мы создадим двухполупериодный выпрямитель. Диоды контролируют, по какому пути может течь переменный ток, блокируя или позволяя ему проходить. Как мы только что видели, разрешена прохождение положительной половины синусоидальной волны, но на этот раз разрешено прохождение и отрицательной половины, хотя это было инвертировано, чтобы превратить ее также в положительную половину.Это дает нам лучшую подачу постоянного тока, поскольку пульсация значительно снижается. Но мы все еще можем улучшить это, мы просто добавляем несколько конденсаторов, чтобы сгладить пульсацию и в конечном итоге получить плавную линию, чтобы точно имитировать постоянный ток.

    Четыре подключенных диода

    Мы подробно рассмотрели, как работают конденсаторы в нашей предыдущей статье, проверьте, что ЗДЕСЬ .

    Как проверить диод

    Для проверки диода нам понадобится мультиметр с настройкой проверки диодов, символ будет выглядеть так.Мы настоятельно рекомендуем вам иметь в своем наборе инструментов хороший мультиметр, который поможет вам как в обучении, так и в диагностике проблем.

    Итак, берем наш диод и мультиметр. Подключаем черный провод к концу диода линией. Затем к противоположному концу подключаем красный провод. Когда мы это сделаем, на экране должно появиться значение.

    Например, диод модели 1N4001 дает показание 0,516 В. Это минимальное напряжение, необходимое для открытия диода и протекания тока.

    Если мы теперь поменяем местами провода, подключенные к диодам, мы должны увидеть на экране OL, что означает выход за пределы.Это говорит нам о том, что он не может измерить, это хорошо, потому что он не может замкнуть цепь, поэтому диод выполняет свою работу.

    Если мы получаем сообщение о соединении в обеих конфигурациях, значит, компонент неисправен и не должен использоваться.

    Неисправный компонент

    Чтобы проверить диод в цепи на падение напряжения, мы просто переводим мультиметр в функцию постоянного напряжения, а затем помещаем черный щуп к концу полосы, а красный щуп к черному концу. Это даст нам значение, например, 0.71V, что является падением напряжения.


    P-N переходный полупроводниковый диод — Диод

    Что такое полупроводниковый диод с p-n переходом?


    А диод с p-n переходом — двухполюсный или двухэлектродный полупроводниковый прибор, который пропускает электрический ток только в одном направлении в то время как блокирует электрический ток в обратном или обратном направлении направление.Если диод смещен в прямом направлении, это позволяет электрический ток. С другой стороны, если диод с обратным смещением, он блокирует прохождение электрического тока. P-N переходный полупроводниковый диод также называется p-n переходом полупроводниковый прибор.

    В n-тип полупроводники, бесплатно электроны являются основными носителями заряда, тогда как в р-тип полупроводники, отверстия являются основными носителями заряда.Когда n-тип полупроводник соединен с полупроводником p-типа, p-n стык образуется. P-n переход, который образуется при соединении полупроводников p-типа и n-типа называется p-n переходным диодом.

    П-П переходной диод изготовлен из полупроводниковых материалов. такие как кремний, германий и арсенид галлия.Для при разработке диодов кремний более предпочтителен, чем германий. Диоды с p-n переходом из кремния полупроводники работают при более высоких температурах по сравнению с с диодами p-n-перехода из германия полупроводники.

    основной символ p-n-переходного диода при прямом смещении и Обратное смещение показано на рисунке

    ниже.

    В На рисунке выше стрелка диода указывает на условное направление электрического тока, когда диод смещен в прямом направлении (от положительной клеммы к отрицательная клемма).Отверстия, которые движутся от положительного клемма (анод) к отрицательной клемме (катод) условное направление тока.

    Свободные электроны, движущиеся от отрицательной клеммы (катод) к положительной клемме (анод) на самом деле переносят электрический ток. Однако из-за условию мы должны предположить, что текущее направление от положительной клеммы к отрицательной.

    Смещение полупроводниковый диод p-n переход

    процесс подачи внешнего напряжения на p-n переход полупроводниковый диод называется подмагничивающим. Внешнее напряжение на диод с p-n переходом применяется любым из двух способов: прямое смещение или обратное смещение.

    Если диод p-n перехода смещен в прямом направлении, это позволяет электрический ток.В условиях прямого смещения Полупроводник p-типа подключается к положительной клемме батареи тогда как; полупроводник n-типа подключен к отрицательный полюс аккумуляторной батареи.

    Если диод p-n перехода имеет обратное смещение, он блокирует электрический ток. В условиях обратного смещения Полупроводник p-типа подключается к отрицательной клемме батареи тогда как; полупроводник n-типа подключен к положительный полюс аккумуляторной батареи.

    Клеммы pn переходного диода

    Как правило, Терминал относится к точке или месту, в котором любой объект начинается или заканчивается. Например, автовокзал или конечная остановка — это место, в котором все автобусы начинаются или заканчиваются. Точно так же в диод с p-n переходом, клемма означает точку, в которой носители заряда начинается или заканчивается.

    П-н переходной диод состоит из двух выводов: положительного и отрицательный.В положительный полюс, все свободные электроны закончатся, и все отверстия начнутся, тогда как на отрицательной клемме все свободные электроны начнутся, и все дырки закончатся.

    • Терминалы диода при прямом смещении


    В диод с прямым смещением p-n перехода (p-тип подключен к положительный терминал и n-тип подключен к отрицательному клемма), клемма анода является положительной клеммой, тогда как катодная клемма — отрицательная клемма.

    Анод клемма — положительно заряженный электрод или проводник, который поставляет отверстия в p-n переход. Другими словами, анодный или анодный вывод или положительный вывод является источником положительных носителей заряда (дырок) положительный заряд носители (отверстия) начинают свой путь от анодного терминала и проходит через диод и заканчивается на катодном выводе.


    Катод отрицательно заряженный электрод или проводник, который поставляет свободные электроны в p-n переход. Другими словами, катодный вывод или отрицательный вывод является источником свободного электроны, отрицательные носители заряда (свободные электроны) начинает свое путешествие с катодного терминала и проходит через диод и заканчивается на анодном выводе.

    свободные электроны притягиваются к анодному выводу или положительный вывод, а отверстия притягиваются к катодный вывод или отрицательный вывод.

    • Терминалы диода при обратном смещении


    Если диод с обратным смещением (p-тип подключен к отрицательному клемма и n-тип, подключенный к положительной клемме), клемма анода становится отрицательной клеммой, тогда как катодная клемма становится положительной клеммой.

    Анод клемма или отрицательная клемма поставляет свободные электроны на p-n переход. Другими словами, анодный вывод — это источник свободных электронов, свободные электроны начинают свой путь на отрицательном или анодном выводе и заполняет большое количество дырки в полупроводнике p-типа. Отверстия в р-образном полупроводник притягивается к отрицательному выводу.Свободные электроны с отрицательной клеммы не могут двигаться к положительной клемме, потому что широкое истощение область на p-n-переходе сопротивляется или противодействует потоку свободные электроны.

    Катод терминал или положительный терминал обеспечивает отверстия для p-n соединение. Другими словами, катодный вывод является источником дыры, дыры начинают свой путь на положительном или катодном терминал и занимает позицию электронов в n-типе полупроводник.Свободные электроны в n-типе полупроводник притягивается к положительному выводу. Отверстия от положительной клеммы не могут двигаться в сторону отрицательная клемма, потому что широкая область истощения на p-n переход препятствует потоку дырок.

    Кремний и германиевые полупроводниковые диоды


    • Для при разработке диодов кремний более предпочтителен, чем германий.
    • Диоды с p-n переходом из кремниевых полупроводников работают при более высокой температуре, чем германиевый полупроводник диоды.
    • Нападающий напряжение смещения для кремниевого полупроводникового диода составляет примерно 0,7 вольт, тогда как для германия полупроводниковый диод примерно 0.3 вольта.
    • Кремний полупроводниковые диоды не пропускают электрический ток расход, если напряжение на кремниевом диоде меньше чем 0,7 вольт.
    • Кремний полупроводник диоды начинают пропускать ток, если напряжение приложенный на диоде достигает 0,7 вольт.
    • Германий полупроводниковые диоды не пропускают электрический ток потока, если напряжение, приложенное к германиевому диоду, равно меньше 0.3 вольта.
    • Германий полупроводниковые диоды начинают пропускать ток, если напряжение на германиевом диоде достигает 0,3 вольт.
    • Стоимость кремниевых полупроводников невысока по сравнению с германиевые полупроводники.

    Преимущества диода p-n перехода

    П-н переходной диод — самая простая форма из всех полупроводниковых устройств.Однако диоды играют важную роль во многих электронные устройства.

    Вакуумная трубка »Электроника

    Диодный клапан или вакуумная трубка могут использоваться в качестве выпрямителя, и в дополнение к этому его работа составляет основу работы, на которой построены другие формы клапана или трубки.


    Вакуумные трубки / термоэлектронные клапаны Включает:
    Основы Как работает трубка Электроды для вакуумных трубок Диодный клапан / трубка Триод Тетроде Луч Тетрод Пентод Эквиваленты Штыревые соединения Системы нумерации Патрубки / основания клапанов Лампа бегущей волны


    Диодный вентиль или трубка до сих пор широко используются, и в минувшие годы использовалось огромное количество этих устройств.

    Диодный элемент является самым основным из всех термоэмиссионных или вакуумных ламповых устройств, имеющих только два активных электрода, тем не менее, он по-прежнему является важным компонентом, работу которого необходимо понимать, если нужно понимать другие формы вакуумных ламп или термоэмиссионных клапанов.

    Современный ламповый усилитель

    Основы диодного клапана

    Самой простой формой диодного клапана или вакуумной лампы является диод. Он состоит из двух проводящих электродов, помещенных в вакуумированную стеклянную колбу.Они называются катодом и анодом.

    Катод нагревается, и обнаруживается, что электроны «выкипают» из электрода в результате энергии, которую они имеют в результате нагрева.

    Отрицательно заряженные электроны оставляют на катоде положительный заряд, который имеет тенденцию втягивать их обратно, и в результате вокруг катода существует облако электронов, интенсивность которого уменьшается по мере увеличения расстояния от катода. Те электроны, которые путешествуют дальше всего, обладают наибольшей энергией.

    Тем не менее было обнаружено, что если между катодом и анодом поместить резистор, будет видно, что ток действительно течет в результате электронов, испускаемых катодом.

    Если резистор помещен между анодом и катодом диодного клапана, тогда будет течь ток.

    Если электрон имеет достаточно энергии, чтобы достичь анода, он останется там, если у него не будет достаточно энергии для выхода, но они могут течь обратно в катод через внешний резистор.

    Можно видеть, что электронный ток может течь от катода к аноду в результате выхода электронов с катода, но электроны не могут покинуть анод.

    В результате ток может течь только в одном направлении. Следовательно, если на диодный клапан или диодную трубку подается переменный сигнал, то он пропускает только половину цикла, тем самым выпрямляя сигнал.

    Если схему немного изменить и к аноду приложить положительный потенциал, то он будет притягивать дополнительные электроны, и ток будет протекать через батарею.И снова ток может течь только в одном направлении.

    Основные операции диодного клапана или трубки

    Эту функцию можно использовать для выпрямления входной мощности линии или сети, позволяя создавать постоянный ток, мощность постоянного тока, создаваемую из переменного тока, вход переменного тока. Его также можно использовать для обнаружения радиосигналов, и фактически он был первым, который использовали для термоэмиссионных клапанов или электронных ламп. Именно Амброуз Флеминг из Университетского колледжа Лондона первым придумал обнаруживать сигналы с помощью диодного клапана.

    Выпрямительный клапан Early Marconi U5

    Диодный клапан непрямого нагрева

    В ранних диодных лампах использовался катод с прямым нагревом. Он состоял из нагревательного элемента, который также действовал как катод. Это существенно ограничивало работу этих устройств. Использование переменного тока для обогревателей позволило трансформатору обеспечить питание обогревателя непосредственно от входящей сети, что снизило эксплуатационные расходы, так как батареи прослужили недолго и были дорогими:

    • Индуцированный гул: Когда переменный ток использовался для питания клапанов с прямым нагревом, было обнаружено, что переменный ток влияет на работу клапана, и некоторое количество переменного тока может накладываться на выходной сигнал.
    • Катод с прямым нагревом подключен к источнику питания нагревателя: Катод с прямым нагревом означает, что катод подключен к напряжению нагревателя, и это предотвращает использование общего источника питания нагревателя для нескольких клапанов, которым могут потребоваться разные катодные напряжения.

    Решением обеих проблем было использование электрически разделенного нагревательного элемента, который использовался для нагрева катода. Этот метод, известный как косвенный нагрев, почти повсеместно используется для всех вентилей, будь то диодные вентили, триоды или что-то еще.

    Полупериодный диодный вентильный выпрямитель

    Простейшей формой выпрямителя с диодным вентилем является однополупериодный выпрямитель. Это требует только использования выпрямителя с одним диодным вентилем. Однако он не так эффективен, как некоторые другие формы выпрямителя.

    Полупериодный выпрямитель с клапаном / лампой

    Видно, что если на диодный клапан или диодную лампу подается переменная форма волны, она проводит больше половины формы волны, а не другую. Это означает, что при выпрямлении сигналов переменного тока эффективность составляет только 50%, так как половина сигнала используется, а другая половина отбрасывается.

    Двухполупериодный диодный вентильный выпрямитель

    Чтобы использовать обе половины цикла альтернативной формы сигнала, можно использовать двухполупериодный выпрямитель. Точно так же, как это может быть реализовано с полупроводниковыми диодами, то же самое может быть достигнуто с помощью диодных вентилей. Фактически, двухполупериодные выпрямительные диодные клапаны доступны с одним устройством, содержащим два выпрямителя.

    Двухполупериодный выпрямитель с клапаном / лампой

    В схеме двухполупериодного выпрямителя разные диоды в выпрямителе обрабатывают разные половины формы волны.Таким образом используются обе половины формы волны. Кроме того, тот факт, что время между пиками короче, означает, что сглаживание формы волны намного проще.

    Как видно на схеме, в наличии имеются двухполупериодные выпрямительные клапаны / лампы. Они содержали два анода и один катод, что позволяло выполнять двухполупериодное выпрямление с помощью одного клапана.

    Следует также отметить, что выпрямительные диоды источника питания часто использовали отдельный источник питания 5 В, тогда как общий стандарт для нагревателей, используемых для самого оборудования, составлял 6.3 вольта, хотя часто использовались и другие напряжения.

    Детектор сигнала диодного клапана

    Амброуз Флеминг изобрел первый диодный клапан, исследуя обнаружение или демодуляцию радиосигналов. Фактически детектор с диодным вентилем может использоваться для сигналов с амплитудной модуляцией.

    Действие выпрямителя с диодным вентилем можно увидеть ниже, где демодулируется амплитудно-модулированный сигнал, состоящий из несущей переменной амплитуды. Чтобы восстановить модуляцию, сигнал выпрямляется, а затем несущая удаляется с использованием конденсатора в качестве высокочастотного фильтра.

    Обнаружение / демодуляция сигнала

    Это очень простая, но эффективная форма демодуляции AM, хотя у нее есть свои недостатки. Уровни искажения могут быть высокими, потому что характеристика диода не будет полностью линейной, и этот вид диодного детектора также подвержен искажениям в результате избирательного замирания — проблема, которая очевидна в полосах частот, обычно используемых для передачи с амплитудной модуляцией.

    Другие электронные компоненты:
    Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
    Вернуться в меню «Компоненты».. .

    Произошла ошибка при настройке пользовательского файла cookie

    Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


    Настройка вашего браузера для приема файлов cookie

    Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

    • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
    • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
    • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
    • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
    • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

    Почему этому сайту требуются файлы cookie?

    Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


    Что сохраняется в файле cookie?

    Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

    Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

    Тестовые диоды

    • Изучив этот раздел, вы сможете:
    • • Опишите методы тестирования диодов с помощью цифровых или аналоговых мультиметров
    • • Распознавайте типичные неисправности диодов.
    • • Обрыв цепи.
    • • Короткое замыкание.
    • • Дырявый.

    Фиг.2.8.1 Цифровой измеритель

    Мультиметр для проверки диодов

    Диоды можно проверить с помощью мультиметра. Обычно проверяется сопротивление диода в прямом и обратном направлениях. Однако при тестировании диодов следует помнить о нескольких моментах.

    С цифровыми счетчиками

    Большинство цифровых мультиметров подходят для тестирования диодов и во многих случаях имеют специальный диапазон «тестирования диодов», обычно отмеченный символом диода.Этот диапазон всегда следует использовать при тестировании диодов или любого другого полупроводникового прибора. Причина этого в том, что измеритель проверяет диод, подавая напряжение на диодный переход. Нормальные напряжения, используемые измерителем в других диапазонах сопротивления, могут быть недостаточно высокими, чтобы преодолеть потенциал прямого перехода диода, и поэтому диод не будет проводить, даже в прямом направлении. Это указывало бы на то, что диод был разомкнут (очень высокое сопротивление). Если используется диапазон диодов, испытательное напряжение, прикладываемое измерителем, в большинстве случаев будет достаточно высоким, чтобы преодолеть потенциал прямого перехода, и диод будет проводить.Следовательно, в прямом направлении (положительный вывод измерителя к аноду диода и отрицательный вывод к катоду) можно измерить сопротивление диода.

    Фактическое значение сопротивления будет зависеть от наклона прямой характеристики диода при напряжении, подаваемом измерителем, и поэтому будет варьироваться от устройства к устройству и от измерителя к измерителю, поэтому точное значение не может быть дано. При измерении исправного кремниевого диода (не подключенного к какой-либо цепи) можно ожидать показания в прямом направлении примерно от 500 Ом до 1 кОм, аналогичного или немного меньшего для германиевых диодов.Если провода измерителя перевернуты, следует ожидать выхода за пределы диапазона (бесконечность) или разомкнутой цепи (обычно указывается на дисплее вроде «1» на цифровом измерителе, как показано на рис. 2.8.1).

    Если диод уже включен в цепь, на измеренные сопротивления, всегда при выключенной цепи, будут влиять любые параллельные цепи. Поэтому показания будут ниже указанных выше. Однако очень низкие или нулевые показания могут указывать на короткое замыкание диода (наиболее частая неисправность диодов), поэтому стоит удалить хотя бы один конец диода из цепи, если нет другой очевидной причины очень низкого показания. цепи и еще раз проверьте прямое и обратное сопротивление диода.

    С аналоговыми приборами

    Рис. 2.8.2 Аналоговый измеритель

    Если аналоговый измеритель используется для тестирования, следует помнить, что, поскольку ноль на шкале сопротивления и напряжения меняются местами из-за внутренней работы измерителя, полярность зондов при использовании аналоговых измерителей для измерения сопротивления также меняется на противоположную. по сравнению с цифровыми счетчиками. Поэтому при измерении сопротивления диода аналоговым измерителем в любом диапазоне ЧЕРНЫЙ провод является положительным, а КРАСНЫЙ — отрицательным.Это означает, что черный провод должен быть подключен к аноду, а красный — к катоду для измерения ПЕРЕДНЕГО сопротивления диода. Некоторые аналоговые измерители имеют определенный диапазон тестирования диодов, но большинство аналоговых измерителей вполне подходят для тестирования диодов. Наиболее подходящий аналоговый диапазон обычно указывается в инструкциях для пользователя, но, как и в случае с цифровыми измерителями, необходимо проверить фактическое напряжение, используемое в диапазоне тестирования, чтобы понять его влияние на ожидаемые прямые и обратные сопротивления.

    ПРИМЕЧАНИЕ: приведенный выше абзац относится только к истинным аналоговым измерителям, многие современные «аналоговые» модели, как правило, являются цифровыми измерителями с аналоговым дисплеем. В этом случае следует следовать методу, описанному для цифровых счетчиков. Какой у вас счетчик? Можно использовать простой тест сопротивления заведомо исправного диода; подключите черный отрицательный вывод к катоду, а красный положительный вывод к аноду. Если измеритель показывает ожидаемое прямое сопротивление, полярность проводов измерителя не изменена.

    Это также является обычным явлением для измерения прямого сопротивления некоторых светодиодов, особенно таких, как синие светодиоды, у которых есть более высокий потенциал прямого перехода, который во время тестирования кажется очень высоким (бесконечным), если напряжение измерителя на диодном диапазоне низкое, даже когда светодиод в порядке.Однако измеритель с испытательным напряжением около 3 В должен давать некоторое свечение светодиода. Также доступны некоторые мультиметры, которые вместо отображения сопротивления диода в диапазоне проверки диода отображают потенциал перехода (в вольтах). Поэтому важно убедиться, что вы знаете, какие условия использует измеритель, прежде чем тестировать какие-либо полупроводники.

    Рис. 2.8.3 Подключение цифрового измерителя


    для проверки диода

    Проведение тестов

    На схеме ниже показано, как подключить цифровой измеритель для проверки диода.Следует помнить следующее:

    • • Убедитесь, что вы используете диодный диапазон.
    • • Используя цифровой измеритель, подключите черный провод к катоду, а красный — к аноду (прямое смещение — около 1 кОм).
    • • Поменяйте местами подключения счетчика (обратное смещение — бесконечное считывание).

    ПОМНИТЕ — Если вы используете аналоговый измеритель для измерения сопротивления, полярность измерительных проводов меняется на обратную.

    НЕКОТОРЫЕ СЧЕТЧИКИ, при измерении сопротивления диода, дают показание, указывающее потенциал перехода (в вольтах) вместо сопротивления диода (в Ом). ПРОВЕРЬТЕ ИНСТРУКЦИИ К СЧЕТЧИКУ, чтобы быть уверенным в том, что показывает показание измерителя.

    Определение соединений диодов

    Рис. 2.8.4 Маркировка полярности диодов.

    Катодное соединение диода маркируется различными способами. В случае мостового выпрямителя входные клеммы переменного тока и выходные клеммы постоянного тока обычно помечены символом синусоидальной волны и знаками плюс / минус соответственно, как показано.

    Мостовые выпрямители

    можно тестировать как обычные диоды, если каждый диод тестируется отдельно.Контакты корпуса следует сравнить со схемой внутреннего расположения четырех диодов, как показано на рис. 2.8.4, чтобы вы могли проверить прямое и обратное сопротивление каждого диода. Одиночные диоды обычно обозначаются полосой для обозначения катода, но в выпрямителях шпилечного типа на корпусе обычно печатается символ диода.

    Индикация неисправности

    Короткое замыкание

    Диоды могут быть повреждены высоким напряжением, особенно диоды, работающие с высоким напряжением или мощными приложениями, такими как источники питания, и в результате обычно происходит короткое замыкание 0 Ом при измерении в любом направлении.Когда диод в источнике питания замыкается накоротко, могут протекать большие токи и возникают очевидные повреждения, такие как «сварившиеся» диоды и / или перегоревшие предохранители. Неповрежденные короткозамкнутые диоды показывают 0 Ом или очень низкое сопротивление как в прямом, так и в обратном направлении.

    Обрыв цепи

    Иногда диоды (особенно малосигнальные диоды) могут размыкать цепь и показывать очень высокое сопротивление или бесконечность (отображается цифрой 1 на цифровых индикаторах) как в прямом, так и в обратном направлении.

    Дырявый

    Иногда сигнальный диод может стать «негерметичным». В то время как его прямое сопротивление может быть нормальным, его обратное сопротивление может быть ниже ожидаемой бесконечности. Этот тип неисправности обычно ограничивается небольшими сигнальными диодами, поскольку, если силовые диоды выходят из строя, дополнительный обратный ток почти наверняка будет генерировать достаточно тепла, чтобы быстро разрушить диод. В диодах с малым сигналом эта неисправность может быть надежно измерена только при удалении диода из схемы, поскольку параллельные сопротивления любых других компонентов, подключенных поперек диода, будут иметь тенденцию давать более низкое, чем ожидалось, обратное сопротивление.

    Тестирование стабилитронов

    Все стабилитроны имеют определенное напряжение, и если напряжение, измеренное на них в рабочих условиях, выше, чем указанное в руководстве по схеме (или на диоде, если вы видите маркировку), то диод неисправен (возможно, разомкнутая цепь) и подлежит замене. Стабилитроны имеют такие же короткое замыкание и обрыв цепи, что и другие диоды, но, кроме того, могут стать «шумными». Обычно очень стабильное напряжение на них страдает от очень быстрых колебаний, аналогичных постоянным шипам «фонового шума» при плохом звуковом сигнале.Поскольку стабилитроны часто используются для стабилизации линий электропитания, эти быстрые колебания напряжения могут вызвать странные неисправности, в зависимости от того, что подается от рассматриваемого источника питания.

    Добавить комментарий

    Ваш адрес email не будет опубликован.