Как запустить трехфазный электродвигатель от однофазной сети без использования конденсаторов. Какие схемы используются для бесконденсаторного пуска. Каковы преимущества и особенности реализации таких схем. На какие параметры электродвигателя следует обратить внимание при выборе схемы запуска.
Принцип работы бесконденсаторных схем запуска трехфазных электродвигателей
Бесконденсаторный запуск трехфазных электродвигателей от однофазной сети основан на создании сдвига фаз токов в обмотках статора с помощью электронных ключей. Это позволяет сформировать вращающееся магнитное поле, необходимое для запуска и работы двигателя.
Основные компоненты таких схем:
- Симисторы или тиристоры в качестве электронных ключей
- Система управления ключами (динисторы, RC-цепи)
- Обмотки статора электродвигателя, соединенные определенным образом
Электронные ключи включаются в определенные моменты времени, создавая необходимый сдвиг фаз токов в обмотках. Это позволяет запустить двигатель без использования пусковых и рабочих конденсаторов.
Преимущества бесконденсаторного запуска трехфазных электродвигателей
Использование бесконденсаторных схем запуска имеет ряд существенных преимуществ по сравнению с традиционными конденсаторными схемами:
- Отсутствие дорогостоящих пусковых конденсаторов большой емкости
- Повышенная надежность за счет исключения ненадежных электролитических конденсаторов
- Компактность и меньший вес устройства запуска
- Возможность плавного регулирования пускового момента
- Снижение пусковых токов и нагрузки на сеть
При этом время запуска двигателя с помощью бесконденсаторных схем практически не отличается от времени запуска в трехфазном режиме.
Схема запуска для двигателей до 1500 об/мин
Для электродвигателей с номинальной частотой вращения до 1500 об/мин используется схема с одним симистором, включенным параллельно одной из обмоток статора (обычно обмотке С):
- Обмотки статора соединены треугольником
- Симистор VS1 создает сдвиг тока в обмотке C на 50-70°
- RC-цепь формирует сдвиг фазы управляющего напряжения
- Динистор VS2 включает симистор в нужный момент времени
Такая схема позволяет создать достаточный вращающий момент для запуска двигателя. Регулировка угла включения симистора осуществляется подстроечным резистором R2.
Схема запуска для двигателей 3000 об/мин
Для высокоскоростных двигателей с частотой вращения 3000 об/мин применяется более сложная схема с двумя электронными ключами:
- Обмотки статора соединены по схеме «разомкнутая звезда»
- Один ключ включен последовательно с обмоткой фазы А
- Второй ключ включен параллельно обмотке фазы В
- Создается индуктивный сдвиг в фазе А и емкостной в фазе B
Такое включение обеспечивает максимальный пусковой момент, необходимый для запуска высокоскоростных двигателей и двигателей с большой нагрузкой при пуске.
Особенности настройки бесконденсаторных схем запуска
При настройке бесконденсаторных схем запуска необходимо обратить внимание на следующие моменты:
- Подбор оптимального угла включения симисторов для создания максимального пускового момента
- Настройка времени включения пусковых ключей для плавного разгона двигателя
- Обеспечение надежного запуска при различных нагрузках на валу двигателя
- Минимизация пусковых токов для снижения нагрузки на сеть
- Защита силовых элементов схемы от перегрузок при затянувшемся пуске
Правильная настройка позволяет добиться надежного запуска двигателя при минимальных затратах энергии и максимальной защите элементов схемы.
Выбор элементной базы для бесконденсаторных схем запуска
При реализации бесконденсаторных схем запуска важно правильно подобрать элементную базу:
- Симисторы или тиристоры должны быть рассчитаны на соответствующие токи и напряжения
- Динисторы следует выбирать с учетом требуемого напряжения переключения
- RC-цепи должны обеспечивать необходимый фазовый сдвиг управляющих сигналов
- Элементы схемы управления должны быть устойчивы к помехам
Использование качественных компонентов повышает надежность и долговечность устройства запуска в целом.
Области применения бесконденсаторных схем запуска
Бесконденсаторные схемы запуска трехфазных электродвигателей от однофазной сети могут эффективно применяться в следующих областях:
- Бытовые электроприборы (насосы, компрессоры, вентиляторы)
- Маломощное промышленное оборудование
- Сельскохозяйственная техника
- Строительные инструменты и оборудование
- Автономные системы электроснабжения
Особенно актуально применение таких схем в условиях ограниченной мощности однофазной сети или при частых пусках двигателя.
Ограничения бесконденсаторных схем запуска
Несмотря на явные преимущества, бесконденсаторные схемы запуска имеют ряд ограничений:
- Сложность реализации для двигателей большой мощности (свыше 5-7 кВт)
- Необходимость тщательной настройки под конкретный двигатель
- Возможные проблемы с электромагнитной совместимостью
- Снижение КПД двигателя при работе от однофазной сети
- Ограниченная перегрузочная способность в рабочем режиме
Учет этих ограничений позволяет правильно оценить целесообразность применения бесконденсаторных схем в каждом конкретном случае.
Бесконденсаторный пуск трехфазных электродвигателей от однофазной сети
Вращающий момент, вполне достаточный для запуска указанных электродвигателей от однофазной сети 220 В/50 Гц, можно получить за счет сдвига токов по фазе в фазных обмотках ЭД, применив для этого двунаправленные электронные ключи, включение которых осуществляется в определенное время.
Первая схема (рис.1) предназначена для пуска ЭД с номинальной частотой вращения, равной или меньше 1500 об/мин, обмотки которых соединены в треугольник. За основу этой схемы была взята схема [1], которая упрощена до предела. В этой схеме электронный ключ (симистор VS1) обеспечивает сдвиг тока в обмотке «С» на некоторый угол (50. 70°), что обеспечивает достаточный вращающий момент.
Фазосдвигающим устройством является RC-цепочка. Изменяя сопротивление R2, получают на конденсаторе С напряжение, сдвинутое относительно питающего напряжения на некоторый угол. В качестве ключевого элемента в схеме применен симметричный динистор VS2. В момент, когда напряжение на конденсаторе достигнет напряжения переключения динистора, он подключит заряженный конденсатор к управляющему выводу симистора VS1 i включит этот двунаправленный силовой ключ.
Вторая схема (рис.2) предназначена для пускс ЭД с номинальной частотой вращения равной 3000 об/мин, а также для электродвигателей, работающих на механизмы с большим моментом сопротивле ния при пуске. В этих случаях требуется значительно больший пусковой момент. Поэтому была применена схема соединения обмоток ЭД «разомкнутая звезда ([2], рис. 14,в), которая обеспечивает максимальный пусковой момент. В указанной схеме фазосдвигающие конденсаторы заменены двумя электронными ключами Один ключ включен последовательно с обмоткой фазы «А» и создает в ней «индуктивный» (отстающий)
Бесконденсаторный пуск трехфазных электродвигателей от однофазной сети Бесконденсаторный пуск трехфазных электродвигателей от однофазной сети
сдвиг тока, второй – включен параллельно обмотке фазы «В» и создает в ней «емкостной» (опережающий) сдвиг тока. Здесь учитывается то, что сами обмотки ЭД смещены в пространстве на 120 электрических градусов одна относительно другой.
Наладка заключается в подборе оптимального угла сдвига токов в фазных обмотках, при котором происходит надежный запуск ЭД. Это можно сделать без применения специальных приборов. Выполняется она следующим образом.
Подача напряжения на ЭД осуществляется пускателем нажимного «ручного» типа ПНВС-10, через средний полюс которого подключается фазосдвигающая цепочка. Контакты среднего полюса замкнуты только при нажатой кнопке «Пуск».
При наладке схемы рис.1 из-за прохождения больших пусковых токов некоторое время (до разворота) ЭД сильно гудит и вибрирует. В этом случае лучше изменять величину R2 ступенями при снятом напряжении, а затем, путем кратковременной подачи напряжения, проверять, как происходит запуск ЭД. Если при этом угол сдвига напряжения далек от оптимального, то ЭД гудит и вибрирует очень сильно. По мере приближения к оптимальному углу двигатель «пытается» вращаться в ту или другую сторону, а при оптимальном запускается достаточно хорошо.
Автор производил отладку схемы, показанной на рис.1, на ЭД 0,75 кВт 1500 об/мин и 2,2 кВт 1500 об/мин, а схемы, показанной на рис.2, на ЭД 2,2 кВт 3000 об/мин.
При этом опытным путем установлено, что подобрать значения R и С фазовращающей цепочки, соответствующие оптимальному углу, можно предварительно. Для этого нужно последовательно с ключом (симистором) соединить лампу накаливания 60 Вт и включить их в сеть
220 В. Изменяя величину R, надо установить напряжение на лампе 170 В (для схемы рис.1) и 100 В (для схемы рис.2). Эти напряжения замерялись стрелочным прибором магнитоэлектрической системы, хотя форма напряжения на нагрузке не синусоидальная.
Необходимо отметить, что добиться оптимальных углов сдвига токов можно при различных сочетаниях значений R и С фазосдвигающей цепочки, т.е. изменив номинал емкости конденсатора, придется подобрать и соответствующее ему значение сопротивления.
Эксперименты проводились с симисторами ТС-2-10 и ТС-2-25 без радиаторов. В этой схеме они работали очень хорошо. Можно применить и другие симисторы с двухполярным управлением на соответствующие рабочие токи и класса напряжения не ниже 7. При использовании импортных симисторов в пластмассовом корпусе их следует установить на радиаторы.
tmp5A24-4
Конденсаторы С любые неполярные, рассчитанные на рабочее напряжение не менее 50 В (лучше – 100 В). Можно применить также два полярных конденсатора, включенных последовательно-встречно (в схеме рис.2 их номинал должен быть 3,3 мкФ каждый).
Внешний вид электропривода измельчителя травы с описанной схемой запуска и ЭД 2,2 кВт 3000 об/мин показан на фото 1.
В. В. Бурлоко, г. Мориуполь
Литература
1. // Сигнал. – 1999. – №4.
Устройство бесконденсаторного запуска трехфазного электродвигателя от однофазной сети
H02P1/26 – одиночных многофазных асинхронных двигателей
Владельцы патента RU 2370876:
Государственное образовательное учреждение высшего профессионального образования «Алтайский государственный технический университет им. И.И. Ползунова» (АлтГТУ) (RU)
Изобретение относится к области электротехники и может быть использовано в электроприводе для питания асинхронных трехфазных электродвигателей. Техническим результатом является повышение надежности и экономичности и уменьшение габаритов. В устройстве запуска статорные обмотки асинхронного двигателя соединены по схеме «треугольник» и подключены к однофазной сети через полупроводниковый ключ. В качестве полупроводникового ключа, предназначенного для закорачивания одной из статорных обмоток двигателя при соединении статорных обмоток по схеме «треугольник», использованы встречно-параллельно соединенные динисторы. Один общий выход динисторов подключен к выходам обмоток электродвигателя, одна из которых одним выходом соединена с нулем однофазной сети, а другим выходом – с фазой однофазной сети, а другая обмотка соединена с нулем однофазной сети. Другой общий выход динисторов соединен с выходами обмоток, одна из которых соединена с нулем однофазной сети, а другая – с фазой однофазной сети. 3 ил.
Изобретение относится к устройствам запуска трехфазных асинхронных электродвигателей от однофазной сети и может быть использовано в электроприводе для питания асинхронных трехфазных электродвигателей, статорные обмотки которых соединены по схеме «треугольник».
Известно устройство конденсаторного запуска трехфазного электродвигателя от однофазной сети, содержащее конденсатор и индуктивность. Конденсатор и индуктивность имеют общий выход, который предназначен для соединения с выходами обмоток, одна из которых соединена с нулем однофазной сети, а другая соединена с фазой однофазной сети. Другой выход конденсатора соединен с фазой однофазной сети и предназначен для соединения с выходами обмоток, одна из которых соединена с нулем однофазной сети. Другой выход индуктивности соединен с нулем однофазной сети и выходами обмоток, одна из которых соединена с фазой однофазной сети. Обмотки двигателя соединены по типу треугольник (Бирюков С. Три фазы – Без потери мощности / С.Бирюков // Радио. – М. 2000. – №7. – С.37, рис.1).
Основными недостатками описанного устройства конденсаторного запуска трехфазного электродвигателя от однофазной сети являются повышенные габариты, вследствие необходимости использования бумажных конденсаторов большой емкости и индуктивностей, а также низкая надежность ввиду наличия в схеме конденсаторов, индуктивностей.
Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату (прототипом) является устройство бесконденсаторного запуска трехфазного электродвигателя от однофазной сети, содержащее полупроводниковый ключ для закорачивания и систему управления этим ключом, при соединении статорных обмоток по схеме «треугольник», подключенный параллельно одной обмотке. Один выход полупроводникового ключа соединен с выходами обмоток, причем одна из обмоток соединена одним выходом с нулем однофазной сети, а другим выходом – с фазой однофазной сети, а другая обмотка соединена только с фазой однофазной сети. Второй выход полупроводникового ключа соединен с выходами обмоток, одна из которых соединена с нулем однофазной сети, а другая – с фазой однофазной сети. Система управления этим полупроводниковым ключом состоит из диодного моста и двух тиристоров, включенных катодами встречно в одну из диагоналей моста. Общая катодная точка этих тиристоров соединена с минусом другой диагонали моста. (Голик В. Устройство запуска трехфазных двигателей / В.Голик // Радио. – М. 1996. – №6. – С.39, рис.1, 3).
Основными недостатками этого устройства бесконденсаторного запуска трехфазного электродвигателя от однофазной сети являются пониженная надежность, большие габариты и высокая стоимость, обусловленные использованием сложной системы управления запуском и введением большого количества таких элементов, как диодный мост, стабилитрон, два транзистора, два тиристора.
Предлагаемым изобретением решается задача повышения надежности и экономичности, а также снижения габаритов устройства бесконденсаторного запуска трехфазного электродвигателя от однофазной сети.
Для решения поставленной задачи в устройстве бесконденсаторного запуска трехфазного электродвигателя от однофазной сети, содержащем полупроводниковый ключ, предназначенный для закорачивания одной из статорной обмотки двигателя при соединении статорных обмоток по схеме «треугольник», согласно изобретению в качестве полупроводникового ключа использованы встречно-параллельно соединенные динистoры, причем один общий выход динисторов предназначен для подключения к выходам обмоток электродвигателя, одна из которых одним выходом соединена с нулем однофазной сети, а другим выходом – с фазой однофазной сети, а другая обмотка соединена с нулем однофазной сети, другой общий выход динисторов предназначен для соединения с выходами обмоток, одна из которых соединена с нулем однофазной сети, а другая – с фазой однофазной сети.
Повышение надежности и экономичности, а также снижение габаритов устройства бесконденсаторного запуска трехфазного электродвигателя от однофазной сети обусловлено использованием в качестве полупроводникового ключа встречно-параллельно соединенных динисторов, не требующих дополнительной системы управления их открытием и закрытием.
Предлагаемое изобретение поясняется чертежами, где на фиг.1 приведена принципиальная электрическая схема предлагаемого устройства бесконденсаторного запуска трехфазного электродвигателя от однофазной сети; на фиг.2 изображена векторная диаграмма вращения, состоящего из четырех фиксированных положений магнитного потока поля статора; на фиг.3 показано пофазное изменение магнитного потока в обмотках статора в соответствии с векторной диаграммой, изображенной на фиг.2.
Кроме того, на чертежах изображено следующее:
– А, В, С – статорные обмотки электродвигателя;
– I, II, III, IV – последовательные фиксированные положения вектора магнитного потока кругового вращающегося поля статора асинхронного двигателя;
– дугообразные линии со стрелкой – направления вращения магнитного поля статора;
– Uсети=f(t) – изменение питающего напряжения во времени.
Устройство бесконденсаторного запуска трехфазного электродвигателя от однофазной сети содержит полупроводниковый ключ, в качестве которого использованы встречно-параллельно соединенные динисторы 1 (VT1) и 2 (VT2). Один общий выход динисторов 1 и 2 предназначен для подключения к выходам статорных обмоток электродвигателя, одна из которых, обмотка А, одним выходом соединена с нулем однофазной сети, а другим выходом – с фазой однофазной сети, а другая обмотка, обмотка В, соединена с нулем однофазной сети. Другой общий выход динисторов 1 и 2 предназначен для соединения с выходами обмоток, одна из которых, обмотка В, соединена с нулем однофазной сети, а другая, обмотка С, – с фазой однофазной сети. Статорные обмотки А, В, С электродвигателя соединены по схеме «треугольник».
Работа устройства бесконденсаторного запуска трехфазного электродвигателя от однофазной сети осуществляется следующим образом. При прохождении положительной полуволны питающего напряжения сначала ток проходит по всем трем обмоткам А, В, С электродвигателя (фиг.3). Образуется первое положение вектора магнитного поля статора. При достижении порогового значения питающего напряжения открывается динистор 1 (VT1). Происходит закорачивание обмотки В и образуется второе положение вектора магнитного поля статора. При прохождении отрицательной полуволны питающего напряжения, сначала ток проходит по всем трем обмоткам А, В, С электродвигателя. Образуется третье положение вектора магнитного поля статора. При достижении порогового значения питающего напряжения открывается динистор 2 (VT2). Образуется четвертое положение вектора магнитного поля статора. Поле статора получается эллипсоидным, пространственным, изменяющимся во времени.
Таким образом, увеличиваются надежность и экономичность, а также снижаются габариты устройства бесконденсаторного запуска трехфазного электродвигателя от однофазной сети при отсутствии использования сложной системы управления запуском трехфазного электродвигателя.
Устройство бесконденсаторного запуска трехфазного электродвигателя от однофазной сети, содержащее полупроводниковый ключ, предназначенный для закорачивания одной из статорных обмоток двигателя при соединении статорных обмоток по схеме «треугольник», отличающееся тем, что в качестве полупроводникового ключа использованы встречно-параллельно соединенные динисторы, причем один общий выход динисторов предназначен для подключения к выходам обмоток электродвигателя, одна из которых одним выходом соединена с нулем однофазной сети, а другим выходом – с фазой однофазной сети, а другая обмотка соединена с нулем однофазной сети, другой общий выход динисторов предназначен для соединения с выходами обмоток, одна из которых соединена с нулем однофазной сети, а другая – с фазой однофазной сети.
Как подключить трехфазный двигатель к сети 220 вольт
- Подключение 3х фазного двигателя на 220 без конденсаторов
- Подключение 3х фазного двигателя на 220 с конденсатором
- Подключение 3х фазного двигателя на 220 без потери мощности
- Видео
Многие хозяева, особенно владельцы частных домов или дач, используют оборудование с двигателями на 380 В, работающими от трехфазной сети. Если к участку подведена соответствующая схема питания, то никаких сложностей с их подключением не возникает. Однако довольно часто возникает ситуация, когда питание участка осуществляется только одной фазой, то есть подведено лишь два провода – фазный и нулевой. В таких случаях приходится решать вопрос, как подключить трехфазный двигатель к сети 220 вольт. Это можно сделать различными способами, однако следует помнить, что подобное вмешательство и попытки изменить параметры, приведет к падению мощности и снижению общей эффективности работы электродвигателя.
Подключение 3х фазного двигателя на 220 без конденсаторов
Как правило, схемы без конденсаторов применяются для запуска в однофазной сети трехфазных двигателей малой мощности – от 0,5 до 2,2 киловатта. Времени на запуск тратится примерно столько же, как и при работе в трехфазном режиме.
В этих схемах применяются симисторы. под управлением импульсов с различной полярностью. Здесь же присутствуют симметричные динисторы, подающие сигналы управления в поток всех полупериодов, имеющихся в питающем напряжении.
Существует два варианта подключения и запуска. Первый вариант используется для электродвигателей, с частотой оборотов менее чем 1500 в минуту. Соединение обмоток выполнено треугольником. В качестве фазосдвигающего устройства используется специальная цепочка. Путем изменения сопротивления, на конденсаторе образуется напряжение, сдвинутое на определенный угол относительно основного напряжения. При достижении в конденсаторе уровня напряжения необходимого для переключения, происходит срабатывание динистора и симистора, вызывающее активацию силового двунаправленного ключа.
Второй вариант используется при запуске двигателей, частота вращения которых составляет 3000 об/мин. В эту же категорию входят устройства, установленные на механизмах, требующих большого момента сопротивления во время запуска. В этом случае необходимо обеспечение большого пускового момента. С этой целью в предыдущую схему были внесены изменения, и конденсаторы, необходимые для сдвига фаз, были заменены двумя электронными ключами. Первый ключ последовательно соединяется с фазной обмоткой, приводя к индуктивному сдвигу тока в ней. Подключение второго ключа – параллельное фазной обмотке, что способствует образованию в ней опережающего емкостного сдвига тока.
Данная схема подключения учитывает обмотки двигателя, смещенные в пространстве между собой на 120 0 С. При настройке определяется оптимальный угол сдвига тока в обмотках фаз, обеспечивающий надежный пуск устройства. При выполнении этого действия вполне возможно обойтись без каких-либо специальных приборов.
Подключение электродвигателя 380в на 220в через конденсатор
Для нормального подключения следует знать принцип действия трехфазного двигателя. При включении в трехфазную сеть, по его обмоткам в разные моменты времени поочередно начинает идти ток. То есть в определенный отрезок времени ток проходит через полюса каждой фазы, создавая так же поочередно магнитное поле вращения. Он оказывает влияние на обмотку ротора, вызывая вращение путем подталкивания в разных плоскостях в определенные моменты времени.
При включении такого двигателя в однофазную сеть, в создании вращающегося момента будет участвовать только одна обмотка и воздействие на ротор в этом случае происходит только в одной плоскости. Такого усилия совершенно недостаточно для сдвига и вращения ротора. Поэтому для того чтобы сдвинуть фазу полюсного тока, необходимо воспользоваться фазосдвигающими конденсаторами. Нормальная работа трехфазного электродвигателя во многом зависит от правильного выбора конденсатора.
Расчет конденсатора для трехфазного двигателя в однофазной сети:
- При мощности электродвигателя не более 1,5 кВт в схеме будет достаточно одного рабочего конденсатора.
- Если же мощность двигателя свыше 1,5 кВт или он испытывает большие нагрузки во время запуска, в этом случае выполняется установка сразу двух конденсаторов – рабочего и пускового. Их подключение осуществляется параллельно, причем пусковой конденсатор нужен только для запуска, после чего происходит его автоматическое отключение.
- Управление работой схемы производится кнопкой ПУСК и тумблером отключения питания. Для запуска двигателя нажимается пусковая кнопка и удерживается до тех пор, пока не произойдет полное включение.
В случае необходимости обеспечить вращение в разные стороны, выполняется установка дополнительного тумблера, переключающего направление вращения ротора. Первый основной выход тумблера подключается к конденсатору, второй – к нулевому, а третий – к фазному проводу. Если подобная схема способствует падению мощности или слабому набору оборотов, в этом случае может потребоваться установка дополнительного пускового конденсатора.
Подключение 3х фазного двигателя на 220 без потери мощности
Наиболее простым и эффективным способом считается подключение трехфазного двигателя в однофазную сеть путем подключения третьего контакта, соединенного с фазосдвигающим конденсатором.
Наибольшая выходная мощность, которую возможно получить в бытовых условиях, составляет до 70% от номинальной. Такие результаты получаются в случае использования схемы «треугольник». Два контакта в распределительной коробке напрямую соединяются с проводами однофазной сети. Соединение третьего контакта выполняется через рабочий конденсатор с любым из первых двух контактов или проводов сети.
При отсутствии нагрузок, трехфазный двигатель возможно запускать с помощью только рабочего конденсатора. Однако при наличии даже небольшой нагрузки, обороты будут набираться очень медленно, или двигатель вообще не запустится. В этом случае потребуется дополнительное подключение пускового конденсатора. Он включается буквально на 2-3 секунды, чтобы обороты двигателя могли достигнуть 70% от номинальных. После этого конденсатор сразу же отключается и разряжается.
Таким образом, при решении вопроса как подключить трехфазный двигатель к сети 220 вольт, необходимо учитывать все факторы. Особое внимание следует уделить конденсаторам, поскольку от их действия зависит работа всей системы.
Источники: http://www.radiopill.net/load/dlja_doma_i_byta/ehlektrodvigatelja_v_bytu/beskondensatornyj_pusk_trekhfaznykh_ehlektrodvigatelej_ot_odnofaznoj_seti/276-1-0-660, http://www.findpatent.ru/patent/237/2370876.html, http://electric-220.ru/news/kak_podkljuchit_trekhfaznyj_dvigatel_k_seti_220_volt/2016-10-20-1091
electricremont.ru
Бесконденсаторный пуск трехфазных электродвигателей от однофазной сети
электроника для дома
Как известно, для запуска трехфазного электродвигателя (ЭД) с короткозамкнутым ротором от однофазной сети наиболее часто в качестве фазосдвигающего элемента применяют конденсатор. При этом емкость пускового конденсатора должна быть в несколько раз больше емкости рабочей конденсатора. Для ЭД чаще всего применяемых в домашнем хозяйства (0,5…3 кВт), стоимость пусковых конденсаторов соизмерима со стоимость к электродвигателя. Поэтому желательно избежать применения дорогостоящих пусковых конденсаторов, работающих лишь кратковременно. В тожe время применение рабочих, постоянно включенных фазосдвигающих конденсоторов можно считать целесообразным, так как они позволяют загрузить двигатель на75…85% его мощности при 3-фазном включении (безконденсаторов его мощность снижается примерно на 50%).
Вращающий момент, вполне достаточный для запуска указанных ЭД от однофазной сети 220 В/50 Гц, можно получить за счет сдвига токов по фазе в фазных обмотках ЭД, применив для этого двунаправленные электронные ключи, включение которых осуществляется в определенное время.
Исходя из этого, для пуска 3-фазных ЭД от однофазной сети автором были разработаны и отлажены две простые схемы. Обе схемы опробованы на ЭД мощностью 0,5…2,2 кВт и показали очень хорошие результаты (время пуска не намного больше, чем в трехфазном режиме). В схемах применяются симисторы, управляемые импульсами разной полярности, и симметричный динистор, который формирует управляющие сигналы в течение каждого полупериода питающего напряжения.
Первая схема (рис.1) предназначена для пуска ЭД с номинальной частотой вращения, равной или меньше 1500 об/мин, обмотки которых соединены в треугольник. За основу этой схемы была взята схема [1], которая упрощена до предела. В этой схеме электронный ключ (симистор VS1) обеспечивает сдвиг тока в обмотке «С» на некоторый угол (50…70°), что обеспечивает достаточный вращающий момент.
Фазосдвигающим устройством является RC-цепочка. Изменяя сопротивление R2, получают на конденсаторе С напряжение, сдвинутое относительно питающего напряжения на некоторый угол. В качестве ключевого элемента в схеме применен симметричный динистор VS2. В момент, когда напряжение на конденсаторе достигнет напряжения переключения динистора, он подключит заряженный конденсатор к управляющему выводу симистора VS1 i включит этот двунаправленный силовой ключ.
Вторая схема (рис.2) предназначена для пускс ЭД с номинальной частотой вращения равной 3000 об/мин, а также для электродвигателей, работающих на механизмы с большим моментом сопротивле ния при пуске. В этих случаях требуется значительно больший пусковой момент. Поэтому была применена схема соединения обмоток ЭД «разомкнутая звезда ([2], рис. 14,в), которая обеспечивает максимальный пусковой момент. В указанной схеме фазосдвигающие конденсаторы заменены двумя электронными ключами Один ключ включен последовательно с обмоткой фазы «А» и создает в ней «индуктивный» (отстающий)
сдвиг тока, второй — включен параллельно обмотке фазы «В» и создает в ней «емкостной» (опережающий) сдвиг тока. Здесь учитывается то, что сами обмотки ЭД смещены в пространстве на 120 электрических градусов одна относительно другой.
Наладка заключается в подборе оптимального угла сдвига токов в фазных обмотках, при котором происходит надежный запуск ЭД. Это можно сделать без применения специальных приборов. Выполняется она следующим образом.
Подача напряжения на ЭД осуществляется пускателем нажимного «ручного» типа ПНВС-10, через средний полюс которого подключается фазосдвигающая цепочка. Контакты среднего полюса замкнуты только при нажатой кнопке «Пуск».
Нажав кнопку «Пуск», путем вращения движка подстроечного сопротивления R2 подбирают необходимый пусковой момент. Так поступают при наладке схемы, показанной на рис.2.
При наладке схемы рис.1 из-за прохождения больших пусковых токов некоторое время (до разворота) ЭД сильно гудит и вибрирует. В этом случае лучше изменять величину R2 ступенями при снятом напряжении, а затем, путем кратковременной подачи напряжения, проверять, как происходит запуск ЭД. Если при этом угол сдвига напряжения далек от оптимального, то ЭД гудит и вибрирует очень сильно. По мере приближения к оптимальному углу двигатель «пытается» вращаться в ту или другую сторону, а при оптимальном запускается достаточно хорошо.
Автор производил отладку схемы, показанной на рис.1, на ЭД 0,75 кВт 1500 об/мин и 2,2 кВт 1500 об/мин, а схемы, показанной на рис.2, на ЭД 2,2 кВт 3000 об/мин.
При этом опытным путем установлено, что подобрать значения R и С фазовращающей цепочки, соответствующие оптимальному углу, можно предварительно. Для этого нужно последовательно с ключом (симистором) соединить лампу накаливания 60 Вт и включить их в сеть ~220 В. Изменяя величину R, надо установить напряжение на лампе 170 В (для схемы рис.1) и 100 В (для схемы рис.2). Эти напряжения замерялись стрелочным прибором магнитоэлектрической системы, хотя форма напряжения на нагрузке не синусоидальная.
Необходимо отметить, что добиться оптимальных углов сдвига токов можно при различных сочетаниях значений R и С фазосдвигающей цепочки, т.е. изменив номинал емкости конденсатора, придется подобрать и соответствующее ему значение сопротивления.
Детали
Эксперименты проводились с симисторами ТС-2-10 и ТС-2-25 без радиаторов. В этой схеме они работали очень хорошо. Можно применить и другие симисторы с двухполярным управлением на соответствующие рабочие токи и класса напряжения не ниже 7. При использовании импортных симисторов в пластмассовом корпусе их следует установить на радиаторы.
Симметричный динистор DB3 можно заменить отечественным КР1125. У него немного меньше напряжение переключения. Возможно, это и лучше, но этот динистор очень сложно найти в продаже.
Конденсаторы С любые неполярные, рассчитанные на рабочее напряжение не менее 50 В (лучше — 100 В). Можно применить также два полярных конденсатора, включенных последовательно-встречно (в схеме рис.2 их номинал должен быть 3,3 мкФ каждый).
Внешний вид электропривода измельчителя травы с описанной схемой запуска и ЭД 2,2 кВт 3000 об/мин показан на фото 1.
В. В. Бурлоко, г. Мориуполь
Литература
1. // Сигнал. — 1999. — №4.
2. С.П. Фурсов Использование трехфазных
электродвигателей в быту. — Кишинев: Картя
молдовенскэ, 1976.
radiopolyus.ru
Запуск трехфазного двигателя от однофазной сети без конденсатора
Статья посвящена возможности запуска трехфазного асинхронного двигателя мощностью 250 Вт от сети 220 В не при помощи пускового конденсатора, а с использованием самодельного пускового электронного устройства. Схема его очень проста: на двух тиристорах, с тиристорными ключами и транзисторным управлением.
Схема устройства
Данное управление двигателем мало кому известно и практически не используется. Преимущество предлагаемого пускового устройства в том, что значительно уменьшается потеря мощности двигателя. При пуске трехфазного двигателя 220 В помощью конденсатора потеря мощности составляет минимум 30%, а может достигать 50%. Использование этого пускового устройства снижает потерю мощности до 3%, максимум составит 5%.
Однофазная сеть подключается:
Пусковое устройство подключается к двигателю вместо конденсатора.
Подключенный к устройству резистор позволяет регулировать обороты двигателя. Устройство также можно включить на реверс.
Для эксперимента взят старый двигатель еще советского производства.
С данным пусковым устройством двигатель запускается мгновенно и работает без каких-либо проблем. Такую схему можно использовать практически на любом двигателе мощностью до 3 кВт.
Примечание: в сети 220 В двигатели мощностью более 3 кВт включать просто не имеет смысла – бытовая электропроводка не выдержит нагрузки.
В схеме можно использовать любые тиристоры, ток которых не менее 10 А. Диоды 231, также 10-амперные.
Примечание: у автора в схеме установлены диоды 233, что не имеет значения (только они идут по напряжению 500 В) −поставить можно любые диоды, которые имеют ток 10 А и удерживают более 250 В.
Устройство компактно. Автор схемы собрал резисторы просто наборами, чтобы не тратить время на подборку резисторов по номиналу. Теплоотвод не требуется. Установлен конденсатор, стабилитрон, два диода 105. Схема получилась очень простая и эффективная в работе.
Рекомендуется для использования – сборка пускового устройства проблем не создаст. В итоге при подключении двигатель стартует на своей максимальной мощности и практически без ее потери в отличие от стандартной схемы с использованием конденсатора.
Смотрите видео о работе устройства
sdelaysam-svoimirukami.ru
Как запустить трехфазный двигатель от однофазной сети без конденсатора
В этой статье будет рассмотрен способ запуска трех фазовый двигателя от сети 220 Вольт. Запускаться он будет бес помощи пускового конденсатора, а от специального пускового устройства, которое собирается на двух тиристорах, с тиристорными ключами и транзисторным управлением. Схема достаточно проста и собрать её не составит большого труда.
Схема пускового устройства для трех фазового двигателя
Данное управление двигателем мало кому известно и практически не используется. Преимущество предлагаемого пускового устройства в том, что значительно уменьшается потеря мощности двигателя. При пуске трехфазного двигателя 220 В помощью конденсатора потеря мощности составляет минимум 30%, а может достигать 50%. Использование этого пускового устройства снижает потерю мощности до 3%, максимум составит 5%.
Подключается однофазная сеть:
Пусковое устройство подключается к двигателю вместо конденсатора.
Подключенный к устройству резистор позволяет регулировать обороты двигателя. Устройство также можно включить на реверс.
Для эксперимента взят старый двигатель еще советского производства.
С данным пусковым устройством двигатель запускается мгновенно и работает без каких-либо проблем. Такую схему можно использовать практически на любом двигателе мощностью до 3 кВт.
Примечание: в сети 220 В двигатели мощностью более 3 кВт включать просто не имеет смысла – бытовая электропроводка не выдержит нагрузки.
В схеме можно использовать любые тиристоры, ток которых не менее 10 А. Диоды 231, также 10-амперные.
Примечание: у автора в схеме установлены диоды 233, что не имеет значения (только они идут по напряжению 500 В) −поставить можно любые диоды, которые имеют ток 10 А и удерживают более 250 В.
Устройство компактно. Автор схемы собрал резисторы просто наборами, чтобы не тратить время на подборку резисторов по номиналу. Теплоотвод не требуется. Установлен конденсатор, стабилитрон, два диода 105. Схема получилась очень простая и эффективная в работе.
Рекомендуется для использования – сборка пускового устройства проблем не создаст. В итоге при подключении двигатель стартует на своей максимальной мощности и практически без ее потери в отличие от стандартной схемы с использованием конденсатора.
Смотрите видео работы пускового устройства
Похожее
kavmaster.ru
Радиолюбительский портал — Бесконденсаторный пуск электродвигателя
Привет други! Хочу поделиться новой (для меня) разработкой. А всё началось с того, что у меня есть наждак, изготовленный из 3х фазного двигателя 0,75 кВт 1400 об/мин. Подключён двигатель к сети ~ 220 В. Обычно, для пуска, используют конденсаторы. Рекомендованные расчёты говорят, что на 1 кВт мощности нужно 66 мкФ. Т.е., в моём случае, 66 х 0,75 = 50 мкФ. Беда в том, что имелся всего один бумажный конденсатор 20 мкФ х 400 В.. С ним двигатель развивал обороты как бы нехотя, но развивал. Затем что-то случилось с кондёром – двигатель не стал самостоятельно запускаться, а раскручивать его руками не очень то приятно. Новые конденсаторы стоят сравнительно не дёшево. Стал размышлять:Конденсатор нужен двигателю для сдвига фазы между пусковой и рабочей обмоткой (при пуске двигателя обязательно). Что если сдвигать фазу тиристором?! После поиска в нете нарыл одну схему, где автор предлагает семисторонний запуск двигателя, Думаю, что он не совсем верно понимает то, что сделал (смесь пуска с симисторным аналогом конденсатора и с пусковым короткозамкнутым витком). Отсюда и большая потеря мощности. www.radiopill.net/load/dlja_doma_i_byta/…noj_seti/276-1-0-660
Не будучи полностью уверенным в успешной работе придуманной мной схеме, решил сделать тиристорный регулятор несколько сложнее того, что был необходим. Не будет работать здесь, можно будет использовать его в другом каком либо месте.
Двигатель нормально запускается и работает. Регулировать сдвиг фазы можно и на лампе накаливания (это сначала вместо двигателя). Для 3х фазного двигателя, в момент пуска, оптимальный угол сдвига фаз 120 градусов. После запуска — 127 градусов. При 127и градусах двигатель как то мягче работает и потребляет меньше тока. Для однофазного — 90 градусов. Вообще однофазный двигатель хорошо запускался от 30 до 90 градусов. Герконовое реле ещё не сделал, переключаю угол в ручную, после запуска. Пробовал работать наждаком — двигатель греется гораздо меньше чем ранее с конденсатором в 20 мкФ.
Схему возможно сделать гораздо проще рис1, рис2 или рис3
www.radio-portal.ru
Устройство бесконденсаторного запуска трехфазного электродвигателя от однофазной сети
Изобретение относится к области электротехники и может быть использовано в электроприводе для питания асинхронных трехфазных электродвигателей. Техническим результатом является повышение надежности и экономичности и уменьшение габаритов. В устройстве запуска статорные обмотки асинхронного двигателя соединены по схеме «треугольник» и подключены к однофазной сети через полупроводниковый ключ. В качестве полупроводникового ключа, предназначенного для закорачивания одной из статорных обмоток двигателя при соединении статорных обмоток по схеме «треугольник», использованы встречно-параллельно соединенные динисторы. Один общий выход динисторов подключен к выходам обмоток электродвигателя, одна из которых одним выходом соединена с нулем однофазной сети, а другим выходом — с фазой однофазной сети, а другая обмотка соединена с нулем однофазной сети. Другой общий выход динисторов соединен с выходами обмоток, одна из которых соединена с нулем однофазной сети, а другая — с фазой однофазной сети. 3 ил.
Изобретение относится к устройствам запуска трехфазных асинхронных электродвигателей от однофазной сети и может быть использовано в электроприводе для питания асинхронных трехфазных электродвигателей, статорные обмотки которых соединены по схеме «треугольник».
Известно устройство конденсаторного запуска трехфазного электродвигателя от однофазной сети, содержащее конденсатор и индуктивность. Конденсатор и индуктивность имеют общий выход, который предназначен для соединения с выходами обмоток, одна из которых соединена с нулем однофазной сети, а другая соединена с фазой однофазной сети. Другой выход конденсатора соединен с фазой однофазной сети и предназначен для соединения с выходами обмоток, одна из которых соединена с нулем однофазной сети. Другой выход индуктивности соединен с нулем однофазной сети и выходами обмоток, одна из которых соединена с фазой однофазной сети. Обмотки двигателя соединены по типу треугольник (Бирюков С. Три фазы — Без потери мощности / С.Бирюков // Радио. — М., 2000. — №7. — С.37, рис.1).
Основными недостатками описанного устройства конденсаторного запуска трехфазного электродвигателя от однофазной сети являются повышенные габариты, вследствие необходимости использования бумажных конденсаторов большой емкости и индуктивностей, а также низкая надежность ввиду наличия в схеме конденсаторов, индуктивностей.
Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату (прототипом) является устройство бесконденсаторного запуска трехфазного электродвигателя от однофазной сети, содержащее полупроводниковый ключ для закорачивания и систему управления этим ключом, при соединении статорных обмоток по схеме «треугольник», подключенный параллельно одной обмотке. Один выход полупроводникового ключа соединен с выходами обмоток, причем одна из обмоток соединена одним выходом с нулем однофазной сети, а другим выходом — с фазой однофазной сети, а другая обмотка соединена только с фазой однофазной сети. Второй выход полупроводникового ключа соединен с выходами обмоток, одна из которых соединена с нулем однофазной сети, а другая — с фазой однофазной сети. Система управления этим полупроводниковым ключом состоит из диодного моста и двух тиристоров, включенных катодами встречно в одну из диагоналей моста. Общая катодная точка этих тиристоров соединена с минусом другой диагонали моста. (Голик В. Устройство запуска трехфазных двигателей / В.Голик // Радио. — М., 1996. — №6. — С.39, рис.1, 3).
Основными недостатками этого устройства бесконденсаторного запуска трехфазного электродвигателя от однофазной сети являются пониженная надежность, большие габариты и высокая стоимость, обусловленные использованием сложной системы управления запуском и введением большого количества таких элементов, как диодный мост, стабилитрон, два транзистора, два тиристора.
Предлагаемым изобретением решается задача повышения надежности и экономичности, а также снижения габаритов устройства бесконденсаторного запуска трехфазного электродвигателя от однофазной сети.
Для решения поставленной задачи в устройстве бесконденсаторного запуска трехфазного электродвигателя от однофазной сети, содержащем полупроводниковый ключ, предназначенный для закорачивания одной из статорной обмотки двигателя при соединении статорных обмоток по схеме «треугольник», согласно изобретению в качестве полупроводникового ключа использованы встречно-параллельно соединенные динистoры, причем один общий выход динисторов предназначен для подключения к выходам обмоток электродвигателя, одна из которых одним выходом соединена с нулем однофазной сети, а другим выходом — с фазой однофазной сети, а другая обмотка соединена с нулем однофазной сети, другой общий выход динисторов предназначен для соединения с выходами обмоток, одна из которых соединена с нулем однофазной сети, а другая — с фазой однофазной сети.
Повышение надежности и экономичности, а также снижение габаритов устройства бесконденсаторного запуска трехфазного электродвигателя от однофазной сети обусловлено использованием в качестве полупроводникового ключа встречно-параллельно соединенных динисторов, не требующих дополнительной системы управления их открытием и закрытием.
Предлагаемое изобретение поясняется чертежами, где на фиг.1 приведена принципиальная электрическая схема предлагаемого устройства бесконденсаторного запуска трехфазного электродвигателя от однофазной сети; на фиг.2 изображена векторная диаграмма вращения, состоящего из четырех фиксированных положений магнитного потока поля статора; на фиг.3 показано пофазное изменение магнитного потока в обмотках статора в соответствии с векторной диаграммой, изображенной на фиг.2.
Кроме того, на чертежах изображено следующее:
— Ф — фаза;
— 0 — ноль;
— А, В, С — статорные обмотки электродвигателя;
— VT1-VT2 — динисторы;
— I, II, III, IV — последовательные фиксированные положения вектора магнитного потока кругового вращающегося поля статора асинхронного двигателя;
— дугообразные линии со стрелкой — направления вращения магнитного поля статора;
— Uсети=f(t) — изменение питающего напряжения во времени.
Устройство бесконденсаторного запуска трехфазного электродвигателя от однофазной сети содержит полупроводниковый ключ, в качестве которого использованы встречно-параллельно соединенные динисторы 1 (VT1) и 2 (VT2). Один общий выход динисторов 1 и 2 предназначен для подключения к выходам статорных обмоток электродвигателя, одна из которых, обмотка А, одним выходом соединена с нулем однофазной сети, а другим выходом — с фазой однофазной сети, а другая обмотка, обмотка В, соединена с нулем однофазной сети. Другой общий выход динисторов 1 и 2 предназначен для соединения с выходами обмоток, одна из которых, обмотка В, соединена с нулем однофазной сети, а другая, обмотка С, — с фазой однофазной сети. Статорные обмотки А, В, С электродвигателя соединены по схеме «треугольник».
Работа устройства бесконденсаторного запуска трехфазного электродвигателя от однофазной сети осуществляется следующим образом. При прохождении положительной полуволны питающего напряжения сначала ток проходит по всем трем обмоткам А, В, С электродвигателя (фиг.3). Образуется первое положение вектора магнитного поля статора. При достижении порогового значения питающего напряжения открывается динистор 1 (VT1). Происходит закорачивание обмотки В и образуется второе положение вектора магнитного поля статора. При прохождении отрицательной полуволны питающего напряжения, сначала ток проходит по всем трем обмоткам А, В, С электродвигателя. Образуется третье положение вектора магнитного поля статора. При достижении порогового значения питающего напряжения открывается динистор 2 (VT2). Образуется четвертое положение вектора магнитного поля статора. Поле статора получается эллипсоидным, пространственным, изменяющимся во времени.
Таким образом, увеличиваются надежность и экономичность, а также снижаются габариты устройства бесконденсаторного запуска трехфазного электродвигателя от однофазной сети при отсутствии использования сложной системы управления запуском трехфазного электродвигателя.
Устройство бесконденсаторного запуска трехфазного электродвигателя от однофазной сети, содержащее полупроводниковый ключ, предназначенный для закорачивания одной из статорных обмоток двигателя при соединении статорных обмоток по схеме «треугольник», отличающееся тем, что в качестве полупроводникового ключа использованы встречно-параллельно соединенные динисторы, причем один общий выход динисторов предназначен для подключения к выходам обмоток электродвигателя, одна из которых одним выходом соединена с нулем однофазной сети, а другим выходом — с фазой однофазной сети, а другая обмотка соединена с нулем однофазной сети, другой общий выход динисторов предназначен для соединения с выходами обмоток, одна из которых соединена с нулем однофазной сети, а другая — с фазой однофазной сети.
findpatent.ru
Подключение трехфазного двигателя к однофазной сети
Здравствуйте, дорогие читатели и гости сайта «Заметки электрика».
Частенько у каждого из нас возникает необходимость в гараже или на даче подключить трехфазный асинхронный двигатель, например, для наждачного или сверлильного станка, бетономешалки и т.п.
А в наличии имеется только источник однофазного напряжения.
Как быть в данной ситуации?
Все просто. Необходимо трехфазный асинхронный двигатель включить как конденсаторный по следующим классическим схемам.
Еще раз напоминаю, что это самые распространенные схемы подключения трехфазного двигателя к однофазной сети. Существует еще несколько способов включения, но о них в данной статье мы говорить не будем.
Как видно из схем, это осуществляется с помощью рабочего и пускового конденсаторов. Их еще называют фазосдвигающими.
Кстати, со схемой соединения звездой и треугольником обмоток асинхронного двигателя я Вас знакомил в прошлой статье.
Выбор емкости конденсаторов
1. Выбор емкости рабочего конденсатора
Величина емкости рабочего конденсатора (Сраб.) рассчитывается по формуле:
Полученное значение емкости рабочего конденсатора получается в (мкФ).
Вышеприведенная формула может показаться Вам сложной, поэтому Вашему вниманию предлагаю более легкий вариант расчета емкости рабочего конденсатора для подключения трехфазного двигателя к однофазной сети. Для этого Вам необходимо лишь знать мощность (кВт) асинхронного двигателя.
Если сказать еще более проще, то на каждые 100 (Вт) мощности трехфазного двигателя необходимо порядка 7 (мкФ) емкости рабочего конденсатора.
При выборе емкости рабочего конденсатора необходимо контролировать ток в фазных обмотках статора в установившемся режиме. Этот ток не должен превышать номинального значения.
2. Выбор емкости пускового конденсатора
Если же у Вас пуск электродвигателя происходит при значительной нагрузке на валу, то параллельно рабочему конденсатору необходимо включать пусковой конденсатор. Включается он только на время пуска двигателя (примерно 2-3 секунды) с помощью ключа SA до набора номинальной частоты вращения ротора, а затем отключается.
Что случится, если забыть отключить пусковые конденсаторы?
Если забыть отключить пусковые конденсаторы, то возникнет сильный перекос по токам в фазах и двигатель может перегреться.
Величина емкости пускового конденсатора выбирается в 2,5-3 раза больше емкости рабочего конденсатора.
В таком случае пусковой момент двигателя становится номинальным и двигатель запустится без проблем.
Необходимая емкость набирается с помощью параллельного и последовательного соединения конденсаторов. Об этом я напишу отдельную статью в разделе «Электротехника«. Следите за обновлениями на сайте. Подписывайтесь на новые статьи.
Трехфазные двигатели мощностью до 1 (кВт) можно включать в однофазную сеть только с рабочим конденсатором. Пусковой конденсатор можно не применять.
Выбор типа конденсаторов
Как выбрать емкость рабочих и пусковых конденсаторов Вы уже знаете. Теперь необходимо разобраться, какой тип конденсаторов можно применять в представленных схемах.
Желательно использовать один и тот же тип конденсаторов, как для рабочих, так и для пусковых конденсаторов.
Чаще всего, для подключения трехфазного двигателя в однофазную сеть, применяют бумажные конденсаторы в металлическом герметичном корпусе типа МПГО, МБГП, КБП или МБГО.
Кое-что я нашел у себя в запасе.
Практически все они имеют прямоугольную форму.
На самом корпусе можно увидеть их параметры:
- емкость (мкФ)
- рабочее напряжение (В)
Но у бумажных конденсаторов есть один недостаток — они выпускаются слишком громоздкие и при этом имеют небольшую емкость. Поэтому при включении трехфазного двигателя небольшой мощности в однофазную сеть, батарея набранных конденсаторов получается «солидная».
Также вместо бумажных конденсаторов можно применять и электролитические, но схема их подключения совершенно другая и содержит в себе дополнительные элементы в виде диодов и резисторов.
Применять Вам электролитические конденсаторы я Вам настоятельно не рекомендую!!!
У них есть недостаток в виде того, что при пробое диода через конденсатор пойдет переменный ток, что вызовет его нагрев и взрыв (выход его из строя).
Тем более, что в современной электронике вышли в свет новые металлизированные полипропиленовые конденсаторы переменного тока типа СВВ.
Вот например, СВВ60 в круглом корпусе.
Или СВВ61 в прямоугольном корпусе.
В основном, они выпускаются на напряжение 400-450 (В). Вот на них то и стоит обратить внимание — очень хорошо себя зарекомендовали. Нареканий к ним нет. Кстати, такой же конденсатор у меня стоит на сверлильном станке в мастерской.
Выбор напряжения конденсаторов
Также при выборе конденсаторов для трехфазного двигателя в однофазной сети важно правильно учитывать их рабочее напряжение.
Если выбрать конденсатор с большим запасом по напряжению, то это будет не целесообразно и приведет к дополнительным затратам и увеличению габаритных размеров нашей установки.
Если же выбрать конденсатор с рабочим напряжением меньше, чем напряжение сети, то это приведет к преждевременному выходу из строя конденсаторов (даже возможен взрыв).
Принято выбирать рабочее напряжение конденсаторов для схем, указанных в данной статье, равное 1,15 напряжению сети, а еще лучше не менее 300 (В).
Вроде бы все ясно и понятно. Но не стоит забывать, что при использовании бумажных конденсаторов в сети переменного напряжения следует разделить их рабочее напряжение примерно в 1,5-2 раза.
Например, если на бумажном конденсаторе указано напряжение 180 (В), то его рабочее напряжение при переменном токе следует принять 90-120 (В).
Пример подключения трехфазного двигателя к однофазной сети
Чтобы закрепить теорию на практике, рассмотрим пример выбора конденсаторов для подключения трехфазного двигателя АОЛ 22-4 мощностью 400 (Вт) в однофазную сеть. Кстати я уже описывал устройство этого двигателя в предыдущих статьях. Прочитать про него можете здесь.
Цель нашего эксперимента — запустить этот двигатель от однофазной сети 220 (В).
Данные двигателя АОЛ 22-4:
Т.к. мощность этого двигателя небольшая (до 1 кВт), то для его запуска в однофазной сети достаточно будет применить только рабочий конденсатор.
Определим емкость рабочего конденсатора:
Исходя из формул, принимаем среднее значение емкости рабочего конденсатора равной 25 (мкФ).
Для эксперимента я буду использовать емкость 10 (мкФ). Заодно и посмотрим, можно ли использовать емкость чуть ниже расчетной.
Далее идем в кладовку и ищем подходящие конденсаторы. Нашлись конденсаторы типа МБГО.
Теперь нам необходимо, применив навыки электротехники
, собрать из этих конденсаторов необходимую нам емкость.Емкость одного конденсатора составляет 10 (мкФ).
При параллельном соединении 2 конденсаторов мы получим емкость, равную 20 (мкФ). Но рабочее напряжение у них составляет всего 160 (В). Поэтому для увеличения рабочего напряжения до 320 (В), эти 2 конденсатора соединим последовательно с 2 такими же конденсаторами, соединенных параллельно. Общая их емкость получится 10 (мкФ). Вот как это получилось.
Подключаем полученную батарею рабочих конденсаторов согласно схемы, представленной в начале данной статьи и пробуем запустить трехфазный двигатель в однофазной сети.
Дальнейшие итоги нашего эксперимента смотрите на видео.
Эксперимент завершился УДАЧНО!!!
И вообще мне показалось, что запуск двигателя от однофазной сети с помощью конденсаторов произошел легче и быстрее, чем от трехфазной сети…Выслушаю и Ваше мнение по этому поводу!!!
При включении трехфазного асинхронного двигателя в однофазную сеть его полезная мощность не превысит 70-80% номинальной мощности, а частота вращения ротора практически равна номинальной.
Примечание 1: если у Вас двигатель 380/220 (В), то подключать его в сеть 220 (В) необходимо только треугольником.
Примечание 2: если на бирке указана только схема звезды с напряжением 380 (В), то подключить такой двигатель в однофазную сеть 220 (В) получится только при одном условии. Нужно «распотрошить» общую точку звезды и вывести в клеммник 6 концов. Общая точка чаще всего находится в лобовой части двигателя.
Я думаю Вам будет интересно продолжение этой статьи о том, как осуществить реверс трехфазного двигателя, подключенного к однофазной сети.
P.S. Задавайте вопросы по данной теме в комментариях, я с удовольствием отвечу Вам. А также подписывайтесь на новые статьи. Дальше будет интереснее.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
zametkielectrika.ru