Блок питания на транзисторе п213а – ,

Назад в СССР – Блок питания своими руками

Приветствую Вас, господа МозгоЧины!

Вот решил показать вам свой блок питания, который я собрал своими руками, когда мне было как многим из вас 13 лет. Это были счастливые Восьмидесятые, мы после школы бегали на радио кружки, а вечерами, кое- как, сделав уроки, хватались за паяльник и собирали очередную самоделку, увиденную в каком-нибудь радиожурнале. Вот про одну из таких самоделок, я и хочу рассказать.

Сейчас конечно смешно говорить, что у меня в мои 13 лет не было фотоаппарата, и я не мог фотографировать процесс работы, но это так и было, поэтому я сейчас просто взял, и разобрал своё детище, и постарался, как можно детально всё сфотографировать, и заодно окунуться в воспоминания.

Вот так выглядит компоновка внутренностей

Это транзистор П213Б на радиаторе, кстати, один из популярных и ходовых транзисторов в то время

Это понижающий трансформатор, с 220 вольт до 15 вольт, ТВК-110-Л-2, применялся в выходном каскаде кадровой развёртке черно-белых ламповых телевизорах

Ещё вид сверху, где под электролитическим конденсатором видна монтажная плата

А вот и сама монтажная плата с разных сторон, монтаж навесной, снизу все радиодетали соединены проводами при помощи пайки

Это стрелочный прибор с построечным сопротивлением

В то время у меня не было компьютера и принтера, поэтому шкалу я рисовал сам, карандашом, хотя у меня до сих пор осталась эта привычка, вы наверно помните это по моей самоделке Перевоплощение стрелочного индикатора

Передняя панель изнутри: стрелочный прибор – индикатор напряжения, потенциометр — регулятор выходного напряжения, неоновая лампочка — индикатор включения, тумблер – выключатель и гнездо СГ-3 используется как выходной разъём

Общей вид в разборке

Нижняя панель  с ножками

Ножки сделаны из пробочек от зубных паст, я часто их использовал, удобно и симпатично

Задняя панель с предохранителем

Это штекер СГ-3 для подключения к блоку питания

Корпус сделан из фанеры и обожжен над газовой плитой.

Ну, вот на этом и всё.

Ах да, чуть не забыл, принципиальная схема этого блока питания

 

Ну, вот теперь точно всё. Надеюсь, я не утомил вас своим рассказом о такой старой и примитивной самоделке, надеюсь что кто-нибудь, что-нибудь для себя подчеркнёт из неё.

С уважением Mr. Ed


ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ!

About Mr.Ed

mozgochiny.ru

Блок питания на стабилитроне и транзисторе своими руками

Рассмотренный далее стабилизированный блок питания является одним из первых устройств, которые собираются начинающими радиолюбителями. Это очень простой, но весьма полезный прибор. Для его сборки не нужны дорогостоящие компоненты, которые достаточно легко подобрать новичку в зависимости от требуемых характеристик блока питания.
Материал будет также полезен тем, кто желает более детально разобраться в назначении и расчете простейших радиодеталей. В том числе, вы подробно узнаете о таких компонентах блока питания, как:
  • силовой трансформатор;
  • диодный мост;
  • сглаживающий конденсатор;
  • стабилитрон;
  • резистор для стабилитрона;
  • транзистор;
  • нагрузочный резистор;
  • светодиод и резистор для него.

Также в статье детально рассказано, как подобрать радиодетали для своего блока питания и что делать, если нет нужного номинала. Наглядно будет показана разработка печатной платы и раскрыты нюансы этой операции. Несколько слов сказано конкретно о проверке радиодеталей перед пайкой, а также о сборке устройства и его тестировании.

Типовая схема стабилизированного блока питания


Всевозможных схем блоков питания со стабилизацией напряжения существует сегодня очень много. Но одна из самых простых конфигураций, с которой и стоит начинать новичку, построена всего на двух ключевых компонентах – стабилитроне и мощном транзисторе. Естественно, в схеме присутствуют и другие детали, но они вспомогательные.

Схемы в радиоэлектронике принято разбирать в том направлении, в котором по ним протекает ток. В блоке питания со стабилизацией напряжения все начинается с трансформатора (TR1). Он выполняет сразу несколько функций. Во-первых, трансформатор понижает сетевое напряжение. Во-вторых, обеспечивает работу схемы. В-третьих, питает то устройство, которое подключено к блоку.
Диодный мост (BR1) – предназначен для выпрямления пониженного сетевого напряжения. Если говорить другими словами, то в него заходит переменное напряжение, а на выходе получается уже постоянное. Без диодного моста не будет работать ни сам блок питания, ни устройства, которые будут к нему подключаться.
Сглаживающий электролитический конденсатор (C1) нужен для того, чтобы убирать пульсации, присутствующие в бытовой сети. На практике они создают помехи, которые отрицательно сказываются на работе электроприборов. Если для примера взять усилитель звука, запитанный от блока питания без сглаживающего конденсатора, то эти самые пульсации будут отчетливо слышны в колонках в виде постороннего шума. В других приборах помехи могут привести к некорректной работе, сбоям и прочим проблемам.
Стабилитрон (D1) – это компонент блока питания, который стабилизирует уровень напряжения. Дело в том, что трансформатор будет выдавать желаемые 12 В (например) только тогда, когда в сетевой розетке будет ровно 230 В. Однако на практике таких условий не бывает. Напряжение может как просаживаться, так и повышаться. То же самое трансформатор будет давать и на выходе. Благодаря своим свойствам стабилитрон выравнивает пониженное напряжение независимо от скачков в сети. Для корректной работы этого компонента нужен токоограничивающий резистор (R1). О нем более детально сказано ниже.
Транзистор (Q1) – нужен для усиления тока. Дело в том, что стабилитрон не способен пропускать через себя весь потребляемый прибором ток. Более того, корректно он будет работать только в определенном диапазоне, например, от 5 до 20 мА. Для питания каких-либо приборов этого откровенно мало. С данной проблемой и справляется мощный транзистор, открывание и закрывание которого управляется стабилитроном.
Сглаживающий конденсатор (C2) – предназначен для того же, что и вышеописанный C1. В типовых схемах стабилизированных блоков питания присутствует также нагрузочный резистор (R2). Он нужен для того, чтобы схема сохраняла работоспособность тогда, когда к выходным клеммам ничего не подключено.
В подобных схемах могут присутствовать и другие компоненты. Это и предохранитель, который ставится перед трансформатором, и светодиод, сигнализирующий о включении блока, и дополнительные сглаживающие конденсаторы, и еще один усиливающий транзистор, и выключатель. Все они усложняют схему, однако, повышают функциональность устройства.

Расчет и подбор радиокомпонентов для простейшего блока питания


Трансформатор подбирается по двум основным критериям – напряжению вторичной обмотки и по мощности. Есть и другие параметры, но в рамках материала они не особо важны. Если вам нужен блок питания, скажем, на 12 В, то трансформатор нужно подбирать такой, чтобы с его вторичной обмотки можно было снять чуть больше. С мощностью все то же самое – берем с небольшим запасом.
Основной параметр диодного моста – это максимальный ток, который он способен пропускать. На эту характеристику и стоит ориентироваться в первую очередь. Рассмотрим примеры. Блок будет использоваться для питания прибора, потребляющего ток 1 А. Это значит, что диодный мост нужно брать примерно на 1,5 А. Допустим, вы планируете питать какой-либо 12-вольтовый прибор мощностью 30 Вт. Это значит, что потребляемый ток будет около 2,5 А. Соответственно, диодный мост должен быть, как минимум, на 3 А. Другими его характеристиками (максимальное напряжение и прочее) в рамках такой простой схемы можно пренебрегать.

Дополнительно стоит сказать, что диодный мост можно не брать уже готовый, а собрать его из четырех диодов. В таком случае каждый из них должен быть рассчитан на ток, проходящий по схеме.
Для расчета емкости сглаживающего конденсатора применяются достаточно сложные формулы, которые в данном случае ни к чему. Обычно берется емкость 1000-2200 мкФ, и этого для простого блока питания будет вполне достаточно. Можно взять конденсатор и побольше, но это существенно удорожит изделие. Другой важный параметр – максимальное напряжение. По нему конденсатор подбирается в зависимости от того, какое напряжение будет присутствовать в схеме.
Здесь стоит учитывать, что на отрезке между диодным мостом и стабилитроном после включения сглаживающего конденсатора напряжение будет примерно на 30% выше, чем на выводах трансформатора. То есть, если вы делаете блок питания на 12 В, а трансформатор выдает с запасом 15 В, то на данном участке из-за работы сглаживающего конденсатора будет примерно 19,5 В. Соответственно, он должен быть рассчитан на это напряжение (ближайший стандартный номинал 25 В).
Второй сглаживающий конденсатор в схеме (C2) обычно берется небольшой емкости – от 100 до 470 мкФ. Напряжение на этом участке схемы будет уже стабилизированным, например, до уровня 12 В. Соответственно, конденсатор должен быть рассчитан на это (ближайший стандартный номинал 16 В).
А что делать, если конденсаторов нужных номиналов нет в наличии, и в магазин идти неохота (или банально нет желания их покупать)? В таком случае вполне возможно воспользоваться параллельным подключением нескольких конденсаторов меньшей емкости. При этом стоит учесть, что максимальное рабочее напряжение при таком подсоединении суммироваться не будет!
Стабилитрон подбирается в зависимости от того, какое напряжение нам нужно получить на выходе блока питания. Если подходящего номинала нет, то можно соединить несколько штук последовательно. Стабилизируемое напряжение, при этом, будет суммироваться. Для примера возьмем ситуацию, когда нам надо получить 12 В, а в наличии есть только два стабилитрона на 6 В. Соединив их последовательно мы и получим желаемое напряжение. Стоит отметить, что для получения усредненного номинала параллельное подключение двух стабилитронов не сработает.
Максимально точно подобрать токоограничивающий резистор для стабилитрона можно только экспериментально. Для этого в уже рабочую схему (например, на макетной плате) включается резистор номиналом примерно 1 кОм, а между ним и стабилитроном в разрыв цепи ставится амперметр и переменный резистор. После включения схемы нужно вращать ручку переменного резистора до тех пор, пока через участок цепи не потечет требуемый номинальный ток стабилизации (указывается в характеристиках стабилитрона).
Усиливающий транзистор подбирается по двум основным критериям. Во-первых, для рассматриваемой схемы он обязательно должен быть n-p-n структуры. Во-вторых, в характеристиках имеющегося транзистора нужно посмотреть на максимальный ток коллектора. Он должен быть немного больше, чем максимальный ток, на который будет рассчитан собираемый блок питания.
Нагрузочный резистор в типовых схемах берется номиналом от 1 кОм до 10 кОм. Меньшее сопротивление брать не стоит, так как в случае, когда блок питания не будет нагружен, через этот резистор потечет слишком большой ток, и он сгорит.

Разработка и изготовление печатной платы


Теперь вкратце рассмотрим наглядный пример разработки и сборки стабилизированного блока питания своими руками. В первую очередь, необходимо найти все присутствующие в схеме компоненты. Если нет конденсаторов, резисторов или стабилитронов нужных номиналов – выходим из ситуации вышеописанными путями.

Далее нужно будет спроектировать и изготовить печатную плату для нашего прибора. Начинающим лучше всего использовать для этого простое и, самое главное, бесплатное программное обеспечение, например, Sprint Layout.
Размещаем на виртуальной плате все компоненты согласно выбранной схемы. Оптимизируем их расположение, корректируем в зависимости от того, какие конкретно детали есть в наличии. На этом этапе рекомендуется перепроверять реальные размеры компонентов и сравнивать их с добавляемыми в разрабатываемую схему. Особое внимание обратите на полярность электролитических конденсаторов, расположение выводов транзистора, стабилитрона и диодного моста.
Если вы заходите добавить в блок питания сигнальный светодиод, то его можно будет включить в схему как до стабилитрона, так и после (предпочтительнее). Чтобы подобрать для него токоограничивающий резистор, необходимо выполнить следующий расчет. Из напряжения участка цепи вычитаем падение напряжения на светодиоде и делим результат на номинальный ток его питания. Пример. На участке, к которому мы планируем подключать сигнальный светодиод, имеется стабилизированные 12 В. Падение напряжения у стандартных светодиодов около 3 В, а номинальный ток питания 20 мА (0,02 А). Получаем, что сопротивление токоограничивающего резистора R=450 Ом.

Проверка компонентов и сборка блока питания


После разработки платы в программе переносим ее на стеклотекстолит, травим, лудим дорожки и удаляем излишки флюса.






После этого выполняем установку радиокомпонентов. Здесь стоит сказать, что не лишним будет сразу же перепроверить их работоспособность, особенно, если они не новые. Как и что проверять?
Обмотки трансформатора проверяются омметром. Где сопротивление больше – там первичная обмотка. Далее его нужно включить в сеть и убедиться, что он выдает требуемое пониженное напряжение. При его измерении соблюдайте предельную осторожность. Также учтите, что напряжение на выходе переменное, потому на вольтметре включается соответствующий режим.
Резисторы проверяются омметром. Стабилитрон должен «звониться» только в одном направлении. Диодный мост проверяем по схеме. Встроенные в него диоды должны проводить ток только в одном направлении. Для проверки конденсаторов потребуется специальный прибор для измерения электрической емкости. В транзисторе n-p-n структуры ток должен протекать от базы к эмиттеру и к коллектору. В остальных направлениях он протекать не должен.
Начинать сборку лучше всего с мелких деталей – резисторов, стабилитрона, светодиода. Затем впаиваются конденсаторы, диодный мост.
Особое внимание обращайте на процесс установки мощного транзистора. Если перепутать его выводы – схема не заработает. Кроме того, этот компонент будет достаточно сильно греется под нагрузкой, потому его необходимо устанавливать на радиатор.
Последним устанавливается самая большая деталь – трансформатор. Далее к выводам его первичной обмотки припаивается сетевая вилка с проводом. На выходе блока питания тоже предусматриваются провода.

Осталось только хорошенько перепроверить правильность установки всех компонентов, смыть остатки флюса и включить блок питания в сеть. Если все сделано правильно, то светодиод будет светиться, а на выходе мультиметр покажет желаемое напряжение.

sdelaysam-svoimirukami.ru

Транзисторы П213 и КТ815 — маркировка и цоколевка.

Транзисторы КТ815

Транзисторы КТ815 — кремниевые, мощные, низкочастотные, структуры — n-p-n.
Применяются в усилительных и генераторных схемах. Корпус пластмассовый, с гибкими выводами.
Масса — около 1 г. Маркировка буквенно — цифровая, на боковой поверхности корпуса, может быть двух типов.

Кодированая четырехзначная маркировка в одну строчку и некодированная — в две. Первый знак в кодированной маркировке КТ815 цифра 5, второй знак — буква, означающая класс. Два следующих знака, означают месяц и год выпуска. В некодированной маркировке месяц и год указаны в верхней строчке. На рисунке ниже — цоколевка и маркировка КТ815.

Наиболее важные параметры.

Коэффициент передачи тока
У транзисторов КТ815А, КТ815Б, КТ815В от 30.
У транзисторов КТ815Г — от 20.

Максимально допустимое напряжение коллектор-эмиттер:
У транзисторов КТ815А — 25 в.
У транзисторов КТ815Б — 45 в.
У транзисторов КТ815В — 60 в.
У транзисторов КТ815Г — 80 в.

Максимальный ток коллектора1,5 А постоянный, 3 А — импульсный.

Рассеиваемая мощность коллектора.10 Вт на радиаторе, 1 Вт — без.

Обратный ток колектора.
При напряжении коллектор-база 40 в — 50 мкА

Сопротивление базы. При напряжении эмиттер-база 5 в, токе коллектора 5 мА, на частоте 800 кГц — не более

800 Ом.

Напряжение насыщения коллектор-эмиттер при коллекторном токе 0,5А и базовом 0,05А
— не более 0,6 в.

Напряжение насыщения база-эмиттер при коллекторном токе 0,5А и базовом 0,05А
— не более 1,2 в.

Емкость коллекторного перехода при частоте 465 кГц и напряжении коллектор-база 5в — 60 пФ.

Граничная частота передачи тока 3 МГц.

Транзисторы — купить… или найти бесплатно.

Где сейчас можно найти советские транзисторы?
В основном здесь два варианта — либо купить, либо — получить бесплатно, в ходе разборки старого электронного хлама.

Во время промышленного коллапса начала 90-х, образовались довольно значительные запасы некоторых электронных комплектующих. Кроме того, полностью производство отечественных электронных никогда не прекращалось и не прекращается по сей день. Это и обьясняет тот факт, что очень многие детали прошедшей эпохи, все таки — можно купить. Если же нет — всегда имеются более-менее современные импортные аналоги. Где и как проще всего купить транзисторы? Если получилось так, что поблизости от вас нет специализированного магазина, то можно попробовать приобрести необходимые детали, заказав их по почте. Сделать это можно зайдя на сайт-магазин, например -«Гулливер».

Если же у вас, имеется какая-то старая, ненужная техника — можно попытаться добыть транзисторы (и другие детали) из нее.
Транзисторы П213 можно найти радиоле Бригантина, приемнике ВЭФ Транзистор 17, приемниках Океан, Рига 101, Рига 103, Урал Авто-2. Транзисторы КТ815 в приемниках Абава РП-8330, Вега 342, магнитофонах «Азамат»(!), Весна 205-1, Вильма 204- стерео и т. д.

На главную страницу
В начало

Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».

elektrikaetoprosto.ru

Блок питания 0-12В/300мА

Что-то не так?
Пожалуйста, отключите Adblock.

Портал QRZ.RU существует только за счет рекламы, поэтому мы были бы Вам благодарны если Вы внесете сайт в список исключений. Мы стараемся размещать только релевантную рекламу, которая будет интересна не только рекламодателям, но и нашим читателям. Отключив Adblock, вы поможете не только нам, но и себе. Спасибо.

Как добавить наш сайт в исключения AdBlock

Блок питания (рис. 1.5) работает от переменного напряжения 12 В. Выпрямитель блока питания образуют диоды VD1…VD4, включенные по мостовой схеме, а стабилизатор выпрямленного напряжения — конденсаторы CI, С2, стабилитрон VD5 и транзисторы VT1 и VT2. Напряжение на выходе блока питания в пределах от 0 до 12 В регулируют переменным резистором R2. Наибольший ток, отдаваемый блоком питания в нагрузку (до 300 мА), ограничен допустимым прямым током диодов выпрямителя.

В выпрямителе можно использовать диоды Д226 или Д7 с любым буквенным индексом. Переменный резистор R2 — с выключателем питания, желательно группы А, чтобы его шкала, по которой устанавливают напряжение на выходе блока питания, была равномерной. В стабилизаторе вместо транзистора МП39 можно использовать транзисторы МП40…МП42, а вместо П213,— транзисторы П214…П217, П201, П4 с любыми буквенными индексами. Коэффициент усиления транзисторов должен быть не менее 15. Стабилитрон Д813 можно заменить стабилитронами Д811, Д814Г или Д814Д. Наибольшее напряжение на выходе блока питания будет соответствовать напряжению стабилизации используемого в блоке стабилитрона. Шкалу резистора R2 следует отградуировать по образцовому вольтметру, подключенному к выходным зажимам блока.

www.qrz.ru

Блок питания «Проще не бывает». Часть вторая

РадиоКот >Обучалка >Аналоговая техника >Собираем первые устройства >

Блок питания «Проще не бывает». Часть вторая

Ага, все-таки зашел? Что, любопытство замучило? Но я очень рад. Нет, правда. Располагайся поудобнее, сейчас мы вместе произведем некоторые нехитрые расчеты, которые нужны, чтобы сварганить тот блок питания, который мы уже сделали в первой части статьи. Хотя надо сказать, что эти расчеты могут пригодиться и в более сложных схемах.

Итак, наш блок питания состоит из двух основных узлов — это выпрямитель, состоящий из трансформатора, выпрямительных диодов и конденсатора и стабилизатор, состоящий из всего остального. Как настоящие индейцы, начнем, пожалуй, с конца и рассчитаем сначала стабилизатор.

Схема стабилизатора показана на рисунке.

Это, так называемый параметрический стабилизатор. Состоит он из двух частей:
1 — сам стабилизатор на стабилитроне D с балластным резистором Rб
2 — эмиттерный повторитель на транзисторе VT.

Непосредственно за тем, чтобы напряжение оставалось тем каким нам надо, следит стабилизатор, а эмиттерный повторитель позволяет подключать мощную нагрузку к стабилизатору. Он играет роль как бы усилителя или если угодно — умощителя.

Два основных параметра нашего блока питания — напряжение на выходе и максимальный ток нагрузки. Назовем их:
Uвых — это напряжение
и
Imax — это ток.

Для блока питания, который мы отгрохали в прошлой части, Uвых = 14 Вольт, а Imax = 1 Ампер.

Сначала нам необходимо определить какое напряжение Uвх мы должны подать на стабилизатор, чтобы на выходе получить необходимое Uвых.
Это напряжение определяется по формуле:

Uвх = Uвых + 3

Откуда взялась цифра 3? Это падение напряжения на переходе коллектор-эмиттер транзистора VT. Таким образом, для работы нашего стабилизатора на его вход мы должны подать не менее 17 вольт.

Едем дальше.

Определим, какой нам нужен транзистор VT. Для этого нам надо определить, какую мощность он будет рассеивать.

Считаем:

Pmax=1.3(Uвх-Uвых)Imax

Тут надо учесть один момент. Для расчета мы взяли максимальное выходное напряжение блока питания. Однако, в данном расчете, надо наоборот брать минимальное напряжение, которое выдает БП. А оно, в нашем случае, составляет 1,5 вольта. Если этого не сделать, то транзистор может накрыться медным тазом, поскольку максимальная мощность будет рассчитана неверно.
Смотри сам:

Если мы берем Uвых=14 вольтам, то получаем Pmax=1.3*(17-14)*1=3.9 Вт.
А если мы примем Uвых=1.5 вольта, то Pmax=1.3*(17-1.5)*1=20,15 Вт

То есть, если бы не учли этого, то получилось бы, что расчетная мощность в ПЯТЬ раз меньше реальной. Разумеется, транзистору это сильно не понравилось бы.

Ну вот, теперь лезем в справочник и выбираем себе транзистор.
Помимо только что полученной мощности, надо учесть, что предельное напряжение между эмиттером и коллектором должно быть больше Uвх, а максимальный ток коллектора должен быть больше Imax. Я выбрал КТ817 — вполне приличный транзистор…

Фу, ну вроде с этим справились. Пошли дальше.

Сначала определим максимальный ток базы свежевыбранного транзистора ( а ты как думал? в нашем жестоком мире потребляют все — даже базы транзисторов).

Iб max=Imax / h31Э min

h31Э min — это минимальный коэффициент передачи тока транзистора и берется он из справочника Если там указаны пределы этого параметра — что то типа 30…40, то берется самый маленький. Ну, у меня в справочнике написано только одно число — 25, с ним и будем считать, а что еще остается?

Iб max=1/25=0.04 А (или 40 мА). Не мало.

Ну давайте будем теперь искать стабилитрон.
Искать его надо по двум параметрам — напряжению стабилизации и току стабилизации.

Напряжение стабилизации должно быть равно максимальному выходному напряжению блока питания, то есть 14 вольтам, а ток — не менее 40 мА, то есть тому, что мы посчитали.
Полезли опять в справочник…

По напряжению нам страшно подходит стабилитрон Д814Д, к тому же он у меня был под рукой. Но вот ток стабилизации… 5 мА нам никак не годится. Чего делать будем? Будем уменьшать ток базы выходного транзистора. А для этого добавим в схему еще один транзистор. Смотрим на рисунок. Мы добавили в схему транзистор VT2. Сия операция позволяет нам снизить нагрузку на стабилитрон в h31Э раз. h31Э, разумеется, того транзистора, который мы только что добавили в схему. Особо не думая, я взял из кучи железок КТ315. Его минимальный h31Э равен 30, то есть мы можем уменьшить ток до 40/30=1.33 мА, что нам вполне подходит.

Теперь посчитаем сопротивление и мощность балластного резистора Rб.

Rб=(Uвх-Uст)/(Iб max+Iст min)

где Uст — напряжение стабилизации стабилитрона,
Iст min — ток стабилизации стабилитрона.

Rб = (17-14)/((1.33+5)/1000) = 470 Ом.

Теперь определим мощность этого резистора

Prб=(Uвх-Uст)2/Rб.

То есть

Prб=(17-14)2/470=0,02 Вт.

Собственно и все. Таким образом, из исходных данных — выходного напряжения и тока, мы получили все элементы схемы и входное напряжение, которое должно быть подано на стабилизатор.

Однако не расслабляемся — нас еще ждет выпрямитель. Уж считать так считать, я так считаю (каламбур однако).

Итак, смотрим на схему выпрямителя.

Ну, тут все проще и почти на пальцах. Учитывая то, что мы знаем, какое напряжение нам надо подать на стабилизатор — 17 вольт, вычислим напряжение на вторичной обмотке трансформатора. Для этого пойдем, как и в начале — с хвоста. Итак, после конденсатора фильтра мы должны иметь напряжение 17 вольт.

Учитывая то, что конденсатор фильтра увеличивает выпрямленное напряжение в 1,41 раза, получаем, что после выпрямительного моста у нас должно получиться 17/1,41=12 вольт.
Теперь учтем, что на выпрямительном мосту мы теряем порядка 1,5-2 вольт, следовательно, напряжение на вторичной обмотке должно быть 12+2=14 вольт. Вполне может случится так, что такого трансформатора не найдется, не страшно — в данном случае можно применить трансформатор с напряжением на вторичной обмотке от 13 до 16 вольт.

Едем дальше. Определим емкость конденсатора фильтра.

Cф=3200Iн/UнKн

где Iн — максимальный ток нагрузки,
Uн — напряжение на нагрузке,
Kн — коэффициент пульсаций.

В нашем случае
Iн = 1 Ампер,
Uн=17 вольтам,
Kн=0,01.

Cф=3200*1/14*0,01=18823.

Однако, поскольку за выпрямителем идет еще стабилизатор напряжения, мы можем уменьшить расчетную емкость в 5…10 раз. То есть 2000 мкФ будет вполне достаточно.

Осталось выбрать выпрямительные диоды или диодный мост.

Для этого нам надо знать два основных параметра — максимальный ток, текущий через один диод и максимальное обратное напряжение, так же через один диод.

Необходимое максимальное обратное напряжение считается так

Uобр max=2Uн, то есть Uобр max=2*17=34 Вольта.

А максимальный ток, для одного диода должен быть больше или равен току нагрузки блока питания. Ну а для диодных сборок в справочниках указывают общий максимальный ток, который может протекать через эту сборку.

Ну вот вроде бы и все про выпрямители и параметрические стабилизаторы.
Впереди у нас стабилизатор для самых ленивых — на интегральной микросхеме и стабилизатор для самых трудолюбивых — компенсационный стабилизатор.

<<—Часть 1—-Часть 3—>>


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Регулятор напряжения на транзисторе


Несколько дней назад приобрёл маленькую дрель для сверления печатных плат, только вот вращается она, к сожалению, с постоянной частотой, а мне хотелось бы регулировать обороты этой дрели.

Покопался в интернете, нашел схему транзисторного регулятора напряжения для «весёлого блока питания» (Автор телеканал «Юность»)


Но -12 и +12 (если взять эти выводы из компьютерного блока питания) в сумме дадут 24В, а на выходе нашего регулятора имеем только 9В. Не порядок. Подумал я и решил подкинуть в схему еще один стабилитрон «Д814Б», такой же как и в нашей схеме на 9В, и включить его последовательно, то общее напряжения стабилизации будет ровняться 18В. А Этого напряжения вполне достаточно для нашей мини дрели..

И так, поехали, нам понадобится:
• 1 резистор 560 Ом
• 2 резистора на 1 КОм
• 1 подстроечный резистор на 10 Ком
• 1 транзистор МП42, можно и МП41 (я такой использовал)
• 1 транзистор П213
• 2 стабилитрона «Д814Б»
• Паяльные принадлежности
• Кусок текстолита (в моём случае обычный кусок пластмассы)
• Провода
• Плоскогубцы
• Кусачки

Для начала изменим нашу схему, чтобы Вам было понятно, и чтобы самому не путаться


Вот, теперь мы имеем схему по которой будем собирать наше устройство..

Когда у нас есть схема и все нужные нам детали – можно смело приступать к сборке


Берём нашу пластмассу и делаем в ней дырочки для установки деталей

Далее устанавливаем детали на наш кусок пластмассы (текстолита)

Важно!! Транзистор П213 следует установить на радиатор и в месте с радиатором уже устанавливать на нашу схему. Провода лучше стазу зафиксировать термоклеем или эпоксидкой, потому что я при установке умудрился отломать вывод эмиттера

Далее просовываем провода от П213 в дырочки на другую сторону нашей конструкции

После чего собираем всё по схеме, и вот что у нас получается в конце

Спасибо за внимание, всем удачи=) Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Простой лабораторный блок питания — Блоки питания — Источники питания

Сергей Никитин

Описанием этого простого лабораторного блока питания, я открываю цикл статей, в которых познакомлю Вас с простыми и надёжными в работе разработками (в основном различных источников питания и зарядных устройств), которые приходилось собирать по мере необходимости из подручных средств.
Для всех этих конструкций в основном использовались детали и части от списанной с эксплуатации старой оргтехники.

И так, понадобился как-то срочно блок питания с регулировкой выходного напряжения в пределах 30-40 вольт и током нагрузки в районе 5-ти ампер.

В наличии имелся трансформатор от бесперебойника UPS-500, в котором при соединении вторичных обмоток последовательно, получалось около 30-33 Вольт переменного напряжения. Это меня как раз устраивало, но осталось решить, по какой схеме собирать блок питания.

Если делать блок питания по классической схеме, то вся лишняя мощность при низком выходном напряжении будет выделяться на регулирующем транзисторе. Это мне не подходило, да и делать блок питания по предлагаемым схемам как то не захотелось, и ещё нужно было-бы для него искать детали.
По этому разработал схему под те детали, какие на данный момент у меня были в наличии.

За основу схемы взял ключевой стабилизатор, чтобы на греть в пустую окружающее пространство выделяемой мощностью на регулирующем транзисторе.
Здесь нет ШИМ-регулирования и частота включения ключевого транзистора, зависит только от тока нагрузки. Без нагрузки частота включения в районе одного герца и менее, зависит от индуктивности дросселя и ёмкости конденсатора С5. Включение слышно по небольшому циканию дросселя.

Транзисторы MJ15004 были в огромном количестве от ранее разобранных бесперебойников, поэтому решил поставить их на выходные. Для надёжности поставил два в параллель, хотя и один вполне справляется со своей задачей.
Вместо них можно поставить любые мощные p-n-p транзисторы, например КТ-818, КТ-825.

Дроссель L1 можно намотать на обычном Ш-образном (ШЛ) магнитопроводе, его индуктивность особо не критична, но желательно, чтобы подходила ближе к нескольким миллигенри.
Берётся любой подходящий сердечник, Ш, ШЛ, с сечением желательно не меньше 3 см,. Вполне подойдут сердечники от выходных транформаторов ламповых приёмников, телевизоров, выходные трансформаторы кадровых развёрток телевизоров и т.д. Например стандартный размер Ш, ШЛ-16х24.
Далее берётся медный провод, диаметром 1,0 — 1,5 мм и мотается до заполнения окна сердечника полностью.
У меня дроссель намотан на железе от трансформатора ТВК-90, проводом 1,5 мм до заполнения окна.
Магнитопровод, конечно собираем с зазором 0,2-0,5мм.(2 — 5 слоёв обычной писчей бумаги).

Единственный минус этого блока питания, под большой нагрузкой дроссель у меня жужжит, и этот звук меняется от величины нагрузки, что слышно и немного достаёт. Поэтому наверно нужно дроссель хорошо пропитывать, а может ещё лучше — залить полностью в каком нибудь подходящем корпусе эпоксидкой, чтобы уменьшить звук «цикания» .

Транзисторы я установил на небольшие алюминиевые пластины, и на всякий случай поставил внутрь ещё и вентилятор для их обдува.

Вместо VD1 можно ставить любые быстрые диоды на соответствующее напряжение и ток, у меня просто в наличии много диодов КД213, поэтому я их в таких местах в основном везде и ставлю. Они достаточно мощные (10А) и напряжение 100В, что вполне достаточно.

На мой дизайн блока питания особо внимание не останавливайте, задача стояла не та. Нужно было сделать быстро, и работоспособно. Сделал временно в таком корпусе и в таком оформлении, и пока это «временно» уже довольно долго работает.
Можно в схему ещё добавить амперметр для удобства. Но это дело личное. Я поставил одну головку для измерения напряжения и тока, шунт для амперметра сделал из толстого монтажного провода (на фотографиях видно, намотан на проволочном резисторе) и поставил переключатель «Напряжение» — «Ток». На схеме это просто не показал.

 

vprl.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *