Блок питания с защитой от короткого замыкания: Блок питания с защитой от короткого замыкания

Содержание

Блок питания с защитой от короткого замыкания

Сегодня бензиновые культиваторы пользуются большим спросом и их защита играет очень важную роль!

Для поиска короткого замыкания своими руками, не всегда нужно иметь при себе специальные приборы. В некоторых случаях можно обойтись и без проф. инструмента. Конечно на практике наших электриков бывали случаи, когда замыкание найти не удавалось. Но мы напишем про эти случаи в самом конце.

Визуальный осмотрОплавления, запах
По хлопкуСпособ для опытных электриков с большими ушами
ВскрытиеРазбор всей электрики и щитов
ПрозвонкаВызванивание цепей мультиметром
ТрассоискательПроф оборудование и специально обученный человек

Визуальный осмотр

Первый и самый гуманный способ поиска короткого замыкания, – это визуальный осмотр. Конечно если вы не профессиональный электрик, то время так называемого визульного осмотра, может затянуться не на один день. Но, начать осмотр в первую очередь необходимо с «сердца» проводки — электрического щита. Потом необходимо выключить все электроприборы из розеток и перевести выключатели света в положение выкл. Внимательно осмотреть все розетки и открытые места коммутации. Также рекомендуется осмотреть распаечные коробки, при свободном доступе к ним. Характерным наличием КЗ может являться запах гари, например из розетки.

Сгоревшие розетки

Второй способ – по хлопку

Это самый простой и быстрый способ найти короткое замыкание. Многие, даже матёрые электрики, про него частенько забывают. Если в месте кроме щита с автоматом, происходит хлопок — значит замыкание нужно искать там. Конечно же у этого способа есть и свои минусы, которые нужно знать и понимать. При использовании такого метода главное не испортить оборудование или не сжечь всю проводку или квартиру.

Электрик большое ухо

Третий способ – Вскрытие

Не пугайтесь, вскрытие означает то, что вам необходимо вскрыть все розетки, распаечные коробки и другие места коммутации (люстры, светильники, выключатели). Конечно нужно учесть, что потом их придется собирать обратно.

Четвертый способ — прозвонка

Если визуальный поиск и вскрытие не помогает, следующим этапом поиска может быть прозвонка всех электрических цепей мультиметром. При помощи прозвонки можно локализовать проблемный участок цепи. При прозвонке, все цепи рассоединяются (то есть разбирается всё): размыкаются розетки, отключаются линии от автоматов, отсоединяются люстры, распутываются провода в распаечных коробках. После чего каждый участок цепи вызванивается на наличие короткого замыкания ОТДЕЛЬНО. Всё это необходимо делать последовательно – от простого к сложному.

Способ №5 — спец оборудование

Ну и высшей точкой профессионального поиска коротких замыканий, является поиск при помощи профессионального инструмента (и натренированного мозга). Профессиональный поиск замыкания осуществляется трассоискателем. Волшебный прибор сможет достаточно точно показать место замыкания. Конечно перед работой с трассоискателем, необходимо произвести подготовительные работы и обладать некоторыми навыками хорошего электрика.

Содержание

Какими бывают защитные устройства

Классификация устройств, которые делают безопасными электрические сети, довольно сложна. По той причине, что одно и то же устройство применяется в различных областях и с разными целями. А алгоритм их работы нередко состоит из нескольких этапов, каждый из которых может быть использован для защиты как единственный метод. Основными критериями классификации являются:

  • По сфере применения – для защиты людей или технических устройств.
  • По способу реакции – пассивные и активные.

В подавляющем большинстве случаев принцип их работы основан на физическом проявлении действия электрического тока – нагреве или притягивании металлических деталей в поле действия магнитного поля, им порожденного.

Устройство и принцип действия

Принцип работы заключается в срабатывании датчика (реле) тока при превышении Iуставки на защищаемом участки линии, после чего для обеспечения селективности с определенной задержкой срабатывает реле времени.

Где она применяется? Максимальную токовую защиту устанавливают в начале линии, то есть со стороны генератора или трансформатора питающей подстанции.

Важно! Зона действия МТЗ лежит в пределах между источником питания (ТП или генератором) и потребителем (ТП или другим ВВ оборудованием). При этом она устанавливается со стороны источника, а не потребителя

Но зоны действия ступеней могут пересекаться друг с другом. Например, 1 ступень часто перекрывает зону действия второй ступени вблизи от разъединителя, где Iкз почти равны с предыдущим участком линии.

Выдержка времени срабатывания защиты подбирается так, что первая ступень (на питающей ТП) срабатывает через самый большой промежуток времени, а каждая последующая быстрее предыдущей.

Интересно: разница выдержки времени срабатывания на ближайшей к источнику питания от следующей после нее МТЗ называется ступенью селективности.

Обеспечение селективности важно для бесперебойной подачи электропитания по как можно большему количеству электрических линий. С её помощью отключаемая часть уменьшается и локализуется на участке между коммутационными аппаратами как можно ближайшими к поврежденному участку

При этом, при возникновении кратковременных самоустраняемых перегрузок, связанных с пуском мощных электродвигателей, выдержка времени и отключение по минимальному напряжению должны обеспечить подачу электроэнергии в сеть без её отключения. При КЗ, напряжения резко уменьшаются, а при пуске двигателей такой просадки обычно не происходит.

Выбор уставок по току происходит по наименьшему Iкз из всей цепи, учитывая особенности работы подключенного оборудования. Это нужно опять же для того, чтобы максимальная токовая защита не сработала при самозапуске электродвигателей.

Перегрузка может возникнуть по трем причинам:

  1. При однофазном замыкании на землю.
  2. При многофазном замыкании.
  3. При перегрузки линии из-за повышенного потребления мощности.

Итак, максимальная токовая защита необходима для предотвращения разрушения линий электропередач, жил кабелей и шин на подстанциях и потребителях электроэнергии, таких как мощные электродвигатели 6 или 10 кВ и прочие электроустановки.

Организация контура заземления в частном секторе

Не секрет, что сегодня многие квартируют в собственных домах. Не всегда проектирующие организации предусматривают все. В электрическом проекте дома может отсутствовать проверка контура заземления. Можно достаточно качественно собрать эту конструкцию самостоятельно. Для этого понадобятся немного арматуры, хорошая лопата и умелые руки. Необходимо вырыть во дворе ров любой формы глубиной порядка одного метра и шириной около трети метра. Длина ямы должна быть не менее 8 метров. Через каждые полтора метра в дно ямы вбиваются стержни арматуры длиной 50 см. Вся конструкция напоминает ленточно-свайный фундамент, поэтому для людей, следующих в строительстве, сама картина не будет нова.

Контур заземления

Вбитые стержни арматуры нужно объединить между собой стальным профилем любой формы и достаточно большого сечения. Как правило, подойдут практически любые уголки

Важно, чтобы в месте сварки был надежный электрический контакт. Можно ли соединить углы проволокой, как делают с арматурой наливного фундамента? Мы не гарантируем, что через какое-то время такая конструкция не выйдет из строя

Наверняка углы проржавеют, и электрический контакт потеряется.

Собранную конструкцию нужно соединить с домовой шиной заземления достаточно толстым медным проводом. Не имеет значения одна жила имеется или несколько, главное, чтобы сопротивление было достаточно малым. Это может быть, к примеру, обычный медный провод для внешнего монтажа сравнительно большого сечения. Допустим, 6 квадратных миллиметров.

После сборки контура заземления необходимо проверить его сопротивление. Нормальное значение должно составлять доли Ома. Наверняка у многих не имеется дома специального оборудования для измерения сопротивления заземления. На этот случай радиолюбители предлагают использовать весьма оригинальный метод. Для этого неплохо бы под рукой иметь трансформатор, чтобы не перегрузить сеть. Выходное напряжение его может быть достаточно стандартным, например, 9, 12 или 27 вольт. Через сопротивление небольшого номинала допустим, 50 ом, мы начинаем пропускать ток сквозь наш контур заземления. В результате образуется резистивный делитель, значения плеч которого пропорциональны падающему здесь напряжению.

Затем нужно измерить падение напряжения на нашем сопротивлении. Допустим, что при номинале 27 вольт у нас получился значение 26,8. Теперь мы можем посчитать сопротивление нашего заземления из простой пропорции. 26,8/0,2 = 50/R, где R и является искомым значением. В результате получается 0,37 Ом. Вычисленная величина немного превышает желаемое значение. Поэтому со стороны присоединения шины контура заземления можно выкопать ров в другую сторону и дополнительно в контур вбить арматуру и сварить стальным профилем. Это увеличит контакт конструкции с землей, что приведет к снижению сопротивления до заданного значения. Напоминаем, что это 0,1 Ома.

Внутри помещений лепесток каждой розетки должен присоединяться к смонтированной шине заземления. Отдельно нужно поговорить про кухню и ванную комнату. В этих местах полагается по стандарту монтировать системы уравнивания потенциалов. Столь грозно звучащие слова на самом деле означают лишь то, что все металлические части, контактирующие с водой, объединяются между собой медными жилами достаточно большого сечения. В свою очередь оба контура уравнивания потенциалов объединяются между собой и вместе присоединяются к шине заземления дома.

Короткое замыкание

Когда найти замыкание не предоставляется возможным

Иногда найти короткое замыкание просто невозможно. И в некоторых случаях даже профессиональный трассоискатель не сможет помочь. Приходиться прокладывать новую линию, менять автоматы или менять проводку целиком. Обычно это бывает из-за сверх неквалифицированного монтажа электрики. Например большие скрутки различных проводов прячутся под толстым слоем раствора и замурованы где-нибудь глубоко в стене (или полу). При чем эти скрутки служат, так называемым коммутационным узлом, от которого во все стороны расходится проводка по квартире.  Сверху можно добавить нарушенную изоляцию проводов и растекание тока по перекрытиям. Такие чудеса случаются, и к несчастью владельцев таких ремонтов — это не лечиться никакими приборами и электриками.

Подпишись на RSS и получай обновления блога!

Получать обновления по электронной почте:

    • Транзисторный ключ с ограничением тока
      3 июня 2020
    • Зарядное для аккумуляторов шуруповерта на базе XL4015
      5 апреля 2020
    • Зарядное для авто со стабилизацией тока на L200
      19 марта 2020
    • Индикатор шестиразрядный на TM1637
      13 марта 2020
    • Регулируемый стабилизатор тока на L200
      11 марта 2020
    • Зарядное устройство для автомобильных аккумуляторов — 237 415 просмотров
    • Стабилизатор тока на LM317 — 173 565 просмотров
    • Стабилизатор напряжения на КР142ЕН12А — 124 884 просмотров
    • Реверсирование электродвигателей — 101 711 просмотров
    • Зарядное для аккумуляторов шуруповерта — 98 414 просмотров
    • Карта сайта — 96 063 просмотров
    • Зарядное для шуруповерта — 88 427 просмотров
    • Самодельный сварочный аппарат — 87 815 просмотров
    • Схема транзистора КТ827 — 82 457 просмотров
    • Регулируемый стабилизатор тока — 81 416 просмотров
    • DC-DC (4)
    • Автомат откачки воды из дренажного колодца (5)
    • Автоматика (34)
    • Автомобиль (3)
    • Антенны (2)
    • Ассемблер для PIC16 (3)
    • Блоки питания (30)
    • Бурение скважин (6)
    • Быт (11)
    • Генераторы (1)
    • Генераторы сигналов (8)
    • Датчики (4)
    • Двигатели (7)
    • Для сада-огорода (11)
    • Зарядные (17)
    • Защита радиоаппаратуры (8)
    • Зимний водопровод для бани (2)
    • Измерения (34)
    • Импульсные блоки питания (2)
    • Индикаторы (6)
    • Индикация (10)
    • Как говаривал мой дед … (1)
    • Коммутаторы (6)
    • Логические схемы (1)
    • Обратная связь (1)
    • Освещение (3)
    • Программирование для начинающих (16)
    • Программы (1)
    • Работы посетителей (7)
    • Радиопередатчики (2)
    • Радиостанции (1)
    • Регуляторы (5)
    • Ремонт (1)
    • Самоделки (12)
    • Самодельная мобильная пилорама (3)
    • Самодельный водопровод (7)
    • Самостоятельные расчеты (37)
    • Сварка (1)
    • Сигнализаторы (5)
    • Справочник (13)
    • Стабилизаторы (16)
    • Строительство (2)
    • Таймеры (4)
    • Термометры, термостаты (27)
    • Технологии (21)
    • УНЧ (2)
    • Формирователи сигналов (1)
    • Электричество (4)
    • Это пригодится (12)
  • Архивы
    Выберите месяц Июнь 2020  (1) Апрель 2020  (1) Март 2020  (3) Февраль 2020  (2) Декабрь 2019  (2) Октябрь 2019  (3) Сентябрь 2019  (3) Август 2019  (4) Июнь 2019  (4) Февраль 2019  (2) Январь 2019  (2) Декабрь 2018  (2) Ноябрь 2018  (2) Октябрь 2018  (3) Сентябрь 2018  (2) Август 2018  (3) Июль 2018  (2) Апрель 2018  (2) Март 2018  (1) Февраль 2018  (2) Январь 2018  (1) Декабрь 2017  (2) Ноябрь 2017  (2) Октябрь 2017  (2) Сентябрь 2017  (4) Август 2017  (5) Июль 2017  (1) Июнь 2017  (3) Май 2017  (1) Апрель 2017  (6) Февраль 2017  (2) Январь 2017  (2) Декабрь 2016  (3) Октябрь 2016  (1) Сентябрь 2016  (3) Август 2016  (1) Июль 2016  (9) Июнь 2016  (3) Апрель 2016  (5) Март 2016  (1) Февраль 2016  (3) Январь 2016  (3) Декабрь 2015  (3) Ноябрь 2015  (4) Октябрь 2015  (6) Сентябрь 2015  (5) Август 2015  (1) Июль 2015  (1) Июнь 2015  (3) Май 2015  (3) Апрель 2015  (3) Март 2015  (2) Январь 2015  (4) Декабрь 2014  (9) Ноябрь 2014  (4) Октябрь 2014  (4) Сентябрь 2014  (7) Август 2014  (3) Июль 2014  (2) Июнь 2014  (6) Май 2014  (4) Апрель 2014  (2) Март 2014  (2) Февраль 2014  (5) Январь 2014  (4) Декабрь 2013  (7) Ноябрь 2013  (6) Октябрь 2013  (7) Сентябрь 2013  (8) Август 2013  (2) Июль 2013  (1) Июнь 2013  (2) Май 2013  (4) Апрель 2013  (7) Март 2013  (7) Февраль 2013  (7) Январь 2013  (11) Декабрь 2012  (7) Ноябрь 2012  (5) Октябрь 2012  (2) Сентябрь 2012  (10) Август 2012  (14) Июль 2012  (5) Июнь 2012  (21) Май 2012  (13) Апрель 2012  (4) Февраль 2012  (6) Январь 2012  (6) Декабрь 2011  (2) Ноябрь 2011  (9) Октябрь 2011  (14) Сентябрь 2011  (22) Август 2011  (1) Июль 2011  (5)

Устройство защиты от короткого замыкания

Устройство может быть электронным, электромеханическим или простым предохранителем. Электронные устройства в основном применяются в сложных электронных приборах, и мы рассматривать в рамках этой статьи их не будем. Остановимся на предохранителях и электромеханических устройствах. Для защиты бытовой электросети сначала применялись предохранители. Мы привыкли их видеть в виде «пробок» в электрощите.

Их было несколько типов, но вся защита сводилась к тому, что внутри этой «пробки» находился тонкий медный проводок, который перегорал, когда происходило короткое замыкание. Нужно было бежать в магазин, покупать предохранитель или хранить дома, возможно, не скоро потребующийся запас предохранителей. Это было неудобно. И на свет появились автоматические выключатели, которые сначала выглядели тоже как «пробки».

Это был простейший электромеханический автоматический выключатель. Выпускались они на разные токи, но максимальным значением было 16 ампер. Вскоре потребовались более высокие значения, да и технический прогресс позволил выпускать автоматы такими, какими мы сейчас их видим в большинстве электрических щитков наших домов.

Вариант 1

Это защита наиболее простая и отличается от аналогичных тем, что в ней не используются никакие транзисторы или микросхемы. Реле, диодная развязка – вот и все ее компоненты.

Работает схема следующим образом. Минус в схеме общий, поэтому будет рассмотрена плюсовая цепь.

Если на вход не подключен аккумулятор, то реле находится в разомкнутом состоянии. При подключении аккумулятора плюс поступает через диод VD2 на обмотку реле, вследствие чего контакт реле замыкается, и основной ток заряда протекает на аккумулятор.

Одновременно загорается зеленый светодиодный индикатор, свидетельствуя о том, что подключение правильное.

И если теперь убрать аккумулятор, то на выходе схемы будет напряжение, поскольку ток от зарядного устройства будет продолжать поступать через диод VD2 на обмотку реле.

Если перепутать полярность подключения, то диод VD2 окажется заперт и на обмотку реле не поступит питание. Реле не сработает.

В этом случае загорится красный светодиод, который нарочно подключен неправильным образом. Он будет свидетельствовать о том, что нарушена полярность подключения аккумулятора.

Диод VD1 защищает цепь от самоиндукции, которая возникает при отключении реле.

В случае внедрения такой защиты в , стоит взять реле на 12 В. Допустимый ток реле зависит только от мощности . В среднем стоит использовать реле на 15-20 А.

Как предотвратить КЗ, защита от него

Так как КЗ – это аварийный режим, то существуют способы защиты от этого опасного процесса и его предотвращения:

  • Быстродействующая электромагнитная или электронная защита от мгновенного увеличения тока в нагрузке или линии, которая максимально быстро отключит аварийный участок цепи от напряжения. Для этого используются автоматические выключатели, предохранители, дифференциальные автоматы. В домашних условиях для защиты от КЗ достаточно установить на группу приборов правильно рассчитанный автоматический выключатель (АВ).
  • Для высоковольтных линий и силовых цепей подстанций используются масляные (вакуумные и другие) аппараты коммутации с настроенной и проверенной защитой от резкого увеличения тока на отходящих линиях.

Способ предотвращения короткого замыкания в тот момент, когда этот процесс уже произошел, простой: он заключается в немедленном автоматическом отключении участка цепи от напряжения. В принципе, любой автоматический выключатель имеет внутри конструкции электромагнитный разцепитель, который при превышении номинального тока разрывает цепь нагрузки достаточно эффективно и быстро.

Важно! Защита от КЗ должна быть надёжной и быстродействующей, это два основных правила безопасной эксплуатации электрических цепей

Итог

С точки зрения КПД, первая схема лучше других. Но с точки зрения универсальности и скорости реагирования, лучший вариант – это схема 2. Ну а третий вариант часто применяется в промышленных масштабах. Такой вариант защиты можно увидеть, к примеру, на любой автомагнитоле.

Все схемы, кроме последней, имеют функцию самовосстановления, то есть работа восстановится, как только будет убрано короткое замыкание или изменится полярность подключения аккумулятора.

Прикрепленные файлы:

Как сделать простой Повер Банк своими руками: схема самодельного power bank

Практически каждый начинающий радиолюбитель стремится вначале своего творчества сконструировать сетевой блок питания, чтобы впоследствии использовать его для питания различных экспериментальных устройств. И конечно, хотелось бы, чтобы этот блок питания «подсказывал» об опасности выхода из строя отдельных узлов при ошибках или неисправностях монтажа.

На сегодняшний день существует множество схем, в том числе и с индикацией короткого замыкания на выходе. Подобным индикатором в большинстве случаев обычно служит лампа накаливания, включенная в разрыв нагрузки. Но подобным включением мы увеличиваем входное сопротивление источника питания или, проще говоря, ограничиваем ток, что в большинстве случаев, конечно, допустимо, но совсем не желательно.

Схема, изображенная на рис.1, не только сигнализирует о коротком замыкании, абсолютно не влияя на выходное сопротивление устройства, но и автоматически отключает нагрузку при закорачивании выхода. Кроме того, светодиод HL1 напоминает, что устройство включено в сеть, a HL2 светится при перегорании плавкого предохранителя FU1, указывая на необходимость его замены.

Электрическая принципиальная схема самодельного блока питания с защитой от коротких замыканий

Рассмотрим работу самодельного блока питания
. Переменное напряжение, снимаемое со вторичной обмотки Т1, выпрямляется диодами VD1…VD4, собранными по мостовой схеме. Конденсатеры С1 и С2 препятствуют проникновению в сети высокочастотных помех, а оксидный конденсатор С3 сглаживает пульсации напряжения, поступающего на вход компенсационного стабилизатора, собранного на VD6, VT2, VT3 и обеспечивающего на выходе стабильное напряжение 9 В.

Напряжение стабилизации можно изменить, подбирая стабилитрон VD6, например, при КС156А оно составит 5 В, при Д814А — 6 В, при ДВ14Б — В В, при ДВ14Г -10 В, при ДВ14Д -12 В. При желании выходное напряжение можно сделать регулируемым, для этого между анодом и катодом VD6 включают переменный резистор сопротивлением 3-5 кОм, а базу VT2 подключают к движку этого резистора.

Рассмотрим работу защитного устройстваблока питания
. Узел защиты от КЗ в нагрузке состоит из германиевого п-р-п транзистора VT1, электромагнитного реле К1, резистора R3 и диода VD5. Последний в данном случае выполняет функцию стабистора, поддерживающего на базе VT1 неизменное напряжение около 0,6 — 0,7 В относительно общего.

В обычном режиме работы стабилизатора транзистор узла защиты надежно закрыт, так как напряжение на его базе относительно эмиттера отрицательное. При возникновении короткого замыкания эмиттер VT1, как и эмиттер регулирующего VT3, оказывается соединенным с общим минусовым проводом выпрямителя.

Другими словами, напряжение на его базе относительно эмиттера становится положительным, вследствие чего VT1 открывается, срабатывает К1 и своими контактами отключает нагрузку, светится светодиод HL3. После устранения короткого замыкания напряжение смещения на эмиттерном переходе VT1 снова становится отрицательным и он закрывается, реле К1 обесточивается, подключая нагрузку к выходу стабилизатора.

Детали для изготовления блока питания.
Электромагнитное реле любое с возможно меньшим напряжением срабатывания. В любом случае должно соблюдаться одно непременное условие: вторичная обмотка Т1 должна выдавать напряжение, равное сумме напряжений стабилизации и срабатывания реле, т.е. если напряжение стабилизации, как в данном случае 9 В, а U
сраб реле 6 В, то на вторичной обмотке должно быть не менее 15 В, но и не превышать допустимое на коллекторе-эмиттере применяемого транзистора. В качестве Т1 на опытном образце автор использовал ТВК-110Л2. Печатная плата устройства изображена на рис.2.

Печатная плата блока питания

Это невероятно полезное приспособление, которое защитит ваш дом от короткого замыкания при проверке каких-либо тестируемых приборов. Бывают случаи, когда необходимо проверить электроприбор на отсутствие КЗ, к примеру, после ремонта. И чтобы не подвергать свою сеть опасности, подстраховаться и избежать неприятных последствий, как раз и поможет это очень простое устройство.

 

 

Помогла ли вам статья?

Задать вопрос

Пишите ваши рекомендации и задавайте вопросы в комментариях

Блок питания с защитой от короткого замыкания

Сегодня бензиновые культиваторы пользуются большим спросом и их защита играет очень важную роль!

Для поиска короткого замыкания своими руками, не всегда нужно иметь при себе специальные приборы. В некоторых случаях можно обойтись и без проф. инструмента. Конечно на практике наших электриков бывали случаи, когда замыкание найти не удавалось. Но мы напишем про эти случаи в самом конце.

Визуальный осмотрОплавления, запах
По хлопкуСпособ для опытных электриков с большими ушами
ВскрытиеРазбор всей электрики и щитов
ПрозвонкаВызванивание цепей мультиметром
ТрассоискательПроф оборудование и специально обученный человек

Визуальный осмотр

Первый и самый гуманный способ поиска короткого замыкания, – это визуальный осмотр. Конечно если вы не профессиональный электрик, то время так называемого визульного осмотра, может затянуться не на один день. Но, начать осмотр в первую очередь необходимо с «сердца» проводки — электрического щита. Потом необходимо выключить все электроприборы из розеток и перевести выключатели света в положение выкл. Внимательно осмотреть все розетки и открытые места коммутации. Также рекомендуется осмотреть распаечные коробки, при свободном доступе к ним. Характерным наличием КЗ может являться запах гари, например из розетки.

Сгоревшие розетки

Второй способ – по хлопку

Это самый простой и быстрый способ найти короткое замыкание. Многие, даже матёрые электрики, про него частенько забывают. Если в месте кроме щита с автоматом, происходит хлопок — значит замыкание нужно искать там. Конечно же у этого способа есть и свои минусы, которые нужно знать и понимать. При использовании такого метода главное не испортить оборудование или не сжечь всю проводку или квартиру.

Электрик большое ухо

Третий способ – Вскрытие

Не пугайтесь, вскрытие означает то, что вам необходимо вскрыть все розетки, распаечные коробки и другие места коммутации (люстры, светильники, выключатели). Конечно нужно учесть, что потом их придется собирать обратно.

Четвертый способ — прозвонка

Если визуальный поиск и вскрытие не помогает, следующим этапом поиска может быть прозвонка всех электрических цепей мультиметром. При помощи прозвонки можно локализовать проблемный участок цепи. При прозвонке, все цепи рассоединяются (то есть разбирается всё): размыкаются розетки, отключаются линии от автоматов, отсоединяются люстры, распутываются провода в распаечных коробках. После чего каждый участок цепи вызванивается на наличие короткого замыкания ОТДЕЛЬНО. Всё это необходимо делать последовательно – от простого к сложному.

Способ №5 — спец оборудование

Ну и высшей точкой профессионального поиска коротких замыканий, является поиск при помощи профессионального инструмента (и натренированного мозга). Профессиональный поиск замыкания осуществляется трассоискателем. Волшебный прибор сможет достаточно точно показать место замыкания. Конечно перед работой с трассоискателем, необходимо произвести подготовительные работы и обладать некоторыми навыками хорошего электрика.

Содержание

Какими бывают защитные устройства

Классификация устройств, которые делают безопасными электрические сети, довольно сложна. По той причине, что одно и то же устройство применяется в различных областях и с разными целями. А алгоритм их работы нередко состоит из нескольких этапов, каждый из которых может быть использован для защиты как единственный метод. Основными критериями классификации являются:

  • По сфере применения – для защиты людей или технических устройств.
  • По способу реакции – пассивные и активные.

В подавляющем большинстве случаев принцип их работы основан на физическом проявлении действия электрического тока – нагреве или притягивании металлических деталей в поле действия магнитного поля, им порожденного.

Устройство и принцип действия

Принцип работы заключается в срабатывании датчика (реле) тока при превышении Iуставки на защищаемом участки линии, после чего для обеспечения селективности с определенной задержкой срабатывает реле времени.

Где она применяется? Максимальную токовую защиту устанавливают в начале линии, то есть со стороны генератора или трансформатора питающей подстанции.

Важно! Зона действия МТЗ лежит в пределах между источником питания (ТП или генератором) и потребителем (ТП или другим ВВ оборудованием). При этом она устанавливается со стороны источника, а не потребителя

Но зоны действия ступеней могут пересекаться друг с другом. Например, 1 ступень часто перекрывает зону действия второй ступени вблизи от разъединителя, где Iкз почти равны с предыдущим участком линии.

Выдержка времени срабатывания защиты подбирается так, что первая ступень (на питающей ТП) срабатывает через самый большой промежуток времени, а каждая последующая быстрее предыдущей.

Интересно: разница выдержки времени срабатывания на ближайшей к источнику питания от следующей после нее МТЗ называется ступенью селективности.

Обеспечение селективности важно для бесперебойной подачи электропитания по как можно большему количеству электрических линий. С её помощью отключаемая часть уменьшается и локализуется на участке между коммутационными аппаратами как можно ближайшими к поврежденному участку

При этом, при возникновении кратковременных самоустраняемых перегрузок, связанных с пуском мощных электродвигателей, выдержка времени и отключение по минимальному напряжению должны обеспечить подачу электроэнергии в сеть без её отключения. При КЗ, напряжения резко уменьшаются, а при пуске двигателей такой просадки обычно не происходит.

Выбор уставок по току происходит по наименьшему Iкз из всей цепи, учитывая особенности работы подключенного оборудования. Это нужно опять же для того, чтобы максимальная токовая защита не сработала при самозапуске электродвигателей.

Перегрузка может возникнуть по трем причинам:

  1. При однофазном замыкании на землю.
  2. При многофазном замыкании.
  3. При перегрузки линии из-за повышенного потребления мощности.

Итак, максимальная токовая защита необходима для предотвращения разрушения линий электропередач, жил кабелей и шин на подстанциях и потребителях электроэнергии, таких как мощные электродвигатели 6 или 10 кВ и прочие электроустановки.

Организация контура заземления в частном секторе

Не секрет, что сегодня многие квартируют в собственных домах. Не всегда проектирующие организации предусматривают все. В электрическом проекте дома может отсутствовать проверка контура заземления. Можно достаточно качественно собрать эту конструкцию самостоятельно. Для этого понадобятся немного арматуры, хорошая лопата и умелые руки. Необходимо вырыть во дворе ров любой формы глубиной порядка одного метра и шириной около трети метра. Длина ямы должна быть не менее 8 метров. Через каждые полтора метра в дно ямы вбиваются стержни арматуры длиной 50 см. Вся конструкция напоминает ленточно-свайный фундамент, поэтому для людей, следующих в строительстве, сама картина не будет нова.

Контур заземления

Вбитые стержни арматуры нужно объединить между собой стальным профилем любой формы и достаточно большого сечения. Как правило, подойдут практически любые уголки

Важно, чтобы в месте сварки был надежный электрический контакт. Можно ли соединить углы проволокой, как делают с арматурой наливного фундамента? Мы не гарантируем, что через какое-то время такая конструкция не выйдет из строя

Наверняка углы проржавеют, и электрический контакт потеряется.

Собранную конструкцию нужно соединить с домовой шиной заземления достаточно толстым медным проводом. Не имеет значения одна жила имеется или несколько, главное, чтобы сопротивление было достаточно малым. Это может быть, к примеру, обычный медный провод для внешнего монтажа сравнительно большого сечения. Допустим, 6 квадратных миллиметров.

После сборки контура заземления необходимо проверить его сопротивление. Нормальное значение должно составлять доли Ома. Наверняка у многих не имеется дома специального оборудования для измерения сопротивления заземления. На этот случай радиолюбители предлагают использовать весьма оригинальный метод. Для этого неплохо бы под рукой иметь трансформатор, чтобы не перегрузить сеть. Выходное напряжение его может быть достаточно стандартным, например, 9, 12 или 27 вольт. Через сопротивление небольшого номинала допустим, 50 ом, мы начинаем пропускать ток сквозь наш контур заземления. В результате образуется резистивный делитель, значения плеч которого пропорциональны падающему здесь напряжению.

Затем нужно измерить падение напряжения на нашем сопротивлении. Допустим, что при номинале 27 вольт у нас получился значение 26,8. Теперь мы можем посчитать сопротивление нашего заземления из простой пропорции. 26,8/0,2 = 50/R, где R и является искомым значением. В результате получается 0,37 Ом. Вычисленная величина немного превышает желаемое значение. Поэтому со стороны присоединения шины контура заземления можно выкопать ров в другую сторону и дополнительно в контур вбить арматуру и сварить стальным профилем. Это увеличит контакт конструкции с землей, что приведет к снижению сопротивления до заданного значения. Напоминаем, что это 0,1 Ома.

Внутри помещений лепесток каждой розетки должен присоединяться к смонтированной шине заземления. Отдельно нужно поговорить про кухню и ванную комнату. В этих местах полагается по стандарту монтировать системы уравнивания потенциалов. Столь грозно звучащие слова на самом деле означают лишь то, что все металлические части, контактирующие с водой, объединяются между собой медными жилами достаточно большого сечения. В свою очередь оба контура уравнивания потенциалов объединяются между собой и вместе присоединяются к шине заземления дома.

Короткое замыкание

Когда найти замыкание не предоставляется возможным

Иногда найти короткое замыкание просто невозможно. И в некоторых случаях даже профессиональный трассоискатель не сможет помочь. Приходиться прокладывать новую линию, менять автоматы или менять проводку целиком. Обычно это бывает из-за сверх неквалифицированного монтажа электрики. Например большие скрутки различных проводов прячутся под толстым слоем раствора и замурованы где-нибудь глубоко в стене (или полу). При чем эти скрутки служат, так называемым коммутационным узлом, от которого во все стороны расходится проводка по квартире.  Сверху можно добавить нарушенную изоляцию проводов и растекание тока по перекрытиям. Такие чудеса случаются, и к несчастью владельцев таких ремонтов — это не лечиться никакими приборами и электриками.

Подпишись на RSS и получай обновления блога!

Получать обновления по электронной почте:

    • Транзисторный ключ с ограничением тока
      3 июня 2020
    • Зарядное для аккумуляторов шуруповерта на базе XL4015
      5 апреля 2020
    • Зарядное для авто со стабилизацией тока на L200
      19 марта 2020
    • Индикатор шестиразрядный на TM1637
      13 марта 2020
    • Регулируемый стабилизатор тока на L200
      11 марта 2020
    • Зарядное устройство для автомобильных аккумуляторов — 237 415 просмотров
    • Стабилизатор тока на LM317 — 173 565 просмотров
    • Стабилизатор напряжения на КР142ЕН12А — 124 884 просмотров
    • Реверсирование электродвигателей — 101 711 просмотров
    • Зарядное для аккумуляторов шуруповерта — 98 414 просмотров
    • Карта сайта — 96 063 просмотров
    • Зарядное для шуруповерта — 88 427 просмотров
    • Самодельный сварочный аппарат — 87 815 просмотров
    • Схема транзистора КТ827 — 82 457 просмотров
    • Регулируемый стабилизатор тока — 81 416 просмотров
    • DC-DC (4)
    • Автомат откачки воды из дренажного колодца (5)
    • Автоматика (34)
    • Автомобиль (3)
    • Антенны (2)
    • Ассемблер для PIC16 (3)
    • Блоки питания (30)
    • Бурение скважин (6)
    • Быт (11)
    • Генераторы (1)
    • Генераторы сигналов (8)
    • Датчики (4)
    • Двигатели (7)
    • Для сада-огорода (11)
    • Зарядные (17)
    • Защита радиоаппаратуры (8)
    • Зимний водопровод для бани (2)
    • Измерения (34)
    • Импульсные блоки питания (2)
    • Индикаторы (6)
    • Индикация (10)
    • Как говаривал мой дед … (1)
    • Коммутаторы (6)
    • Логические схемы (1)
    • Обратная связь (1)
    • Освещение (3)
    • Программирование для начинающих (16)
    • Программы (1)
    • Работы посетителей (7)
    • Радиопередатчики (2)
    • Радиостанции (1)
    • Регуляторы (5)
    • Ремонт (1)
    • Самоделки (12)
    • Самодельная мобильная пилорама (3)
    • Самодельный водопровод (7)
    • Самостоятельные расчеты (37)
    • Сварка (1)
    • Сигнализаторы (5)
    • Справочник (13)
    • Стабилизаторы (16)
    • Строительство (2)
    • Таймеры (4)
    • Термометры, термостаты (27)
    • Технологии (21)
    • УНЧ (2)
    • Формирователи сигналов (1)
    • Электричество (4)
    • Это пригодится (12)
  • Архивы
    Выберите месяц Июнь 2020  (1) Апрель 2020  (1) Март 2020  (3) Февраль 2020  (2) Декабрь 2019  (2) Октябрь 2019  (3) Сентябрь 2019  (3) Август 2019  (4) Июнь 2019  (4) Февраль 2019  (2) Январь 2019  (2) Декабрь 2018  (2) Ноябрь 2018  (2) Октябрь 2018  (3) Сентябрь 2018  (2) Август 2018  (3) Июль 2018  (2) Апрель 2018  (2) Март 2018  (1) Февраль 2018  (2) Январь 2018  (1) Декабрь 2017  (2) Ноябрь 2017  (2) Октябрь 2017  (2) Сентябрь 2017  (4) Август 2017  (5) Июль 2017  (1) Июнь 2017  (3) Май 2017  (1) Апрель 2017  (6) Февраль 2017  (2) Январь 2017  (2) Декабрь 2016  (3) Октябрь 2016  (1) Сентябрь 2016  (3) Август 2016  (1) Июль 2016  (9) Июнь 2016  (3) Апрель 2016  (5) Март 2016  (1) Февраль 2016  (3) Январь 2016  (3) Декабрь 2015  (3) Ноябрь 2015  (4) Октябрь 2015  (6) Сентябрь 2015  (5) Август 2015  (1) Июль 2015  (1) Июнь 2015  (3) Май 2015  (3) Апрель 2015  (3) Март 2015  (2) Январь 2015  (4) Декабрь 2014  (9) Ноябрь 2014  (4) Октябрь 2014  (4) Сентябрь 2014  (7) Август 2014  (3) Июль 2014  (2) Июнь 2014  (6) Май 2014  (4) Апрель 2014  (2) Март 2014  (2) Февраль 2014  (5) Январь 2014  (4) Декабрь 2013  (7) Ноябрь 2013  (6) Октябрь 2013  (7) Сентябрь 2013  (8) Август 2013  (2) Июль 2013  (1) Июнь 2013  (2) Май 2013  (4) Апрель 2013  (7) Март 2013  (7) Февраль 2013  (7) Январь 2013  (11) Декабрь 2012  (7) Ноябрь 2012  (5) Октябрь 2012  (2) Сентябрь 2012  (10) Август 2012  (14) Июль 2012  (5) Июнь 2012  (21) Май 2012  (13) Апрель 2012  (4) Февраль 2012  (6) Январь 2012  (6) Декабрь 2011  (2) Ноябрь 2011  (9) Октябрь 2011  (14) Сентябрь 2011  (22) Август 2011  (1) Июль 2011  (5)

Устройство защиты от короткого замыкания

Устройство может быть электронным, электромеханическим или простым предохранителем. Электронные устройства в основном применяются в сложных электронных приборах, и мы рассматривать в рамках этой статьи их не будем. Остановимся на предохранителях и электромеханических устройствах. Для защиты бытовой электросети сначала применялись предохранители. Мы привыкли их видеть в виде «пробок» в электрощите.

Их было несколько типов, но вся защита сводилась к тому, что внутри этой «пробки» находился тонкий медный проводок, который перегорал, когда происходило короткое замыкание. Нужно было бежать в магазин, покупать предохранитель или хранить дома, возможно, не скоро потребующийся запас предохранителей. Это было неудобно. И на свет появились автоматические выключатели, которые сначала выглядели тоже как «пробки».

Это был простейший электромеханический автоматический выключатель. Выпускались они на разные токи, но максимальным значением было 16 ампер. Вскоре потребовались более высокие значения, да и технический прогресс позволил выпускать автоматы такими, какими мы сейчас их видим в большинстве электрических щитков наших домов.

Вариант 1

Это защита наиболее простая и отличается от аналогичных тем, что в ней не используются никакие транзисторы или микросхемы. Реле, диодная развязка – вот и все ее компоненты.

Работает схема следующим образом. Минус в схеме общий, поэтому будет рассмотрена плюсовая цепь.

Если на вход не подключен аккумулятор, то реле находится в разомкнутом состоянии. При подключении аккумулятора плюс поступает через диод VD2 на обмотку реле, вследствие чего контакт реле замыкается, и основной ток заряда протекает на аккумулятор.

Одновременно загорается зеленый светодиодный индикатор, свидетельствуя о том, что подключение правильное.

И если теперь убрать аккумулятор, то на выходе схемы будет напряжение, поскольку ток от зарядного устройства будет продолжать поступать через диод VD2 на обмотку реле.

Если перепутать полярность подключения, то диод VD2 окажется заперт и на обмотку реле не поступит питание. Реле не сработает.

В этом случае загорится красный светодиод, который нарочно подключен неправильным образом. Он будет свидетельствовать о том, что нарушена полярность подключения аккумулятора.

Диод VD1 защищает цепь от самоиндукции, которая возникает при отключении реле.

В случае внедрения такой защиты в , стоит взять реле на 12 В. Допустимый ток реле зависит только от мощности . В среднем стоит использовать реле на 15-20 А.

Как предотвратить КЗ, защита от него

Так как КЗ – это аварийный режим, то существуют способы защиты от этого опасного процесса и его предотвращения:

  • Быстродействующая электромагнитная или электронная защита от мгновенного увеличения тока в нагрузке или линии, которая максимально быстро отключит аварийный участок цепи от напряжения. Для этого используются автоматические выключатели, предохранители, дифференциальные автоматы. В домашних условиях для защиты от КЗ достаточно установить на группу приборов правильно рассчитанный автоматический выключатель (АВ).
  • Для высоковольтных линий и силовых цепей подстанций используются масляные (вакуумные и другие) аппараты коммутации с настроенной и проверенной защитой от резкого увеличения тока на отходящих линиях.

Способ предотвращения короткого замыкания в тот момент, когда этот процесс уже произошел, простой: он заключается в немедленном автоматическом отключении участка цепи от напряжения. В принципе, любой автоматический выключатель имеет внутри конструкции электромагнитный разцепитель, который при превышении номинального тока разрывает цепь нагрузки достаточно эффективно и быстро.

Важно! Защита от КЗ должна быть надёжной и быстродействующей, это два основных правила безопасной эксплуатации электрических цепей

Итог

С точки зрения КПД, первая схема лучше других. Но с точки зрения универсальности и скорости реагирования, лучший вариант – это схема 2. Ну а третий вариант часто применяется в промышленных масштабах. Такой вариант защиты можно увидеть, к примеру, на любой автомагнитоле.

Все схемы, кроме последней, имеют функцию самовосстановления, то есть работа восстановится, как только будет убрано короткое замыкание или изменится полярность подключения аккумулятора.

Прикрепленные файлы:

Как сделать простой Повер Банк своими руками: схема самодельного power bank

Практически каждый начинающий радиолюбитель стремится вначале своего творчества сконструировать сетевой блок питания, чтобы впоследствии использовать его для питания различных экспериментальных устройств. И конечно, хотелось бы, чтобы этот блок питания «подсказывал» об опасности выхода из строя отдельных узлов при ошибках или неисправностях монтажа.

На сегодняшний день существует множество схем, в том числе и с индикацией короткого замыкания на выходе. Подобным индикатором в большинстве случаев обычно служит лампа накаливания, включенная в разрыв нагрузки. Но подобным включением мы увеличиваем входное сопротивление источника питания или, проще говоря, ограничиваем ток, что в большинстве случаев, конечно, допустимо, но совсем не желательно.

Схема, изображенная на рис.1, не только сигнализирует о коротком замыкании, абсолютно не влияя на выходное сопротивление устройства, но и автоматически отключает нагрузку при закорачивании выхода. Кроме того, светодиод HL1 напоминает, что устройство включено в сеть, a HL2 светится при перегорании плавкого предохранителя FU1, указывая на необходимость его замены.

Электрическая принципиальная схема самодельного блока питания с защитой от коротких замыканий

Рассмотрим работу самодельного блока питания
. Переменное напряжение, снимаемое со вторичной обмотки Т1, выпрямляется диодами VD1…VD4, собранными по мостовой схеме. Конденсатеры С1 и С2 препятствуют проникновению в сети высокочастотных помех, а оксидный конденсатор С3 сглаживает пульсации напряжения, поступающего на вход компенсационного стабилизатора, собранного на VD6, VT2, VT3 и обеспечивающего на выходе стабильное напряжение 9 В.

Напряжение стабилизации можно изменить, подбирая стабилитрон VD6, например, при КС156А оно составит 5 В, при Д814А — 6 В, при ДВ14Б — В В, при ДВ14Г -10 В, при ДВ14Д -12 В. При желании выходное напряжение можно сделать регулируемым, для этого между анодом и катодом VD6 включают переменный резистор сопротивлением 3-5 кОм, а базу VT2 подключают к движку этого резистора.

Рассмотрим работу защитного устройстваблока питания
. Узел защиты от КЗ в нагрузке состоит из германиевого п-р-п транзистора VT1, электромагнитного реле К1, резистора R3 и диода VD5. Последний в данном случае выполняет функцию стабистора, поддерживающего на базе VT1 неизменное напряжение около 0,6 — 0,7 В относительно общего.

В обычном режиме работы стабилизатора транзистор узла защиты надежно закрыт, так как напряжение на его базе относительно эмиттера отрицательное. При возникновении короткого замыкания эмиттер VT1, как и эмиттер регулирующего VT3, оказывается соединенным с общим минусовым проводом выпрямителя.

Другими словами, напряжение на его базе относительно эмиттера становится положительным, вследствие чего VT1 открывается, срабатывает К1 и своими контактами отключает нагрузку, светится светодиод HL3. После устранения короткого замыкания напряжение смещения на эмиттерном переходе VT1 снова становится отрицательным и он закрывается, реле К1 обесточивается, подключая нагрузку к выходу стабилизатора.

Детали для изготовления блока питания.
Электромагнитное реле любое с возможно меньшим напряжением срабатывания. В любом случае должно соблюдаться одно непременное условие: вторичная обмотка Т1 должна выдавать напряжение, равное сумме напряжений стабилизации и срабатывания реле, т.е. если напряжение стабилизации, как в данном случае 9 В, а U
сраб реле 6 В, то на вторичной обмотке должно быть не менее 15 В, но и не превышать допустимое на коллекторе-эмиттере применяемого транзистора. В качестве Т1 на опытном образце автор использовал ТВК-110Л2. Печатная плата устройства изображена на рис.2.

Печатная плата блока питания

Это невероятно полезное приспособление, которое защитит ваш дом от короткого замыкания при проверке каких-либо тестируемых приборов. Бывают случаи, когда необходимо проверить электроприбор на отсутствие КЗ, к примеру, после ремонта. И чтобы не подвергать свою сеть опасности, подстраховаться и избежать неприятных последствий, как раз и поможет это очень простое устройство.

 

 

Помогла ли вам статья?

Задать вопрос

Пишите ваши рекомендации и задавайте вопросы в комментариях

PSU 101: Защита PSU

Защиты блока питания

В этом разделе мы рассмотрим различные средства защиты блока питания, чтобы не повредить не только блок питания, но и систему, которую он питает. Многие бюджетные блоки питания имеют только необходимую защиту, требуемую спецификацией ATX (OCP, SCP, OVP), в то время как блоки более высокого класса обычно имеют гораздо большую защиту.

Как указано в спецификации ATX, блок питания использует сигнал задержки Power Good или PWR_OK, чтобы указать, что выходы +5 В, +3,3 В и +12 В находятся в пределах пороговых значений регулирования источника питания и что в блоке питания хранится достаточно энергии сети. преобразователь, чтобы гарантировать непрерывную работу в соответствии со спецификацией в течение не менее 17 мс при полной нагрузке (16 мс для потери переменного тока до времени удержания PWR_OK). Период задержки PWR_OK в соответствии со спецификацией ATX должен быть ниже 500 мс, а в идеале — менее 250 мс. В любом случае оно должно быть равно или выше 100 мс.

(OCP) Защита от перегрузки по току

Защита от перегрузки по току (OCP) — популярная защита, используемая во всех блоках питания с несколькими шинами +12 В, и в большинстве случаев она также защищает второстепенные шины. OCP срабатывает, когда ток в шинах превышает определенный предел. В спецификации ATX 2.2 указано, что если нагрузка на каждой тестируемой выходной шине достигает или превышает 240 ВА, то OCP должен создавать помехи (параграф 3.4.4). Однако в спецификации ATX 2.31 это ограничение отсутствует. Чтобы обойти это, некоторые производители внедрили множество виртуальных шин +12 В, каждая из которых рассчитана на 240 ВА. Однако в большинстве случаев точка срабатывания OCP устанавливалась намного выше, чтобы выдерживать пиковые токи, которые могли потреблять некоторые системные компоненты (например, видеокарты).

Для реализации OCP в блоке питания необходимы две вещи: шунтирующие резисторы и микросхема супервизора, поддерживающая OCP. Шунтирующие резисторы представляют собой высокоточные резисторы с низким сопротивлением, которые используются для измерения тока на выходе блока питания, используя падение напряжения, создаваемое этими токами на резисторах. Измеряя количество шунтов в блоке питания в месте пайки проводов +12 В, мы обычно можем найти реальное количество виртуальных шин +12 В. В некоторых случаях, когда производитель изначально построил блок питания как блок с несколькими шинами +12 В, а затем преобразовал его в блок с одной шиной +12 В, шунтирующие резисторы просто закорочены.

Шунтирующие резисторы, используемые в Corsair AX1200i

OVP/UVP (защита от перенапряжения/пониженного напряжения)

В спецификации ATX указано, что схема датчика защиты от перенапряжения и ссылка должны находиться в отдельных корпусах, отличных от регулятора схемы управления и ссылки. Таким образом, ни одна точка неисправности не должна вызывать устойчивое перенапряжение на любом выходе. Другими словами, все блоки питания должны иметь независимую схему защиты и не рассчитывать исключительно на ШИМ-контроллер для контроля выходных напряжений. Мы также должны добавить, что UVP является необязательным, поскольку он не упоминается в спецификации ATX.

Как вы уже, наверное, догадались, OVP и UVP постоянно проверяют напряжения на каждой шине и срабатывают, когда эти напряжения превышают или опускаются ниже точки срабатывания. Спецификация ATX содержит таблицу с минимальными, номинальными и максимальными значениями точек срабатывания OVP. Спецификация включает шину 5VSB, хотя в ней указано, что защита OVP на этой шине рекомендуется, но не требуется. Ниже вы найдете соответствующую таблицу.

Проведите по экрану для горизонтальной прокрутки

Output Minimum (V) Nominal (V) Maximum (V)
+12 VDC (or 12V1DC & 12V2DC) 13. 4 15 15.6
+5 VDC 5.74 6.3 7
+3.3 VDC 3.76 4.2 4.3
5VSB (optional) 5,74 6,3 7

Как видите, триггерные точки слишком высоки. Производитель может установить OVP равным 15,6 для шин +12 В и при этом оставаться в пределах спецификации. Представьте себе, что через компоненты вашей системы проходит напряжение 15,6 В!

Поскольку точки срабатывания UVP не охватываются спецификацией ATX, все производители схем защиты ИС могут устанавливать свои собственные.

OPP (Защита от превышения мощности)

Защита от превышения мощности (OPP) срабатывает, когда мощность, которую мы получаем от блока питания, превышает его максимальную номинальную мощность. Обычно производители дают небольшой запас мощности для блока питания, поэтому порог OPP устанавливается на 50-100 Вт (в некоторых случаях даже больше) выше максимальной номинальной мощности блока питания. В блоках питания с одной шиной +12 В, где OCP в большинстве случаев не имеет смысла, OPP берет на себя его роль и отключает блок питания в случае перегрузки шины +12 В.

OTP (защита от перегрева)

Когда присутствует защита от перегрева (OTP), мы обычно находим термистор, прикрепленный к вторичному радиатору (блок управления вентилятором обычно использует термистор в том же радиаторе). Термистор информирует схему защиты о температуре радиатора, и если она превышает заданный порог, то блок питания отключается. Чрезмерная температура может быть результатом перегрузки или отказа охлаждающего вентилятора, поэтому OTP предотвращает (дальнейшее) повреждение блока питания.

В некоторых случаях и из-за того, что OTP не поддерживается большинством доступных в настоящее время ИС супервизора, его можно реализовать другим способом (например, активировав другую защиту при обнаружении превышения уровня температуры во внутренних компонентах блока питания). Мы считаем OTP одной из самых важных защит в любом блоке питания, хотя во многих моделях она отсутствует.

SCP (защита от короткого замыкания)

Защита от короткого замыкания (SCP) постоянно контролирует выходные шины и, если обнаруживает сопротивление менее 0,1 Ом, немедленно отключает источник питания. Другими словами, если каким-то образом происходит короткое замыкание на выходных шинах, срабатывает эта защита и отключает блок питания, чтобы предотвратить повреждение или возгорание. Согласно спецификации ATX 2.31, каждая шина +12 В должна иметь отдельное короткое замыкание. Эта защита есть практически во всех современных БП (по крайней мере, фирменных).

Текущая страница: Защита блока питания

Предыдущая страница Измерение оборотов вентилятора блока питания Следующая страница Мониторинг интегральных схем

Арис Мпитциопулос — пишущий редактор Tom’s Hardware US, занимающийся блоками питания.

Темы

Источники питания

Блок питания с защитой от короткого замыкания | Мини проекты | Учебник по электронике |

Главная > Мини проекты >

Блок питания с защитой от короткого замыкания

Предыдущая

Следующая

Блок питания с защитой от короткого замыкания

Аннотация -Защита от короткого замыкания очень важна для работы заинтересованы в любой области, так как есть много шансов для малых или могут возникнуть серьезные повреждения, если не будет обеспечена защита. Главный Цель состоит в том, чтобы разработать источник питания с защитой от короткого замыкания, который также имеет возможность обеспечить регулировку напряжения с помощью биполярного переходные транзисторы, резисторы и конденсаторы последовательное сопротивление. Его функция заключается в подаче стабильного напряжения на цепь или устройство, которое должно работать в пределах определенной мощности лимиты поставок. Он широко используется, так как требования к напряжению легко доступны в домашнем хозяйстве.

1. ВВЕДЕНИЕ

Электронные схемы состоят из множества мелких и хрупких компонентов, очень чувствительны к любым изменениям тока или напряжения. Нестабильные источники питания повысят большой риск для схемы.

Другая проблема, которая возникает, связана с размером печатных плат и размер электрических компонентов, существует повышенная вероятность происходит короткое замыкание. Повреждение этих компонентов приводит к необходимости замены всего компонента, что приводит к увеличению стоимости схема нежелательна.

Отсюда возникает потребность в регулируемом источнике питания, как защита источник питания очень важен, так как он обеспечивает работу схемы правильно и что никаких повреждений не возникнет.

Доступно множество типов регулируемых источников питания, начиная от трансформаторов, используемых на входе, и заканчивая двухполупериодным мостом выпрямитель, оба имеют источник переменного тока. Регулирующий компоненты варьируются от интегральных микросхем или транзисторов с

Использование регулируемого источника питания:

Различные места, где он практически использовался:

â— Адаптеры питания для мобильных телефонов

â— Различная бытовая техника

â— Для ряда усилителей и генераторов требуется стабилизированный источник питания.


Принципиальная схема:

2. Компоненты:

Короткометражка состоит из четырех важных частей.

блок питания с защитой цепи. Они есть:

â— исправление

✓ Фильтрация

â— Регулирование

✓ Загрузить

3. Блок-схема цепи:


4.Рабочий:

1. Исправление :

Эта схема состоит из двухполупериодного мостового выпрямителя, который преобразует нестабильный переменный ток в постоянный однонаправленный пульсирующий постоянный ток, находящийся в определенных пределах, определяемых схема. Мостовая схема состоит из четырех диодов с PN-переходом. показано ниже. Во время положительного полупериода переменного тока диоды D2 и D3 имеют обратное смещение. Когда диоды смещены в обратном направлении, из-за падение напряжения, диоды действуют как разомкнутый ключ. Таким образом, ток не будет поток между этими двумя диодами. Противоположные диоды D4 и D1 будут прямое смещение, которое, таким образом, действует как закрытые переключатели и позволяет току поток. Из-за этого выходной сигнал будет выпрямленным сигналом.

2. Фильтрация:

Выпрямленный пульсирующий постоянный ток имеет постоянное значение, но может содержать рябь. Это нежелательно, поэтому, чтобы удалить это, мы используем емкостный фильтр в качестве нагрузки. Фильтр подключается к выпрямителю выход. С увеличением напряжения конденсатор заряжается до достигается максимальное значение.

При уменьшении мгновенного значения и разрядке конденсатора начинается. Происходит экспоненциальное уменьшение, которое проходит через емкостный фильтр и значение постоянного тока без пульсаций получается.

3. Регламент:

Это четвертая и последняя часть регулируемого источника питания. отфильтрованный вывод проходит через регулятор, чтобы гарантировать отсутствие изменений наблюдается на выходе в случае любого изменения источника питания или других факторов, таких как колебания температуры. Тогда регулируемый выход отправляется на нагрузку, где не будет беспокойства о скачках напряжения, таким образом отсутствие повреждений компонентов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *