Что такое электромагнитное излучение. Какие бывают виды электромагнитных волн. Как электромагнитное излучение влияет на организм человека. Как защититься от вредного воздействия электромагнитных полей.
Что такое электромагнитное излучение
Электромагнитное излучение — это распространение энергии в виде взаимосвязанных колебаний электрического и магнитного полей. Электромагнитные волны способны распространяться в вакууме со скоростью света.
Основные характеристики электромагнитного излучения:
- Длина волны
- Частота колебаний
- Скорость распространения
- Энергия
Чем короче длина волны, тем выше частота и энергия излучения. Все виды электромагнитного излучения распространяются в вакууме с одинаковой скоростью — скоростью света (около 300 000 км/с).
Виды электромагнитного излучения
В зависимости от длины волны и частоты колебаний выделяют следующие основные виды электромагнитного излучения:
- Радиоволны (длина волны более 1 мм)
- Микроволновое излучение (1 мм — 1 мкм)
- Инфракрасное излучение (760 нм — 1 мкм)
- Видимый свет (380-760 нм)
- Ультрафиолетовое излучение (10-380 нм)
- Рентгеновское излучение (0.01-10 нм)
- Гамма-излучение (менее 0.01 нм)
Эти виды излучения образуют единый спектр электромагнитных волн, различаясь лишь длиной волны и частотой колебаний.

Источники электромагнитного излучения
Электромагнитное излучение генерируется различными природными и искусственными источниками:
Природные источники:
- Солнце и другие звезды
- Молнии
- Земное магнитное поле
- Космическое излучение
Искусственные источники:
- Линии электропередач
- Бытовая техника
- Мобильные телефоны
- Компьютеры и другие электронные устройства
- Радио- и телепередатчики
- Медицинское оборудование (рентген, МРТ и др.)
Человек постоянно подвергается воздействию как природных, так и искусственных электромагнитных полей разной интенсивности.
Влияние электромагнитного излучения на организм человека
Воздействие электромагнитного излучения на организм человека зависит от частоты, интенсивности и продолжительности облучения. Различные виды излучения оказывают разное биологическое действие:
Радиоволны и микроволны:
- Нагрев тканей организма
- Влияние на нервную систему
- Нарушение сна
- Головные боли
Инфракрасное излучение:
- Тепловое воздействие
- Ожоги при высокой интенсивности
Видимый свет:
- Влияние на зрение
- Регуляция биоритмов
Ультрафиолетовое излучение:
- Образование витамина D
- Ожоги кожи
- Повреждение сетчатки глаза
- Мутагенное действие
Рентгеновское и гамма-излучение:
- Ионизация атомов и молекул
- Повреждение ДНК
- Мутации
- Развитие злокачественных опухолей

Как защититься от вредного воздействия электромагнитных полей
Для снижения негативного влияния электромагнитного излучения рекомендуется соблюдать следующие меры безопасности:
- Ограничивать время использования мобильного телефона
- Держать телефон на расстоянии от тела во время разговора
- Не оставлять работающие электроприборы в спальне
- Располагать рабочее место на расстоянии от электропроводки
- Использовать защитные экраны для компьютеров
- Ограничивать время работы за компьютером
- Проветривать помещения
- Экранировать источники излучения
- Использовать средства индивидуальной защиты при работе с опасными источниками излучения
Особое внимание следует уделять защите детей, беременных женщин и людей с ослабленным здоровьем от чрезмерного воздействия электромагнитных полей.
Применение электромагнитного излучения
Несмотря на потенциальные риски, электромагнитное излучение широко применяется в различных сферах:
Связь и телекоммуникации:
- Радио- и телевещание
- Мобильная связь
- Спутниковая связь
- Wi-Fi
Медицина:
- Рентгеновская диагностика
- Магнитно-резонансная томография
- Лучевая терапия
- Физиотерапия
Промышленность:
- Микроволновая сушка
- Индукционный нагрев
- Контроль качества продукции
Наука:
- Астрономические исследования
- Спектральный анализ
- Изучение структуры вещества
Правильное использование электромагнитного излучения открывает широкие возможности в различных областях человеческой деятельности.

Заключение
Электромагнитное излучение играет важную роль в современном мире. Оно имеет как естественное, так и искусственное происхождение. Различные виды электромагнитных волн могут оказывать разнообразное воздействие на организм человека — от полезного до вредного. Важно понимать природу электромагнитного излучения, его источники и способы защиты, чтобы минимизировать возможные риски для здоровья. При этом электромагнитное излучение находит широкое практическое применение в науке, технике, медицине и других сферах.
Глава 24. Электромагнитные колебания и волны
Электрическая цепь, состоящая из катушки индуктивности и конденсатора (см. рисунок), называется колебательным контуром. В этой цепи могут происходить своеобразные электрические колебания. Пусть, например, в начальный момент времени мы заряжаем пластины конденсатора положительным и отрицательным зарядами, а затем разрешим зарядам двигаться. Если бы катушка отсутствовала, конденсатор начал бы разряжаться, в цепи на короткое время возник электрический ток, и заряды пропали бы. Здесь же происходит следующее. Сначала благодаря самоиндукции катушка препятствует увеличению тока, а затем, когда ток начинает убывать, препятствует его уменьшению, т.е. поддерживает ток. В результате ЭДС самоиндукции заряжает конденсатор с обратной полярностью: та пластина, которая изначально была заряжена положительно, приобретает отрицательный заряд, вторая — положительный. Если при этом не происходит потерь электрической энергии (в случае малого сопротивления элементов контура), то величина этих зарядов будет такая же, как величина первоначальных зарядов пластин конденсатора.
Для решения задач ЕГЭ, посвященных электромагнитным колебаниям, нужно запомнить ряд фактов и формул, касающихся колебательного контура. Во-первых, нужно знать формулу для периода колебаний в контуре. Во-вторых, уметь применять к колебательному контуру закон сохранения энергии. И, наконец (хотя такие задачи встречаются редко), уметь использовать зависимости силы тока через катушку и напряжения на конденсаторе от времени
Период электромагнитных колебаний в колебательном контуре определяется соотношением:
(24.1) |
где — емкость конденсатора, — индуктивность катушки.
При электромагнитных колебаниях энергия колебательного контура складывается из энергии конденсатора и энергии тока в катушке:
(24. |
где и — заряд на конденсаторе и сила тока в катушке в этот момент времени, и — емкость конденсатора и индуктивность катушки. Если электрическое сопротивление элементов контура мало, то электрическая энергия контура (24.2) остается практически неизменной, несмотря на то, что заряд конденсатора и ток в катушке изменяются с течением времени. Из формулы (24.4) следует, что при электрических колебаниях в контуре происходят превращения энергии: в те моменты времени, когда ток в катушке равен нулю, вся энергия контура сводится к энергии конденсатора. В те моменты времени, когда равен нулю заряд конденсатора, энергия контура сводится к энергии магнитного поля в катушке. Очевидно, в эти моменты времени заряд конденсатора или ток в катушке достигают своих максимальных (амплитудных) значений.
При электромагнитных колебаниях в контуре заряд конденсатора изменяется с течением времени по гармоническому закону:
(24. |
(24.4) |
стандартной для любых гармонических колебаний. Поскольку сила тока в катушке представляет собой производную заряда конденсатора по времени, из формулы (24.4) можно найти зависимость силы тока в катушке от времени
(24.5) |
В ЕГЭ по физике часто предлагаются задачи на электромагнитные волны. Необходимый для решения этих задач минимум знаний включает в себя понимание основных свойств электромагнитной волны и знание шкалы электромагнитных волн. Сформулируем кратко эти факты и принципы.
Согласно законам электромагнитного поля переменное магнитное поле порождает поле электрическое, переменное электрическое поле порождает поле магнитное.
Длина электромагнитной волны , ее частота (или период ) и скорость распространения связаны соотношением, которое справедливо для любой волны (см. также формулу (11.6)):
(24.6) |
Электромагнитные волны в вакууме распространяются со скоростью = 3 • 108 м/с, в среде скорость электромагнитных волн меньше, чем в вакууме, причем эта скорость зависит от частоты волны. Такое явление называется дисперсией волн. Электромагнитной волне присущи все свойства волн, распространяющихся в упругих средах: интерференция, дифракция, для нее справедлив принцип Гюйгенса. Единственное, что отличает электромагнитную волну, это то, что для ее распространения не нужна среда — электромагнитная волна может распространяться и в вакууме.
В природе наблюдаются электромагнитные волны с сильно отличающимися друг от друга частотами, и обладающие благодаря этому существенно различными свойствами (несмотря на одинаковую физическую природу). Классификация свойств электромагнитных волн в зависимости от их частоты (или длины волны) называется шкалой электромагнитных волн. Дадим краткий обзор этой шкалы.
Электромагнитные волны с частотой меньшей 105 Гц (т.е. с длиной волны, большей нескольких километров) называются низкочастотными электромагнитными волнами. Излучают волны такого диапазона большинство бытовых электрических приборов.
Волны с частотой от 105 до 1012 Гц называются радиоволнами. Этим волнам отвечают длины волн в вакууме от нескольких километров до нескольких миллиметров. Эти волны применяются для радиосвязи, телевидения, радиолокации, сотовых телефонов. Источниками излучения таких волн являются заряженные частицы, движущиеся в электромагнитных полях. Радиоволны излучаются также свободными электронами металла, которые совершают колебания в колебательном контуре.
Область шкалы электромагнитных волн с частотами, лежащими в интервале 1012 — 4,3 • 1014 Гц (и длинами волн от нескольких миллиметров до 760 нм) называется инфракрасным излучением (или инфракрасными лучами). Источником такого излучения служат молекулы нагретого вещества. Человек излучает инфракрасные волны с длиной волны 5 — 10 мкм.
Электромагнитное излучение в интервале частот 4,3 • 1014 — 7,7 • 1014 Гц (или длин волн 760 — 390 нм) воспринимается человеческим глазом как свет и называется видимым светом. Волны различных частот внутри этого диапазона воспринимаются глазом, как имеющие различный цвет. Волна с самой маленькой частотой из видимого диапазона 4,3 • 1014 воспринимается как красная, с самой большой частотой внутри видимого диапазона 7,7 • 1014 Гц — как фиолетовая. Видимый свет излучается при переходе электронов в атомах, молекулами твердых тел, нагретых до 1000 °С и более.
Волны с частотой 7,7 • 1014 — 1017 Гц (длина волны от 390 до 1 нм) принято называть ультрафиолетовым излучением. Ультрафиолетовое излучение имеет выраженное биологическое действие: оно способно убивать ряд микроорганизмов, способно вызвать усиление пигментации человеческой кожи (загар), при избыточном облучении в отдельных случаях может способствовать развитию онкологических заболеваний (рак кожи). Ультрафиолетовые лучи содержатся в излучении Солнца, в лабораториях создаются специальными газоразрядными (кварцевыми) лампами.
За областью ультрафиолетового излучения лежит область рентгеновских лучей (частота 1017 — 1019 Гц, длина волны от 1 до 0,01 нм). Эти волны излучаются при торможении в веществе заряженных частиц, разогнанных напряжением 1000 В и более. Обладают способностью проходить сквозь толстые слои вещества, непрозрачного для видимого света или ультрафиолетового излучения. Благодаря этому свойству рентгеновские лучи широко используются в медицине для диагностики переломов костей и ряда заболеваний. Рентгеновские лучи оказывают губительное действие на биологические ткани. Благодаря этому свойству их можно использовать для лечения онкологических заболеваний, хотя при избыточном облучении они смертельно опасны для человека, вызывая целый ряд нарушений в организме. Из-за очень малой длины волны волновые свойства рентгеновского излучения (интерференцию и дифракцию) можно обнаружить только на структурах, сравнимых с размерами атомов.
Гамма-излучением (-излучением) называют электромагнитные волны с частотой, большей, чем 1020 Гц (или длиной волны, меньшей 0,01 нм). Возникают такие волны в ядерных процессах. Особенностью -излучения является его ярко выраженные корпускулярные свойства (т.е. это излучение ведет себя как поток частиц). Поэтому о -излучении часто говорят как о потоке -частиц.
В задаче 24.1.1 для установления соответствия между единицами измерений используем формулу (24.1), из которой следует, что период колебаний в контуре с конденсатором емкостью 1 Ф и индуктивностью 1 Гн равен секунд (ответ 1).
Из графика, данного в задаче 24.1.2, заключаем, что период электромагнитных колебаний в контуре составляет 4 мс (ответ 3).
По формуле (24.1) находим период колебаний в контуре, данном в задаче 24.1.3: (ответ 4). Отметим, что согласно шкале электромагнитных волн такой контур излучает волны длинноволнового радиодиапазона.
Периодом колебания называется время одного полного колебания. Это значит, что если в начальный момент времени конденсатор заряжен максимальным зарядом (задача 24.1.4), то через половину периода конденсатор будет также заряжен максимальным зарядом, но с обратной полярностью (та пластина, которая изначально была заряжена положительно, будет заряжена отрицательно). А максимальный в контуре ток будет достигаться между этими двумя моментами, т.е. через четверть периода (ответ 2).
Если увеличить индуктивность катушки в четыре раза (задача 24.1.5), то согласно формуле (24.1) период колебаний в контуре возрастет в два раза, а частота уменьшится в два раза (ответ 2).
Согласно формуле (24.1) при увеличении емкости конденсатора в четыре раза (задача 24.1.6) период колебаний в контуре увеличивается в два раза (ответ 1).
При замыкании ключа (задача 24.1.7) в контуре вместо одного конденсатора будут работать два таких же конденсатора, соединенных параллельно (см. рисунок). А поскольку при параллельном соединении конденсаторов их емкости складываются, то замыкание ключа приводит к двукратному увеличению емкости контура. Поэтому из формулы (24.1) заключаем, что период колебаний увеличивается в раз (ответ 3).
Пусть заряд на конденсаторе совершает колебания с циклической частотой (задача 24.1.8). Тогда согласно формулам (24.3)-(24.5) с той же частотой будет совершать колебаний ток в катушке. Это значит, что зависимость тока от времени может быть представлена в виде . Отсюда находим зависимость энергии магнитного поля катушки от времени
Из этой формулы следует, что энергия магнитного поля в катушке совершает колебания с удвоенной частотой, и, значит, с периодом, вдвое меньшим периода колебания заряда и тока (ответ 1).
В задаче 24.1.9 используем закон сохранения энергии для колебательного контура. Из формулы (24.2) следует, что для амплитудных значений напряжения на конденсаторе и тока в катушке справедливо соотношение
(здесь в отличие от (24. 2) использовано другое выражение для энергии конденсатора). Или А (ответ 2).
В задаче 24.1.10 удобно использовать закон сохранения энергии в виде (24.2). Имеем
где и — амплитудные значения заряда конденсатора и тока в катушке. Из этой формулы с использованием соотношения (24.1) для периода колебаний в контуре находим амплитудное значение тока
ответ 3.
Радиоволны — электромагнитные волны с определенными частотами. Поэтому скорость их распространения в вакууме равна скорости распространения любых электромагнитных волн, и в частности, рентгеновских. Эта скорость — скорость света (задача 24.2.1 — ответ 1).
Как указывалось ранее, заряженные частицы излучают электромагнитные волны при движении с ускорением. Поэтому волна не излучается только при равномерном и прямолинейном движении (задача 24. 2.2 — ответ 1).
Электромагнитная волна — это особым образом изменяющиеся в пространстве и времени и поддерживающие друг друга электрическое и магнитное поля. Поэтому правильный ответ в задаче 24.2.3 — 2.
Из данного в условии задачи 24.2.4 графика следует, что период данной волны — = 4 мкс. Поэтому из формулы (24.6) получаем м (ответ 1).
В задаче 24.2.5 по формуле (24.6) находим
(ответ 4).
С антенной приемника электромагнитных волн связан колебательный контур. Электрическое поле волны действует на свободные электроны в контуре и заставляет их совершать колебания. Если частота волны совпадает с собственной частотой электромагнитных колебаний, амплитуда колебаний в контуре возрастает (резонанс) и может быть зарегистрирована. Поэтому для приема электромагнитной волны частота собственных колебаний в контуре должна быть близка к частоте этой волны (контур должен быть настроен на частоту волны). Поэтому если контур нужно перенастроить с волны длиной 100 м на волну длиной 25 м (задача 24.2.6), собственная частота электромагнитных колебаний в контуре должна быть увеличена в 4 раза. Для этого согласно формулам (24.1), (24.4) емкость конденсатора следует уменьшить в 16 раз (ответ 4).
Согласно шкале электромагнитных волн (см. введение к настоящей главе), максимальной длиной из перечисленных в условии задачи 24.2.7 электромагнитных волн обладает излучение антенны радиопередатчика (ответ 4).
Среди перечисленных в задаче 24.2.8 электромагнитных волн максимальной частотой обладает рентгеновское излучение (ответ 2).
Электромагнитная волна является поперечной. Это значит, что векторы напряженности электрического поля и индукции магнитного поля в волне в любой момент времени направлены перпендикулярно направлению распространения волны. Поэтому при распространении волны в направлении оси (задача 24.2.9), вектор напряженности электрического поля направлен перпендикулярно этой оси. Следовательно, обязательно равна нулю его проекция на ось = 0 (ответ 3).
Скорость распространения электромагнитной волны — есть индивидуальная характеристика каждой среды. Поэтому при переходе электромагнитной волны из одной среду в другую (или из вакуума в среду) скорость электромагнитной волны изменяется. А что можно сказать о двух других параметрах волны, входящих в формулу (24.6), — длине волны и частоте . Будут ли они изменяться при переходе волны из одной среды в другую (задача 24.2.10)? Очевидно, что частота волны не изменяется при переходе из одной среды в другую. Действительно, волна это колебательный процесс, в котором переменное электромагнитное поле в одной среде создает и поддерживает поле в другой среде благодаря именно этим изменениям. Поэтому периоды этих периодических процессов (а значит и частоты) в одной и другой среде должны совпадать (ответ 3). А поскольку скорость волны в разных средах разная, то из проведенных рассуждений и формулы (24. 6) следует, что длина волны при ее переходе из одной среды в другую — изменяется.
чем отличается рентген от света
Радиоволны, свет от лампочки в потолке, невидимые лучи в кабинете рентгенолога и таинственная смертельная радиация в зонах отчуждения — все это лишь разные проявления одного и того же физического явления: электромагнитного излучения. Разобраться, где что, не так уж сложно. Достаточно лишь связать свойства излучения с длиной волны.
Теги:Связь
ДНК
Излучение
Радиация
Мутация
Почти в каждом школьном кабинете физики висела разноцветная диаграмма с картинками, которая гордо называлась «Спектр электромагнитного излучения». Условная синусоида начиналась слева, с радиоволн. Расстояние между соседними «горбами» в этой части было наибольшим. Частота колебаний является обратной длине волны величиной. Если длина волны есть расстояние между двумя «горбами» волны, то время, за которое она проходит это расстояние, определяется как расстояние, деленное на скорость. Время же есть единица, деленная на частоту. К правому концу диаграммы волна «сжималась», подобно пружине: длина волны уменьшалась, а частота увеличивалась. В левой части диаграммы располагались некие «гамма-лучи».
Не занимайтесь самолечением! В наших статьях мы собираем последние научные данные и мнения авторитетных экспертов в области здоровья. Но помните: поставить диагноз и назначить лечение может только врач.
Почему одни волны короче или длиннее других? Причина в источнике этих волн — колеблющемся электрическом заряде. Чем быстрее колеблется заряд, тем меньше длина электромагнитного излучения. Если бы электромагнитное поле было водой в озере, а заряд — рыболовным поплавком, то круги на воде условно изобразили бы электромагнитные волны. Чем быстрее дергается поплавок, тем чаще отходят от него водные круги — колебания, и меньше расстояние между ними — длина волны.
Радиоволны порождаются колебаниями в проводниках с током, видимый свет — переходами электронов внутри атома, рентгеновские и гамма-лучи возникают, когда заряды движутся в электрическом поле атомного ядра, либо из-за процессов в самом ядре. Если говорить грубо, то, чем меньше «масштаб» взаимодействия, тем короче электромагнитная волна.
Волны или фотоны?
Физики называют фотоны переносчиками электромагнитного взаимодействия. Частицами. Стоит только свыкнуться с этой мыслью и нарисовать в воображении чрезвычайно быстрые «шарики», как те же физики начинают утверждать, что взаимодействие между зарядами осуществляется через колебания электромагнитного поля — волны. Ученые не сошли с ума, а вот фотоны «раздвоением личности» страдают, проявляя то волновые свойства, то свойства частицы.
Какую «личность» примерит на себя фотон зависит от объектов, с которыми он взаимодействует. Длина волны радиосигнала измеряется километрами. На его пути возникают дома, фонарные столбы, люди — объекты, намного меньшие, чем длина волны. Значит, излучение будет огибать их или отклоняться от первоначального направления при «встрече», то есть проявлять волновые свойства, подобно великану, который огромным шагом переступает целый город. Видимый свет имеет длину волны такую, что может «врезаться» в атомный электрон лоб-в-лоб и вытолкнуть его из атома. В этом случае он ведет себя как частица или бильярдный шар, ударившийся о другой шар.
Чем меньше длина волны излучения, тем меньше в мире остается препятствий, которые волна может «обойти», а значит, хочешь-не хочешь, взаимодействовать придется. Рентгеновское и гамма-излучение настолько коротковолновые, что все в мире, даже крошечные электроны — серьезное препятствие для них, как забор для мухи. Правда, до «забора» в виде атомного электрона или ядра фотоны могут долго лететь через вещество.
Преобладающая часть атома — это пустота. Огромная равнина с редкими заборами: по одному на каждый гектар. Когда длина волны излучения меньше расстояния между электронами и ядром, фотон словно «протискивается» сквозь атом. Чем меньше при этом плотность вещества, тем меньше вероятность попадания волны/фотона в атом. По этому принципу работает рентгеновская диагностика: более плотные кости задерживают рентгеновские лучи сильнее. Но часть фотонов пролетает все тело и рисует знакомые снимки.
Коротковолновое излучение опасно не только из-за того, что проникает куда угодно, в том числе, в человеческие ткани. Дело в том, что частота излучения прямо пропорциональна его энергии. Эта связь выводится в квантовой теории. Энергией определяется количество взаимодействий с атомами вещества — сколько из них фотон может «испортить» или ионизировать на своем пути, пока обессиленный не упадет после столкновения с последним «забором».
Ионизация вещества означает его уничтожение. Рушатся атомы, затем молекулы, а вслед за ними и клетки. «Радиация» в знакомом смысле этого слова буквально сжигает тело изнутри. К тому же излучение может проникнуть внутрь клеток и повредить молекулы ДНК. В этом случае потомство облученного человека будет под угрозой мутаций.
Когда энергия излучения достигает той, что нарабатывается в ускорителях, фотоны, проникая в ткани тела, множатся в геометрической прогрессии. В электрическом поле ядра они превращаются в пары частиц электрон-позитрон, которые сразу же аннигилируют — исчезают, оставляя после себя пару фотонов. Энергии новорожденных фотонов хватает, чтобы снова создать электрон-позитронные пары. Начинается лавинообразный процесс.
Резюме
Свет, радиоволны, рентген, инфракрасное и ультрафиолетовое излучение — одно и то же с точки зрения физики. Чем меньше длина волны, тем большая проникающая способность у волн/фотонов. Энергия излучения увеличивается с уменьшением длины волны, а значит, коротковолновое излучение вредит людям больше, чем длинноволновое. Способ взаимодействия излучения с веществом зависит от его энергии (длины волны и частоты). Чем больше энергия, тем разрушительнее для вещества процесс взаимодействия.
Электромагнитное излучение | Спектр, примеры и типы
фотосинтез
Посмотреть все СМИ
- Ключевые люди:
- Джеймс Клерк Максвелл Христиан Гюйгенс Томас Янг Хендрик Антон Лоренц Франсуа Араго
- Похожие темы:
- свет свечение Рентгеновский фотоэлектрический эффект гамма-луч
Просмотреть весь связанный контент →
Последние новости
23 мая 2023 г. , 14:50 по восточноевропейскому времени (AP)
Владельцы новых В конце концов, автомобили Ford смогут настраиваться на AM-радио в своих автомобилях, грузовиках и внедорожниках. Двухпартийный законопроект потребует от автопроизводителей оставить его в новых автомобилях
Законодатели на Капитолийском холме выступают за сохранение AM-радио в автомобилях, поскольку оно является важным источником новостей и развлечений для многих американцев. Они работают над тем, чтобы AM-радио оставалось жизнеспособным вариантом для водителей в будущем.
электромагнитное излучение , в классической физике поток энергии с универсальной скоростью света через свободное пространство или через материальную среду в виде электрических и магнитных полей, образующих электромагнитные волны, такие как радиоволны, видимый свет , и гамма-излучение. В такой волне переменные во времени электрическое и магнитное поля взаимно связаны друг с другом под прямым углом и перпендикулярно направлению движения. Электромагнитная волна характеризуется своей интенсивностью и частотой ν изменения во времени электрического и магнитного полей.
С точки зрения современной квантовой теории электромагнитное излучение представляет собой поток фотонов (также называемых световыми квантами) в пространстве. Фотоны — это сгустки энергии ч ν, которые всегда движутся со всемирной скоростью света. Символ ч — это постоянная Планка, а значение ν такое же, как у частоты электромагнитной волны классической теории. Фотоны, имеющие одинаковую энергию ч ν, все одинаковы, и их числовая плотность соответствует интенсивности излучения. Электромагнитное излучение демонстрирует множество явлений, поскольку оно взаимодействует с заряженными частицами в атомах, молекулах и более крупных объектах материи. Эти явления, а также способы создания и наблюдения электромагнитного излучения, способ его возникновения в природе и его технологическое использование зависят от его частоты ν. Спектр частот электромагнитного излучения простирается от очень низких значений в диапазоне радиоволн, телевизионных волн и микроволн до видимого света и далее до значительно более высоких значений ультрафиолетового света, рентгеновских лучей и гамма-лучей.
В этой статье обсуждаются основные свойства и поведение электромагнитного излучения, а также его различные формы, включая их источники, отличительные характеристики и практические применения. В статье также прослеживается развитие как классической, так и квантовой теории излучения.
Общие положения
Возникновение и значение
Около 0,01 процента массы/энергии всей вселенной проявляется в виде электромагнитного излучения. В нее погружена вся жизнь человека, а современные технологии связи и медицинские услуги особенно зависят от той или иной ее формы. Фактически все живые существа на Земле зависят от электромагнитного излучения, получаемого от Солнца, и от преобразования солнечной энергии путем фотосинтеза в растительную жизнь или путем биосинтеза в зоопланктон, что является основным звеном пищевой цепи в океанах. Глаза многих животных, в том числе и человека, приспособлены к тому, чтобы быть чувствительными и, следовательно, видеть наиболее обильную часть электромагнитного излучения Солнца, а именно свет, который составляет видимую часть его широкого диапазона частот. Зеленые растения также обладают высокой чувствительностью к максимальной интенсивности солнечного электромагнитного излучения, которое поглощается веществом, называемым хлорофиллом, которое необходимо для роста растений посредством фотосинтеза.
Викторина «Британника»
Викторина «Материя и многое другое»
Практически все виды топлива, которые использует современное общество — газ, нефть и уголь — представляют собой накопленные формы энергии, полученные от Солнца в виде электромагнитного излучения миллионы лет назад. Только энергия ядерных реакторов не исходит от Солнца.
Повседневная жизнь пронизана искусственно созданным электромагнитным излучением: пища нагревается в микроволновых печах, самолеты управляются радиолокационными волнами, телевизоры принимают электромагнитные волны, передаваемые радиовещательными станциями, а инфракрасные волны обогревателей обеспечивают тепло. Инфракрасные волны также излучаются и принимаются камерами с автоматической самофокусировкой, которые в электронном виде измеряют и устанавливают правильное расстояние до объекта, который нужно сфотографировать. Как только солнце садится, включаются лампы накаливания или люминесцентные лампы для искусственного освещения, и города ярко светятся разноцветными люминесцентными и неоновыми лампами рекламных вывесок. Знакомо также ультрафиолетовое излучение, которое глаза не видят, но действие которого ощущается как боль от солнечного ожога. Ультрафиолетовый свет представляет собой разновидность электромагнитного излучения, которое может быть опасным для жизни. То же самое относится и к рентгеновским лучам, которые важны в медицине, поскольку позволяют врачам наблюдать за внутренними частями тела, но воздействие которых должно быть сведено к минимуму. Менее известны гамма-лучи, возникающие в результате ядерных реакций и радиоактивного распада и являющиеся частью вредного высокоэнергетического излучения радиоактивных материалов и ядерного оружия.
Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
ПодписатьсяEMF-Портал | Электромагнитный спектр
Электромагнитные поля и излучение охватывают широкий диапазон частот (см. рисунок).
При грубом распределении диапазон неионизирующего излучения электромагнитного спектра до 300 ГГц включает статические поля (0 Гц) и низкочастотные поля (приблизительно до 300 Гц), промежуточный диапазон частот примерно от 300 Гц до 10 МГц и радиочастотный диапазон от 10 МГц до 300 ГГц. Соответственно, в EMF-Portal граница между низкочастотным и радиочастотным диапазонами проведена на 10 МГц.
Статические поля (0 Гц) (Статические поля (0 Гц)) появляются, например. как в магнитном поле Земли, так и с постоянными магнитами, на высоковольтных линиях электропередачи постоянного тока (ЛЭПТ), батареях и между объектами с разным электрическим зарядом. В медицине сильные статические магнитные поля используются в магнитно-резонансной томографии.
Все электроприборы, работающие от источника питания (железные дороги, бытовые и рабочие электроприборы) лежат в диапазоне низкочастотных переменных полей до 1 кГц (длины волн более 300 км) (низкие частота (0,1 Гц–1 кГц)).
Диапазон промежуточных частот от 1 кГц до 10 МГц (длины волн от 300 км до 30 м) (промежуточная частота (1 кГц–10 МГц)) включает нижний диапазон радиочастот с соответствующими приложениями, а также приложения работающие на определенных частотах, такие как индукционные плиты и электронные системы наблюдения за товарами в магазинах, а также многие промышленные и медицинские приложения.
Диапазоны промежуточных частот и радиочастот (промежуточные частоты (1 кГц–10 МГц) и радиочастоты (10 МГц–300 ГГц) соответственно) включают диапазон «радиовещательных частот» (от 30 кГц до 300 МГц). ; длины волн от 10 км до 1 м), охватывающие длинноволновое радиовещание, радиовещание с амплитудной модуляцией (AM) (разрешено в основном в диапазоне средних волн), коротковолновое радиовещание и радиовещание с частотной модуляцией (FM) (разрешено в диапазоне очень высоких частот). Диапазон частот). Диапазон частот в основном используется для передачи звуков и языка по радио, а также для приложений двусторонней радиосвязи.
Диапазон микроволн от 300 МГц до 300 ГГц (длины волн от 1 м до 1 мм) находится в пределах радиочастотного диапазона (радиочастота (10 МГц–300 ГГц)) и, таким образом, является его частью. Микроволновый диапазон используется, например, телевизионными станциями, мобильными сетями, радиолокационными системами, терапевтическими приборами и микроволновыми печами.
Терагерцовые волны также относятся к спектральному диапазону неионизирующего излучения от 300 ГГц до 10 ТГц (длина волны от 1 мм до 30 мкм). Например, они используются для контроля качества промышленных товаров, в некоторых аэропортах в сканерах тела для контроля безопасности или в системах сканирования рака кожи.
По шкале частот терагерцовые волны сливаются с тепловым излучением диапазона инфракрасного света (10-384 ТГц, длины волн от 30 мкм до 780 нм). Следующий диапазон от 384 ТГц до 789 ТГц (длины волн от 780 нм до 380 нм) виден человеческому глазу и поэтому называется видимым светом .