Чем порождается магнитное поле: 1. Чем порождается магнитное поле?

Содержание

Вопросы § 34 — ГДЗ по Физике

1.Что является источником магнитного поля?

Магнитное поле порождается электрическим током (направленным движением заряженных ча­стиц).

2. Чем создаётся магнитное поле постоянного магнита?

Магнитное поле постоянного магнита созда­ется за счет того, что внутренние кольцевые токи в нем ориентированы одинаково и усиливают друг друга.

3. Что такое магнитные линии? Что принимают за их направление в какой-либо её точке?

Магнитные линии или линии магнитного поля — используемые для наглядности воображае­мые линии — направление которых в каждой точ­ке совпадает с направлением маленькой магнитной стрелки, помещенной в магнитное поле.

4. Как располагаются магнитные стрелки в магнитном поле, линии которого прямолинейны; криволинейны?

В магнитном поле с прямолинейными и кри­волинейными линиями стрелки будут располагать­ся по касательной к магнитным линиям.

5. О чём можно судить по картине линий магнитного поля?

О направлении и величине магнитного поля.

6. Какое магнитное поле — однородное или неоднородное — образуется вокруг полосового магнита; вокруг прямолинейного проводника с током; внутри соленоида, длина которого значительно больше его диаметра?

Неоднородное магнитное поле: вокруг по­лосового магнита и прямолинейного проводника с током. Однородное магнитное поле: внутри соляноида.

7. Что можно сказать о модуле и направлении силы, действующей на магнитную стрелку в разных точках неоднородного магнитного поля; однородного магнитного поля?

Сила, действующая на магнитную стрелку в однородном поле, в разных точках имеет одинако­вый модуль и направление. В неоднородном поле они различны.

8. Чем отличается расположение магнитных линий в неоднородном и однородном магнитных полях?

В однородном поле магнитные линии распо­ложены параллельно друг другу и с одинаковой густотой. В неоднородном магнитном поле их гу­стота и их направления могут отличаются, одна­ко они никогда не пересекаются.

Астрономы впервые зафиксировали у звезды вызванные экзопланетой полярные сияния

Danielle Futselaar / artsource.nl

Астрономы обнаружили необычное радиоизлучение от спокойной звезды, которое лучше всего объясняется взаимодействием с близкой планетой. В таком случае движение электронов вдоль линий магнитного поля порождает мощные сияния в радиодиапазоне у полюсов звезды.

Подобный механизм известен в паре планета-спутник в Солнечной системе (Юпитер и Ио), но для пары звезда-экзопланета регистрируется впервые. Открытие может стать основой нового метода исследования внесолнечных планет, пишут авторы в журнале Nature Astronomy.

Как правило, обычные звезды не являются сильными источниками радиоволн с частотами ниже 150 мегагерц. Считается, что в случае наблюдения такого вида излучения, оно порождается в неоднородных областях короны на высотах как минимум одного радиуса светила. В частности, низкочастотное излучение Солнца можно использовать для определения структуры короны, выбросов массы и космической погоды.

Все зарегистрированные случаи заметного радиоизлучения звезд на гигагерцовых частотах связаны с нетепловыми процессами во внешних слоях. Более того, подавляющее большинство этих источников относятся к одному из типов объектов с магнитной активностью, таким как вспыхивающие звезды (AD Льва), светила с быстрым вращением (FK Волос Вероники) или тесные двойные (Алголь).

На более низких частотах в сотни мегагерц единственным известным звездным источником радиоизлучения является вспыхивающая UV Кита — прототип соответствующего класса переменных.

Астрономы из пяти стран под руководством Хариша Ведантама (Harish Vedantham) из института ASTRON обнаружили при помощи европейского низкочастотного интерферометра LOFAR уникальный случай низкочастотного излучения от расположенного на расстоянии в восемь парсек одиночного красного карлика класса M под названием GJ 1151. Особой данную ситуацию делает тот факт, что у этой звезды спокойная атмосфера и слабое вращение, то есть она не способна самостоятельно породить столь мощные радиоволны.

Светило было найдено в рамках сопоставления объектов из каталога LOFAR со звездами не далее 20 парсек от Земли по данным спутника Gaia. Максимальное расстояние было выбрано для увеличения шансов обнаружения источников с небольшой абсолютной светимостью и уменьшения вероятности наложения различных источников. Радиоизлучение GJ 1151 было зафиксировано в одном сеансе наблюдений из четырех, проведенных в течение месяца. Оно обладало высокой степенью поляризации (64±6 процента), что вместе с высокой переменностью исключает случайное совпадение с внегалактическим объектом.

Помимо неподходящих для генерации радиоволн параметров GJ 1151, данное излучение оказалось не похожим на известные вспышки звезд, которые можно разделить на два широких типа. К первому относятся некогерентное гиросинхротронное излучение (подобное солнечным радиобурям), которое характеризуется низкой поляризацией, яркостной температурой не более 10

10 кельвин, широкой спектральным диапазоном и продолжительностью во много часов. Второй класс — это когерентное излучение (подобное всплескам солнечного радиоизлучения) с высокой круговой поляризацией, узкой мгновенной полосой излучения и продолжительностью от секунд до минут. В отличие от этих двух видов, излучение GJ 1151 продолжалось более восьми часов, практически не зависело от частоты в диапазоне от 120 до 167 мегагерц и обладало высокой круговой поляризацией.

Астрономы пришли к выводу, что удовлетворительно объяснить это можно только предположением о наличии на близкой орбите экзопланеты, которая делает один оборот за несколько дней.

В таком случае движение планеты сквозь магнитосферу звезды (а у карликов класса M обычно сильные магнитные поля) фактически создает электрический двигатель, подобный динамо-машине. В результате возникают сильные токи электронов, которые при приближении к магнитным полюсам звезды генерируют мощные радиоволны и сияния в ее атмосфере.

Подобный процесс известен в Солнечной системе — так возникает радиоизлучение Юпитера. Эта планета также обладает заметным магнитным полем, а связанная с постоянной вулканической активностью атмосфера у близко расположенного к газовому гиганту спутника Ио играет роль источника заряженных частиц. В итоге при подходящих условиях возникает электронная циклотронная мазерная неустойчивость, которая синхронизует фазы излучения заряженных частиц и приводит к направленному когерентному излучению. Оно фиксируется на Земле с периодичностью, соответствующей частоте обращения Ио вокруг Юпитера. Примечательно, что на низких частотах Юпитер даже оказывается ярче Солнца.

Аналогичное явление было предсказано для звезд более тридцати лет назад, но никогда ранее не наблюдалось. Авторы предполагают, что в данном случае излучение связано с полярными «радиосияниями» на звезде, но теоретически оно может быть связано и с магнитосферой планеты. Однако для этого магнитное поле экзопланеты должно быть весьма сильным, что может быть в случае горячего юпитера, а у карликов класса M гораздо чаще обнаруживают землеподобные планеты, для которых не предсказывается мощных магнитных полей.

По мере продолжения радиообзора на интерферометре LOFAR подобных систем будет открыто больше — около ста по оценкам астрономов. Так как все они относятся к солнечным окрестностям, то для них возможно изучение другими способами, в том числе методом лучевых скоростей. Это позволит независимо оценить период обращения экзопланеты и ее массу, благодаря чему можно будет проверить правильность модели.

Ранее астрономы выяснили, что магнитные поля горячих юпитеров в разы сильнее предсказаний теории, предложили искать экзопланеты с магнитным полем с помощью радиотелескопа FAST и обосновали защитную роль магнитного поля древней Земли.

Тимур Кешелава

Природа электромагнитных волн

Практически всё, что мы знаем о космосе (и микромире), известно нам благодаря электромагнитному излучению, то есть колебаниям электрического и магнитного полей, которые распространяются в вакууме со скоростью света. Собственно, свет — это и есть особый вид электромагнитных волн, воспринимаемый человеческим глазом.

Точное описание электромагнитных волн и их распространения дают уравнения Максвелла. Однако качественно этот процесс можно объяснить без всякой математики. Возьмем покоящийся электрон — почти точечный отрицательный электрический заряд. Вокруг себя он создает электростатическое поле, которое влияет на другие заряды. На отрицательные заряды действует сила отталкивания, на положительные — сила притяжения, причем все эти силы направлены строго по радиусам, идущим от нашего электрона.

С расстоянием влияние электрона на другие заряды ослабевает, но никогда не падает до нуля. Иначе говоря, во всем бесконечном пространстве вокруг себя электрон создает радиальное силовое поле (это верно лишь для электрона, который вечно покоится в одной точке).

Допустим, некая сила (не будем уточнять ее природу) неожиданно нарушила покой электрона и заставила его сдвинуться немного в сторону. Теперь силовые линии должны расходиться из нового центра, куда переместился электрон. Но электрическое поле, окружающее заряд, мгновенно перестроиться не может. На достаточно большом расстоянии силовые линии еще долго будут указывать на первоначальное местоположение заряда. Так будет до тех пор, пока не подойдет волна перестройки электрического поля, которая распространяется со скоростью света. Это и есть электромагнитная волна, а ее скорость есть фундаментальное свойство пространства в нашей Вселенной. Конечно, это описание крайне упрощено, а кое-что в нем даже просто неверно, но оно дает первое впечатление о том, как распространяются электромагнитные волны.

Неверно же в этом описании вот что. Описанный процесс на самом деле не является волной, то есть распространяющимся периодическим колебательным процессом. Распространение у нас есть, а вот колебаний нет. Но этот недостаток очень легко поправить. Заставим ту же силу, которая вывела электрон из первоначального положения, сразу же вернуть его на место. Тогда за первой перестройкой радиального электрического поля сразу последует вторая, восстанавливающая исходное положение дел. Пусть теперь электрон периодически повторяет это движение, и тогда по радиальным силовым линиям электрического поля во все стороны побегут настоящие волны. Эта картина уже много лучше первой. Впрочем, она тоже не вполне верна — волны получаются чисто электрическими, а не электромагнитными.

Тут самое время вспомнить о законе электромагнитной индукции: изменяющееся электрическое поле порождает магнитное, а изменяющееся магнитное — электрическое. Эти два поля как бы сцеплены друг с другом. Как только мы создаем волнообразное изменение электрического поля, так сразу же к нему добавляется и магнитная волна. Разделить эту пару волн невозможно — это единое электромагнитное явление.

Можно и дальше уточнять описание, постепенно избавляясь от неточностей и грубых приближений. Если довести это дело до конца, мы как раз и получим уже упомянутые уравнения Максвелла. Но давайте остановимся на полпути, потому что для нас пока важно лишь качественное понимание вопроса, а все основные моменты уже ясны из нашей модели. Главный из них — независимость распространения электромагнитной волны от ее источника.

В самом деле, волны электрического и магнитного полей, хотя и возникли благодаря колебаниям заряда, но вдали от него распространяются совершенно самостоятельно. Что бы ни случилось с зарядом-источником, сигнал об этом не догонит уходящую электромагнитную волну — ведь он будет распространяться не быстрее света. Это позволяет нам рассматривать электромагнитные волны как самостоятельные физические явления наряду с зарядами, которые их порождают.

Далее: Частота и длина волны

Глава 8. Поле чудес – FIZI4KA

Мы теперь очень хорошо знаем, как устроено вещество. Оно сделано из нейтронов, протонов и электронов. Из нейтронов и протонов собираются атомные ядра. А летающие вокруг ядра электроны образуют атом в сборе, причем количество электронов равно количеству протонов. Если же пару электронов смахнуть с атомной орбиты веником, останется положительно заряженный недоатом – ион.

Из атомов собираются молекулы, причем порой очень сложные – в некоторых молекулах содержатся миллиарды атомов. Ей-богу, не вру! Такой гигантской молекулой является, например, молекула под названием ДНК в человеческом организме. В этой молекуле запрограммирована вся информация о человеке – цвет глаз и волос, рост, характер, склонности, наши сильные и слабые стороны. Человек – штука очень сложная, поэтому и столько «текста». В молекуле ДНК информация записывается с помощью определенного порядка расположения атомов, как в книге с помощью определенного расположения букв. Только «буквы» ДНК – это атомные наборы.

А еще нам теперь известно, что, помимо вещества, сделанного из атомов, в мире существуют некие лучи. Мы также знаем, что по крайней мере часть лучей состоит из частиц, например, нейтронное излучение, а также электронное излучение, которое по-другому еще называют бета-излучением. Такое излучение просто представляет собой поток частиц, летящих в пространстве, то есть обычное вещество. А вот другие лучи сделаны бог знает из чего. Например, солнечные, рентгеновские или гамма-лучи – они из чего состоят?

Мы помним: Ньютон полагал, будто солнечный свет – это поток неизвестных электронейтральных частичек – корпускул. Но ему другие дяденьки возражали: нет, свет – это просто волна, то есть колебание все пронизывающего мирового эфира.

То есть свет – это или струя мелкого «гороха», или волна колебания среды, которая заполняет все пространство вселенной.

А еще что-нибудь в этом мире есть, кроме вещества, непонятных лучей, пространства и времени?

Есть. Поле…

А вот как передается взаимодействие? В макромире, где мы живем, все понятно – шахтер вагонетку толкнул, она поехала. Груз к пружине подвесили, она растянулась. Два бильярдных шара столкнулись с приятным стуком и разлетелись. А если бы не столкнулись, не разлетелись бы. Ведь чтобы передать воздействие на предмет, нужно к нему подойти. Издалека-то разве можно на предмет воздействовать, мы же не колдуны?! Не прикасаясь к вазе, стоящей на столе, ее не сдвинешь. Толкнуть надо! Потом мама спасибо скажет.

Но иногда воздействие передается и на расстоянии. Вы прекрасно это знаете. Если поднести магнит к скрепке, лежащей на столе, она почувствует этот магнит не в момент касания, а раньше – и сама прыгнет на него!

А если потереть мамины янтарные сережки папиным шерстяным носком, янтарь начнет притягивать мелкие бумажки – тоже на расстоянии, еще до касания.

Яблоко, опять же, падает с яблони на землю. Земля его притягивает на расстоянии, и едва оно теряет связь с деревом, как сразу устремляется вниз. Точно так же притягивает Землю Солнце, отчего планета наша вокруг светила вращается. Иначе бы давно улетела в мировое пространство к чертовой матери, и мы все погибли бы от космического холода, что, конечно, совершенно не полезно.

А еще точно так же на расстоянии электроны чувствуют протоны, притягиваясь к ним. И вращаются вокруг ядра атома, словно планетки.

Видите, кругом тела воздействуют друг на друга на расстоянии. Как это возможно? Посредством чего? С помощью какого волшебства?

Когда сталкиваются бильярдные шары, тут все вроде бы понятно – они упругие, непосредственно взаимодействуют со стуком и разлетаются. А вот магнит… Как он действует на расстоянии? Какими такими невидимыми ручками притягивает к себе скрепку? Разве не удивительно – самого предмета в этом месте пространства еще нет, а его влияние уже чувствуется другими предметами!

Вот тут физики и предложили свой вариант ответа. Наверное, есть некое невидимое поле, окружающее магнит, решили они, попав в которое, железки начинают притягиваться. Поле это распространяется вокруг магнита и затухает с расстоянием, его сила постепенно падает до нуля. Поле магнита так и назвали – магнитным. С его помощью и происходит взаимодействие.

И у всякой массы тоже есть свое – гравитационное – поле. У малых масс оно слабенькое, а у большой Земли поле очень сильное, поэтому нас всех к ней притягивает.

И есть еще электрическое поле, которое притягивает бумажки к янтарю и электроны к протонам.

Вот так все решили объяснить физики. Ловко! Взяли и заявили, будто существует некая невидимая и неосязаемая материя, окружающая тела. С этим фокусом физиков мы уже сталкивались, когда говорили о теплороде. Помните, древние физики предположили, будто тепло – это невидимая неосязаемая жидкость, накапливающаяся в телах. И ошиблись! Тепло оказалось просто скоростью колебания частиц тела. Чем активнее барабанят по нашей коже молекулы, из которых состоит тело, тем более горячим оно нам кажется.

Может быть, и с полем эти физики тоже ошиблись?

Если поле реально существует, значит у него есть какие-то свойства, которые можно изучить. И физики стали их изучать, чтобы подтвердить свою догадку. И вскоре путем экспериментов нашли способ это невидимое поле увидеть – косвенным образом, конечно же, – точно так, как мы наблюдаем черные пятна на фотоснимке, оставшиеся от невидимого рентгеновского излучения. То есть мы наблюдаем не сами рентгеновские лучи, а их следы, их проявление.

Чтобы увидеть проявления магнитного поля, надо взять магнит, накрыть его листом бумаги и насыпать сверху крохотные железные опилки. И опилки, чувствующие поле, тут же расположатся в определенном порядке, показав нам устройство поля.

Дальше больше – выяснилось, что магнитное поле взаимодействует с электрическим. И вообще оно чем-то похоже на электрическое. В электричестве есть два заряда – положительный и отрицательный. И у магнита есть два полюса – северный и южный. (Северный обычно рисуют синим, цвета льда, а южный – красным, цвета огня.) Одноименные электрические заряды отталкиваются, а разноименные притягиваются. И у магнитов так: одноименные полюса отталкиваются, а разноименные притягиваются!

Магнитное поле, очерченное железными опилкамиПосмотрите, опилочки словно малюсенькие стрелочки компаса лежат вдоль дугообразных линий. Эти линии назвали силовыми линиями поля. Силовые линии поля словно выходят из северного полюса магнита (N) и, описав дугу, возвращаются в его южный полюс (S). На следующем рисунке эти воображаемые линии нарисованы с условными стрелками.

Вот только электрические заряды можно разделить, накопив на каком-то предмете положительный заряд или отрицательный (если на предмете будет избыток электронов, как на янтаре, который шерстью потерли, он будет отрицательно заряжен, а если недостаток электронов – он будет заряжен положительно). А вот магнитные полюса разделить нельзя! Если мы разрежем магнит на две части посередине, на месте разреза тут же образуются новые полюса, и у нас в руках снова будет два двухполюсных магнита. Не бывает однополюсных магнитов!

Наша планета Земля – большой магнит, у нее есть северный магнитный полюс и южный, и они почти совпадают с географическими полюсами. Маленькие магнитики в виде стрелочек, которые находятся в наших компасах, являются своего рода пробниками земного магнитного поля. Их маленькое тщедушное магнитное полюшко взаимодействует с магнитным полем огромного магнита по имени Земля и поворачивает стрелку компаса синим концом на север. Это очень удобно, можно в лесу и в открытом море ориентироваться.

Ладно, это ясно.

А как магнитное поле взаимодействует с электрическим?

Весьма хитро! Магнитное поле действует только на движущиеся заряды. Если заряд относительно магнита покоится, замер, затаился, никакого взаимодействия нет, они просто не замечают друг друга, как кошка подчеркнуто не замечает неподвижный фантик. Но если фантик тронется, кошка начнет за ним настоящую охоту!.. Так и тут – стоит заряду двинуться, как магнитное поле его тут же «замечает» и начинает хватать и тащить.

Но что такое движущиеся заряды?

Это, например, электрический ток в проводе! Возьмем проводник, то есть, попросту говоря, прямой провод, пропустим через него поток электронов и поместим в магнитное поле. Что получится?

Такой опыт еще в начале XIX века поставил физик Эрстед. XIX век называют веком угля и пара, но это был еще и век покорения электричества. Эрстед, Вольт, Ампер, Фарадей – ученые, чьими именами сегодня названы различные физические единицы (силы тока, напряжения и т. д.) – это все великие имена девятнадцатого века… Открытие Эрстеда было случайным, как и многие другие открытия в науке. Демонстрируя студентам простейшую электрическую схему с батареей, Эрстед замкнул контакты выключателя, пустив по цепи ток, и увидел, как стрелка лежащего рядом компаса дернулась и повернулась перпендикулярно к проводнику.

Опыт Эрстеда. Слева батарейка. По проводу течет ток, под проводом – стрелка компаса. Нет тока – стрелка повернута, как положено – по направлению север-юг. Но стоит пропустить по проводу ток от батареи, как стрелка забывает о магнитном поле Земли и повинуется большей силе – магнитному полю проводника с током

«Между магнетизмом и электричеством есть связь!» – смекнул Эрстед. И дальнейшие опыты другого физика – Фарадея – эту связь не просто подтвердили, она оказалась неразрывной! Движущиеся электрические заряды порождали вокруг себя магнитное поле (на которое и реагировала стрелка компаса), и наоборот – движущийся внутри проволочной катушки магнит порождал в проволоке электрический ток (см. рисунок ниже).

Так были придумали генераторы и электромоторы, друзья мои! Ведь если безостановочно двигать внутри замкнутых проводников магниты, в проводниках будет возникать постоянный электрический ток. На этом принципе Фарадея работают все электростанции: река крутит турбины с магнитами внутри катушек, и по линиям электропередач к потребителям идет ток. А там этот ток используют для освещения или переводят обратно в механическое движение, то есть во вращение токарного станка или, скажем, компрессора холодильника. Это делается по тому же принципу, только в обратном порядке – по принципу Эрстеда бегущий по хитросплетенным проводникам ток приводит в движение магниты, то есть ротор электродвигателя, на которое насажено сверло или еще что-нибудь полезное… Вот я вам и рассказал в предельно упрощенной форме всю суть нашей современной электрической цивилизации.

На схемах все выглядит практически одинаково, но в инженерной реальности все, конечно, гораздо сложнее – появляются угольные щетки токосъемников, сложная намотка проводов и так далее. Нам же главное не ковыряться в железе, а понять основной принцип работы генератора и электромотора: движущийся электрический заряд порождает вокруг себя магнитное поле. Это люди и научились использовать в неизмеримой хитрости своей.

Опыт Фарадея. Ушлый Фарадей совал магнит в деревянную катушку с намотанным проводом и диву давался: сунешь – прибор показывает, что по проволоке пробежал ток, и бежит он, пока магнит движется внутрь катушки. Обратно магнит начинаешь вынимать – стрелка отклоняется в другую сторону, то есть электрический ток течет в другую сторону, но течет он по проводам только пока вынимаешь магнит, то бишь пока магнитное поле вокруг проводов движется. А если магнит неподвижен – тока нету. Такие дела…Вот вам принципиальная схема генератора постоянного тока: крутишь внутри рамки магнит – получаешь ток. Не крутишь – не получаешь.

Вы поняли? Еще раз. Движение зарядов по проводнику в опыте Эрстеда порождает магнитное поле, которое взаимодействует с магнитным полем стрелки компаса. И поворачивает ее. То есть движущееся электрическое поле порождает поле магнитное!

А движущееся магнитное поле в опыте Фарадея с катушкой порождает электрическое поле. Которое, взаимодействуя с электрическим полем электронов, толкает их по проводнику.

Одно поле порождает своим движением другое!

А вот вам принципиальная схема электромотора. Подаешь на рамку ток – начинает крутиться магнит. Не подаешь – не начинает.

Продолжив эксперименты Эрстеда и Фарадея, наука постепенно поняла, что магнетизм и электричество есть одна и та же сущность, которую назвали электромагнитным полем. Просто в разных экспериментах мы видим разные ипостаси, то есть проявления этой физической сущности: у постоянного магнита мы видим только магнитную составляющую электромагнитного поля, а у одинокого неподвижного зарядика – только электрическую его составляющую.

Это как орел и решка у монеты. Орел и решка вроде бы разные, но это всего лишь две стороны одной реальности по имени монета. Так и магнетизм с электричеством – две стороны одной реальности по имени электромагнитное поле.

Вот, например, на этой картинке изображено магнитное поле проволоки с током. Оно – круговое. Силовые линии этого поля замкнуты. Это подтверждают и металлические опилки, рассыпанные на бумажке, которую проткнули проводником (рисунок ниже).

Но что такое поле по сути своей, господа и дамы, мальчики и девочки? Из чего оно сделано?

Вопрос, конечно, интересный. И физиков он, разумеется, всегда занимал. Но физики народ выдержанный. Если они не могут пока ответить на какой-то вопрос – например, из чего сделан предмет, – они на время откладывают этот вопрос в сторону и спокойно изучают свойства этого предмета. Так, например, до сих пор никто не знает, что такое заряд по сути своей. Но это же не мешает нам пользоваться розеткой! Потому что физики прекрасно изучили свойства этой таинственной сущности. И может, когда-нибудь с более глубоких позиций поймут, что такое заряд. Но для того, чтобы пользоваться чем-либо, до таких глубин добираться не нужно, вы же пользуетесь телевизором, не зная, как он устроен внутри. Просто усвоили, что если нажать такую-то кнопку – случится то-то и то-то. Именно так и ведет себя наука по отношению к миру. Только она еще пользуется математикой для описания.

Еще вопрос. Если магнитное поле порождается движущимся электрическим зарядом и наоборот, то чем же порождается магнитное поле постоянного магнита? Ну, в самом деле, почему вот эта вот железка, тупо лежащая на столе, все время магнитит? Магнитное поле должно быть порождено движущимися зарядами! А где там они, в куске железки?

Есть там зарядики! Это электроны, движущиеся по своим орбитам! Просто в магните атомы расположены в таком порядке, что электротоки синхронно крутящихся электронов как бы складывают свою силу, образуя единое магнитное поле.

Упорядочивание расположения атомов в железке и называется намагничиванием.

Если магнитные поля электрончиков расположены хаотично, как это бывает во всяком другом веществе, то все их магнитные поля компенсируются, и никакими магнитными свойствами в среднем вещество не обладает. Но в некоторых веществах атомы можно развернуть и расположить в определенном порядке. Тогда магнитная сила их электронов начинает складываться, и мы имеем магнит.

Впервые эту идею о существовании в куске магнита неких элементарных токов высказал гениальный французский физик Ампер. До него люди все искали особые магнитные заряды – наподобие зарядов электрических. И они были по-своему правы: на уровне микромира электрическое поле порождается электрическими зарядами, присущими микрочастицам. Они и есть носители поля, которое вокруг себя распространяют. Значит, магнитное поле тоже должно порождаться особыми магнитными частицами!.. Но Ампер сказал: да нету их, не ищите, магнитное поле порождается какими-то элементарными токами внутри самого металла!.. Это была гениальная догадка, ведь об электронах тогда еще ничего не знали, а планетная теория атома была разработана только через сто лет. На сто лет опередил свое время гениальный Ампер!

Ну, а раз никаких отдельных магнитных зарядов нет, а есть лишь заряды электрические, которые просто движутся и порождают вокруг магнитное поле…. Если эти зарядики по-разному себя проявляют – то в виде электрических явлений, то в виде магнитных, – значит, электромагнитное поле действительно едино. И бессмысленно отделять орла от решки, это невозможно.

По-моему, все ясно. Или нет?

А чего тут неясного? Лежит магнит на столе. Притягивает железки, током не бьется. Мы видим только одну ипостась электромагнитного поля – магнитную.

Висит на ниточке электрический заряд, например, заряженный металлический шар. Гвозди и скрепки он не притягивает, но если к нему протянуть шаловливый пальчик – с треском проскочит искра и по пальчику шарахнет электрический разряд. Никаких тебе магнитных проявлений, одни электрические.

Теперь если мы начнем двигать магнит, то увидим проявления электрического поля (которое сможем засечь, например, по его действию на пробный заряд).

А если начнем двигать заряд на ниточке, то сможем засечь проявление вокруг него магнитного поля (по его действию на магнитное поле стрелки компаса, например).

Вы очень умный! И вы можете, хитро прищурившись, сказать: «Но ведь движение – штука относительная! Может двигаться заряд, а могу двигаться я сам относительно заряда. Или, допустим, еще круче – я стою напротив заряда, и он по отношению ко мне неподвижен и никаких магнитных свойств не проявляет. А мой приятель Петя начнет вокруг этого заряда носиться, как полоумный. Это означает, что заряд будет относительно Пети двигаться. Но движущийся заряд должен порождать магнитное поле. При этом относительно меня заряд неподвижен, а относительно безумного Пети – очень даже подвижен! Так что же происходит на самом деле – порождает висящий заряд магнитное поле или нет?»

А все зависит от точки зрения! Вы, стоящий неподвижно, не заметите никаких проявлений магнитного поля. А безумный Петя, если на бегу проведет эксперименты, заметит магнетизм своими приборами.

Вот вам простая аналогия. Если вы встанете так, чтобы толстое дерево загораживало вам солнце, вы солнца не увидите. А вот бегающий Петя, которому дерево солнце не загораживает, его увидит.

Результат эксперимента зависит от условий его проведения, от точки зрения экспериментатора. В науке такую точку зрения называют системой отсчета. Если вы сидите в движущемся поезде, то в вашей системе отсчета поезд неподвижен, поскольку вы движетесь вместе с ним с той же скоростью. А вот относительно системы отсчета Пети, который стоит на полустанке, и поезд, и вы очень даже подвижны и со свистом проноситесь мимо, оставив Петю со взъерошенными волосами. А нельзя стоять так близко от электрички!

В общем, электромагнитное поле есть единая природная реальность. Просто можно найти такую точку зрения для наблюдения за ней, что вам будет видна только одна грань этой реальности – магнитная либо электрическая.

К интересным делам мы сейчас переходим! Ох, к интересным!..

Смотрите. Вот мы толкнули магнит, висящий на веревочке. Он начал движение. А движущееся магнитное поле порождает рядышком поле электрическое. Которое, естественно, тоже движется (вслед за магнитом). Но движущееся электрическое поле должно, в свою очередь, порождать рядышком магнитное поле! А магнитное – снова неподалеку порождает электрическое. И так далее. Что это? Электромагнитная волна побежала вокруг во все стороны!

Вокруг силовых линий магнитного поля закручиваются силовые линии поля электрического, а вокруг тех – снова магнитного и так далее. А теперь мы раз – и остановили магнит! Генерация волны прекратилась. Но те волны, которые уже были сгенерированы ранее и успели убежать, все еще кругами разбегаются от нас в мировое пространство, постепенно затухая.

Распространение электромагнитной волны.

Можно и по-другому поступить – начать трясти или колебать электрический заряд. Тогда в пространстве вокруг него тоже начнет распространяться волна электромагнитных возмущений. Качающийся заряд колеблет вокруг себя поле совершенно точно так же, как дрожащая струна колеблет воздух, периодически толкая его вокруг себя. При этом мы слышим звук струны.

Звуки – это волны в воздухе, то есть периодически налетающие на нас уплотнения и разрежения воздуха. Мы этих периодических сгущений и разрежений прозрачного воздуха не видим. Но слышим. А электромагнитную волну можем засечь приборно.

И раз уж у нас речь зашла о разных волнах, им придется уделить некоторое внимание.

Волны – это круто!

Глава 8. Поле чудес

5 (100%) 5 votes

Урок 5. электромагнитная индукция — Физика — 11 класс

Физика, 11 кл

Урок 5. Электромагнитная индукция

Перечень вопросов, рассматриваемых на этом уроке

  1. Знакомство с явлением электромагнитной индукции.
  2. Изучение законов, описывающих явление электромагнитной индукции.
  3. Решение задач, практическое использование электромагнитной индукции.

Глоссарий по теме

Явление электромагнитной индукции заключается в возникновении электрического тока в проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром, меняется со временем. Магнитный поток Ф – графически величина пропорциональная числу линий магнитной индукции, пронизывающих поверхность площадью S.

Единица измерения магнитного потока: магнитный поток в один вебер создаётся однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м2, расположенную перпендикулярно вектору магнитной индукции.

Правило Ленца: возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.

Сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром.

ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

Основная и дополнительная литература по теме:

Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017стр. 107-112

Рымкевич А.П. Сборник задач по физике. 10-11класс. — М.: Дрофа,2009. Стр. 28-29

ЕГЭ 2017. Физика. 1000 задач с ответами и решениями. Демидова М.Ю., Грибов В.А., Гиголо А.И. М.: Экзамен, 2017.

Теоретический материал для самостоятельного изучения

Электрические и магнитные поля создаются одними и теми же источниками – электрическими зарядами. Отсюда естественнее было предположить, что между этими полями имеется связь. Экспериментально это предположение было доказано в 1831 г. английским учёным М. Фарадеем, открывшим явление электромагнитной индукции. Все опыты Фарадея по изучению явления электромагнитной индукции объединял один признак – магнитный поток пронизывающий замкнутый контур проводника менялся. При всяком изменении магнитного потока через замкнутый контур, в нем возникал индукционный ток.

Сила индукционного тока пропорциональна ЭДС индукции.

Направление индукционного тока менялось в зависимости от направления движения магнита относительно катушки. Это направление тока, можно найти используя правило Ленца.

М. Фарадеем экспериментально было установлено, что при изменении магнитного потока, в проводящем контуре возникает электродвижущая сила индукции, которая равна скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Знак минус в этой формуле отражает правило Ленца.

Закон электромагнитной индукции формулируется для ЭДС индукции.

ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

ЭДС индукции в движущихся проводниках:

Ɛ_i = Вlvsinα.

Джеймс Максвелл в 1860 году сделал вывод что переменное со временем магнитное поле всегда порождает вихревое электрическое поле, а переменное во времени электрическое поле в свою очередь порождает магнитное поле. Следовательно, существует единая теория электромагнитного поля.

Разбор типового контрольного задания

1.

На рисунке изображен момент демонстрационного эксперимента по проверке правила Ленца, когда все предметы неподвижны. Южный полюс магнита находится внутри сплошного металлического кольца, но не касается его. Коромысло с металлическими кольцами может свободно вращаться вокруг вертикальной опоры. При выдвижении магнита из кольца влево кольцо будет

1) оставаться неподвижным

2) перемещаться вправо

3) совершать колебания

4) перемещаться вслед за магнитом

При выдвижении магнита из кольца влево магнитный поток от магнита через кольцо будет уменьшаться. В замкнутом кольце возникает индукционный ток. Направление этого тока по правилу Ленца такое, что создаваемое им магнитное поле препятствует изменению магнитного потока. Так как коромысло вокруг вертикальной оси может свободно вращаться, и магнитное поле магнита неоднородно, коромысло под действием сил Ампера начнёт двигаться так, чтобы препятствовать изменению магнитного потока. Следовательно, коромысло начнёт перемещаться вслед за магнитом.

Ответ:4) перемещаться вслед за магнитом.

2.

Проводник МN с длиной активной части 1м и сопротивлением 2 Ом находится в однородном магнитном поле индукцией 0,2 Тл. Проводник подключён к источнику тока с ЭДС 4 В (внутренним сопротивлением источника и сопротивлением подводящих проводников пренебречь). Какова сила тока в проводнике, если:

№1 проводник покоится;

№2 проводник движется в право со скоростью 6 м/с.

Дано:

ℓ= 1м

R = 2 Ом

В = 0,2 Тл

Ɛ = 4 В

I =?

Решение:

№1: Ток в неподвижном проводнике течёт от N к М

v = 0; Закон Ома для полной цепи I = Ɛ/R = 4В/2Ом = 2А

№2: Если проводник движется в право со скоростью 6 м/с, то по правилу правой руки индукционный ток потечёт от точки N к точке М:

Ответ: №1 2А

№2 2,6А

Физика 9класс Магнитное поле. — физика, презентации

Муниципальное автономное общеобразовательное учреждение

«Лицей № 7» г. Бердск

Магнитное поле

9 класс

Учитель физики

И.В.Торопчина

Лицей №7, г. Бердск

Магнитное поле

Магнитное поле порождается электрическим током.

Электрический ток — это направленное движение заряженных частиц. Следовательно, магнитное поле создаётся движущимися заряженными частицами, как положительными, так и отрицательными.

Анри Ампер (20.01.1775-10.06.1836)

Знаменитый французский физик, математик и естествоиспытатель, член Парижской Академии наук. Он создал первую теорию, которая выражала связь электрических и магнитных явлений. Амперу принадлежит гипотеза о природе магнетизма, он ввел в физику понятие «электрический ток». Джеймс Максвелл назвал Ампера «Ньютоном электричества».

Гипотеза Ампера

  • В атомах и молекулах вещества в результате движения электронов возникают кольцевые токи.
  • В постоянных магнитах эти элементарные кольцевые токи ориентированы одинаково. Магнитные поля, образующиеся вокруг каждого такого тока, имеют одинаковые направления, усиливают друг друга, создавая поле внутри и вокруг магнита

Магнитное поле:

  • Порождается движущимися заряженными частицами (электрическим током).
  • Обнаруживается по действию на ток.

Магнитное поле — это особая материя вокруг электрического тока, где распространяются его магнитные свойства.

Ганс Кристиан Эрстед (14.08.1977- 9.03.1851) — датский физик, иностранный почетный член Петербургской АН (1830). Труды по электричеству, акустике, молекулярной физике. Открыл (1820) магнитное действие электрического тока.

Опыт Эрстеда (1820г.)

Магнитная стрелка в магнитном поле тока отклоняется определенным образом.

Магнитные линии

Магнитные линии — это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитном поле.

В любой точке магнитной линии касательная к ней совпадает с осью магнитной стрелки, помещённой в эту точку.

Магнитные линии

Магнитные линии являются замкнутыми. Например, картина магнитных линий прямого проводника с током представляет собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику.

Направление магнитных линий

За направление магнитной линии в какой-либо её точке условно принимают направление, которое указывает северный полюс магнитной стрелки, помещённой в эту точку.

Магнитные линии

Магнитные линии ближе друг к другу в тех местах, где магнитное поле сильнее.

По картине магнитных линий можно судить не только о направлении, но и о величине магнитного поля .

Картина магнитного поля постоянного полосового магнита

Магнитные линии выходят из северного полюса магнита и входят в южный. Внутри магнита они направлены от южного полюса к северному.

Магнитные линии магнитного поля, созданного прямолинейным проводником с током.

Магнитные линии поля, созданного прямолинейным проводником

с током, представляют собой концентрические окружности,

расстояние между которыми увеличивается по мере удаления от

проводника.

Неоднородное магнитное поле

  • Неоднородное магнитное поле, т.е. поле, в любой точке которого, сила действия на магнитную стрелку может быть различной как по модулю, так и по направлению
  • Линии неоднородного магнитного поля искривлены, их густота меняется от точки к точке.

Однородное магнитное поле

Однородное магнитное поле, т. е. поле, в любой точке которого, сила действия на магнитную стрелку одинакова по модулю и направлению.

Магнитные линии однородного магнитного поля параллельны друг другу и расположены с одинаковой густотой.

Магнитное поле соленоида

Соленоид — проволочная цилиндрическая катушка с током.

Поле внутри соленоида можно считать

однородным, если длина соленоида

значительно больше его диаметра (вне

соленоида поле неоднородно, его

магнитные линии расположены

примерно так же, как у полосового

магнита).

Однородным является поле внутри постоянного

полосового магнита в центральной его части.

Линии магнитного поля

Линии магнитного поля, направленные перпендикулярно плоскости чертежа:

а — от наблюдателя;

б — к наблюдателю

Подумай и ответь!

1.Магнитное поле существует…

А. только вокруг движущихся электронов;

Б. только вокруг движущихся положительных ионов;

В.только вокруг движущихся отрицательных ионов;

Г. вокруг всех движущихся заряженных частиц.

2.Выберите верное(-ые) утверждение(-я):

А. магнитное поле можно обнаружить по действию на магнитную стрелку;

Б. магнитное поле можно обнаружить по действию на движущийся заряд;

В. магнитное поле можно обнаружить по действию на проводник с током.

Подумай и ответь!

3.Направление магнитных линий в данной точке пространства совпадает с направлением:

А. силы, действующей на неподвижный заряд

в этой точке;

Б.силы, действующей на движущийся заряд в

этой точке;

В. северного полюса магнитной стрелки,

помещенной в эту точку;

Г. южного полюса магнитной стрелки,

помещенной в эту точку.

Подумай и ответь!

4.Выберите верное(-ые) утверждение(-я): А. магнитные линии замкнуты; Б. магнитные линии гуще располагаются в

тех областях, где магнитное поле сильнее; В. направление силовых линий совпадает с

направлением северного полюса магнитной

стрелки, помещенной в изучаемую точку.

Подумай и ответь!

5.Как выглядят магнитные линии однородного магнитного поля?

А. Магнитные линии параллельны друг другу,

расположены с одинаковой частотой;

Б. Магнитные линии параллельны друг другу,

расположены на разных расстояниях друг от

друга;

В. Магнитные линии искривлены, их густота

меняется от точки к точке;

Г. Магнитные линии разомкнуты.

Домашнее задание

§34

Упр.31

Спасибо за внимание!

Магнитное поле порождается электрическим током (движущимися зарядами)

  1. Магнитное поле обнаруживается по действию на электрический ток (движущиеся заряды).

Подобно электрическому полю, магнитное поле существует реально, независимо от нас, от наших знаний о нем.

Для изучения магнитного поля часто используют замкнутый контур малых размеров (проволочный каркас). Подводящие ток проводники сплетают вместе, чтобы результирующая сила, действующая со стороны магнитного поля на эти проводники, равна нулю.

Рамка с током

Магнитное поле создается не только электрическим током, но и постоянными магнитами. Можно ли считать, что природа поля вокруг магнита и вокруг проводника с током одинаковы? Почему?

Французский физик Андре Мари Ампер ответил на данный вопрос следующим образом: согласно теории Ампера внутри магнитов существуют молекулярные токи (микротоки), подобные току в замкнутой цепи. Эти токи создаются движением электронов в атомах. Т.е., вокруг любой молекулы (атома) должно быть магнитное поле. Итак, всякое вещество должно обладать какими-либо магнитными свойствами.

Например, железо. Его атомы имеют довольно сильные поля, и, если атомы расположены, упорядочено, так что их поля взаимно усиливаются, вокруг железного тела образуется магнитное поле. Такие тела называются магнитами. Тело, изготовленное из специальных сортов стали, сохраняющее свою намагниченность после удаления из внешнего поля, называются постоянным магнитом. Маленький магнитик удлиненной формы, помещенный на острие, называется магнитной стрелкой.

Каждый магнит имеет 2 полюса, которые нельзя разделить – северный N и южный S.

Одноименные полюсы магнитов отталкиваются, а разноименные притягиваются.

Наглядную картинку магнитного поля можно получить, если построить линии магнитной индукции.

Линией индукции магнитного поля называют такую линию, по касательной, к каждой точке которой располагаются магнитные стрелки.

I Линии индукции считают направленными туда, куда

указывает северные полюсы стрелок.

Свойства линий индукции магнитного поля:

  1. через каждую точку пространства проходит только одна линия индукции, т.е. линии индукции нигде не пересекаются друг с другом.

  2. линии индукции магнитного поля замкнуты, т.е. не имеют ни начала, ни конца и всегда охватывают проводник с током.

Поле, линии индукции которого всегда замкнуты, называется вихревым.

Магнитное поле – вихревое поле.

Работа таких полей по замкнутому контуру не равна нулю.

Магнитное поле прямолинейного тока имеет вид концентрических окружностей в плоскостях перпендикулярных к проводнику.

Направление линий индукции магнитного поля определяется правилом правого винта (буравчика):

+ I

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий индукции магнитного поля.

Магнитное поле кругового тока:

Магнитное поле соленоида (катушки с током):

Внутри соленоида линии индукции параллельны, т.е. магнитное поле внутри соленоида можно считать однородным.

— + + —

Магнитное поле — все статьи и новости

Магнитное поле — это силовое поле, действующее на движущиеся электрические заряды и тела, обладающие магнитным моментом. Это одна из пяти известных нам сил, управляющих Вселенной от микромасштабов до масштабов межгалактических. С тех пор как Джеймс Клерк Максвелл связал в своих знаменитых пяти уравнениях электродинамики электричество и магнетизм, объединение всех пяти сил стало для физиков одной из главных задач. В так называемой Стандартной модели им удалось объединить слабое взаимодействие с электромагнитным.С Великим объединением, включающим в силовой союз и сильное взаимодействие, пока не получается, но уже в наличии прогресс в виде множества моделей. Вопрос за малым: каким-то образом, объединить все это еще и с гравитацией.

Похоже, что магнитное поле — непременное условие для существования жизни. Оно представляет собой единственную защиту от убивающей радиации Солнца. По одной из гипотез истории Марса, у него в далекой древности были моря и воздух, но потом что-то сильно его ударило и лишило магнитного поля.Атмосферу снесло солнечным ветром, океан, тогда существовавший, усох, и сегодня он непригоден для жизни.

О магнитах и ​​их силе люди, наверное, знали, чуть ли не с момента появления у них разума. Самый первый компас — сынань — был изобретен в Китае еще в третьем веке до н.э. Однако «по-настоящему» магнитное поле люди начали изучать лишь в Средние века. В 1269 году французский ученый Петр Перегрин (рыцарь Пьер из Мерикура) отметил магнитное поле на поверхности сферического магнита, применяя стальные иглы, и определил, что получающиеся линии магнитного поля пересекались в двух точках, которые он назвал «полюсами» — по аналогии с полюсами Земли . Почти три столетия спустя Уильям Гилберт Колчестер, заложивший основы магнетизма как науки, впервые определенно заявлено, что сама Земля является магнитом. В XVIII-XIX веках ученые доказали, что у магнита должно быть два полюса, а также то, что электрический ток может порождать магнитное поле и наоборот. Ампер, Фарадей, Кельвин и Максвелл завершили классическое описание электромагнитного поля.

Изображение: NASA

Что такое магнитное поле Земли

Магнитное поле Земли или геомагнитное поле — магнитное поле, генерируемое внутриземными источниками.Предмет изучения геомагнетизма. Появилось 4,2 млрд лет назад

Магнитное поле Земли похоже на магнитное поле гигантского постоянного магнита, наклоненного на угол в 11 градусов к оси ее вращения. Но здесь существует нюанс, суть которого заключается в том, что температура железного ядра составляет всего 770 ° C, тогда как температура железного ядра Земли значительно выше, и только на его поверхности составляет порядка 6000 ° C. При такой температуре наш магнит никак не сумел бы удержать свою намагниченность.Значит, поскольку ядро ​​нашей планеты не магнитное, земной магнетизм имеет иную природу. Итак, откуда же берется магнитное поле Земли?

Как известно, магнитные поля окружают собой электрические токи, поэтому есть все основания предполагать, что циркулирующие в расплавленном металлическом ядре токи — это и есть источник земного магнитного поля. Форма магнитного поля Земли действительно подобна магнитному полю витка с током.

Величина измеренного на поверхности Земли магнитного поля — около половины Гаусса, при этом силовые линии как-бы выходят из планеты со стороны южного полюса и входят в ее северный полюс.При этом по всей поверхности планеты магнитная индукция изменяется от 0,3 до 0,6 Гаусс.

Практически наличие у Земли магнитного поля объясняется динамо-эффектом, развивающимся от циркулирующего в ее ядре тока, но это магнитное поле не является всегда постоянным по направлению. Образцы скальных пород, взятые в одних и тех же местах, но имеющие различный возраст, отличаются намагниченности. Геологи сообщают, что за последние 71 миллион лет магнитное поле Земли разворачивалось 171 раз!

Хотя детально динамо-эффект не изучен, вращение Земли определенно играет важную роль в генерации токов, которые, как головное устройство, магнитные поля Земли.

Зонд «Mariner 2», исследовавший Венеру, обнаружил, что у Венеры такого магнитного поля нет, хотя в ее ядре, как и в ядре Земли, содержится достаточно железа.

Разгадка состоит в том, что период вращения Венеры вокруг своей оси равен 243 дня на Земле, то есть динамо-генератор Венеры вращается в 243 раза медленнее, а этого не достаточно, чтобы произвести реальный динамо-эффект.

Взаимодействуя с частичками солнечного ветра, магнитное поле Земли порождает условия для возникновения полюсов так называемых полярных сияний.

Северная сторона стрелки компаса — это магнитный северный полюс, который всегда ориентируется по направлению к географическому северному полюсу, практически являющемуся магнитным южным полюсом. Ведь, как известно, противоположные магнитные полюса взаимно притягиваются.

Тем не менее, простой вопрос: «как Земля получает свое магнитное поле?» — до сих пор не имеет однозначного ответа. Понятно, что генерация магнитного поля связана с вращением планеты вокруг своей оси, потому что Венера с подобным составом ядра, но вращающимся в 243 раза медленнее, не имеет измеримого магнитного поля.

Кажется правдоподобным, что от вращения жидкости металлического ядра, создающего вращающуюся поверхность этого ядра, возникает вращающегося проводника, создающего динамо-эффект и работающего подобно электрическому генератору.

Конвекция в жидкости наружной части приводит к ее циркуляции по отношению к Земле. Это значит, что электропроводящий материал перемещается относительно магнитного поля. Если он оказывается заряжен благодаря трению между слоями в ядре, то вполне возможен эффект витка с током.Такой ток вполне в состоянии поддерживать магнитное поле Земли. Масштабные компьютерные модели подтверждают реальность теории данной.

В 50-е годы, в стратегии «холодной войны», суда ВМС США буксировали чувствительные магнитометры по дну океана, в то время они искали способ обнаружения советских подводных лодок. В ходе наблюдения наблюдений источник Земли колеблется в пределах 10% по отношению к магнетизму непосредственно морского дна, имевших противоположное направление намагниченности.Получилась картина разворотов, произошедшая до 4 миллионов лет назад, это было подсчитано калий-аргоновым археологическим методом.

Ранее ЭлектроВести писали, что страны мира в 2018 году исчерпали возобновляемые ресурсы, который планета может воспроизвести за год, уже к 1 августа — чем когда-либо ранее, говорится в сообщении Всемирного фонда дикой природы (WWF).

По материалам: electrik.info.

(PDF) Электромагнитная гравитация Часть 3.Электромагнитное поле

68

Литература

1. Пакулин В.Н. Структура поля и вещества. СПб, НТФ «Истра», 2007.

2. Дж. К. Максвелл, Динамическая теория электромагнитного поля, часть IY.

Избранные сочинения по теории электромагнитного поля. ГИТТЛ, М., 1952.

3. Максвелл Джеймс К., Трактат об электричестве и магнетизме в 2-х томах.

Изд. Наука, Москва, 1992.

4. Фейнман Р., Р. Лейтон, М. Сэндс. Фейнмановские лекции по физике.Том

6. Изд. «Мир», М., 1966, с.294.

5. Пакулин Валерий. Структура материи. Вихревая модель микромира. ISBN 978-5-

7-27-8 НИФ «ИСТРА», Санкт-Петербург, 2010.

6. Пакулин В.Н., Развитие материи. Вихревая модель микромира, НПО

«Стратегия будущего», ISBN 978-5-

7-49-2, 120 гр., СПб, 2011.

7. Пакулин Валерий. Структура материи. Вихревая модель гравитации. ISBN 978-3-

659-49678-3.Lambert Academic Publishing, Ger., 2013.

8. Пакулин В.Н., Структура материи. Вихревая модель микромира. Филосо-

фия и космология. ISSN2307-3705. Международное философско-космоло-

гическое общество. Киев, 2014.

9. Пакулин В.Н. Структура материи. ISBN 978-3-659-66577-6. Lambert Ac-

demic Publishing, 2014.

10. Пакулин В.Н. Структура поля и вещества. М., Берлин: Директ-Медиа, 2017,

209, ISBN 978-5-4475-8892-2.Книга выложена на сайте http://gravity.spb.ru

11. Фейнман Р., Р. Лейтон, М. Сэндс. Фейнмановские лекции по физике. Том

5. Электричество и магнетизм, с.289. Изд. «Мир», М., 1966.

12. Пакулин В.Н. Новая физика. Часть 1. Образование поля и вещества.

Структура частиц. ISBN 978-3-330-05604-6, Lambert Acad. Издательство, 2018.

13. Пакулин В.Н. Новая физика. Часть 2. Фундаментальные взаимодействия.

ISBN 978-613-9-57749-1, Lambert Academic Publishing, 2018.

14. Л.Д. Ландау и Е.М. Лифшиц. Теория поля, изд. 3, ГИФМЛ, М., 1960, с.195.

15. Патент США №725605 от 14.04.1903 г.

16. «Пионер-радиоинженер высказывает свое мнение о власти», New York Herald Tribune,

11 сентября 1932 г.

17. Патент США № 6,486,846 — EH-антенна, 2002 г.

учёные рассказали о необычном источнике, который подпитывает магнитное поле Земли

Новое открытие заставляет пересмотреть механизмы возникновения геомагнитного поля и усомниться в истории смены магнитных полюсов Земли.Речь идёт о том, что в формировании магнитного щита нашей планеты участвует её мантия. Такой вывод сделан в научной статье, опубликованной в журнале Nature.

Напним, что магнитное поле Земли защищает всё живое от губительного потока космической радиации, атмосфера — от «сдувания» солнечным ветром. Между тем временем от времени магнитные полюса Земли меняются местами, и во время этого «переворота» магнитный щит слабеет.

Когда это случится в следующий раз? Как долго продлится период уязвимости? Насколько ослабеет защита? Чтобы обоснованно ответить на эти вопросы, как можно точнее представить себе все факторы, определяющие наличие геомагнитного поля и влияющие на него.

, как известно, электрическое ядро ​​и кольцевые токи в нём играет, разумеется, электрическое ядро ​​(с XIX века, что электрический ток порождает магнитное поле). Свою лепту вносит также токи в верхних слоях атмосферы (ионосфере). Но не следует сбрасывать со счетов и ферромагнитные породы в составе нашей планеты.

Напомним, что ферромагнетики — это особый класс материалов. Они значительно усиливают магнитное поле, в которое погружены. Поэтому, например, в электромагнитах присутствуют железные сердечники (железо — классический ферромагнетик).Кроме того, эти вещества сохраняют намагниченность, даже если вызвавшее ее поле уже исчезло. Из материалов с очень хорошей «памятью» делают постоянные магниты.

В земной коре ферромагнетики, безусловно, есть. А вот есть ли они в мантии?

Ещё недавно геофизики считали, что нет. Дело в том, что у каждого ферромагнетика есть критическая температура, выше которой он теряет свои ферромагнитные свойства. Эксперты предполагали, что вещество мантии слишком сильно разогрето, чтобы работать магнитом. Слой, составляющий почти 70% массы Земли, объявлялся «магнитно мёртвым».

Современные экспериментальные данные о том, сохраняют ли те или иные другие породы, получено не было. Это связано с тем, что условия мантии не так-то легко воссоздать.

Учёные имитировали условия, мантии и методы, которые гематит при этом сохраняют магнитные свойства.

Авторы нового исследования решили закрыть этот пробел. Их интересовало, сохраняются ли ферромагнетики в литосферных плитах, которые погружаются в глубину Земли в океанических жёлобах (мы рассказывали об этом процессе).

Из теоретических соображений исследователей следовало, что единственными материалами, имеющими смысл экспериментировать, являются оксиды железа. Для всех остальных ферромагнитных компонентов земной коры в мантии заведомо слишком жарко.

Самая распространённая форма оксида железа в литосферных плитах, погрузившаяся на глубине 300–600 километров (верхняя мантия и переходная зона между верхней и нижней мантией), — это гематит. Основу этого минерала составляет соединение Fe 2 O 3 .К слову, он также известен как красный железняк, и это одна из главных железных руд.

Именно этот минерал исследовали геофизики. Они сжимали его в алмазных наковальнях, подвергая давлению до 900 тысяч атмосфер. Одновременно сквозь прозрачные наковальни материал нагревали лазерным лучом, доводя его температуру до отметки выше 1000 ° C. Одновременно измерялись магнитные свойства вещества.

К удивлению учёных, оказалось, что гематит остаётся ферромагнетиком до температуры 925 ° C.Именно такие условия царят в «утонувших» плитах под частью Тихого океана.

«Эти новые знания о мантии Земли и сильного магнетизма в западной части Тихого океана могут пролить свет на любые наблюдения магнитного поля Земли», — говорит первый автор статьи Илья Купенко (Илья Купенко) из Мюнстерского университета в Германии.

Дело в том, что именно в этой части земного шара геофизики наблюдают магнитные аномалии. Ранее они интерпретировались как маршрут одной из былых миграций магнитного полюса Земли.

Теперь еленилось, что его путешествие может быть ни при чём. Магнитный след могли оставить гематиты литосферных плит, погрузившихся в мантию. Если это предположение подтвердится, историю инверсий (переворотов) магнитного поля планеты придётся пересматривать.

«Теперь мы знаем, что в мантии Земли есть магнитоупорядоченные материалы, и это должно учитываться при любом будущем изучении магнитного поля Земли и движения [его] полюсов», — резюмирует соавтор статьи Леонид Дубровинский (Леонид Дубровинский) из Байройтского университета, также в Германии .

Эти знания пригодятся и планетологам, изучающим, например, магнитное поле Марса, а также планирующим сделать его более пригодным для жизни землян.

Напомним, что ранее «Вести.Наука» (nauka.vesti.ru) писали о возрасте геомагнитного поля, а также о том, что «невозможные» вещества могут усиливать магнитные поля суперземель.

Природа электромагнитных волн

Известно, что мы знаем о космосе (и микромире), нам благодаря электромагнитному излучению, которое есть колебаниям электрического и магнитного полей, которые распространяются в вакууме со скоростью света.Собственно, свет — это и есть особый вид электромагнитных волн, воспринимаемый человеческим глазом.

Точное описание электромагнитных волн и их распространение уравнения Максвелла. Однако качественно этот процесс можно объяснить без всякой математики. Возьмем покоящийся электрон — почти точечный отрицательный электрический заряд. Вокруг себя он электростатическое поле, которое влияет на другие заряды. На отрицательные заряды действует сила отталкивания, на положительные силы притяжения, причем все эти силы действуют строго по радиусам, идущим от нашего электрона.С расстояниями влияние электрона на другие заряды ослабевает, но никогда не падает до нуля. Радиальное силовое поле в одной точке.

Допустим, некая сила (не будем уточнять ее природу) неожиданно нарушила покой электрона и заставила его сдвинуться немного в сторону. Теперь силовые линии должны расходиться из нового центра, куда переместился электрон. Но электрическое поле, окружающее заряд, мгновенно перестроиться не может.На достаточно большом расстоянии силовые линии еще долго будут указывать на первоначальное местоположение заряда. Так будет до тех пор, пока не подойдет волна перестройки электрического поля, которая распространяется со скоростью света. Это и есть электромагнитная волна, а ее скорость есть фундаментальное свойство пространства в нашей Вселенной. Конечно, это описание крайне упрощено, но оно дает первое впечатление о том, как распространяются электромагнитные волны.

Неверно же в этом описании вот что. Описанный процесс на самом деле не является волной, то есть распространяющимся периодическим колебательным процессом. Распространение у нас есть, а вот колебания нет. Но этот недостаток очень легко поправить. Заставим ту же силу, которая вывела электрон из первоначального положения, сразу же вернуть его на место. Тогда за первой перестройкой радиального электрического поля сразу последует вторая, восстанавливающая исходное положение дел. Пусть теперь электрон периодически повторяет это движение, и тогда по радиальным силовым линиям электрического поля во все стороны побегут настоящие волны.Эта картина уже много лучше первой. Впрочем, она тоже не вполне верна — волны получаются чисто электрическими, а не электромагнитными.

Тут самое вспомнить о законе электромагнитной индукции: изменяющееся электрическое поле порождает магнитное, изменяющееся магнитное — электрическое. Эти два поля как бы сцеплены друг с другом. Как только мы создаем волнообразное изменение электрического поля, так сразу же к нему добавляется и магнитная волна. Разделить эту пару волн невозможно — это единое электромагнитное явление.

Можно и дальше уточнять описание, постепенно избавляясь от неточностей и грубых приближений. Если довести это дело до конца, мы как раз и получим уже упомянутые уравнения Максвелла. Мы остановимся на полпути, потому что для нас пока важно лишь качественное понимание вопроса, все основные моменты уже ясны из нашей модели. Главный из них — независимость распространения электромагнитной волны от ее источника.

В самом деле, волны электрического и магнитного полей, хотя и возникли благодаря колебаниям заряда, но в настоящее время от него распространяются совершенно самостоятельно.Что бы ни случилось с зарядом-возбудителем, сигнал об этом не догонит уходящую электромагнитную волну — ведь он будет распространяться не быстрее света. Это позволяет нам рассматривать электромагнитные волны как самостоятельные физические функции вместе с зарядами, которые их порождают.

Далее: Частота и длина волны

Урок 5. электромагнитная индукция — Физика — 11 класс

Физика, 11 кл

Урок 5.Электромагнитная индукция

Перечень вопросов, рассматриваемых на этом уроке

  1. Знакомство с явлением электромагнитной индукции.
  2. Изучение темы, описывающего явление электромагнитной индукции.
  3. Решение задач, использование электромагнитной индукции.

Глоссарий по теме

Явление электромагнитной индукции который происходит в возникновении электрического тока в проводящем контуре, либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что линии магнитной индукции, пронизывающих поверхность, ограниченную этим контуром, меняется со временем. Магнитный поток Ф — графически пропорциональная линия линий магнитной индукции, пронизывающих поверхность площадью S.

Единица измерения магнитного потока: магнитный поток в один вебер создаётся однородным магнитным полем с помощью 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции.

Правило Ленца : развивающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, который он вызван.

Сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контур.

ЭДС индукции в замкнутом контуре соответствует по модулю скорости магнитного потока через поверхность, ограниченную контуром:

Основная и дополнительная литература по теме:

Мякишев Г.Я., Буховцев Б.Б., Чаругин В. М. Физика.10 класс. Учебник для общеобразовательных организаций М .: Просвещение, 2017стр.107-112

Рымкевич А.П. Сборник задач по физике. 10-11класс. — М .: Дрофа, 2009. Стр. 28-29

ЕГЭ 2017. Физика. 1000 задач с ответами и решениями. Демидова М.Ю., Грибов В.А., Гиголо А.И. М .: Экзамен, 2017.

Теоретический материал для самостоятельного изучения

Электрические и магнитные поля одними и теми же источниками — электрическими зарядами. Отсюда естественнее было предположить, что между этими полями имеется связь. Экспериментально это предположение было доказано в 1831 г. английским учёным М. Фарадеем, открывшим явление электромагнитной индукции. Все опыты Фарадея по изучению воздействия электромагнитной индукции объединяет один признак — магнитный поток пронизывающий замкнутый контур проводника менялся. При всяком изменении магнитного потока через замкнутый контур, в нем нагл индукционный ток.

Сила индукционного тока регулирова ЭДС индукции.

Направление индукционного тока менялось в зависимости от направления движения магнита относительно катушки.Это направление тока, можно найти используя правило Ленца.

М. Фарадеем экспериментально было установлено, что при изменении магнитного потока, в проводящем контуре электродвижущая сила индукции , которая равна скорости магнитного потока через поверхность, ограниченную контуром, взятый со знаком минус:

Знак минус в этой формуле соответствует правилу Ленца .

Закон электромагнитной индукции формулируется для ЭДС индукции.

ЭДС индукции в замкнутом контуре равна по модулю скорости магнитного потока через поверхность, ограниченную контуром:

ЭДС индукции в движущихся проводниках :

Ɛ_i = Вlvsinα.

Джеймс Максвелл в 1860 году сделал вывод что переменное со временем магнитное поле всегда порождает вихревое электрическое поле, а переменное во времени электрическое поле в свою очередь порождает магнитное поле. Следовательно, существует единая теория электромагнитного поля.

Разбор типового контрольного задания

1.

На рисунке представлен момент демонстрационного эксперимента по проверке правил Ленца, когда все предметы неподвижны. Южный полюс магнита находится внутри сплошного металлического кольца, но не касается его. Коромысло с металлическими кольцами может свободно вращаться вокруг вертикальной опоры. При выдвижении магнита из кольца влево кольцо будет

1) оставаться неподвижным

2) перемещаться вправо

3) совершать колебания

4) перемещаться вслед за магнитом

При выдвижении магнита из кольца влево магнитный поток от магнита через кольцо будет уменьшаться .В замкнутом кольце индукционный ток возникает. Направление этого тока по правилу Ленца такое, что создаваемое им магнитное поле препятствует изменению магнитного потока. Так как коромысло вокруг вертикальной оси может свободно вращаться, и магнитное поле магнита неоднородно, коромысло под действием сил Ампера начнёт так, чтобы препятствовать изменению магнитного потока. Следовательно, коромысло начнёт перемещаться вслед за магнитом.

Ответ: 4) перемещаться вслед за магнитом.

2.

Проводник МN с длиной активной части 1м и сопротивлением 2 Ом находится в однородном магнитном поле индукцией 0,2 Тл. Проводник подключён к источнику тока с ЭДС 4 В (внутренним сопротивлением источника и сопротивлением подводящих проводников пренебречь). Какова сила тока в проводнике, если:

№1 проводник покоится;

№2 проводник движется в право со скоростью 6 м / с.

Дано:

ℓ = 1м

R = 2 Ом

В = 0,2 Тл

Ɛ = 4 В

I =?

Решение:

№1: Ток в неподвижном проводнике течёт от N к М

v = 0; Закон Ома для полной цепи I = Ɛ / R = 4В / 2Ом = 2А

№2: Если проводник движется в право со скоростью 6 м / с, то по правилам правой руки индукционный ток потечёт от точки N к точке М:

Ответ: №1 2А

№2 2,6А

Электричество и магнетизм

Магнитная стрелка — не только прибор, регистрирующий внешнее магнитное поле, она сама является маленьким магнитом, создающим свое собственное поле. Значит, и виток с током должен создать свое собственное магнитное поле, подобное полю стрелки. Следовательно, электрический ток в проводнике создается вокруг него магнитное поле. В частности, такое поле должен создать движущийся электрический заряд.

Сейчас мы попробуем угадать, какое магнитное поле порождается зарядом q , движущимся со скоростью v (рис. 6.6). Отправной точкой нам послужит аналогия между электрическими и магнитными явлениями.Вспомним то, что мы уже знаем. Чтобы получить силу, действующую на заряд в электростатическом поле, мы умножаем заряд на вектор напряженности поля

Рис. 6.6. Магнитное поле движущегося заряда

Чтобы получить силу Лоренца, действующую со стороны магнитного поля на движущийся заряд, мы тоже производим операцию умножения: умножаем на магнитную индукцию

Применим тот же прием для угадывания магнитного поля движущегося заряда.

Электрическое поле покоящегося точечного заряда равно

Заменим q на вектор, электрическое поле — на магнитное, а действие обычного умножения — на новое умножение. Получаем

Мы не поставили здесь знака равенства, так как у нас не все в порядке с размерностью в левой и правой частях уравнения. Из выражения для силы Лоренца следует, что размерность магнитной индукции равна

Размер же правой части уравнения равна

Чтобы размер обеих частей совпали, правую часть надо разделить на квадрат какой-то скорости.Скорость частиц у нас уже используется, и остается единственная возможность — фундаментальная физическая постоянная, скорость света с

(6,2)

Мы ввели здесь новую константу, связанную с движением

(6.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *