Что такое активная нагрузка – Понятия активной и реактивной нагрузки, использование формул

Содержание

Что такое активная, реактивная и полная мощность нагрузки стабилизатора?

В отличии от вычисления мощности при постоянном токе, формулы для вычисления мощности в цепях переменного тока достаточно сложны. В общем случае электрическая мощность в этом случае имеет интегральные зависимости.

Для определения полной мощности нагрузки необходимо вычислить активную и реактивную мощность. Полная мощность определяется как векторное сложение этих величин.

Активная мощность — это полезная часть мощности, та часть, которая определяет прямое преобразования электрической энергии в другие необходимые виды энергии. Для каждого электрического прибора вид преобразования энергии свой: в электрической лампочке электроэнергия преобразуется в свет и тепло, в утюге электроэнергия преобразуется в тепло, в электродвигателе электроэнергия преобразуется в механическую энергию. Фактически, активная мощность определяет скорость полезного потребления энергии.

Реактивная мощность

— мощность определяемая электромагнитными полями, образующимися в процессе работы приборов. Реактивная мощность, как правило, является «вредной» или «паразитной». Реактивная мощность определяется характером нагрузки. Для такого прибора как лампочка она равна нулю, в процессе горения лампы электромагнитные поля практически не образуются. В процессе работы электродвигателя реактивная мощность может достигать больших значений. Понятие реактивной мощности тесно связано с понятием «пусковые токи».

При выборе стабилизатора напряжения необходимо определять полную мощность потребителей. Самый точный способ — найти значение полной мощности прибора в его паспорте. Если такой возможности нет, то для определения полной мощности приборов с большими «пусковыми токами» принято использовать повышающий коэффициент «4».

Следует также учитывать, что номинальная мощность стабилизатора напряжения может указываться разными производителями стабилизаторов и ИБП в различных диапазонах входных параметров тока. Китайские производители часто завышают реальную мощность устройства в два и более раз.

Особое внимание при выборе подходящего стабилизатора напряжения или источника бесперебойного питания следует обратить на возможность использования стабилизатора при реактивной нагрузке. Часто производители указывают, что номинальная мощность стабилизатора или ИБП указана без учета реактивной нагрузки. В паспортных данных стабилизаторов и источников питания можно найти фразу «устройство не может использоваться для реактивной нагрузки».

Для работы с приборами, имеющими большую реактивную мощность мы рекомендуем использовать специальные стабилизаторы напряжения и ИБП компании «Бастион». Эти приборы характеризуются большой перегрузочной мощностью и хорошей защитой от помех в сети по нагрузке.

Подробные ответы вы можете найти в следующих статьях:

Сравнение реальных мощностей стабилизаторов напряжения разных марок

Сравнение стабилизаторов напряжения Ресанта, APC, Voltron, Калибри, Teplocom

Стабилизаторы напряжения для котлов отопления

Преимущества релейных стабилизаторов напряжения «Бастион»

Стабилизатор напряжения для холодильника

Стабилизаторы напряжения для насосов

Стабилизатор напряжения для кондиционера и сплит-системы

skat-ups.ru

Понятие о реактивных и активных мощностях и нагрузках

Главная цель при передаче электроэнергии – повышение эффективности работы сетей. Следовательно, необходимо уменьшение потерь. Основной причиной потерь является реактивная мощность, компенсация которой значительно повышает качество электроэнергии.

Батареи статических конденсаторов

Батареи статических конденсаторов

Реактивная мощность вызывает ненужный нагрев проводов, перегружаются электроподстанции. Трансформаторная мощность и кабельные сечения вынужденно подвергаются завышениям, сетевое напряжение снижается.

Понятие о реактивной мощности

Для выяснения, что же такое реактивная мощность, надо определить другие возможные виды мощности. При существовании в контуре активной нагрузки (резистора) происходит потребление исключительно активной мощности, полностью расходуемой на энергопреобразование. Значит, можно сформулировать, что такое активная мощность, – та, при которой ток совершает эффективную работу.

На постоянном токе происходит потребление исключительно активной мощности, рассчитываемой соответственно формуле:

P = U x I.

Измеряется в ваттах (Вт).

В электроцепях с переменным током при наличии активной и реактивной нагрузки мощностной показатель суммируется из двух составных частей: активной и реактивной мощности.

Реактивная нагрузка бывает двух видов:

  1. Емкостная (конденсаторы). Характеризуется фазовым опережением тока по сравнению с напряжением;
  2. Индуктивная (катушки). Характеризуется фазовым отставанием тока по отношению к напряжению.
Емкостная и индуктивная нагрузка

Емкостная и индуктивная нагрузка

Если рассмотреть контур с переменным током и подсоединенной активной нагрузкой (обогреватели, чайники, лампочки с накаливающейся спиралью), ток и напряжение будут синфазными, а полная мощность, взятая в определенную временную отсечку, вычисляется путем перемножения показателей напряжения и тока.

Однако когда схема содержит реактивные компоненты, показатели напряжения и тока не будут синфазными, а будут различаться на определенную величину, определяемую углом сдвига «φ». Пользуясь простым языком, говорится, что реактивная нагрузка возвращает столько энергии в электроцепь, сколько потребляет. В результате получится, что для активной мощности потребления показатель будет нулевой. Одновременно по цепи протекает реактивный ток, не выполняющий никакую эффективную работу. Следовательно, потребляется реактивная мощность.

Реактивная мощность – часть энергии, которая позволяет устанавливать электромагнитные поля, требуемые оборудованием переменного тока.

Расчет реактивной мощности ведется по формуле:

Q = U x I x sin φ.

В качестве единицы измерения реактивной мощности служит ВАр (вольтампер реактивный).

Выражение для активной мощности:

P = U x I x cos φ.

Треугольник мощностей

Взаимосвязь активной, реактивной и полной мощности для синусоидального тока переменных значений представляется геометрически тремя сторонами прямоугольного треугольника, называемого треугольником мощностей. Электроцепи переменного тока потребляют две разновидности энергии: активную мощность и реактивную. Кроме того, значение активной мощности никогда не является отрицательным, тогда как для реактивной энергии возможна либо положительная величина (при индуктивной нагрузке), либо отрицательная (при емкостной нагрузке).

Треугольник мощностей

Треугольник мощностей

Важно! Из треугольника мощностей видно, что всегда полезно снизить реактивную составляющую, чтобы повысить эффективность системы.

Полная мощность не находится как алгебраическая сумма активного и реактивного мощностного значения, это векторная сумма P и Q. Ее количественное значение вычисляется извлечением квадратного корня из суммы квадратов мощностных показателей: активного и реактивного. Измеряться полная мощность может в ВА (вольтампер) или производных от него: кВА, мВА.

Чтобы была рассчитана полная мощность, необходимо знать разность фаз между синусоидальными значениям U и I.

Коэффициент мощности

Пользуясь геометрически представленной векторной картиной, можно найти отношение сторон треугольника, соответствующих полезной и полной мощности, что будет равно косинусу фи или мощностному коэффициенту:

cos φ = P/S.

Данный коэффициент находит эффективность работы сети.

Количество потребляемых ватт – то же самое, что и количество потребляемых вольтампер при мощностном коэффициенте, равном 1 или 100%.

Важно! Полная мощность тем ближе к показателю активной, чем больше cos φ, или чем меньше угол сдвига синусоидальных величин тока и напряжения.

Если, к примеру, имеется катушка, для которой:

  • Р = 80 Вт;
  • Q = 130 ВАр;
  • тогда S = 152,6 BA как среднеквадратичный показатель;
  • cos φ = P/S = 0,52 или 52%

Можно сказать, что катушка требует 130 ВАр полной мощности для выполнения полезной работы 80 Вт.

Коррекция cos φ

Для коррекции cos φ применяется тот факт, что при емкостной и индуктивной нагрузке вектора реактивной энергии располагаются в противофазе. Так как большинство нагрузок является индуктивными, подключив емкость, можно добиться увеличения cos φ.

Принцип компенсации реактивной мощности

Принцип компенсации реактивной мощности

Главные потребители реактивной энергии:

  1. Трансформаторы. Представляют собой обмотки, имеющие индуктивную связь и посредством магнитных полей преобразуюшие токи и напряжения. Эти аппараты являются основным элементом электросетей, передающих электроэнергию. Особенно увеличиваются потери при работе на холостом ходу и при низкой нагрузке. Широко используются трансформаторы в производстве и в быту;
  2. Индукционные печи, в которых расплавляются металлы путем создания в них вихревых токов;
  3. Асинхронные двигатели. Крупнейший потребитель реактивной энергии. Вращающий момент в них создается посредством переменного магнитного поля статора;
  4. Преобразователи электроэнергии, такие как силовые выпрямители, используемые для питания контактной сети железнодорожного транспорта и другие.

Конденсаторные батареи подсоединяются на электроподстанциях для того, чтобы контролировать напряжение в пределах установленных уровней. Нагрузка меняется в течение дня с утренними и вечерними пиками, а также на протяжении недели, снижаясь в выходные, что изменяет показатели напряжения. Подключением и отключением конденсаторов варьируется его уровень. Это делается от руки и с помощью автоматики.

Как и где измеряют cos φ

Реактивная мощность проверяется по изменению cos φ специальным прибором – фазометром. Его шкала проградуирована в количественных значениях cos φ от нуля до единицы в индуктивном и емкостном секторе. Полностью скомпенсировать негативное влияние индуктивности не удастся, но возможно приближение к желаемому показателю – 0,95 в индуктивной зоне.

Фазометр

Фазометр

Фазометры применяются при работе с установками, способными повлиять на режим работы электросети через регулирование cos φ.

  1. Так как при финансовых расчетах за потребленную энергию учитывается и ее реактивная составляющая, то на производствах устанавливаются автоматические компенсаторы на конденсаторах, емкость которых может меняться. В сетях, как правило, используются статические конденсаторы;
  2. При регулировании cos φ у синхронных генераторов путем изменения возбуждающего тока необходимо его отслеживать визуально в ручных рабочих режимах;
  3. Синхронные компенсаторы, представляющие собой синхронные двигатели, работающие без нагрузки, в режиме перевозбуждения выдают в сеть энергию, которая компенсирует индуктивную составляющую. Для регулирования возбуждающего тока наблюдают за показаниями cos φ по фазометру.
Синхронный компенсатор

Синхронный компенсатор

Коррекция коэффициента мощности – одна из эффективнейших инвестиций для сокращения затрат на электроэнергию. Одновременно улучшается качество получаемой энергии.

Видео

Оцените статью:

jelectro.ru

Понятие о реактивных и активных мощностях и нагрузках: формула и единицы измерения

В технической литературе и сопроводительной документации применяют разные обозначения электрических параметров. Реактивная мощность определяет часть процессов при подключении индуктивных (емкостных) нагрузок. Вместе с активной (рабочей) составляющей она формирует полные энергетические характеристики цепи переменного тока.

Наглядная демонстрация физических понятий

Наглядная демонстрация физических понятий

Мощность активная, реактивная и полная

Перечисленные понятия рассматривают с учетом особенностей нагрузки. Активная мощность потребляется обычным проводником. При увеличении силы тока энергия расходуется на повышение температуры (ТЭН чайника) или световое излучение (нить лампы накаливания).

Индуктивная нагрузка и конденсатор потребляют реактивную мощность. Энергия в этих вариантах преобразуется в магнитное (электрическое) поле, соответственно. Суммарная величина – полная мощность.

Смысл реактивной нагрузки

Любая реактивная нагрузка создает временной сдвиг между фазами тока и напряжения. Эту величину измеряют в градусах. Наиболее наглядным является векторное представление электрических параметров. Если подключить индуктивность, напряжение будет опережать ток. Угол между ними обозначают в формулах буквой «ϕ» («Фи» греч.).

Временные и векторные диаграммы показывают, как изменяются основные параметры при подключении индуктивных (емкостных) элементов

Временные и векторные диаграммы показывают, как изменяются основные параметры при подключении индуктивных (емкостных) элементов

На картинке показано, что при подключении емкостной нагрузки вектора «меняются» местами. В идеальных условиях сдвиг между векторами равен 90°. В действительности следует учитывать влияние электрического сопротивления цепи, несовершенство конструкций. С учетом особенностей элементов следует напомнить, что в индуктивности (емкости) при сохранении параметров источника питания плавно изменяется ток (напряжение), соответственно.

Почему в сети напряжение переменное

Для объяснения настоящей ситуации надо сделать краткий экскурс в историю. Электричество известно человеку сотни (по некоторым данным, тысячи лет). Однако действительно массовое использование этой энергии началось сравнительно недавно – в конце 19 века. Именно тогда (1879 г.) Эдисон запатентовал первый функциональный прибор, который помогал решать проблемы освещения. Для питания лампочек он стал монтировать сети постоянного тока.

Через десять лет Тесла создал генераторы переменного тока. После ожесточенной конкурентной борьбы именно его способ передачи энергии на расстояния одержал победу. Этот результат был обеспечен скорее рыночными методами, чем внимательным сравнением потребительских характеристик.

К сведению. Метрополитен Нью-Йорка до сих пор функционирует с подключением к сети постоянного тока.

Выгода от переменного напряжения

Важные для потребителей преимущества этого варианта приведены в следующем перечне:

  • простая конструкция генераторов/ электродвигателей;
  • минимальные потери при передаче электроэнергии на сравнительно небольшие расстояния;
  • простота преобразования напряжения с применением трансформатора;
  • поддержание стабильности оборотов электрических приводов без лишних трудностей;
  • отсутствие полярности.

Каждый из пунктов можно рассмотреть подробно. Генератор (электромотор) переменного тока, например, нетрудно создать без токосъемных щеток и постоянных магнитов. Простота конструкции обеспечивает:

  • разумную стоимость;
  • минимальные затраты при обслуживании и ремонте;
  • долговечность;
  • надежность.

Обороты мощных электродвигателей регулируют изменением частоты. Это значит, что в обычных условиях эксплуатации обеспечивается поддержание расчетных параметров без дополнительных схем управления и контроля. В частности, отмеченные особенности идеально подходят для создания насосной станции.

Для повышения/ уменьшения напряжения в сетях переменного тока используют типовые сравнительно недорогие конструкции. Изменяя количество витков обмотки на едином сердечнике, можно получить необходимый коэффициент трансформации с высокой точностью. В процессе работы дополнительная настройка не требуется.

Постоянное напряжение снижают с применением электрического сопротивления, которое в данном случае не выполняет никаких полезных функций. Для повышения – применяют сложные схемы с промежуточным преобразованием в переменный сигнал.

Какой из способов предпочтительнее, можно определить после перечисления преимуществ сетей постоянного тока:

  • возможность подключения непосредственно к источнику питания светодиодов, гальванических ванн, иных потребителей;
  • простая зарядка аккумуляторных батарей;
  • отсутствие необходимости согласования нагрузок;
  • высокая точность измерений;
  • минимальные потери при передаче электроэнергии на большие расстояния;
  • применение «однопроводной» линии питания (метро, трамвай).

Убытки от переменного напряжения

Формулы расчетов активной и реактивной мощностей подробно рассмотрены в следующих разделах статьи. Однако для изучения потерь в сетях переменного тока необходимо привести определение поправочного коэффициента cosϕ (косинус Фи). Это значение производители указывают в технических паспортах и на бирках корпусов мощных моторов, сварочных аппаратов, другой техники.

Потери в электрической схеме а) с диаграммой полной б) и частичной в) компенсации

Потери в электрической схеме а) с диаграммой полной б) и частичной в) компенсации

В этом примере рассмотрена приближенная к реальной ситуация, когда подключены активные нагрузки вместе с реактивными. Если cosϕ=0,75, то при одной и той же потребляемой мощности номинальный ток в цепи (100 А) увеличится следующим образом:

I = Ia/ cosϕ = 100/0,75 ≈ 133 А.

При этом на повышение температуры будет расходоваться мощность, пропорциональная квадрату тока. Считать ее можно по формуле:

Pнагр = I2 * Rc.

Соответствующие потери увеличатся в 1,77 раза.

Следует отметить! Изменения силы тока сопровождаются колебаниями напряжения. Иные потребители, подключенные к этой же сети, будут работать в неблагоприятных режимах. При этом счетчик будет показывать неизменное потребление энергетических ресурсов.

Понятной является ситуация, когда ИБП или другой источник питания начинает выдавать ток, превышающий расчетные параметры. Перегревается не только генератор, но и проводка. Значительно возрастает риск аварий, поломок.

Активная, реактивная и полная мощности в формулах

Чтобы рассчитать или измерить мощность: полную, активную и реактивную, служат основные формулы:

  • активная мощность = полная * cosϕ;
  • реактивная = напряжение * ток * sinϕ.

Для упрощения можно начать с примера на основе цепи постоянного тока,

где действительна известная формула:

Pa = U * I.

Это активная (рабочая, полная) мощность. Единицы измерения – ватт (Вт), киловатт (кВт), другие производные. При подключении сопротивления (R) ее можно вычислить следующим образом:

  • Pa = I2 * R;
  • Pa = U2 / R.

Простота исчезает при рассмотрении сигналов синусоидальной формы. Именно такими параметрами отличаются стандартные сети питания (220/380V). Активная мощность в этом случае зависит от фазового сдвига между векторами тока и напряжения.

Соответствующие зависимости выражают следующим образом:

Pa = U * I * cosϕ.

Эта формула подходит для расчета обычной сети 220V, которой пользуется большинство рядовых потребителей. Мощные насосы и станки подключают к трехфазным источникам питания 380 V. Для этого варианта нужна коррекция:

Pa = √3 * U * I * cosϕ = 1,732 * U * I * cosϕ.

Реактивная мощность (Pq) не только потребляется нагрузкой, но и возвращается обратно в источник питания. Ее значение определяют следующим образом:

Pq = U * I * sinϕ.

К сведению. Измеряется эта величина в реактивных вольт-амперах (вар).

Для вычисления полной мощности формула содержит перечисленные выше компоненты:

Ps = √( Pa2 + Pq2).

Что такое реактивная мощность

Эту мощность можно назвать бесполезной, так как она обозначает переход энергии между источником питания и нагрузкой. Недоступный для практического применения энергетический потенциал в данном случае только увеличивает потери.

Треугольник мощностей

На картинке ниже рядом с электрической схемой приведены графические изображения мощностей. Соответствующими векторами обозначены мощности:

  • S – полная;
  • Q – реактивная;
  • P – активная.

Коэффициент мощности

Этим термином обозначают потери, созданные реактивной нагрузкой. Обозначение – cosϕ.

Коррекция cos ϕ

Для компенсации угла сдвига фаз используют дополнительные электрические компоненты. При индуктивном характере нагрузки подключают параллельно конденсатор. Емкость рассчитывают по формуле:

C=I/(w*U), где w – угловая частота.

Как и где измеряют cos ϕ

Потери определяют по изменению силы тока, напряжения и мощности в цепях с мощными реактивными нагрузками:

cosϕ = P/ (I * U).

Можно найти в магазине либо арендовать специализированный прибор –  «фазометр». Специализированные сервисы предлагают расчет электрических параметров онлайн.

Колебательный процесс в цепях переменного тока сопровождается изменением магнитного (электрического) поля для индуктивной и емкостной нагрузки, соответственно.

Электроприборы, влияющие на качество потребления

Коэффициент мощности равен единице при подключении ламп и нагревателей. Он уменьшается до 0,7 и менее, когда в цепи добавляют преобладающие по потреблению энергии электромоторы, другие компоненты с реактивными составляющими.

Правильное применение определений и расчетов мощности помогает оптимизировать проект электрической сети с учетом особенностей подключаемых нагрузок. Приведенные выше сведения пригодятся на стадии определения параметров проводки, защитных автоматов. Комплексное использование этих знаний повысит надежность электроснабжения, предотвратит возникновение и развитие аварийных ситуаций.

Видео

amperof.ru

особенности оплаты, как найти формулу мощностей

Активная и реактивная нагрузка. Разбираясь в основных принципах электрики, важно понимать, что представляет собой активная и реактивная нагрузка. Первый тип энергии считается полезным и идет непосредственно на нужды потребителя, например, на обогрев здания, приготовление еды и работу электрических приборов. Вторая разновидность, реактивная, определяет ту часть энергии, которая не применяется для выполнения полезной работы.

Активная и реактивная мощность

Понятия активной и полной мощности могут иметь ряд противоречивых интересов со стороны клиентов и поставщиков. Потребитель пытается сэкономить на электроэнергии, оплачивая счета за расходуемые ресурсы, а поставщик ищет выгодные пути для получения полной суммы за оба типа энергии. Но есть ли способы совмещения таких требований? Да, ведь если свести объемы реактивной мощности к нулю, то это позволит приблизиться к максимальной экономии денежных средств.

Не секрет, что у некоторых потребителей электричества показатели полной и активной мощности сопоставимы. Связано это с тем, что они используют специальные приборы, нагрузка которых осуществляется с помощью резисторов. В их числе:

  1. Потребление активной мощностиЛампы накаливания.
  2. Электрические плиты.
  3. Жарочные шкафы и духовки.
  4. Обогревательное оборудование.
  5. Утюги.
  6. Паяльники.

Для определения мощности нагрузок можно использовать знакомую со школьных времен формулу, умножив ток нагрузки на сетевое напряжение. В таком случае будут задействованы следующие единицы измерения:

  1. Амперы (А) — указывают на силу тока.
  2. Вольты (В) — характеризуют текущее напряжение.
  3. Ватты (Вт) — указывают на показатель мощности.

В последнее время все чаще можно замечать такую картину, что на застекленных балконах расположена тонкая блестящая пленка. Ее создают из бракованных конденсаторов, которые раньше использовались на распределительных подстанциях. Как известно, конденсаторы являются главными потребителями реактивной нагрузки, которые состоят из диэлектрика, не проводящего электрический ток (в качестве главного элемента задействуется полимерная пленка или бумага, обработанная маслом).

Для сравнения, у потребителей активной мощности роль главного элемента выполняет проводящий ток материал, такой как вольфрамовый проводник, нихромовая спираль и другие.

Емкостные нагрузки

Пытаясь понять, как найти реактивную мощность, необходимо разбираться в особенностях и принципе действия конденсаторов. Блестящие поверхности, которые расположены на балконе, являются обкладками конденсаторов из токопроводящего материала. Они отличаются способностью накапливать электроэнергию, а затем передавать ее для потребительских нужд. По сути, конденсаторы используются в качестве своеобразной аккумуляторной батареи.

Емкостные нагрузкиА если присоединить конструкцию к источнику постоянного тока, это позволит зарядить ее кратковременным импульсом электротока, который со временем потеряет свою мощность. Для возвращения прежнего состояния конденсатора, достаточно отключить его от источника напряжения и подключить к обкладкам нагрузку. В течение какого-либо времени через нагрузку будет подаваться ток. В идеале, конденсатор должен отдать столько энергии, сколько он получил вначале.

Если подключить его к лампочке, это позволит ей на короткое время вспыхнуть, при этом неосторожный человек может даже получить незначительный удар током, если коснется к открытым контактам. Более того, если показатели напряжения довольно высокие, это может привести к фатальному исходу — смерти.

При присоединении конденсаторов к переменному току ситуация выглядит немного иначе. Так как источник переменного напряжения характеризуется свойством постоянно менять полярность, конденсаторный элемент будет постоянно разряжаться и заряжаться, пропуская переменный ток. Однако его значения не будут совпадать с напряжением источника, а составят на четверть периода больше.

Присоединение конденсаторов к переменному току

Конечные показатели будут выглядеть следующим образом: примерно половину периода конденсатор будет получать электроэнергию от источника, а другую половину — отдавать потребителю. Это значит, что суммарный показатель активной мощности составит нулевое значение. Однако из-за того, что через конденсатор постоянно протекает значительный ток, для измерения которого используется амперметр, его относят к потребителям реактивных мощностей. Формула реактивной мощности вычисляется как произведение тока на напряжение, но в этом случае единицей измерения становится вольт-ампер реактивный (ВАр), а не Вт.

Реальные потребители

Разбираясь, как найти активную мощность, люди задумываются, что будет, если попытаться подключить емкостную и индуктивную нагрузку одновременно и параллельно. В таком случае реакция будет осуществляться противоположным образом, а конечные значения начнут компенсировать себя.

При определенных обстоятельствах можно достичь идеальной компенсации, но выглядит это парадоксально: подключенные амперметры отреагируют на значительные токи, а также их полное отсутствие. Но важно понимать, что идеальных конденсаторов не существует (то же самое касается катушек индуктивности), поэтому идеализация — это условная картина для расширенного понимания процессов.

Что касается реальной ситуации, то в бытовых условиях потребители расходуют чисто активную мощность, а также смешанную активно-индуктивную. В последнем случае основными потребителями являются такие приборы:

  1. Реальные потребители электричестваЭлектрические дрели.
  2. Перфораторы.
  3. Электрические двигатели.
  4. Холодильники.
  5. Стиральные машины.
  6. Другая бытовая техника.

К тому же, к таким потребителям относятся электрические трансформаторы источников питания бытового оборудования и стабилизаторов напряжения. При смешанной нагрузке, кроме полезной, потребляется еще и реактивная, при этом ее значения могут превышать показатели активной мощности. В качестве единицы измерения полной мощности используется вольт-ампер.

В электротехнике присутствует такое понятие, как «косинус фи» или коэффициент мощности. Оно указывает на отношение активной мощности к реактивной. При использовании активных нагрузок, сопоставимых с реактивными, показатель cos φ равен 1. При совмещении емкостных и индуктивных нагрузок с нулевой активной мощностью значение «косинуса фи» будет составлять нулевое значение. Если речь идет о смешанных нагрузках, то коэффициент мощности будет варьироваться от 0 до 1.

Оплата электричества

Разобравшись, как найти активную и реактивную мощность, в чем может измеряться такое значение и как описать его простым языком, остается задать логичный вопрос, за что платит реальный потребитель, пользуясь электричеством. Оплачивать полную (реактивную) энергию нет смысла. Однако в этом вопросе существует множество подводных камней, которые кроются в незначительных деталях.

Как известно, смешанная нагрузка способствует повышению тока в электросети, в результате чего могут возникать разные трудности на электростанциях, где происходит выработка электричества синхронными генераторами. Дело в том, что индуктивные нагрузки вызывают «развозбуждение» генератора, а чтобы вернуть его в начальное состояние, придется потратить реальную активную энергию, то есть переплатить массу денежных средств. Есть смысл сделать реактивную мощность платной, так как это заставит клиента компенсировать полную составляющую нагрузок.

Оплата электричества

Если возникает необходимость оплачивать оба типа мощностей по отдельности, то потребитель может рассмотреть вариант монтажа специальных батарей конденсаторов, которые будут запускаться только по графику при достижении определенного уровня потребления электроэнергии. К тому же, есть возможность выполнить монтаж профессионального оборудования в виде компенсаторов реактивной энергии, которые подключают конденсаторы при росте количества потребляемой мощности. Они эффективно поднимают «косинус фи» с 0,6 до 0,97, то есть практически до отметки 1.

Клиент платит за электричествоК тому же, согласно текущим нормам, если клиент использовал не больше 0,15 коэффициента мощности, то он освобождается от необходимости выполнять плату за полную нагрузку. Тем не менее, большинство индивидуальных потребителей используют совсем незначительный объем электричества, поэтому проводить разделение счетов на оплату двух типов энергии нецелесообразно.

К тому же, во многих зданиях установлены однофазные счетчики, которые не способны отслеживать расход реактивных электрических нагрузок, поэтому чек за электроэнергию выставляется с учетом израсходованной активной энергии.

Полезные советы

Заниматься компенсированием индуктивных нагрузок не совсем целесообразно, так как среднестатистический потребитель использует незначительное количество активной нагрузки. Да и обустройство приборов, разделяющих потоки, требует больших вложений и выглядит сложно в техническом плане.

Подключенные конденсаторы при отключении нагрузок бесполезно нагружают электропроводку. В некоторых случаях производители счетчиков оснащают их входы компенсационными конденсаторами с индуктивной нагрузкой. При правильной конфигурации такие элементы могут снизить энергопотери, а также немного поднять напряжение на приборе путем уменьшения падения напряжения на проводе подводки.

Реактивное сопротивление конденсатора

К тому же, компенсация реактивной энергии позволит снизить уровень токов по всей линии электропитания, что положительно скажется на экономии электричества и предотвратит чрезмерные энергопотери.

220v.guru

ВИДЫ НАГРУЗОК ПЕРЕМЕННОГО ТОКА — Полезно знать — Каталог файлов

Для цепей переменного тока, в отличие от постоянного, закон Ома несколько изменяется, так как некоторые виды нагрузок ведут себя при прохождении изменяющегося во времени тока по-разному. Рассмотрим эти типы нагрузок.

Для начала посмотрим пример наглядно объясняющий что это такое!


Активная (резистивная) нагрузка. Для неё закон Ома выполняется в каждый момент времени и аналогичен закону Ома для постоянного тока. Примеры активной нагрузки: электрическая лампочка, нагревательный элемент (ТЭН), электрическая плита.
Индуктивная (реактивная) нагрузка преобразует в течение одной половины полупериода энергию электрического тока в магнитное поле, а течении следующей половины преобразует энергию магнитного поля в электрический ток. При этом в индуктивной нагрузке кривая тока отстаёт от кривой напряжения на ту же половину полупериода. Примером для данного вида нагрузок может быть дроссель или катушка индуктивности. 
Ёмкостная (реактивная) нагрузка преобразует в течение одной половины полупериода энергию электрического тока в электрическое поле, а течении следующей половины преобразует энергию электрического поля в электрический ток. При этом в ёмкостной нагрузке кривая тока опережает кривую напряжения на ту же половину полупериода. Примером данного вида нагрузок может быть конденсатор.
Так как в природе не существует ничего идеального, чистые реактивные нагрузки в электротехнике не встречаются. Любая нагрузка имеет КПД ниже 100%, и часть энергии рассеивается в виде тепловых потерь, излучения и т.д. Поэтому в реальной, а не теоретической электротехнике применяется понятие активно-реактивной нагрузки.
Активно-индуктивная нагрузка может рассматриваться как последовательное или параллельное соединение активного сопротивления и идеальной индуктивности. Примером таких нагрузок может быть обмоточный электромагнитный трансформатор, электродвигатель, электромагнитное пускорегулирующее устройство для люминесцентных ламп, катушка зажигания в автомобиле. Для этого вида нагрузок характерен бросок напряжения в момент размыкания электрической цепи.
Активно-ёмкостная нагрузка может рассматриваться как последовательное или параллельное соединение активного сопротивления и идеальной ёмкости. Примером таких нагрузок может быть конденсатор, электронные блоки питания галогенных или люминесцентных ламп. Для этих нагрузок характерен бросок тока в момент замыкания электрической цепи, особенно если он произошёл в тот момент, когда напряжение в сети максимально, или близко к максимальному.
При протекании тока через активно-реактивную нагрузку часть тока будет протекать через прибор, не производя никакой полезной работы. При этом максимумы и минимумы тока и напряжения будут достигаться в разное время, а кривые изменения по времени тока и напряжения будут не совпадать – оставаясь, при этом, периодическими функциями. Происходит сдвиг тока и напряжения по фазе. Косинус угла между током и напряжением является важной величиной в электротехнике и обозначается cos(?).
Физический смысл cos(?) – КПД установки. Этот коэффициент показывает, какая часть тока преобразуется в полезную работу, а какая часть тока течёт в проводниках вхолостую, перегружая проводники. Чем выше cos(?), тем лучше КПД установки. У активных проводников он равен 1, а у идеальных ёмкостных и индуктивных проводников он равен 0.

Пример.
Какой ток протекает в цепи 1-но фазного двигателя мощностью 1 КВт, имеющего cos(?) =0,45. Напряжение сети 220 В. Используя формулу P = U*I* cos(?), получаем: I = P/(U*cos(?)). Подставляя значения в формулу, производим вычисления:
I = 1000/(220*0.45) = 10.1 А.
Заметим, что если бы cos(?) был бы равен 1, то ток был бы почти в 2 раза ниже, т.е. составил бы 4,55 А.

www.reg35.com

формула, как определить — Asutpp

Мощностные характеристики установки или сети являются основными для большинства известных электрических приборов. Активная мощность (проходящая, потребляема) характеризует часть полной мощности, которая передается за определенный период частоты переменного тока.

Определение

Активная и реактивная мощность может быть только у переменного тока, т. к. характеристики сети (силы тока и напряжения) у постоянного всегда равны. Единица измерений активной мощности  Ватт, в то время, как реактивной – реактивный вольтампер и килоВАР (кВАР). Стоит отметить, что как полная, так и активная характеристики могут измеряться в кВт и кВА, это зависит от параметров конкретного устройства и сети. В промышленных цепях чаще всего измеряется в килоВаттах.

Соотношение энергийСоотношение энергий

Электротехника используется активную составляющую в качестве измерения передачи энергии отдельными электрическими приборами. Рассмотрим, сколько мощности потребляют некоторые из них:

ПриборМощность бытовых приборов, Вт/час
Зарядное устройство2
Люминесцентная лампа ДРЛОт 50
Акустическая система30
Электрический чайник1500
Стиральной машины2500
Полуавтоматический инвертор3500
Мойка высокого давления3500

 

Исходя из всего, сказанного выше, активная мощность – это положительная характеристика конкретной электрической цепи, которая является одним из основных параметров для выбора электрических приборов и контроля расхода электричества.

Генерация активной составляющейГенерация активной составляющей

Обозначение реактивной составляющей:

Это  номинальная величина, которая характеризует нагрузки в электрических устройствах при помощи колебаний ЭМП и потери при работе прибора. Иными словами, передаваемая энергия переходит на определенный реактивный преобразователь (это конденсатор, диодный мост и т. д.) и проявляется только в том случае, если система включает в себя эту составляющую.

Расчет

Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула:

S = U \ I, где U – это напряжение сети, а I – это сила тока сети.

Этот же расчет выполняется при вычислении уровня передачи энергии катушки при симметричном подключении. Схема имеет следующий вид:

Схема симметричной нагрузкиСхема симметричной нагрузки

Расчет активной мощности учитывает угол сдвига фаз или коэффициент (cos φ), тогда:

S = U * I * cos φ.

Очень важным фактором является то, что эта электрическая величина может быть как положительной, так и отрицательной. Это зависит от того, какие характеристики имеет cos φ. Если у синусоидального тока угол сдвига фаз находится в пределах от 0 до 90 градусов, то активная мощность положительная, если от 0 до -90 – то отрицательная. Правило действительно только для синхронного (синусоидального) тока (применяемого для работы асинхронного двигателя, станочного оборудования).

Также одной из характерных особенностей этой характеристики является то, что в трехфазной цепи (к примеру, трансформатора или генератора), на выходе активный показатель полностью вырабатывается.

Расчет трехфазной сетиРасчет трехфазной сети

Максимальная и активная обозначается P, реактивная мощность – Q.

Из-за того, что реактивная обуславливается движением и энергией магнитного поля, её формула (с учетом угла сдвига фаз) имеет следующий вид:

QL = ULI = I2xL

Для несинусоидального тока очень сложно подобрать стандартные параметры сети. Для определения нужных характеристик с целью вычисления активной и реактивной мощности используются различные измерительные устройства. Это вольтметр, амперметр и прочие. Исходя от уровня нагрузки, подбирается нужная формула.

Из-за того, что реактивная и активная характеристики связаны с полной мощностью, их соотношение (баланс) имеет следующий вид:

S = √P2 + Q2, и все это равняется U*I .

Но если ток проходит непосредственно по реактивному сопротивлению. То потерь в сети не возникает. Это обуславливает индуктивная индуктивная составляющая – С и сопротивление – L. Эти показатели рассчитываются по формулам:

Сопротивление индуктивности: xL = ωL = 2πfL,

Сопротивление емкости: хc = 1/(ωC) = 1/(2πfC).

Для определения соотношения активной и реактивной мощности используется специальный коэффициент. Это очень важный параметр, по которому можно определить, какая часть энергии используется не по назначению или «теряется» при работе устройства.

При наличии в сети активной реактивной составляющей обязательно должен рассчитываться коэффициент мощности. Эта величина не имеет единиц измерения, она характеризует конкретного потребителя тока, если электрическая система содержит реактивные элементы. С помощью этого показателя становится понятным, в каком направлении и как сдвигается энергия относительно напряжения сети. Для этого понадобится диаграмма треугольников напряжений:

Диаграмма треугольников напряженийДиаграмма треугольников напряжений

К примеру, при наличии конденсатора формула коэффициента имеет следующий вид:

cos φ = r/z = P/S

Для получения максимально точных результатов рекомендуется не округлять полученные данные.

Компенсация

Учитывая, что при резонансе токов реактивная мощность равняется 0:

Q = QL — QC = ULI – UCI

Для того чтобы улучшить качество работы определенного устройства применяются специальные приборы, минимизирующие воздействие потерь на сеть. В частности, это ИБП. В данном приборе не нуждаются электрические потребители со встроенным аккумулятором (к примеру, ноутбуки или портативные устройства), но для большинства остальных источник бесперебойного питания является необходимым.

При установке такого источника можно не только установить негативные последствия потерь, но и уменьшить траты на оплату электричества. Специалисты доказали, что в среднем, ИБП поможет экономить от 20 % до 50 %. Почему это происходит:

  1. Значительно уменьшается нагрузка силовых трансформаторов;
  2. Провода меньше нагреваются, это не только положительно влияет на их работу, но и повышает безопасность;
  3. У сигнальных и радиоустройств уменьшаются помехи;
  4. На порядок уменьшаются гармоники в электрической сети.

В некоторых случаях специалисты используют не полноценные ИБП, а специальные компенсирующие конденсаторы. Они подходят для бытового использования, доступны и продаются в каждом электротехническом магазине. Для расчета планируемой и полученной экономии можно использовать все вышеперечисленные формулы.

www.asutpp.ru

Что такое активная и реактивная электроэнергия?

Расчет электрической энергии, используемой бытовым или промышленным электротехническим прибором, производится обычно с учетом полной мощности электрического тока, проходящего через измеряемую электрическую цепь. При этом выделяются два показателя, отражающие затраты полной мощности при обслуживании потребителя. Эти показатели называются активная и реактивная энергия. Полная мощность представляет собой сумму этих двух показателей. О том, что такое активная и реактивная электроэнергия и как проверить сумму начисленных оплат, попытаемся рассказать в этой статье.

Полная мощность

По сложившейся практике потребители оплачивают не полезную мощность, которая непосредственно используется в хозяйстве, а полную, которую отпускает предприятие-поставщик. Различают эти показатели по единицам измерения – полная мощность измеряется в вольт-амперах (ВА), а полезная – в киловаттах. Активная и реактивная электроэнергия используется всеми запитанными от сети электроприборами.

активная и реактивная электроэнергия

Активная электроэнергия

Активная составляющая полной мощности совершает полезную работу и преобразовывается в те виды энергии, которые нужны потребителю. У части бытовых и промышленных электроприборов в расчетах активная и полная мощность совпадают. Среди таких устройств – электроплиты, лампы накаливания, электропечи, обогреватели, утюги и гладильные прессы и прочее.

Если в паспорте указана активная мощность 1 кВт, то полная мощность такого прибора будет составлять 1 кВА.

реактивная электроэнергия

Понятие реактивной электроэнергии

Этот вид электроэнергии присущ цепям, в составе которых имеются реактивные элементы. Реактивная электроэнергия — это часть полной поступаемой мощности, которая не расходуется на полезную работу.

В электроцепях постоянного тока понятие реактивной мощности отсутствует. В цепях переменного тока реактивная составляющая возникает только в том случае, когда присутствует индуктивная или емкостная нагрузка. В таком случае наблюдается несоответствие фазы тока с фазой напряжения. Данный сдвиг фаз между напряжением и током обозначается символом «φ».

При индуктивной нагрузке в цепи наблюдается отставание фазы, при емкостной – ее опережение. Поэтому потребителю приходит только часть полной мощности, а основные потери происходят из-за бесполезного нагревания устройств и приборов в процессе эксплуатации.

Потери мощности происходят из-за наличия в электрических устройствах индуктивных катушек и конденсаторов. Из-за них в цепи в течение некоторого времени происходит накопление электроэнергии. После этого запасенная энергия поступает обратно в цепь. К приборам, в составе потребляемой мощности которых имеется реактивная составляющая электроэнергии, относятся переносные электроинструменты, электродвигатели и различная бытовая техника. Эта величина рассчитывается с учетом особого коэффициента мощности, который обозначается как cos φ.

учет реактивной электроэнергии

Расчет реактивной электроэнергии

Коэффициент мощности лежит в пределах от 0,5 до 0,9; точное значение этого параметра можно узнать из паспорта электроприбора. Полная мощность должна быть определена как частное от деления активной мощности на коэффициент.

Например, если в паспорте электрической дрели указана мощность в 600 Вт и значение 0,6, тогда потребляемая устройством полная мощность будет равна 600/06, то есть 1000 ВА. При отсутствии паспортов для вычисления полной мощности прибора коэффициент можно брать равным 0,7.

Поскольку одной из основных задач действующих систем электроснабжения является доставка полезной мощности конечному потребителю, реактивные потери электроэнергии считаются негативным фактором, и возрастание этого показателя ставит под сомнение эффективность электроцепи в целом. Баланс активной и реактивной мощности в цепи может быть наглядно представлен в виде этого забавного рисунка:

реактивная составляющая электроэнергии

Значение коэффициента при учете потерь

Чем выше значение коэффициента мощности, тем меньше будут потери активной электроэнергии – а значит конечному потребителю потребляемая электрическая энергия обойдется немного дешевле. Для того чтобы повысить значение этого коэффициента, в электротехнике используются различные приемы компенсации нецелевых потерь электроэнергии. Компенсирующие устройства представляют собой генераторы опережающего тока, сглаживающие угол сдвига фаз между током и напряжением. Для этой же цели иногда используются батареи конденсаторов. Они подключаются параллельно к рабочей цепи и используются как синхронные компенсаторы.

реактивная электроэнергия

Расчет стоимости электроэнергии для частных клиентов

Для индивидуального пользования активная и реактивная электроэнергия в счетах не разделяется – в масштабах потребления доля реактивной энергии невелика. Поэтому частные клиенты при потреблении мощности до 63 А оплачивают один счет, в котором вся потребляемая электроэнергия считается активной. Дополнительные потери в цепи на реактивную электроэнергию отдельно не выделяются и не оплачиваются.

Учет реактивной электроэнергии для предприятий

Другое дело – предприятия и организации. В производственных помещениях и промышленных цехах установлено огромное число электрооборудования, и в общей поступаемой электроэнергии имеется значительная часть энергии реактивной, которая необходима для работы блоков питания и электродвигателей. Активная и реактивная электроэнергия, поставляемая предприятиям и организациям, нуждается в четком разделении и ином способе оплаты за нее. Основанием для регуляции отношений предприятия-поставщика электроэнергии и конечных потребителей в этом случае выступает типовой договор. Согласно правилам, установленным в этом документе, организации, потребляющие электроэнергию свыше 63 А, нуждаются в особом устройстве, предоставляющем показания реактивной энергии для учета и оплаты.
Сетевое предприятие устанавливает счетчик реактивной электроэнергии и начисляет оплату согласно его показаниям.

счетчик реактивной электроэнергии

Коэффициент реактивной энергии

Как говорилось ранее, активная и реактивная электроэнергия в счетах на оплату выделяются отдельными строками. Если соотношение объемов реактивной и потребленной электроэнергии не превышает установленной нормы, то плата за реактивную энергию не начисляется. Коэффициент соотношения бывает прописан по-разному, его среднее значение составляет 0,15. При превышении данного порогового значения предприятию-потребителю рекомендуют установить компенсаторные устройства.

Реактивная энергия в многоквартирных домах

Типичным потребителем электроэнергии является многоквартирный дом с главным предохранителем, потребляющий электроэнергию свыше 63 А. Если в таком доме имеются исключительно жилые помещения, плата за реактивную электроэнергию не взимается. Таким образом, жильцы многоквартирного дома видят в начислениях оплату только за полную электроэнергию, поставленную в дом предприятием-поставщиком. Та же норма касается жилищных кооперативов.

Частные случаи учета реактивной мощности

Бывают случаи, когда в многоэтажном здании имеются и коммерческие организации, и квартиры. Поставка электроэнергии в такие дома регулируется отдельными Актами. Например, разделением могут служить размеры полезной площади. Если в многоквартирном доме коммерческие организации занимают менее половины полезной площади, то оплата за реактивную энергию не начисляется. Если пороговый процент был превышен, то возникают обязательства оплаты за реактивную электроэнергию.

В ряде случаев жилые дома не освобождаются от оплаты за реактивную энергию. Например, если в доме установлены пункты подключения лифтов для квартир, начисление за использование реактивной электроэнергии происходит отдельно, лишь для этого оборудования. Владельцы квартир по-прежнему оплачивают лишь активную электроэнергию.

что такое активная и реактивная электроэнергия

Понимание сущности активной и реактивной энергии дает возможность грамотно рассчитать экономический эффект от установки различных компенсационных устройств, снижающих потери от реактивной нагрузки. Согласно статистике, такие устройства позволяют поднимать значение cos φ от 0.6 до 0.97. Тем самым автоматические компенсаторные устройства помогают сэкономить до трети предоставляемой потребителю электроэнергии. Значительное уменьшение тепловых потерь увеличивает срок эксплуатации приборов и механизмов на производственных участках и снижает себестоимость готовой продукции.

fb.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *