Диоды. For dummies / Хабр
Введение
Диод — двухэлектродный электронный прибор, обладает различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключённый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключённый к отрицательному полюсу — катодом. (wikipedia)
Все диоды можно разделить на две большие группы: полупроводниковые и неполупроводниковые. Здесь я буду рассматривать только первую из них.
В основе полупроводникового диода лежит такая известная штука, как p-n переход. Думаю, что большинству читателей о нем рассказывали на уроках физики в школе, а кому-то более подробно еще и в институте. Однако, на всякий случай приведу общий принцип его работы.
Два слова о зонной теории проводимости твердых тел
Прежде, чем начать разговор о p-n переходе, стоит обговорить некоторые теоретические моменты.
Считается, что электроны в атоме расположены на различном расстоянии от ядра. Соответственно, чем ближе электрон к ядру, тем сильнее связь между ними и тем большую энергию надо приложить, чтобы отправить его «в свободное плаванье». Говорят, что электроны расположены на различных
Самый верхний энергетический уровень называется валентным. У большинства веществ он заполнен только частично, поэтому электроны внешних подуровней других атомов всегда могут найти на нем себе место. И они действительно хаотично мигрируют от атома к атому, осуществляя таким образом связь между ними. Нижний слой, в котором могут перемещаться свободные электроны, называют зоной проводимости. Если валентная зона частично заполнена и электроны в ней могут перемещаться от атома к атому, то она совпадает с зоной проводимости. Такая картина наблюдается у проводников. У полупроводников валентная зона заполнена целиком, но разница энергий между валентным и проводящим уровнями у них мала. Поэтому электроны могут преодолевать ее просто за счет теплового движения. А у изоляторов эта разница велика, и чтобы получить пробой, нужно приложить значительную энергию.
Такова общая картина энергетического строения атома. Можно переходить непосредственно к p-n переходу.
p-n переход
Начнем с того, что полупроводники бывают n-типа и p-типа. Первые получают легированием четырехвалентного полупроводника (чаще всего кремния) пятивалентным полупроводником (например, мышьяком). Эту пятивалентную примесь называют донором. Ее атомы образуют четыре химических связи с атомами кремния, а пятый валентный электрон остается свободным и может выйти из валентной зоны в зону проводимости, если, например, незначительно повысить температуру вещества. Таким образом, в проводнике n-типа возникает избыток электронов.
Полупроводники p-типа тоже получаются путем легирования кремния, но уже трехвалентной примесью (например, бором). Эта примесь носит название акцептора. Он может образовывать только три из четырех возможных химических связей. А оставшуюся незаполненной валентную связь принято называть дыркой. Т.е. дырка — это не реальная частица, а абстракция, принятая для более удобного описания процессов, происходящих в полупроводнике. Ее заряд полагают положительным и равным заряду электрона. Итак, в полупроводнике p-типа у нас получается избыток положительных зарядов.
В полупроводниках обоих типов кроме основных носителей заряда (электроны для n-типа, дырки для p-типа) в наибольшом количестве присутствуют неосновные носители заряда: дырки для n-области и электроны для p-области.
Если расположить рядом p- и n-полупроводники, то на границе между ними возникнет диффузный ток. Произойдет это потому, что с одной стороны у нас чересчур много отрицательных зарядов (электронов), а с другой — положительных (дырок). Соответственно, электроны будут перетекать в приграничную область p-полупроводника. А поскольку дырка — место отсутствия электрона, то возникнет ощущение, будто дырки перемещаются в противоположную сторону — к границе n-полупроводника. Попадая в p- и n-области, электроны и дырки рекомбинируют, что приводит к снижению количества подвижных носителей заряда. На этом фоне становятся ясно видны неподвижные положительно и отрицательно заряженные ионы на границах полупроводников (от которых «ушли» рекомбинировавшие дырки и электроны). В итоге получим две узкие заряженные области на границе веществ. Это и есть p-n переход, который также называют обедненным слоем из-за малой концентрации в нем подвижных носителей заряда. Естественно, что здесь возникнет электрическое поле, направление которого препятствует дальнейшей диффузии электронов и дырок. Возникает
Ширина обедненной области и контактная разность потенциалов границ перехода (потенциальный барьер) являются важными характеристиками p-n перехода.
Если приложить внешнее напряжение так, чтобы его электрическое поле «поддерживало» диффузный ток, то произойдет снижение потенциального барьера и сужение обедненной области. Соответственно, ток будет легче течь через переход. Такое подключение внешнего напряжения называют прямым смещением.
Но можно подключиться и наоборот, чтобы внешнее электрическое поле поддерживало дрейфовый ток. Однако, в этом случае ширина обедненной зоны увеличится, а потенциальный барьер возрастет. Переход «закроется». Такое подключение называют обратным смещением. Если величина приложенного напряжения превысит некоторое предельное значение, то произойдет пробой перехода, и через него потечет ток (электроны разгонятся до такой степени, что смогут проскочить через потенциальный барьер). Эта граничная величина называется напряжением пробоя.
Все, конец теории, пора перейти к ее практическому применению.
Диоды, наконец-то
Диод, по сути, одиночный p-n переход. Если он подключен с прямым смещением, то ток через него течет, а если с обратным — не течет (на самом деле, небольшой дрейфовый ток все равно остается, но этим можно пренебречь). Этот принцип показан в условном обозначении диода: если ток направлен по стрелке треугольника, то ему ничего не мешает, а если наоборот — то он «натыкается» на вертикальную линию. Эта вертикальная линия на диодах-радиоэлементах обозначается широкой полосой у края.
Помню, когда я была глупой студенткой и впервые пришла работать в цех набивки печатных плат, то сначала ставила диоды как бог на душу положит. Только потом я узнала, что правильное расположение этого элемента играет весьма и весьма значительную роль. Но это так, лирическое отступление.
Диоды имеют нелинейную вольт-амперную характеристику.
Области применения диодов
- Выпрямление пременного тока. Основано оно именно на свойстве диода «запираться» при обратном смещении. Диод как бы «срезает» отрицательные полуволны.
- В качестве переменной емкости. Эти диоды называются варикапами.
Здесь используется зависимость барьерной емкости перехода от обратного смещения. Чем больше его значение, тем шире обедненная область p-n перехода. Ее можно представить себе как плоский конденсатор, обкладками которого явялются границы области, а сама она выступает в качестве диэлектрика. Соответственно, чем толще «слой диэлеткрика», тем ниже барьерная емкость. Следовательно, изменяя приложенное напряжение можно электрически менять емкость варикапа. - Для стабилизации напряжения. Принцип работы таких диодов заключается в том, что даже при значительном увеличении внешнего падения напряжения, падение напряжения на диоде увеличится незначительно. Это справедливо и для прямого, и для обратного смещений. Однако напряжение пробоя при обратном смещении намного выше, чем прямое напряжение диода. Таким образом, если нужно поддерживать стабильным большое напряжение, то диод лучше включать обратно. А чтобы он сохранял работоспособность, несмотря на пробой, нужно использовать диод особого типа —
В прямосмещенном режиме он будет работать подобно обычному выпрямляющему диоду. А вот в обратносмещенном не будет проводить ток до тех пор, пока приложенное напряжение не достигнет так называемого напряжения стабилитрона, при котором диод сможет проводить значительный ток, а напряжение будет ограничено уровнем напряжения стабилитрона. - В качестве «ключа» (коммутирующего устройства). Такие диоды должны уметь очень быстро открываться и закрываться в зависимости от приложенного напряжения.
- В качестве детекторов излучения (фотодиоды).
Кванты света передают атомам в n-области дополнительную энергию, что приводит к появлению большого числа новых пар электрон-дырка. Когда они доходят до p-n перехода, то дырки уходят в p-область, а электроны скапливаются у края перехода. Таким образом, происходит возрастание дрейфового тока, а между p- и n-областями возникает разность потенциалов, называемая фотоЭДС. Величина ее тем больше, чем больше световой поток. - Для создания оптического излучения (светодиоды).
При рекомбинации дырок и электронов (прямое смещение) происходит переход последних на более низкий энергетический уровень. «Излишек» энергии выделяется в виде кванта энергии. И в зависимости от химического состава и свойств того или иного полупроводника, он излучает волны того или иного диапазона. От состава же зависит и эффективность излучения.
Немного экзотики
Не стоит забывать о том, что p-n переход — одно из явлений микромира, где правит балом квантовая физика и становятся возможными странные вещи. Например, туннельный эффект — когда частица может пройти через потенциальный барьер, обладая меньшей энергией. Это становится возможным благодаря неопределенности соотношения между импульсом и координатами частицы (привет, Гейзенберг!). Этот эффект лежит в основе
Чтобы обеспечить возможность «просачивания» зарядов, их делают из вырожденных полупроводников (содержащих высокую концентрацию примесей). В результате получают резкий p-n переход с тонким запирающим слоем. Такие диоды маломощные и низкоинерционные, поэтому их можно применять в СВЧ-диапазоне.
Есть еще одна необычная разновидность полупроводниковых диодов — диоды Шоттки.
В них используется не традиционный p-n переход, а переход металл-полупроводник в качестве барьера Шоттки. Барьер этот возникает в том случае, когда разнятся величины работы выхода электронов из металла и полупроводника. Если n-полупроводник имеет работу выхода меньше, чем контактирующий с ним металл, то приграничный слой металла будет заряжен отрицательно, а полупроводника — положительно (электронам проще перейти из полупроводника в металл, чем наоборот). Если же у нас контакт металл/p-полупроводник, причем работа выхода для второго выше, чем для первого, то получим положительно заряженный приграничный слой металла и отрицательно заряженный слой полупроводника. В любом случае, у нас возникнет разность потенциалов, с помощью которой работы выхода из обоих контактирующих веществ сравняются. Это приведет к возникновению равновесного состояния и формированию потенциального барьера между металлом и полупроводником. И так же, как и в случае p-n перехода, к переходу металл/полупроводник можно прикладывать прямое и обратное смещение с аналогичным результатом.
Диоды Шоттки отличаются от p-n собратьев низким падением напряжения при прямом включении и меньшей электрической емкостью перехода. Таким образом, повышается их рабочая частота и понижается уровень помех.
Заключение
Само собой, здесь рассмотрены далеко не все существующие виды диодов. Но надеюсь, что по написанному выше можно составить достаточно полное суждение об этих электронных компонетах.
Источники:
ru.wikipedia.org
mda21.ru
elementy.ru
femto.com.ua
устройство и принцип действия разных видов, работа в схемах
Диод — это элемент, имеющий различную проводимость. Такое его свойство имеет применение в различных электротехнических и радиоэлектронных схемах. На его основе создаются устройства, имеющие применение в различных областях.
Типы диодов: электровакуумные и полупроводниковые. Последний тип в настоящее время применяется в подавляющем большинстве случаев. Никогда не будет лишним знать о том, как работает диод, для чего он нужен, как обозначается на схеме, какие существуют типы диодов, применение диодов разных видов.
Электровакуумные диоды
Приборы этого типа выполнены в виде электронных ламп. Лампа выглядит как стеклянный баллон, внутрь которого помещены два электрода. Один из них анод, другой катод. Они находятся в вакууме. Конструктивно анод выполнен в виде тонкостенного цилиндра. Внутри расположен катод. Он имеет обычно цилиндрическую форму. Изолированная нить накала проложена внутри катода. Все элементы имеют выводы, которые соединены со штырьками (ножками) лампы. Ножки лампы выведены наружу.
Принцип работы
При прохождении электрического тока по спирали она нагревается и разогревает катод, внутри которого находится. С поверхности разогретого катода электроны, покинувшие его, без дополнительного ускоряющего поля накапливаются в непосредственной близости от него. Часть из них затем обратно возвращается на катод.
При подаче на анод положительного напряжения электроны, испускаемые катодом, устремляются к нему, создавая анодный ток электронов.
Катод обладает пределом эмиссии электронов. При достижении этого предела анодный ток стабилизируется. Если на анод подать небольшое отрицательное напряжение по отношению к катоду, то электроны прекратят своё движение.
Материал катода, из которого он изготовлен, обладает высокой степенью эмиссии.
Вольт- амперная характеристика (ВАХ)
ВАХ диодов этого типа графически показывает зависимость тока анода от прямого напряжения, приложенного к выводам катода и анода. Она состоит из трёх участков:
- Медленное нелинейное нарастание тока;
- Рабочая часть характеристики;
- Область насыщения тока анода.
Нелинейный участок начинается после области отсечки анодного тока. Его нелинейность связана с небольшим положительным потенциалом катода, который покинули электроны при его разогреве нитью накала.
Активный участок определяет из себя почти вертикальную линию. Он характеризует зависимость анодного тока от возрастающего напряжения.
Участок насыщения представляет собой линию постоянного значения тока анода при увеличивающемся напряжении между электродами лампы. Электронную лампу на этом участке можно сравнить с проводником электрического тока. Эмиссия катода достигла своего наивысшего значения.
Полупроводниковые диоды
Свойство p — n перехода пропускать электрический ток одного направления нашло применение при создании приборов этого типа. Прямое включение — это подача на n -область перехода отрицательного потенциала, по отношению к p -области, потенциал которой положительный. При таком включении прибор находится в открытом состоянии. При изменении полярности приложенного напряжения он окажется в запертом состоянии, и ток сквозь него не проходит.
Классификацию диодов можно вести по их назначению, по особенностям изготовления, по типу материала, используемого при его изготовлении.
В основном для изготовления полупроводниковых приборов используются пластины кремния или германия, которые имеют электропроводность n -типа. В них присутствует избыток отрицательно заряженных электронов.
Применяя разные технологии изготовления, можно на выходе получить точечные или пластинчатые диоды.
При изготовлении точечных приборов к пластинке n -типа приваривают заострённый проводник (иглу). На его поверхность нанесена определённая примесь. Для германиевых пластин игла содержит индий, для кремниевых пластин игла покрыта алюминием. В обоих случаях создаётся область p — n перехода. Её форма напоминает полусферу (точку).
Для плоскостных приборов применяют метод диффузии или сплавления. Площадь переходов, получаемых таким методом, варьируется в широких пределах. От её величины зависит в дальнейшем назначение изделия. К областям p — n перехода припаивают проволочки, которые в виде выводов из корпуса готового изделия используют при монтаже различных электрических схем.
На схемах полупроводниковые диоды обозначаются в виде равностороннего треугольника, к верхнему углу которого присоединена вертикальная черта, параллельная его основанию. Вывод черты называется катодом, а вывод основания треугольника анодом.
Прямым называется такое включение, при котором положительный полюс источника питания соединён с анодом. При обратном включении «плюс» источника подключается к катоду.
Вольт- амперная характеристика
ВАХ определяет зависимость тока, протекающего через полупроводниковый элемент, от величины и полярности напряжения, которое приложено к его выводам.
В области прямых напряжений выделяют три области: небольшого прямого тока и прямого рабочего тока через диод. Переход из одной области в другую происходит при достижении прямым напряжением порога проводимости. Эта величина составляет порядка 0,3 вольт для германиевых диодов и 0,7 вольт для диодов на основе кремния.
При приложении к выводам диода обратного напряжения ток через него имеет очень незначительную величину и называется обратным током или током утечки. Такая зависимость наблюдается до определённого значения величины обратного напряжения. Оно называется напряжением пробоя. При его превышении обратный ток нарастает лавинообразно.
Предельные значения параметров
Для полупроводниковых диодов существуют величины их параметров, которые нельзя превышать. К ним относятся:
- Максимальный прямой ток;
- Максимальное обратное напряжение пробоя;
- Максимальная мощность рассеивания.
Полупроводниковый элемент может выдержать прямой ток через него ограниченной величины. При его превышении происходит перегревание p-n перехода и выход его из строя. Наибольший запас по этому параметру имеют плоскостные силовые приборы. Величина прямого тока через них может достигать десятков ампер.
Превышение максимального значения напряжения пробоя может превратить диод, имеющий однонаправленные свойства, в обычный проводник электрического тока. Пробой может иметь необратимый характер и варьируется в широких пределах, в зависимости от конкретного используемого прибора.
Мощность — это величина, напрямую зависящая от тока и напряжения, которое приложено при этом к выводам диода. Как и превышение максимального прямого тока, превышение предельной мощности рассеивания приводит к необратимым последствиям. Диод просто выгорает и перестаёт выполнять своё предназначение. Для предотвращения такой ситуации силовые приборы устанавливают приборы на радиаторы, которые отводят (рассеивают) избыток тепла в окружающую среду.
Виды полупроводниковых диодов
Свойство диода пропускать ток в прямом направлении и не пропускать его в обратном нашло применение в электротехнике и радиотехнике. Разработаны и специальные виды диодов для выполнения узкого круга задач.
Выпрямители и их свойства
Их применение основано на выпрямительных свойствах этих приборов. Их используют для получения постоянного напряжения путём выпрямления входного переменного сигнала.
Одиночный выпрямительный диод позволяет получить на его выходе пульсирующее напряжение положительной полярности. Используя их комбинацию, можно получить форму выходного напряжения, напоминающую волну. При использовании в схемах выпрямителей дополнительных элементов, таких как электролитические конденсаторы большой емкости и катушки индуктивности с электромагнитными сердечниками (дроссели), на выходе устройства можно получить постоянное напряжение, напоминающее напряжение гальванической батареи, столь необходимое для работы большинства аппаратуры потребителя.
Полупроводниковые стабилитроны
Эти диоды имеют ВАХ с обратной ветвью большой крутизны. То есть, приложив к выводам стабилитрона напряжение, полярность которого обратная, можно с помощью ограничительных резисторов ввести его в режим управляемого лавин пробоя. Напряжение в точке лавинного пробоя имеет постоянное значение при значительном изменении тока через стабилитрон, величину которого ограничивают в зависимости от применённого в схеме прибора. Так получают эффект стабилизации выходного напряжения на нужном уровне.
Технологическими операциями при изготовлении стабилитронов добиваются различных величин напряжения пробоя (напряжения стабилизации). Диапазон этих напряжений (3−15) вольт. Конкретное значение зависит от выбранного прибора из большого семейства стабилитронов.
Принцип работы детекторов
Для детектирования высокочастотных сигналов применяют диоды, изготовленные по точечной технологии. Задача детектора состоит в том, чтобы ограничить одну половину модулированного сигнала. Это позволяет в последующем с помощью высокочастотного фильтра оставить на выходе устройства только модулирующий сигнал. Он содержит звуковую информацию низкой частоты. Этот метод используется в радиоприёмных устройствах, принимающих сигнал, модулированный по амплитуде.
Особенности светодиодов
Эти диоды характеризуются тем, что при протекании через них тока прямого направления кристалл испускает поток фотонов, которые являются источником света. В зависимости от типа кристалла, применённого в светодиоде, спектр света может находиться как в видимом человеческим глазом диапазоне, так и в невидимом. Невидимый свет — это инфракрасное или ультрафиолетовое излучение.
При выборе этих элементов необходимо представлять цель, которую необходимо достигнуть. К основным характеристикам светодиодов относятся:
- Потребляемая мощность;
- Номинальное напряжение;
- Ток потребления.
Ток потребления светодиода, применяемого для индикации в устройствах широкого применения, не более 20 мА. При таком токе свечение светодиода является оптимальным. Начало свечения начинается при токе, превышающем 3 мА.
Номинальное напряжение определяется внутренним сопротивлением перехода, которое является величиной непостоянной. При увеличении тока через светодиод сопротивление постепенно уменьшается. Напряжение источника питания, используемое для питания светодиода, необходимо применять не меньше напряжения, указанного в паспорте на него.
Потребляемая мощность — это величина, зависящая от тока потребления и номинального напряжения. Она увеличивается при увеличении величин, её определяющих. Следует учесть, что мощные световые диоды могут иметь в своём составе 2 и даже 4 кристалла.
Перед другими осветительными приборами светодиоды имеют неоспоримые преимущества. Их можно перечислять долго. Основными из них являются:
- Высокая экономичность;
- Большая долговечность;
- Высокий уровень безопасности из-за низких питающих напряжений.
К недостатку их эксплуатации относится необходимость наличия дополнительного стабилизированного источника питания постоянного тока, а это увеличивает стоимость.
Что такое диод и как его проверить
Приветствую друзья!
Мы настолько привыкли к компьютерам, что не представляем своей жизни без них. Эти жужжащие ящики на наших столах собраны из множества различных «железок». Интересно отметить, что ни один из этих составных «кирпичиков» сам по себе не может похвастаться теми свойствами, которыми обладает компьютер.
А собранные вместе, они являют собой нечто совершенно уникальное!
Какой кирпич не возьми – это только кусок обожженной глины; не сразу и понятно, к какому делу его – самого по себе — можно приспособить.
Это как дом, построенный из кирпичей.
Но несколько тысяч собранных определенным образом таких кусков глины — это жилище, которое защищает от непогоды и предоставляет крышу над головой.
Разумеется, можно пользоваться компьютером (и жить в доме) и не представлять себе, как эти штуки устроены.
Но если вы хотите научиться «лечить» ваши компьютеры, то придется разбираться, как устроены их составные части.
Поэтому сегодня мы поговорим об одном из компьютерных «кирпичиков» чуть более подробно. Мы попытаемся кратко познакомиться с тем, что такое полупроводниковые диоды и зачем они нужны.
Что такое диод?
Диоды применяются в компьютерных блоках питания для выпрямления переменного тока.
Выпрямительный диод – это деталь, имеющая в своем составе соединенные вместе полупроводники двух типов – p-типа (positive – положительный) и n–типа (negative – отрицательный).
При их соединении (сплавлении) образуется так называемый p-n переход. Этот переход обладает разным сопротивлением при различной полярности приложенного напряжения.
Если напряжение приложено в прямом направлении (положительная клемма источника напряжения подключена к p-полупроводнику — аноду, а отрицательная – к n-полупроводнику — катоду), то сопротивление диода невелико.
В этом случае говорят, что диод открыт. Если полярность подключения изменить на противоположную, то сопротивление диода будет очень большим. В таком случае говорят, что диод закрыт (заперт).
Когда диод открыт, то на нем падает какое-то напряжение.
Это падение напряжения создается протекающим через диод так называемым прямым током и зависит от величины этого тока.
Причем зависимость эта нелинейная.
Конкретное значение падения напряжения в зависимости от протекающего тока можно определить по вольт-амперной характеристике.
Эта характеристика обязательно приводится в полном техническом описании (data sheets, справочных листах).
Например, на распространенном диоде 1N5408, применяемом в компьютерном блоке питания, при изменении тока от 0,2 до 3 А падение напряжения изменяется от 0,6 до 0,9 В. Чем больше протекающий через диод ток, тем больше падение напряжения на нем и, соответственно, рассеиваемая на нем мощность (P = U * I). Чем большая мощность рассеивается на диоде, тем сильнее он греется.
Мостовая схема выпрямления
В компьютерном блоке питания при выпрямлении сетевого напряжения применяется обычно мостовая схема выпрямления – 4 диода, включенные определенным образом.
Если клемма 1 имеет положительный относительно клеммы 2 потенциал, то ток пойдет через диод VD1, нагрузку и диод VD3.
Если клемма 1 имеет отрицательный клеммы 2 потенциал, то ток потечет через диод VD2, нагрузку и диод VD4. Таким образом, ток через нагрузку хоть и меняется по величине (при переменном напряжении), но протекает всегда в одном направлении – от клеммы 3 к клемме 4.
В этом и заключается эффект выпрямления. Если бы не было диодного моста – ток по нагрузке протекал бы в разных направлениях. С мостом же он протекает в одном. Такой ток называется пульсирующим.
В курсе высшей математики доказывается, что пульсирующее напряжение содержит в себе постоянную составляющую и сумму гармоник (частот, кратных основной частоте переменного напряжения 50 Герц). Постоянная составляющая выделяется фильтром (конденсатором большой емкости), который не пропускает гармоники.
Схема выпрямления из двух диодов
Выпрямительные диоды присутствуют и в низковольтной части блока питания. Только схема включения состоит там не из 4-х диодов, а из двух.Внимательный читатель может спросить: «А почему это используются разные схемы включения? Нельзя ли применить диодный мост и в низковольтной части?»
Можно, но это будет не лучшее решение. В случае диодного моста ток проходит через нагрузку и два последовательно включенных диода.
В случае использования диодов 1N5408 общее падение напряжения на них может составить величину 1,8 В. Это очень немного по сравнению с сетевым напряжением 220 В.
А вот если такая схема будет применена в низковольтной части, то это падение будет весьма заметным по сравнению с напряжениями +3,3, +5 и +12 В. Применение схемы из двух диодов уменьшает потери вдвое, так как последовательно с нагрузкой включен один диод, а не два.
К тому же, ток во вторичных цепях блока питания гораздо больше (в разы), чем в первичной.
Следует отметить, для этой схемы трансформатор должен иметь две одинаковые обмотки, а не одну. Схема выпрямления из двух диодов использует оба полупериода переменного напряжения, также как и мостовая.
Если потенциал верхнего конца вторичной обмотки трансформатора (см схему) положителен по отношению к нижнему, то ток протекает через клемму 1, диод VD1, клемму 3, нагрузку, клемму 4 и среднюю точку обмотки. Диод VD2 в это время заперт.
Если потенциал нижнего конца вторичной обмотки положителен по отношению к верхнему, то ток протекает через клемму 2, диод VD2, клемму 3, нагрузку, клемму 4 и среднюю точку обмотки. Диод VD1 в это время заперт. Получается тот же пульсирующий ток, что и при мостовой схеме.
Теперь давайте покончим со скучной теорией и перейдем к самому интересному – к практике.
Проверка диодов
Для начала скажем, что перед началом проверки диодов, хорошо бы ознакомиться с тем, как работать с цифровым тестером.
Об этом рассказывается в соответствующих статьях здесь, здесь и здесь.
Диод на электрических схемах изображается символически в виде треугольника (стрелочки) и палочки.
Палочка – это катод, стрелочка (она указывает направление тока, т.е. движения положительных зарядов) – анод.
Проверить диодный мост можно цифровым тестером, установив переключатель работы в положении проверки диодов (указатель переключателя диапазонов тестера должен стоять напротив символического изображения диода).
Если присоединить красный щуп тестера к аноду, а черный — к катоду отдельного диода, то диод будет открыт напряжением с тестера.
Дисплей покажет величину 0,5 – 0,6 В.
Если изменить полярность щупов, диод будет заперт.
Дисплей при этом покажет единицу в крайнем левом разряде.
Диодный мост часто имеет символическое обозначение вида напряжения на корпусе (~ переменное напряжение, +, — постоянное напряжение).
Диодный мост можно проверить, установив один щуп на одну из клемм «~», а второй – поочередно на выводы «+» и «-».
При этом один диод будет открыт, а другой закрыт.
Если поменять полярность щупов – то тот диод, который был закрыт, теперь откроется, а другой закроется.
Следует обратить внимание на то, что катод – это плюсовой вывод моста.
Если какой-то из диодов закорочен, тестер покажет нулевое (или очень небольшое напряжение).
Такой мост, естественно, непригоден для работы.
В закоротке диода можно убедиться, если тестировать диоды в режиме измерения сопротивления.
При закороченном диоде тестер покажет небольшое сопротивление в обоих направлениях.
Как уже говорилось, во вторичных цепях используется схема выпрямления из двух диодов.
Но даже на одном диоде падает достаточно большое напряжение по сравнению с выходными напряжениями +12 В, +5 В, +3,3 В.
Токи потребления могут достигать 20 А и более, и на диодах будет рассеиваться большая мощность.
Вследствие этого они будут сильно греться.
Мощность рассеяния уменьшится, если будет меньшим прямое напряжение на диоде.
Поэтому в таких случаях применяют так называемые диоды Шоттки, у которых прямое падение напряжения меньше.
Диоды Шоттки
Диод Шоттки состоит не из двух различных полупроводников, а из металла и полупроводника.
Получающийся при этом так называемый потенциальный барьер будет меньше.
В компьютерных блоках питания применяют сдвоенные диоды Шоттки в трехвыводном корпусе.
Типичным представителем такой сборки является SBL2040. Падение напряжения на каждом из ее диодов при максимальном токе не превысит (по даташиту) 0,55 В. Если проверить ее тестером (в режиме проверки диодов), то он покажет величину около 0,17 В.
Меньшая величина напряжения обусловлена тем, что через диод протекает очень небольшой ток, далекий от максимального.
В заключение скажем, что у диода есть такой параметр, как предельно допустимое обратное напряжение. Если диод заперт – к нему приложено обратное напряжение. При замене диодов надо учитывать эту величину.
Если в реальной схеме обратное напряжение превысит предельно допустимое – диод выйдет из строя!
Диод – важная «железка» в электронике. Чем бы еще мы выпрямляли напряжение?
Купить диоды для экспериментов можно здесь:
До встречи на блоге!
определение, особенности, схема и применение :: SYL.ru
Что такое диод? Это элемент, получивший различную проводимость. Она зависит от того, как именно течет электрический ток. Применение устройства зависит от цепи, которой нужно ограничение следования данного элемента. В этой статье мы расскажем об устройстве диода, а также о том, какие виды существуют. Рассмотрим схему и то, где применяются эти элементы.
История появления
Так вышло, что работать над созданием диодов стало сразу два ученых: британец и немец. Следует заметить, что их открытия немного отличались. Первый основал изобретение на ламповых триодах, а второй — на твердотельных.
К сожалению, в то время наука не смогла сделать прорыв в этой сфере, однако для размышлений было дано очень много поводов.
Через несколько лет снова были открыты диоды (формально). Томас Эдисон запатентовал это изобретение. К сожалению, во всех своих работах при жизни это ему не пригодилось. Поэтому подобную технологию развивали другие ученые в разные годы. До начала XX века эти изобретения были названы выпрямителями. И только спустя время Вильям Иклз использовал два слова: di и odos. Первое слово переводится как два, а второе – путь. Язык, на котором было дано название, является греческим. И если переводить выражение полностью, то «диод» означает «два пути».
Принцип работы и основные сведения о диодах
Диод в своем строении имеет электроды. Речь идет об аноде и катоде. Если первый имеет положительный потенциал, то диод называется открытым. Таким образом, сопротивление становится маленьким, а ток проходит. Если же потенциал положительный имеется у катода, то диод не раскрыт. Он не пропускает электрический ток и имеет большой показатель сопротивления.
Как устроен диод
В принципе, что такое диод, мы разобрались. Теперь нужно понять, как он устроен.
Корпус зачастую изготавливается из стекла, металла или же керамики. Чаще всего вместо последней используются определенные соединения. Под корпусом можно заметить два электрода. Наиболее простой будет иметь нить небольшого диаметра.
Внутри катода располагается проволока. Она считается подогревателем, так как имеет в своих функциях подогрев, который совершается по законам физики. Нагревается диод за счет работы электрического тока.
При изготовлении также используется кремний или германий. Одна сторона прибора имеет нехватку электродов, вторая — их переизбыток. За счет этого создаются специальные границы, которые обеспечивает переход типа p-n. Благодаря ему ток проводится в том направлении, в котором это необходимо.
Характеристики диодов
Диод на схеме уже показан, теперь следует узнать, на что нужно обращать внимание при покупке устройства.
Как правило, покупатели ориентируются только по двум нюансам. Речь идет о максимальной силе тока, а также обратном напряжении на максимальных показателях.
Использование диодов в быту
Довольно часто диоды используют в автомобильных генераторах. То, какой диод выбрать, следует решать самому. Нужно заметить, что в машинах используются комплексы из нескольких приборов, которые признаны называться диодным мостом. Нередко подобные устройства встраиваются в телевизоры и в приемники. Если использовать их вместе с конденсаторами, то можно добиться выделения частот и сигналов.
Для того чтобы защитить потребителя от электрического тока, нередко в устройства встраивается комплекс из диодов. Такая система защиты считается довольно действенной. Также нужно сказать, что блок питания чаще всего у любых приборов использует такое устройство. Таким образом, светодиодные диоды сейчас довольно распространены.
Виды диодов
Рассмотрев, что такое диод, необходимо подчеркнуть, какие виды существуют. Как правило, приборы делятся на две группы. Первой считается полупроводниковая, а вторая не полупроводниковой.
На данный момент популярной является первая группа. Название связано с материалами, из которых такое устройство изготовлено: либо из двух полупроводников, либо из обычного металла с полупроводником.
На данный момент разработан ряд особых видов диодов, которые используются в уникальных схемах и приборах.
Диод Зенера, или стабилитрон
Этот вид используется в стабилизации напряжения. Дело в том, что такой диод при возникновении пробоя резко увеличивает ток, при этом точность максимально большая. Соответственно, характеристики диода такого типа довольно удивительны.
Туннельный
Если простыми словами объяснить, что это за диод, то следует сказать, что этот вид создает отрицательный тип сопротивления на вольт-амперных характеристиках. Зачастую такое приспособление используется в генераторах и усилителях.
Обращенный диод
Если говорить о данном типе диодов, то это устройство может изменять напряжение в минимальную сторону, работая в открытом режиме. Это устройство является аналогом диода тоннельного типа. Хоть и работает оно немного по другому признаку, но основано оно именно на вышеописанном эффекте.
Варикап
Данное устройство является полупроводниковым. Оно характеризуется тем, что имеет повышенную емкость, которой можно управлять. Зависит это от показателей обратного напряжения. Нередко такой диод применяется при настройке и калибровке контуров колебательного типа.
Светодиод
Данный тип диода излучает свет, но только в том случае, если ток течет в прямом направлении. Чаще всего именно это устройство используется везде, где следует создать освещение при минимальных затратах электроэнергии.
Фотодиод
Данное устройство имеет полностью обратные характеристики, если говорить о предыдущем описанном варианте. Таким образом, он вырабатывает заряды, только если на него попадает свет.
Маркировка
Нужно заметить, что особенностью всех устройств является то, что на каждом из элементов имеется специальное обозначение. Благодаря им, можно узнать характеристику диода, если он относится к полупроводниковому типу. Корпус состоит из четырех составных частей. Теперь следует рассмотреть маркировку.
На первом месте всегда будет стоять буква или цифра, которая говорит о материале, из которого изготовлен диод. Таким образом, параметры диода будет узнать несложно. Если указана буква Г, К, А или И, то это означает германий, кремний, арсенид галлия и индий. Иногда вместо них могут указываться цифры от 1 до 4 соответственно.
На втором месте будет указываться тип. Он также имеет разные значения и свои характеристики. Могут быть выпрямительные блоки (Ц), варикапы (В), туннельные (И) и стабилитроны (С), выпрямители (Д), сверхвысокочастотные (А).
Предпоследнее место занимает цифра, которая будет указывать на область, в которой применяется диод.
На четвертом месте будет установлено число от 01 до 99. Оно будет указывать на номер разработки. Помимо этого, на корпус производитель может наносить различные обозначения. Однако, как правило, их используют только на устройствах, создаваемых для определенных схем.
Для удобства диоды могут маркироваться графическими изображениями. Речь идет о точках, полосках. Логики в данных рисунках нет никакой. Поэтому для того, чтобы понять, что имел в виду производитель, придется ознакомиться с инструкцией.
Триоды
Этот вид электродов является аналогом диода. Что такое триод? Он немного по комплексу своему похож на описываемые выше устройства, однако имеет другие функции и конструкцию. Основное различие между диодом и триодом будет заключаться в том, что у него есть три вывода, и чаще всего его самого называют транзистором.
Принцип работы рассчитана на то, что, используя небольшой сигнал, будет выводиться ток в цепь. Диоды и транзисторы используются практически в каждом устройстве, которое имеет электронный тип. Речь идет также и о процессорах.
Плюсы и минусы
Лазерный диод, как и любой другой, имеет преимущества и недостатки. Для того чтобы подчеркнуть достоинства данных устройств, необходимо их конкретизировать. Помимо этого, составим и небольшой список минусов.
Из плюсов следует отметить небольшую стоимость диодов, отличный ресурс работы, высокий показатель службы эксплуатации, еще можно использовать данные устройства при работе с переменным током. Также нужно отметить небольшие размеры, которые позволяют размещать устройства на любой схеме.
Что касается минусов, то нужно выделить, что не существует на данный момент устройств полупроводникового типа, которые можно использовать в приборах с высоким напряжением. Именно поэтому придется встраивать старые аналоги. Также нужно заметить, что на диоды очень пагубно сказываются высокая температура. Она сокращает срок эксплуатации.
Немного интересных сведений о диодах
Первые экземпляры имели совершенно небольшую точность. Именно поэтому характеристики устройств были довольно плохими. Лампы-диоды приходилось распаковывать. Что же это означает? Некоторые устройства могли получать совершенно разные свойства, даже изготовленные в одной партии. После отсева негодных приспособлений элементы проходили маркировку, в которой описывались их реальные характеристики.
Все диоды, которые изготовлены из стекла, получили особенность: они чувствительны к свету. Таким образом, если прибор может открываться, то есть имеет крышку, то вся схема будет работать совершенно по-разному, в зависимости от того, открыто пространство для света или закрыто.
Что такое диод? (с картинками)
Проще говоря, диод похож на односторонний клапан, который позволяет электрическому току течь в одном направлении, но обычно не позволяет ему течь в противоположном направлении. Направление электрического тока в диоде может быть обратным. Однако даже если это так, поток все равно будет однонаправленным.
Диоды используются для направления электрического тока.Диод содержит два электрода, которые действуют примерно так же, как полупроводники. Положительный или p-тип обычно является анодом, а отрицательный или n-тип — катодом. Другими словами, катод заряжен отрицательно по сравнению с анодом. Если катод заряжен при таком же или очень близком напряжении к аноду, ток не будет течь.
Ток — это движение электрического заряда.В электронике диод действует аналогично носителям заряда. Диоды также можно сравнить с обратными клапанами или переключателями. Если бы вместо потока была задействована жидкость или вода, это было бы похоже на воду, текущую вверх или вниз по потоку. Проще говоря, диод имеет тенденцию допускать поток от входа к потоку, но не наоборот.
Чтобы изменить направление потока, катод должен заряжаться более высоким напряжением, чем анод. Это называется лавинным напряжением, но, несмотря на название, не всегда требуется большое количество вольт для изменения направления.На самом деле это может быть разница всего в несколько вольт.
Диод может преобразовывать электрический ток из переменного в постоянный или из переменного тока в постоянный. Это называется выпрямлением, и выпрямительные диоды чаще всего используются в слаботочных источниках питания.Переключающий диод чаще всего используется для включения или выключения схемы, а переключающие диоды используются для переключения сигналов высокочастотной полосы. Стабилитрон известен как диод постоянного напряжения, потому что даже если напряжение источника питания меняется, напряжение стабилитрона остается на постоянном уровне. Диод с барьером Шоттки, когда он используется для высокоскоростного переключения, а не для основного выпрямления, используется для таких вещей, как УВЧ и другие высокочастотные сигналы.
Диод может использоваться для различных целей, включая создание различных сигналов, таких как аналоговый сигнал, частоты, такие как микроволновые частоты, или свет.Те, которые излучают свет, известны как светоизлучающие диоды или светодиоды. Этот тип диода излучает свет, когда через него течет ток. Светодиоды используются для таких вещей, как освещенные элементы в компьютерных системах, часах, дисплеях на микроволновых печах и электронике, солнечном освещении и даже в некоторых более современных конструкциях рождественских огней.
.Что такое диод? < Основы и история диодов > | Основы электроники
Сказка о диоде
Ниже мы собрали некоторые истории и принципы создания диодов. Если вы чувствуете, что это необходимо, взгляните на него, чтобы освежить память. «Ну, я уже знал это!» некоторые из вас думают, и если это так, не стесняйтесь пропустить этот раздел. Прежде чем мы перейдем к некоторым свойствам и основам диодов, давайте поговорим об эффекте Эдисона.
Эффект Эдисона возникает, когда электроны перетекают от нагретого элемента к более холодной металлической пластине в вакууме.Когда Эдисон обнаружил это, он действительно не видел в этом применения, но все равно пошел дальше и запатентовал. Эдисон запатентовал все, что было видно. Сегодня для описания этого эффекта используется более описательный термин «термоэлектронная эмиссия».
Теперь у эффекта Эдисона есть интересная особенность. Электроны могут течь только в одну сторону. Только от горячего элемента к прохладной тарелке, а не наоборот. Хорошим сравнением будет вода, протекающая через обратный клапан. Мы называем устройства, которые пропускают электричество только в одном направлении, диодами.
Перед вакуумной трубкой
Выпрямительные свойства и эффект Эдисона были обнаружены в двухполюсной вакуумной лампе в 1884 году. За восемь лет до этого в 1876 году был обнаружен выпрямляющий эффект селена. История использования свойств полупроводников для создания диодов, обладающих выпрямляющими эффектами, очень велика. старый. В это трудно поверить, но история полупроводников началась раньше, чем возникла электронная лампа!
От германия к кремнию
В первых примитивных диодах, таких как селеновый выпрямитель или кристаллические детекторы, использовались пириты железа и галенит, а также другие природные оксиды меди (поликристаллические полупроводники).По мере развития технологий очистки мы вступили в эпоху, когда высокочувствительные монокристаллические полупроводники можно было производить с надежностью. Возраст германия и кремния. За это время мы узнали, что германий имеет низкую термостойкость, и поэтому в современном мире большинство полупроводников производится из кремния.
Выпрямление от PN-перехода
Диодный элемент состоит из структуры, называемой pn переходом. Вывод, прикрепленный к полупроводнику p-типа, называется анодом, а вывод, прикрепленным к полупроводнику n-типа, называется катодом.Ток может течь от анода к катоду, но почти полностью предотвращается его протекание в обратном направлении. Это явление называется выпрямлением, и, проще говоря, оно преобразует переменный ток в однонаправленный.
Модель диода
Условное обозначение электрической схемы диода
Другими словами, диод — это клапан!
Как упоминалось ранее, если вы представите себе изображение, которое иллюстрирует действие диода, вы можете представить его как «клапан» для электрического тока.Если представить электрический ток как текущую воду, анод можно рассматривать как входную сторону, а катод — выходную сторону. Вода течет от входа к выходу (или, я бы сказал, электрического тока), но «клапан» не позволяет ему течь из нижнего потока в верхний. Это принцип работы диода.
● Клапан открыт и течет электричество
(прямое направление)
● Клапан закрыт и электричество не подается
(в обратном направлении)
Множество типов соединений
Сегодняшние диоды можно разделить на две основные классификации через переходы: pn переход и переход с барьером Шоттки.Первый — это переход полупроводник-полупроводник, и этот тип перехода можно далее разделить на переходы диффузионного типа и переходы меза-типа. Последний использует эффекты, возникающие между полупроводником и металлом, и на самом деле не является переходом с точки зрения диодов.
Однако, чтобы было легче понять, здесь он будет считаться перекрестком. В настоящее время диод с барьером Шоттки известен своим низким энергопотреблением и высокими скоростями, и ROHM делает большие успехи в своей серии диодов с барьером Шоттки.
Характеристики прямого смещения и характеристики обратного смещения
Диод имеет два электрода: анод и катод. Анод — это (+) вывод, а катод — (-) вывод. Характеристики диода, когда ток течет от анода к катоду, называются характеристиками прямого смещения, а VF и IF являются примерами этих характеристик. И наоборот, если на анод подается напряжение (-), а на катод — напряжение (+), ток через диод не протекает.Характеристики в это время называются характеристиками обратного смещения, а VR и IR являются примерами этих характеристик.
Диоды .диодов — learn.sparkfun.com
Добавлено в избранное Любимый 57Введение
После того, как вы перейдете от простых пассивных компонентов, таких как резисторы, конденсаторы и катушки индуктивности, пора перейти в чудесный мир полупроводников. Одним из наиболее широко используемых полупроводниковых компонентов является диод.
В этом уроке мы рассмотрим:
- Что такое диод !?
- Теория работы диодов
- Важные свойства диода
- Диоды разные
- Как выглядят диоды
- Типичные применения диодов
Рекомендуемая литература
Некоторые концепции в этом руководстве основаны на предыдущих знаниях в области электроники.Прежде чем переходить к этому руководству, подумайте о том, чтобы сначала прочитать (по крайней мере, бегло просмотреть) следующие:
Что такое схема?
Каждый электрический проект начинается со схемы. Не знаю, что такое схема? Мы здесь, чтобы помочь.
Что такое электричество?
Мы можем видеть электричество в действии на наших компьютерах, освещающее наши дома, как удары молнии во время грозы, но что это такое? Это непростой вопрос, но этот урок прольет на него некоторый свет!
Как пользоваться мультиметром
Изучите основы использования мультиметра для измерения целостности цепи, напряжения, сопротивления и тока.
Хотите изучить различные диоды?
Идеальные диоды
Ключевая функция диода ideal заключается в управлении направлением потока тока. Ток, проходящий через диод, может идти только в одном направлении, называемом прямым направлением. Ток, пытающийся течь в обратном направлении, заблокирован. Они похожи на односторонний клапан электроники.
Если напряжение на диоде отрицательное, ток не может течь *, и идеальный диод выглядит как разомкнутая цепь.В такой ситуации говорят, что диод от или с обратным смещением .
Пока напряжение на диоде не отрицательное, он «включается» и проводит ток. В идеале * диод будет действовать как короткое замыкание (0 В на нем), если он проводит ток. Когда диод проводит ток, он смещен в прямом направлении (жаргон электроники означает «включено»).
Соотношение тока и напряжения идеального диода. Любое отрицательное напряжение дает нулевой ток — разрыв цепи.Пока напряжение неотрицательно, диод выглядит как короткое замыкание.
Характеристики идеального диода | ||
Рабочий режим | Вкл. (Смещение в прямом направлении) | Выкл. (Смещение в обратном направлении) |
---|---|---|
Проходной ток | I> 0 | I = 0 |
Напряжение в поперечном направлении | В = 0 | В |
Диод выглядит как | Короткое замыкание | Обрыв цепи |
Обозначение цепи
Каждый диод имеет две клеммы, — соединения на каждом конце компонента — и эти клеммы поляризованы , что означает, что эти две клеммы совершенно разные.Важно не перепутать соединения на диоде. Положительный конец диода называется анодом , а отрицательный конец называется катодом . Ток может течь от конца анода к катоду, но не в другом направлении. Если вы забыли, в каком направлении протекает ток через диод, попробуйте вспомнить мнемоническое обозначение ACID : «анодный ток в диоде» (также анодный катод — это диод ).
Обозначение цепи стандартного диода представляет собой треугольник, соприкасающийся с линией.Как мы расскажем позже в этом руководстве, существует множество типов диодов, но обычно их обозначение схемы будет выглядеть примерно так:
Вывод, входящий в плоский край треугольника, представляет собой анод. Ток течет в направлении, указанном треугольником / стрелкой, но не может идти в обратном направлении.
Выше приведены несколько простых примеров схем диодов. Слева диод D1 смещен в прямом направлении и позволяет току течь по цепи.По сути это похоже на короткое замыкание. Справа диод D2 имеет обратное смещение. Ток не может течь по цепи, и она выглядит как разомкнутая цепь.
* Внимание! Звездочка! Не совсем так … К сожалению, идеального диода не существует. Но не волнуйтесь! Диоды действительно настоящие, у них просто есть несколько характеристик, которые заставляют их работать немного хуже, чем наша идеальная модель …
Реальные характеристики диода
В идеале , диоды будут блокировать любой ток, текущий в обратном направлении, или просто действовать как короткое замыкание, если ток идет вперед.К сожалению, реальное поведение диодов не совсем идеальное. Диоды действительно потребляют некоторое количество энергии при проведении прямого тока, и они не будут блокировать весь обратный ток. Реальные диоды немного сложнее, и все они имеют уникальные характеристики, которые определяют, как они на самом деле работают.
Взаимосвязь тока и напряжения
Наиболее важной характеристикой диода является его вольт-амперная зависимость ( i-v ). Это определяет, какой ток проходит через компонент, учитывая, какое напряжение на нем измеряется.Резисторы, например, имеют простую линейную зависимость i-v … Закон Ома. Кривая i-v диода, однако, не является линейной для . Выглядит это примерно так:
Соотношение тока и напряжения диода. Чтобы преувеличить несколько важных моментов на графике, масштабы как в положительной, так и в отрицательной половине не равны.
В зависимости от приложенного к нему напряжения диод будет работать в одном из трех регионов:
- Прямое смещение : Когда напряжение на диоде положительное, диод включен, и ток может проходить через него.Напряжение должно быть больше прямого напряжения (V F ), чтобы ток был значительным.
- Обратное смещение : это режим «выключения» диода, когда напряжение меньше V F , но больше -V BR . В этом режиме протекание тока (в основном) заблокировано, а диод выключен. очень небольшой ток (порядка нА), называемый обратным током насыщения, может протекать через диод в обратном направлении.
- Пробой : Когда напряжение, приложенное к диоду, очень большое и отрицательное, большой ток может течь в обратном направлении, от катода к аноду.
прямое напряжение
Чтобы «включиться» и провести ток в прямом направлении, диод требует приложения определенного количества положительного напряжения. Типичное напряжение, необходимое для включения диода, называется прямым напряжением (V F ).Его также можно назвать либо , , либо , .
Как мы знаем из кривой i-v , сквозной ток и напряжение на диоде взаимосвязаны. Больший ток означает большее напряжение, меньшее напряжение означает меньший ток. Однако, как только напряжение приближается к номинальному прямому напряжению, большое увеличение тока по-прежнему должно означать лишь очень небольшое увеличение напряжения. Если диод полностью проводящий, обычно можно предположить, что напряжение на нем соответствует номинальному прямому напряжению.
Мультиметр с диодной настройкой можно использовать для измерения (минимального) прямого падения напряжения на диоде.Конкретный диод V F зависит от того, из какого полупроводникового материала он сделан. Обычно кремниевый диод имеет напряжение V F около 0,6–1 В . Диод на основе германия может быть ниже, около 0,3 В. Диод типа также имеет некоторое значение для определения прямого падения напряжения; светоизлучающие диоды могут иметь гораздо больший V F , в то время как диоды Шоттки специально разработаны, чтобы иметь гораздо более низкое, чем обычно, прямое напряжение.
Напряжение пробоя
Если к диоду приложить достаточно большое отрицательное напряжение, он поддается и позволяет току течь в обратном направлении. Это большое отрицательное напряжение называется напряжением пробоя . Некоторые диоды на самом деле предназначены для работы в области пробоя, но для большинства нормальных диодов не очень полезно подвергаться воздействию больших отрицательных напряжений.
Для нормальных диодов это напряжение пробоя составляет от -50 В до -100 В или даже более отрицательное.
Таблицы данных диодов
Все вышеперечисленные характеристики должны быть подробно описаны в даташите на каждый диод. Например, в этом техническом описании диода 1N4148 указано максимальное прямое напряжение (1 В) и напряжение пробоя (100 В) (среди множества другой информации):
Таблица данных может даже представить вам очень знакомый график вольт-амперной характеристики, чтобы более подробно описать поведение диода. Этот график из таблицы данных диода увеличивает изогнутую переднюю часть кривой i-v .Обратите внимание, как больший ток требует большего напряжения:
Эта таблица указывает на еще одну важную характеристику диода — максимальный прямой ток. Как и любой другой компонент, диоды могут рассеивать только определенное количество энергии, прежде чем они взорвутся. На всех диодах должен быть указан максимальный ток, обратное напряжение и рассеиваемая мощность. Если диод подвергается большему напряжению или току, чем он может выдержать, ожидайте, что он нагреется (или, что еще хуже: расплавится, задымится, …).
Некоторые диоды хорошо подходят для больших токов — 1 А или более — другие, такие как малосигнальный диод 1N4148, показанный выше, могут подходить только для тока около 200 мА.
Этот 1N4148 — лишь крошечная выборка всех существующих типов диодов. Далее мы исследуем, какое удивительное разнообразие существует и для какой цели служит каждый тип.
Типы диодов
Нормальные диоды
Диоды сигнальные
Стандартные сигнальные диоды являются одними из самых простых, средних и простых членов семейства диодов. Обычно они имеют средне-высокое прямое падение напряжения и низкий максимальный ток.Типичный пример сигнального диода — 1N4148.
Очень общего назначения, он имеет типичное прямое падение напряжения 0,72 В и максимальный номинальный прямой ток 300 мА.
Слабосигнальный диод, 1N4148. Обратите внимание на черный кружок вокруг диода, который отмечает, какой из выводов является катодом.
Силовые диоды
Выпрямитель или силовой диод — стандартный диод с гораздо более высоким максимальным током.Этот более высокий номинальный ток обычно достигается за счет большего прямого напряжения. 1N4001 — это пример силового диода.
1N4001 имеет номинальный ток 1 А и прямое напряжение 1,1 В.
Диод 1N4001 PTH. На этот раз серая полоса указывает, какой вывод является катодом.
И, конечно же, большинство типов диодов также выпускаются для поверхностного монтажа. Вы заметите, что у каждого диода есть способ (независимо от того, насколько он крошечный или плохо различимый), чтобы указать, какой из двух контактов является катодом.
Светодиоды (светодиоды!)
Самым ярким представителем семейства диодов должен быть светоизлучающий диод (LED). Эти диоды буквально загораются при подаче положительного напряжения.
Несколько сквозных светодиодов. Слева направо: желтый 3 мм, синий 5 мм, зеленый 10 мм, сверхяркий красный 5 мм, RGB 5 мм и синий 7-сегментный светодиод.Как и обычные диоды, светодиоды пропускают ток только в одном направлении. Они также имеют номинальное прямое напряжение, то есть напряжение, необходимое для их включения.Рейтинг V F светодиода обычно больше, чем у обычного диода (1,2 ~ 3 В), и это зависит от цвета, излучаемого светодиодом. Например, номинальное прямое напряжение сверхяркого синего светодиода составляет около 3,3 В, а для сверхяркого красного светодиода такого же размера — всего 2,2 В.
Очевидно, вы чаще всего найдете светодиоды в осветительных приборах. Они веселые и веселые! Но более того, их высокая эффективность привела к широкому использованию в уличных фонарях, дисплеях, подсветке и многом другом.Другие светодиоды излучают свет, невидимый человеческому глазу, например, инфракрасные светодиоды, которые являются основой большинства пультов дистанционного управления. Другое распространенное использование светодиодов — оптическая изоляция опасной высоковольтной системы от низковольтной цепи. Оптоизоляторы соединяют инфракрасный светодиод с фотодатчиком, который пропускает ток при обнаружении света от светодиода. Ниже приведен пример схемы оптоизолятора. Обратите внимание, как схематический символ диода отличается от обычного диода. Светодиодные символы добавляют пару стрелок, выходящих из символа.
Диоды Шоттки
Другой очень распространенный диод — диод Шоттки.
Диод Шоттки
В наличии COM-10926Диоды Шоттки известны своим низким прямым падением напряжения и очень быстрым переключением. Этот диод Шоттки 1 А 40 В равен…
. 1Полупроводниковый состав диода Шоттки немного отличается от обычного диода, и это приводит к значительно меньшему на прямому падению напряжения , которое обычно находится между 0.15В и 0,45В. Однако они все равно будут иметь очень большое напряжение пробоя.
Диоды Шотткиособенно полезны для ограничения потерь, когда каждый последний бит напряжения должен быть сброшен. Они достаточно уникальны, чтобы получить собственное обозначение схемы с парой изгибов на конце катодной линии.
Стабилитроны
Стабилитрон— это странный изгой из семейства диодов. Обычно они используются, чтобы намеренно проводить обратный ток .
Стабилитрон — 5.1 В 1 Вт
Распродано COM-10301Стабилитроны полезны для создания опорного напряжения или в качестве стабилизатора напряжения для слаботочных applications.These диодов …
Стабилитронспроектирован так, чтобы иметь очень точное напряжение пробоя, называемое стабилитроном или напряжением стабилитрона . Когда через стабилитрон протекает достаточный ток в обратном направлении, падение напряжения на нем будет стабильным на уровне напряжения пробоя.
Воспользовавшись их пробивной собственности, стабилитроны часто используются для создания известного опорного напряжения точно по напряжению стабилитрона. Их можно использовать в качестве регуляторов напряжения для небольших нагрузок, но на самом деле они не предназначены для регулирования напряжения в цепях, которые потребляют значительный ток.
Стабилитроныдостаточно особенные, чтобы иметь собственное обозначение схемы с волнистыми концами на катодной линии. Символ может даже обозначать, что такое напряжение стабилитрона диода.Вот 3.3V стабилитрон действует, чтобы создать прочную ссылку 3.3V напряжения:
Фотодиоды
Фотодиоды — это специально сконструированные диоды, которые захватывают энергию фотонов света (см. Физика, квантовая) для генерации электрического тока. Вид работы как анти-светодиод.
Фотодиод BPW34 (не четверть, да еще мелочь). Поместите его на солнце, и он может генерировать около нескольких мкВт энергии !.
Солнечные элементы — главный спонсор фотодиодной технологии.Но эти диоды также могут использоваться для обнаружения света или даже для оптической связи.
Применение диодов
Для такого простого компонента диоды имеют огромное применение. Вы найдете диод того или иного типа практически в каждой цепи. Они могут быть представлены в чем угодно, от цифровой логики слабого сигнала до схемы преобразования энергии высокого напряжения. Давайте рассмотрим некоторые из этих приложений.
Выпрямители
Выпрямитель — это схема, преобразующая переменный ток (AC) в постоянный (DC).Это преобразование критично для всякой бытовой электроники. Сигналы переменного тока выходят из розеток вашего дома, но именно постоянный ток питает большинство компьютеров и другой микроэлектроники.
Ток в цепях переменного тока буквально чередуется — быстро переключается между положительным и отрицательным направлениями — но ток в сигнале постоянного тока течет только в одном направлении. Итак, чтобы преобразовать переменный ток в постоянный, вам просто нужно убедиться, что ток не может течь в отрицательном направлении. Похоже на работу для ДИОДОВ!
Однополупериодный выпрямитель может быть изготовлен всего из одного диода.Если сигнал переменного тока, такой как, например, синусоида, посылается через диод, любая отрицательная составляющая сигнала отсекается.
Формы входного (красный / левый) и выходного (синий / правый) сигналов напряжения после прохождения через схему полуволнового выпрямителя (в центре).
Двухполупериодный мостовой выпрямитель использует четыре диода для преобразования этих отрицательных горбов в сигнале переменного тока в положительные.
Схема мостового выпрямителя (в центре) и форма выходного сигнала, которую она создает (синий / правый).
Эти цепи являются критическим компонентом источников питания переменного тока в постоянный, которые преобразуют сигнал 120/240 В переменного тока сетевой розетки в сигналы постоянного тока 3,3 В, 5 В, 12 В и т. Д. Если вы разорвали стенной бородавку, вы, скорее всего, увидели бы там несколько диодов, которые ее исправили.
Можете ли вы заметить четыре диода, образующие мостовой выпрямитель в этой бородавке?
Защита от обратного тока
Вы когда-нибудь вставляли батарею неправильно? Или поменять местами красный и черный провода питания? Если это так, то диод может быть благодарен за то, что ваша схема все еще жива.Диод, включенный последовательно с положительной стороной источника питания, называется диодом обратной защиты. Это гарантирует, что ток может течь только в положительном направлении, а источник питания подает только положительное напряжение в вашу цепь.
Этот диод полезен, когда разъем источника питания не поляризован, что позволяет легко испортить и случайно подключить отрицательный источник питания к положительному полюсу входной цепи.
Недостатком диода обратной защиты является то, что он вызывает некоторую потерю напряжения из-за прямого падения напряжения.Это делает диоды Шоттки отличным выбором для диодов обратной защиты.
Логические ворота
Забудьте о транзисторах! Простые цифровые логические вентили, такие как И или ИЛИ, могут быть построены из диодов.
Например, диодный логический элемент ИЛИ с двумя входами может быть построен из двух диодов с общими катодными узлами. Выход логической схемы также находится в этом узле. Когда один из входов (или оба) являются логической 1 (высокий / 5 В), выход также становится логической 1.Когда оба входа имеют логический 0 (низкий / 0 В), на выходе через резистор подается низкий уровень.
Логический элемент И построен аналогичным образом. Аноды и обоих диодов соединены вместе, где и расположен выход схемы. Оба входа должны иметь логическую единицу, заставляя ток течь по направлению к выходному выводу и также подтягивать его к высокому уровню. Если на одном из входов низкий уровень, ток от источника питания 5 В проходит через диод.
Для обоих логических вентилей можно добавить больше входов, добавив только один диод.
Обратные диоды и подавление скачков напряжения
Диодыочень часто используются для ограничения потенциального повреждения от неожиданных больших скачков напряжения. Диоды подавления переходных напряжений (TVS) — это специальные диоды, вроде стабилитронов с низким пробивным напряжением (часто около 20 В), но с очень большой номинальной мощностью (часто в диапазоне киловатт). Они предназначены для шунтирования токов и поглощения энергии, когда напряжение превышает их напряжение пробоя.
Обратные диодывыполняют аналогичную работу по подавлению скачков напряжения, в частности, вызванных индуктивным компонентом, таким как двигатель.Когда ток через катушку индуктивности внезапно изменяется, создается всплеск напряжения, возможно, очень большой отрицательный всплеск. Обратный диод, помещенный на индуктивную нагрузку, даст этому отрицательному сигналу напряжения безопасный путь для разряда, фактически многократно проходя через индуктивность и диод, пока он в конечном итоге не погаснет.
Это всего лишь несколько вариантов применения этого удивительного маленького полупроводникового компонента.
Покупка диодов
Теперь, когда ваш нынешний движется в правильном направлении, пришло время найти хорошее применение вашим новым знаниям.Независимо от того, ищете ли вы отправную точку или просто пополняете запасы, у нас есть набор изобретателя, а также отдельные диоды на выбор.
Наши рекомендации:
Диод Шоттки
В наличии COM-10926Диоды Шоттки известны своим низким прямым падением напряжения и очень быстрым переключением.Этот диод Шоттки 1 А 40 В равен…
. 1Комплект изобретателя SparkFun — V3.2
На пенсии КОМПЛЕКТ-12060** Как вы, возможно, видели из [нашего сообщения в блоге] (https://www.sparkfun.com/news/2241), мы недавно перенесли нашу литьевую форму для SIK…
76 ПенсионерРесурсы и движение вперед
Теперь, когда вы познакомились с диодами, возможно, вы захотите продолжить изучение других полупроводников:
Или откройте для себя другие распространенные электронные компоненты:
.Определениев кембриджском словаре английского языка
Очевидно, что для достижения КПД более 10% необходимо исключить потери электронного пучка в вакуумном диоде . На основании результатов можно выбрать импульсные лазеры на диодах на оптимальных длинах волн для клинически адаптированного оборудования.Эти примеры взяты из Cambridge English Corpus и из источников в Интернете. Любые мнения в примерах не отражают мнение редакторов Cambridge Dictionary, Cambridge University Press или его лицензиаров.
Еще примеры Меньше примеров
Зависимость частоты генерации от импеданса диода была слабой, а эффективность микроволн оставалась стабильной в широком диапазоне мощностей электронного пучка.Теперь за движением следит лазерный луч, который отражается на разделенный диод от кантилевера, удерживающего наконечник датчика. Такие же экспериментальные результаты удалось получить на автоэмиссионном диоде при использовании устройства сжатия потока взрывного устройства.Это количество сохраняется на пути элемента жидкости 1 на пути через диод и, следовательно, является «функцией тока». Нулевое электрическое поле регулирует инжекцию электронов, имеющихся в большом количестве на поверхности катода, по существу управляя током диода .Электронный пучок создавался разрядом вторичного конденсатора на полевом диоде .Частота дискретизации дозы диодного детектора
.