Что такое электродвигатель. Как работает электродвигатель. Какие бывают виды электродвигателей. Где применяются электродвигатели в промышленности и быту. Каковы преимущества и недостатки разных типов электродвигателей.
Что такое электродвигатель и как он работает
Электродвигатель — это устройство, преобразующее электрическую энергию в механическую. Принцип его работы основан на взаимодействии магнитных полей статора и ротора. Когда на обмотки статора подается электрический ток, создается вращающееся магнитное поле. Оно взаимодействует с магнитным полем ротора, заставляя его вращаться.
Основные компоненты электродвигателя:
- Статор — неподвижная часть с обмотками
- Ротор — вращающаяся часть на валу
- Подшипники — обеспечивают вращение ротора
- Корпус — защищает внутренние части
Виды электродвигателей и их особенности
Существует несколько основных типов электродвигателей:
Двигатели постоянного тока
Работают от источника постоянного напряжения. Их преимущества:
- Простота управления скоростью
- Высокий пусковой момент
- Компактные размеры
Недостатки:
- Наличие щеточно-коллекторного узла
- Необходимость преобразования переменного тока в постоянный
Асинхронные двигатели переменного тока
Самый распространенный тип. Их достоинства:
- Простота конструкции
- Низкая стоимость
- Высокая надежность
Недостатки:
- Сложность регулировки скорости
- Относительно низкий КПД при неполной нагрузке
Синхронные двигатели
Отличаются постоянной скоростью вращения. Преимущества:
- Высокий КПД
- Возможность работы с высоким коэффициентом мощности
Недостатки:
- Сложность конструкции
- Высокая стоимость
Применение электродвигателей в промышленности
Электродвигатели широко используются в различных отраслях промышленности:
- Металлургия — прокатные станы, подъемные краны
- Машиностроение — станки, конвейеры, роботы
- Нефтегазовая отрасль — насосы, компрессоры
- Горнодобывающая промышленность — экскаваторы, дробилки
- Энергетика — вентиляторы, насосы
Каковы основные требования к промышленным электродвигателям? Они должны обладать высокой надежностью, эффективностью и возможностью работы в тяжелых условиях. Часто применяются специальные взрывозащищенные или химически стойкие исполнения.
Электродвигатели в бытовой технике
В быту мы постоянно сталкиваемся с электродвигателями, даже не задумываясь об этом. Где можно встретить электродвигатели в домашних условиях?
- Холодильники — компрессор и вентилятор
- Стиральные машины — привод барабана
- Пылесосы — вентилятор всасывания
- Кухонная техника — блендеры, миксеры, кофемолки
- Системы вентиляции и кондиционирования
- Электроинструменты — дрели, шуруповерты, пилы
В бытовой технике чаще всего используются коллекторные двигатели постоянного тока и асинхронные двигатели небольшой мощности. Основные требования к ним — компактность, бесшумность и энергоэффективность.
Электродвигатели в транспорте
Развитие электротранспорта привело к широкому применению электродвигателей в этой сфере. Где используются электродвигатели в транспортных средствах?
- Электромобили — тяговые двигатели
- Гибридные автомобили — электропривод
- Электробусы и троллейбусы
- Электропоезда и трамваи
- Электровелосипеды и электросамокаты
Какие требования предъявляются к двигателям для транспорта? Они должны обладать высокой удельной мощностью, широким диапазоном регулирования скорости и высоким КПД. Часто применяются синхронные двигатели с постоянными магнитами и асинхронные двигатели с векторным управлением.
Эффективность и энергосбережение в электродвигателях
Повышение энергоэффективности электродвигателей — важная задача современной промышленности. Как можно повысить КПД электродвигателей?
- Применение высококачественных материалов
- Оптимизация конструкции статора и ротора
- Использование постоянных магнитов
- Внедрение современных систем управления
Что дает повышение эффективности электродвигателей? Это позволяет снизить потребление электроэнергии, уменьшить нагрев и увеличить срок службы оборудования. В масштабах крупных предприятий даже небольшое повышение КПД приводит к значительной экономии средств.
Перспективы развития электродвигателей
Какие тенденции наблюдаются в развитии электродвигателей? Основные направления:
- Применение новых магнитных материалов
- Разработка высокотемпературных сверхпроводниковых двигателей
- Создание интеллектуальных систем управления
- Интеграция двигателей с силовой электроникой
- Миниатюризация и повышение удельной мощности
Какие преимущества дают эти инновации? Они позволяют создавать более компактные, эффективные и надежные электродвигатели для различных применений — от микроэлектромеханических систем до мощных промышленных приводов.
Электродвигатели играют ключевую роль в современной технике и промышленности. Их постоянное совершенствование открывает новые возможности для развития различных отраслей экономики и улучшения качества жизни людей.
Что такое электродвигатель — понимание его строения.
Устройства, преобразующие электрическую энергию в механическую, именуются электрическими двигателями (электродвигателями). Устройство, действующее наоборот, называется «электрический генератор», два этих понятия совершенно различные и не стоит их путать.Принцип работы электродвигателя
Процесс трансформирования электрической энергии в механическую, обеспечивает электромагнит. Механическая сила, действующая на электрические частицы внутри поля электромагнита, стремится нарушить вектор и положение в пространстве. Плоскость, в которой происходит движение, расположена под углом в 90% относительно силовым линиям электромагнита. Когда электрический заряд протекает по металлическим элементам – механическая сила стремится изменить положения каждого проводника тока, в том числе, обмотку, двигаясь согласно правилу буравчика.
Часто суть работы электродвигателя объясняют на прямоугольной рамке, расположенной между двумя магнитами (или U-образными) для большей наглядности.
В своей основе, электродвигатели – это валовые механизмы вращательного движения. В их конструкцию входит статор (всегда статичен) и ротор (динамичен). Ротор производит вращение после подачи тока к обмоткам двигателя. В некоторых случаях типы движений, которые выполняют суппорты, принтеры, металлорежущие станки и др. предполагают задействование линейных двигателей для облегчения конструкции механизма.
Электродвигатели переменного тока
Двигатели этой группы могут быть отнесены к асинхронным, синхронным и шаговым. Отличительной особенностью данной группы является способ протекание тока по катушкам знакопеременного заряда. При этом питание подается от источников соответствующего типа.
Сердцевину механизма (магнитопровод) являет собой статор, состоящий из специальной листовой стали. В таких листах специально сделаны пазы под обмотку. Используемая обмотка включает в себя отдельные элементы (рамки, катушки). Вращающийся ротор расположен на подшипниках в центре статора.
Пазы простейшей катушки обмотки находятся на противолежащих стенках статора. На фазу можно направит заряд с какой-либо полярностью от другого источника. Подача напряжения на проволоку окружающую статор, имеющий направление, изображенное на рис 1а, демонстрирует появление электромагнитного поля (Ns и Ss). Следовательно, ротор вращается по часовой стрелке для синхронизации разносторонних полюсов ротора и статора. В том случае, если заряд, направляемый на статор, имеет другую полярность (рис. 1б) – полюса статора изменят свою полярность, при этом движение ротора будет протекать в другую сторону. Несколько дополнительных обмоток, которые обеспечивают постоянное движение ротора, размещаются на статоре. Питание на такие обмотки подается от отдельных источников. Рисунок 2 показывает поперечный разрез такого трехфазного двигателя. Количество используемых катушек отвечает количествам фаз.
Фазы представляют собой простейшие рамки из проводника (рис. 2в), перемещенные в корпусе на 120 гр. относительно друг другу. На данном рисунке ток идет исключительно по фазам со знаками точек и крестиков. Если направить ток на фазу А – вектор магнитной оси перейдет в горизонтальное положение.
Такой тип двигателя имеет статор аналогичный статору синхронного двигателя. Отличие асинхронного от синхронного заключается в динамической части – роторе. В данном случае ротор состоит из электротехнической стали. В пазах находятся стержни, они бывают алюминиевыми и медными, которые замкнуты на концах кольцами. Изменяя частоту напряжения, которое идет к статору, можно изменять и скорость момента вращения вала. Электродвигатели с алюминиевыми компонентами весят и стоят меньше, чем агрегаты с использованием меди.
Электродвигатели постоянного тока
Данный тип двигателей берет свое название от одноименного источника питания. Принцип действия такого двигателя заключается в использовании постоянных магнитов, которые создают поле статора. Ротор, который иногда ассоциируют с якорем, размещает на себе обмотку. Ротор крепко присоединён к валу, что придает ему крутящий момент. Если по обмотке верхней и нижней части якоря подать напряжение, которое будет двигаться на встречу друг другу, то проводники будут взаимно выталкиваться. Вся сила воздействия будет предаваться на медный провод, который уложен в пазах якоря, что заставляет его вращаться. Чтобы не происходило торможение, необходимо изменить направление движения заряда в обмотке на противоположное. Помогает в этом коллектор, коммутирующий обмотку с электросхемой двигателя. В данном случае, обмотка якоря выполняет функцию передачи момента на вал, который заставляет приходить в движение механизмы оборудования. Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)
Для чего нужен электродвигатель и чем они отличаются
Что из себя представляет электродвигатель
Говоря техническим языком, электродвигатель является элементом, который преобразует электричество в механическую энергию, что приводит в движение весь механизм. Поэтому двигатель и называют главным составляющим. Давайте же разберемся подробнее, для чего нужен электродвигатель, из чего он состоит и как работает.Первые модели были произведены еще в 19 ст. Но перед этим была четко сформулирована цель – получить механическую энергию для передвижения и других действий с помощью электричества.
Разберемся, из чего состоит электродвигатель. Главными элементами считаются статор – неподвижная часть (корпус) и ротор – подвижная часть механизма. Помимо этого, в состав двигателя входят еще десятки мелких деталей, таких как подшипники, обмотка из медной проволоки и так далее. На этой странице можно посмотреть все электрические характеристики электродвигателей.
Теперь давайте рассмотрим виды электрических двигателей. В основном они классифицируются по типу питания – это двигатели постоянного тока и переменного, и по принципу работы – синхронные и асинхронные. Двигатели постоянного тока так называются, так как работают от различных блоков питания, аккумуляторов и прочих батарей. Переменного, потому что соединяются напрямую с электрической сетью.
Синхронные механизмы имеют обмотки на роторе и подают на них напряжение для работы двигателя. Асинхронные – не имеют данных компонентов. Поэтому скорость вращения будет заметно медленнее, так отсутствует магнитное поле, созданного в статоре.
Как работает и что делает электродвигательКогда механизм соединяется с источником питания, на обмотке возникает магнитное поле, которое и вращает ротор в статоре. Это происходит по закону Ампера. Ведь создается отталкивающая сила, способная вращать вал и приводить в движение другие детали. Частота оборотов ротора напрямую зависит от частоты приходящего на витки электричества, а также от количества пар магнитных полюсов. Кстати, название данной разновидности пошло от того факта, что скорость вращения ротора различалась с частотой оборотов магнитного поля, то есть эти показатели были асинхронными.
Синхронные же двигатели немного отличаются строением ротора. В таком типе электродвигателей, ротор играет роль магнита, который и создает поле для вращения. Здесь магнитное поле статора и сам ротор вращаются с одинаковой частотой. Но есть один, очень значимый минус. Чтобы запустить синхронный электродвигатель, нужно воспользоваться помощью асинхронного. Ведь после простого подключения механизма к сети, ничего не произойдет.
К этому недостатку можно прибавить низкую скорость оборотов. К примеру, если взять асинхронный и синхронный двигатели и подключить их к источнику электричества одинакового напряжения, то первый тип будет вращаться заметно быстрее второго.
Где используют электродвигателиОни имеют множество неоспоримых преимуществ и особенностей, что делают механизм уникальным и незаменимым. В современном мире данный тип двигателя широко используется практически во всех сферах жизнедеятельности человека. Приобрести электродвигатели можно в каталоге электродвигателей аир.
Применение электрических двигателей начинается от небольших игрушек, и заканчивается большими предприятиями и народными хозяйствами. С помощью этого механизма стало возможно поднимать и передвигать огромные предметы.
Если коротко резюмировать данную статью, то хочется еще раз подчеркнуть значимость таких двигателей в жизни человека. Без них, многие сферы просто не смогли бы нормально функционировать и развиваться. Поэтому нужно тщательно подходить к выбору электродвигателя, ведь его поломка чревата остановкой производства или другого важного процесса, что повлечет за собой материальные и нематериальные убытки. Быстро подобрать необходимый мотор помогут наши специалисты.
Электродвигатель АИР характеристики
Тип двигателя | Р, кВт | Номинальная частота вращения, об/мин | кпд,* | COS ф | 1п/1н | Мп/Мн | Мmах/Мн | 1н, А | Масса, кг |
АИР56А2 | 0,18 | 2840 | 68,0 | 0,78 | 5,0 | 2,2 | 2,2 | 0,52 | 3,4 |
АИР56В2 | 0,25 | 2840 | 68,0 | 0,698 | 5,0 | 2,2 | 2,2 | 0,52 | 3,9 |
АИР56А4 | 0,12 | 1390 | 63,0 | 0,66 | 5,0 | 2,1 | 2,2 | 0,44 | 3,4 |
АИР56В4 | 0,18 | 1390 | 64,0 | 0,68 | 5,0 | 2,1 | 2,2 | 0,65 | 3,9 |
АИР63А2 | 0,37 | 2840 | 72,0 | 0,86 | 5,0 | 2,2 | 2,2 | 0,91 | 4,7 |
АИР63В2 | 0,55 | 2840 | 75,0 | 0,85 | 5,0 | 2,2 | 2,3 | 1,31 | 5,5 |
АИР63А4 | 0,25 | 1390 | 68,0 | 0,67 | 5,0 | 2,1 | 2,2 | 0,83 | 4,7 |
АИР63В4 | 0,37 | 1390 | 68,0 | 0,7 | 5,0 | 2,1 | 2,2 | 1,18 | 5,6 |
АИР63А6 | 0,18 | 880 | 56,0 | 0,62 | 4,0 | 1,9 | 2 | 0,79 | 4,6 |
АИР63В6 | 0,25 | 880 | 59,0 | 0,62 | 4,0 | 1,9 | 2 | 1,04 | 5,4 |
АИР71А2 | 0,75 | 2840 | 75,0 | 0,83 | 6,1 | 2,2 | 2,3 | 1,77 | 8,7 |
АИР71В2 | 1,1 | 2840 | 76,2 | 0,84 | 6,9 | 2,2 | 2,3 | 2,6 | 10,5 |
АИР71А4 | 0,55 | 1390 | 71,0 | 0,75 | 5,2 | 2,4 | 2,3 | 1,57 | 8,4 |
АИР71В4 | 0,75 | 1390 | 73,0 | 0,76 | 6,0 | 2,3 | 2,3 | 2,05 | 10 |
АИР71А6 | 0,37 | 880 | 62,0 | 0,70 | 4,7 | 1,9 | 2,0 | 1,3 | 8,4 |
АИР71В6 | 0,55 | 880 | 65,0 | 0,72 | 4,7 | 1,9 | 2,1 | 1,8 | 10 |
АИР71А8 | 0,25 | 645 | 54,0 | 0,61 | 4,7 | 1,8 | 1,9 | 1,1 | 9 |
АИР71В8 | 0,25 | 645 | 54,0 | 0,61 | 4,7 | 1,8 | 1,9 | 1,1 | 9 |
АИР80А2 | 1,5 | 2850 | 78,5 | 0,84 | 7,0 | 2,2 | 2,3 | 3,46 | 13 |
АИР80А2ЖУ2 | 1,5 | 2850 | 78,5 | 0,84 | 7,0 | 2,2 | 2,3 | 3,46 | 13 |
АИР80В2 | 2,2 | 2855 | 81,0 | 0,85 | 7,0 | 2,2 | 2,3 | 4,85 | 15 |
АИР80В2ЖУ2 | 2,2 | 2855 | 81,0 | 0,85 | 7,0 | 2,2 | 2,3 | 4,85 | 15 |
АИР80А4 | 1,1 | 1390 | 76,2 | 0,77 | 6,0 | 2,3 | 2,3 | 2,85 | 14 |
АИР80В4 | 1,5 | 1400 | 78,5 | 0,78 | 6,0 | 2,3 | 2,3 | 3,72 | 16 |
АИР80А6 | 0,75 | 905 | 69,0 | 0,72 | 5,3 | 2,0 | 2,1 | 2,3 | 14 |
АИР80В6 | 1,1 | 905 | 72,0 | 0,73 | 5,5 | 2,0 | 2,1 | 3,2 | 16 |
АИР80А8 | 0,37 | 675 | 62,0 | 0,61 | 4,0 | 1,8 | 1,9 | 1,49 | 15 |
АИР80В8 | 0,55 | 680 | 63,0 | 0,61 | 4,0 | 1,8 | 2,0 | 2,17 | 18 |
АИР90L2 | 3,0 | 2860 | 82,6 | 0,87 | 7,5 | 2,2 | 2,3 | 6,34 | 17 |
АИР90L2ЖУ2 | 3,0 | 2860 | 82,6 | 0,87 | 7,5 | 2,2 | 2,3 | 6,34 | 17 |
АИР90L4 | 2,2 | 1410 | 80,0 | 0,81 | 7,0 | 2,3 | 2,3 | 5,1 | 17 |
АИР90L6 | 1,5 | 920 | 76,0 | 0,75 | 5,5 | 2,0 | 2,1 | 4,0 | 18 |
АИР90LA8 | 0,75 | 680 | 70,0 | 0,67 | 4,0 | 1,8 | 2,0 | 2,43 | 23 |
АИР90LB8 | 1,1 | 680 | 72,0 | 0,69 | 5,0 | 1,8 | 2,0 | 3,36 | 28 |
АИР100S2 | 4,0 | 2880 | 84,2 | 0,88 | 7,5 | 2,2 | 2,3 | 8,2 | 20,5 |
АИР100S2ЖУ2 | 4,0 | 2880 | 84,2 | 0,88 | 7,5 | 2,2 | 2,3 | 8,2 | 20,5 |
АИР100L2 | 5,5 | 2900 | 85,7 | 0,88 | 7,5 | 2,2 | 2,3 | 11,1 | 28 |
АИР100L2ЖУ2 | 5,5 | 2900 | 85,7 | 0,88 | 7,5 | 2,2 | 2,3 | 11,1 | 28 |
АИР100S4 | 3,0 | 1410 | 82,6 | 0,82 | 7,0 | 2,3 | 2,3 | 6,8 | 21 |
АИР100L4 | 4,0 | 1435 | 84,2 | 0,82 | 7,0 | 2,3 | 2,3 | 8,8 | 37 |
АИР100L6 | 2,2 | 935 | 79,0 | 0,76 | 6,5 | 2,0 | 2,1 | 5,6 | 33,5 |
АИР100L8 | 1,5 | 690 | 74,0 | 0,70 | 5,0 | 1,8 | 2,0 | 4,4 | 33,5 |
АИР112M2 | 7,5 | 2895 | 87,0 | 0,88 | 7,5 | 2,2 | 2,3 | 14,9 | 49 |
АИР112М2ЖУ2 | 7,5 | 2895 | 87,0 | 0,88 | 7,5 | 2,2 | 2,3 | 14,9 | 49 |
АИР112М4 | 5,5 | 1440 | 85,7 | 0,83 | 7,0 | 2,3 | 2,3 | 11,7 | 45 |
АИР112MA6 | 3,0 | 960 | 81,0 | 0,73 | 6,5 | 2,1 | 2,1 | 7,4 | 41 |
АИР112MB6 | 4,0 | 860 | 82,0 | 0,76 | 6,5 | 2,1 | 2,1 | 9,75 | 50 |
АИР112MA8 | 2,2 | 710 | 79,0 | 0,71 | 6,0 | 1,8 | 2,0 | 6,0 | 46 |
АИР112MB8 | 3,0 | 710 | 80,0 | 0,73 | 6,0 | 1,8 | 2,0 | 7,8 | 53 |
АИР132M2 | 11 | 2900 | 88,4 | 0,89 | 7,5 | 2,2 | 2,3 | 21,2 | 54 |
АИР132М2ЖУ2 | 11 | 2900 | 88,4 | 0,89 | 7,5 | 2,2 | 2,3 | 21,2 | 54 |
АИР132S4 | 7,5 | 1460 | 87,0 | 0,84 | 7,0 | 2,3 | 2,3 | 15,6 | 52 |
АИР132M4 | 11 | 1450 | 88,4 | 0,84 | 7,0 | 2,2 | 2,3 | 22,5 | 60 |
АИР132S6 | 5,5 | 960 | 84,0 | 0,77 | 6,5 | 2,1 | 2,1 | 12,9 | 56 |
АИР132M6 | 7,5 | 970 | 86,0 | 0,77 | 6,5 | 2,0 | 2,1 | 17,2 | 61 |
АИР132S8 | 4,0 | 720 | 81,0 | 0,73 | 6,0 | 1,9 | 2,0 | 10,3 | 70 |
АИР132M8 | 5,5 | 720 | 83,0 | 0,74 | 6,0 | 1,9 | 2,0 | 13,6 | 86 |
АИР160S2 | 15 | 2930 | 89,4 | 0,89 | 7,5 | 2,2 | 2,3 | 28,6 | 116 |
АИР160S2ЖУ2 | 15 | 2930 | 89,4 | 0,89 | 7,5 | 2,2 | 2,3 | 28,6 | 116 |
АИР160M2 | 18,5 | 2930 | 90,0 | 0,90 | 7,5 | 2,0 | 2,3 | 34,7 | 130 |
АИР160М2ЖУ2 | 18,5 | 2930 | 90,0 | 0,90 | 7,5 | 2,0 | 2,3 | 34,7 | 130 |
АИР160S4 | 15 | 1460 | 89,4 | 0,85 | 7,5 | 2,2 | 2,3 | 30,0 | 125 |
АИР160S4ЖУ2 | 15 | 1460 | 89,4 | 0,85 | 7,5 | 2,2 | 2,3 | 30,0 | 125 |
АИР160M4 | 18,5 | 1470 | 90,0 | 0,86 | 7,5 | 2,2 | 2,3 | 36,3 | 142 |
АИР160S6 | 11 | 970 | 87,5 | 0,78 | 6,5 | 2,0 | 2,1 | 24,5 | 125 |
АИР160M6 | 15 | 970 | 89,0 | 0,81 | 7,0 | 2,0 | 2,1 | 31,6 | 155 |
АИР160S8 | 7,5 | 720 | 85,5 | 0,75 | 6,0 | 1,9 | 2,0 | 17,8 | 125 |
АИР160M8 | 11 | 730 | 87,5 | 0,75 | 6,5 | 2,0 | 2,0 | 25,5 | 150 |
АИР180S2 | 22 | 2940 | 90,5 | 0,90 | 7,5 | 2,0 | 2,3 | 41,0 | 150 |
АИР180S2ЖУ2 | 22 | 2940 | 90,5 | 0,90 | 7,5 | 2,0 | 2,3 | 41,0 | 150 |
АИР180M2 | 30 | 2950 | 91,4 | 0,90 | 7,5 | 2,0 | 2,3 | 55,4 | 170 |
АИР180М2ЖУ2 | 30 | 2950 | 91,4 | 0,90 | 7,5 | 2,0 | 2,3 | 55,4 | 170 |
АИР180S4 | 22 | 1470 | 90,5 | 0,86 | 7,5 | 2,2 | 2,3 | 43,2 | 160 |
АИР180S4ЖУ2 | 22 | 1470 | 90,5 | 0,86 | 7,5 | 2,2 | 2,3 | 43,2 | 160 |
АИР180M4 | 30 | 1470 | 91,4 | 0,86 | 7,2 | 2,2 | 2,3 | 57,6 | 190 |
АИР180М4ЖУ2 | 30 | 1470 | 91,4 | 0,86 | 7,2 | 2,2 | 2,3 | 57,6 | 190 |
АИР180M6 | 18,5 | 980 | 90,0 | 0,81 | 7,0 | 2,1 | 2,1 | 38,6 | 160 |
АИР180M8 | 15 | 730 | 88,0 | 0,76 | 6,6 | 2,0 | 2,0 | 34,1 | 172 |
АИР200M2 | 37 | 2950 | 92,0 | 0,88 | 7,5 | 2,0 | 2,3 | 67,9 | 230 |
АИР200М2ЖУ2 | 37 | 2950 | 92,0 | 0,88 | 7,5 | 2,0 | 2,3 | 67,9 | 230 |
АИР200L2 | 45 | 2960 | 92,5 | 0,90 | 7,5 | 2,0 | 2,3 | 82,1 | 255 |
АИР200L2ЖУ2 | 45 | 2960 | 92,5 | 0,90 | 7,5 | 2,0 | 2,3 | 82,1 | 255 |
АИР200M4 | 37 | 1475 | 92,0 | 0,87 | 7,2 | 2,2 | 2,3 | 70,2 | 230 |
АИР200L4 | 45 | 1475 | 92,5 | 0,87 | 7,2 | 2,2 | 2,3 | 84,9 | 260 |
АИР200M6 | 22 | 980 | 90,0 | 0,83 | 7,0 | 2,0 | 2,1 | 44,7 | 195 |
АИР200L6 | 30 | 980 | 91,5 | 0,84 | 7,0 | 2,0 | 2,1 | 59,3 | 225 |
АИР200M8 | 18,5 | 730 | 90,0 | 0,76 | 6,6 | 1,9 | 2,0 | 41,1 | 210 |
АИР200L8 | 22 | 730 | 90,5 | 0,78 | 6,6 | 1,9 | 2,0 | 48,9 | 225 |
АИР225M2 | 55 | 2970 | 93,0 | 0,90 | 7,5 | 2,0 | 2,3 | 100 | 320 |
АИР225M4 | 55 | 1480 | 93,0 | 0,87 | 7,2 | 2,2 | 2,3 | 103 | 325 |
АИР225M6 | 37 | 980 | 92,0 | 0,86 | 7,0 | 2,1 | 2,1 | 71,0 | 360 |
АИР225M8 | 30 | 735 | 91,0 | 0,79 | 6,5 | 1,9 | 2,0 | 63 | 360 |
АИР250S2 | 75 | 2975 | 93,6 | 0,90 | 7,0 | 2,0 | 2,3 | 135 | 450 |
АИР250M2 | 90 | 2975 | 93,9 | 0,91 | 7,1 | 2,0 | 2,3 | 160 | 530 |
АИР250S4 | 75 | 1480 | 93,6 | 0,88 | 6,8 | 2,2 | 2,3 | 138,3 | 450 |
АИР250M4 | 90 | 1480 | 93,9 | 0,88 | 6,8 | 2,2 | 2,3 | 165,5 | 495 |
АИР250S6 | 45 | 980 | 92,5 | 0,86 | 7,0 | 2,1 | 2,0 | 86,0 | 465 |
АИР250M6 | 55 | 980 | 92,8 | 0,86 | 7,0 | 2,1 | 2,0 | 104 | 520 |
АИР250S8 | 37 | 740 | 91,5 | 0,79 | 6,6 | 1,9 | 2,0 | 78 | 465 |
АИР250M8 | 45 | 740 | 92,0 | 0,79 | 6,6 | 1,9 | 2,0 | 94 | 520 |
АИР280S2 | 110 | 2975 | 94,0 | 0,91 | 7,1 | 1,8 | 2,2 | 195 | 650 |
АИР280M2 | 132 | 2975 | 94,5 | 0,91 | 7,1 | 1,8 | 2,2 | 233 | 700 |
АИР280S4 | 110 | 1480 | 94,5 | 0,88 | 6,9 | 2,1 | 2,2 | 201 | 650 |
АИР280M4 | 132 | 1480 | 94,8 | 0,88 | 6,9 | 2,1 | 2,2 | 240 | 700 |
АИР280S6 | 75 | 985 | 93,5 | 0,86 | 6,7 | 2,0 | 2,0 | 142 | 690 |
АИР280M6 | 90 | 985 | 93,8 | 0,86 | 6,7 | 2,0 | 2,0 | 169 | 800 |
АИР280S8 | 55 | 740 | 92,8 | 0,81 | 6,6 | 1,8 | 2,0 | 111 | 690 |
АИР280M8 | 75 | 740 | 93,5 | 0,81 | 6,2 | 1,8 | 2,0 | 150 | 800 |
АИР315S2 | 160 | 2975 | 94,6 | 0,92 | 7,1 | 1,8 | 2,2 | 279 | 1170 |
АИР315M2 | 200 | 2975 | 94,8 | 0,92 | 7,1 | 1,8 | 2,2 | 248 | 1460 |
АИР315МВ2 | 250 | 2975 | 94,8 | 0,92 | 7,1 | 1,8 | 2,2 | 248 | 1460 |
АИР315S4 | 160 | 1480 | 94,9 | 0,89 | 6,9 | 2,1 | 2,2 | 288 | 1000 |
АИР315M4 | 200 | 1480 | 94,9 | 0,89 | 6,9 | 2,1 | 2,2 | 360 | 1200 |
АИР315S6 | 110 | 985 | 94,0 | 0,86 | 6,7 | 2,0 | 2,0 | 207 | 880 |
АИР315М(А)6 | 132 | 985 | 94,2 | 0,87 | 6,7 | 2,0 | 2,0 | 245 | 1050 |
АИР315MВ6 | 160 | 985 | 94,2 | 0,87 | 6,7 | 2,0 | 2,0 | 300 | 1200 |
АИР315S8 | 90 | 740 | 93,8 | 0,82 | 6,4 | 1,8 | 2,0 | 178 | 880 |
АИР315М(А)8 | 110 | 740 | 94,0 | 0,82 | 6,4 | 1,8 | 2,0 | 217 | 1050 |
АИР315MВ8 | 132 | 740 | 94,0 | 0,82 | 6,4 | 1,8 | 2,0 | 260 | 1200 |
АИР355S2 | 250 | 2980 | 95,5 | 0,92 | 6,5 | 1.6 | 2,3 | 432,3 | 1700 |
АИР355M2 | 315 | 2980 | 95,6 | 0,92 | 7,1 | 1,6 | 2,2 | 544 | 1790 |
АИР355S4 | 250 | 1490 | 95,6 | 0,90 | 6,2 | 1,9 | 2,9 | 441 | 1700 |
АИР355M4 | 315 | 1480 | 95,6 | 0,90 | 6,9 | 2,1 | 2,2 | 556 | 1860 |
АИР355MА6 | 200 | 990 | 94,5 | 0,88 | 6,7 | 1,9 | 2,0 | 292 | 1550 |
АИР355S6 | 160 | 990 | 95,1 | 0,88 | 6,3 | 1,6 | 2,8 | 291 | 1550 |
АИР355МВ6 | 250 | 990 | 94,9 | 0,88 | 6,7 | 1,9 | 2,0 | 454,8 | 1934 |
АИР355L6 | 315 | 990 | 94,5 | 0,88 | 6,7 | 1,9 | 2,0 | 457 | 1700 |
АИР355S8 | 132 | 740 | 94,3 | 0,82 | 6,4 | 1,9 | 2,7 | 259,4 | 1800 |
АИР355MА8 | 160 | 740 | 93,7 | 0,82 | 6,4 | 1,8 | 2,0 | 261 | 2000 |
АИР355MВ8 | 200 | 740 | 94,2 | 0,82 | 6,4 | 1,8 | 2,0 | 315 | 2150 |
АИР355L8 | 132 | 740 | 94,5 | 0,82 | 6,4 | 1,8 | 2,0 | 387 | 2250 |
Асинхронная машина |
машина переменного тока, в которой скорость вращения ротора зависит от частоты приложенного напряжения и от величины нагрузки (противодействующего момента на валу) |
Бесконтактная машина |
вращающаяся электрическая машина, в которой все электрические связи обмоток, участвующих в основном процессе преобразования энергии, осуществляются без применения коммутирующих или скользящих электрических контактов |
Вращающийся электродвигатель |
вращающаяся электрическая машина, предназначенная для преобразования электрической энергии в механическую |
Двигатель с фазным ротором |
двигатель, концы фазных обмоток ротора которого прикреплены к трем медным кольцам, укрепленным на валу ротора и изолированным как между собой, так и от стального сердечника ротора |
ИСО |
международная организация, занимающаяся выпуском стандартов |
Исполнительный электродвигатель |
Вращающийся электродвигатель для высокодинамического режима работы |
Коэффициент полезного действия |
отношение полезной (отдаваемой) мощности к затрачиваемой (подводимой) |
Международная электротехническая комиссия |
международная некоммерческая организация по стандартизации в области электрических, электронных и смежных технологий. Некоторые из стандартов МЭК разрабатываются совместно с Международной организацией по стандартизации (ISO) |
Механическая характеристика двигателя |
зависимость между вращающимся моментом и скольжением |
Минимальный пусковой момент асинхронного двигателя с короткозамкнутым ротором (синхронного двигателя, синхронного компенсатора) |
минимальный вращающий момент, развиваемый асинхронным электродвигателем с короткозамкнутым ротором (синхронным двигателем, синхронным компенсатором) между нулевой частотой вращения и частотой вращения, соответствующий максимальному моменту при номинальных значениях напряжения и частоты питающей сети |
Момент трогания вращающегося электродвигателя |
минимальный вращающий момент, который необходимо развить вращающемуся электродвигателю для перехода от состояния покоя к устойчивому вращению |
Моментный электродвигатель |
вращающийся электродвигатель, предназначенный для создания вращающего момента при ограниченном перемещении, неподвижном состоянии или медленном вращении ротора |
Номинальная мощность |
мощность, для работы с которой в номинальном режиме машина предназначена заводом-изготовителем |
Номинальная частота вращения |
частота вращения, соответствующая работе машины при номинальных напряжении, мощности и частоте тока и номинальных условиях применения |
Номинальный входной момент синхронного вращающегося электродвигателя |
вращающий момент, который развивает синхронный вращающийся электродвигатель при номинальных напряжении и частоте питающей сети, замкнутой накоротко обмотке возбуждения и при частоте вращения, равной 95% синхронной |
Номинальный ток |
ток, соответствующий работе машины в номинальном режиме с номинальной мощностью и частотой вращения при номинальном напряжении |
Номинальными данными электрической машины |
данные, характеризующие работу машины в режиме, для которого она предназначена заводом-изготовителем – это мощность, напряжение, ток, частота, КПД, коэффициент мощности, частота вращения и др. |
Реактивный синхронный двигатель |
синхронный двигатель, вращающий момент которого обусловлен неравенством магнитных проводимостей по поперечной и продольной осям ротора, не имеющего обмоток возбуждения или постоянных магнитов |
Реактивный шаговый электродвигатель |
шаговый электродвигатель с неактивным ротором из магнитного материала |
Ротор |
вращающаяся часть машины |
Серводвигатель |
серводвигатель используется в составе сервомеханизма для точного управления угловым положением, скоростью и ускорением исполнительного механизма |
Скольжение |
разность скоростей ротора и вращающегося поля статора |
Статор |
неподвижная часть машины |
Тормозной момент вращающегося электродвигателя |
вращающий момент на валу вращающегося электродвигателя, действующий так, чтобы снизить частоту вращения двигателя |
Универсальный электродвигатель |
вращающийся электродвигатель, который может работать при питании от сети как постоянного, так и однофазного переменного тока |
Шаговый электродвигатель |
вращающийся электродвигатель с дискретными угловыми перемещениями ротора, осуществляемыми за счет импульсов сигнала управления |
Шаговый электродвигатель с постоянными магнитами |
шаговый электродвигатель, возбуждаемый постоянными магнитами |
Электрический двигатель |
электрическая машина, осуществляющая преобразование электрической энергии в механическую |
Электродвигатель пульсирующего тока |
вращающийся электродвигатель постоянного тока, рассчитанный на питание от выпрямителя при пульсации тока более 10% |
Электромашинный преобразователь |
вращающаяся электрическая машина, предназначенная для изменения параметров электрической энергии |
Электромашинный тормоз |
вращающаяся электрическая машина, предназначенная для создания тормозного момента |
Электростартер |
Вращающийся электродвигатель, предназначенный для пуска двигателя внутреннего сгорания или газовой турбины |
Электрический двигатель — это… Что такое Электрический двигатель?
Электродвигатели разной мощности (750 Вт, 25 Вт, к CD-плееру, к игрушке, к дисководу). Батарейка «Крона» дана для сравненияЭлектрический двигатель — электрическая машина (электромеханический преобразователь), в которой электрическая энергия преобразуется в механическую, побочным эффектом является выделение тепла.
Принцип действия
В основу работы любой электрической машины положен принцип электромагнитной индукции. Электрическая машина состоит из неподвижной части — статора (для асинхронных и синхронных машин переменного тока) или индуктора (для машин постоянного тока) и подвижной части — ротора (для асинхронных и синхронных машин переменного тока) или якоря (для машин постоянного тока). В роли индуктора на маломощных двигателях постоянного тока очень часто используются постоянные магниты.
Ротор может быть:
- короткозамкнутым;
- фазным (с обмоткой) — используются там, где необходимо уменьшить пусковой ток и регулировать частоту вращения асинхронного электродвигателя. Сейчас эти двигатели редкость, так как на рынке появились преобразователи частоты, ранее же они очень часто использовались в крановых установках.
Якорь — это подвижная часть машин постоянного тока (двигателя или генератора) или же работающего по этому же принципу так называемого универсального двигателя (который используется в электроинструменте). По сути универсальный двигатель — это тот же двигатель постоянного тока (ДПТ) с последовательным возбуждением (обмотки якоря и индуктора включены последовательно). Отличие только в расчётах обмоток. На постоянном токе отсутствует реактивное (индуктивное или ёмкостное) сопротивление. Поэтому любая болгарка, если выкинуть электронный блок, будет вполне работоспособна и на постоянном токе, но при меньшем напряжении сети.
Принцип действия трехфазного асинхронного электродвигателя
При включении в сеть в статоре возникает круговое вращающееся магнитное поле, которое пронизывает короткозамкнутую обмотку ротора и наводит в ней ток индукции. Отсюда, следуя закону Ампера (на проводник с током, помещенный в магнитное поле, действует эдс), ротор приходит во вращение. Частота вращения ротора зависит от частоты питающего напряжения и от числа пар магнитных полюсов. Разность между частотой вращения магнитного поля статора и частотой вращения ротора характеризуется скольжением. Двигатель называется асинхронным, так как частота вращения магнитного поля статора не совпадает с частотой вращения ротора. Синхронный двигатель имеет отличие в конструкции ротора. Ротор выполняется либо постоянным магнитом, либо электромагнитом, либо имеет в себе часть беличьей клетки (для запуска) и постоянные или электромагниты. В синхронном двигателе частота вращения магнитного поля статора и частота вращения ротора совпадают. Для запуска используют вспомогательные асинхронные электродвигатели, либо ротор с короткозамкнутой обмоткой.
Асинхронные двигатели нашли широкое применение во всех отраслях техники. Особенно это касается простых по конструкции и прочных трехфазных асинхронных двигателей с коротко-замкнутыми роторами, которые надежнее и дешевле всех электрических двигателей и практически не требуют никакого ухода. Название «асинхронный» обусловлено тем, что в таком двигателе ротор вращается не синхронно с вращающимся полем статора. Там, где нет трехфазной сети, асинхронный двигатель может включаться в сеть однофазного тока.
Статор асинхронного электродвигателя состоит, как и в синхронной машине, из пакета, набранного из лакированных листов электротехнической стали толщиной 0,5 мм, в пазах которого уложена обмотка. Три фазы обмотки статора асинхронного трехфазного двигателя, пространственно смещенные на 120°, соединяются друг с другом звездой или треугольником.
Рис.1. Трехфазный двухполюсный асинхронный двигатель
На рис.1. показана принципиальная схема двухполюсной машины — по четыре паза на каждую фазу. При питании обмоток статора от трехфазной сети получается вращающееся поле, так как токи в фазах обмотки, которые смещены в пространстве на 120° друг относительно друга сдвинуты по фазе друг относительно друга на 120°.
Для синхронной частоты вращения nc поля электродвигателя с р парами полюсов справедливо при частоте тока f: nc=f/p
При частоте 50 Гц получаем для р = 1, 2, 3 (двух-, четырех- и шести полюсных машин) синхронные частоты вращения поля nc = 3000, 1500 и 1000 об/мин.
Ротор асинхронного электродвигателя также состоит из листов электротехнической стали и может быть выполнен в виде короткозамкнутого ротора (с беличьей клеткой) или ротора с контактными кольцами (фазный ротор).
В короткозамкнутом роторе обмотка состоит из металлических стержней (медь, бронза или алюминий), которые расположены в пазах и соединяются на концах закорачивающими кольцами (рис. 1). Соединение осуществляется методом пайки твердым припоем или сваркой. В случае применения алюминия или алюминиевых сплавов стержни ротора и заколачивающие кольца, включая лопасти вентилятора, расположенные на них, изготавливаются методом литья под давлением.
У ротора электродвигателя с контактными кольцами в пазах находится трехфазная обмотка, похожая на обмотку статора, включенную, например, звездой; начала фаз соединяются с тремя контактными кольцами, закрепленными на валу. При пуске двигателя и для регулировки частоты вращения можно подключить к фазам обмотки ротора реостаты (через контактные кольца и щетки). После успешного разбега контактные кольца замыкаются накоротко, так что обмотка ротора двигателя выполняет те же самые функции, что и в случае короткозамкнутого ротора.
Источник
Устройство асинхронного двигателя http://techno.x51.ru/index.php?mod=text&uitxt=905
Классификация электродвигателей
По принципу возникновения вращающего момента электродвигатели можно разделить на гистерезисные и магнитоэлектрические. У двигателей первой группы вращающий момент создается вследствие гистерезиса при перемагничивании ротора. Данные двигатели не являются традиционными и не широко распространены в промышленности.
Наиболее распространены магнитоэлектрические двигатели, которые по типу потребляемой энергии подразделяется на две большие группы — на двигатели постоянного тока и двигатели переменного тока (также существуют универсальные двигатели, которые могут питаться обоими видами тока).
Двигатели постоянного тока
Двигатель постоянного тока в разрезе. Справа расположен коллектор с щёткамиДвигатель постоянного тока — электрический двигатель, питание которого осуществляется постоянным током. Данная группа двигателей в свою очередь по наличию щёточно-коллекторного узла подразделяется на:
- коллекторные двигатели;
- бесколлекторные двигатели.
Щёточно-коллекторный узел обеспечивает электрическое соединение цепей вращающейся и неподвижной части машины и является наиболее ненадежным и сложным в обслуживании конструктивным элементом.[1]
По типу возбуждения коллекторные двигатели можно разделить на:
- двигатели с независимым возбуждением от электромагнитов и постоянных магнитов;
- двигатели с самовозбуждением .
Двигатели с самовозбуждением делятся на:
- Двигатели с параллельным возбуждением;(обмотка якоря включается параллельно обмотке возбуждения)
- Двигатели последовательного возбуждения;(обмотка якоря включается последовательно обмотке возбуждения)
- Двигатели смешанного возбуждения.(обмотка возбуждения включается частично последовательно частично параллельно обмотке якоря)
Бесколлекторные двигатели (вентильные двигатели) — электродвигатели, выполненные в виде замкнутой системы с использованием датчика положения ротора, системы управления (преобразователя координат) и силового полупроводникового преобразователя (инвертора). Принцип работы данных двигателей аналогичен принципу работы синхронных двигателей.[2]
Двигатели переменного тока
Трехфазные асинхронные двигателиДвигатель переменного тока — электрический двигатель, питание которого осуществляется переменным током. По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели. Принципиальное различие состоит в том, что в синхронных машинах первая гармоника магнитодвижущей силы статора движется со скоростью вращения ротора (благодаря чему сам ротор вращается со скоростью вращения магнитного поля в статоре), а у асинхронных — всегда есть разница между скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле вращается быстрее ротора).
Синхронный электродвигатель — электродвигатель переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения. Данные двигатели обычно используются при больших мощностях (от сотен киловатт и выше).[2]
Существуют синхронные двигатели с дискретным угловым перемещением ротора — шаговые двигатели. У них заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие. Ещё один вид синхронных двигателей — вентильный реактивный электродвигатель, питание обмоток которого формируется при помощи полупроводниковых элементов.
Асинхронный электродвигатель — электродвигатель переменного тока, в котором частота вращения ротора отличается от частоты вращающего магнитного поля, создаваемого питающим напряжением. Эти двигатели наиболее распространены в настоящее время.
По количеству фаз двигатели переменного тока подразделяются на:
Универсальный коллекторный электродвигатель
Универсальный коллекторный электродвигатель — коллекторный электродвигатель, который может работать и на постоянном токе и на переменном токе. Изготавливается только с последовательной обмоткой возбуждения на мощности до 200 Вт. Статор выполняется шихтованным из специальной электротехнической стали. Обмотка возбуждения включается частично при переменном токе и полностью при постоянном. Для переменного тока номинальные напряжения 127,220., для постоянного 110.220. Применяется в бытовых аппаратах, электроинструментах. Двигатели переменного тока с питанием от промышленной сети 50 гц не позволяют получить частоту вращения выше 3000 об/мин. Поэтому для получения высоких частот применяют коллекторный электродвигатель, который к тому же получается легче и меньше двигателя переменного тока той же мощности или применяют специальные передаточные механизмы, изменяющие кинематические параметры механизма до необходимых нам (мультипликаторы). При применении преобразователей частоты или наличии сети повышенной частоты (100, 200, 400 Гц) двигатели переменного тока оказываются легче и меньше коллекторных двигателей (коллекторный узел иногда занимает половину пространства). Ресурс асинхронных двигателей переменного тока гораздо выше, чем у коллекторных, и определяется состоянием подшипников и изоляции обмоток.
Синхронный двигатель с датчиком положения ротора и инвертором является электронным аналогом коллекторного двигателя постоянного тока.
История
Принцип преобразования электрической энергии в механическую энергию электромагнитным полем был продемонстрирован британским учёным Майклом Фарадеем в 1821 и состоял из свободно висящего провода, окунающегося в пул ртути. Постоянный магнит был установлен в середине пула ртути. Когда через провод пропускался ток, провод вращался вокруг магнита, показывая, что ток вызывал циклическое магнитное поле вокруг провода. Этот двигатель часто демонстрируется в школьных классах физики, вместо токсичной ртути используют рассол. Это — самый простой вид из класса электрических двигателей. Последующим усовершенствованием является Колесо Барлоу. Оно было демонстрационным устройством, непригодным в практических применениях из-за ограниченной мощности. Изобретатели стремились создать электродвигатель для производственных нужд. Они пытались заставить железный сердечник двигаться в поле электромагнита возвратно-поступательно, то есть так, как движется поршень в цилиндре паровой машины. Русский ученый Б. С. Якоби пошел иным путем. В 1834 г. он создал первый в мире практически пригодный электродвигатель с вращающимся якорем и опубликовал теоретическую работу «О применении электромагнетизма для приведения в движение машины». Б. С. Якоби писал, что его двигатель несложен и «дает непосредственно круговое движение, которого гораздо легче преобразовать в другие виды движения, чем возвратно-поступательное».
Вращательное движение якоря в двигателе Якоби происходило вследствие попеременного притяжения и отталкивания электромагнитов. Неподвижная группа U-образных электромагнитов питалась током непосредственно от гальванической батареи, причем направление тока в этих электромагнитах оставалось неизменным. Подвижная группа электромагнитов была подключена к батарее через коммутатор, с помощью которого направление тока в каждом электромагните изменялось раз за один оборот диска. Полярность электромагнитов при этом соответственно изменялась, а каждый из подвижных электромагнитов попеременного притягивался и отталкивался соответствующим неподвижным электромагнитом: вал двигателя начинал вращаться. Мощность такого двигателя составляла всего 15 Вт. Впоследствии Якоби довел мощность электродвигателя до 550 Вт. Этот двигатель был установлен сначала на лодке, а позже на железнодорожной платформе.
13 сентября 1838 г. лодка с 12 пассажирами поплыла по Неве против течения со скоростью около 3 км/ч. Лодка была снабжена колесами с лопастями. Колеса приводились во вращение электрическим двигателем, который получал ток от батареи из 320 гальванических элементов. Так впервые электрический двигатель появился на судне.
Примечания
Литература
- Белов М. П., Новиков В. А., Рассудов Л. Н. Автоматизированный электропривод типовых производственных механизмов и технологических комплексов. — 3-е изд., испр. — М.: Издательский центр «Академия», 2007. — 575 с. — (Высшие профессиональное образование). — 1000 экз. — ISBN 978-5-7695-4497-2
Ссылки
Что такое электродвигатель? — ВолгаПромЭксперт
Это электрический механизм, единственной функцией которого является преобразование энергии электрической в энергию механическую. Основным побочным эффектом работы электродвигателя принято считать
выделение тепловой энергии.
В основу работы любого электродвигателя ()заложен принцип электромагнитной индукции.
Главные компоненты, из которых должен состоять электромотор — статор и ротор.
Статором является внешняя, неподвижная часть электродвигателя. От типа электромотора зависит и функциональное назначение самого статора. Он может генерировать статическое (неподвижное)
электромагнитное поле, при этом, его составляющими частями будут постоянные магниты и/или с помощью обмоток, питаемых переменным током, способен создать магнитное поле по принципу вращения.
Ротор, в свою очередь, является подвижной частью которой обладает магнитный двигатель.
За счет взаимодействия магнитных полей статора и ротора в работающем двигателе появляется вращательный момент, который и приводит в движение ротор внутри двигателя. По такой не сложной схеме
и происходит преобразование электроэнергии в механическую. Далее уже полученная механическая энергия используется как привод, для иных механизмов в цепи.
Существует несколько типов электродвигателей. Первая категория — синхронные и асинхронные двигателя, еще именуемые как двигателя переменного тока. Принципиальная разница в их работе заключается в
скорости вращения ротора. Так в синхронных электромоторах существует гармония между движущей магнитной силой и скоростью вращения ротора. За счет данной гармонии получается, что скорость
вращения ротора совпадает со скоростью вращения электромагнитного поля в статоре. По этому такие двигатели называются синхронными.
В асинхронных электромашинах все несколько иначе. Конструкция двигателя позволяет создавать разницу между скоростью вращения магнитного поля в статоре и скоростью вращения ротора.
Магнитное поле статора всегда вращается быстрее ротора.
Следующая категория, это двигатель постоянного тока. В работе таких типов двигателей есть несколько подходов. В первом используется рамка, состоящая из двух стержней с замкнутыми концами, и ток в
магнитного поля статора. Во втором подходе используется простое взаимодействие между магнитными полями ротора и индуктора (статора).
Двигателя можно по праву считать широко применяемыми механизмами. Областью их применения считается сегмент начиная от быта и заканчивая крупномасштабными промышленными проектами. Например
синхронные двигателя находят свое широкое применение в различных воздуховодных установках, так же могут являться неотъемлемой частью гидравлических систем. Асинхронные электромашины широко
применяются в производстве маломощной бытовой техники, часто применяются в промышленных целях, например крановые установки, различные грузовые лебедки и т.д.
Цены на электродвигатели варьируются в зависимости от комплектации, мощности и области применения.
Электродвигатель, цена которого не превышает 1000 грн. как правило считается маломощным. Далее идет ценовая категория более производительных агрегатов, которые больше используются в
промышленности. Двигатели купить можно в УПК Фарватер ().
По всем вопросам, связанным с покупкой электродвигателей вы можете обратиться к сотрудникам нашей компании. При желании , наши специалисты помогут Вам с выбором модели, которая подойдет под ваши
задачи, и смогут в полной мере предоставить квалифицированную консультацию по моделям которые Вас заинтересовали. Мы не ограничиваем себя и Вас в сотрудничестве, по этому работаем как с юридическими
так и с частными лицами. Мы предоставляем только качественное оборудование различных производителей, профессиональную и оперативную команду менеджеров. Будем рады сотрудничеству с Вами!
Электрические двигатели: классификация, устройство, принцип работы
Электрический двигатель – специальная машина (ее еще называют электромеханическим преобразователем), с помощью которой электроэнергия преобразовывается в механическое движение.
Побочный эффект такой конвертации – выделение тепла.
При-этом современные двигатели обладают очень высоким КПД, который достигает 98%, в результате чего их использование экономически более выгодно по сравнению с двигателями внутренного сгорания. Электрические двигатели используются во всех сферах народного хозяйства, начиная от бытового применения, заканчивая военной техникой.
Электрические двигатели и их разновидности
Как известно с базового школьного курса физики, ток бывает переменным и постоянным. В бытовой электросети – переменный ток. Батарейки, аккумуляторы и другие мобильные источники питания предоставляют постоянный ток.
Электродвигатели постоянного тока характеризуются хорошими эксплуатационными и динамическими характеристиками.
Такие изделия широко используются в подъемных машинах, буровых станках, полимерном оборудовании, в некоторых агрегатах экскаваторов.
По принципу работы электродвигатели переменного тока бывают
- асинхронными;
- синхронными.
Подробное сравнение этих видов машин можно почитать тут.
Синхронные двигатели – электрические машины, где скорость вращения ротора полностью идентична частоте магнитного поля. Учитывая эту особенность, такие устройства актуальны там, где необходима стабильная высокая скорость вращения: насосы, крупные вентиляторы, генераторы, компрессоры, стиральные машины, пылесосы, практически все электроинструменты.
Особое внимание среди синхронных устройств, заслуживают шаговые двигатели. Они обладают несколькими обмотками. Такой подход позволяет с высокой точностью изменять скорость вращения таких электродвигателей.
Асинхронными двигателями называют такие машины, в которых скорость ротора отличается от частоты движения магнитного поля.
Нашли свое применение в подавляющем большинстве отраслей народного хозяйства: в приводах дымососов, транспортерах, шаровых мельницах, наждачных, сверлильных станках, в холодильном оборудовании, вентиляторах, кондиционерах, микроприводах.
Максимальная скорость вращения асинхронных установок – 3000 об/мин.
Интересное видео о двигателях смотрите ниже:
Преимущества и недостатки асинхронных двигателей
Асинхронные электродвигатели могут обладать фазным и короткозамкнутым ротором.
Короткозамкнутый ротор более распространен.
Такие двигатели обладают следующими преимуществами:
- относительно одинаковая скорость вращения при разных уровнях нагрузки;
- не боятся непродолжительных механических перегрузок;
- простая конструкция;
- несложная автоматизация и пуск;
- высокий КПД (коэффициент полезного действия).
Электродвигатели с короткозамкнутым контуром требуют большой пусковой ток.
Если невозможно реализовать выполнение этого условия, то используют устройства с фазным ротором. Они обладают такими достоинствами:
- хороший начальный вращающий момент;
- нечувствительны к кратковременным перегрузкам механической природы;
- постоянная скорость работы при наличии нагрузок;
- малый пусковой ток;
- с такими двигателями применяют автоматические пусковые устройства;
- могут в небольших пределах изменять скорость вращения.
К основным недостаткам асинхронных двигателей относят то, что изменять их скорость работы можно только посредством изменения частоты электрического тока.
Кроме того, частота вращения – относительна. Она колеблется в небольших пределах. Иногда это недопустимо.
Интересное видео об асинхронных электродвигателях смотрите ниже:
Особенности работы синхронных двигателей
Все синхронные двигатели обладают такими преимуществами:
- Они не отдают и не потребляют реактивную энергию в сеть. Это позволяет уменьшить их габариты при сохранении мощности. Типичный синхронный электродвигатель меньше асинхронного.
- В сравнении с асинхронными устройствами, менее чувствительны к скачкам напряжения.
- Хорошая сопротивляемость перегрузкам.
- Такие электрические машины способны поддерживать постоянную скорость вращения, если уровень нагрузок не превышает допустимые пределы.
В любой бочке, есть ложка с дегтем. Синхронным электродвигателям присущи такие недостатки:
- сложная конструкция;
- затрудненный пуск в ход;
- довольно сложно изменять скорость вращения (посредством изменения значения частоты тока).
Сочетание всех этих особенностей делает синхронные двигатели невыгодными при мощностях до 100 Вт. А вот на более высоких уровнях производительности, синхронные машины показывают себя во всей красе.
Электродвигатель постоянного тока: принцип работы и действия, устройство, характеристики
Сейчас невозможно представить нашу жизнь без электродвигателей. Они приводят в действие станки, бытовую технику и инструменты, поезда, трамваи и троллейбусы, компьютеры, игрушки и разные подвижные механизмы, устанавливаются на производственных станках, если частоту вращения рабочего вала требуется регулировать в широком диапазоне. Агрегаты для преобразования электрической энергии в механическую представлены множеством видов и моделей (синхронные, асинхронные, коллекторные и т.д.). Из этой статьи вы узнаете, что такое электродвигатель постоянного тока, его устройство и принцип действия.
Краткая история создания
Разные ученые пытались создать экономичный и мощный двигатель еще с первой половины 19 века. Основой послужило открытие М.Фарадея, сделанное в 1821 г. Он обнаружил, что помещенный в магнитное поле проводник вращается. Отталкиваясь от этого, в 1833 г изобретатель Томас Дэвенпорт смог сконструировать двигатель постоянного тока, а позже, в 1834 г, ученый Б.С.Якоби придумал прообраз современной модели двигателя с вращающимся валом. Устройство, более похожее на современные агрегаты, появилось в 1886 г, и до сегодняшнего дня электродвигатель продолжает совершенствоваться.
Принцип действия электродвигателя постоянного тока
На мысль о создании двигателя ученых натолкнуто следующее открытие. Помещенная в магнитное поле проволочная рамка с пропущенным по ней током начинает вращаться, создавая механическую энергию. Принцип действия электродвигателя постоянного тока основывается на взаимодействии магнитных полей рамки и самого магнита. Но одна рамка после определенного количества вращений замирает в положении, параллельном внешнему магнитному полю. Для продолжения движения необходимо добавить вторую рамку и в определенный момент переключить направление тока.
Вместо рамок в двигателе используется набор проводников, на которые подается ток, и якорь. При запуске вокруг него возбуждается магнитное поле, взаимодействующее с полем обмотки. Это заставляет якорь повернуться на определенный угол. Подача тока на следующие проводники приводит к следующему повороту якоря, и далее процесс продолжается.
Магнитное поле создается либо с помощью постоянного магнита (в маломощных агрегатах), либо с помощью индуктора/обмотки возбуждения (в более мощных устройствах).
Попеременную зарядку проводников якоря обеспечивают щетки, сделанные из графита или сплава графита и меди. Они служат контактами, замыкающими электрическую сеть на выводы пар проводников. Изолированные друг от друга выводы представляют собой кольцо из нескольких ламелей, которое находится на оси вала якоря и называется коллекторным узлом. Благодаря поочередному замыканию ламелей щетками двигатель вращается равномерно. Степень равномерности работы двигателя зависит от количества проводников (чем больше, тем равномернее).
Устройство электродвигателя постоянного тока
Теперь, когда вы знаете, как работает электродвигатель постоянного тока, пора ознакомиться с его конструкцией.
Как и у других моделей, основу двигателя составляют статор (индуктор) – неподвижная часть, и якорь вкупе с щеточноколлекторным узлом – подвижная часть. Обе части разделены воздушным зазором.
В состав статора входят станина, являющаяся элементом магнитной цепи, а также главные и добавочные полюса. Обмотки возбуждения, необходимые для создания магнитного поля, находятся на главных полюсах. Специальная обмотка, улучшающая условия коммутации, расположена на добавочных полюсах.
Якорь представляет собой узел, состоящий из магнитной системы (она собрана из нескольких листов), набора обмоток (проводников), уложенных в пазы, и коллектора, который подводит постоянный ток к рабочей обмотке.
Коллектор имеет вид цилиндра, собранного из изолированных медных пластин. Он насажен на вал двигателя и имеет выступы, к которым подходят концы секций обмотки якоря. Щетки снимают ток с коллектора, входя с ним в скользящий контакт. Удержание щеток в нужном положении и обеспечение их нажатия на коллектор с определенной силой осуществляется щеткодержателями.
Многие модели двигателей оснащены вентилятором, задача которого – охлаждение агрегата и увеличение продолжительности рабочего периода.
Особенности и характеристики электродвигателя постоянного тока
Эксплуатационные характеристики электродвигателя постоянного тока позволяют широко использовать это устройство в самых разных сферах – от бытовых приборов до транспорта. К его преимуществам можно отнести:
- Экологичность. При работе не выделяются вредные вещества и отходы.
- Надежность. Благодаря довольно простой конструкции он редко ломается и служит долго.
- Универсальность. Он может использоваться в качестве как двигателя, так и генератора.
- Простота управления.
- Возможность регулирования частоты и скорости вращения вала – достаточно подключить агрегат в цепь переменного сопротивления.
- Легкость запуска.
- Небольшие размеры.
- Возможность менять направление вращения вала. В двигателе с последовательным возбуждением нужно изменить направление тока в обмотке возбуждения, во всех остальных типах – в якоре.
Как и любое устройство, электродвигатели постоянного тока имеют и «слабые стороны»:
- Их себестоимость, следовательно, и цена достаточно высока.
- Для подключения к сети необходим выпрямитель тока.
- Самая уязвимая и быстроизнашивающаяся деталь – щетки – требует периодической замены.
- При сильной перегрузке может случиться возгорание. Если соблюдать правила эксплуатации, такая возможность исключена.
Но, как видите, достоинства явно перевешивают, поэтому на данный момент электродвигатель является одним из наиболее экономичных и эффективных устройств. Зная устройство и принцип работы электродвигателя постоянного тока, вы сможете самостоятельно собрать и разобрать его для техосмотра, чистки или устранения неисправностей.
Электродвигатель — Energy Education
Рисунок 1. Электродвигатель от старого пылесоса. [1] Рисунок 2. Электрический ротор. [2]Электродвигатель — это устройство, используемое для преобразования электричества в механическую энергию, противоположное электрическому генератору. Они работают с использованием принципов электромагнетизма, которые показывают, что сила прилагается, когда электрический ток присутствует в магнитном поле. Эта сила создает крутящий момент на проволочной петле, присутствующей в магнитном поле, которая заставляет двигатель вращаться и выполнять полезную работу.Двигатели используются в широком спектре приложений, таких как вентиляторы, электроинструменты, бытовая техника, электромобили и гибридные автомобили.
Как они работают
У двигателейесть много разных рабочих частей, чтобы они постоянно вращались, обеспечивая необходимую мощность. Двигатели могут работать от постоянного (DC) или переменного (AC) тока, и оба имеют свои преимущества и недостатки. Для целей этой статьи будет проанализирован двигатель постоянного тока, чтобы прочитать о двигателях переменного тока, нажмите здесь.
Основные части двигателя постоянного тока включают: [3]
- Статор: Неподвижная часть двигателя, а именно магнит.Электромагниты часто используются для увеличения мощности.
- Ротор: Катушка, которая установлена на оси и вращается с высокой скоростью, обеспечивая систему механической энергией вращения.
- Коммутатор: Этот компонент является ключевым в двигателях постоянного тока, и его можно увидеть на рисунках 3 и 4. Без него ротор не мог бы вращаться непрерывно из-за противодействующих сил, создаваемых изменяющимся током. Коммутатор позволяет ротору вращаться, меняя направление тока каждый раз, когда катушка делает пол-оборота.
- Щетки: Они подключаются к клеммам источника питания, позволяя электроэнергии течь в коммутатор.
- Двигатель постоянного тока
Рисунок 3: Базовая установка двигателя постоянного тока. [3]
Рисунок 4: Анимация двигателя в действии. Коммутатор вращается, чтобы ротор вращался непрерывно. [3]
Список литературы
Электродвигатели
Что внутри электродвигателя?
Катушка ротора
Катушка сделана из медной проволоки, потому что медь — отличный проводник.Он наматывается на арматуру. Катушка становится электромагнитом, когда через нее протекает ток.
Арматура
Якорь поддерживает катушку и может помочь сделать электромагнит сильнее. Это делает мотор более эффективным.
Постоянные магниты
Есть два постоянных магнита. Они создают постоянное магнитное поле, так что катушка будет вращаться, когда в ней протекает ток.
Некоторые двигатели имеют электромагниты вместо постоянных магнитов (Рисунок 9).Они сделаны из большего количества катушек медной проволоки.
Коммутатор
Каждый конец катушки подключен к одной из двух половин коммутатора. Коммутатор меняет местами контакты каждые пол-оборота. Ротор на Рисунке 8 имеет две катушки, поэтому для него необходимы четыре сегмента коммутатора.
Щетки
Щетки давят на коммутатор. Они поддерживают контакт с коммутатором, даже если он вращается. Ток течет в двигатель и выходит через щетки.В настоящих двигателях щетки сделаны из угля.
S тележка
Каркас из магнитного материала связывает два постоянных магнита и, по сути, превращает их в один подковообразный магнит.
Рисунок 6: Детали модели двигателя постоянного тока. Двигатели постоянного тока с питанием от низковольтных батарей приводят в движение моторизованные игрушки. Их легко разобрать. Вы можете обнаружить, что они используют несколько катушек и имеют соответствующий многосегментный коммутатор.
Рисунок 7 — Простой двухполюсный двигатель постоянного тока (один N и один S).
Почему он поворачивается?
На странице, посвященной электромагнитам, показано, как катушка с проволокой становится магнитом, когда через нее протекает электрический ток. Катушка двигателя, намотанная на якорь, становится электромагнитом, но электромагнит находится внутри второго постоянного магнитного поля. Эти поля взаимодействуют как два стержневых магнита. Результатом является притяжение или отталкивание, в зависимости от текущего направления.Ток течет в одном направлении справа от катушки и в противоположном направлении слева.
Сила, действующая на провод, направлена под прямым углом к магнитному полю, а также под прямым углом к току. Это называется моторным эффектом. Правило Флеминга использует ваши пальцы, расположенные под прямым углом друг к другу, чтобы предсказать силу, действующую на провод в магнитном поле. Для моторов вы используете левую руку.
См. Рисунок 7. Когда ток включен, он течет в направлении зеленой стрелки и вызывает силу, направленную вверх.Попытайтесь совместить схему левой рукой. Поскольку он течет обратно вниз с другой стороны в противоположном направлении, он вызывает силу, направленную вниз. Двигайте рукой, чтобы соответствовать этому направлению. Силы объединяются, чтобы вращать катушку.
Это может работать только на пол-оборота. Разъем с разрезным кольцом, называемый коммутатором, меняет местами соединения, чтобы можно было начать следующую половину оборота. Это происходит на каждые пол-оборота, поэтому двигатель вращается. Электрический ток через щетки подается в катушку.
Так работает электродвигатель постоянного тока.Электродвигатели переменного тока более сложны, но по-прежнему действует правило Флеминга.
Как работают моторы и как выбрать мотор для любого проекта
Как работают двигатели и как выбрать правильный двигатель
Моторы можно найти практически везде. Это руководство поможет вам изучить основы электродвигателей, доступные типы и способы выбора правильного электродвигателя. Основные вопросы, на которые нужно ответить при принятии решения о том, какой двигатель лучше всего подходит для применения, — это какой тип выбрать и какие характеристики имеют значение.Как работают моторы?
Электродвигатели работают, преобразуя электрическую энергию в механическую энергию для создания движения. Сила создается внутри двигателя за счет взаимодействия между магнитным полем и переменным (AC) или постоянным (DC) током обмотки. С увеличением силы тока увеличивается и сила магнитного поля. Помните о законе Ома (V = I * R); напряжение должно увеличиваться, чтобы поддерживать тот же ток при увеличении сопротивления. Электродвигатели имеют множество применений.Обычные промышленные применения включают воздуходувки, станки и электроинструменты, вентиляторы и насосы. Любители обычно используют двигатели в небольших приложениях, требующих движения, таких как робототехника или модули с колесами.
Типы двигателей:
Существует много типов двигателей постоянного тока , но наиболее распространены щеточные или бесщеточные. Также существуют вибрационные двигатели, шаговые двигатели и серводвигатели.Щеточные двигатели постоянного тока являются одними из самых простых и используются во многих бытовых приборах, игрушках и автомобилях.Они используют контактные щетки, которые подключаются к коммутатору для изменения направления тока. Они недороги в производстве, просты в управлении и обладают отличным крутящим моментом на низких скоростях (измеряется в оборотах в минуту или об / мин). Некоторые недостатки заключаются в том, что они требуют постоянного обслуживания для замены изношенных щеток, имеют ограниченную скорость из-за нагрева щеток и могут генерировать электромагнитный шум из-за искрения щеток.
Щеточный двигатель постоянного тока
Бесщеточные двигатели постоянного тока используют постоянные магниты в роторном узле.Они популярны на рынке хобби для применения в самолетах и наземных транспортных средствах. Они более эффективны, требуют меньше обслуживания, производят меньше шума и имеют более высокую удельную мощность, чем щеточные двигатели постоянного тока. Они также могут производиться серийно и напоминать двигатель переменного тока с постоянной частотой вращения, за исключением того, что они питаются от постоянного тока. Однако есть несколько недостатков, в том числе то, что ими сложно управлять без специального регулятора, и они требуют низких пусковых нагрузок и специализированных редукторов в приводных приложениях, что приводит к их более высоким капитальным затратам, сложности и экологическим ограничениям.
Бесщеточный двигатель постоянного тока
Вибрационные двигатели используются в приложениях, требующих вибрации, например, в мобильных телефонах или игровых контроллерах. Они генерируются электродвигателем и имеют несбалансированную массу на приводном валу, которая вызывает вибрацию. Их также можно использовать в неэлектронных зуммерах, которые вибрируют для звуковой сигнализации или для сигналов тревоги или дверных звонков.
Вибрационный двигатель
Когда требуется точное позиционирование, шаговые двигатели — ваш друг.Они используются в принтерах, станках и системах управления технологическими процессами и рассчитаны на высокий удерживающий момент, что дает пользователю возможность переходить от одного шага к другому. У них есть система контроллера, которая определяет положение посредством сигнальных импульсов, отправляемых драйверу, который интерпретирует их и передает пропорциональное напряжение на двигатель. Их относительно просто изготовить и контролировать, но они постоянно потребляют максимальный ток. Расстояние небольшого шага ограничивает максимальную скорость, и шаги можно пропустить при высоких нагрузках.
Шаговый двигатель
Серводвигатели — еще один популярный двигатель на рынке хобби, который используется для неточного управления положением. Их популярные приложения включают приложения дистанционного управления, такие как игрушечные радиоуправляемые автомобили и робототехника. Они состоят из двигателя, потенциометра и схемы управления и в основном управляются с помощью широтно-импульсной модуляции (ШИМ), посредством отправки электрических импульсов на провод управления. Сервоприводы могут быть как переменного, так и постоянного тока. Сервоприводы переменного тока могут справляться с более высокими скачками тока и используются в промышленном оборудовании, тогда как сервоприводы постоянного тока предназначены для небольших любительских приложений.Чтобы узнать больше о сервомоторах, ознакомьтесь с нашей статьей Как работают серводвигатели .
Существует три основных типа двигателей переменного тока: асинхронные, синхронные и промышленные.
Асинхронные двигатели
называются асинхронными двигателями, поскольку они не вращаются с одинаковой постоянной скоростью или не медленнее, чем указанная частота. Скольжение , разница между фактической и синхронной скоростью, необходимо для создания крутящего момента , крутящего момента, вызывающего вращение, в асинхронных двигателях.Магнитное поле, окружающее ротор этих двигателей, создается индуцированным током.
Ротор синхронных двигателей вращается с постоянной скоростью при подаче переменного тока. Их магнитное поле создается постоянными магнитами. Промышленные двигатели предназначены для трехфазных систем с высокой мощностью, таких как конвейеры или воздуходувки. Двигатели переменного тока также можно найти в бытовой технике и других приложениях, таких как часы, вентиляторы и дисководы.
Что нужно учитывать при покупке мотора:
При выборе двигателя необходимо обратить внимание на несколько характеристик, но наиболее важными являются напряжение, ток, крутящий момент и скорость (об / мин).Ток — это то, что питает двигатель, и слишком большой ток приведет к его повреждению. Для двигателей постоянного тока важны рабочий ток и ток остановки. Рабочий ток — это средняя величина тока, которую двигатель может потреблять при типичном крутящем моменте. Ток останова обеспечивает достаточный крутящий момент для двигателя, чтобы работать со скоростью останова, или 0 об / мин. Это максимальный ток, который двигатель может потреблять, а также максимальная мощность, умноженная на номинальное напряжение. Радиаторы важны, если двигатель постоянно работает или работает с напряжением выше номинального, чтобы катушки не плавились.
Напряжение используется для поддержания протекания чистого тока в одном направлении и для преодоления обратного тока. Чем выше напряжение, тем выше крутящий момент. Номинальное напряжение двигателя постоянного тока указывает на наиболее эффективное напряжение во время работы. Обязательно подайте рекомендованное напряжение. Если вы приложите слишком мало вольт, двигатель не будет работать, тогда как слишком большое напряжение может привести к короткому замыканию обмоток, что приведет к потере мощности или полному разрушению.
Рабочие значения и значения остановки также необходимо учитывать с крутящим моментом.Рабочий крутящий момент — это величина крутящего момента, которую двигатель был спроектирован для передачи, а крутящий момент при остановке — это величина крутящего момента, создаваемая при подаче мощности от скорости остановки. Вы всегда должны смотреть на требуемый рабочий крутящий момент, но в некоторых приложениях вам потребуется знать, насколько далеко вы можете толкнуть двигатель. Например, для колесного робота хороший крутящий момент равен хорошему ускорению, но вы должны убедиться, что крутящий момент сваливания достаточно высок, чтобы поднять вес робота. В этом случае крутящий момент важнее скорости.
Скорость или скорость (об / мин) может быть сложной для двигателей. Общее правило состоит в том, что двигатели наиболее эффективно работают на самых высоких скоростях, но это не всегда возможно, если требуется передача. Добавление шестерен снизит эффективность двигателя, поэтому примите во внимание снижение скорости и крутящего момента.
Это основные принципы, которые следует учитывать при выборе двигателя. Подумайте о назначении приложения и о том, какой ток он использует, чтобы выбрать подходящий тип двигателя. Технические характеристики приложения, такие как напряжение, ток, крутящий момент и скорость, будут определять, какой двигатель наиболее подходит, поэтому обязательно обратите внимание на его требования.
Есть ли у вас дополнительные советы по выбору двигателей? Дайте нам знать по телефону [адрес электронной почты защищен] .
Электродвигатели: Путеводитель | Типы двигателей и соображения выбора
Промышленное применение электродвигателей
Электродвигатели находят применение в разнообразном оборудовании в промышленности. Общие промышленные приложения включают:
- Компрессоры
- Вентиляторы и нагнетатели
- Оборудование для тяжелых условий
- Системы отопления, вентиляции и кондиционирования воздуха
- Дробилки
- Насосы
- Токарные станки
Выбор электродвигателя, соответствующего вашим потребностям
Право Тип электродвигателя зависит от используемого оборудования.Например, двигатель должен быть выбран в соответствии с уровнями пусковой мощности подключенной машины и требованиями к рабочей выходной мощности. Неправильно подобранный двигатель может привести к значительному повреждению машины или привести к остановке и отказу. Доступны многофазные двигатели и двигатели с различными уровнями напряжения, поэтому электромеханики могут легко подобрать промышленное оборудование для соответствующего двигателя.
Типы электродвигателей
В Gainesville Industrial Electric мы предлагаем широкий выбор электродвигателей от Marathon, Teco-Westinghouse, Leeson, Lincoln, Century, GE, Baldor и Worldwide Electric.У каждого двигателя есть уникальные особенности, атрибуты и рекомендуемые области применения. Наши предложения продукции варьируются от дробных однофазных и трехфазных двигателей до больших двигателей среднего и высокого напряжения.
Однофазные двигатели общего назначения
Наш ассортимент однофазных двигателей общего назначения включает:
- Каплезащищенные двигатели
- Полностью закрытые двигатели
- Подразделение опасных условий 1, Взрывобезопасное Proof Motors
Универсальные трехфазные двигатели
Трехфазные двигатели имеют напряжение 208, 230, 460 или 575.Мы предлагаем следующие трехфазные электродвигатели общего назначения :
- Каплезащищенные двигатели
- Полностью закрытые двигатели
- Двигатели для тяжелых условий эксплуатации
Трехфазные двигатели для опасных условий эксплуатации
Опасные условия эксплуатации, Трехфазные двигатели спроектированы и изготовлены так, чтобы выдерживать более суровые условия эксплуатации, чем двигатели общего назначения. Несмотря на то, что все эти двигатели подходят для размещения в соответствии с Разделом 1, отдельные модели подходят для местоположений класса I и / или класса II с опасными материалами групп C, D, E, F и / или G.
Washdown Duty, окрашенные двигатели и двигатели из нержавеющей стали
Washdown Duty окрашенные двигатели и двигатели из нержавеющей стали предназначены для тяжелых и сложных условий, таких как пищевая, химическая и автомобильная мойки. Они доступны в одно- и трехфазных моделях до 20 л.с.
Двигатели среднего напряжения
Эти двигатели среднего напряжения работают от 2300 или 4000 вольт. Доступны модели с защитой от атмосферных воздействий, с вентиляторным охлаждением и полностью закрытые.Дополнительные функции включают комплекты для переоборудования роликовых подшипников, комплекты WPII и конструкции энергосбережения.
Электродвигатели для насосов
Электродвигатели для насосов разработаны таким образом, чтобы иметь мощность, достаточную для привода насоса без перегрузки. У них есть специальные валы для использования с механическими уплотнениями (JM Frame) или набивкой (JP Frame). Эти двигатели применяются в центробежных или моноблочных насосах, струйных насосах и насосах для бассейнов.
Двигатели с инверторным и векторным режимами
Когда приводы с регулируемой частотой (VFD) приводят в движение двигатели, они создают большие скачки напряжения.Двигатели с инверторным и векторным режимами работы могут выдерживать эти всплески и работать без перегрева.
Двигатели постоянного тока с постоянным магнитом
Двигатели постоянного тока используются для немедленного запуска и приложений, где быстрые изменения более важны, чем постепенные или плавные изменения. Двигатели постоянного тока с постоянными магнитами упрощают выполнение этих операций по запуску.
Двигатели воздушного компрессора
Двигатели воздушного компрессора вырабатывают мощность и высокий крутящий момент, необходимые для привода переносных и стационарных воздушных компрессоров, используемых на таких объектах, как кузовные мастерские и производственные предприятия.
Тормозные двигатели
Тормозные двигатели обычно представляют собой однодисковые двигатели переменного или постоянного тока, которые могут быстро останавливать ведомое движение. Они разработаны таким образом, чтобы делать это безопасно, не вызывая сотрясений и не сокращая срок службы оборудования.
Двигатели для градирни
Эти двигатели обеспечивают питание градирен. Они спроектированы так, чтобы выдерживать суровые жаркие и влажные условия, типичные для градирен. Доступны корпуса TEAO и TEFC, а также одно- и двухскоростные двигатели.
Farm Duty / Сельскохозяйственные двигатели
Эти двигатели соответствуют требованиям к высокому крутящему моменту для сельскохозяйственного и сельскохозяйственного оборудования, такого как шнековые приводы и машины для перемешивания зерна.
Двигатели HVAC
Эти двигатели приводят в действие ряд оборудования HVAC, например:
- Воздуходувки
- Вентиляторы
- Масляные горелки
- Насосы
- Вентиляторы
. Мгновенные реверсивные двигатели
Эти двигатели подходят для применений, требующих мгновенного реверсирования движения, например, для открытия, закрытия и подъема шлагбаумов.
. Двигатели Crusher Duty
Эти двигатели для тяжелых условий эксплуатации обладают высоким пусковым моментом и крутящим моментом для отключения. Измельчители и дробилки обычно выигрывают от этих специальных двигателей из-за их прочной конструкции и высокопрочных компонентов.
Решения для промышленных электродвигателей от GIE
Выбор правильного двигателя для промышленного применения обеспечивает лучшую производительность в течение всего срока службы используемого оборудования. Многие специальные двигатели включают в себя функции безопасности или уникальные варианты мощности для повышения производительности.
В Gainesville Industrial Electric мы с гордостью поставляем высококачественные промышленные электродвигатели от ведущих производителей, таких как Marathon, Teco-Westinghouse, Leeson, Lincoln, Century, GE, Baldor и Worldwide Electric. Кроме того, у нас есть мастерская по ремонту двигателей и насосов с полным спектром услуг, где можно легко отремонтировать двигатель любой марки.
Чтобы узнать больше о наших продуктах и услугах или для помощи в выборе, поиске или обслуживании электродвигателя, свяжитесь с нами или запросите коммерческое предложение сегодня.
Типы электродвигателей — Thomson Lamination Company, Inc.
Электродвигателиможно найти во многих сферах применения: от обычных предметов домашнего обихода до различных видов транспорта и даже передовых аэрокосмических приложений. Здесь мы делимся руководством, которое поможет вам лучше понять доступные варианты.
Электродвигатели и генераторы
Электродвигатели и генераторы представляют собой электромагнитные устройства с обмоткой якоря или ротором, который вращается внутри обмотки возбуждения или статора; однако у них противоположные функции.Генераторы преобразуют механическую энергию в электрическую, а двигатели преобразуют электрическую энергию в механическую.
Два типа электродвигателей
Обмотка возбуждения в электродвигателях обеспечивает электрический ток для создания фиксированного магнитного поля, которое обмотка якоря использует для создания крутящего момента на валу электродвигателя. Различия между различными типами электродвигателей связаны с их уникальной работой, напряжением и требованиями к применению. Существует как минимум дюжина различных типов электродвигателей, но есть две основные классификации: переменного тока (AC) или постоянного тока (DC).То, как обмотки в двигателях переменного и постоянного тока взаимодействуют друг с другом для создания механической силы, создает дополнительные различия в каждой из этих классификаций.
Двигатели постоянного тока
Моторы с щеткойЩеточные двигатели состоят из четырех основных компонентов:
- Статор
- Ротор или якорь
- Кисти
- Коммутатор
Существует четыре основных типа щеточных двигателей, в том числе:
- Двигатели серии . Статор включен последовательно или идентичен ротору, поэтому их токи возбуждения идентичны. Характеристики: используется в кранах и лебедках, большой крутящий момент на низкой скорости, ограниченный крутящий момент на высокой скорости.
- Шунтирующие двигатели. Катушка возбуждения параллельна (шунтируется) ротору, благодаря чему ток двигателя равен сумме двух токов. Характеристики: используется в промышленности и автомобилестроении, отличное управление скоростью, высокий / постоянный крутящий момент на низких скоростях.
- Кумулятивные составные двигатели. Этот тип сочетает в себе аспекты как последовательного, так и закрытого типов, делая ток двигателя равным сумме последовательных и шунтирующих токов поля. Характеристики: используется в промышленности и автомобилестроении, объединяет преимущества как серийных, так и параллельных двигателей.
- Двигатели PMDC (постоянный магнит). Самый распространенный тип щеточных электродвигателей, электродвигатели с постоянным постоянным током, в которых для создания поля статора используются постоянные магниты. Характеристики: используется в коммерческом производстве игрушек и бытовой техники, дешевле в производстве, хороший крутящий момент на нижнем конце, ограниченный крутящий момент на верхнем конце.
Двигатели категории бесколлекторных не имеют коллектора и щеток. Вместо этого ротор представляет собой постоянный магнит, а катушки находятся на статоре. Вместо того, чтобы управлять магнитными полями на роторе, бесщеточные двигатели управляют магнитными полями статора, регулируя величину и направление тока в катушках. Одним из основных преимуществ бесщеточных двигателей является их эффективность, которая позволяет лучше контролировать и производить крутящий момент в более компактной сборке.
Двигатели переменного тока
Двигатели, относящиеся к классификации двигателей переменного тока, бывают синхронными или асинхронными, которые в первую очередь различаются по скорости ротора относительно скорости статора. Скорость ротора относительно статора в синхронном двигателе равна, но скорость ротора меньше, чем его синхронная скорость в асинхронном двигателе. Кроме того, синхронные двигатели имеют нулевое скольжение и требуют дополнительного источника питания, в то время как асинхронные или асинхронные двигатели имеют скольжение и не требуют вторичного источника питания.
Синхронный двигательСинхронный двигатель — это машина с двойным возбуждением, то есть он имеет два электрических входа. В обычном трехфазном синхронном двигателе один вход, обычно трехфазный переменный ток, питает обмотку статора для создания трехфазного вращающегося магнитного потока. Питание ротора обычно осуществляется постоянным током, который возбуждает или запускает ротор. Как только поле ротора сцепляется с полем статора, двигатель становится синхронным.
Асинхронный (индукционный)В отличие от синхронных двигателей, асинхронные двигатели позволяют запускать асинхронные двигатели, подавая питание на статор без подачи питания на ротор.Асинхронные двигатели имеют конструкцию с возбуждением или с короткозамкнутым ротором. Вот некоторые примеры асинхронных асинхронных двигателей:
- Индукционные двигатели с конденсаторным пуском. Это однофазный двигатель с ротором и двумя обмотками статора, запускаемый конденсатором. Их использование включает компрессоры и насосы в холодильниках и системах переменного тока с частым запуском и остановом.
- Асинхронные двигатели с короткозамкнутым ротором. Трехфазное питание создает магнитное поле в обмотке статора в этом двигателе, который включает в себя ротор с короткозамкнутым ротором, сделанный из листовой стали с высокой проводимостью.Это недорогие, низкие эксплуатационные расходы и высокоэффективные двигатели, используемые в центробежных насосах, промышленных приводах, больших нагнетателях и вентиляторах, станках, токарных станках и другом токарном оборудовании.
- Двигатели с двойным короткозамкнутым ротором. Эти двигатели решают проблемы с низким пусковым моментом в двигателях с короткозамкнутым ротором. Их конструкция уравновешивает отношение реактивного сопротивления к сопротивлению между внешней и внутренней клеткой, увеличивая пусковой крутящий момент при сохранении общей эффективности.
Нажмите, чтобы развернуть
Идентификация электродвигателя
Выбор двигателя, наиболее подходящего для конкретного применения, зависит от четырех характеристик:
- Мощность и скорость
- Рама двигателя
- Требования к напряжению
- Корпуса и монтажные позиции
Металлическая табличка, прикрепленная к двигателю, содержит важную информацию, относящуюся к этим характеристикам, за исключением информации о корпусе.
Мощность электродвигателя в лошадиных силах и номинальная скорость
И номинальная мощность, и номинальная скорость вращения (об / мин) должны соответствовать требованиям к нагрузке для установленного приложения. Двигатели бывают разных категорий мощности, в том числе: дробные двигатели (от 1/20 до 1 л.с.), встроенные двигатели (от 1 до 400 л.с.) и большие двигатели (от 100 до 50 000 л.с.). Номинальные значения частоты вращения включают 3600 об / мин (2 полюса), 1800 об / мин (4 полюса) и 1200 об / мин (6 полюсов).
Рама электродвигателя
Размер рамы двигателя не указывает на его рабочие характеристики, особенно на номинальную мощность в лошадиных силах.Национальная ассоциация производителей электрооборудования (NEMA) разработала номера корпусов, соответствующие монтажным размерам, а их цифры относятся к их размеру «D» или расстоянию от центра вала до центра нижней части крепления. Как правило, двухзначные метки предназначены для дробных двигателей, но в них можно встроить двигатели большей мощности.
Требования к напряжению
Напряжение, частота и фаза — все это часть требований к напряжению. В большинстве случаев в Северной Америке и Европе трехфазные двигатели оснащены дисплеями с двойным напряжением, например 230/460.Стандартная рабочая частота для большинства электродвигателей составляет 60 Гц, хотя в Европе распространены двигатели с частотой 50 Гц. Это изменение в герцах указывает на то, что двигатель будет работать со скоростью 5/6 от нормальной скорости вращения. Фаза — это последний бит информации, включенный в требования к напряжению двигателя, указывающий тип требуемого источника питания, например трехфазный, однофазный и постоянный ток.
Корпуса и монтажные позиции
Информация о корпусе зависит от среды, в которой установлен двигатель.Есть две основные категории корпусов: открытые двигатели и закрытые двигатели.
Открытые двигателиОткрытые двигатели применяются в относительно чистых и сухих помещениях, что важно, поскольку открытые кожухи двигателей обеспечивают циркуляцию воздуха через обмотки.
Закрытые двигателиЭти типы не допускают свободного воздухообмена между внешней и внутренней частью двигателя. Различия в герметичности корпуса и характеристиках охлаждения дополнительно различают типы двигателей закрытого типа, в том числе:
- Полностью закрытый вентилятор с охлаждением (TEFC)
- Полностью закрытые, невентилируемые (TENV)
- Полностью закрытый воздуховод (TEAO)
- Полностью закрытая промывка (TEWD)
- Взрывозащищенные корпуса (EXPL)
- Опасная зона (HAZ)
Найдите электродвигатель, наиболее подходящий для вашего применения
Thomson Lamination Company — ведущий производитель штампованных компонентов для ламинирования двигателей, способный производить большие партии пластин ротора и статора из металлов с высокой проводимостью.
Ознакомьтесь с нашими возможностями по производству ламинации или свяжитесь с нами, чтобы узнать больше о наших решениях для ламинирования с электродвигателем.
Что такое мотор? | Сервоприводы и контроллеры машин | Продукты и решения
Что такое мотор?
Словарь описывает: «Двигатель — это машина, которая преобразует электрическую энергию в механическую». Другими словами, электрическая энергия — это «батарея», а механическая энергия — это «вращение». Для физического объяснения мотора хорошо подходит хорошо известное «правило левой руки Флеминга».Когда электрический ток течет по электрическому проводу, помещенному между двумя магнитами, обращенными друг к другу, он создает силу. Электрический ток, магнитное поле и движение соответственно применяются в перпендикулярных направлениях друг к другу, как когда вы разводите средний палец (электрический ток), указательный палец (магнитное поле) и большой палец (сила) левой руки соответственно по взаимно ортогональным осям.
Тогда почему электрический ток, протекающий по электрическому проводу, создает силу? Это связано с тем, что, когда электрический ток течет по электрическому проводу, вокруг него создается магнитное поле.Магнитное поле притягивает или отталкивает магнитное поле от магнитов, которые создают силу для перемещения электрического провода. Электрическая энергия здесь — это «электрический ток», а механическая энергия — это «сила».
Начало моторов
В 1831 году британский физик Майкл Фарадей открыл закон электромагнитной индукции, согласно которому электрический ток течет при перемещении магнитов в катушке с воздушным сердечником. Закон электромагнитной индукции доказал, что электрическая энергия и механическая энергия взаимно преобразованы.Говорят, что это катализатор изобретения двигателей. В те дни Великобритания переживала период первой промышленной революции, и паровая энергия была движущей силой революции. Никто не мог признать важность двигателей, которые работали с электричеством в те дни без электросети.
На пути к практичным моторам
Никола Тесла |
С момента открытия Фарадеем электромагнитной индукции люди изобрели ряд двигателей.В 1834 году Томас Давенпорт изобрел практический двигатель постоянного тока. После этого югославскому инженеру-электрику, позже ставшему американцем Никола Тесла, пришла в голову идея управлять двигателями переменным током. В 1882 году идея принципа вращающегося магнитного поля внезапно поразила его голову, когда он гулял в парке. В 1887 году он закончил практический двухфазный двигатель переменного тока (асинхронный двигатель), использующий вращающееся магнитное поле. С тех пор были разработаны технологии переменного тока, такие как трансформатор, трехфазная трехпроводная система, а также электросети.Чем доступнее становилось электричество, тем шире использовались двигатели.
Благодаря прорыву Tesla теперь мы можем наслаждаться жизнью с помощью электричества и двигателей. Кстати, когда-то Тесла работал в компании, которой руководил великий изобретатель Эдисон, он вступил в конфликт с Эдисоном и покинул компанию в течение одного года. Тесла оставил слова, цинично искажающие слова Эдисона: «Гений — это 1 процент вдохновения и 99 процентов напрасных усилий».
Отечественное производство моторов и вылет Yaskawa Electric
Первый заказ размещен на асинхронном двигателе |
Говорят, что первый двигатель, использованный в Японии, был для лифта (вмещал 15-20 человек, работал до 8 этажа) в Ryōunkaku, первом небоскребе в западном стиле в Японии, открытом в 1890 году в Асакуса, Токио.Не говоря уже о том, что такой технологии для разработки и производства двигателей в Японии не было, в лифте использовался 15-сильный двигатель (двигатель постоянного тока), купленный в Америке. Хотя утверждается, что лифт прекратил работу в течение 1 года из-за частых поломок, это стало эпизодом, демонстрирующим стремление людей к моторизации.
В 1890-х годах в Японии начали использовать импортные двигатели, например, для насосов в шахтах. Поскольку уровень промышленных технологий в Японии в то время был значительно ниже, чем в Европе и Америке, большинство электрических устройств было импортным.Однако говорят, что они часто выходили из строя. Итак, двигатели отечественного производства постепенно набирали обороты.
В 1895 году был выпущен первый двигатель (асинхронный двигатель), произведенный в Японии. Затем, в 1915 году, Yaskawa Electric была основана как компания, которая производила и продавала электрические продукты, произведенные исключительно в Японии, и в 1917 году запустила первый заказ на асинхронные двигатели. С этого момента операторы угольных шахт начали размещать заказы на двигатели Yaskawa для их насосы и тягачи.
Разные виды и особенности двигателей
Через 180 лет после появления двигателей его характеристики и удобство использования значительно улучшились благодаря прогрессу в разработке и производстве технологий и материалов, а также электроники. Существуют различные способы вызова двигателей в зависимости от категоризации функций и структур, таких как серводвигатель для его точной работы по командам, линейный двигатель для его линейного движения, вибрационный двигатель для его вибрации для уведомления о входящем вызове на мобильном телефоне и мотор-редуктор для комбинированного редуктора.У двигателей также есть несколько названий, хотя их конструкция одинакова. Начиная с двигателя для угольной шахты, теперь, когда двигатели Yaskawa Electric находят применение в самых разных областях, таких как промышленное оборудование, роботы и электромобили (EV). Например, в приведенном ниже списке показаны несколько названий, используемых в двигателях для электромобилей. Люди назвали моторы, чтобы обозначить отличия от других, в результате осталось много названий для моторов. Это такой сложный фон, но вместе с тем «доказательство диверсификации автомобильной промышленности».”
Категоризация двигателей
Двигатели постоянного тока пропускают через него постоянный ток (DC), а двигатели переменного тока пропускают через него переменный ток. Бесщеточный электродвигатель постоянного тока — это электродвигатель постоянного тока, в котором вместо щетки и коммутатора используется полупроводниковый переключающий элемент. Универсальный двигатель может вращать двигатель на высокой скорости с помощью электричества 100 В переменного тока для домашних хозяйств, удерживая ту же щетку и коммутатор для двигателей постоянного тока. Помимо этого, есть шаговый двигатель, который движется с прямоугольным потоком тока, и реактивный двигатель с переключаемым сопротивлением.Ультразвуковой двигатель — это специальный двигатель, который работает путем вибрации пьезоэлектрической керамики с приложением высокочастотного напряжения.
1) Двигатели постоянного тока
Двигатель, который многие японские ученики использовали в своих научных экспериментах в начальной школе, был электродвигателем постоянного тока. Это самый популярный двигатель, используемый в моделях бытовой электроники и вибрационных двигателях в мобильных телефонах. Чтобы примерно объяснить устройство двигателей, в нем есть ротор и статор.Ротор — это часть, соединенная с валом, а статор — это неподвижная часть, которая составляет внешнюю часть.
Статор в двигателях постоянного тока удерживает постоянные магниты и щетки, которые подают электрический ток на ротор, а ротор удерживает обмотки и коммутатор. Как только щетки подают постоянный ток на коммутатор, электрический ток начинает течь через обмотки, подключенные к коммутатору, и создает крутящий момент. Здесь обмотки и коммутатор имеют механизм для протекания электрического тока таким образом, что крутящий момент остается на одном уровне.Самая большая особенность двигателя постоянного тока — его удобство использования с сухими элементами. Вы можете изменить направление вращения, просто изменив подключение проводов двигателя. Вот почему двигатели постоянного тока получили широкое распространение.
2) Бесщеточные двигатели постоянного тока
Бесщеточный двигатель постоянного тока можно охарактеризовать как «двигатель без щеток, обладающий характеристиками, аналогичными двигателю постоянного тока». Он содержит обмотки статора и постоянные магниты в роторе в качестве своей структуры. В нем нет щеток и коммутатора, которые раньше были в двигателях постоянного тока, вместо этого он удерживает полупроводниковый переключающий элемент вне двигателя.Он работает, чтобы постоянно пропускать постоянный ток через две из трех фаз обмоток, фазы U, V и W. Он переключает поток тока в соответствии с положением постоянных магнитов, обнаруженным, например, датчиком элемента Холла, и продолжает генерировать то же самое. уровень крутящего момента.
3) Синхронные двигатели
С другой стороны, синхронный двигатель работает синусоидально, используя информацию, обнаруженную датчиком угла, прикрепленным к краю ротора. Синхронный двигатель назван в честь механизма, в котором вращение магнитного поля, создаваемого трехфазными обмотками, синхронизируется с вращением ротора.Конструкция синхронных двигателей в основном такая же, как и у бесщеточных двигателей постоянного тока. Поэтому люди часто принимают синхронные двигатели за бесщеточные двигатели постоянного тока и наоборот.
Одной из особенностей синхронных двигателей и бесщеточных двигателей постоянного тока является то, что они способны предотвращать износ щеток и электрические шумы. Они также могут уменьшаться в размерах, иметь высокую производительность и высокую эффективность за счет использования сильных редкоземельных магнитов. Благодаря этим характеристикам, существует широкий спектр применения, например, в информационных устройствах, бытовой электронике, автомобильных двигателях и серводвигателях.Говорят, что на двигатели постоянного тока приходится 70%, а общее количество бесщеточных двигателей постоянного тока и синхронных двигателей составляет 20% от общего количества произведенных малогабаритных двигателей.
4) Асинхронные двигатели
Принцип вращения асинхронных двигателей основан на «вращении Араго», открытом французским физиком Араго. Это явление заключается в том, что когда вы помещаете алюминиевый диск между U-образным магнитом и перемещаете магнит в направлении вращения, алюминиевый диск начинает вращаться в том же направлении с небольшой задержкой по времени.Когда магнитное поле U-образного магнита изменяется на алюминиевом диске, спиральный электрический ток течет через алюминиевый диск (закон электромагнитной индукции), и действие тока и магнитного поля U-образного магнита генерирует электромагнитную силу. Асинхронные двигатели — это изобретение, применяемое во вращении Араго.
Статор асинхронных двигателей имеет в своем составе трехфазные обмотки. А на роторе находится алюминиевая деталь в виде клетки (корпусный проводник).Когда вы запускаете трехфазные обмотки в виде синусоиды, она генерирует магнитное поле, которое вращается с определенной частотой. Затем, как и в принципе вращения Араго, электрический ток течет через проводник с короткозамкнутым ротором, который воспринимает изменения магнитного поля, и ротор начинает вращаться с небольшой задержкой по времени.
Асинхронные двигателименее эффективны по сравнению с бесщеточными двигателями постоянного тока и синхронными двигателями, в которых используются постоянные магниты, однако у них есть другие особенности, например, они применимы к коммерческому трехфазному источнику питания переменного тока 200 В, с возможностью вращения без датчика Холла или датчик угла поворота, который трудно сломать, может эффективно работать с приводом переменного тока и обеспечивать большую мощность при использовании двигателя большого размера.Поэтому существует множество вариантов использования асинхронных двигателей в промышленной сфере и транспортных средствах. Подобно биоразнообразию, у нас есть множество двигателей, которые имеют широкий диапазон природы в зависимости от различия структур и распределения материалов.
Электродвигатель| Encyclopedia.com
Двигатель постоянного тока
Типы двигателей постоянного тока
Двигатели переменного тока
Принципы работы трехфазного двигателя
Ресурсы
Электродвигатель — это машина, используемая для преобразования электрической энергии в механическую.Электродвигатели важны для современной жизни, они используются в пылесосах, посудомоечных машинах, компьютерных принтерах, факсах, водяных насосах, производстве, автомобилях (как обычных, так и гибридных), станках, печатных станках, системах метро и т. Д.
Основные физические принципы работы электродвигателя известны как закон Ампера и закон Фарадея. Первая гласит, что электрический проводник, находящийся в магнитном поле, будет испытывать силу, если любой ток, протекающий через проводник, имеет компонент, расположенный под прямым углом к этому полю.Изменение направления тока или магнитного поля приведет к возникновению силы, действующей в противоположном направлении. Второй принцип гласит, что если проводник перемещается через магнитное поле, то любой компонент движения, перпендикулярный этому полю, будет создавать разность потенциалов между концами проводника.
Электродвигатель состоит из двух основных элементов. Первый, статический компонент, который состоит из магнитных материалов и электрических проводников для создания магнитных полей желаемой формы, известен как статор .Второй, который также сделан из магнитных и электрических проводников для создания определенных магнитных полей, которые взаимодействуют с полями, создаваемыми статором, известен как ротор . Ротор содержит движущийся компонент двигателя, имеющий вращающийся вал для соединения с приводимой в действие машиной и некоторые средства поддержания электрического контакта между ротором и корпусом двигателя (обычно угольные щетки, прижатые к контактным кольцам). В процессе работы электрический ток, подаваемый на двигатель, используется для создания магнитных полей как в роторе, так и в статоре.Эти поля сталкиваются друг с другом, в результате чего ротор испытывает крутящий момент и, следовательно, вращается.
Электродвигатели делятся на две большие категории, в зависимости от типа применяемой электроэнергии: двигатели постоянного (DC) и переменного тока (AC).
Первый электродвигатель постоянного тока был продемонстрирован Майклом Фарадеем в Англии в 1821 году. Поскольку единственными доступными электрическими источниками были электродвигатели постоянного тока, первые коммерчески доступные электродвигатели были электродвигателями постоянного тока, которые стали популярными в 1880-х годах.Эти двигатели использовались как для маломощных, так и для больших мощностей, таких как электрические уличные железные дороги. Только в 1890-х годах, когда появилась электроэнергия переменного тока, двигатель переменного тока был разработан, в первую очередь, корпорациями Westinghouse и General Electric. В течение этого десятилетия было решено большинство проблем, связанных с однофазными и многофазными двигателями переменного тока. Следовательно, все основные характеристики электродвигателей были разработаны к 1900 году.
Работа двигателя постоянного тока зависит от взаимодействия полюсов статора с частью ротора или якоря.Статор содержит четное количество полюсов переменной магнитной полярности, каждый полюс состоит из электромагнита, образованного из обмотки полюса, намотанной на сердечник полюса. Когда через обмотку протекает постоянный ток, создается магнитное поле. Якорь также содержит обмотку, в которой ток течет в указанном направлении. Этот ток якоря взаимодействует с магнитным полем в соответствии с законом Ампера, создавая крутящий момент, который поворачивает якорь.
Если бы обмотки якоря вращались вокруг следующего полюса противоположной полярности, крутящий момент работал бы в противоположном направлении, останавливая якорь.Чтобы предотвратить это, ротор содержит коммутатор, который изменяет направление тока якоря для каждого полюсного наконечника, мимо которого вращается якорь, таким образом гарантируя, что все обмотки, проходящие, например, через полюс северной полярности, будут иметь ток, протекающий в в том же направлении, в то время как обмотки, проходящие через южные полюса, будут иметь противоположный ток, чтобы создать крутящий момент в том же направлении, что и крутящий момент, создаваемый северными полюсами. Коммутатор обычно состоит из разъемного контактного кольца, по которому движутся щетки, протекающие по постоянному току.
Вращение обмоток якоря через поле статора создает на якоре напряжение, известное как противо-ЭДС (электродвижущая сила), поскольку оно противодействует приложенному напряжению: это следствие закона Фарадея. Величина противо-ЭДС зависит от напряженности магнитного поля и скорости вращения якоря. При первоначальном включении двигателя постоянного тока нет противодействия ЭДС, и якорь начинает вращаться. Счетчик ЭДС увеличивается с вращением.Действующее напряжение на обмотках якоря — это приложенное напряжение за вычетом противо-ЭДС.
Двигатели постоянного тока встречаются чаще, чем мы думаем. Автомобиль может иметь до 20 двигателей постоянного тока для привода вентиляторов, сидений и окон. Они бывают трех разных типов, классифицируемых в зависимости от используемой электрической схемы. В параллельном двигателе якорь и обмотка возбуждения соединены параллельно, поэтому токи через каждую из них относительно независимы. Ток через обмотку возбуждения можно регулировать с помощью реостата возбуждения (переменного резистора), что позволяет изменять скорость двигателя в широких пределах в широком диапазоне условий нагрузки.Этот тип двигателя используется для привода станков или вентиляторов, для которых требуется широкий диапазон скоростей.
В последовательном двигателе обмотка возбуждения соединена последовательно с обмоткой якоря, что приводит к очень высокому пусковому моменту, поскольку как ток якоря, так и напряженность поля максимальны. Однако, как только якорь начинает вращаться, противо-ЭДС снижает ток в цепи, тем самым уменьшая напряженность поля. Серийный двигатель используется там, где требуется большой пусковой крутящий момент, например, в автомобильных стартерах, кранах и подъемниках.
Составной двигатель представляет собой комбинацию последовательного и параллельного двигателей с параллельными и последовательными обмотками возбуждения. Этот тип двигателя имеет высокий пусковой момент и способность изменять скорость и используется в ситуациях, требующих обоих этих свойств, таких как пробивные прессы, конвейеры и лифты.
Двигатели переменного токавстречаются гораздо чаще, чем двигатели постоянного тока, потому что почти все системы электроснабжения работают с переменным током. Существует три основных типа двигателей: многофазные асинхронные, многофазные синхронные и однофазные.Поскольку трехфазные источники питания являются наиболее распространенными многофазными источниками, большинство многофазных двигателей работают от трехфазных. Трехфазные источники питания широко используются в коммерческих и промышленных условиях, тогда как однофазные источники питания почти всегда используются в домашних условиях.
Основное различие между двигателями переменного и постоянного тока заключается в том, что магнитное поле, создаваемое статором, вращается в корпусе переменного тока. Через клеммы вводятся три электрические фазы, каждая фаза питает отдельный полюс поля. Когда каждая фаза достигает своего максимального тока, магнитное поле на этом полюсе достигает максимального значения.По мере уменьшения тока уменьшается и магнитное поле. Поскольку каждая фаза достигает своего максимума в разное время в пределах цикла тока, тот полюс поля, магнитное поле которого является наибольшим, постоянно изменяется между тремя полюсами, в результате чего магнитное поле, видимое ротором, вращается. Скорость вращения магнитного поля, известная как синхронная скорость, зависит от частоты источника питания и количества полюсов, создаваемых обмоткой статора. Для стандартного источника питания 60 Гц, используемого в США, максимальная синхронная скорость составляет 3 600 об / мин.
В трехфазном асинхронном двигателе обмотки ротора не подключены к источнику питания, а
Ключевые термины
AC — Переменный ток, при котором ток, проходящий через цепь, меняет направление потока через равные промежутки времени.
DC— Постоянный ток, при котором ток в цепи примерно постоянен во времени.
Ротор— Та часть электродвигателя, которая может свободно вращаться, включая вал, якорь и связь с машиной.
Статор — Та часть электродвигателя, которая не может вращаться, включая катушки возбуждения.
Крутящий момент — Способность или сила, необходимые для поворота или скручивания вала или другого объекта.
— это, по сути, короткие замыкания. Самый распространенный тип обмотки ротора, обмотка с короткозамкнутым ротором, очень похожа на ходовое колесо, используемое в клетках для домашних песчанок. Когда двигатель изначально включен, а ротор неподвижен, проводники ротора испытывают изменяющееся магнитное поле, перемещающееся с синхронной скоростью.Согласно закону Фарадея, эта ситуация приводит к индукции токов вокруг обмоток ротора; величина этого тока зависит от импеданса обмоток ротора. Поскольку условия для работы двигателя теперь выполнены, то есть токопроводящие проводники находятся в магнитном поле, ротор испытывает крутящий момент и начинает вращаться. Ротор никогда не может вращаться с синхронной скоростью, потому что не будет относительного движения между магнитным полем и обмотками ротора, и ток не может быть индуцирован.Асинхронный двигатель имеет высокий пусковой момент.
В двигателях с короткозамкнутым ротором скорость двигателя определяется нагрузкой, которую он передает, и числом полюсов, создающих магнитное поле в статоре. Если некоторые полюса включаются или выключаются, скорость двигателя можно регулировать с приращением. В двигателях с фазным ротором сопротивление обмоток ротора может быть изменено извне, что изменяет ток в обмотках и, таким образом, обеспечивает непрерывное регулирование скорости.
Трехфазные синхронные двигатели сильно отличаются от асинхронных двигателей.В синхронном двигателе ротор использует катушку под напряжением постоянного тока для создания постоянного магнитного поля. После того, как ротор приближается к синхронной скорости двигателя, северный (южный) полюс магнита ротора блокируется с южным (северным) полюсом вращающегося поля статора, и ротор вращается с синхронной скоростью. Ротор синхронного двигателя обычно включает в себя обмотку с короткозамкнутым ротором, которая используется для запуска вращения двигателя до подачи питания на катушку постоянного тока. Беличья клетка не действует на синхронных скоростях по причине, описанной выше.
Однофазные асинхронные двигатели и синхронные двигатели, используемые в большинстве бытовых ситуаций, работают по принципам, аналогичным описанным для трехфазных двигателей. Однако для создания пусковых моментов необходимо внести различные модификации, поскольку одна фаза не будет генерировать только вращающееся магнитное поле. Следовательно, в асинхронных двигателях используются конструкции с разделенной фазой, конденсаторным пуском или с экранированными полюсами. Небольшие синхронные однофазные двигатели, используемые для таймеров, часов, магнитофонов и т. П., Основаны на конструкциях с реактивным сопротивлением или гистерезисом.
КНИГИ
Красильщик. Катушки силы тока: как изготавливаются и как используются: с описанием электрического света, электрических звонков, электродвигателей, телефона, микрофона и фонографа . Бостон: Adamant Media Corporation, 2005.
Эмади, Али.