Какие бывают источники электрической энергии. Как работают основные типы электростанций. Каковы преимущества и недостатки различных способов генерации электроэнергии. Какие перспективы у альтернативной энергетики.
Основные виды источников электрической энергии
Источники электрической энергии можно разделить на две большие категории:
- Невозобновляемые (традиционные) источники
- Возобновляемые (альтернативные) источники
К невозобновляемым источникам относятся:
- Ископаемое топливо (уголь, нефть, природный газ)
- Ядерное топливо
Основные виды возобновляемых источников энергии:
- Солнечная энергия
- Энергия ветра
- Гидроэнергия
- Геотермальная энергия
- Энергия биомассы
Тепловые электростанции: принцип работы и виды
Тепловые электростанции (ТЭС) являются основным источником электроэнергии в большинстве стран мира. Как работает тепловая электростанция? Принцип действия ТЭС основан на преобразовании тепловой энергии в электрическую с помощью турбогенератора.

Основные этапы работы ТЭС:
- Сжигание топлива (угля, газа, мазута) в котле
- Нагрев воды и получение пара под высоким давлением
- Подача пара на турбину, вращение ротора турбины
- Вращение ротора генератора, соединенного с турбиной
- Выработка электрического тока в обмотках генератора
Различают два основных вида тепловых электростанций:
- Конденсационные (КЭС) — вырабатывают только электроэнергию
- Теплоэлектроцентрали (ТЭЦ) — вырабатывают электроэнергию и тепло
Атомные электростанции: особенности и принцип действия
Атомные электростанции (АЭС) вырабатывают около 10% мировой электроэнергии. В чем особенности работы АЭС? Принцип действия атомной станции схож с тепловой, но источником энергии служит не сжигание топлива, а ядерная реакция.
Ключевые этапы работы АЭС:
- Ядерная реакция деления в активной зоне реактора
- Нагрев теплоносителя (воды) в реакторе
- Образование пара в парогенераторе
- Вращение турбины паром
- Выработка электроэнергии в генераторе
Преимущества АЭС:
- Высокая мощность
- Отсутствие выбросов парниковых газов
- Небольшой расход топлива
Недостатки:

- Радиационная опасность
- Проблема утилизации ядерных отходов
- Высокая стоимость строительства
Гидроэлектростанции: принцип работы и экологичность
Гидроэлектростанции (ГЭС) вырабатывают около 16% мировой электроэнергии. Как работает гидроэлектростанция? Принцип действия ГЭС основан на преобразовании энергии падающей воды в электрическую энергию.
Основные элементы ГЭС:
- Плотина для создания напора воды
- Гидротурбины
- Генераторы
Этапы работы ГЭС:
- Накопление воды в водохранилище
- Подача воды на лопасти турбины
- Вращение ротора гидротурбины
- Выработка электроэнергии в генераторе
Преимущества ГЭС:
- Использование возобновляемого источника энергии
- Отсутствие вредных выбросов
- Низкая себестоимость энергии
Недостатки:
- Затопление больших территорий
- Влияние на экосистему рек
- Зависимость от гидрологических условий
Ветроэнергетика: принцип работы и перспективы развития
Ветроэнергетика — одно из самых быстрорастущих направлений альтернативной энергетики. Как работает ветрогенератор? Принцип действия ветроустановки основан на преобразовании кинетической энергии ветра во вращательное движение ротора генератора.

Основные компоненты ветрогенератора:
- Лопасти
- Ступица с редуктором
- Генератор
- Система управления
Этапы работы ветрогенератора:
- Ветер вращает лопасти ротора
- Вращение передается на вал генератора через редуктор
- Генератор вырабатывает электрический ток
Преимущества ветроэнергетики:
- Экологическая чистота
- Неисчерпаемость ресурса
- Отсутствие топливных затрат
Недостатки:
- Непостоянство выработки энергии
- Шумовое загрязнение
- Относительно высокая стоимость оборудования
Солнечная энергетика: виды и принципы работы
Солнечная энергетика — одно из наиболее перспективных направлений альтернативной энергетики. Как работают солнечные электростанции? Существует два основных способа преобразования солнечной энергии в электрическую:
- Фотоэлектрический (прямое преобразование)
- Термодинамический (с использованием теплоносителя)
Принцип работы фотоэлектрических панелей:
- Поглощение фотонов солнечного света полупроводниковым материалом
- Возникновение разности потенциалов между слоями полупроводника
- Генерация электрического тока
Преимущества солнечной энергетики:

- Экологическая чистота
- Доступность ресурса
- Минимальные эксплуатационные расходы
Недостатки:
- Зависимость от погодных условий
- Необходимость аккумуляции энергии
- Высокая стоимость оборудования
Перспективы развития альтернативной энергетики
Альтернативная энергетика развивается быстрыми темпами. Какие факторы способствуют ее росту? Основные драйверы развития возобновляемых источников энергии:
- Снижение стоимости технологий
- Ужесточение экологических требований
- Государственная поддержка
- Инвестиции крупных компаний
По прогнозам Международного энергетического агентства, доля возобновляемых источников в мировом производстве электроэнергии вырастет с 26% в 2018 году до 44% к 2040 году. Какие направления альтернативной энергетики наиболее перспективны?
- Солнечная энергетика
- Ветроэнергетика
- Водородная энергетика
- Геотермальная энергетика
Ключевые тенденции развития альтернативной энергетики:
- Повышение эффективности технологий
- Развитие систем хранения энергии
- Интеграция возобновляемых источников в энергосистемы
- Цифровизация и внедрение «умных» сетей
Как осуществляется производство (генерация) электрической энергии?
Производство (Генерация) электроэнергии — это процесс преобразования различных видов энергии в электрическую на индустриальных объектах, называемых электрическими станциями. В настоящее время существуют следующие виды генерации:
Тепловая электроэнергетика. В данном случае в электрическую энергию преобразуется тепловая энергия сгорания органических топлив. К тепловой электроэнергетике относятся тепловые электростанции (ТЭС), которые бывают двух основных видов:
Конденсационные (КЭС, также используется старая аббревиатура ГРЭС). Конденсационной называют не комбинированную выработку электрической энергии;
Теплофикационные (теплоэлектроцентрали, ТЭЦ). Теплофикацией называется комбинированная выработка электрической и тепловой энергии на одной и той же станции;
КЭС и ТЭЦ имеют схожие технологические процессы. В обоих случаях имеется котёл, в котором сжигается топливо и за счёт выделяемого тепла нагревается пар под давлением. Далее нагретый пар подаётся в паровую турбину, где его тепловая энергия преобразуется в энергию вращения. Вал турбины вращает ротор электрогенератора — таким образом энергия вращения преобразуется в электрическую энергию, которая подаётся в сеть. Принципиальным отличием ТЭЦ от КЭС является то, что часть нагретого в котле пара уходит на нужды теплоснабжения;
Ядерная энергетика. К ней относятся атомные электростанции (АЭС). На практике ядерную энергетику часто считают подвидом тепловой электроэнергетики, так как, в целом, принцип выработки электроэнергии на АЭС тот же, что и на ТЭС. Только в данном случае тепловая энергия выделяется не при сжигании топлива, а при делении атомных ядер в ядерном реакторе. Дальше схема производства электроэнергии ничем принципиально не отличается от ТЭС: пар нагревается в реакторе, поступает в паровую турбину и т. д. Из-за некоторых конструктивных особенностей АЭС нерентабельно использовать в комбинированной выработке, хотя отдельные эксперименты в этом направлении проводились;
Гидроэнергетика. К ней относятся гидроэлектростанции (ГЭС). В гидроэнергетике в электрическую энергию преобразуется кинетическая энергия течения воды. Для этого при помощи плотин на реках искусственно создаётся перепад уровней водяной поверхности (т. н. верхний и нижний бьеф). Вода под действием силы тяжести переливается из верхнего бьефа в нижний по специальным протокам, в которых расположены водяные турбины, лопасти которых раскручиваются водяным потоком. Турбина же вращает ротор электрогенератора. Особой разновидностью ГЭС являются гидроаккумулирующие станции (ГАЭС). Их нельзя считать генерирующими мощностями в чистом виде, так как они потребляют практически столько же электроэнергии, сколько вырабатывают, однако такие станции очень эффективно справляются с разгрузкой сети в пиковые часы;
Альтернативная энергетика. К ней относятся способы генерации электроэнергии, имеющие ряд достоинств по сравнению с «традиционными», но по разным причинам не получившие достаточного распространения. Основными видами альтернативной энергетики являются:
Ветроэнергетика — использование кинетической энергии ветра для получения электроэнергии;
Гелиоэнергетика — получение электрической энергии из энергии солнечных лучей;
Общими недостатками ветро- и гелиоэнергетики являются относительная маломощность генераторов при их дороговизне. Также в обоих случаях обязательно нужны аккумулирующие мощности на ночное (для гелиоэнергетики) и безветренное (для ветроэнергетики) время;
Геотермальная энергетика — использование естественного тепла Земли для выработки электрической энергии. По сути геотермальные станции представляют собой обычные ТЭС, на которых источником тепла для нагрева пара является не котёл или ядерный реактор, а подземные источники естественного тепла. Недостатком таких станций является географическая ограниченность их применения: геотермальные станции рентабельно строить только в регионах тектонической активности, то есть, там, где естественные источники тепла наиболее доступны;
Водородная энергетика — использование водорода в качестве энергетического топлива имеет большие перспективы: водород имеет очень высокий КПД сгорания, его ресурс практически не ограничен, сжигание водорода абсолютно экологически чисто (продуктом сгорания в атмосфере кислорода является дистиллированная вода). Однако в полной мере удовлетворить потребности человечества водородная энергетика на данный момент не в состоянии из-за дороговизны производства чистого водорода и технических проблем его транспортировки в больших количествах;
Стоит также отметить альтернативные виды гидроэнергетики: приливную и волновую энергетику. В этих случаях используется естественная кинетическая энергия морских приливов и ветровых волн соответственно. Распространению этих видов электроэнергетики мешает необходимость совпадения слишком многих факторов при проектировании электростанции: необходимо не просто морское побережье, но такое побережье, на котором приливы (и волнение моря соответственно) были бы достаточно сильны и постоянны. Например, побережье Чёрного моря не годится для строительства приливных электростанций, так как перепады уровня воды Чёрном море в прилив и отлив минимальны.
Вернуться назад
Виды источников электрической энергии ▷ купити на Sun-Energy.com.ua ◁
В настоящее время человечество научилось вырабатывать электричество многими способами, используя разные источники энергии. Каждый метод имеет недостатки, а источники требуют индивидуального подхода, чтобы они были использованы с максимальным коэффициентом полезного действия. Рассмотрим детально, какие варианты добычи электрической энергии сегодня известны человечеству.
В эту группу включают ресурсы природного происхождения, которые расходуются с целью получения электричества быстрее, чем они могут восстановиться естественным образом. К ним относят:
-
каменный уголь;
-
ядерное горючее;
-
природный газ;
-
торф;
-
нефть.
Отрицательной стороной данных источников энергии является то, что они исчерпываются. Ежегодно добыча вышеперечисленных энергоносителей увеличивается и дорожает, ведь приходится проводить работы в труднодоступных местах. Чтобы получить электричество, ископаемые необходимо сжечь, что приводит к выбросу в атмосферу вредных веществ в большом количестве. Таким образом, использование невозобновляемых источников приводит к истощению планеты, а также загрязнению ее атмосферы. По оценкам специалистов, запасов невозобновляемых источников энергии хватит максимум на 100 лет. Поэтому уже сегодня ведется интенсивная работа в направлении развития энергетики из возобновляемых источников.
В данную категорию попадают источники, имеющие возможность непрерывно обновляться в биосфере планеты. К ним относится солнечный свет, движение воздушных масс, волны на поверхности океана, течение рек. Все эти источники экологически чистые, так как при генерировании энергии не выделяют вредных веществ и соединений. Кроме того, производство энергии с их помощью не требует больших затрат, что снижает себестоимость каждого киловатта выработанного электричества. К примеру, солнечные панели не требуют как такого обслуживания, разве что почистить защитное закаленное стекло по мере загрязнения. Ветровые электростанции сложнее в эксплуатации ввиду наличия в конструкции механических деталей. Но в отличие от солнечных панелей, они могут вырабатывать электричество даже ночью, при наличии ветра.
Независимо от типа возобновляемого источника, его использование для производства электричества не приводит к нагреву планеты и загрязнению атмосферы. В последние годы нетрадиционныеисточники энергии активно осваиваются в Украине. Для развития солнечной энергетики был принят ряд законов, которые ввели в действие “Зеленый тариф”. Согласно ему каждый, кто производит электричество из возобновляемых источников энергии, может продавать его государству по выгодной цене. Рациональнее всего подключать солнечные электростанции под Зеленый тариф, потому что они быстро окупаются в течении 5-6 лет, а срок их эксплуатации составляет не менее 20 лет. Поэтому сегодня это один из самых выгодных способов вложения денег в энергетический бизнес.
Центр данных по альтернативным видам топлива: производство и распределение электроэнергии
Полностью электрические транспортные средства и подключаемые гибридные электромобили (PHEV), которые в совокупности называются электромобилями (EV), хранят электроэнергию в батареях для питания одного или нескольких электродвигателей. Аккумуляторы заряжаются в основном путем подключения к внешним источникам электроэнергии, произведенным из природного газа, ядерной энергии, угля, энергии ветра, гидроэнергетики и солнечной энергии.
Полностью электрические транспортные средства, а также PHEV, работающие в полностью электрическом режиме, не производят выбросов выхлопных газов. Однако существуют выбросы, связанные с большей частью производства электроэнергии в Соединенных Штатах. Дополнительную информацию о местных источниках электроэнергии и выбросах см. в разделе «Выбросы».
Производство
По данным Управления энергетической информации США, в 2020 году большая часть электроэнергии в стране была произведена за счет природного газа, ядерной энергии и угля.
Электроэнергия также производится из возобновляемых источников, таких как ветер, гидроэнергетика, биомасса, ветер и геотермальная энергия. Вместе возобновляемые источники энергии произвели около 20% электроэнергии страны в 2020 году.
Для производства электроэнергии турбогенераторная установка преобразует механическую энергию в электрическую. В случае природного газа, угля, ядерного деления, биомассы, нефти, геотермальной и солнечной энергии производимое тепло используется для создания пара, который приводит в движение лопасти турбины. В случае ветряной и гидроэнергетики лопасти турбины приводятся в движение непосредственно потоками ветра и воды соответственно. Солнечные фотоэлектрические панели преобразуют солнечный свет непосредственно в электричество с помощью полупроводников.
Количество энергии, производимой каждым источником, зависит от сочетания видов топлива и источников энергии, используемых в вашем районе. Чтобы узнать больше, см. раздел о выбросах. Узнайте больше о производстве электроэнергии от Управления энергетической информации Министерства энергетики США.
Передача и распределение электроэнергии
Электричество в Соединенных Штатах часто перемещается на большие расстояния от генерирующих мощностей до местных распределительных подстанций по передающей сети протяженностью почти 160 000 миль высоковольтных линий электропередачи. Генерирующие объекты обеспечивают электроэнергию в сеть при низком напряжении, от 480 вольт (В) на малых генерирующих объектах до 22 киловольт (кВ) на более крупных электростанциях. Как только электроэнергия выходит из генерирующего объекта, напряжение увеличивается или «повышается» с помощью трансформатора (типовой диапазон от 100 кВ до 1000 кВ), чтобы минимизировать потери мощности на больших расстояниях. По мере того, как электроэнергия передается по сети и поступает в районы нагрузки, напряжение понижается трансформаторами подстанции (в диапазоне от 70 кВ до 4 кВ). Чтобы подготовиться к подключению клиентов, напряжение снова снижается (бытовые потребители используют 120/240 В; коммерческие и промышленные потребители обычно используют 208/120 В или 480/277 В).
Электрические транспортные средства и мощность электрической инфраструктуры
Полностью электрические транспортные средства и подключаемые гибридные электромобили представляют собой растущий спрос на электроэнергию, что может оказать негативное воздействие на энергосистему. Хотя эти новые нагрузки вряд ли истощат большую часть наших существующих генерирующих ресурсов, высокие совпадающие пики зарядки электромобилей в концентрированных местах могут вызвать нагрузку на близлежащее распределительное оборудование. Усовершенствованное планирование сети и решения, такие как интеллектуальное управление зарядкой, будут важны для обеспечения того, чтобы существующая электрическая инфраструктура могла безопасно поддерживать районы со значительным увеличением спроса, связанного с электромобилями, в зависимости от того, когда, где и на каком уровне мощности транспортные средства заряжаются.
Спрос на электроэнергию растет и падает в зависимости от времени суток и времени года. Мощности по производству, передаче и распределению электроэнергии должны быть в состоянии удовлетворить спрос в периоды пикового использования; но большую часть времени инфраструктура электроснабжения не работает на полную мощность. В результате электромобилям вряд ли потребуется увеличение пропускной способности сети.
Согласно исследованию Тихоокеанской северо-западной национальной лаборатории, существующая электроэнергетическая инфраструктура США имеет достаточную мощность для удовлетворения около 73% энергетических потребностей легковых автомобилей страны. Согласно моделям развертывания, разработанным исследователями из Национальной лаборатории возобновляемых источников энергии (NREL), разнообразие электрических нагрузок домашних хозяйств и нагрузок электромобилей должно способствовать внедрению и росту рынка электромобилей по мере расширения сетей «умных сетей». Сети интеллектуальных сетей обеспечивают двустороннюю связь между коммунальным предприятием и его клиентами, а также наблюдение за линиями электропередачи с помощью интеллектуальных счетчиков, интеллектуальных приборов, возобновляемых источников энергии и энергосберегающих ресурсов. Сети интеллектуальных сетей могут обеспечивать возможность мониторинга и защиты жилой распределительной инфраструктуры от любых негативных воздействий из-за повышенного спроса на электроэнергию для транспортных средств, поскольку они способствуют зарядке в непиковые периоды и снижают затраты для коммунальных служб, операторов сетей и потребителей.
Анализ NREL также продемонстрировал потенциал синергии между электромобилями и распределенными источниками возобновляемой энергии. Например, маломасштабные возобновляемые источники энергии, такие как солнечные батареи на крыше, могут как обеспечивать чистую энергию для транспортных средств, так и снижать спрос на распределительную инфраструктуру за счет выработки электроэнергии рядом с точкой потребления. Чтобы коммунальные предприятия могли в полной мере реализовать преимущества этих технологий, необходимо внедрить интеллектуальное управление зарядкой, чтобы влиять на зарядку электромобилей.
Коммунальные предприятия, производители транспортных средств, производители зарядного оборудования и исследователи работают над тем, чтобы электромобили плавно интегрировались в электрическую инфраструктуру США. Некоторые коммунальные службы предлагают более низкие тарифы в непиковое время, чтобы стимулировать зарядку жилых транспортных средств, когда спрос на электроэнергию самый низкий. Транспортные средства и многие типы зарядного оборудования (также известного как оборудование для питания электромобилей или EVSE) можно запрограммировать на отсрочку зарядки до непикового времени. «Умные» модели даже способны связываться с сетью, агрегаторами нагрузки или владельцами объектов/домов, позволяя им автоматически взимать плату, когда спрос на электроэнергию и цены на нее оптимальны; например, когда цены самые низкие, соответствующие местным потребностям распределения (таким как температурные ограничения) или соответствующие возобновляемым источникам энергии.
Электричество в США – Управление энергетической информации США (EIA)
Электричество в Соединенных Штатах производится (вырабатывается) с использованием различных источников энергии и технологий
Соединенные Штаты используют множество различных источников энергии и технологий для производства электроэнергии. Источники и технологии со временем изменились, и некоторые из них используются больше, чем другие.
Тремя основными категориями энергии для производства электроэнергии являются ископаемые виды топлива (уголь, природный газ и нефть), ядерная энергия и возобновляемые источники энергии. Большая часть электроэнергии вырабатывается паровыми турбинами с использованием ископаемого топлива, ядерной энергии, биомассы, геотермальной и солнечной тепловой энергии. Другие основные технологии производства электроэнергии включают газовые турбины, гидротурбины, ветряные турбины и солнечные фотоэлектрические элементы.
Нажмите, чтобы увеличить
Ископаемые виды топлива являются крупнейшими источниками энергии для производства электроэнергии
Природный газ был крупнейшим источником — около 38% — производства электроэнергии в США в 2021 году. Природный газ используется в паровых и газовых турбинах для выработки электричество.
Уголь был вторым по величине источником энергии для производства электроэнергии в США в 2021 году — около 22%. Почти все угольные электростанции используют паровые турбины. Несколько угольных электростанций преобразуют уголь в газ для использования в газовой турбине для выработки электроэнергии.
Нефть была источником менее 1% производства электроэнергии в США в 2021 году. Остаточный мазут и нефтяной кокс используются в паровых турбинах. Дистиллятное или дизельное топливо используется в дизель-генераторах. Остаточный мазут и дистилляты также можно сжигать в газовых турбинах.
Нажмите, чтобы увеличить
Ядерная энергия обеспечивает около одной пятой электроэнергии в США
Ядерная энергия была источником около 19% производства электроэнергии в США в 2021 году. Атомные электростанции используют паровые турбины для производства электроэнергии за счет ядерного деления.
Возобновляемые источники энергии обеспечивают все большую долю электроэнергии в США
Многие возобновляемые источники энергии используются для производства электроэнергии и были источником около 20% от общего объема производства электроэнергии в США в 2021 году.
Нажмите, чтобы увеличить
6,3% от общего объема производства электроэнергии в США и около 31,5% производства электроэнергии за счет возобновляемых источников энергии в 2021 году. 1 Гидроэлектростанции используют проточную воду для вращения турбины, соединенной с генератором.
Энергия ветра была источником около 9,2% от общего объема производства электроэнергии в США и около 46% производства электроэнергии за счет возобновляемых источников энергии в 2021 году. Ветряные турбины преобразуют энергию ветра в электричество.
Биомасса была источником около 1,3% от общего объема производства электроэнергии в США и около 6,7% производства электроэнергии за счет возобновляемых источников энергии в 2021 году. Биомасса сжигается непосредственно на пароэлектростанциях или может быть преобразована в газ, который можно сжигаются в парогенераторах, газовых турбинах или генераторах двигателей внутреннего сгорания.
Солнечная энергия обеспечила около 2,8% от общего объема электроэнергии в США и около 13,5% производства электроэнергии за счет возобновляемых источников энергии в 2021 году.