Что такое катушка индуктивности. Как устроена катушка индуктивности. Какие основные характеристики имеет катушка индуктивности. Где применяются катушки индуктивности. Какие виды катушек индуктивности существуют.
Что такое катушка индуктивности и как она работает
Катушка индуктивности — это пассивный электронный компонент, который способен накапливать энергию в магнитном поле при протекании через него электрического тока. Основной характеристикой катушки индуктивности является ее индуктивность, измеряемая в генри (Гн).
Принцип работы катушки индуктивности основан на явлении электромагнитной индукции. При изменении тока, протекающего через катушку, в ней возникает ЭДС самоиндукции, препятствующая этому изменению. Это свойство позволяет катушке индуктивности накапливать энергию в магнитном поле и затем отдавать ее в цепь.
Конструкция и виды катушек индуктивности
Конструктивно катушка индуктивности представляет собой намотку из изолированного провода на каркасе. Основные виды катушек индуктивности:
- Цилиндрические однослойные и многослойные
- Тороидальные
- Спиральные плоские
- С ферромагнитным сердечником
- Воздушные (без сердечника)
Катушки могут иметь различную форму намотки — рядовую, внавал, с прогрессивным шагом и др. Для увеличения индуктивности часто применяют ферромагнитные сердечники.
Основные характеристики катушек индуктивности
Ключевыми параметрами катушек индуктивности являются:
- Индуктивность — способность катушки накапливать энергию магнитного поля
- Добротность — отношение накопленной энергии к потерям за период колебаний
- Собственная резонансная частота
- Активное сопротивление обмотки
- Паразитная емкость
- Температурный коэффициент индуктивности
Индуктивность зависит от числа витков, геометрических размеров катушки и магнитных свойств сердечника. Типичные значения индуктивности составляют от долей микрогенри до десятков генри.
Применение катушек индуктивности в электронике
Катушки индуктивности широко используются в различных областях электроники и электротехники:
- Фильтры высоких и низких частот
- Колебательные контуры
- Трансформаторы и дроссели
- Электромагниты
- Датчики и сенсоры
- Силовая электроника
- Радиотехника
В силовой электронике катушки применяются для накопления энергии в импульсных преобразователях. В радиотехнике они используются в качестве элементов колебательных контуров и фильтров.
Особенности работы катушки индуктивности в цепях постоянного и переменного тока
Поведение катушки индуктивности существенно различается в цепях постоянного и переменного тока:
- На постоянном токе катушка проявляет только активное сопротивление обмотки
- На переменном токе возникает индуктивное сопротивление, пропорциональное частоте
- При отключении источника постоянного тока катушка стремится поддержать ток в цепи
- В цепи переменного тока ток через катушку отстает по фазе от напряжения
Эти свойства определяют области применения катушек индуктивности в различных устройствах.
Паразитные параметры реальных катушек индуктивности
Реальные катушки индуктивности обладают рядом паразитных параметров, которые необходимо учитывать при проектировании:
- Активное сопротивление обмотки
- Межвитковая емкость
- Потери в сердечнике
- Вихревые токи
- Собственный резонанс
Эти паразитные эффекты ограничивают рабочий диапазон частот и добротность катушек. Для их минимизации применяют специальные конструктивные решения и материалы.
Расчет и проектирование катушек индуктивности
При проектировании катушек индуктивности учитывают следующие факторы:
- Требуемая индуктивность
- Рабочий диапазон частот
- Допустимые габариты
- Добротность
- Температурная стабильность
- Максимальный рабочий ток
Расчет катушек производится по специальным формулам и номограммам с учетом свойств применяемых материалов. Широко используется компьютерное моделирование для оптимизации конструкции.
Перспективные направления развития катушек индуктивности
Основные тенденции в развитии катушек индуктивности:
- Миниатюризация и интеграция в микросхемы
- Применение новых магнитных материалов
- Повышение рабочих частот
- Улучшение температурной стабильности
- Снижение потерь на высоких частотах
- Развитие методов компьютерного моделирования
Перспективным направлением является создание интегральных катушек индуктивности на кристалле для систем на чипе. Это позволит уменьшить размеры и повысить характеристики электронных устройств.
Катушка индуктивности | это… Что такое Катушка индуктивности?
У этого термина существуют и другие значения, см. Катушка (значения).
Катушка индуктивности (дроссель) на материнской платекомпьютера
Обозначение на электрических принципиальных схемах
Катушка индуктивности (жарг. индуктивность) — пассивный двухполюсный компонент электрических и электронных устройств и систем. Основной параметр катушки индуктивности — величина её индуктивности, зависящая только от геометрических размеров и материалов и не зависящая от режима работы (тока и напряжения).
Применяются для подавления помех, сглаживания пульсаций, накопления энергии, ограничения переменного тока, в резонансных (колебательный контур) и частотноизбирательных цепях, в качестве элементов индуктивности искусственных линий задержки с сосредоточенными параметрами, создания магнитных полей, датчиков перемещений и так далее.
Содержание
|
Терминология
При использовании для подавления помех, сглаживания пульсаций электрического тока, изоляции (развязки) по высокой частоте разных частей схемы и накопления энергии в магнитном поле сердечника часто называют дросселем.
В силовой электротехнике (для ограничения тока при, например, коротком замыкании ЛЭП) называют реактором.
Цилиндрическую катушку индуктивности, длина которой на много превышает диаметр, называют соленоидом, магнитное поле внутри длинного соленоида однородно. Кроме того, зачастую соленоидом называют устройство, выполняющую механическую работу за счёт магнитного поля при втягивании ферромагнитного сердечника, или электромагнитом. В электромагнитных реле называют обмоткой реле, реже — электромагнитом.
Нагревательный индуктор — специальная катушка индуктивности, рабочий орган установок индукционного нагрева.
При использовании для накопления энергии называют индукционным накопителем.
Конструкция
Конструктивно выполняется в виде винтовых, или винтоспиральных (диаметр намотки изменяется по длине катушки) катушек однослойных или многослойных намоток изолированного одножильного или многожильного (литцендрат) проводника на диэлектрическом каркасе круглого, прямоугольного или квадратного сечения, часто на тороидальном каркасе или, при использовании толстого провода и малом числе витков — без каркаса. Иногда, для снижения распределённой паразитной ёмкости при использовании в качестве высокочастотного дросселя, однослойные катушки индуктивности наматываются с «прогрессивным» шагом, — шаг намотки плавно изменяется по длине катушки. Намотка может быть как однослойной (рядовая и с шагом), так и многослойная (рядовая, внавал, типа «универсал»). Намотка «универсал» имеет меньшую паразитную ёмкость. Часто, опять же, для снижения паразитной ёмкости, намотку выполняют секционированной, группы витков отделяются пространственно (обычно по длине) друг от друга.
Для увеличения индуктивности часто имеют замкнутый или разомкнутый ферромагнитный сердечник, помехоподавляющие дроссели высокочастотных помех имеют ферродиэлектрические сердечники: ферритовые, флюкстроловые, из карбонильного железа. Дроссели, предназначенные для сглаживания пульсаций промышленной и звуковой частот имеют сердечники из электротехнических сталей или магнитомягких сплавов (пермаллоев). Также сердечники используют для изменения индуктивности катушек в небольших пределах изменением положения сердечника относительно обмотки, как правило, ферромагнитного сердечника. На СВЧ, когда ферродиэлектрики теряют высокую магнитную проницаемость и резко увеличиваются потери, для этой цели применяются металлические (латунные) сердечники.
На печатных платах электронных устройств применяют плоские «катушки» индуктивности — геометрия печатного проводника выполнена в виде круглой или прямоугольной спирали, волнистой, или в виде меандра, линии. Такие «катушки индуктивности» часто используются в сверхбыстродействующих цифровых устройствах для выравнивания времени распространения группы сигналов по разным печатным проводникам от источника до приемника, например, в шинах данных и адреса[1].
Свойства катушки индуктивности
Свойства катушки индуктивности:
- Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки.
- Сопротивление (модуль импеданса) катушки растет с увеличением частоты текущего через неё тока.
- Катушка индуктивности при протекании тока запасает энергию в своем магнитном поле. При отключении внешнего источника тока катушка отдаст запасенную энергию, стремясь поддержать величину тока в цепи. При этом напряжение на катушке нарастает, вплоть до пробоя изоляции или возникновения дуги на коммутирующем ключе.
Катушка индуктивности в электрической цепи для постоянного тока имеет только собственное омическое сопротивление, но имеет реактивное сопротивление переменному току, нарастающее при увеличении частоты, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.
Катушка индуктивности обладает реактивным сопротивлением модуль которого: , где — индуктивность катушки, — циклическая частота протекающего тока. Соответственно, чем больше частота тока, протекающего через катушку, тем больше её сопротивление.
Катушка с током запасает энергию в магнитном поле, равную работе, которую необходимо совершить для установления текущего тока . Величина этой энергии равна:
Катушка индуктивности в переменном напряжении — аналог тела с массой, подверженному механическим колебаниям.
При изменении тока в катушке возникает ЭДС самоиндукции, значение которой:
Для идеальной катушки индуктивности (не имеющей паразитных параметров) ЭДС самоиндукции равна по модулю и противоположна по знаку напряжению на концах катушки:
При замыкании катушки с током на резистор ток в цепи экспоненциально уменьшается в соответствие с формулой:
- ,
где : — ток в катушке,
- — начальный ток катушки,
- — текущее время,
- — постоянная времени.
Постоянная времени выражается формулой:
- ,
где : — сопротивление резистора,
- — омическое сопротивление катушки.
При закорачивании катушки с током процесс характеризуется собственной постоянной времени : катушки:
- .
При стремлении к нулю, постоянная времени стремится к бесконечности, именно поэтому в сверхпроводящих контурах ток течёт «вечно».
Явление самоиндукции аналогично проявлению инертности тел в механике, если аналогом индуктивности принять массу, тока — скорость, напряжения — силу, то многие формулы механики и поведения индуктивности в цепи принимают похожий вид:
- ↔ , где
- ↔ ↔ ; ↔ ; ↔
- ↔
Характеристики катушки индуктивности
Индуктивность
Основным параметром катушки индуктивности является её индуктивность, численно равная отношению создаваемого током потока магнитного поля, пронизывающего катушку к величине протекающего тока.
Типичные значения индуктивностей катушек от десятых долей мкГн до десятков Гн.Индуктивность катушки пропорциональна линейным размерам катушки, магнитной проницаемости сердечника и квадрату числа витков намотки. Индуктивность катушки, намотанной на тороидальном сердечнике:
- где — магнитная постоянная
- — относительная магнитная проницаемость материала сердечника (зависит от частоты)
- — площадь сечения сердечника
- — длина средней линии сердечника
- — число витков
При последовательном соединении катушек общая индуктивность равна сумме индуктивностей всех соединённых катушек:
При параллельном соединении катушек общая индуктивность равна:
Сопротивление потерь
В катушках индуктивности помимо основного эффекта взаимодействия тока и магнитного поля наблюдаются паразитные эффекты, вследствие которых импеданс катушки не является чисто реактивным. Наличие паразитных эффектов ведёт к появлению потерь в катушке, оцениваемых сопротивлением потерь .
Потери в проводах
Потери в проводах вызваны тремя причинами:
- Провода обмотки обладают омическим (активным) сопротивлением.
- Сопротивление провода обмотки возрастает с ростом частоты, что обусловлено скин-эффектом. Суть эффекта состоит в вытеснении тока в поверхностные слои провода. Как следствие, уменьшается полезное сечение проводника и растет сопротивление.
- В проводах обмотки, свитой в спираль, проявляется эффект близости, суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к периферии намотки. В результате сечение, по которому протекает ток, принимает серповидную форму, что ведёт к дополнительному возрастанию сопротивления провода.
Потери в диэлектрике
Потери в диэлектрике (изоляции проводов и каркасе катушки) можно отнести к двум категориям:
- Потери от диэлектрика межвиткового конденсатора (межвитковые утечки и прочие потери характерные для диэлектриков конденсаторов).
- Потери обусловленные магнитными свойствами диэлектрика (эти потери аналогичны потерям в сердечнике).
В общем случае можно заметить, что для современных катушек общего применения потери в диэлектрике чаще всего пренебрежимо малы.
Потери в сердечнике
Потери в сердечнике складываются из потерь на вихревые токи, потерь на перемагничивание ферромагнетика гистерезис.
Потери на вихревые токи
Переменное магнитное поле индуцирует вихревые ЭДС в окружающих проводниках, например в сердечнике, экране и в проводах соседних витков. Возникающие при этом вихревые токи (токи Фуко) становятся источником потерь из-за омического сопротивления проводников.
Добротность
С сопротивлениями потерь тесно связана другая характеристика — добротность. Добротность катушки индуктивности определяет отношение между активным и реактивным сопротивлениями катушки. Добротность равна
Иногда потери в катушке характеризуют тангенсом угла потерь (величина, обратная добротности) — сдвигом фаз тока и напряжения катушки в цепи синусоидального сигнала относительно π/2 — для идеальной катушки.
Практически величина добротности лежит в пределах от 30 до 200. Повышение добротности достигается оптимальным выбором диаметра провода, увеличением размеров катушки индуктивности и применением сердечников с высокой магнитной проницаемостью и малыми потерями, намоткой вида «универсаль», применением посеребрёного провода, применением многожильного провода вида «литцендрат» для снижения потерь, вызванных скин-эффектом.
Паразитная емкость и собственный резонанс
Межвитковая паразитная емкость проводника в составе катушки индуктивности превращает катушку в сложную распределенную цепь. В первом приближении можно принять, что реальная катушка представляет эквивалентно собой идеальную индуктивность с параллельно присоединенным ей конденсатором паразитной емкости. В результате этого катушка индуктивности представляет собой колебательный контур с характерной частотой резонанса. Эта резонансная частота легко может быть измерена и называется собственной частотой резонанса катушки индуктивности. На частотах много ниже частоты собственного резонанса импеданс катушки индуктивный, при частотах вблизи резонанса в основном активный (на частоте резонанса чисто активный) и большой по модулю, на частотах много выше частоты собственного резонанса — ёмкостной. Обычно собственная частота указывается изготовителем в технических данных промышленных катушек индуктивности, либо в явном виде, либо косвенно — в виде рекомендованной максимальной рабочей частоты.
На частотах ниже собственного резонанса этот эффект проявляется в падении добротности с ростом частоты.
Для увеличения частоты собственного резонанса используют сложные схемы намотки катушек, разбиение одной обмотки на разнесённые секции.
Температурный коэффициент индуктивности (ТКИ)
ТКИ — это параметр, характеризующий зависимость индуктивности катушки от температуры.
Температурная нестабильность индуктивности обусловлена целым рядом факторов: при нагреве увеличивается длина и диаметр провода обмотки, увеличивается длина и диаметр каркаса, в результате чего изменяются шаг и диаметр витков; кроме того при изменении температуры изменяются диэлектрическая проницаемость материала каркаса, что ведёт к изменению собственной ёмкости катушки. Очень существенно влияние температуры на магнитную проницаемость ферромагнетика сердечника.
Разновидности катушек индуктивности
- Контурные катушки индуктивности, используемые в радиотехнике
- Эти катушки используются совместно с конденсаторами для организации резонансных контуров. Они должны иметь высокую термо- и долговременную стабильность, и добротность, требования к паразитной ёмкости обычно несущественны.
- Катушки связи, или трансформаторы связи
- Взаимодействующие магнитными полями пара и более катушек, обычно включаются параллельно конденсаторам для организации колебательных контуров: Такие катушки применяются для обеспечения трансформаторной связи между отдельными цепями и каскадами. Такая связь позволяет разделить по постоянному току, например, цепи базы последующего усилительного каскада от коллектора предыдущего каскада и т. д. К нерезонансным разделительным трансформаторам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи (коэффициент взаимоиндукции).
- Вариометры
- Это катушки, индуктивностью которых можно управлять (например, для перестройки частоты резонанса колебательных контуров) изменением взаимного расположения двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая обычно располагается внутри первой и вращается (ротор). Существуют и другие конструкции вариометров. При изменении положения ротора относительно статора изменяется величина взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. В ферровариометрах индуктивность изменяется перемещением ферромагнитного сердечника относительно обмотки, либо изменением длины воздушного зазора замкнутого магнитопровода.
- Дроссели
- Это катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Применяются в цепях питания радиотехнических устройств в качестве фильтрующего элемента. Для сетей питания с частотами 50-60 Гц выполняются на сердечниках из трансформаторной стали. На более высоких частотах также применяются сердечники из пермаллоя или феррита. Особая разновидность дросселей — помехоподавляющие ферритовые бочонки (бусины или кольца) нанизанные на отдельные провода или группы проводов (кабели) для подавления синфазных высокочастотных помех.
Сдвоенный дроссель
- Сдвоенные дроссели
- Это две намотанных встречно или согласованно катушки индуктивности, используются в фильтрах питания. За счёт встречной намотки и взаимной индукции более эффективны для фильтрации синфазных помех при тех же габаритах. При согласной намотке эффективны для подавления дифференциальных помех. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике. [2][3] Предназначены как для защиты источников питания от попадания в них наведённых высокочастотных сигналов, из питающей сети, так и во избежание проникновения в питающую сеть электромагнитных помех, генерируемых устройством. На низких частотах используется в фильтрах цепей питания и обычно имеет ферромагнитный (из трансформаторной стали). Для фильтрации высокочастотных помех — ферритовый сердечник.
Применение катушек индуктивности
Балластный дроссель. Ранее применявшаяся в качестве реактивного сопротивления для люминесцентных ламп катушка индуктивности
- Катушки индуктивности (совместно с конденсаторами и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.
- Катушки индуктивности используются в импульсных стабилизаторах как элемент, накапливающий энергию и преобразующий уровни напряжения.
- Две и более индуктивно связанные катушки образуют трансформатор.
- Катушка индуктивности, питаемая импульсным током от транзисторного ключа, иногда применяется в качестве источника высокого напряжения небольшой мощности в слаботочных схемах, когда создание отдельного высокого питающего напряжения в блоке питания невозможно или экономически нецелесообразно. В этом случае на катушке из-за самоиндукции возникают выбросы высокого напряжения, которые можно использовать в схеме, например, выпрямив и сгладив.
- Катушки используются также в качестве электромагнитов — исполнительных механизмов.
- Катушки применяются в качестве источника энергии для нагрева индуктивно-связанной плазмы, а также её диагностики.
- Для радиосвязи — приёма электромагнитных волн, редко — для излучения:
- Ферритовая антенна
- Рамочная антенна, кольцевая антенна
- DDRR
- Индукционная петля
- Для разогрева электропроводящих материалов в индукционных печах.
- Как датчик перемещения: изменение индуктивности катушки может изменяться в широких пределах при перемещении ферромагнитного сердечника относительно обмотки.
- Катушка индуктивности используется в индукционных датчиках магнитного поля в индукционных магнитометрах[4]
- Для создания магнитных полей в ускорителях элементарных частиц, магнитного удержания плазмы, в научных экспериментах, в ядерно-магнитной томографии. Мощные стационарные магнитные поля, как правило, создаются сверхпроводящими катушками.
- Для накопления энергии.
См. также
- Соленоид
- Катушка Румкорфа, катушка зажигания
- Катушка Пупина
- Трансформатор
- Электрический импеданс
- Переходный процесс (электроника)
Примечания
- ↑ Evaluation of the shielding effects on printed-circuit-board transformers
- ↑ А.Сорокин — Виды помех в линиях передачи информации и способы борьбы с ними.
- ↑ Электропитание аппаратуры
- ↑ Fluxgate Magnetometer (англ. )
Ссылки
- Катушка индуктивности в цепи переменного тока
- Все о расчете индуктивности
В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. |
Катушка индуктивности | это… Что такое Катушка индуктивности?
У этого термина существуют и другие значения, см. Катушка (значения).
Катушка индуктивности (дроссель) на материнской платекомпьютера
Обозначение на электрических принципиальных схемах
Катушка индуктивности (жарг. индуктивность) — пассивный двухполюсный компонент электрических и электронных устройств и систем. Основной параметр катушки индуктивности — величина её индуктивности, зависящая только от геометрических размеров и материалов и не зависящая от режима работы (тока и напряжения).
Применяются для подавления помех, сглаживания пульсаций, накопления энергии, ограничения переменного тока, в резонансных (колебательный контур) и частотноизбирательных цепях, в качестве элементов индуктивности искусственных линий задержки с сосредоточенными параметрами, создания магнитных полей, датчиков перемещений и так далее.
Содержание
|
Терминология
При использовании для подавления помех, сглаживания пульсаций электрического тока, изоляции (развязки) по высокой частоте разных частей схемы и накопления энергии в магнитном поле сердечника часто называют дросселем.
В силовой электротехнике (для ограничения тока при, например, коротком замыкании ЛЭП) называют реактором.
Цилиндрическую катушку индуктивности, длина которой на много превышает диаметр, называют соленоидом, магнитное поле внутри длинного соленоида однородно. Кроме того, зачастую соленоидом называют устройство, выполняющую механическую работу за счёт магнитного поля при втягивании ферромагнитного сердечника, или электромагнитом. В электромагнитных реле называют обмоткой реле, реже — электромагнитом.
Нагревательный индуктор — специальная катушка индуктивности, рабочий орган установок индукционного нагрева.
При использовании для накопления энергии называют индукционным накопителем.
Конструкция
Конструктивно выполняется в виде винтовых, или винтоспиральных (диаметр намотки изменяется по длине катушки) катушек однослойных или многослойных намоток изолированного одножильного или многожильного (литцендрат) проводника на диэлектрическом каркасе круглого, прямоугольного или квадратного сечения, часто на тороидальном каркасе или, при использовании толстого провода и малом числе витков — без каркаса. Иногда, для снижения распределённой паразитной ёмкости при использовании в качестве высокочастотного дросселя, однослойные катушки индуктивности наматываются с «прогрессивным» шагом, — шаг намотки плавно изменяется по длине катушки. Намотка может быть как однослойной (рядовая и с шагом), так и многослойная (рядовая, внавал, типа «универсал»). Намотка «универсал» имеет меньшую паразитную ёмкость. Часто, опять же, для снижения паразитной ёмкости, намотку выполняют секционированной, группы витков отделяются пространственно (обычно по длине) друг от друга.
Для увеличения индуктивности часто имеют замкнутый или разомкнутый ферромагнитный сердечник, помехоподавляющие дроссели высокочастотных помех имеют ферродиэлектрические сердечники: ферритовые, флюкстроловые, из карбонильного железа. Дроссели, предназначенные для сглаживания пульсаций промышленной и звуковой частот имеют сердечники из электротехнических сталей или магнитомягких сплавов (пермаллоев). Также сердечники используют для изменения индуктивности катушек в небольших пределах изменением положения сердечника относительно обмотки, как правило, ферромагнитного сердечника. На СВЧ, когда ферродиэлектрики теряют высокую магнитную проницаемость и резко увеличиваются потери, для этой цели применяются металлические (латунные) сердечники.
На печатных платах электронных устройств применяют плоские «катушки» индуктивности — геометрия печатного проводника выполнена в виде круглой или прямоугольной спирали, волнистой, или в виде меандра, линии. Такие «катушки индуктивности» часто используются в сверхбыстродействующих цифровых устройствах для выравнивания времени распространения группы сигналов по разным печатным проводникам от источника до приемника, например, в шинах данных и адреса[1].
Свойства катушки индуктивности
Свойства катушки индуктивности:
- Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки.
- Сопротивление (модуль импеданса) катушки растет с увеличением частоты текущего через неё тока.
- Катушка индуктивности при протекании тока запасает энергию в своем магнитном поле. При отключении внешнего источника тока катушка отдаст запасенную энергию, стремясь поддержать величину тока в цепи. При этом напряжение на катушке нарастает, вплоть до пробоя изоляции или возникновения дуги на коммутирующем ключе.
Катушка индуктивности в электрической цепи для постоянного тока имеет только собственное омическое сопротивление, но имеет реактивное сопротивление переменному току, нарастающее при увеличении частоты, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.
Катушка индуктивности обладает реактивным сопротивлением модуль которого: , где — индуктивность катушки, — циклическая частота протекающего тока. Соответственно, чем больше частота тока, протекающего через катушку, тем больше её сопротивление.
Катушка с током запасает энергию в магнитном поле, равную работе, которую необходимо совершить для установления текущего тока . Величина этой энергии равна:
Катушка индуктивности в переменном напряжении — аналог тела с массой, подверженному механическим колебаниям.
При изменении тока в катушке возникает ЭДС самоиндукции, значение которой:
Для идеальной катушки индуктивности (не имеющей паразитных параметров) ЭДС самоиндукции равна по модулю и противоположна по знаку напряжению на концах катушки:
При замыкании катушки с током на резистор ток в цепи экспоненциально уменьшается в соответствие с формулой:
- ,
где : — ток в катушке,
- — начальный ток катушки,
- — текущее время,
- — постоянная времени.
Постоянная времени выражается формулой:
- ,
где : — сопротивление резистора,
- — омическое сопротивление катушки.
При закорачивании катушки с током процесс характеризуется собственной постоянной времени : катушки:
- .
При стремлении к нулю, постоянная времени стремится к бесконечности, именно поэтому в сверхпроводящих контурах ток течёт «вечно».
Явление самоиндукции аналогично проявлению инертности тел в механике, если аналогом индуктивности принять массу, тока — скорость, напряжения — силу, то многие формулы механики и поведения индуктивности в цепи принимают похожий вид:
- ↔ , где
- ↔ ↔ ; ↔ ; ↔
- ↔
Характеристики катушки индуктивности
Индуктивность
Основным параметром катушки индуктивности является её индуктивность, численно равная отношению создаваемого током потока магнитного поля, пронизывающего катушку к величине протекающего тока. Типичные значения индуктивностей катушек от десятых долей мкГн до десятков Гн.
Индуктивность катушки пропорциональна линейным размерам катушки, магнитной проницаемости сердечника и квадрату числа витков намотки. Индуктивность катушки, намотанной на тороидальном сердечнике:
- где — магнитная постоянная
- — относительная магнитная проницаемость материала сердечника (зависит от частоты)
- — площадь сечения сердечника
- — длина средней линии сердечника
- — число витков
При последовательном соединении катушек общая индуктивность равна сумме индуктивностей всех соединённых катушек:
При параллельном соединении катушек общая индуктивность равна:
Сопротивление потерь
В катушках индуктивности помимо основного эффекта взаимодействия тока и магнитного поля наблюдаются паразитные эффекты, вследствие которых импеданс катушки не является чисто реактивным. Наличие паразитных эффектов ведёт к появлению потерь в катушке, оцениваемых сопротивлением потерь . Потери складываются из потерь в проводах, диэлектрике, сердечнике и экране:
Потери в проводах
Потери в проводах вызваны тремя причинами:
- Провода обмотки обладают омическим (активным) сопротивлением.
- Сопротивление провода обмотки возрастает с ростом частоты, что обусловлено скин-эффектом. Суть эффекта состоит в вытеснении тока в поверхностные слои провода. Как следствие, уменьшается полезное сечение проводника и растет сопротивление.
- В проводах обмотки, свитой в спираль, проявляется эффект близости, суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к периферии намотки. В результате сечение, по которому протекает ток, принимает серповидную форму, что ведёт к дополнительному возрастанию сопротивления провода.
Потери в диэлектрике
Потери в диэлектрике (изоляции проводов и каркасе катушки) можно отнести к двум категориям:
- Потери от диэлектрика межвиткового конденсатора (межвитковые утечки и прочие потери характерные для диэлектриков конденсаторов).
- Потери обусловленные магнитными свойствами диэлектрика (эти потери аналогичны потерям в сердечнике).
В общем случае можно заметить, что для современных катушек общего применения потери в диэлектрике чаще всего пренебрежимо малы.
Потери в сердечнике
Потери в сердечнике складываются из потерь на вихревые токи, потерь на перемагничивание ферромагнетика гистерезис.
Потери на вихревые токи
Переменное магнитное поле индуцирует вихревые ЭДС в окружающих проводниках, например в сердечнике, экране и в проводах соседних витков. Возникающие при этом вихревые токи (токи Фуко) становятся источником потерь из-за омического сопротивления проводников.
Добротность
С сопротивлениями потерь тесно связана другая характеристика — добротность. Добротность катушки индуктивности определяет отношение между активным и реактивным сопротивлениями катушки. Добротность равна
Иногда потери в катушке характеризуют тангенсом угла потерь (величина, обратная добротности) — сдвигом фаз тока и напряжения катушки в цепи синусоидального сигнала относительно π/2 — для идеальной катушки.
Практически величина добротности лежит в пределах от 30 до 200. Повышение добротности достигается оптимальным выбором диаметра провода, увеличением размеров катушки индуктивности и применением сердечников с высокой магнитной проницаемостью и малыми потерями, намоткой вида «универсаль», применением посеребрёного провода, применением многожильного провода вида «литцендрат» для снижения потерь, вызванных скин-эффектом.
Паразитная емкость и собственный резонанс
Межвитковая паразитная емкость проводника в составе катушки индуктивности превращает катушку в сложную распределенную цепь. В первом приближении можно принять, что реальная катушка представляет эквивалентно собой идеальную индуктивность с параллельно присоединенным ей конденсатором паразитной емкости. В результате этого катушка индуктивности представляет собой колебательный контур с характерной частотой резонанса. Эта резонансная частота легко может быть измерена и называется собственной частотой резонанса катушки индуктивности. На частотах много ниже частоты собственного резонанса импеданс катушки индуктивный, при частотах вблизи резонанса в основном активный (на частоте резонанса чисто активный) и большой по модулю, на частотах много выше частоты собственного резонанса — ёмкостной. Обычно собственная частота указывается изготовителем в технических данных промышленных катушек индуктивности, либо в явном виде, либо косвенно — в виде рекомендованной максимальной рабочей частоты.
На частотах ниже собственного резонанса этот эффект проявляется в падении добротности с ростом частоты.
Для увеличения частоты собственного резонанса используют сложные схемы намотки катушек, разбиение одной обмотки на разнесённые секции.
Температурный коэффициент индуктивности (ТКИ)
ТКИ — это параметр, характеризующий зависимость индуктивности катушки от температуры.
Температурная нестабильность индуктивности обусловлена целым рядом факторов: при нагреве увеличивается длина и диаметр провода обмотки, увеличивается длина и диаметр каркаса, в результате чего изменяются шаг и диаметр витков; кроме того при изменении температуры изменяются диэлектрическая проницаемость материала каркаса, что ведёт к изменению собственной ёмкости катушки. Очень существенно влияние температуры на магнитную проницаемость ферромагнетика сердечника.
Разновидности катушек индуктивности
- Контурные катушки индуктивности, используемые в радиотехнике
- Эти катушки используются совместно с конденсаторами для организации резонансных контуров. Они должны иметь высокую термо- и долговременную стабильность, и добротность, требования к паразитной ёмкости обычно несущественны.
- Катушки связи, или трансформаторы связи
- Взаимодействующие магнитными полями пара и более катушек, обычно включаются параллельно конденсаторам для организации колебательных контуров: Такие катушки применяются для обеспечения трансформаторной связи между отдельными цепями и каскадами. Такая связь позволяет разделить по постоянному току, например, цепи базы последующего усилительного каскада от коллектора предыдущего каскада и т. д. К нерезонансным разделительным трансформаторам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи (коэффициент взаимоиндукции).
- Вариометры
- Это катушки, индуктивностью которых можно управлять (например, для перестройки частоты резонанса колебательных контуров) изменением взаимного расположения двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая обычно располагается внутри первой и вращается (ротор). Существуют и другие конструкции вариометров. При изменении положения ротора относительно статора изменяется величина взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. В ферровариометрах индуктивность изменяется перемещением ферромагнитного сердечника относительно обмотки, либо изменением длины воздушного зазора замкнутого магнитопровода.
- Дроссели
- Это катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Применяются в цепях питания радиотехнических устройств в качестве фильтрующего элемента. Для сетей питания с частотами 50-60 Гц выполняются на сердечниках из трансформаторной стали. На более высоких частотах также применяются сердечники из пермаллоя или феррита. Особая разновидность дросселей — помехоподавляющие ферритовые бочонки (бусины или кольца) нанизанные на отдельные провода или группы проводов (кабели) для подавления синфазных высокочастотных помех.
Сдвоенный дроссель
- Сдвоенные дроссели
- Это две намотанных встречно или согласованно катушки индуктивности, используются в фильтрах питания. За счёт встречной намотки и взаимной индукции более эффективны для фильтрации синфазных помех при тех же габаритах. При согласной намотке эффективны для подавления дифференциальных помех. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике. [2][3] Предназначены как для защиты источников питания от попадания в них наведённых высокочастотных сигналов, из питающей сети, так и во избежание проникновения в питающую сеть электромагнитных помех, генерируемых устройством. На низких частотах используется в фильтрах цепей питания и обычно имеет ферромагнитный (из трансформаторной стали). Для фильтрации высокочастотных помех — ферритовый сердечник.
Применение катушек индуктивности
Балластный дроссель. Ранее применявшаяся в качестве реактивного сопротивления для люминесцентных ламп катушка индуктивности
- Катушки индуктивности (совместно с конденсаторами и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.
- Катушки индуктивности используются в импульсных стабилизаторах как элемент, накапливающий энергию и преобразующий уровни напряжения.
- Две и более индуктивно связанные катушки образуют трансформатор.
- Катушка индуктивности, питаемая импульсным током от транзисторного ключа, иногда применяется в качестве источника высокого напряжения небольшой мощности в слаботочных схемах, когда создание отдельного высокого питающего напряжения в блоке питания невозможно или экономически нецелесообразно. В этом случае на катушке из-за самоиндукции возникают выбросы высокого напряжения, которые можно использовать в схеме, например, выпрямив и сгладив.
- Катушки используются также в качестве электромагнитов — исполнительных механизмов.
- Катушки применяются в качестве источника энергии для нагрева индуктивно-связанной плазмы, а также её диагностики.
- Для радиосвязи — приёма электромагнитных волн, редко — для излучения:
- Ферритовая антенна
- Рамочная антенна, кольцевая антенна
- DDRR
- Индукционная петля
- Для разогрева электропроводящих материалов в индукционных печах.
- Как датчик перемещения: изменение индуктивности катушки может изменяться в широких пределах при перемещении ферромагнитного сердечника относительно обмотки.
- Катушка индуктивности используется в индукционных датчиках магнитного поля в индукционных магнитометрах[4]
- Для создания магнитных полей в ускорителях элементарных частиц, магнитного удержания плазмы, в научных экспериментах, в ядерно-магнитной томографии. Мощные стационарные магнитные поля, как правило, создаются сверхпроводящими катушками.
- Для накопления энергии.
См. также
- Соленоид
- Катушка Румкорфа, катушка зажигания
- Катушка Пупина
- Трансформатор
- Электрический импеданс
- Переходный процесс (электроника)
Примечания
- ↑ Evaluation of the shielding effects on printed-circuit-board transformers
- ↑ А.Сорокин — Виды помех в линиях передачи информации и способы борьбы с ними.
- ↑ Электропитание аппаратуры
- ↑ Fluxgate Magnetometer (англ. )
Ссылки
- Катушка индуктивности в цепи переменного тока
- Все о расчете индуктивности
В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. |
Понимание роли катушек индуктивности в силовой электронике
- Новостная рассылка
- Белая бумага
- Вебинары
Откройте для себя PCIM Europe
- Продукты и приложения
- Новости отрасли
- Исследования и разработки
- Инструменты и программное обеспечение
- Эксперты
- Услуги
От Люк Джеймс
Связанные поставщики
Файнпауэр ГмбХ Koki Deutschland Niederlassung KOKI Europe A/S EA Elektro-Automatik GmbH & Co. KG РОМ Полупроводник ГмбХМЕСАГО Мессе Франкфурт ГмбХ
Одним из самых малоизвестных компонентов силовой электроники является индуктор: структура в виде катушки, которую можно найти в большинстве схем. Именно благодаря этим и их свойствам работают трансформаторы и другие схемы силовой электроники.
Что такое катушки индуктивности, как они устроены и какие бывают типы?(Источник: gemeinfrei / Pixabay)
Катушки индуктивности обычно используются в качестве накопителей энергии в импульсных силовых устройствах для получения постоянного тока. Катушка индуктивности, которая накапливает энергию, подает энергию в цепь для поддержания протекания тока в периоды «выключения», тем самым обеспечивая топографии, в которых выходное напряжение превышает входное напряжение.
Из-за того, как они работают — изменяя не только электрическое поле, но и магнитное поле вокруг него — многим людям трудно их понять.
Что такое индуктор?
Катушка индуктивности, пожалуй, самый простой из всех электронных компонентов. Это пассивный двухконтактный электрический компонент, который накапливает энергию в магнитном поле, когда через него протекает электрический ток. Как правило, катушка индуктивности состоит из изолированного провода, намотанного на катушку, как резистор. Этот дизайн был основан на обширных методах проб и ошибок, в которых учитывались такие методы, как кривые Ханны и произведение площади.
Когда ток, протекающий через катушку, изменяется, изменяющееся во времени магнитное поле индуцирует напряжение в проводнике с полярностью, противодействующей изменению тока, который его создал. Таким образом, катушки индуктивности противодействуют любым изменениям тока, проходящего через них.
Индуцированное магнитное поле также индуцирует электрическое свойство, известное как индуктивность, — отношение напряжения к скорости изменения тока. Индуктивность определяет количество энергии, которую катушка индуктивности способна хранить.
Конструкция индуктора и основные компоненты
Конструкция индуктора определяется электрическими, механическими и тепловыми требованиями данного приложения. Как правило, это включает:
- Выбор материала сердечника
- Выбор формы и размера сердечника
- Выбор провода обмотки
затем покрываются слоями изоляционного полимерного материала. Обмотка может иметь различную форму, в том числе круглую, прямоугольную фольгу и квадратное сечение. Магнитный провод выбран для ограничения и направления магнитных полей, и он изолирован, чтобы предотвратить такие проблемы, как короткие замыкания и поломки.
Различные типы индукторов
Для различных применений требуются различные типы индукторов. Почти во всех случаях вы обнаружите, что индуктор в системе формируется вокруг материала сердечника — обычно железа или соединений железа — для поддержки создания сильного магнитного поля.
Катушки индуктивности с железным сердечником
Катушки индуктивности с железным сердечником производства Jantzen Audio для аудиоприложений.
(Источник: Hifi Collective)
Железо — классический и наиболее узнаваемый магнитный материал, что делает его идеальным выбором для использования в индукторах. Как и выше, железо в индукторах имеет форму железного сердечника. Они обычно используются для фильтрации низкочастотных линий из-за их относительно больших индуктивностей. Они также широко используются в звуковом оборудовании. Однако катушки индуктивности не всегда должны иметь железный сердечник.
Дроссель с воздушным сердечником
Дроссель с воздушным сердечником производства Wurth Elektronik.
(Источник: Farnell)
Как следует из названия, индукторы с воздушным сердечником не имеют сердечника — сердечник находится на открытом воздухе. Поскольку воздух имеет низкую проницаемость, индуктивность индукторов с воздушным сердечником очень мала. Это означает, что скорость нарастания тока относительно высока для приложенного напряжения, что делает их способными работать с высокими частотами, характерными для таких приложений, как радиочастотные цепи.
Катушки индуктивности с ферритовым сердечником
Катушка индуктивности с ферритовым сердечником производства Wurth Elektronik.
(Источник: RS Components)
Феррит представляет собой керамический материал, полученный путем смешивания и обжига оксида железа (III) с добавлением небольшого количества одного или нескольких дополнительных металлических элементов, таких как никель и цинк. При использовании в катушках индуктивности ферритовый порошок смешивают с эпоксидной смолой и формуют, чтобы сформировать сердечник, вокруг которого можно намотать магнитный провод. Ферритовые индукторы являются наиболее широко используемым типом, поскольку их проницаемость можно точно контролировать, регулируя соотношение феррита и эпоксидной смолы.
Практическое применение
Катушки индуктивности из-за того, что для их изготовления необходимы материалы из меди и железа, как правило, дороги. Это относит большинство их вариантов использования к приложениям в областях, где такие расходы могут быть оправданы, например, к телекоммуникационному оборудованию, радио и источникам питания.
В источниках питания роль катушки индуктивности заключается в предотвращении внезапных изменений используемого тока. Работая вместе с конденсатором, катушка индуктивности предотвращает внезапные изменения выходного напряжения и тока источника питания.
В целом, это очень простые компоненты, играющие важную роль в силовой электронике.
(ID:47041174)
Подпишитесь на рассылку новостей сейчас
Не пропустите наш лучший контент
Деловой адрес электронной почты
Нажимая «Подписаться на рассылку новостей», я даю согласие на обработку и использование моих данных в соответствии с формой согласия (пожалуйста, разверните для подробностей) и принимаю Условия использования. Для получения дополнительной информации ознакомьтесь с нашей Политикой конфиденциальности.
Развернуть для подробностей вашего согласия
Основы индуктора| DigiKey
Катушки индуктивности являются одними из самых распространенных электронных компонентов в промышленности, наряду с резисторами и конденсаторами. Хотя они могут показаться простыми, о них нужно подумать не только об их размере и значении индуктивности. Этот блог, сопровождаемый нашим видео «Другой обучающий момент» на ту же тему, направлен на изучение индуктивности и назначение катушек индуктивности в электрической цепи.
Для начала, на чем основано их назначение и как они составлены? Катушки индуктивности, катушки или дроссели — это электронные компоненты, которые накапливают энергию в магнитном поле при протекании через него тока, а также препятствуют любым изменениям в протекании тока. Эти устройства состоят из проводника, намотанного на сердечник, который может быть изготовлен из различных материалов.
Мы знаем, что когда электрический ток течет по проводнику, вокруг проводника создается магнитное поле. Это можно визуализировать с помощью правила правой руки. Возьмите проводник правой рукой, обхватив проводник указательными пальцами и направив большой палец вдоль проводника в направлении протекания тока, силовые линии магнитного поля будут направлены в сторону указательных пальцев. Теперь, если взять тот же проводник и намотать его, каждый отдельный виток катушки создаст отдельное магнитное поле. Эти отдельные поля объединяются, чтобы создать одно большое сильное поле.
Итак, как катушки индуктивности сопротивляются изменению тока? Когда магнитные поля вводятся в электрическую цепь, возникает обратное напряжение (или обратная ЭДС). Это напряжение противодействует напряжению питания, вызывая сопротивление. Это заставляет магнитное поле расти до тех пор, пока ток не будет свободно течь по цепи. Как только питание отключается, индуктор снова сопротивляется изменению тока, продолжая питать цепь в течение некоторого времени током, который был сохранен в магнитном поле. Думайте об этом как о «переполнении» власти. Пока схема находится под напряжением, «избыточный» ток накапливается и накапливается в магнитном поле, которое остается полным, когда достигает определенного порога. Затем, как только цепь отключается, этот перелив открывается и питает цепь до тех пор, пока она не будет исчерпана.
Катушки индуктивности являются ценными компонентами в таких приложениях, как источники питания, они помогают стабилизировать выходной ток, фильтровать частоты и эффективно повышать или понижать напряжение. Как и в случае с большинством компонентов, существуют различные типы и составы катушек индуктивности, которые имеют разное назначение.
Надеемся, что эта информация помогла вам лучше понять этот общий компонент и облегчила вам внедрение их в ваш проект.
Об авторе
Эшли Авальт — разработчик технического контента, работающая в Digi-Key Electronics с 2011 года. Она получила степень младшего специалиста по прикладным наукам в области электронных технологий и автоматизированных систем в Общественном и техническом колледже Нортленда в рамках стипендиальной программы Digi-Key.