Что такое система уравнивания потенциалов: Система уравнивания потенциалов

Содержание

Системы уравнивания потенциалов

Уравнивание потенциалов —  электрическое соединение проводящих частей для достижения равенства их потенциалов. ПУЭ, п. 1.7.32. Защита от косвенного прикосновения.  

Так как защитное  заземление  (ЗУ) имеет сопротивление, и в случае протекания через него тока оказывается под напряжением, его одного недостаточно для защиты людей от поражения током.

Правильная защита создается путём организации системы уравнивания потенциалов (СУП), то есть электрического соединения и PE проводки, и всех доступных для прикосновения металлических частей здания (в первую очередь водопроводы и отопительные трубопроводы).

В этом случае, даже если ЗУ окажется под напряжением, под ним же оказывается всё металлическое и доступное для прикосновения ,т.е. происходит  растекание  тока по  значительной поверхности,  что снижает напряжение, и как  следствие — риск поражения током.

В кирпичных домах советского периода, как правило, СУП  не организовывалась, в панельных же (1970-е и позже) — организовывалась путем соединения в подвале дома и рамы электрощитков  (

PEN) и водопроводов.

 Определения:

 Защитное заземление –заземление, выполняемое в целях электробезопасности — ПУЭ п.1.7.29.

Рабочее (функциональное) заземление – заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки ( не в целях электробезопасности) — ПУЭ п. 1.7.30.

Определение FE для сетей питания информационного оборудования и систем связи дано в следующих пунктах:

«Функциональное заземление: заземление для обеспечения нормального функционирования аппарата, на корпусе которого по требованию разработчика не должен присутствовать даже малейший электрический потенциал ( иногда для этого требуется наличие отдельного электрически независимого заземлителя )» — 

ГОСТ Р 50571.22-2000  п. 3.14.

«Функциональное заземление может выполняться путём использования защитного проводника (РЕ-проводника) цепи питания оборудования информационных технологий в системе заземления TN-S.

«Допускается функциональный заземляющий проводник ( FE-проводник ) и защитный проводник (РЕ-проводник) объединять в один специальный проводник и присоединять его к  главной заземляющей шине (ГЗШ)» — ГОСТ Р 50571.21-2000  п. 548.3.1

Основная система уравнивания потенциалов в электроустановках до 1 кВ должна соединять между собой следующие проводящие части:

1 ) нулевой защитный РЕ- или РЕN- проводник питающей линии в системе TN;

2 ) заземляющий проводник, присоединённый к заземляющему устройству электроустановки, в системах IT и TT;

3 ) заземляющий проводник, присоединённый к заземлителю повторного заземления на вводе в здание;

4) металлические трубы коммуникаций , входящих в здание…

5 ) металлические части каркаса здания;

6 ) металлические части централизованных систем вентиляции и кондиционирования….

7 ) заземляющее устройство системы молниезащиты 2-й и 3-й категории;

8 ) заземляющий проводник функционального ( рабочего ) заземления, если таковое имеется и отсутствуют ограничения на присоединение сети рабочего заземления к заземляющему устройству защитного заземления;

9 ) металлические оболочки телекоммуникационных кабелей.

Для соединения с основной системой уравнивания потенциалов все указанные части должны быть присоединены к главной заземляющей шине при помощи проводников системы уравнивания потенциалов — ПУЭ п. 1.7.82.

Система дополнительного уравнивания потенциалов должна соединять между собой все одновременно доступные прикосновению открытые проводящие части стационарного электрооборудования и сторонние проводящие части, включая доступные прикосновению металлические части строительных конструкций здания, а также нулевые защитные проводники в системе TN и защитные заземляющие проводники в системах IT и ТТ, включая защитные проводники штепсельных розеток — 

ПУЭ п. 1.7.83. ГОСТ Р 50571.3-94.

 Система местного уравнивания потенциалов.

Незаземлённая система местного уравнивания потенциалов предназначена для предотвращения появления опасного напряжения прикосновения.

Все открытые проводящие части и сторонние проводящие части, одновременно доступные для прикосновения, должны быть объединены.

Система местного уравнивания потенциалов не должна иметь связи с землёй ни непосредственно, ни посредством открытых или сторонних проводящих частей.

 Обозначения:

РЕ – защитное заземление

FE – рабочее ( функциональное, технологическое ) заземление

Функциональное заземление применительно к учреждениям ЛПУ — для обеспечения нормальной, без помех работы высокочувствительной электроаппаратуры при питании от разделительного трансформатора или согласно техническим требованиям на некоторые виды оборудования

( электрокардиограф, электроэнцефалограф, реограф, рентгеновский компьютерный томограф и тп. ) в помещениях операционных, реанимационных, родовых, палатах интенсивной терапии, кабинетах функциональной диагностики и других помещениях при установке в них указанной аппаратуры.

При отсутствии особых требований изготовителей аппаратуры общее сопротивление растеканию тока заземляющего устройства не должно превышать 2 Ом.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Где  ГЗШ – главная заземляющая шина защитного заземления.

        ГШФЗ

 – главная шина функционального ( рабочего ) заземления.

Вариант «А», с точки зрения электробезопасности, допустим только при условии, что аппаратура питается от разделительного трансформатора ( IT – сеть ).

Использовать данный вариант для сетей типа TNS категорически не рекомендуется !

  Рис.2. Схема протекания тока замыкания на корпус аппарата при использовании независимого функциональног заземления в сети типа TN.

Так как функциональное заземление в отличие от защитного не имеет точки соединения с ГЗШ, а соответственно с нейтралью, то токи короткого замыкания составят не сотни и тысячи ампер, как это происходит при защитном заземлении, а всего лишь десятки ампер. Ситуация усугубится при условии, что FE по заданию выполнено 10 Ом, а в цепи отсутствует УЗО ( вычислительная техника, томографы, рентгеновское оборудование и тд. ).

Максимальный ток короткого замыкания составит 15,7А.

Iкз = 220(В) / (4 + 10)(Ом) = 15,7(А)

При данной схеме питания лучше воспользоваться вариантом «В» или «С», особенно если речь идет о мощном стационарном оборудовании ( рентгенаппараты, МРТ и тд. ).

Помимо сказанного выше, ситуация ( с точки зрения электробезопасности ) осложняется вероятностью возникновения разности потенциалов на раздельных системах заземления, тем более если эти системы заземления находятся в пределах одного помещения см. рис.3.

  1. Шаговое напряжение при срабатывании системы молниезащиты.
  2. КЗ на корпус в сети ТN-S до срабатывания системы защиты
  3. Внешние электромагнитные поля.

Вариант «В» удобен при реконструкции уже действующих объектов. Функциональное заземление при этом нередко выполняют с использованием составного, глубинного заземлителя. Второй положительный момент – функциональные заземлители и заземлители защитного заземления связанные между собой проводником уравнивания потенциала взаимно дублируют друг друга увеличивая надежность системы заземления.

Недостатки по электробезопасности, по сравнению с вариантом «А», либо отсутствуют, либо эффективно снижаются в десятки раз, а «лучевая» схема заземления обеспечивает стабильную работу оборудования.

Вариант «С» последнее время получает широкое распространение при проектировании новых объектов и соответствует высокому уровню электробезопасности.

В отечественных нормативных документах существуют противоречия в необходимости применения функционального заземления для заземления высокочувствительной и ответственной  медицинской аппаратуры. Ниже приведена таблица с указанием документов относящихся к данной теме.

 

 Подробные консультации и стоимость услуг Вы можете получить , связавшись с нами:

 

  • тел/факс: (8212)21-30-20

 

 

 

Уравнивания потенциалов. Виды и применение. Установка

Когда в ванной бьет током от металлических труб, то решить такую проблему можно установив специальную защиту для металлических объектов, которая называется система уравнивания потенциалов.

Обычно в новостройках планируют и выполняют такие защитные системы от поражения током. Но в старых домах такой вариант не всегда работает. Разберемся, что представляет собой система уравнивания потенциалов (ее сокращенная аббревиатура СУП), ее виды, и как можно самому ее сделать.

Назначение

Выясним, необходима ли система уравнивания потенциалов в обычной квартире. Все предметы, выполненные из металла, проводят электрический ток. Это нам известно из школьных уроков по физике. В наших квартирах опасными местами являются отопительные трубы, а также трубы водоснабжения, водосточная труба, водопровод, полотенцесушитель в ванной, коробы вентиляции.

Все металлические коммуникации в доме связаны друг с другом. При возникновении разности потенциалов между некоторыми объектами из металла, например, ванной и радиатором отопления, касание человека сразу этих двух объектов может привести к удару электрическим током. Это происходит потому, что тело выступает в качестве перемычки между батареей и ванной, поэтому ток протекает по телу человека от объекта, имеющего больший потенциал, к объекту с наименьшим значением потенциала.

Подобный случай опасности – это появление разности потенциалов на трубах канализации и водопровода. При возникновении утечки тока на водопроводных трубах, когда человек моется в ванной, будет высока вероятность удара током при касании включенного крана. Вода проводит ток от водопровода к канализации, а вы замыкаете своим телом эту цепь.

Чтобы исключить наличие такой опасности, необходимо уравнивание потенциалов с помощью специальной системы, установленной в квартире.

Виды
Существует два вида систем уравнивания потенциалов:
  1. Основная (ОСУП).
  2. Дополнительная (ДСУП).
ОСУП
Это главная система уравнивания потенциалов, представляющая собой контур, объединяющий следующие элементы этой системы:
  • Заземлитель.
  • ГЗШ – главная заземляющая шина. Она расположена на вводе в здание.
  • Металлические части арматуры жилого дома.
  • Короба вентиляционной системы.
  • Трубы водопровода из металла (горячее и холодное водоснабжение).
  • Защита от молнии.

В ранние времена при объединении всех этих частей не было опасности появления разности потенциалов. Но сегодня положение в корне изменилось, так как хозяева многих квартир заменяют прогнившие металлические трубы пластиковыми, либо полипропиленовыми, которые не проводят электрический ток. Пластиковые трубы разрывают цепь, в результате появляется разность потенциалов между разными металлическими деталями в ванной.

У основного вида системы имеется существенная проблема, которая заключается в том, что на значительной протяженности труб, например, в 12-этажном доме, электрический потенциал одной и той же трубы на первом и последнем этаже будет иметь большое отличие. Это приводит к опасной ситуации. Поэтому необходима вспомогательная система, о которой расскажем ниже.

ДСУП
Эта система является дополнительной, и располагается в ванной комнате. Она включает в себя такие элементы:
  • Корпус душевой кабины, либо ванны.
  • Сушка для полотенца.
  • Трубы: газовые, водоснабжения, отопления.
  • Канализационная система.
  • Короб вентиляционной системы.

Каждый элемент этой системы соединяется отдельным проводом с медной жилой. Второй конец этого провода выводят в специальную коробку (КУП).

Существуют определенные требования к созданию ДСУП по правилам ПУЭ:
  • Нельзя подключать составные части ДСУП шлейфом.
  • Запрещается выполнять ДСУП, при условии, если в квартире не установлен контур заземления.
  • Дополнительная система не должна разрываться на своем протяжении от коробки КУП до квартирного щита. В цепи нельзя устанавливать аппараты коммутации.

Если у вас нет такого защитного контура, как уравнивание потенциалов, расскажем ниже, как его можно выполнить своими силами.

Установка системы уравнивания потенциалов

Установить вспомогательную систему по выравниванию потенциалов не составляет большой сложности. Ее называют местной системой. Но такую работу лучше выполнять при проведении ремонта в квартире, так как необходимо проводит провод до щита от коробки КУП под полом, а это связано с нарушением покрытия пола, и сопутствующих ремонтных работ.

Для начала монтажа готовят некоторые материалы по следующему перечню:
  • Клеммная коробка в комплекте с шиной из меди (ШДУП).
  • Медные провода, состоящие из одной жилы. Площадь сечения проводов должна быть от 2,5 до 6 мм2, марки ПВ-1.
  • Крепежные элементы: болты, хомуты, фиксирующие лепестки. Они необходимы для соединения проводов всей системы уравнивания с трубами и металлическими частями.

С таким комплектом элементов можно начинать установку ДСУП. Сначала составляют схему соединений, чтобы выполнить правильное уравнивание потенциалов. На схеме также изображают места прохода провода от коробки КУП до шины заземления в квартирном щите. На рисунке показан один из примеров проекта.

Далее, готовятся к подключению сами коммуникации, то есть, зачищаются место контакта хомута с трубой, до появления металлического блеска. Это необходимо для надежности соединения. В опасной ситуации уравнивание потенциалов сработает как положено.

Затем подключают провода к каждому элементу системы. Если вы уверены в том, что не произойдет повреждения провода, то достаточно сечения провода размером 2,5 мм2. Но если имеются какие-либо сомнения по этому поводу, то лучше применить провод на 4 мм2. Все проводники проводят в коробку и выполняют надежное соединение с шиной.

Клеммная коробка для ванной комнаты должна иметь степень защиты не менее IР54. от шины коробки должен быть выведен провод сечением 6 мм2 до квартирного щита. Здесь имеется свое требование в том, что этот провод не должен иметь пересечения с другими кабелями разных линий.

В конце работы провод соединяют с заземляющей шиной щита. На этом монтаж можно считать законченным. Для самоуспокоения можно вызвать квалифицированного электромонтера для проверки работы системы с помощью приборов, а также визуальным осмотром.

Ограничения монтажа СУП

Установку СУП рекомендуется производить во время строительства здания. Но есть некоторые ограничения по ее использованию в уже построенных домах, в которых заземление выполнено по системе ТN-С, с объединенным РЕN проводником. В таких домах запрещается выполнять уравнивание потенциалов. Иначе, во время обрыва нулевого провода создается опасность удара электрическим током жильцов других квартир, в которых нет ДСУП. Чаще всего такое ограничение распространяется для многоэтажных домов старого фонда.

Эту проблему разрешают путем перехода на заземление по системе ТN-С-S. Для этого в распределительном щите дома на главной шине заземления проводник РЕN разъединяют на РЕ и N проводы, осуществляют подключение заземляющего контура и подключают его к основной шине заземления медным проводником.

В настоящее время имеется тенденция замены металлических труб на пластиковые, которые не требуют их подключение к СУП. Если у вас уже имеется дополнительное уравнивание потенциалов металлических труб, а вы решили заменить трубы на пластиковые, то это приведет к разрыву электрической связи с шиной заземления остальных элементов, изготовленных из металла. Это сделает их опасными для человека при прикосновении одновременно к нескольким частям.

Новые правила и нормы строительства направлены на соблюдение правильности установки уравнивания потенциалов. Эту систему подвергают осмотру, проверяют по проекту перед сдачей дома. Электрическая безопасность создается при выполнении электрических соединений всех металлических частей, доступных для касания человека, с основной заземляющей шиной путем РЕ проводов.

Основная система дополняется местными системами уравнивания в местах с большой опасностью удара электрическим током. Нельзя забывать, что при установке СУП должна быть обеспечена надежная связь между элементами системы, которые подключены по радиальной схеме. При этом сечение провода должно быть не менее рекомендованного значения.

Уравнивания потенциалов молниезащитной системы

При ударе молнии возникает большая сила тока и скорость его нарастания. Из-за этого появляется разница потенциалов больше, чем от утечки тока в сети. Поэтому для создания защиты от молнии необходимо выровнять потенциалы.

Чтобы при ударе молнии не было неконтролируемых замыканий, нужно непосредственно соединить электрические устройства, металлические элементы, заземление, защитную систему от молнии с устройствами защиты. Проводники всей системы соединяются с уравнивающей шиной, которая должна быть доступна для целей испытания, она соединяется с заземляющим контуром. Большие здания обычно имеют несколько таких шин. При этом все они соединены друг с другом.

Система уравнивания потенциалов молниезащиты осуществляется на вводе в здание, и в местах, где нельзя соблюсти безопасные расстояния, например, на уровне земли, либо в подвале.

В бетонном здании, либо с каркасом из металла или имеющем молниезащиту отдельного исполнения, уравнивание молниезащиты выполняется только на уровне грунта. В высоких зданиях выше 30 метров, на каждые 20 метров делается уравнивание потенциалов молниезащиты.

Молниепроводящие детали располагают на безопасном расстоянии от СУП, во избежание импульсных перекрытий. Если такое расстояние нельзя обеспечить, то создаются вспомогательные связи между молниеотводом, молниеприемником и СУП. При этом учитывают фактор того, что вспомогательные связи дают возможность захода высокого потенциала в здание.

Похожие темы:

Cистема уравнивания потенциалов | Заметки электрика

Здравствуйте, дорогие читатели сайта http://zametkielectrika.ru.

Сегодняшняя статья называется система уравнивания потенциалов.

Многие наверное слышали это название, но не все понимают что это такое, а главное для чего она нужна?

В данной статье я подробно Вам расскажу, что такое система уравнивания потенциалов, или сокращенно — СУП.

Итак, поехали.

Что это такое?

В прошлых статьях мы говорили с Вами от системах заземления TN-C-S, TN-S, где по современным требованиям ПУЭ (7-ого издания) электропроводка жилых, бытовых и административных зданий запрещена без применения защитных проводников, т.е. проводников PE. Это в первую очередь положительно сказывается на электробезопасности.

Также в ПУЭ говорится о создании системы уравнивания потенциалов (СУП).

Систему уравнивания потенциалов в домах с системой заземления TN-C делать запрещено!!!

Система уравнивания потенциалов (СУП) бывает 2 видов:

  • основная система уравнивания потенциалов (ОСУП)
  • дополнительная система уравнивания потенциалов (ДСУП)

Так что же это такое?

СУП предназначена для выравнивания потенциала всех проводящих частей здания:

  • элементы здания
  • конструкции здания
  • инженерные сети и коммуникации
  • системы молниезащиты

Соединение выполняется защитными проводниками PE, которые прокладываются отдельно, либо могут входить в состав линий электроснабжения. Эти проводники образуют так называемую «сетку» в здании и должны соединять все его вышеперечисленные части с заземляющим устройством и заземлителями.

В случае повреждения в электроустановке и попадания на проводящие части здания потенциала (напряжения), возникает ток короткого замыкания, либо большие токи утечки, которые приводят к отключению поврежденного участка цепи от источника питания, путем срабатывания автоматических выключателей или УЗО.

Основная система уравнивания потенциалов (ОСУП)

Состоит из:

  • контура заземления (заземляющее устройство)
  • главной заземляющей шины (ГЗШ)
  • «сетки» защитных проводников PE
  • проводников уравнивания потенциалов

Главная заземляющая шина (ГЗШ), она же шина РЕ, устанавливается в вводном распределительном устройстве (ВРУ) здания. Более подробно о ней Вы можете прочитать в статье главная заземляющая шина (ГЗШ).

К главной заземляющей шине (ГЗШ) подключается стальная полоса, идущая от контура заземления (заземляющее устройство). Выглядит это примерно следующим образом:

К этой же главной заземляющей шине (ГЗШ) подключается:

Далее от главной заземляющей шины отходят PE-проводники групповых линий электропроводки, а также PE-проводники уравнивания потенциалов проводящих частей здания.

 

Важно знать!!! Основная система уравнивания потенциалов (ОСУП)

1. Соединение PE-проводников с N-проводниками запрещено.

Начиная от главной заземляющей шины (ГЗШ) соединение защитных PE-проводников с нулевыми рабочими N-проводниками запрещено.

2. Схема соединения к заземляемым конструкциям

Схема соединения к заземляемым конструкциям, элементам и инженерным сетям здания должна быть радиальной.

Радиальная схема выполняется следующим образом: на каждую заземляемую часть здания приходится свой проводник уравнивания потенциалов.

Соединять PE-проводники уравнивания потенциалов шлейфом строго запрещено!!!

3. Коммутационные аппараты защиты

Запрещено устанавливать в цепях защитных PE-проводников различные коммутационные аппараты защиты. Потому как непрерывность защитных проводников — это самое главное и основное требование.

 

Дополнительная система уравнивания потенциалов (ДСУП)

С основной системой уравнивания потенциалов (ОСУП) мы разобрались. Теперь давайте рассмотрим, что же такое дополнительная система уравнивания потенциалов. ДСУП необходима для обеспечения дополнительной электробезопасности в помещениях с повышенной опасностью, например, ванная комната или душевое помещение.

Состоит из:

  • коробки уравнивания потенциалов, сокращенно КУП
  • проводников уравнивания потенциалов

Как произвести электромонтаж дополнительной системы уравнивания потенциалов (ДСУП)?

В первую очередь необходимо определиться с местом установки коробки уравнивания потенциалов (КУП).

Далее нужно соединить шину PE вводного электрического щитка (квартиры, дачи) с шиной PE, расположенной в коробке уравнивания потенциалов (КУП). Делается это медным проводом сечением 6 кв.мм.

Третьим шагом будет, произвести заземление всех металлических конструкций ванной комнаты:

  • отопление
  • холодный водопровод
  • горячий водопровод
  • ванна или душевая кабина

Защитные проводники уравнивания потенциалов от заземленных конструкций прокладываем и подключаем к шине PE в коробке уравнивания потенциалов (КУП).

Крепление защитных проводников уравнивания потенциалов к трубам можно производить с помощью металлических хомутов.  

Также дополнительному заземлению подлежат все розетки, установленные в ванной комнате.

Сечение защитных проводников уравнивания потенциалов выполняются медным проводом сечением 2,5 — 6 кв.мм.

После проведения электромонтажа системы уравнивания потенциала необходимо пригласить специалистов электролаборатории для проведения следующих электрических измерений:

P.S. На этом статью я завершаю. Думаю, что данный материал будет Вам полезен, а главное понятен. Если у Вас все-таки  возникли вопросы по данной теме, то задавайте их в комментариях к данной статье.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Практика выполнения дополнительной системы уравнивания потенциалов

Фактически, наиболее распространены пять вариантов выполнения шин системы дополнительного уравнивания потенциалов:

Вариант 1. С использованием стандартных коробок уравнивания потенциалов (КУП).

Вариант 2. Стальная шина 4х40 (4х50) с приварными болтами опоясывающая помещение.

Вариант 3. Стальная шина, уложенная в стандартный пластиковый короб.

Вариант 4. Использование шины заземления в РЩ (для небольших помещений).

Вариант 5. С использованием специализированного щитка типа ЩРМ – ШЗ (встроенный щиток с шиной 100 мм2 (Cu) со степенью защиты IP54).

Вне зависимости от конструкции должны быть соблюдены два основных условия:

—       возможность осмотра соединения;

—       возможность индивидуального отключения.

  1. Длина проводников дополнительной системы уравнивания потенциалов, соединяющих контакты штепсельных розеток, сторонние проводящие части и корпуса электрооборудования не должна превышать 2,5 м. Сечение 2,5 — 4 мм2 Сu(ПУГВ). См. ПУЭ 1.7.82 рис. 1.7.7.
  2. Для электроустановки здания, где применяются негорючие (ВВГ нг – FRLS…) кабеля, следует с осторожностью использовать кабеля марки ПУГВ. Данный тип кабеля, будучи уложенным вместе с негорючими кабелями, формально превращает всю систему в распространяющую горение. В большинстве случаев контролирующие органы относятся к этому спокойно, но в некоторых случаях стоит применить негорючие одножильные кабеля той же марки с нанесением соответствующей маркировки.
  3. Для зданий детских дошкольных учреждений, больниц, специальных домах престарелых и т.д. применяемые пластиковые короба должны иметь сертификат о не выделении токсичных веществ при горении. Тоже касается линолеума. Поставляемые в Россию короба Legrand, ABB … таких сертификатов не имеют. Как вариант — короба фирмы DKC или SPL, в которых в качестве отбеливающего вещества используется мел и есть все необходимые сертификаты.

ГОСТ Р 50571.28 п. 710.413.1.6.3 «Шина уравнивания потенциалов должны быть расположены в самом медицинском помещении или в непосредственной близости от него. В каждом распределительном шкафу или в непосредственной близости от него должна быть расположена шина системы дополнительного уравнивания потенциалов, к которой должны быть подключены проводники…».

Пример схемы с использованием электрощитка ЩРМ – ШЗ (формирование шинной системы дополнительного уравнивания потенциалов) и розеток РЗ-01 (для оперативного подключения к шине дополнительного уравнивания потенциалов).

Система дополнительного уравнивания потенциалов в данном случае формируется из встроенных электрощитков ЩРМ-ШЗ (IP54) соединенных между собой проводником 16 мм2. В каждом щите установлена медная шина 100 мм2 с необходимым количеством клеммников. Съемная крышка позволяет получить доступ до каждого соединения системы. Количество щитков определяется размером помещения и количеством необходимых подключений. Рекомендуемое расстояние между щитками – 4-5 м. Система дополнительного уравнивания потенциалов одновременно выполняет функцию защитного заземления установленного в данном помещении электрооборудования. Для стационарных электроаппаратов сечение защитного заземляющего проводника, подсоединенного к шине, должно соответствовать сечению фазного (равно фазному до 16 мм2 и не менее ½ при больших значениях).

Для присоединения переносной и передвижной аппаратуры используются розетки. В случае использования стандартных розеток, в непосредственной близости от них должны располагаться розетки с клеммниками (розетка заземления РЗ-01) для оперативного подключения корпусов электрооборудования к системе дополнительного уравнивания потенциалов. Количество заземляющих розеток определяется составом электрооборудования, но в среднем — половина от числа силовых.

При использовании мощных силовых розеток сечение проводников подключения к шине должно быть выбрано с учетом сечение фазного проводника данной розетки.

Использование специализированных розеточных электрощитков упрощает задачу, так как они уже содержат клеммники для подключения к дополнительной системе уравнивания потенциалов корпусов переносного и передвижного электрооборудования.


МЕД: Для учреждений здравоохранения в помещениях гр.1 и особенно в помещениях гр.2 (чистые помещения) удобно воспользоваться вариантом
№ 5, схема которого представлена на рисунке.

Система уравнивания потенциалов.

Для чего предназначена и как выполняется система уравнивания потенциалов.

Если вы когда-либо ощущали легкие (и не очень) пощипывания током в ванной комнате, то вы наверняка изучали этот вопрос и знаете, что причиной является разность потенциалов между металлическими конструкциями. А выходом из сложившейся ситуации, считается выполнение дополнительной системы уравнивания потенциалов. Но как говорится, если есть дополнительная, то обязана существовать и основная. В данном материале я буду говорить об этих системах.

Для чего служит такая система?

Для начала давайте узнаем, для каких целей используется данная система. Как известно металлические предметы являются отличными проводниками электричества.

В наших с вами домах такими проводниками являются чугунные трубы отопления, короба вентиляционных шахт, полотенцесушитель, трубы водоснабжения и канализационные трубы. И все эти коммуникационные системы имеют между собой связь.

Для того, чтобы понять каким образом на этих элементах образуется опасный потенциал, давайте рассмотрим следующую ситуацию:

Все мы с вами знаем, что напряжение представляет собой разность потенциалов фазного и нулевого провода (в однофазной сети). Из картинки выше следует, что ток по фазному проводу попадает на двигатель стиральной машины и вновь уходит в сеть по N проводу. И от того же нулевого проводника реализовано заземление стиральной машины. Это необходимо, чтобы при повреждении изоляционного материала электроприбора произошло отключение защитного автомата.

А теперь представим ситуацию, что в нуле появился потенциал в 20-30 Вольт. Это означает, что если человек коснется одновременно стиральной машинки и сушилки,

то он будет поражен разностью потенциалов стиральной машины, равной 20-30 В и потенциалом полотенцесушителя равного нулю.

Таким образом, человека поразит напряжение 30 вольт. Именно чтобы не допустить такой ситуации и реализуется система выравнивания потенциалов, оная выглядит так:

Разновидности систем

Существует основная система уравнивания потенциалов (ОСУП) и дополнительная система уравнивания потенциалов (ДСУП).

Примечание. ДСУП не может быть реализована, если нет или не исправна ОСУП.

Основная система уравнивания потенциалов должна отвечать таким требованиям:

  1. Уже с Главной заземляющей шины категорически запрещено объединятьPEи проводники
  2. Схема соединения ко всем конструкциям подлежащим заземлению, должна быть строго радиальной.
  3. В цепях защиты категорически запрещено устанавливать какие-либо коммутационные аппараты

В ОСУП объединяются следующие элементы:

  1. Заземлитель.
  2. ГЗШ– главная заземляющая шина, располагается на вводе здания.
  3. Всевозможная арматура жилого дома.
  4. Металлические вентиляционные короба.
  5. Водопроводные трубы из металла.
  6. Молниеотводы.

Если все вышеперечисленные элементы имеют прочную связь, то опасность возникновения опасных потенциалов была нулевой. Но в связи с поголовной заменой отопления на пластиковые трубы, данный контур становится разорванным, и возникновение потенциала становится обыденным делом.

Также несмотря на надежный контур в больших многоэтажках из-за большой протяженности коммуникаций может возникнуть потенциал, именно по этой причине в помощь основной системе уравнивания потенциалов применяют дополнительную.

 

Такая система реализуется в ванной комнате, где соединяются следующие элементы:

— непосредственно ванна или душевая кабина.

— полотенцесушитель.

— трубы водопровода и газовые трубы.

— канализация.

— вентиляционные короба.

 

Все эти элементы соединяются отдельным медным проводником, концы которого собираются в КУП (коробка уравнивания потенциалов).

Если у вас нет подобной системы и вы хотите ее реализовать в вашей ванной комнате, то обязательно учтите следующие немаловажные требования:

  1. Дополнительную систему категорически запрещается реализовывать, если в доме отсутствует или неисправна основная система уравнивания потенциалов.
  2. Запрещается использовать соединение шлейфом.
  3. Нельзя допускать разрывов защитного проводника, идущего от клеммной коробки до шины заземления, расположенного в квартирном щитке.

Также позаботьтесь о том, чтобы розетки, установленные в ванной комнате, имели дополнительное заземление.

Кстати, закрепить заземляющий проводник к металлическим трубам отопления и водопровода можно металлическими хомутами. Также учтите, что минимальное сечение жилы заземляющего провода должно быть 2,5 квадратных миллиметра.

С оригиналом статьи можно ознакомиться  —   Электрофиксик

Система уравнивания потенциалов | Элкомэлектро

Электролаборатория » Вопросы и ответы » Система уравнивания потенциалов

В настоящее время большое внимание уделяется проверке правильности монтажа системы уравнивания потенциалов. Инженеры нашей электролаборатории обратили внимание на то, что все государственные инспекторы Ростехнадзора, первым делом выйдя на строительный объект, осматривают и проверяют на соответствие проектной документации, ПУЭ и ГОСТам систему уравнивания потенциалов. Система уравнивания потенциалов обязательно должна быть с монтирована в тех системах, в которых защитные меры безопасности обеспечиваются автоматическим отключением электропитания, например автоматическими выключателями. В наше время используются только такие системы электропитания, соответственно система уравнивания потенциалов должна быть во всех электроустановках.

На фото показано, как правильно подключить проводник уравнивания потенциалов к трубе горячего водоснабжения в ванной комнате в квартире. Данный проводник с другой стороны подключается к коробке уравнивания потенциалов (КУП), в которой происходит объединение данных проводников.

Что такое система уравнивания потенциалов? Для чего система уравнивания потенциалов и как её смонтировать?

Система уравнивания потенциалов состоит из основной системы и дополнительной системы уравнивания потенциалов. Основная система уравнивания потенциалов в электрсистемах до 1000 Вольт объединяет в себе следующие элементы: заземляющий проводник, присоединенный к повторному контуру заземления на вводе в здание (если есть заземлитель или контур заземления),  металлические трубы холодного водоснабжения и горячего водоснабжения, трубы канализации, трубы отопления, трубы газоснабжения. Хочу отметить тенденцию в последнее время проводить водопровод и канализацию пластиковыми трубами. В случае устройства коммуникация пластиковыми трубами, объединять их в систему уравнивания потенциалов нужно, используя для крепления проводников металлические гребёнки, обратные клапаны, краны и другую арматуру. Если туба имеет диэлектрическую вставку, а сама изготовлена из металла, то присоединять её к основной системе необходимо после вставки, изнутри здания, также присоединяются металлические части каркаса здания, это касается металлических ангаров, строительных бытовок и других построек, имеющих корпус из металла, так же металлические части централизованных систем кондиционирования и вентиляции. Во многих офисных помещениях стали использовать обособленные системы вентиляции и кондиционирования воздуха, такие системы необходимо присоединять к шине РЕ щитка, от которого осуществляется питание данной установки. Неукоснительным правилом является подключение к основной системе уравнивания потенциалов, контура заземления системы молниезащиты, металлические оболочки телекоммуникационных кабелей. Хочу заострить внимание на присоединение заземляющего проводника рабочего или функционального заземления, но только в случае отсутствия обоснованного указания заводом производителем на запрет присоединения функционального контура заземления к основной системе уравнивания потенциалов. Функциональное заземление можно встретить в поликлиниках и больницах, центрах обработки данных и других объектах требующих отдельное заземление для специальной аппаратуры.

Все вышеперечисленные элементы следует объединять как можно ближе их ввода в здание. Объединять данные элементу нужно проводниками уравнивания потенциалов, подключённых к главной заземляющей шине (ГЗШ).

На фотографии изображена Главная заземляющая шина с присоединёнными проводниками системы уравнивания потенциалов. Проводники системы уравнивания потенциалов должны иметь жёлто-зеленую окраску, быть оконцованными и иметь бирку с наименованием присоединяемого элемента.

Подытожим:

Основная система уравнивания потенциалов в электрсистемах до 1000 Вольт объединяет в себе металлические части электроустановки: все металлические трубы, оболочки силовых или телекоммуникационных кабелей, дополнительный контур заземления на вводе здания, контур заземления молниезащиты, металлические короба систем кондиционирования и вентиляции.

Проверить качество монтажа системы уравнивания потенциалов можно путём проверки наличия цепи между заземлёнными электроустановками и элементами заземлённой электроустановки или металлосвязи. Данная проверка производится с помощью анализа схемы уравнивания потенциалов.

На фотографии изображена схема уравнивания потенциалов.

Далее ответим на вопрос, что такое и для чего нужна дополнительная система уравнивания потенциалов?

Дополнительная система уравнивания потенциалов служит для защиты от поражения электрическим током в случае одновременного прикосновения человека к металлическим частям электроустановки, которые в случае аварийной ситуации могут оказаться под напряжением.

Проверка металлосвязи, инженеры нашей электролаборатории проводит с помощью прибора MIC – 3. Данный прибор состоит в госреестре и проходит ежегодную поверку в метрологическом органе. Он имеет достаточный класс точности для проверки переходного сопротивления контактов. Согласно правил технической эксплуатации электроустановок потребителей (ПТЭЭП, приложение 3, таблица 28.5) переходное сопротивление контактов должно быть не более 0,05 Ом.

На фотографии изображён прибор для проверки металлосвязи MIC – 3.

Система уравнивания потенциалов, шина уравнивания потенциалов (ГЗШ) — ОБО Беттерман

Системы уравнивания потенциалов

Система уравнивания потенциалов обеспечивает соединение между собой токопроводящих элементов с целью недопущения возникновения разницы потенциалов между ними. Одна из ее функций – исключение возникновения и протекания непредсказуемых циркулирующих токов в системе заземления. При ее обустройстве соединению между собой перед вводом в здание подлежат следующие элементы:

  • Магистральные защитные проводники.
  • Элементы коммуникаций и инженерных систем здания (трубы, составные части системы вентиляции, отопления и пр.).
  • Металлические части здания (сооружения).
  • Магистральные заземляющие проводники.
  • Системы молниезащиты.

Система уравнивания потенциалов: разновидности

Выделяют 2 типа. Первый – основная система уравнивания потенциалов. Она объединяет в себе все крупные токопроводящие элементы здания (в их число входят рассмотренные выше), и состоит из следующих частей:

  • Заземляющий контур (устройство).
  • Главная заземляющая шина (общепринятая аббревиатура – ГЗШ), которая служит для объединения элементов, способных проводить ток.
  • Нулевые защитные проводники.
  • Проводники (шины) уравнивания потенциалов.

Второй тип системы уравнивания потенциалов – дополнительная. Ее обустройство производится в зонах (местах) повышенной опасности поражение электрическим током людей при эксплуатации электросети в нормальных режимах, а также при возникновении аварийных ситуаций (замыкание сети на элементы инженерных сетей, попадание молнии в объект и пр.). Такая система объединяет между собой:

  • Доступные для прикосновения токоведущие элементы (трубы отопления, водопровода и пр.).
  • Защитные и нулевые проводники электрооборудования.
  • Защитные проводники розеток, выключателей и прочих коммутационных элементов.

Компоненты систем уравнивания потенциалов от ОБО Беттерманн

ОБО Беттерманн занимается производством различных компонентов, необходимых для обеспечения электробезопасности зданий путем присоединения всех токоведущих элементов с ГЗШ. В ассортименте компании представлен широкий выбор оборудования, среди которого:

  • Шина уравнивания потенциалов разных типов. В каталоге компании ОБО Беттерманн Вы найдете шины для стандартного монтажа в помещениях и на открытом воздухе, варианты для скрытой установки, изделия для эксплуатации в условиях повышенной влажности и пр.
  • Заземляющие скобы.
  • Монтажные ленты.
  • Зажимы для обустройства систем заземления и уравнения потенциалов по разным схемам.

Какие компоненты выбрать, как заземлять оборудование, что подключать к ГЗШ, каков порядок определения схемы защитных систем: разобраться с этими вопросами Вам помогут технические специалисты компании ОБО Беттерманн в Вашем регионе. Заказать все необходимые элементы для обеспечения электробезопасности зданий и сооружений Вы можете у официальных дистрибьюторов оборудования ОБО Беттерманн.

Выравнивание потенциалов

Выравнивание потенциалов используется для создания электрических соединений между проводящими компонентами с целью достижения равенства потенциалов. Кроме того, проводящее соединение обеспечивает выравнивание разницы зарядов между двумя корпусами или компонентами. Все защитные проводники и проводники уравнивания потенциалов соединяются на главной заземляющей шине (PE-шине) и подключаются к заземлению фундамента (стальная арматура в бетонных плитах) через заземляющий провод.

Выравнивание потенциалов также предназначено для защиты от опасного электростатического разряда (ESD). Для этого люди и оборудование подключаются к заземлению фундамента с помощью специальных устройств, чтобы обезопасить разность потенциалов.

Это выравнивание потенциалов может выполнять две разные задачи при электрическом монтаже машины:

Индивидуальная защита от поражения электрическим током в случае неисправности машины или системы с помощью системы защитных проводов.

2. Функциональное выравнивание потенциалов

Для предотвращения неисправностей (в результате повреждения экрана) и улучшения электромагнитной совместимости (ЭМС) чувствительных электронных компонентов.

Следующая принципиальная схема иллюстрирует цель выравнивания потенциалов:

Выравнивание потенциалов также является «требованием для защиты от поражения электрическим током». Он указан в международном стандарте IEC 60364-4-41: 2005 и немецком стандарте DIN VDE 0100-410: 2007-06.

Подключение всех токопроводящих корпусов электрических компонентов к заземленному защитному проводу и основной шине заземления является основой защиты от поражения электрическим током. Основная защитная мера, указанная в стандарте VDE, то есть автоматическое отключение источника питания в случае неисправности, обеспечивается посредством установки в соответствии со стандартами и последующего тестирования системы. Испытание также служит для проверки достаточного малого сопротивления контура для автоматического отключения в случае неисправности.

Техническая реализация выравнивания потенциалов, определение размеров поперечных сечений и стандартизованная терминология указаны в международном стандарте IEC 60364-5-54: 2011 и немецком стандарте DIN VDE 0100-540: 2012-06.

Разделение защитного и нулевого проводов!

Убедитесь, что в сети есть отдельные защитный (PE) и нейтральный (N) проводники и что два проводника не подключены к одному и тому же потенциалу (защитный и нейтральный проводники = PEN).

Системы электроснабжения

В системе TN-C точка звезды всех кабелей (L1, L2, L3 и PEN) заземлена напрямую . Нейтральный провод (N) и защитный провод (PE) объединены в один провод (PEN).

В трехфазном источнике питания используются четыре кабеля, как показано в примере слева:
L1, L2, L3 и PEN.

В следующем разделе описаны системы TN-S, рекомендованные Beckhoff Automation GmbH & Co. KG с точки зрения электромагнитной совместимости (ЭМС).

Подобно системе TN-C, в системе TN-S точка звезды всех кабелей (L1, L2, L3, N и PE) также напрямую заземлена. Нейтральный провод (N) и защитный провод (PE) подключаются к потребителю отдельно.

В трехфазном источнике питания используются пять кабелей, как показано в примере слева:
L1, L2, L3, N и PE.

Переход от системы TN-C к системе TN-S обозначен синим кабелем.

Система «звезда» (прочно заземленная звезда)

В звездообразной системе точка звезды всех кабелей (L1, L2, L3, N и GND) заземлена и соединена вместе. центр. В этой системе электроснабжения провод защитного заземления (GND) не должен пропускать ток.Нейтральный провод N (заземленный провод) должен быть отдельным и отводиться только в системе потребителя. В Германии используются системы электроснабжения TN-C-S.

Во многих случаях такие системы также используются в США в качестве стандарта.

В трехфазном источнике питания используются пять кабелей, как показано в примере слева:
L1, L2, L3, необязательно N и GND.

Система треугольника (треугольник с заземлением в углу)

В системе треугольником все подключенные компоненты заземлены напрямую.Это делается независимо от заземления источника тока. Провод защитного заземления (GND) не должен пропускать ток! Нейтральный провод N (заземленный провод) должен быть отдельным и отводиться только в системе потребителя. Специальные меры, например сетевые фильтры, должны применяться в соответствии с требованиями ЭМС.

Эти системы не имеют прямого аналога в стандарте IEC. Заземление осуществляется либо через одну из фаз (с заземлением в углу), либо через центральный отвод между двумя фазами (High-Leg).

В трехфазном источнике питания используются пять кабелей, как показано в примере слева:
L1, L2, L3, необязательно N и GND.

В двухфазной системе заземление происходит через центральный отвод между двумя фазами. Оттуда выводится нейтральный проводник.

В трехфазном источнике питания используются четыре кабеля, как показано в примере слева:
L1, N, L2 и GND.

Потенциальные различия:

Несколько пространственно разделенных монтажных пластин внутри шкафа управления
Несколько шкафов управления, которые пространственно разделены внутри приложения
Работа несколько локальных сервоприводов (AX5000 / AX8000)
Питание компонентов шкафа управления от разных поставщиков

Все разности потенциалов приводят к токам утечки (токам выравнивания потенциалов).Для получения дополнительной информации обратитесь к разделу «Токи утечки» в системном руководстве для сервопривода AX5000.

Возможные различия также влияют на сигналы управления и обратной связи, вызывают помехи в устройствах связи и могут вывести электронные компоненты из строя.

Чтобы уменьшить разность потенциалов, вам необходимо:

Установить выравнивание потенциалов. Для соединения неокрашенных монтажных плат и шкафов управления следует использовать заземляющие ленты с большой поверхностью и большой площадью контакта.
Подключите источник питания с общим потенциалом.
Обеспечивает соединения экрана с большой площадью поверхности.

Вопросы электробезопасности и ЭМС

С точки зрения мер индивидуальной защиты (PPM), PE-шина в шкафу управления используется как точка звезды.
С точки зрения электромагнитной совместимости Beckhoff Automation GmbH & Co. KG рекомендует использовать неокрашенную монтажную пластину в шкафу управления в качестве точки нейтрали для выравнивания потенциалов.

Сечения проводников для кабелей выравнивания потенциалов

Кабели выравнивания потенциалов должны быть как можно короче. Сечение жилы должно быть прямоугольным и плоским. Поперечное сечение кабеля уравнивания потенциалов должно иметь соответствующие размеры.

На следующей диаграмме показан пример конфигурации выравнивания потенциалов с различными компонентами.Обратите внимание, что выравнивание потенциалов зависит от конкретного приложения, поэтому следующий образец не следует рассматривать как стандартное решение!

Дверь шкафа управления с заземляющей перемычкой

DIN-рейка для монтажа компонентов

Неокрашенная монтажная пластина в шкафу управления

Заземляющая лента, соединяющая шину PE и неокрашенную монтажную пластину

Соединение кабельного канала большой площади

Кабельный канал из листового металла

Выравнивание потенциалов между двигателем (OCT) и кабельным каналом (HF-совместимым) через фланцевую переходную пластину

Разделительная планка в кабельном канале для сигнального (зеленый) и силового кабеля (оранжевый)

Выравнивание потенциалов между Заземление рамы машины и фундамента

Токопроводящее соединение металлического кабельного канала

Заземление фундамента с помощью стальной арматуры в бетонной плите

Заземляющее соединение между блоками управления заземление шкафа и фундамента

Шина PE в шкафу управления

Установка выравнивания потенциалов

При установке выравнивания потенциалов обратите внимание на следующее:

Подключение защитного провода
Подсоедините двери шкафа управления (1) к шкафу управления через кабель защитного заземления (сечение ≥ 10 мм² Cu).
Соедините монтажную пластину шкафа управления (3) с шиной защитного заземления (13) с помощью кабеля защитного заземления (сечение ≥ 10 мм² Cu).
Подключите шкаф управления к заземлению фундамента (11) с помощью кабеля защитного заземления (сечение ≥ 10 мм² Cu). Кроме того, все кабельные каналы должны быть подключены к шкафу управления с помощью кабеля защитного заземления (сечение ≥ 10 мм² Cu).
Подключение двигателей и редукторов
Подключите все двигатели и редукторы вашего приложения к металлическим кабельным каналам с помощью заземляющих лент.
Соединение металлических кабельных каналов
Металлические кабельные каналы всегда должны соединяться друг с другом на большой площади.
Соединения кабелей защитного заземления должны быть как можно короче. Все соединения должны быть металлически чистыми! Никогда не подключайте защитные провода к окрашенным поверхностям! Перед соединением компонентов очистите все стыки промышленным очистителем.
Установка в шкафу управления

Выравнивание потенциалов

Чтобы экран эффективно экранировал высокочастотные помехи, он должен быть заземлен с обоих концов.В специальных установках могут возникать разности потенциалов между разными точками внутри одной установки, что приводит к токам выравнивания потенциалов по длине экрана кабеля. Уравнивающие токи этого типа всегда следует строго избегать, поскольку они могут привести к возникновению взаимных помех. Проблемы с землей возникают, если:

a) Шинный кабель покрывает большую площадь или соединяет большие расстояния

b) Электроэнергия поступает из разных источников (например, из разных источников).грамм. несколько подстанций)

c) Потребляются большие электрические мощности (например, сварочные роботы, большие приводы и т. д.)

Одно из решений — установить дополнительный кабель выравнивания потенциалов между отдельными потенциалами. Линия выравнивания потенциалов также должна быть способна отводить большие токи (профиль 16 мм2 не является чем-то необычным). Следует использовать многожильный кабель с хорошей поверхностью, чтобы можно было эффективно отводить даже токи высокой частоты.

Монтаж проводника для выравнивания потенциалов

Линии выравнивания потенциалов следует прокладывать параллельно кабелю шины и как можно ближе, чтобы расстояние между двумя кабелями было как можно меньше.

ВАЖНО: ЗАПРЕЩАЕТСЯ использовать экран шинного кабеля для выравнивания потенциалов!

PE-проводка (5-жильный кабель = TN-S)

В случае подключения PE (5-жильный = TN-S) нейтральный провод (N) и защитное заземление (PE) строго разделены. Даже при асимметричной нагрузке ток на землю не течет, и экран кабеля PROFIBUS остается свободным от тока. Это легко проверить с помощью токового щупа.Ток на экране не должен превышать несколько миллиампер. На практике ток на экране более 30 мА считается проблематичным. Ток, превышающий 300 мА, может чрезмерно нагреть кабель и стать причиной возгорания.

Подключение PEN (4-жильный кабель = TN-C)

В случае подключения PEN (4-жильный = TN-C) под асимметричной нагрузкой, уравнительный ток I1 будет течь по общему проводнику PEN, потому что он будет искать путь с наименьшим сопротивлением.Таким образом, часть тока I3 также может быть отведена через землю. Это также может привести к тому, что немаловажная часть I2 будет отведена через экран PROFIBUS. Это можно подтвердить с помощью простого токового пробника.

Чтобы исправить это, рекомендуется сделать часть этого соединения оптоволоконным кабелем или использовать повторитель для электрической изоляции экрана.

В качестве альтернативы стандарты также предлагают емкостное заземление, особенно для взрывозащищенных установок.Это включает в себя соединение экрана с RC-цепочкой. Его небольшая емкость (<10 нФ) отводит высокочастотные помехи, но имеет высокий импеданс для частоты сети (50 или 60 Гц), тем самым предотвращая выравнивание токов по экрану. Параллельно подключенный высокоомный резистор предотвратит зарядку емкости постоянным напряжением. Это емкостное заземление может быть реализовано на одном или на всех концах кабеля PROFIBUS. Здесь также можно использовать токовый щуп для проверки правильности работы.

Емкостное заземление щита

Выравнивание потенциалов (SPE) | Рейн Медикал

ВАЖНОСТЬ ПОТЕНЦИАЛЬНОГО УРАВНЕНИЯ

Армин Гертнер Дипл. Инж. [MEng.]

В следующей статье описывается важность дополнительного выравнивания потенциалов (SPE) для медицинских технологий. Следует различать стационарно установленные системы общего выравнивания потенциалов в соответствии с DIN VDE 0100, части 410 и 540 и SPE, которые должны отдельно подключаться с помощью гибкого кабеля со специальной вилкой для мобильных активных и неактивных медицинских устройств, которые мобильный и мобильный в определенном месте.SPE стандартизирован в соответствии с VDE 0107 (старый) и VDE 0100 часть 710 (новый).

Из-за своей конструкции, как правило, только очень небольшие напряжения прикосновения присутствуют на прикосновенных частях устройства, которые при прикосновении становятся токами утечки устройства. В случае неисправности могут возникнуть более высокие токи утечки устройства в виде токов повреждения. При первом повреждении эти остаточные токи могут привести к высоким напряжениям прикосновения, если отсутствует дополнительное выравнивание потенциалов.

Дополнительное выравнивание потенциалов, таким образом, представляет собой превентивную меру для защиты пациента, пользователя и третьих лиц от напряжений прикосновения, которые могут возникнуть из-за потенциалов напряжения между прикосновенными проводящими частями и мобильным оборудованием.

Далее описывается необходимость выравнивания потенциалов и соответствующая философия безопасности дополнительного выравнивания потенциалов (SPE), чтобы лучше понять и применить меру, которой часто пренебрегают или игнорируют на практике.

1. ПОСТОЯННО УСТАНОВЛЕННОЕ ДОПОЛНИТЕЛЬНОЕ УРАВНЕНИЕ ПОТЕНЦИАЛА

Рис. 1: Схема прокладки кабеля защитного проводника и выравнивания потенциалов в операционных с указанием возможных направлений потока компенсационных токов

В зданиях больницы, помимо электроустановок, проложено большое количество токопроводящих трубопроводов, например.грамм. из меди для воды или газов, которые могут хорошо проводить электричество благодаря своему большому поперечному сечению. Эти трубопроводы являются посторонними токопроводящими частями согласно DIN VDE 0100 часть 200. К ним также относятся токопроводящие строительные конструкции или монтаж, который вставляется в бетон.

Поскольку в последние годы объем силовых установок все больше и больше увеличивается, следует ожидать, что электрические токи будут протекать не только через предусмотренные защитные проводники, но также и через токопроводящие трубопроводы в соответствии с законами Кирхгофа.Такие токи могут течь не только в случае неисправности, но и во время нормальной работы.

По этой причине, например, трубопроводная система может получать напряжение во время нормальной работы, а тем более в случае повреждения. Если выравнивание потенциалов отсутствует, электрический ток может протекать через человека, касающегося двух разных систем трубопроводов, одна из которых заземлена. В зависимости от контактных сопротивлений контактное напряжение при простом замыкании на землю ниже сетевого напряжения 230 В.

Эти напряжения прикосновения (потенциалы) должны быть уменьшены до значений, безвредных для человека, путем соединения всех проводящих систем, таких как трубопроводы или корпуса оборудования, с помощью проводников выравнивания потенциалов. Для полного выравнивания потенциалов к основной шине выравнивания потенциалов рядом с главным распределительным щитом низкого напряжения подключаются вилки заземления фундамента и молнии, внутренние газовые трубы, водопроводные трубы, линии подачи и возврата отопления, паропроводы, трубы медицинского газа и т. Д.

На рисунке 1 показаны проблемы электробезопасности и безошибочное протекание компенсирующих токов.

На рисунке показано, как возможные компенсирующие токи, которые во время работы двигателей, лифтов, систем кондиционирования воздуха и т. Д., Могут представлять опасность для пациента из-за армирования железом из других зон здания через операционные, блоки питания, оборудование для операционных залов и т. Д. ., если выравнивание потенциалов отсутствует или не подключено.

Вольтметр, изображенный над операционным столом, показывает возможные разности потенциалов между отдельными частями оборудования.Они могут позволить компенсационным токам течь во время операции через сердце пациента.

Требования предыдущих систем электропитания VDE 0107 в больницах и помещениях, используемых для медицинских целей за пределами больниц.

VDE 0107 делит помещения, используемые в медицинских целях, на группы приложений (AG) 0, 1 и 2. Для помещений AG 2 обычно требуется медицинская ИТ-сеть с плавающим потенциалом и дополнительным специальным выравниванием потенциалов. Медицинские ИТ-сети используются таким образом, чтобы не происходило отключение во время первого короткого замыкания на землю или на землю.Только в случае короткого замыкания или чрезмерной перегрузки невозможно продолжить работу медицинского электрооборудования.

Примечание. Термин «ИТ-сеть» как обозначение этой конкретной формы электропитания не следует путать с идентичным термином ИТ-сеть информационных технологий (ИТ).


В помещениях AG 2 (операционные, отделения интенсивной терапии, отделения катетеризации левых отделов сердца) в соответствии с DIN VDE 0107, в дополнение к защитным мерам в соответствии с DIN VDE 0100, часть 410, все посторонние токопроводящие части в окружающей среде пациента электрически соединены друг с другом и с шиной защитного проводника.С помощью этой меры можно достичь даже очень низкого напряжения прикосновения.

Это означает, например, для операции, что все:

  • стационарные операционные столы, кроме устройств класса защиты I,
  • пол хирургический токопроводящий,
  • потолочные подвески, если они не являются устройствами класса защиты I
  • раковины при условии, что они установлены рядом с пациентом и являются посторонними токопроводящими частями,
  • металлических каркасов при условии, что они находятся рядом с пациентом и являются инородными токопроводящими частями, и
  • Столешницы из нержавеющей стали
  • при условии, что они установлены в окружающей среде пациента и являются посторонними токопроводящими частями

должен быть включен в уравнение потенциалов.Установление дополнительного выравнивания потенциалов требует функциональности основного выравнивания потенциалов. Номинальное поперечное сечение основного проводника выравнивания потенциалов рассчитывается в соответствии со стандартом DIN VDE 0100, часть 540.

За этими мерами стоят соображения и опыт, позволяющие избежать возможных перепадов напряжения, которые могут возникать в качестве источников напряжения в непосредственной близости от пациента. или на пациенте. Эти источники напряжения могут вызывать токи через сопротивление тела, которые не только проходят через пациента, но также могут нанести вред врачу и медперсоналу или даже подвергнуть их опасности.Кроме того, функционирование активного медицинского оборудования также ухудшается из-за утечки тока или даже из-за их неисправности.

ТРЕБОВАНИЯ НОВОГО VDE 0100 ЧАСТЬ 710


Предыдущий VDE 0107 был заменен новым VDE 0100 Part 710 в конце 2002 года. Дополнительное выравнивание потенциалов требуется без изменений, как предписано. Метрологическая проверка разности потенциалов в помещениях 2-й группы не проводится. От этого требования отказались, поскольку оно является стандартом для строительства новых установок или адаптации старых установок после существенной модификации.Новый стандарт содержит строгий запрет PEN, т. Е. PE-проводники и N-проводники больше не могут объединяться до напольного распределителя как сети TN-C, а должны быть отделены от главного распределителя, как показано на рис. 2. Новая часть VDE 0100 Part 710 предписывает сеть TN-S для новых зданий и переоборудования, в которых нет соединения между PE и N при правильной установке. На рисунке 2 слева показана сеть TN-C, а справа — сеть TN-S, которая будет установлена ​​для переоборудования и строительства новых зданий.

Рис.2: TN-C и TN-S-net

В сети TN-C необходимо соблюдать параллельное соединение с трубами, экранами сетей EDP, арматурой и другими проводящими телами, в результате чего происходит разделение обратных токов в зависимости от проводимости и диаметра материалов. Частичные токи текут обратно к источнику через PEN. Токовые клещи можно использовать для определения тока, протекающего в основном потенциальном кабеле. Токи протекают по всем проводящим частям, т.е.е. по всем материалам, которые являются проводящими и соединены с землей, то есть даже система металлических труб представляет собой потенциальный проводник.

Соединение между PE и N или вызванное повреждением изоляции может быть установлено непреднамеренно, что никто бы не заметил без измерения и контроля с помощью так называемой процедуры RCM (RCM = Контроль остаточного тока). Мониторы RCM — это устройства контроля остаточного тока в соответствии с DIN EN 62020, которые позволяют осуществлять целенаправленный контроль отдельных устройств или компонентов системы.

Новый стандарт также требует, чтобы сеть TN-S была полностью установлена ​​от главного низковольтного распределительного щита, а не только от главного распределительного щита здания; с помощью мониторинга RCM срабатывает сигнал тревоги, если происходит нарушение изоляции или перемычка между замыканиями PE и N.

В принципе, согласно VDE 0100, часть 710, блуждающие токи больше не должны возникать, если сеть TN-S полностью контролируется от источника. По этой причине измерение разности напряжений 10 мВ между осязаемыми проводящими частями в операционной также было исключено из нового стандарта, поскольку философия стандарта основана на предположении, что мониторинг обратного тока означает наличие больше никакой опасности.

Поэтому рекомендуется постоянно контролировать системы TN-S. В этих условиях при нормальной работе не может возникнуть вредных блуждающих токов. Однако важно отметить, что мониторинг с помощью RCM не ограничивает ток, а только дает индикацию, когда достигнут предел срабатывания сигнализации! Следовательно, это не защитная мера и не указывает, где находится источник токов выравнивания потенциалов или источники напряжения.


Ток в проводнике PE никогда не будет равен нулю, так как всегда есть токи утечки устройства из-за пределов изоляции и естественных изменений из-за старения изоляции.Чем больше оборудования подключено к источнику, тем выше токи утечки. Таким образом, в зависимости от использования помещения, предел сигнализации цепей RCM должен превышать сумму токов утечки, чтобы обнаруживать спонтанные события, которые вызывают повышение тока утечки или указывают на возрастающее старение изоляции.

Предельное значение для измерения в группе 2 зоны кардиологического наблюдения с помощью катетера для левого сердца должно быть соответствующим образом скорректировано. Следовательно, увеличение компенсационных токов, измеренных методом RCM, может указывать на опасную разность потенциалов.Увеличение общих токов утечки можно контролировать, следя за изменением отображения измеренных значений при включении приборов.

Таким образом, в случае изменения типа использования помещений, используемых для медицинских целей, или существенного изменения оборудования помещения, электрическая установка должна быть адаптирована к новому VDE 0100, часть 710; в таких случаях необходимо адаптироваться.

Выполнение и соблюдение требований к электромонтажу в соответствии с VDE 0100, часть 710 имеет смысл только в том случае, если философия установки VDE 0100, которая заканчивается сетевой розеткой, последовательно продолжается в помещениях, используемых для медицинских целей, и в медицинских помещениях. оборудование подключено.Тем не менее, важно отметить, что непреднамеренные и ошибочные соединения между различными группами помещений 1 и 2 с ИТ-сетями через антенны, системы внутренней связи, видео / аудиолинии, сети EDP или системы молниезащиты могут свести на нет философию безопасности VDE 0100, часть 710.

Во всех зданиях с помещениями, используемыми для медицинских целей, необходимо проверить, присутствует ли по крайней мере общее локальное выравнивание потенциалов в соответствии с предыдущим стандартом VDE 0107.

При рассмотрении проблемы установки необходимо проверить следующие моменты:

  • образование петли
  • индукции
  • векторное сложение токов
  • гармоник


В медицинских помещениях группы 2 соединительные болты для кабелей выравнивания потенциалов в соответствии с DIN 42801 должны быть установлены рядом с положением пациента, чтобы включить мобильное медицинское электрическое оборудование и мобильные хирургические светильники в дополнительное выравнивание потенциалов (рис.3).

Рис. 3: Дополнительное выравнивание потенциалов на интенсивном рельсе

ШИНА ЭКВИПОТЕНЦИАЛЬНОГО ЗАЗЕМЛЕНИЯ

Шина уравнивания потенциалов для дополнительного уравнивания потенциалов должна располагаться в зоне медицинского использования (комната или группа комнат) или рядом с ней. Шина уравнивания потенциалов должна быть расположена внутри или рядом с каждым назначенным распределителем, к которому должны быть подключены провод уравнивания потенциалов и защитный провод. Подключения должны быть такими, чтобы два провода были четко различимы и разделялись.

2. ДОПОЛНИТЕЛЬНОЕ УРАВНЕНИЕ ПОТЕНЦИАЛА ДЛЯ МОБИЛЬНОГО МЕДИЦИНСКОГО ОБОРУДОВАНИЯ

При обсуждении важности выравнивания потенциалов для мобильного портативного медицинского оборудования необходимо также соблюдать все еще действующие правила применения VDE 0753 Часть 2 / 02.83 для электромедицинского оборудования для внутрисердечных вмешательств. VDE 0753 предусматривает, что при использовании активного мобильного медицинского оборудования с классом безопасности I в медицинских помещениях Группы 2 перед использованием медицинского оборудования необходимо проверить правильность подключения дополнительных кабелей выравнивания потенциалов и оборудования для выравнивания потенциалов в помещении.

Токи утечки от электрического оборудования, токи выравнивания потенциалов между металлическими частями помещения, а также токи измерительной цепи от электрического оборудования могут протекать через сердце через внутрисердечные катетеры или датчики, размещенные на обнаженном сердце; та же проблема относится к мозгу.

Согласно VDE 0753 часть 2, постоянный ток или низкочастотный переменный ток до 1000 Гц и 10 мА по-прежнему считаются физиологически совместимыми. Все электрическое оборудование, которое излучает энергию в любой форме пациенту или только проводящим образом соединено с пациентом, может излучать эти крошечные количества энергии и, следовательно, представлять источник опасности в любое время.

Дополнительное выравнивание потенциалов для мобильного или портативного медицинского оборудования по-прежнему представляет собой профилактическую меру, позволяющую избежать податливого напряжения, которое может возникнуть из-за разницы напряжений (потенциалов) между прикосновенным оборудованием и пациентом, и привести все напряжения к общему потенциалу.

Согласно закону Ома, I = U / R, для операционной требуются низкие значения 10 мВ или 10 мА, поскольку коэффициент защиты кожи обычно отменяется с предполагаемым средним значением прибл.1 кОм для медицинских приложений.

На рис. 4 схематично показаны электрические законы в соответствии с законом Ома (напряжение прикосновения Ub = 10 мВ, среднее сопротивление тела Rbody = 1 кВт, предельное значение для фибрилляции сердца = 10 мА) и, таким образом, электротехническая основа для ограничения токов и напряжения в непосредственной близости от пациента.

На рис. 4 показана все еще преобладающая необходимость измерения и поддержания максимального напряжения прикосновения 10 мВ, даже если оно больше не включено в новую часть 710 стандарта VDE 0100 по причинам, указанным выше.

Во время применения оборудования, непосредственно контактирующего с пациентом, должна быть создана зона с выравниванием потенциалов, по крайней мере, вокруг пациента (так называемая среда пациента) через центральную точку выравнивания потенциалов рядом с пациентом, к которой выполняется выравнивание потенциалов. проводники оборудования подключены.

Рис. 5: Подключение выравнивания потенциалов для различного оборудования

Рис.6: Выравнивание потенциалов подключения оборудования

Рис.7: Дополнительные соединительные элементы для выравнивания потенциалов согласно DIN 42801

Рис. 8: Установка дополнительного устройства выравнивания потенциалов на тележке для мобильного оборудования

Рис.9: Сетевой кабель управления приоритетом и кабель выравнивания потенциалов

В помещениях группы 2, соединительные болты для проводов выравнивания потенциалов должны быть установлены рядом с положением пациента, с помощью которых мобильное медицинское электрическое оборудование для внутрисердечных вмешательств и мобильные операционные столы должны быть включены в выравнивание потенциалов при выполнении высокочастотной хирургии.Выравнивание потенциалов должно быть ограничено областью, непосредственно окружающей пациента, то есть в пределах 1,5 м от операционного стола или кровати в отделении интенсивной терапии.

Если в этой области находится более одного пациента, различные точки выравнивания потенциалов должны быть подключены к центральной шине выравнивания потенциалов, которая соединена с защитным проводом источника питания для рассматриваемой области.

В случае медицинских устройств (рис. 6) с версиями класса безопасности I и II, металлические части устройств, доступные для прикосновения, также должны быть подключены к дополнительным точкам подключения выравнивания потенциалов в помещении через гибкие кабели выравнивания потенциалов с использованием соединительных элементов в в соответствии с DIN 42801 (см. рис.7).

Выравнивание потенциалов может состоять из фиксированных постоянных соединений или ряда отдельных соединений, которые устанавливаются при установке оборудования рядом с пациентом. Необходимые точки подключения для кабелей выравнивания потенциалов, отмеченные зеленым / желтым (стандартное обозначение ЗЕЛЕНО-ЖЕЛТЫЙ), конечно, должны быть предусмотрены как на устройствах, так и в системе. На рис. 8 показан пример правильной установки или дооснащения кабелей выравнивания потенциалов на тележке с мобильным оборудованием в операционной.

В случае мобильного мобильного медицинского оборудования дополнительное выравнивание потенциалов решает несколько задач:

  • предотвращение или компенсация разности потенциалов между корпусами электрического оборудования и стационарно установленными токопроводящими частями в непосредственной близости от пациента
  • или уменьшение повышенных токов утечки согласно Приложению BBB DIN EN 60601-1-1: 2001 (системный стандарт)
  • резервирование подключения защитного провода согласно DIN EN 60601-1-1: 2001 в случае прерывания защитного провода оборудования

ОБОРУДОВАНИЕ ДЛЯ ДОПОЛНИТЕЛЬНОГО УРАВНЕНИЯ ВОЗМОЖНОСТИ АКТИВНОГО МЕДИЦИНСКОГО ОБОРУДОВАНИЯ

DIN VDE 0750 / EN 60601 / IEC 601 (области действия: Германия / Европа / мир) прямо не требует наличия заземляющего штыря для каждой единицы оборудования.Хотя стандарт описывает механические размеры болта, он не содержит никаких требований к установке, так что медицинское оборудование без этого соединения также может быть предложено на рынке.

Это означает, что оператору, возможно, придется модернизировать подключение к медицинскому продукту или прибору или, возможно, придется указать это требование при выборе / тендере или спецификациях услуг.

Мобильные тележки для оборудования, предназначенные для размещения медицинской электрической системы в соответствии с DIN EN 60601-1-1, всегда должны содержать подходящее устройство для дополнительного выравнивания потенциалов в виде звезды (см.5).

Дополнительное выравнивание потенциалов может потребоваться, если эквивалентные токи утечки оборудования превышают допустимые предельные значения и не установлен разделительный трансформатор.

Это означает, что на практике медицинское устройство без болтов заземления использовать нельзя, и поэтому следует приобретать только медицинские устройства с соединением для выравнивания потенциалов. Это требование также распространяется на немедицинские устройства, такие как видеомониторы, видеопринтеры и записывающие устройства, используемые в медицинских помещениях Группы 1 и Группы 2.

Каким образом медицинское устройство или прибор можно включить в систему дополнительного выравнивания потенциалов без болта? Поэтому производителю рекомендуется с самого начала прикреплять такое устройство к компонентам, которые связаны или могут быть связаны с инвазивными компонентами в самом широком смысле.

Если этого требует приложение (группа помещений 2, инвазивный, общий ток утечки> 1 мА), болт необходимо дооснастить тележками для мобильного оборудования или медицинскими изделиями.

В случае старых устройств, которые были закуплены до и во время действия MedGV (Регламента по медицинским устройствам), это может сделать опытный медицинский техник (с учетом всех применимых технических норм — в частности, должны (что иногда может быть проблематично для дочерних мониторов), при необходимости ввод в эксплуатацию должен выполняться специалистом.


ДОПОЛНИТЕЛЬНОЕ УРАВНЕНИЕ ВОЗМОЖНОСТЕЙ ДЛЯ СИСТЕМ, КАК МЕДИЦИНСКОЕ ЭЛЕКТРИЧЕСКОЕ ОБОРУДОВАНИЕ В СООТВЕТСТВИИ С DIN EN 60601-1-1


Информационное приложение AAA к Стандарту 60601-1-1 добавляет к разделу 19.201 токи утечки, указывая, что для немедицинского оборудования в соответствующих стандартах могут быть разрешены более высокие токи утечки корпуса, чем предельные значения в 60601-1-1. Если немедицинское оборудование эксплуатируется вне помещения, в котором находится пациент, эти повышенные токи утечки в корпусе могут быть допустимы.


Дополнительное выравнивание потенциалов для систем медицинского электрооборудования

В условиях пациента необходимо ограничить разность потенциалов между различными частями системы. При ограничении этой разности потенциалов в системе защитных проводов существенную роль играет качество соединения и центральное уплотнение. Поэтому важно не допускать прерывания защитных мер в любой части системы.

  • Можно использовать дополнительные проводники выравнивания потенциалов, если ток утечки корпуса превышает допустимые пределы при первом повреждении.
  • Дополнительные защитные проводники для медицинского электрооборудования, соответствующие IEC 60601-1-1, не требуются. Однако в случае немедицинского электрического оборудования эта мера может предотвратить превышение допустимых пределов тока утечки корпуса.

Как показано на рис. 9, желто-зеленый дополнительный провод выравнивания потенциалов всегда должен быть обязательно подсоединен к сетевому кабелю до сетевой вилки, чтобы пользователь вставлял оба кабеля, а значит, и кабель выравнивания потенциалов в предназначенный для этого гнездо подключения.

РЕЗЮМЕ

Необходимость выравнивания потенциалов для предотвращения разницы потенциалов как источника рабочего напряжения с опасными потенциалами все еще очевидна.

Контроль обратного тока в заземляющем проводе с помощью технологии RCM не заменяет философию превентивного предотвращения перепадов напряжения как движущей силы для источников напряжения с потенциальной опасностью для пациентов и пользователей в медицинских помещениях. Следовательно, все пользователи медицинского оборудования должны быть подробно проинформированы о важности и необходимости дополнительного выравнивания потенциалов.Для мобильного оборудования кабель выравнивания потенциалов должен быть проложен к сетевой вилке вместе с сетевым кабелем, и следует приобретать только медицинские изделия и оборудование, у которых есть соединительный болт для дополнительного выравнивания потенциалов.

ЛИТЕРАТУРА

  1. VDE 0753 Часть 2 / 02.83 Правила использования электромедицинского оборудования во внутрисердечной хирургии
  2. VDE 0100 Part 710: 2002.11.01 Монтаж низковольтных систем в областях медицинского назначения
  3. VDE 0107 Высоковольтные системы в больницах и медицинских помещениях вне больниц
  4. Гертнер, А.; Безопасность медицинского оборудования — Руководство для оператора, TÜV-Publishing Company Cologne, 2001, ISBN 3-8249-0672-4
  5. Gärtner, A .; Требования к тележкам для мобильной техники, мт медицинской техники, 6/2002, с. 211 — 217
  6. Hofheinz, W .; Электробезопасность в помещениях медицинского назначения, VDE Publishing Company 2001, ISBN 3-800-2527-4
  7. Sudkamp, ​​N .; Электрические системы в больницах, TÜV-Publishing Company Cologne, 2001, ISBN 3-8249-0533-7
  8. DIN EN 62020: 1999-07, Электромонтажные материалы. Устройства контроля остаточного тока для домашнего и аналогичного использования (RCM)
  9. DIN 42801 Издание: 1980-04, Соединительные болты для кабелей выравнивания потенциалов
  10. DIN 42801-2, редакция: 1984-01 Кабели выравнивания потенциалов; розетка

205 Заземление и соединение с системой выравнивания потенциалов

Любые металлические корпуса устройств в искробезопасной системе должны быть подключены к местным стальным конструкциям и выравниванию потенциалов.

(соединение) таким же образом, как указано выше, как и корпуса аппаратов, использующих все другие концепции защиты.Аналогичным образом следует обрабатывать броню, применяемую к кабелям искробезопасных систем, металлическим оболочкам кабелей и трубопроводам (см. Главу 18).

К соединениям между искробезопасной цепью и любыми экранами, используемыми на кабелях, нужно относиться совершенно иначе. Поскольку искрение на клеммах и в других местах установки разрешено в рамках концепции искробезопасности, акцент смещается с безопасности соединения на предотвращение множественных подключений к системе выравнивания потенциалов, так как во время сбоев питания потенциал в различных частях выравнивания потенциалов системы могут отличаться друг от друга.Если это так, и если существует более одного соединения между искробезопасной системой и системой выравнивания потенциалов, разница в напряжении между ними может увеличивать напряжение искробезопасной системы, что может затем вызвать интенсивное искрение при нормальной работе. или в условиях неисправности. На рисунке 20.11 показана ситуация, которая может возникнуть, если искробезопасная цепь, подключенная к уравнению потенциалов в ее источнике, подключена таким образом, что токи короткого замыкания, возникающие в других электрических цепях, вызывают подъем точки подключения даже на небольшое напряжение.Это напряжение будет добавлено к напряжению искробезопасной цепи, и если неисправность системы выравнивания потенциалов произойдет в другом месте цепи, где нет возвышения, искрение может быть воспламеняющим. Это наиболее важно для

Рис. 20.11 Влияние изменения напряжения в системе выравнивания потенциалов. Примечания: (1) i = ток электрического повреждения, v = разность потенциалов между точкой подключения искробезопасной цепи к проводу защитного заземления и основной точкой заземления из-за ‘/’ и сопротивления проводника защитного заземления Y.(2) Потенциал заземления (PE-проводник) в точке, где происходит замыкание на землю (PE) в проводке искробезопасной цепи, равен потенциалу в основном соединении. (3) Ток неисправности l / S равен (V + v) / R. Это может быть воспламенение из-за добавления v

Рис. 20.11 Эффект изменения напряжения в системе выравнивания потенциалов. Примечания: (1) i = ток электрического повреждения, v = разность потенциалов между точкой подключения искробезопасной цепи к проводу защитного заземления и основной точкой заземления из-за ‘/’ и сопротивления проводника защитного заземления Y.(2) Потенциал заземления (PE-проводник) в точке, где происходит замыкание на землю (PE) в проводке искробезопасной цепи, равен потенциалу в основном соединении. (3) Ток неисправности l / S равен (V + v) / R. Это может быть способным к воспламенению из-за добавления v

= li + l2 + l3 + U + U +> 6 lg = токи утечки и замыкания на землю от смонтированного на месте оборудования lr + ly + lb = токи питания l0 = ток на трансформаторе звездная точка

Рис. 20.12 Протекание тока на питающем трансформаторе.

— источник системы, поскольку именно здесь собираются все обратные токи, включая токи короткого замыкания, и, таким образом, повышение уровня намного более вероятно.

На рисунке 20.12 показана общая схема протекания тока в электроустановке.

Таким образом, основные критерии для искробезопасных электрических цепей следующие.

1. Их желательно изолировать от системы выравнивания потенциалов с помощью соединения с высоким сопротивлением (скажем, 0,5–1 Ом), чтобы предотвратить накопление заряда из-за образования статического электричества.

2. Они должны быть подключены к системе выравнивания потенциалов только в одном месте, а в другом месте должны быть изолированы от этой системы с изоляцией, способной выдержать испытание изоляции 500 В среднеквадратичного значения.

3. Точка подключения к системе выравнивания потенциалов, если таковая существует, должна быть такой, где потенциал системы, скорее всего, будет находиться при таком же напряжении, что и общая система выравнивания потенциалов и, следовательно, задействованные структурные металлоконструкции и земля.

20.5.1 Типовые искробезопасные цепи для Зоны 1 и Зоны 21 с заземляющим соединением во взрывоопасной зоне

Самый общий тип искробезопасной системы — это система, в которой фактически требуется заземление цепи, и, следовательно, типичная для цепи, описанной в пункте 2 списка на предыдущей странице. Это дает значительные финансовые преимущества по сравнению с типом схемы, описанной в 1, и при правильной установке подходит для использования в Зоне 1 и 21. (Ситуация с Зонами 0 и 20 будет описана в Разделе 20.5.5 данной главы). Эта схема обычно имеет до трех элементов, требующих подключения к системе выравнивания потенциалов, и все они находятся в соответствующем аппарате. Обычно это корпус, экран в сетевом трансформаторе и искробезопасная цепь.

Корпус

Корпус часто бывает металлическим, и в этом случае его необходимо заземлить, чтобы обеспечить работу устройств защиты цепи в случае неисправности и обеспечить защиту персонала от поражения электрическим током.Как правило, он устанавливается на стальную конструкцию, на которой также устанавливается другое электрическое оборудование, включая такие устройства, как освещение и неискробезопасное устройство управления, индикации и переключения, включая неискробезопасные части связанного устройства, которые сами могут генерировать значительные токи короткого замыкания. Таким образом, он будет подвергаться токам короткого замыкания от всего установленного на нем оборудования и, по этой причине, должен быть подключен к системе выравнивания потенциалов (соединения), чтобы гарантировать срабатывание электрической защиты и исключить риск поражения электрическим током.Однако это соединение будет иметь много разных токов, протекающих по нему из-за множества устройств, с которыми оно контактирует (см. Рис. 20.13).

Интерфейс искробезопасной цепи

Часто это трансформатор (см. Рис. 20.13), образующий интерфейс, обеспечивающий управление первичным напряжением для искробезопасной цепи. Вероятно, он будет оснащен экраном между обмотками, питающими искробезопасные цепи, и другими обмотками, и это будет пропускать ток, если в трансформаторе происходит короткое замыкание, поскольку его цель — обеспечить срабатывание защиты трансформатора до того, как произойдет какой-либо прорыв экрана.Сердечник трансформатора будет соединен с общей системой выравнивания потенциалов, обычно через корпус устройства, и если экран соединен с сердечником, то его соединение уже определено. Если это не так, то экран будет удовлетворять основным требованиям к изоляции для связанного оборудования, и он все равно должен быть соединен таким образом, поскольку его цель — отводить первичный ток от искробезопасной цепи. Искробезопасная цепь будет подключена ко вторичной обмотке трансформатора и почти всегда будет подключена к системе выравнивания потенциалов для предотвращения

Сопутствующий аппарат

Искробезопасная цепь

Заземление искробезопасной цепи

Шина заземления искробезопасной цепи (выравнивание потенциалов) (изолирована от общей шины и местных металлоконструкций)

Шина заземления искробезопасной цепи (выравнивание потенциалов) (изолирована от общей шины и местных металлоконструкций)

Поставка

Рама

Экран (Примечание)

Общая земля (выравнивание потенциалов) бар

К главной (распределительной) шине заземления (подключенной как можно ближе к соединительной части главного трансформатора питания / главной шины.)

Общая земля (выравнивание потенциалов) бар

К главной (распределительной) шине заземления

К главной (распределительной) шине заземления

Рис. 20.13 Типичная система выравнивания потенциалов (заземления) связанного аппарата.

Примечание Экран можно подключить вместо этого к искробезопасной шине заземления цепи, но предпочтительнее подключение, указанное выше.

шум, вызывающий эксплуатационные проблемы и, поскольку большинство цепей в основном асимметричны, предотвращает короткое замыкание устройств ограничения тока из-за замыканий на землю (см.рис.20.14). Это соединение очень важно, поскольку оно имеет значение для самой искробезопасной цепи, и подключение к общей системе выравнивания потенциалов вместе с экраном трансформатора и корпусом обычно неприемлемо из-за возможных токов короткого замыкания. Идеальным вариантом является прямое соединение с точкой звезды главного трансформатора питания, поскольку это точка, в которой токи короткого замыкания выравниваются и не происходит повышения напряжения. Обычно невозможно обеспечить подключение к самому трансформатору, но опыт показал, что основная шина заземления в главном распределительном помещении является адекватной и именно там обычно выполняется подключение.Это соединение используется в других случаях, когда непосредственно задействована искробезопасная цепь, например, в цепях с шунтирующими барьерами безопасности на стабилитронах.

(1) Возможная вторичная неисправность / неисправность экрана

(1) Возможное повреждение вторичной обмотки / экрана

К общей шине заземления

Читать здесь: 1

Была ли эта статья полезной?

Braun TeleCom Магазин | Планка выравнивания потенциалов

Этот веб-сайт использует собственные и сторонние файлы cookie для хранения личной информации и персонализации контента и рекламы.В этом сообщении мы хотим спросить у вас разрешения на хранение этих файлов cookie.

Маркетинг
  • Google Analytics
Essential
  • Сессионный файл cookie
  • Баннер с печеньем
  • Языковые настройки

PEC100 Зажим выравнивания потенциала Искровое напряжение 350 В

Зажим выравнивания потенциала 350 В Искровое напряжение

Зажим выравнивания потенциала PEC — это устройство выравнивания потенциалов, которое можно использовать для минимизации повреждений в приложениях, где требуются отдельные системы заземления.Модель PEC100 имеет сертификат ATEX, что делает устройство пригодным для использования во взрывоопасных зонах, таких как защита изолированных стыков трубопровода .

Назначение:

В системах связи и компьютерных установках нередко устанавливают отдельные системы заземления для молнии, электросети, компьютера (бесшумное заземление) и связи (для обеспечения безопасности и защиты от ураганов). Хотя такой подход может быть желателен по определенным причинам эксплуатации, при возникновении молнии или других переходных напряжений неизбежны различия в потенциалах заземления между заземляющими электродами, что может привести к повреждению оборудования.

Зажим для выравнивания потенциалов (PEC) — это изолирующий искровой разрядник, предназначенный для предотвращения разницы потенциалов земли за счет работы в переходных условиях для эффективного зажима заземлений. Обычно PEC представляет собой эффективную разомкнутую цепь. Как только разность потенциалов земли превышает напряжение пробоя PEC, цепь немедленно замыкается, и потенциалы земли выравниваются. УИК полностью сбрасываемый и имеет срок службы более десяти тысяч операций.

Многие подземные трубопроводы защищены от коррозии системами катодной защиты. Для поддержания целостности изоляции трубы на измерительных и телеметрических станциях в трубу вставляются изоляционные соединения, а участки между изоляционными соединениями заземляются на станции. При большой длине трубопроводов индуцированные напряжения в трубопроводе, вызванные местной молнией или повреждениями линий электропередач, могут достигать
порядка десятков киловольт. В результате выход из строя изолированных соединений почти неизбежен, особенно уязвимы изолированные соединения фланцевого типа.

Для защиты от разрушения изолированного стыка, PEC может быть подключен непосредственно через стык. В неактивном состоянии PEC представляет собой эффективный разрыв цепи через соединение. Если напряжение изолированного соединения начинает расти из-за переходных процессов, PEC будет проводить и безопасно передавать переходной ток на землю, ограничивая напряжение напряжения в соединении. После проведения PEC автоматически вернется в неактивное состояние.

Тестеры сопротивления изоляции и тестеры изоляции ◁ Sourcetronic

Качество и характеристики различных изоляционных материалов можно проверить с помощью тестера изоляции .MD-Insulation Tester измеряет сопротивление изоляции до 10 терра Ом. MI — Insulation Tester предлагает испытательные потенциалы до 20 кВ. Тестер изоляции необходим для любого нового монтажа или реконструкции. Испытание изоляции незаменимо, например, в процессе раскрутки электродвигателей. Поэтому для двигателей с более длительным сроком эксплуатации настоятельно рекомендуется использовать тестер сопротивления изоляции , чтобы лучше оценить оставшийся срок службы.

Для мегомметра доступны специальные, надежные корпуса на тот случай, если его нужно будет использовать для измерения довольно неблагоприятных условий. Мегомметры оснащены специальной памятью, интерфейсом RS-232, часами реального времени и принтером для более точных испытаний изоляции и записи. Кроме того, мегомметры оснащены системой автоматического сброса напряжения, например, для емкостных тестеров. Все мегомметры откалиброваны на заводе-изготовителе и в контейнере. В зависимости от области применения предусмотрена возможность измерения с четырьмя контактами для управления контактами.Переносные тестеры сопротивления изоляции поставляются со всеми вспомогательными измерительными компонентами, в том числе испытательными проводами, зажимами, батареями и сумкой для переноски. В стационарном устройстве для проверки изоляции ST2638 испытательное напряжение изоляции генерируется с помощью программируемого полностью электронного источника. Эти тестеры сопротивления изоляции включают клеммы, обращенные назад, цифровые входы / выходы, программное обеспечение для дистанционного управления, а также интерфейсы DLL, LAN и USB.

  1. Тестер изоляции ST2683B 955 фунтов стерлингов.71

    Искл. 0% НДС

    £ 955,71

    Вкл. 0% НДС

    • Диапазон измерений: 100кОм — 10ТОм
    • Диапазон напряжения: 1 В — 500 В
    • Цветной сенсорный дисплей с диагональю 4,3 дюйма
    • Функция компаратора: PASS (3 ячейки) и FAIL (1 bin)
    • Интерфейс: Обработчик, RS232C и USB
    Учить больше
  2. Тестер изоляции ST2683A 1043 фунта стерлингов.39

    Искл. 0% НДС

    £ 1 043,39

    Вкл. 0% НДС

    • Диапазон измерений: 100кОм — 10ТОм
    • Диапазон напряжения: 1 В — 1000 В
    • Цветной сенсорный дисплей с диагональю 4,3 дюйма
    • Функция компаратора: PASS (3 ячейки) и FAIL (1 bin)
    • Интерфейс: Обработчик, RS232C и USB
    Учить больше
  3. Тестер изоляции ST2684A 2 533 фунтов стерлингов.95

    Искл. 0% НДС

    2 533,95 фунтов стерлингов

    Вкл. 0% НДС

    • Диапазон измерений: от 10 кОм до 100 ТОм
    • Напряжение: 10 В — 1000 В
    • Матричный ЖК-дисплей с разрешением 320 × 240 точек
    • Функция компаратора: PASS (3 ячейки) и FAIL (1 bin)
    • Интерфейс: Обработчик, RS232C, USB (опционально GPIB)
    Учить больше
  4. Тестер изоляции ST2684 2796 фунтов стерлингов.99

    Искл. 0% НДС

    2 796,99 фунтов стерлингов

    Вкл. 0% НДС

    • Диапазон измерений: от 10 кОм до 50 ТОм
    • Напряжение: 10 В — 500 В
    • Матричный ЖК-дисплей с разрешением 320 × 240 точек
    • Функция компаратора: PASS (3 ячейки) и FAIL (1 bin)
    • Интерфейс: Обработчик, RS232C, USB (опционально GPIB)
    • Двойные выходы
    Учить больше
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *